1
|
Filtz A, Lorenzatti D, Scotti A, Piña P, Fernandez-Hazim C, Huang D, Ippolito P, Skendelas JP, Kuno T, Rodriguez CJ, Schenone AL, Latib A, Lavie CJ, Shaw LJ, Blankstein R, Shapiro MD, Garcia MJ, Berman DS, Dey D, Virani SS, Slipczuk L. Relationship between epicardial adipose tissue and coronary atherosclerosis by CCTA in young adults (18-45). Am J Prev Cardiol 2024; 19:100711. [PMID: 39157644 PMCID: PMC11327837 DOI: 10.1016/j.ajpc.2024.100711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/09/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
Objective Epicardial adipose tissue (EAT) is implicated in the pathogenesis and progression of coronary artery disease (CAD). Limited data exists on the interplay between EAT and atherosclerosis in young individuals. Our study aims to explore the relationship between EAT and CAD in a young cohort. Methods All young (18-45 years) patients without prior CAD, referred for coronary computed tomography angiography (CCTA) from 2016 to 2022 were included. EAT volume and coronary artery calcium (CAC) were calculated from dedicated non-contrast scans. Coronary plaque presence, extent, and volume were quantified from CCTA. Multivariable logistic regression models for the presence of CAD, defined as any coronary atherosclerosis, were performed. Results Overall, 712 patients (39±4.8 years, 54 % female) with 45 % Hispanic, and 21 % non-Hispanic Black were included. Patients with CAD had higher EAT volume than those without (80.80 mL ± 36.00 vs 55.16 mL ± 27.92; P < 0.001). In those with CAC=0, higher EAT was associated with the presence of CAD compared to lower EAT volume (P < 0.001). An EAT volume >76 mL was associated with higher CAC (P < 0.001), segment involvement score (P < 0.001), and quantitative total, non-calcified, and low-attenuation plaque volumes (P < 0.002). At multivariable analysis, EAT volume (per 10 mL, OR: 1.21; 95 %CI: 1.12-1.30; P < 0.0001) was independently associated with the presence of CAD. Conclusion In a diverse cohort of young adults without history of CAD and undergoing a clinically indicated CCTA, EAT volume was independently associated with the presence of CAD. Our findings highlight EAT potential as a novel marker for CAD risk-assessment and a potential therapeutic target in young patients.
Collapse
Affiliation(s)
- Annalisa Filtz
- Cardiology Division, Montefiore Medical Center/Albert Einstein College of Medicine. Bronx, NY, USA
- IRCCS Ospedale Ca’ Granda Maggiore Policlinico, Università degli Studi di Milano. Milan, Italy
| | - Daniel Lorenzatti
- Cardiology Division, Montefiore Medical Center/Albert Einstein College of Medicine. Bronx, NY, USA
| | - Andrea Scotti
- Cardiology Division, Montefiore Medical Center/Albert Einstein College of Medicine. Bronx, NY, USA
| | - Pamela Piña
- Cardiology Division, Montefiore Medical Center/Albert Einstein College of Medicine. Bronx, NY, USA
- Department of Cardiology, CEDIMAT. Santo Domingo, Dominican Republic
| | - Carol Fernandez-Hazim
- Cardiology Division, Montefiore Medical Center/Albert Einstein College of Medicine. Bronx, NY, USA
| | - Dou Huang
- Cardiology Division, Montefiore Medical Center/Albert Einstein College of Medicine. Bronx, NY, USA
| | - Paul Ippolito
- Cardiology Division, Montefiore Medical Center/Albert Einstein College of Medicine. Bronx, NY, USA
| | - John P Skendelas
- Cardiology Division, Montefiore Medical Center/Albert Einstein College of Medicine. Bronx, NY, USA
| | - Toshiki Kuno
- Cardiology Division, Montefiore Medical Center/Albert Einstein College of Medicine. Bronx, NY, USA
| | - Carlos J Rodriguez
- Cardiology Division, Montefiore Medical Center/Albert Einstein College of Medicine. Bronx, NY, USA
| | - Aldo L Schenone
- Cardiology Division, Montefiore Medical Center/Albert Einstein College of Medicine. Bronx, NY, USA
| | - Azeem Latib
- Cardiology Division, Montefiore Medical Center/Albert Einstein College of Medicine. Bronx, NY, USA
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Leslee J. Shaw
- Departments of Medicine (Cardiology) and Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ron Blankstein
- Departments of Medicine (Cardiovascular Division) and Radiology, Brigham and Women's Hospital. Boston, MA, USA
| | - Michael D Shapiro
- Center for Prevention of Cardiovascular Disease, Section on Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Mario J Garcia
- Cardiology Division, Montefiore Medical Center/Albert Einstein College of Medicine. Bronx, NY, USA
| | - Daniel S Berman
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center. Los Angeles, CA, USA
| | - Damini Dey
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center. Los Angeles, CA, USA
| | - Salim S Virani
- Office of the Vice Provost (Research), The Aga Khan University. Karachi, Pakistan. Division of Cardiology, The Texas Heart Institute/Baylor College of Medicine. Houston, TX, USA
| | - Leandro Slipczuk
- Cardiology Division, Montefiore Medical Center/Albert Einstein College of Medicine. Bronx, NY, USA
| |
Collapse
|
2
|
Dhore-Patil A, Urina-Jassir D, Samson R, Le Jemtel TH, Oparil S. Epicardial Adipose Tissue Thickness and Preserved Ejection Fraction Heart Failure. Curr Hypertens Rep 2024; 26:381-388. [PMID: 38642285 PMCID: PMC11324708 DOI: 10.1007/s11906-024-01302-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE OF THE REVIEW Preserved ejection fraction heart failure and obesity frequently coexist. Whether obesity plays a consistent role in the pathogenesis of preserved ejection fraction heart failure is unclear. Accumulation of visceral adiposity underlies the pathogenic aftermaths of obesity. However, visceral adiposity imaging is assessed by computed tomography or magnetic resonance and thus not routinely available. In contrast, epicardial adiposity thickness is assessed by echocardiography and thus routinely available. We review the rationale for assessing epicardial adiposity thickness in patients with preserved ejection fraction heart failure and elevated body mass index. RECENT FINDINGS Body mass index correlates poorly with visceral, and epicardial adiposity. Visceral and epicardial adiposity enlarges as preserved ejection fraction heart failure progresses. Epicardial adiposity may hasten the progression of coronary artery disease and impairs left ventricular sub-endocardial perfusion and diastolic function. Epicardial adiposity thickness may help monitor the therapeutic response in patients with preserved ejection failure heart failure and elevated body mass index.
Collapse
Affiliation(s)
- Aneesh Dhore-Patil
- Division of Cardiovascular Imaging, Weill Cornell Medical College, Houston Methodist DeBakey Heart & Vascular Center, 6505 Fanin St., Houston, TX, 77030, USA
| | - Daniela Urina-Jassir
- Section of Cardiology, John W. Deming Department of Medicine, Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Rohan Samson
- Advanced Heart Failure Therapies Program, University of Louisville Health-Heart Hospital, 201Abraham Flexner Way, Suite 1001, Louisville, KY, 40202, USA
| | - Thierry H Le Jemtel
- Section of Cardiology, John W. Deming Department of Medicine, Tulane Avenue, SL-48, New Orleans, LA, 70112, USA.
| | - Suzanne Oparil
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
3
|
Lacaita PG, Kindl B, Plank F, Beyer C, Bilgeri V, Barbieri F, Senoner T, Dichtl W, Tancevski I, Swoboda M, Luger A, Deeg J, Widmann G, Feuchtner GM. Lipomatous hypertrophy of the interatrial septum: a distinct adipose tissue type in COPD? ERJ Open Res 2024; 10:00295-2024. [PMID: 39319042 PMCID: PMC11417605 DOI: 10.1183/23120541.00295-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/23/2024] [Indexed: 09/26/2024] Open
Abstract
Objective Lipomatous hypertrophy of the interatrial septum (LHIS) is a distinct section of epicardial adipose tissue. However, its association with COPD is poorly documented. Methods Patients undergoing coronary computed tomography angiography (CTA) for clinical indications were recruited retrospectively and screened for LHIS and COPD. LHIS density and the coronary artery disease profile were quantified by CTA: stenosis severity (coronary artery disease radiological reporting system (CADRADS)), coronary artery calcium (CAC) and high-risk plaque (HRP). COPD patients with LHIS were matched for age and sex, the major cardiovascular risk factors (CVRFs), and compared to controls. Results The prevalence of LHIS in all 5466 patients was 5.9%. 151 (72.6%) of 208 patients with COPD had LHIS. LHIS density in COPD patients was higher (-10.93 HU versus -21.1 HU; p<0.001), despite body mass index (BMI) (28.8 versus 27.01 kg·m-2; p=0.002) being lower. LHIS density was lower in obese (BMI >30 kg·m-2) patients (20.4 versus 13.6 HU; p=0.02). BMI was inversely correlated with LHIS density (BetaR -0.031; 95% CI: -0.054- -0.008; p=0.007). LHIS density was associated with COPD, but not with BMI on multivariate models. CAC and coronary stenosis severity (CADRADS and >50% stenosis) were not different (p=0.106, p=0.156 and p=0.350, respectively). HRPs were observed more frequently in COPD patients with severe Global Initiative for Chronic Obstructive Lung Disease (GOLD) stages ≥2 (32.3% versus 20.1%; p=0.044), but not when adding mild GOLD stages. Conclusions The prevalence of LHIS in COPD patients is high (72.6%), and the adipose tissue density is higher, indicating a higher brown fat component. In obese, patients LHIS density is lower and declines along with BMI. Coronary stenosis severity and calcium were not different; however HRPs were more frequent in severe COPD.
Collapse
Affiliation(s)
- Pietro G. Lacaita
- Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
| | - Benedikt Kindl
- Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
| | - Fabian Plank
- Department of Internal Medicine, Tyrol Clinicum Hall, Hall, Austria
| | - Christoph Beyer
- Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
| | - Valentin Bilgeri
- Department of Internal Medicine, Cardiology, Medical University Innsbruck, Innsbruck, Austria
| | - Fabian Barbieri
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Thomas Senoner
- Department of Anaesthesiology and Intensive Care, Innsbruck Medical University, Innsbruck, Austria
| | - Wolfgang Dichtl
- Department of Internal Medicine, Cardiology, Medical University Innsbruck, Innsbruck, Austria
| | - Ivan Tancevski
- Department of Internal Medicine, Pulmonology, Medical University Innsbruck, Innsbruck, Austria
| | - Michael Swoboda
- Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
| | - Anna Luger
- Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
| | - Johannes Deeg
- Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
| | - Gerlig Widmann
- Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
| | | |
Collapse
|
4
|
Mikami T, Yokomachi K, Mizuno K, Kobayashi M. Feasibility of Epicardial Adipose Tissue Quantification Using Non-electrocardiogram-Gated Chest Computed Tomography Images. J Comput Assist Tomogr 2024:00004728-990000000-00351. [PMID: 39146220 DOI: 10.1097/rct.0000000000001662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
OBJECTIVE Epicardial adipose tissue (EAT) is an important imaging indicator of cardiovascular risk. EAT volume is usually measured using electrocardiogram (ECG) gating. However, there are concerns regarding the influence of motion artifacts when measuring EAT volume on non-ECG-gated plain chest computed tomography (CT) images. Few studies have evaluated the EAT volume using non-ECG gating. This study aimed to validate the accuracy of EAT quantification using non-ECG-gated chest CT imaging. METHODS We included 100 patients (64 males, 36 females) who underwent simultaneous coronary artery calcification score imaging (ECG gated) and plain chest CT imaging (non-ECG gated). Images taken using non-ECG gating were reconstructed using the same field of view and slice thickness as those obtained with ECG gating. The EAT capacity of each image was measured and compared. An AZE Virtual Place (Canon) was used for the measurements. The Mann-Whitney U test and intraclass correlation coefficient were used for statistical analyses. P values <0.05 were considered statistically significant. Concordance was evaluated using Bland-Altman analysis. RESULTS The mean EAT volume measured by ECG-gated imaging was 156.5 ± 66.9 mL and 155.4 ± 67.9 mL by non-ECG-gated imaging, with no significant difference between the two groups ( P = 0.86). Furthermore, the EAT volumes measured using ECG-gated and non-ECG-gated imaging showed a strong correlation ( r = 0.95, P < 0.05). Bland-Altman analysis revealed that the mean error of the EAT volume (non-ECG-gated imaging - ECG-gated imaging) was -1.02 ± 2.95 mL (95% confidence interval, -6.49 to 4.76). CONCLUSIONS The EAT volume obtained using non-ECG-gated imaging was equivalent to that obtained using ECG-gated imaging.
Collapse
Affiliation(s)
- Tomio Mikami
- From the Department of Radiology, Ichiyokai Harada Hospital
| | | | - Kenji Mizuno
- From the Department of Radiology, Ichiyokai Harada Hospital
| | | |
Collapse
|
5
|
Brigham RC, Mattson AR, Iaizzo PA. Ventricular Epicardial Adipose Distribution on Human Hearts: 3-Dimensional Reconstructions and Quantitative Assessments. J Cardiovasc Transl Res 2024; 17:959-968. [PMID: 38625670 DOI: 10.1007/s12265-024-10505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/04/2024] [Indexed: 04/17/2024]
Abstract
Epicardial interventions have forged new frontiers in cardiac ablation and device therapies. Healthy human hearts typically present with significant adipose tissue layers superficial to the ventricular myocardium and may hinder success or increase the complexities of epicardial interventions. We quantitatively evaluated the distribution of epicardial adipose tissue on the surface of human hearts and provided high-fidelity 3-dimensional reconstructions of these epicardial adipose tissue layers. The regional thickness of adipose tissues was analyzed at 51 anatomical reference points surrounding both ventricles and compared to specific patient demographics. Adipose deposits on the human hearts displayed characteristic patterns, with the thickest accumulations along the interventricular septa (anterior, 9.01 ± 0.50 mm; posterior, 6.78 ± 0.50 mm) and the right ventricular margin (7.44 ± 0.57 mm). We provide one of the most complete characterizations of human epicardial adipose location and relative layer thickness. These results are considered fundamental for an underlying anatomic understanding when performing procedures within the pericardial space.
Collapse
Affiliation(s)
- Renee C Brigham
- Departments of Biomedical Engineering and Surgery, University of Minnesota, Minneapolis, MN, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Alexander R Mattson
- Departments of Biomedical Engineering and Surgery, University of Minnesota, Minneapolis, MN, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA
- Medtronic, Minneapolis, MN, USA
| | - Paul A Iaizzo
- Departments of Biomedical Engineering and Surgery, University of Minnesota, Minneapolis, MN, USA.
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Dimitriadis K, Pyrpyris N, Theofilis P, Mantzouranis E, Beneki E, Kostakis P, Koutsopoulos G, Aznaouridis K, Aggeli K, Tsioufis K. Computed Tomography Angiography Identified High-Risk Coronary Plaques: From Diagnosis to Prognosis and Future Management. Diagnostics (Basel) 2024; 14:1671. [PMID: 39125547 PMCID: PMC11311283 DOI: 10.3390/diagnostics14151671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
CT angiography has become, in recent years, a main evaluating modality for patients with coronary artery disease (CAD). Recent advancements in the field have allowed us to identity not only the presence of obstructive disease but also the characteristics of identified lesions. High-risk coronary atherosclerotic plaques are identified in CT angiographies via a number of specific characteristics and may provide prognostic and therapeutic implications, aiming to prevent future ischemic events via optimizing medical treatment or providing coronary interventions. In light of new evidence evaluating the safety and efficacy of intervening in high-risk plaques, even in non-flow-limiting disease, we aim to provide a comprehensive review of the diagnostic algorithms and implications of plaque vulnerability in CT angiography, identify any differences with invasive imaging, analyze prognostic factors and potential future therapeutic options in such patients, as well as discuss new frontiers, including intervening in non-flow-limiting stenoses and the role of CT angiography in patient stratification.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.P.); (P.T.); (E.M.); (E.B.); (P.K.); (G.K.); (K.A.); (K.A.); (K.T.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Huber AT, Fankhauser S, Wittmer S, Chollet L, Lam A, Maurhofer J, Madaffari A, Seiler J, Servatius H, Haeberlin A, Noti F, Brugger N, von Tengg-Kobligk H, Gräni C, Roten L, Tanner H, Reichlin T. Epicardial adipose tissue dispersion at CT and recurrent atrial fibrillation after pulmonary vein isolation. Eur Radiol 2024; 34:4928-4938. [PMID: 38197916 PMCID: PMC11255050 DOI: 10.1007/s00330-023-10498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 01/11/2024]
Abstract
OBJECTIVES Epicardial adipose tissue (EAT) remodeling is associated with atrial fibrillation (AF). Left atrial (LA) EAT dispersion on cardiac CT is a non-invasive imaging biomarker reflecting EAT heterogeneity. We aimed to investigate the association of LA EAT dispersion with AF recurrence after pulmonary vein isolation (PVI). METHODS In a prospective registry of consecutive patients undergoing first PVI, mean EAT attenuation values were measured on contrast-enhanced cardiac CT scans in Hounsfield units (HU) within low (- 195 to - 45 HU) and high (- 44 to - 15 HU) threshold EAT compartments around the left atrium (LA). EAT dispersion was defined as the difference between the mean HU values within the two EAT compartments. Continuous variables were compared between groups using the Mann-Whitney U test and cox proportional hazard models were used to calculate hazard ratios of predictors of 1-year AF recurrence. RESULTS A total of 208 patients were included, 135 with paroxysmal AF and 73 with persistent AF. LA EAT dispersion was significantly larger in patients with persistent compared to paroxysmal AF (52.6 HU vs. 49.9 HU; p = 0.001). After 1 year of follow-up, LA EAT dispersion above the mean (> 50.8 HU) was associated with a higher risk of AF recurrence (HR 2.3, 95% CI 1.5-3.6; p < 0.001). It retained its predictive value when corrected for age, sex, body mass index, LA volume, and AF type (HR 2.8, 95% CI 1.6-4.6; p < 0.001). CONCLUSION A larger LA EAT dispersion on contrast-enhanced cardiac CT scans, reflecting EAT heterogeneity, is independently associated with AF recurrence after PVI. CLINICAL RELEVANCE STATEMENT Based on LA EAT dispersion assessment, a more accurate risk stratification and patient selection may be possible based on a pre-procedural cardiac CT when planning PVI. KEY POINTS • Epicardial adipose tissue (EAT) remodeling is associated with atrial fibrillation (AF). • A larger left atrial EAT dispersion in a pre-procedural cardiac CT was associated with a higher 1-year AF recurrence risk after pulmonary vein isolation. • A pre-procedural cardiac CT with left atrial EAT dispersion assessment may provide a more accurate risk stratification and patient selection for PVI.
Collapse
Affiliation(s)
- Adrian Thomas Huber
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital University Hospital, University of Bern, Freiburgstrasse, 3010, Bern, Switzerland.
- Department of Radiology and Nuclear Medicine, Lucerne Cantonal Hospital, University of Lucerne, Lucerne, Switzerland, Lucerne, Switzerland.
| | - Severin Fankhauser
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital University Hospital, University of Bern, Freiburgstrasse, 3010, Bern, Switzerland
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Severin Wittmer
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Laureve Chollet
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Anna Lam
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Jens Maurhofer
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Antonio Madaffari
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Jens Seiler
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Helge Servatius
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Haeberlin
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Fabian Noti
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Nicolas Brugger
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Hendrik von Tengg-Kobligk
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital University Hospital, University of Bern, Freiburgstrasse, 3010, Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Laurent Roten
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Hildegard Tanner
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Tobias Reichlin
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Woods E, Bennett J, Chandrasekhar S, Newman N, Rizwan A, Siddiqui R, Khan R, Khawaja M, Krittanawong C. Efficacy of Diagnostic Testing of Suspected Coronary Artery Disease: A Contemporary Review. Cardiology 2024:1-22. [PMID: 39013364 DOI: 10.1159/000539916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Coronary artery disease (CAD) is a highly prevalent condition which can lead to myocardial ischemia as well as acute coronary syndrome. Early diagnosis of CAD can improve patient outcomes through guiding risk factor modification and treatment modalities. SUMMARY Testing for CAD comes with increased cost and risk; therefore, physicians must determine which patients require testing, and what testing modality will offer the most useful data to diagnose patients with CAD. Patients should have an initial risk stratification for pretest probability of CAD based on symptoms and available clinical data. Patients with a pretest probability less than 5% should receive no further testing, while patients with a high pretest probability should be considered for direct invasive coronary angiography. In patients with a pretest probability between 5 and 15%, coronary artery calcium score and or exercise electrocardiogram can be obtained to further risk stratify patients to low-risk versus intermediate-high-risk. Intermediate-high-risk patients should be tested with coronary computed tomography angiography (preferred) versus positron emission tomography or single photon emission computed tomography based on their individual patient characteristics and institutional availability. KEY MESSAGES This comprehensive review aimed to describe the available CAD testing modalities, detail their risks and benefits, and propose when each should be considered in the evaluation of a patient with suspected CAD.
Collapse
Affiliation(s)
- Edward Woods
- Department of Internal Medicine, Emory University, Atlanta, Georgia, USA
| | - Josiah Bennett
- Department of Internal Medicine, Emory University, Atlanta, Georgia, USA
| | | | - Noah Newman
- Department of Internal Medicine, Emory University, Atlanta, Georgia, USA
| | - Affan Rizwan
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Rehma Siddiqui
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Rabisa Khan
- Department of Anesthesiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Muzamil Khawaja
- Division of Cardiology, Emory University, Atlanta, Georgia, USA
| | - Chayakrit Krittanawong
- Cardiology Division, NYU Langone Health and NYU School of Medicine, New York, New York, USA
| |
Collapse
|
9
|
Li C, Yu H, Li Y, Deng W, Jia Z, Xue Y, Wang Z, Xu H, Yu Y, Zhao R, Han Y, Zhu Y, Li X. The Association of Epicardial Adipose Tissue Volume and Atrial Fibrillation in Patients With Hypertrophic Cardiomyopathy: As Assessed by Cardiac MR. J Magn Reson Imaging 2024. [PMID: 38979719 DOI: 10.1002/jmri.29525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Epicardial adipose tissue (EAT) is a metabolically active visceral fat linked to cardiovascular disease. Prior studies demonstrated the predictive value of EAT volume (EATV) in atrial fibrillation (AF) among hypertrophic obstructive cardiomyopathy patients. PURPOSE To investigate the association between EATV and AF in hypertrophic cardiomyopathy (HCM). STUDY TYPE Retrospective. POPULATION Two hundred and twenty-four HCM patients (including 79 patients with AF and 145 patients without AF, 154 men) and 80 healthy controls (54 men). FIELD STRENGTH/SEQUENCE 3.0 T scanner; balanced steady-state free precession (SSFP) cine sequence, gradient echo. ASSESSMENT EAT thickness was assessed in the 4-chamber and basal short-axis planes. EAT volume was calculated by outlining the epicardial border and visceral pericardium layer on short-axis cine images. STATISTICAL TESTS Shapiro-Wilk test, Student's t test or the Mann-Whitney U test, chi-square test or Fisher's exact test, Multivariate linear regression analyses, Multivariable binary logistic regression analysis. Intraclass correlation coefficient. Significance was determined at P < 0.05. RESULTS EATV and EAT volume index (EATVI) were significantly greater in HCM patients with AF than those without AF (126.6 ± 25.9 mL vs. 90.5 ± 24.5 mL, and 73.0 ± 15.9 mL/m2 vs. 51.3 ± 13.4 mL/m2). EATVI was associated with AF in multivariable linear regression analysis among HCM patients (β = 0.62). Multivariable logistic regression analysis revealed that compared to other indicators, the area under curve (AUC) of EATVI was 0.86 (cut-off, 53.9 mL/m2, 95% CI, 0.80-0.89), provided a better performance, with the sensitivity of 96.2% and specificity of 58.6%. The combined model exhibited superior association with AF presence compared to the clinical model (AUC 0.96 vs. 0.76) and the imaging model (AUC 0.96 vs. 0.93). DATA CONCLUSION EATVI was associated with AF. EATVI was significantly correlated with incident AF, and provided a better performance in HCM patients compared to other indicators. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Chensi Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Honglin Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Yuguo Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Wei Deng
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Zhuoran Jia
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yangcheng Xue
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhen Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Huimin Xu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Ren Zhao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuchi Han
- Cardiovascular Division, Wexner Medical Center, College of Medicine, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Yinsu Zhu
- Department of Radiology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xiaohu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| |
Collapse
|
10
|
Manolis AA, Manolis TA, Manolis AS. Managing chronic coronary syndrome: how do we achieve optimal patient outcomes? Expert Rev Cardiovasc Ther 2024; 22:243-263. [PMID: 38757743 DOI: 10.1080/14779072.2024.2357344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Chronic coronary syndrome (CCS) remains the leading cause of death worldwide with high admission/re-admission rates. Medical databases were searched on CCS & its management. AREAS COVERED This review discusses phenotypes per stress-echocardiography, noninvasive/invasive testing (coronary computed-tomography angiography-CCTA; coronary artery calcium - CAC score; echocardiography assessing wall-motion, LV function, valvular disease; biomarkers), multidisciplinary management (risk factors/anti-inflammatory/anti-ischemic/antithrombotic therapies and revascularization), newer treatments (colchicine/ivabradine/ranolazine/melatonin), cardiac rehabilitation/exercise improving physical activity and quality-of-life, use of the implantable-defibrillator, and treatment with extracorporeal shockwave-revascularization for refractory symptoms. EXPERT OPINION CCS is age-dependent, leading cause of death worldwide with high hospitalization rates. Stress-echocardiography defines phenotypes and guides prophylaxis and management. CAC is a surrogate for atherosclerosis burden, best for patients of intermediate/borderline risk. Higher CAC-scores indicate more severe coronary abnormalities. CCTA is preferred for noninvasive detection of CAC and atherosclerosis burden, determining stenosis' functional significance, and guiding management. Combining CAC score with CCTA improves diagnostic yield and assists prognosis. Echocardiography assesses LV wall-motion and function and valvular disease. Biomarkers guide diagnosis/prognosis. CCS management is multidisciplinary: risk-factor management, anti-inflammatory/anti-ischemic/antithrombotic therapies, and revascularization. Newer therapies comprise colchicine, ivabradine, ranolazine, melatonin, glucagon-like peptide-1-receptor antagonists. Cardiac rehabilitation/exercise improves physical activity and quality-of-life. An ICD protects from sudden death. Extracorporeal shockwave-revascularization treats refractory symptoms.
Collapse
Affiliation(s)
| | - Theodora A Manolis
- Department of Psychiatry, Aiginiteio University Hospital, Athens, Greece
| | - Antonis S Manolis
- First Department of Cardiology, Ippokrateio University Hospital, Athens, Greece
| |
Collapse
|
11
|
Weferling M, Rolf A, Treiber J, Fischer-Rasokat U, Liebetrau C, Hamm CW, Dey D, Kim WK. Epicardial fat volume is associated with primary coronary slow-flow phenomenon in patients with severe aortic stenosis undergoing transcatheter valve implantation. BMC Cardiovasc Disord 2024; 24:253. [PMID: 38750455 PMCID: PMC11097472 DOI: 10.1186/s12872-024-03927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Primary coronary slow flow (CSF) is defined as delayed opacification of the distal epicardial vasculature during coronary angiography in the absence of relevant coronary artery stenoses. Microvascular disease is thought to be the underlying cause of this pathology. Epicardial fat tissue (EFT) is an active endocrine organ directly surrounding the coronary arteries that provides pro-inflammatory factors to the adjacent tissue by paracrine and vasocrine mechanisms. The aim of the present study was to investigate a potential association between EFT and primary CSF and whether EFT can predict the presence of primary CSF. METHODS Between 2016 and 2017, n = 88 patients with high-grade aortic stenosis who were planned for transcatheter aortic valve implantation (TAVI) were included in this retrospective study. EFT volume was measured by pre-TAVI computed tomography (CT) using dedicated software. The presence of primary CSF was defined based on the TIMI frame count from the pre-TAVI coronary angiograms. RESULTS Thirty-nine of 88 TAVI patients had CSF (44.3%). EFT volume was markedly higher in patients with CSF (142 ml [IQR 107-180] vs. 113 ml [IQR 89-147]; p = 0.009) and was strongly associated with the presence of CSF (OR 1.012 [95%CI 1.002-1.021]; p = 0.014). After adjustment, EFT volume was still an independent predictor of CSF (OR 1.016 [95%CI 1.004-1.026]; p = 0.009). CONCLUSION Primary CSF was independently associated with increased EFT volume. Further studies are needed to validate this finding and elucidate whether a causal relationship exists.
Collapse
Affiliation(s)
- Maren Weferling
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestr. 2-8, 61231, Bad Nauheim, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany.
| | - Andreas Rolf
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestr. 2-8, 61231, Bad Nauheim, Germany
| | - Julia Treiber
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestr. 2-8, 61231, Bad Nauheim, Germany
| | - Ulrich Fischer-Rasokat
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestr. 2-8, 61231, Bad Nauheim, Germany
| | - Christoph Liebetrau
- Cardioangiological Center Bethanien (CCB), Department of Cardiology, Agaplesion Bethanien Hospital, Frankfurt, Germany
| | - Christian W Hamm
- German Centre for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
- Department of Cardiology, University Hospital of Giessen, Giessen, Germany
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Taper A238, Los Angeles, CA, 90048, USA
| | - Won-Keun Kim
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestr. 2-8, 61231, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
- Kerckhoff Heart and Thorax Center, Department of Cardiac Surgery, Bad Nauheim, Germany
| |
Collapse
|
12
|
Meloni A, Maffei E, Clemente A, De Gori C, Occhipinti M, Positano V, Berti S, La Grutta L, Saba L, Cau R, Bossone E, Mantini C, Cavaliere C, Punzo B, Celi S, Cademartiri F. Spectral Photon-Counting Computed Tomography: Technical Principles and Applications in the Assessment of Cardiovascular Diseases. J Clin Med 2024; 13:2359. [PMID: 38673632 PMCID: PMC11051476 DOI: 10.3390/jcm13082359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Spectral Photon-Counting Computed Tomography (SPCCT) represents a groundbreaking advancement in X-ray imaging technology. The core innovation of SPCCT lies in its photon-counting detectors, which can count the exact number of incoming x-ray photons and individually measure their energy. The first part of this review summarizes the key elements of SPCCT technology, such as energy binning, energy weighting, and material decomposition. Its energy-discriminating ability represents the key to the increase in the contrast between different tissues, the elimination of the electronic noise, and the correction of beam-hardening artifacts. Material decomposition provides valuable insights into specific elements' composition, concentration, and distribution. The capability of SPCCT to operate in three or more energy regimes allows for the differentiation of several contrast agents, facilitating quantitative assessments of elements with specific energy thresholds within the diagnostic energy range. The second part of this review provides a brief overview of the applications of SPCCT in the assessment of various cardiovascular disease processes. SPCCT can support the study of myocardial blood perfusion and enable enhanced tissue characterization and the identification of contrast agents, in a manner that was previously unattainable.
Collapse
Affiliation(s)
- Antonella Meloni
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Erica Maffei
- Department of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (E.M.); (C.C.); (B.P.)
| | - Alberto Clemente
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Carmelo De Gori
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Mariaelena Occhipinti
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Vicenzo Positano
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Sergio Berti
- Diagnostic and Interventional Cardiology Department, Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy;
| | - Ludovico La Grutta
- Department of Radiology, University Hospital “P. Giaccone”, 90127 Palermo, Italy;
| | - Luca Saba
- Department of Radiology, University Hospital of Cagliari, 09042 Monserrato (CA), Italy; (L.S.); (R.C.)
| | - Riccardo Cau
- Department of Radiology, University Hospital of Cagliari, 09042 Monserrato (CA), Italy; (L.S.); (R.C.)
| | - Eduardo Bossone
- Department of Cardiology, Ospedale Cardarelli, 80131 Naples, Italy;
| | - Cesare Mantini
- Department of Radiology, “G. D’Annunzio” University, 66100 Chieti, Italy;
| | - Carlo Cavaliere
- Department of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (E.M.); (C.C.); (B.P.)
| | - Bruna Punzo
- Department of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (E.M.); (C.C.); (B.P.)
| | - Simona Celi
- BioCardioLab, Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy;
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| |
Collapse
|
13
|
Krauz K, Kempiński M, Jańczak P, Momot K, Zarębiński M, Poprawa I, Wojciechowska M. The Role of Epicardial Adipose Tissue in Acute Coronary Syndromes, Post-Infarct Remodeling and Cardiac Regeneration. Int J Mol Sci 2024; 25:3583. [PMID: 38612394 PMCID: PMC11011833 DOI: 10.3390/ijms25073583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Epicardial adipose tissue (EAT) is a fat deposit surrounding the heart and located under the visceral layer of the pericardium. Due to its unique features, the contribution of EAT to the pathogenesis of cardiovascular and metabolic disorders is extensively studied. Especially, EAT can be associated with the onset and development of coronary artery disease, myocardial infarction and post-infarct heart failure which all are significant problems for public health. In this article, we focus on the mechanisms of how EAT impacts acute coronary syndromes. Particular emphasis was placed on the role of inflammation and adipokines secreted by EAT. Moreover, we present how EAT affects the remodeling of the heart following myocardial infarction. We further review the role of EAT as a source of stem cells for cardiac regeneration. In addition, we describe the imaging assessment of EAT, its prognostic value, and its correlation with the clinical characteristics of patients.
Collapse
Affiliation(s)
- Kamil Krauz
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (K.K.); (M.K.); (P.J.); (K.M.)
| | - Marcel Kempiński
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (K.K.); (M.K.); (P.J.); (K.M.)
| | - Paweł Jańczak
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (K.K.); (M.K.); (P.J.); (K.M.)
| | - Karol Momot
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (K.K.); (M.K.); (P.J.); (K.M.)
| | - Maciej Zarębiński
- Department of Invasive Cardiology, Independent Public Specialist Western Hospital John Paul II, Lazarski University, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland; (M.Z.); (I.P.)
| | - Izabela Poprawa
- Department of Invasive Cardiology, Independent Public Specialist Western Hospital John Paul II, Lazarski University, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland; (M.Z.); (I.P.)
| | - Małgorzata Wojciechowska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (K.K.); (M.K.); (P.J.); (K.M.)
| |
Collapse
|
14
|
Kotha S, Plein S, Greenwood JP, Levelt E. Role of epicardial adipose tissue in diabetic cardiomyopathy through the lens of cardiovascular magnetic resonance imaging - a narrative review. Ther Adv Endocrinol Metab 2024; 15:20420188241229540. [PMID: 38476217 PMCID: PMC10929063 DOI: 10.1177/20420188241229540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/14/2024] [Indexed: 03/14/2024] Open
Abstract
Accumulating evidence suggests that ectopic/visceral adiposity may play a key role in the pathogenesis of nonischaemic cardiovascular diseases associated with type 2 diabetes. Epicardial adipose tissue (EAT) is a complex visceral fat depot, covering 80% of the cardiac surface with anatomical and functional contiguity to the myocardium and coronary arteries. EAT interacts with the biology of the underlying myocardium by secreting a wide range of adipokines. Magnetic resonance imaging (MRI) is the reference modality for structural and functional imaging of the heart. The technique is now also emerging as the reference imaging modality for EAT quantification. With this narrative review, we (a) surveyed contemporary clinical studies that utilized cardiovascular MRI to characterize EAT (studies published 2010-2023); (b) listed the clinical trials monitoring the response to treatment in EAT size as well as myocardial functional and structural parameters and (c) discussed the potential pathophysiological role of EAT in the development of diabetic cardiomyopathy. We concluded that increased EAT quantity and its inflammatory phenotype correlate with early signs of left ventricle dysfunction and may have a role in the pathogenesis of cardiac disease in diabetes with and without coronary artery disease.
Collapse
Affiliation(s)
- Sindhoora Kotha
- Department of Biomedical Imaging Science, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Department of Cardiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Sven Plein
- Department of Biomedical Imaging Science, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Department of Cardiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - John P. Greenwood
- Department of Biomedical Imaging Science, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Department of Cardiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Eylem Levelt
- Department of Biomedical Imaging Science, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Cardiology, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| |
Collapse
|
15
|
Khan I, Berge CA, Eskerud I, Larsen TH, Pedersen ER, Lønnebakken MT. Epicardial adipose tissue volume, plaque vulnerability and myocardial ischemia in non-obstructive coronary artery disease. IJC HEART & VASCULATURE 2023; 49:101240. [PMID: 38173787 PMCID: PMC10761305 DOI: 10.1016/j.ijcha.2023.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 01/05/2024]
Abstract
Background Epicardial adipose tissue (EAT) accumulation has been associated with inflammation, atherosclerosis and microvascular dysfunction. Whether increased EAT volume is associated with coronary plaque vulnerability and demand myocardial ischemia in patients with non-obstructive coronary artery disease (CAD) is less explored. Methods In 125 patients (median age 63[58, 69] years and 58% women) with chest pain and non-obstructive CAD, EAT volume was quantified on non-contrast cardiac CT images. EAT volume in the highest tertile (>125 ml) was defined as high EAT volume. Total coronary plaque volume and plaque vulnerability were quantified by coronary CT angiography (CCTA). Demand myocardial ischemia was detected by contrast dobutamine stress echocardiography. Results High EAT volume was more common in men and associated with higher BMI, hypertension, increased left ventricular mass index (LVMi), C-reactive protein (CRP) and positive remodelling (all p < 0.05). There was no difference in age, coronary calcium score, total and non-calcified plaque volume or presence of demand myocardial ischemia between groups (all p ≥ 0.34). In a multivariable model, obesity (p = 0.006), hypertension (p = 0.007) and LVMi (p = 0.016) were independently associated with high EAT volume. Including plaque vulnerability in an alternative model, positive remodelling (p = 0.038) was independently associated with high EAT volume. Conclusion In non-obstructive CAD, high EAT volume was associated with cardiometabolic risk factors, inflammation and plaque vulnerability, while there was no association with demand myocardial ischemia or coronary plaque volume. Following our results, the role of EAT volume as a biomarker in non-obstructive CAD remains unclear.
Collapse
Affiliation(s)
- Ingela Khan
- Department of Clinical Science, University of Bergen, Jonas Lies veg 87, 5021 Bergen, Norway
| | - Caroline A. Berge
- Department of Clinical Science, University of Bergen, Jonas Lies veg 87, 5021 Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Haukelandsveien 22, 5021 Bergen, Norway
| | - Ingeborg Eskerud
- Department of Clinical Science, University of Bergen, Jonas Lies veg 87, 5021 Bergen, Norway
| | - Terje H. Larsen
- Department of Heart Disease, Haukeland University Hospital, Haukelandsveien 22, 5021 Bergen, Norway
- Institute of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Eva R. Pedersen
- Department of Clinical Science, University of Bergen, Jonas Lies veg 87, 5021 Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Haukelandsveien 22, 5021 Bergen, Norway
| | - Mai Tone Lønnebakken
- Department of Clinical Science, University of Bergen, Jonas Lies veg 87, 5021 Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Haukelandsveien 22, 5021 Bergen, Norway
| |
Collapse
|
16
|
Song Y, Tan Y, Deng M, Shan W, Zheng W, Zhang B, Cui J, Feng L, Shi L, Zhang M, Liu Y, Sun Y, Yi W. Epicardial adipose tissue, metabolic disorders, and cardiovascular diseases: recent advances classified by research methodologies. MedComm (Beijing) 2023; 4:e413. [PMID: 37881786 PMCID: PMC10594046 DOI: 10.1002/mco2.413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Epicardial adipose tissue (EAT) is located between the myocardium and visceral pericardium. The unique anatomy and physiology of the EAT determines its great potential in locally influencing adjacent tissues such as the myocardium and coronary arteries. Classified by research methodologies, this study reviews the latest research progress on the role of EAT in cardiovascular diseases (CVDs), particularly in patients with metabolic disorders. Studies based on imaging techniques demonstrated that increased EAT amount in patients with metabolic disorders is associated with higher risk of CVDs and increased mortality. Then, in-depth profiling studies indicate that remodeled EAT may serve as a local mediator of the deleterious effects of cardiometabolic conditions and plays a crucial role in CVDs. Further, in vitro coculture studies provided preliminary evidence that the paracrine effect of remodeled EAT on adjacent cardiomyocytes can promote the occurrence and progression of CVDs. Considering the important role of EAT in CVDs, targeting EAT might be a potential strategy to reduce cardiovascular risks. Several interventions have been proved effective in reducing EAT amount. Our review provides valuable insights of the relationship between EAT, metabolic disorders, and CVDs, as well as an overview of the methodological constructs of EAT-related studies.
Collapse
Affiliation(s)
- Yujie Song
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Yanzhen Tan
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Meng Deng
- Department of General MedicineXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Wenju Shan
- Department of General MedicineXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Wenying Zheng
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Bing Zhang
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Jun Cui
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Lele Feng
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Lei Shi
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Miao Zhang
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Yingying Liu
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Yang Sun
- Department of General MedicineXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Wei Yi
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
17
|
Ciliberti G. INOCA and epicardial adipose tissue: "Friends" or "foes"? IJC HEART & VASCULATURE 2023; 49:101284. [PMID: 38173788 PMCID: PMC10761303 DOI: 10.1016/j.ijcha.2023.101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 01/05/2024]
Affiliation(s)
- Giuseppe Ciliberti
- Cardiology and Arrhythmology Clinic, Marche University Hospital, Ancona, Italy
| |
Collapse
|
18
|
Chan J, Thakur U, Tan S, Muthalaly RG, Thakkar H, Goel V, Cheen YC, Dey D, Brown AJ, Wong DTL, Nerlekar N. Inter-software and inter-scan variability in measurement of epicardial adipose tissue: a three-way comparison of a research-specific, a freeware and a coronary application software platform. Eur Radiol 2023; 33:8445-8453. [PMID: 37369831 PMCID: PMC10667389 DOI: 10.1007/s00330-023-09878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/26/2023] [Accepted: 04/27/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVES Epicardial adipose tissue (EAT) is a proposed marker of cardiovascular risk; however, clinical application may be limited by variability in post-processing software platforms. We assessed inter-vendor agreement of EAT volume (EATv) and attenuation on both contrast-enhanced (CE) and non-contrast CT (NCT) using a standard coronary CT reporting software (Vitrea), an EAT research-specific software (QFAT) and a freeware imaging software (OsiriX). METHODS Seventy-six consecutive patients undergoing simultaneous CE and NCT had complete volumetric EAT measurement. Between-software, within-software NCT vs. CE, and inter- and intra-observer agreement were evaluated with analysis by ANOVA (with post hoc adjustment), Bland-Altman with 95% levels of agreement (LoA) and intraclass correlation coefficient (ICC). RESULTS Mean EATv (freeware 53 ± 31 mL vs. research 93 ± 43 mL vs. coronary 157 ± 64 mL) and attenuation (freeware - 72 ± 25 HU vs. research - 75 ± 3 HU vs. coronary - 61 ± 10 HU) were significantly different between all vendors (ANOVA p < 0.001). EATv was consistently higher in NCT vs. CE for all software packages, with most reproducibility found in research software (bias 26 mL, 95% LoA: 2 to 56 mL), compared to freeware (bias 11 mL 95% LoA: - 46 mL to 69 mL) and coronary software (bias 10 mL 95% LoA: - 127 to 147 mL). Research software had more comparable NCT vs. CE attenuation (- 75 vs. - 72 HU) compared to freeware (- 72 vs. - 57 HU) and coronary (- 61 vs. - 39 HU). Excellent inter-observer agreement was seen with research (ICC 0.98) compared to freeware (ICC 0.73) and coronary software (ICC 0.75) with narrow LoA on Bland-Altman analysis. CONCLUSION There are significant inter-vendor differences in EAT assessment. Our study suggests that research-specific software has better agreement and reproducibility compared to freeware or coronary software platforms. KEY POINTS • There are significant differences between EAT volume and attenuation values between software platforms, regardless of scan type. • Non-contrast scans routinely have higher mean EAT volume and attenuation; however, this finding is only consistently seen with research-specific software. • Of the three analyzed packages, research-specific software demonstrates the highest reproducibility, agreement, and reliability for both inter-scan and inter-observer agreement.
Collapse
Affiliation(s)
- Jasmine Chan
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, VIC, Australia
| | - Udit Thakur
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, VIC, Australia
| | - Sean Tan
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, VIC, Australia
| | - Rahul G Muthalaly
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, VIC, Australia
| | - Harsh Thakkar
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, VIC, Australia
| | - Vinay Goel
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, VIC, Australia
| | - Yeong-Chee Cheen
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, VIC, Australia
| | - Damini Dey
- Cedars Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - Adam J Brown
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, VIC, Australia
| | - Dennis T L Wong
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, VIC, Australia
| | - Nitesh Nerlekar
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, VIC, Australia.
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
| |
Collapse
|
19
|
O'Hagan R, Hsu LY, Li H, Hong CG, Parel PM, Berg AR, Manyak GA, Bui V, Patel NH, Florida EM, Teague HL, Playford MP, Zhou W, Dey D, Chen MY, Mehta NN, Sorokin AV. Longitudinal association of epicardial and thoracic adipose tissues with coronary and cardiac characteristics in psoriasis. Heliyon 2023; 9:e20732. [PMID: 37867905 PMCID: PMC10585224 DOI: 10.1016/j.heliyon.2023.e20732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
Background s: Psoriasis is a disease of systemic inflammation associated with increased cardiometabolic risk. Epicardial adipose tissue (EAT) and thoracic adipose tissue (TAT) are contributing factors for atherosclerosis and cardiac dysfunction. We strove to assess the longitudinal impact of the EAT and TAT on coronary and cardiac characteristics in psoriasis. Methods The study consisted of 301 patients with baseline coronary computed tomography angiography (CTA), of which 139 had four-year follow up scans. EAT and TAT volumes from non-contrast computed tomography scans were quantified by an automated segmentation framework. Coronary plaque characteristics and left ventricular (LV) mass were quantified by CTA. Results When stratified by baseline EAT and TAT volume quartiles, a stepwise significant increase in cardiometabolic parameters was observed. EAT and TAT volumes associated with fibro-fatty burden (FFB) (TAT: ρ = 0.394, P < 0.001; EAT: ρ = 0.459, P < 0.001) in adjusted models. Only EAT had a significant four-year time-dependent association with FFB in fully adjusted models (β = 0.307 P = 0.003), whereas only TAT volume associated with myocardial injury in fully adjusted models (TAT: OR = 1.57 95 % CI = (1.00-2.60); EAT: OR = 1.46 95 % CI = (0.91-2.45). Higher quartiles of EAT and TAT had increased LV mass and developed strong correlation (TAT: ρ = 0.370, P < 0.001; EAT: ρ = 0.512, P < 0.001). Conclusions Our study is the first to explore how both EAT and TAT volumes associate with increased cardiometabolic risk profile in an inflamed psoriasis cohorts and highlight the need for further studies on its use as a potential prognostic tool for high-risk coronary plaques and cardiac dysfunction.
Collapse
Affiliation(s)
- Ross O'Hagan
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Li-Yueh Hsu
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Haiou Li
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christin G. Hong
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip M. Parel
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexander R. Berg
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Grigory A. Manyak
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vy Bui
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Nidhi H. Patel
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth M. Florida
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heather L. Teague
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin P. Playford
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wunan Zhou
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marcus Y. Chen
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexander V. Sorokin
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Abstract
Atherosclerosis is the main cause of arterial thrombosis, causing acute occlusive cardiovascular syndromes. Numerous risk prediction models have been developed, which mathematically combine multiple predictors, to estimate the risk of developing cardiovascular events. Current risk models typically do not include information from biomarkers that can potentially improve these existing prediction models especially if they are pathophysiologically relevant. Numerous cardiovascular disease biomarkers have been investigated that have focused on known pathophysiological pathways including those related to cardiac stress, inflammation, matrix remodelling, and endothelial dysfunction. Imaging biomarkers have also been studied that have yielded promising results with a potential higher degree of clinical applicability in detection of atherosclerosis and cardiovascular event prediction. To further improve therapy decision-making and guidance, there is continuing intense research on emerging biologically relevant biomarkers. As the pathogenesis of cardiovascular disease is multifactorial, improvements in discrimination and reclassification in risk prediction models will likely involve multiple biomarkers. This article will provide an overview of the literature on potential blood-based and imaging biomarkers of atherosclerosis studied so far, as well as potential future directions.
Collapse
Affiliation(s)
- Kashan Ali
- From the Division of Molecular & Clinical Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Chim C Lang
- From the Division of Molecular & Clinical Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Jeffrey T J Huang
- Biomarker and Drug Analysis Core Facility, Medical Research Institute, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Anna-Maria Choy
- From the Division of Molecular & Clinical Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
21
|
Kuno T, Arce J, Fattouh M, Sarkar S, Skendelas JP, Daich J, Schenone AL, Zhang L, Rodriguez CJ, Virani SS, Slomka PJ, Shaw LJ, Williamson EE, Berman DS, Garcia MJ, Dey D, Slipczuk L. Cardiometabolic predictors of high-risk CCTA phenotype in a diverse patient population. Am J Prev Cardiol 2023; 15:100578. [PMID: 37675408 PMCID: PMC10477443 DOI: 10.1016/j.ajpc.2023.100578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/06/2023] [Accepted: 08/13/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Low-attenuation non-calcified plaque (LAP) burden and vascular inflammation by pericoronary adipose tissue (PCAT) measured from coronary CT angiography (CCTA) have shown to be predictors of cardiovascular outcomes. We aimed to investigate the relationships of cardiometabolic risk factors including lipoprotein(a) and epicardial adipose tissue (EAT) with CCTA high-risk imaging biomarkers, LAP and vascular inflammation. Methods The patient population consisted of consecutive patients who underwent CCTA for stable chest pain and had a complete cardiometabolic panel including lipoprotein(a). Plaque, PCAT and EAT were measured from CT using semiautomated software. Elevated LAP burden and PCAT attenuation were defined as ≥4% and ≥70.5 HU, respectively. The primary clinical end-point was a composite of myocardial infarction, revascularization or cardiovascular death. Results A total of 364 consecutive patients were included (median age 56 years, 64% female); the majority of patients were of Hispanic (60%), and the rest were of non-Hispanic Black (21%), non-Hispanic White (6%) and non-Hispanic Asian (4%) race/ethnicity. The prevalence of elevated LAP burden and PCAT attenuation was 31 and 18%, respectively, while only 8% had obstructive stenosis. There were significant differences in plaque characteristics among different racial/ethnic groups (p<0.001). Lipoprotein(a) correlated with LAP burden in Hispanic patients. Patients with elevated LAP were older, more likely to be have diabetes, hypertension, hyperlipidemia and smoke with higher CAC and EAT volume (all P<0.05). Patients with elevated LAP were more likely to develop the primary clinical outcome (p<0.001) but those with elevated PCAT were not (p=0.797). Conclusion The prevalence of LAP and PCAT attenuation were 31 and 18%, respectively. Lipoprotein(a) levels correlated with LAP burden in Hispanic patients. Age, male sex, hypertension and hyperlipidemia increased the odds of elevated LAP, which showed prognostic significance.
Collapse
Affiliation(s)
- Toshiki Kuno
- Cardiology Division, Montefiore Medical Center, Montefiore Medical Center/Albert Einstein Colalege of Medicine, Cardiology Division. 111 E210th, Bronx, NY 10467, United States
| | - Javier Arce
- Cardiology Division, Montefiore Medical Center, Montefiore Medical Center/Albert Einstein Colalege of Medicine, Cardiology Division. 111 E210th, Bronx, NY 10467, United States
| | - Michael Fattouh
- Cardiology Division, Montefiore Medical Center, Montefiore Medical Center/Albert Einstein Colalege of Medicine, Cardiology Division. 111 E210th, Bronx, NY 10467, United States
| | - Sharmila Sarkar
- Cardiology Division, Montefiore Medical Center, Montefiore Medical Center/Albert Einstein Colalege of Medicine, Cardiology Division. 111 E210th, Bronx, NY 10467, United States
| | - John P Skendelas
- Cardiothoracic and Vascular Surgery Department, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jonathan Daich
- Cardiology Division, Montefiore Medical Center, Montefiore Medical Center/Albert Einstein Colalege of Medicine, Cardiology Division. 111 E210th, Bronx, NY 10467, United States
| | - Aldo L Schenone
- Cardiology Division, Montefiore Medical Center, Montefiore Medical Center/Albert Einstein Colalege of Medicine, Cardiology Division. 111 E210th, Bronx, NY 10467, United States
| | - Lili Zhang
- Cardiology Division, Montefiore Medical Center, Montefiore Medical Center/Albert Einstein Colalege of Medicine, Cardiology Division. 111 E210th, Bronx, NY 10467, United States
| | - Carlos J Rodriguez
- Cardiology Division, Montefiore Medical Center, Montefiore Medical Center/Albert Einstein Colalege of Medicine, Cardiology Division. 111 E210th, Bronx, NY 10467, United States
| | - Salim S Virani
- Office of the Vice Provost (Research), The Aga Khan University, Karachi, Pakistan
- Division of Cardiology, The Texas Heart Institute/Baylor College of Medicine, Houston, TX, United States
| | - Piotr J Slomka
- Division of Cardiology, The Texas Heart Institute/Baylor College of Medicine, Houston, TX, United States
| | - Leslee J Shaw
- Departments of Medicine (Cardiology) and Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Daniel S Berman
- Division of Cardiology, The Texas Heart Institute/Baylor College of Medicine, Houston, TX, United States
| | - Mario J Garcia
- Cardiology Division, Montefiore Medical Center, Montefiore Medical Center/Albert Einstein Colalege of Medicine, Cardiology Division. 111 E210th, Bronx, NY 10467, United States
| | - Damini Dey
- Department of Imaging, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, United States
| | - Leandro Slipczuk
- Cardiology Division, Montefiore Medical Center, Montefiore Medical Center/Albert Einstein Colalege of Medicine, Cardiology Division. 111 E210th, Bronx, NY 10467, United States
| |
Collapse
|
22
|
Masson W, Lavalle-Cobo A, Barbagelata L, Lobo M, Nogueira JP. Relationship between epicardial adipose tissue, systemic inflammatory diseases, and subclinical atheromatosis: A systematic review. REUMATOLOGIA CLINICA 2023; 19:363-373. [PMID: 37661114 DOI: 10.1016/j.reumae.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/06/2022] [Indexed: 09/05/2023]
Abstract
BACKGROUND AND AIMS Systemic inflammatory diseases could act as an unfavorable condition in which epicardial adipose tissue (EAT) becomes harmful to cardiovascular health. The objectives were: (a) to quantitatively compare the presence of EAT between patients with systemic inflammatory diseases and controls; (b) to analyze the association between EAT and subclinical atheromatosis in individuals with systemic inflammatory diseases. METHODS Studies that have quantified EAT in a population with systemic inflammatory diseases compared to a control group, or that describe the association between EAT and the presence of subclinical atheromatosis in patients with systemic inflammatory diseases were included. A quantitative analysis was performed for the first objective. This systematic review was performed according to PRISMA guidelines. RESULTS Twenty-one studies including 1448 patients with systemic inflammatory diseases, were considered eligible for this study. Patients with systemic inflammatory disease have a higher volume (MD: 10.4cm3 [1.8-19.1]; p<0.01), higher thickness (MD: 1.0mm [0.8-1.2]; p<0.01), and a statistically non-significant higher area (MD: 3.1cm2 [1.0-5.2]; p=0.46) of EAT compared to the control group. Most studies reported a significant association between EAT and subclinical atheromatosis in patients with different systemic inflammatory diseases. CONCLUSION This study demonstrated that EAT is increased in patients with systemic inflammatory diseases compared with healthy controls, and that EAT measurement is closely correlated with subclinical atherosclerosis in these patients. The causality of this association should be tested in prospective studies.
Collapse
Affiliation(s)
- Walter Masson
- Council of Epidemiology and Cardiovascular Prevention, Argentine Society of Cardiology, Azcuenaga 980, Buenos Aires, Argentina; Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Augusto Lavalle-Cobo
- Council of Epidemiology and Cardiovascular Prevention, Argentine Society of Cardiology, Azcuenaga 980, Buenos Aires, Argentina; Cardiology Department, Sanatorio Finochietto, Av. Córdoba, 2678 Buenos Aires, Argentina
| | - Leandro Barbagelata
- Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Martin Lobo
- Council of Epidemiology and Cardiovascular Prevention, Argentine Society of Cardiology, Azcuenaga 980, Buenos Aires, Argentina; Cardiology Department, Hospital Militar Campo de Mayo, Buenos Aires, Argentina
| | - Juan Patricio Nogueira
- Centro de Investigación en Endocrinología, Nutrición y Metabolismo (CIENM), Facultad de Ciencias de la Salud, Universidad Nacional de Formosa, Argentina; Universidad del Pacifico, Asunción, Paraguay.
| |
Collapse
|
23
|
Li C, Liu X, Adhikari BK, Chen L, Liu W, Wang Y, Zhang H. The role of epicardial adipose tissue dysfunction in cardiovascular diseases: an overview of pathophysiology, evaluation, and management. Front Endocrinol (Lausanne) 2023; 14:1167952. [PMID: 37260440 PMCID: PMC10229094 DOI: 10.3389/fendo.2023.1167952] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
In recent decades, the epicardial adipose tissue (EAT) has been at the forefront of scientific research because of its diverse role in the pathogenesis of cardiovascular diseases (CVDs). EAT lies between the myocardium and the visceral pericardium. The same microcirculation exists both in the epicardial fat and the myocardium. Under physiological circumstances, EAT serves as cushion and protects coronary arteries and myocardium from violent distortion and impact. In addition, EAT acts as an energy lipid source, thermoregulator, and endocrine organ. Under pathological conditions, EAT dysfunction promotes various CVDs progression in several ways. It seems that various secretions of the epicardial fat are responsible for myocardial metabolic disturbances and, finally, leads to CVDs. Therefore, EAT might be an early predictor of CVDs. Furthermore, different non-invasive imaging techniques have been proposed to identify and assess EAT as an important parameter to stratify the CVD risk. We also present the potential therapeutic possibilities aiming at modifying the function of EAT. This paper aims to provide overview of the potential role of EAT in CVDs, discuss different imaging techniques to assess EAT, and provide potential therapeutic options for EAT. Hence, EAT may represent as a potential predictor and a novel therapeutic target for management of CVDs in the future.
Collapse
Affiliation(s)
- Cheng Li
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyu Liu
- School of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | | | - Liping Chen
- Department of Echocardiography, Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenyun Liu
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, Jilin, China
| | - Yonggang Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huimao Zhang
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, Jilin, China
| |
Collapse
|
24
|
Chong B, Jayabaskaran J, Ruban J, Goh R, Chin YH, Kong G, Ng CH, Lin C, Loong S, Muthiah MD, Khoo CM, Shariff E, Chan MY, Lajeunesse-Trempe F, Tchernof A, Chevli P, Mehta A, Mamas MA, Dimitriadis GK, Chew NWS. Epicardial Adipose Tissue Assessed by Computed Tomography and Echocardiography Are Associated With Adverse Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. Circ Cardiovasc Imaging 2023; 16:e015159. [PMID: 37192298 DOI: 10.1161/circimaging.122.015159] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/11/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Epicardial adipose tissue (EAT) has garnered attention as a prognostic and risk stratification factor for cardiovascular disease. This study, via meta-analyses, evaluates the associations between EAT and cardiovascular outcomes stratified across imaging modalities, ethnic groups, and study protocols. METHODS Medline and Embase databases were searched without date restriction on May 2022 for articles that examined EAT and cardiovascular outcomes. The inclusion criteria were (1) studies measuring EAT of adult patients at baseline and (2) reporting follow-up data on study outcomes of interest. The primary study outcome was major adverse cardiovascular events. Secondary study outcomes included cardiac death, myocardial infarction, coronary revascularization, and atrial fibrillation. RESULTS Twenty-nine articles published between 2012 and 2022, comprising 19 709 patients, were included in our analysis. Increased EAT thickness and volume were associated with higher risks of cardiac death (odds ratio, 2.53 [95% CI, 1.17-5.44]; P=0.020; n=4), myocardial infarction (odds ratio, 2.63 [95% CI, 1.39-4.96]; P=0.003; n=5), coronary revascularization (odds ratio, 2.99 [95% CI, 1.64-5.44]; P<0.001; n=5), and atrial fibrillation (adjusted odds ratio, 4.04 [95% CI, 3.06-5.32]; P<0.001; n=3). For 1 unit increment in the continuous measure of EAT, computed tomography volumetric quantification (adjusted hazard ratio, 1.74 [95% CI, 1.42-2.13]; P<0.001) and echocardiographic thickness quantification (adjusted hazard ratio, 1.20 [95% CI, 1.09-1.32]; P<0.001) conferred an increased risk of major adverse cardiovascular events. CONCLUSIONS The utility of EAT as an imaging biomarker for predicting and prognosticating cardiovascular disease is promising, with increased EAT thickness and volume being identified as independent predictors of major adverse cardiovascular events. REGISTRATION URL: https://www.crd.york.ac.uk/prospero; Unique identifier: CRD42022338075.
Collapse
Affiliation(s)
- Bryan Chong
- Yong Loo Lin School of Medicine, National University of Singapore (B.C., J.J., J.R., R.G., Y.H.C., G.K., C.H.N., C.L., S.L., M.D.M., M.Y.C.)
| | - Jayanth Jayabaskaran
- Yong Loo Lin School of Medicine, National University of Singapore (B.C., J.J., J.R., R.G., Y.H.C., G.K., C.H.N., C.L., S.L., M.D.M., M.Y.C.)
| | - Jitesh Ruban
- Yong Loo Lin School of Medicine, National University of Singapore (B.C., J.J., J.R., R.G., Y.H.C., G.K., C.H.N., C.L., S.L., M.D.M., M.Y.C.)
| | - Rachel Goh
- Yong Loo Lin School of Medicine, National University of Singapore (B.C., J.J., J.R., R.G., Y.H.C., G.K., C.H.N., C.L., S.L., M.D.M., M.Y.C.)
| | - Yip Han Chin
- Yong Loo Lin School of Medicine, National University of Singapore (B.C., J.J., J.R., R.G., Y.H.C., G.K., C.H.N., C.L., S.L., M.D.M., M.Y.C.)
| | - Gwyneth Kong
- Yong Loo Lin School of Medicine, National University of Singapore (B.C., J.J., J.R., R.G., Y.H.C., G.K., C.H.N., C.L., S.L., M.D.M., M.Y.C.)
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University of Singapore (B.C., J.J., J.R., R.G., Y.H.C., G.K., C.H.N., C.L., S.L., M.D.M., M.Y.C.)
| | - Chaoxing Lin
- Yong Loo Lin School of Medicine, National University of Singapore (B.C., J.J., J.R., R.G., Y.H.C., G.K., C.H.N., C.L., S.L., M.D.M., M.Y.C.)
| | - Shaun Loong
- Yong Loo Lin School of Medicine, National University of Singapore (B.C., J.J., J.R., R.G., Y.H.C., G.K., C.H.N., C.L., S.L., M.D.M., M.Y.C.)
| | - Mark D Muthiah
- Yong Loo Lin School of Medicine, National University of Singapore (B.C., J.J., J.R., R.G., Y.H.C., G.K., C.H.N., C.L., S.L., M.D.M., M.Y.C.)
- Division of Gastroenterology and Hepatology, Department of Medicine (M.D.M.), National University Hospital, Singapore
- National University Centre for Organ Transplantation (M.D.M.), National University Health System, Singapore
| | - Chin Meng Khoo
- Division of Endocrinology, Department of Medicine (C.M.K.), National University Hospital, Singapore
| | - Ezman Shariff
- Universiti Teknologi MARA (UiTM) Sungai Buloh, Selangor, Malaysia (E.S.)
| | - Mark Y Chan
- Yong Loo Lin School of Medicine, National University of Singapore (B.C., J.J., J.R., R.G., Y.H.C., G.K., C.H.N., C.L., S.L., M.D.M., M.Y.C.)
- Department of Cardiology, National University Heart Centre (M.Y.C., N.W.S.C.), National University Health System, Singapore
| | - Fannie Lajeunesse-Trempe
- Quebec Heart and Lung Institute (F.L.-T., A.T.), Quebec City, Canada
- Department of Nutrition, Laval University (F.L.-T.), Quebec City, Canada
- Department of Endocrinology ASO/EASO COM, King's College Hospital NHS Foundation Trust, Denmark Hill, London, United Kingdom (F.L.-T., G.K.D.)
| | - Andre Tchernof
- Quebec Heart and Lung Institute (F.L.-T., A.T.), Quebec City, Canada
| | - Parag Chevli
- Section on Hospital Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC (P.C.)
| | - Anurag Mehta
- VCU Health Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond (A.M.)
| | - Mamas A Mamas
- Institute of Population Health, University of Manchester, United Kingdom (M.A.M.)
- Keele Cardiac Research Group, Centre for Prognosis Research, Keele University, Stoke-on-Trent (M.A.M.)
| | - Georgios K Dimitriadis
- Department of Endocrinology ASO/EASO COM, King's College Hospital NHS Foundation Trust, Denmark Hill, London, United Kingdom (F.L.-T., G.K.D.)
- Obesity, Type 2 Diabetes and Immunometabolism Research Group, Department of Diabetes, Faculty of Cardiovascular Medicine & Sciences, School of Life Course Sciences, King's College London, United Kingdom (G.K.D.)
| | - Nicholas W S Chew
- Department of Cardiology, National University Heart Centre (M.Y.C., N.W.S.C.), National University Health System, Singapore
| |
Collapse
|
25
|
Cielonko LA, Sabati AA, Chambers MA, Newbern D, Swing E, Chakravarthy V, Mullen J, Schmidt J, Lutz N, Shaibi GQ, Olson M. Impact of overweight and obesity on epicardial adipose tissue in children with type 1 diabetes. J Pediatr Endocrinol Metab 2023; 36:371-377. [PMID: 36829271 DOI: 10.1515/jpem-2022-0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023]
Abstract
OBJECTIVES Epicardial adipose tissue (EAT) thickness, a novel marker of cardiovascular disease (CVD), is increased in children with a healthy weight and type 1 diabetes (T1D). The prevalence of obesity has increased in children with T1D and may confer additional CVD risk. The purpose of this study was to examine EAT thickness in youth with and without T1D in the setting of overweight/obesity. METHODS Youth with overweight/obesity and T1D (n=38) or without T1D (n=34) between the ages of 6-18 years were included in this study. Echocardiogram using spectral and color flow Doppler was used to measure EAT and cardiac function. Waist circumference, blood pressure, and HbA1c, were used to calculate estimated glucose disposal rate (eGDR) to estimate insulin resistance in children with T1D. RESULTS EAT thickness was not significantly different in youth with T1D compared to controls (2.10 ± 0.67 mm vs. 1.90 ± 0.59 mm, p=0.19). When groups were combined, EAT significantly correlated with age (r=0.449, p≤0.001), BMI (r=0.538, p≤0.001), waist circumference (r=0.552, p≤0.001), systolic BP (r=0.247, p=0.036), myocardial performance index (r=-0.287, p=0.015), ejection fraction (r=-0.442, p≤0.001), and cardiac output index (r=-0.306, p=0.009). In the group with T1D, diastolic BP (r=0.39, p=0.02) and eGDR (r=-0.48, p=0.002) correlated with EAT. CONCLUSIONS EAT was associated with measures of adiposity and insulin resistance but does not differ by diabetes status among youth with overweight/obesity. These findings suggest that adiposity rather than glycemia is the main driver of EAT thickness among youth with T1D.
Collapse
Affiliation(s)
- Luke A Cielonko
- Division of Endocrinology, Cook Children's Medical Center, Fort Worth, TX, USA
- Division of Pediatric Endocrinology & Diabetes, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Arash A Sabati
- Division of Pediatric Cardiology, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Melissa A Chambers
- Division of Pediatric Endocrinology & Diabetes, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Dorothee Newbern
- Division of Pediatric Endocrinology & Diabetes, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Edward Swing
- Division of Graduate Medical Education, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Varshini Chakravarthy
- Division of Pediatric Endocrinology & Diabetes, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - John Mullen
- Division of Pediatric Cardiology, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Jaclyn Schmidt
- Division of Pediatric Cardiology, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Natalie Lutz
- Division of Pediatric Endocrinology & Diabetes, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Gabriel Q Shaibi
- Division of Pediatric Endocrinology & Diabetes, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Micah Olson
- Division of Pediatric Endocrinology & Diabetes, Phoenix Children's Hospital, Phoenix, AZ, USA
| |
Collapse
|
26
|
Onofrei VA, Zamfir CL, Anisie E, Ceasovschih A, Constantin M, Mitu F, Adam CA, Grigorescu ED, Petroaie AD, Timofte D. Determinants of Arterial Stiffness in Patients with Morbid Obesity. The Role of Echocardiography and Carotid Ultrasound Imaging. Medicina (B Aires) 2023; 59:medicina59030428. [PMID: 36984428 PMCID: PMC10053097 DOI: 10.3390/medicina59030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Background and objective: Morbid obesity is accompanied by an increased cardiovascular (CV) risk, which justifies a multidisciplinary, integrative approach. Arterial stiffness has a well-defined additional role in refining individual CV risk. Given that echocardiography and carotid ultrasound are usual methods for CV risk characterization, we aimed to identify the imaging parameters with a predictive value for early-onset arterial stiffness. Material and methods: We conducted a study in which 50 patients (divided into two equal groups with morbid obesity and without obesity), age and gender matched, untreated for cardiovascular risk factors, were addressed to bariatric surgery or non-inflammatory benign pathology surgery. Before the surgical procedures, we evaluated demographics, anthropometric data and biochemical parameters including adipokines (chemerin, adiponectin). Arterial stiffness was evaluated using the Medexpert ArteriographTM TL2 device. Transthoracic echocardiography and carotid ultrasound were also performed. We also analyzed adipocyte size and vascular wall thickness in intraoperative biopsies. Results: Left ventricle (LV) mass index (p = 0.2851), LV ejection fraction (LVEF) (p = 0.0073), epicardial adipose tissue thickness (p = 0.0001) as echocardiographic parameters and carotid intima–media thickness (p = 0.0033), relative wall thickness (p = 0.0295), wall to lumen thickness ratio (p = 0.0930) and carotid cross-sectional area (p = 0.0042) as ultrasound parameters were significant measures in our groups and were assessed in relation to adipocyte size, blood vessel wall thickness and adipokines serum levels. Statistical analysis revealed directly proportional relationships between LV mass index (p = 0.008), carotid systolic thickness of the media (p = 0.009), diastolic thickness of the media (p = 0.007), cross-sectional area (p = 0.001) and blood vessel wall thickness. Carotid relative wall thickness positively correlates with adipocyte size (p = 0.023). In patients with morbid obesity, chemerin and adiponectin/chemerin ratio positively correlates with carotid intima–media thickness (p = 0.050), systolic thickness of the media (p = 0.015) and diastolic thickness of the media (p = 0.001). The multiple linear regression models revealed the role of epicardial adipose tissue thickness and carotid cross-sectional area in predicting adipocyte size which in turn is an independent factor for arterial stiffness parameters such as pulse wave velocity, subendocardial viability ratio and aortic augmentation index. Conclusions: Our results suggest that epicardial adipose tissue thickness, carotid intima–media thickness, relative wall thickness and carotid cross-sectional area might be useful imaging parameters for early prediction of arterial stiffness in patients with morbid obesity.
Collapse
Affiliation(s)
- Viviana Aursulesei Onofrei
- Department of Medical Specialties I and II, Morpho-Functional Sciences I and Preventive Medicine and Interdisciplinary, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- “St. Spiridon” Clinical Emergency Hospital, Independence Boulevard No. 1, 700111 Iasi, Romania
- Correspondence: (V.A.O.); (C.A.A.)
| | - Carmen Lacramioara Zamfir
- Department of Medical Specialties I and II, Morpho-Functional Sciences I and Preventive Medicine and Interdisciplinary, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
| | - Ecaterina Anisie
- “St. Spiridon” Clinical Emergency Hospital, Independence Boulevard No. 1, 700111 Iasi, Romania
| | - Alexandr Ceasovschih
- Department of Medical Specialties I and II, Morpho-Functional Sciences I and Preventive Medicine and Interdisciplinary, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- “St. Spiridon” Clinical Emergency Hospital, Independence Boulevard No. 1, 700111 Iasi, Romania
| | - Mihai Constantin
- Department of Medical Specialties I and II, Morpho-Functional Sciences I and Preventive Medicine and Interdisciplinary, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
| | - Florin Mitu
- Department of Medical Specialties I and II, Morpho-Functional Sciences I and Preventive Medicine and Interdisciplinary, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661 Iasi, Romania
- Academy of Medical Sciences, Ion C. Brătianu Boulevard No 1, 030167 Bucharest, Romania
- Academy of Romanian Scientists, Professor Dr. Doc. Dimitrie Mangeron Boulevard No. 433, 700050 Iasi, Romania
| | - Cristina Andreea Adam
- Department of Medical Specialties I and II, Morpho-Functional Sciences I and Preventive Medicine and Interdisciplinary, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661 Iasi, Romania
- Correspondence: (V.A.O.); (C.A.A.)
| | - Elena-Daniela Grigorescu
- Department of Medical Specialties I and II, Morpho-Functional Sciences I and Preventive Medicine and Interdisciplinary, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
| | - Antoneta Dacia Petroaie
- Department of Medical Specialties I and II, Morpho-Functional Sciences I and Preventive Medicine and Interdisciplinary, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
| | - Daniel Timofte
- Department of Medical Specialties I and II, Morpho-Functional Sciences I and Preventive Medicine and Interdisciplinary, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- “St. Spiridon” Clinical Emergency Hospital, Independence Boulevard No. 1, 700111 Iasi, Romania
- Academy of Medical Sciences, Ion C. Brătianu Boulevard No 1, 030167 Bucharest, Romania
| |
Collapse
|
27
|
Walpot J, Van Herck P, Van de Heyning CM, Bosmans J, Massalha S, Malbrain ML, Heidbuchel H, Inácio JR. Computed tomography measured epicardial adipose tissue and psoas muscle attenuation: new biomarkers to predict major adverse cardiac events (MACE) and mortality in patients with heart disease and critically ill patients. Part I: Epicardial adipose tissue. Anaesthesiol Intensive Ther 2023; 55:141-157. [PMID: 37728441 PMCID: PMC10496106 DOI: 10.5114/ait.2023.130922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/28/2023] [Indexed: 09/21/2023] Open
Abstract
Over the last two decades, the potential role of epicardial adipocyte tissue (EAT) as a marker for major adverse cardiovascular events has been extensively studied. Unlike other visceral adipocyte tissues (VAT), EAT is not separated from the adjacent myocardium by a fascial layer and shares the same microcirculation with the myocardium. Adipocytokines, secreted by EAT, interact directly with the myocardium through paracrine and vasocrine pathways. The role of the Randle cycle, linking VAT accumulation to insulin resistance, and the relevance of blood flow and mitochondrial function of VAT, are briefly discussed. The three available imaging modalities for the assessment of EAT are discussed. The advantages of echocardiography, cardiac CT, and cardiac magnetic resonance (CMR) are compared. The last section summarises the current stage of knowledge on EAT as a clinical marker for major adverse cardiovascular events (MACE). The association between EAT volume and coronary artery disease (CAD) has robustly been validated. There is growing evidence that EAT volume is associated with computed tomography coronary angiography (CTCA) assessed high-risk plaque features. The EAT CT attenuation coefficient predicts coronary events. Many studies have established EAT volume as a predictor of atrial fibrillation after cardiac surgery. Moreover, EAT thickness has been independently associated with severe aortic stenosis and mitral annular calcification. Studies have demonstrated that EAT volume is associated with heart failure. Finally, we discuss the potential role of EAT in critically ill patients admitted to the intensive care unit. In conclusion, EAT seems to be a promising new biomarker to predict MACE.
Collapse
Affiliation(s)
| | - Paul Van Herck
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
- Cardiovascular Sciences, University of Antwerp, Antwerp, Belgium
| | - Caroline M. Van de Heyning
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
- Cardiovascular Sciences, University of Antwerp, Antwerp, Belgium
| | - Johan Bosmans
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
- Cardiovascular Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Manu L.N.G. Malbrain
- International Fluid Academy, Lovenjoel, Belgium
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
| | - Hein Heidbuchel
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
- Cardiovascular Sciences, University of Antwerp, Antwerp, Belgium
| | - João R. Inácio
- Centro Universitario Hospitalar Lisboa Norte, Faculdade de Medicina de Lisboa, UL, Portugal
| |
Collapse
|
28
|
Abdulkareem M, Brahier MS, Zou F, Rauseo E, Uchegbu I, Taylor A, Thomaides A, Bergquist PJ, Srichai MB, Lee AM, Vargas JD, Petersen SE. Quantification of Epicardial Adipose Tissue Volume and Attenuation for Cardiac CT Scans Using Deep Learning in a Single Multi-Task Framework. Rev Cardiovasc Med 2022; 23:412. [PMID: 39076659 PMCID: PMC11270472 DOI: 10.31083/j.rcm2312412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 07/31/2024] Open
Abstract
Background Recent studies have shown that epicardial adipose tissue (EAT) is an independent atrial fibrillation (AF) prognostic marker and has influence on the myocardial function. In computed tomography (CT), EAT volume (EATv) and density (EATd) are parameters that are often used to quantify EAT. While increased EATv has been found to correlate with the prevalence and the recurrence of AF after ablation therapy, higher EATd correlates with inflammation due to arrest of lipid maturation and with high risk of plaque presence and plaque progression. Automation of the quantification task diminishes the variability in readings introduced by different observers in manual quantification and results in high reproducibility of studies and less time-consuming analysis. Our objective is to develop a fully automated quantification of EATv and EATd using a deep learning (DL) framework. Methods We proposed a framework that consists of image classification and segmentation DL models and performs the task of selecting images with EAT from all the CT images acquired for a patient, and the task of segmenting the EAT from the output images of the preceding task. EATv and EATd are estimated using the segmentation masks to define the region of interest. For our experiments, a 300-patient dataset was divided into two subsets, each consisting of 150 patients: Dataset 1 (41,979 CT slices) for training the DL models, and Dataset 2 (36,428 CT slices) for evaluating the quantification of EATv and EATd. Results The classification model achieved accuracies of 98% for precision, recall and F 1 scores, and the segmentation model achieved accuracies in terms of mean ( ± std.) and median dice similarity coefficient scores of 0.844 ( ± 0.19) and 0.84, respectively. Using the evaluation set (Dataset 2), our approach resulted in a Pearson correlation coefficient of 0.971 ( R 2 = 0.943) between the label and predicted EATv, and the correlation coefficient of 0.972 ( R 2 = 0.945) between the label and predicted EATd. Conclusions We proposed a framework that provides a fast and robust strategy for accurate EAT segmentation, and volume (EATv) and attenuation (EATd) quantification tasks. The framework will be useful to clinicians and other practitioners for carrying out reproducible EAT quantification at patient level or for large cohorts and high-throughput projects.
Collapse
Affiliation(s)
- Musa Abdulkareem
- Barts Heart Centre, Barts Health National Health Service (NHS) Trust, EC1A 4NP London, UK
- National Institute for Health Research (NIHR) Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, E1 4NS London, UK
- Health Data Research UK, NW1 2BE London, UK
| | - Mark S. Brahier
- Georgetown University School of Medicine, Washington, DC 20007, USA
- Duke University Hospital, Durham, North Carolina, NC 27710, USA
| | - Fengwei Zou
- Montefiore Medical Centre, Bronx, NY 10467, USA
| | - Elisa Rauseo
- Barts Heart Centre, Barts Health National Health Service (NHS) Trust, EC1A 4NP London, UK
- National Institute for Health Research (NIHR) Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, E1 4NS London, UK
| | - Ijeoma Uchegbu
- Barts Heart Centre, Barts Health National Health Service (NHS) Trust, EC1A 4NP London, UK
- National Institute for Health Research (NIHR) Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, E1 4NS London, UK
| | | | | | | | | | - Aaron M. Lee
- Barts Heart Centre, Barts Health National Health Service (NHS) Trust, EC1A 4NP London, UK
- National Institute for Health Research (NIHR) Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, E1 4NS London, UK
| | - Jose D. Vargas
- Georgetown University School of Medicine, Washington, DC 20007, USA
- Veterans Affairs Medical Center, Washington, DC 20422, USA
| | - Steffen E Petersen
- Barts Heart Centre, Barts Health National Health Service (NHS) Trust, EC1A 4NP London, UK
- National Institute for Health Research (NIHR) Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, E1 4NS London, UK
- Health Data Research UK, NW1 2BE London, UK
- The Alan Turing Institute, NW1 2BE London, UK
| |
Collapse
|
29
|
Figtree GA, Adamson PD, Antoniades C, Blumenthal RS, Blaha M, Budoff M, Celermajer DS, Chan MY, Chow CK, Dey D, Dwivedi G, Giannotti N, Grieve SM, Hamilton-Craig C, Kingwell BA, Kovacic JC, Min JK, Newby DE, Patel S, Peter K, Psaltis PJ, Vernon ST, Wong DT, Nicholls SJ. Noninvasive Plaque Imaging to Accelerate Coronary Artery Disease Drug Development. Circulation 2022; 146:1712-1727. [PMID: 36441819 DOI: 10.1161/circulationaha.122.060308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Coronary artery disease (CAD) remains the leading cause of adult mortality globally. Targeting known modifiable risk factors has had substantial benefit, but there remains a need for new approaches. Improvements in invasive and noninvasive imaging techniques have enabled an increasing recognition of distinct quantitative phenotypes of coronary atherosclerosis that are prognostically relevant. There are marked differences in plaque phenotype, from the high-risk, lipid-rich, thin-capped atheroma to the low-risk, quiescent, eccentric, nonobstructive calcified plaque. Such distinct phenotypes reflect different pathophysiologic pathways and are associated with different risks for acute ischemic events. Noninvasive coronary imaging techniques, such as computed tomography, positron emission tomography, and coronary magnetic resonance imaging, have major potential to accelerate cardiovascular drug development, which has been affected by the high costs and protracted timelines of cardiovascular outcome trials. This may be achieved through enrichment of high-risk phenotypes with higher event rates or as primary end points of drug efficacy, at least in phase 2 trials, in a manner historically performed through intravascular coronary imaging studies. Herein, we provide a comprehensive review of the current technology available and its application in clinical trials, including implications for sample size requirements, as well as potential limitations. In its effort to accelerate drug development, the US Food and Drug Administration has approved surrogate end points for 120 conditions, but not for CAD. There are robust data showing the beneficial effects of drugs, including statins, on CAD progression and plaque stabilization in a manner that correlates with established clinical end points of mortality and major adverse cardiovascular events. This, together with a clear mechanistic rationale for using imaging as a surrogate CAD end point, makes it timely for CAD imaging end points to be considered. We discuss the importance of global consensus on these imaging end points and protocols and partnership with regulatory bodies to build a more informed, sustainable staged pathway for novel therapies.
Collapse
Affiliation(s)
- Gemma A Figtree
- Kolling Institute of Medical Research, Sydney, Australia (G.A.F., S.T.V.)
- Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Australia (G.A.F., S.T.V.)
- Charles Perkins Centre (G.A.F., C.K.C.), University of Sydney, Australia
- Faculty of Medicine and Health (G.A.F., D.S.C., N.G., S.P., S.T.V.), University of Sydney, Australia
| | - Philip D Adamson
- Christchurch Heart Institute, University of Otago Christchurch, New Zealand (P.D.A.)
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (P.D.A., D.E.N.)
| | - Charalambos Antoniades
- Acute Vascular Imaging Centre (C.A.), Radcliffe Department of Medicine, University of Oxford, UK
- Division of Cardiovascular Medicine (C.A.), Radcliffe Department of Medicine, University of Oxford, UK
| | - Roger S Blumenthal
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD (R.S.B., M. Blaha)
| | - Michael Blaha
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD (R.S.B., M. Blaha)
| | | | - David S Celermajer
- Faculty of Medicine and Health (G.A.F., D.S.C., N.G., S.P., S.T.V.), University of Sydney, Australia
- Departments of Cardiology (D.S.C., S.P.), Royal Prince Alfred Hospital, Sydney, Australia
| | - Mark Y Chan
- Department of Cardiology, National University Heart Centre, Singapore (M.Y.C.)
| | - Clara K Chow
- Westmead Applied Research Centre (C.K.C.), University of Sydney, Australia
- Charles Perkins Centre (G.A.F., C.K.C.), University of Sydney, Australia
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.D.)
| | - Girish Dwivedi
- Harry Perkins Institute of Medical Research, University of Western Australia (G.D.)
- Department of Cardiology, Fiona Stanley Hospital, Perth, Australia (G.D.)
| | - Nicola Giannotti
- Faculty of Medicine and Health (G.A.F., D.S.C., N.G., S.P., S.T.V.), University of Sydney, Australia
| | - Stuart M Grieve
- Imaging and Phenotyping Laboratory (S.M.G.), University of Sydney, Australia
- Radiology (S.M.G.), Royal Prince Alfred Hospital, Sydney, Australia
| | - Christian Hamilton-Craig
- Faculty of Medicine and Centre for Advanced Imaging, University of Queensland and School of Medicine, Griffith University Sunshine Coast, Australia (C.H.-C.)
| | | | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia (J.C.K.)
- St Vincent's Clinical School, University of NSW, Australia (J.C.K.)
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY (J.C.K.)
| | | | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (P.D.A., D.E.N.)
| | - Sanjay Patel
- Faculty of Medicine and Health (G.A.F., D.S.C., N.G., S.P., S.T.V.), University of Sydney, Australia
- Departments of Cardiology (D.S.C., S.P.), Royal Prince Alfred Hospital, Sydney, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Australia (K.P.)
- Department of Cardiology, The Alfred Hospital, Melbourne, Australia (K.P.)
| | - Peter J Psaltis
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide (P.J.P.)
- Department of Cardiology, Royal Adelaide Hospital, Australia (P.J.P.)
| | - Stephen T Vernon
- Kolling Institute of Medical Research, Sydney, Australia (G.A.F., S.T.V.)
- Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Australia (G.A.F., S.T.V.)
- Faculty of Medicine and Health (G.A.F., D.S.C., N.G., S.P., S.T.V.), University of Sydney, Australia
| | - Dennis T Wong
- Monash Heart, Clayton, Australia (D.T.W., S.J.N.)
- Victorian Heart Institute, Monash University, Melbourne, Australia (D.T.W., S.J.N.)
| | - Stephen J Nicholls
- Monash Heart, Clayton, Australia (D.T.W., S.J.N.)
- Victorian Heart Institute, Monash University, Melbourne, Australia (D.T.W., S.J.N.)
| |
Collapse
|
30
|
Evsen A, Demir M, Günlü S. Evaluation of epicardial fat tissue and echocardiographic parameters in patients with silent enemy subclinical hypothyroidism. Echocardiography 2022; 39:1426-1433. [PMID: 36266735 DOI: 10.1111/echo.15471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/03/2022] [Accepted: 10/02/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND To evaluate epicardial adipose tissue (EAT) which is known to be closely associated with metabolic syndrome and cardiovascular risk factors (hypertension, diabetes mellitus, obesity, age, smoking) and which is a more specific marker of visceral adiposity than waist circumference using echocardiographic examination in subclinical hypothyroidism which is one of the most common endocrine system diseases in the community but is mostly missed due to its asymptomatic nature. MATERIALS AND METHODS The study included 60 individuals aged 18-65 years, comprising 30 patients with newly diagnosed subclinical hypothyroidism and 30 age- and gender-matched control subjects that had a normal thyroid hormone profile. 2D transthoracic echocardiography was utilized for measuring EAT thickness and other basic echocardiographic parameters. RESULTS No significant difference was found between the two groups with regard to gender, age, body mass index (BMI), and other diameters and measurements obtained by 2D transthoracic echocardiography. EAT thickness was significantly higher in the patient group compared to the control group (p < .001). CONCLUSION Epicardial adipose tissue (EAT) is increased in patients with subclinical hypothyroidism.
Collapse
Affiliation(s)
- Ali Evsen
- Department of Cardiology, Dağkapı State Hospital, Diyarbakır, Turkey
| | - Muhammed Demir
- Department of Cardiology, Dicle University School of Medicine, Diyarbakır, Turkey
| | - Serhat Günlü
- Department of Cardiology, Dağkapı State Hospital, Diyarbakır, Turkey
| |
Collapse
|
31
|
Patel V, Patel J. Cellular cross talk between epicardial fat and cardiovascular risk. J Basic Clin Physiol Pharmacol 2022; 33:683-694. [PMID: 36220013 DOI: 10.1515/jbcpp-2022-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022]
Abstract
A variety of fat compartments have several local and systemic effect and play a crucial role in the maintenance of health and development of disease. For the past few years, special attention has been paid to epicardial fat. It is the visceral fat compartment of the heart and has several local and systemic effects. It can perform a role in the development of cardiometabolic risk. The epicardial adipose tissue (EAT) is a unique and multifunctional fat compartment of the heart. It is located between the myocardium and the visceral pericardium. During normal physiological conditions, the EAT has metabolic, thermogenic, and mechanical (cardioprotective) characteristics. The EAT can produce several adipocytokines and chemokines depending on microenvironments. It can influence through paracrine and vasocrine mechanism and participate in the development and progression of cardiovascular (CVS) diseases. In addition, metabolic disease leads to changes in both thickness and volume of the EAT, and it can modify the structure and the function of heart. It has been associated with various CVS diseases such as, cardiomyopathy, atrial fibrillation, and coronary artery disease. Therefore, EAT is a potential therapeutic target for CVS risk.
Collapse
Affiliation(s)
- Vishwa Patel
- University of Texas at Austin, Austin 78712, Texas, USA
| | - Jimik Patel
- Thomas Jefferson University, 4201 Henry Ave, Philadelphia, PA 19144, USA
| |
Collapse
|
32
|
Martins KPMP, Barreto SM, Bos D, Pedrosa J, Azevedo DRM, Araújo LF, Foppa M, Duncan BB, Ribeiro ALP, Brant LCC. Epicardial Fat Volume Is Associated with Endothelial Dysfunction, but not with Coronary Calcification: From the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Arq Bras Cardiol 2022; 119:912-920. [PMID: 36228276 PMCID: PMC9814820 DOI: 10.36660/abc.20210750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/15/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The increase in epicardial fat volume (EFV) is related to coronary artery disease (CAD), independent of visceral or subcutaneous fat. The mechanism underlying this association is unclear. Coronary artery calcium (CAC) score and endothelial dysfunction are related to coronary events, but whether EFV is related to these markers needs further clarification. OBJECTIVES To evaluate the association between automatically measured EFV, cardiovascular risk factors, CAC, and endothelial function. METHODS In 470 participants from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) with measures of EFV, CAC score and endothelial function, we performed multivariable models to evaluate the relation between cardiovascular risk factors and EFV (response variable), and between EFV (explanatory variable) and endothelial function variables or CAC score. Two-sided p <0.05 was considered statistically significant. RESULTS Mean age was 55 ± 8 years, 52.3% of patients were men. Mean EFV was 111mL (IQ 86-144), and the prevalence of CAC score=0 was 55%. In the multivariable analyses, increased EFV was related to female sex, older age, waist circumference, and triglycerides (p<0.001 for all). Higher EFV was associated with worse endothelial function: as compared with the first quartile, the odds ratio for basal pulse amplitude were (q2=1.22, 95%CI 1.07-1.40; q3=1.50, 95%CI 1.30-1.74; q4=1.50, 95%CI 1.28-1.79) and for peripheral arterial tonometry ratio were (q2=0.87, 95%CI 0.81-0.95; q3=0.86, 95%CI 0.79-0.94; q4=0.80, 95%CI 0.73-0.89), but not with CAC score>0. CONCLUSION Higher EFV was associated with impaired endothelial function, but not with CAC. The results suggest that EFV is related to the development of CAD through a pathway different from the CAC pathway, possibly through aggravation of endothelial dysfunction and microvascular disease.
Collapse
Affiliation(s)
- Karina P. M. P. Martins
- Hospital das ClínicasUniversidade Federal de Minas GeraisBelo HorizonteMGBrasil Hospital das Clínicas , Universidade Federal de Minas Gerais , Belo Horizonte , MG – Brasil ,Faculdade de MedicinaFaculdade de MedicinaPrograma de Pós-GraduaçãoBelo HorizonteMGBrasil Faculdade de Medicina , Programa de Pós-Graduação , Belo Horizonte , MG – Brasil
| | - Sandhi M. Barreto
- Faculdade de MedicinaFaculdade de MedicinaPrograma de Pós-GraduaçãoBelo HorizonteMGBrasil Faculdade de Medicina , Programa de Pós-Graduação , Belo Horizonte , MG – Brasil ,Departamento de Medicina Social e PreventivaUniversidade Federal de Minas GeraisBelo HorizonteMGBrasil Departamento de Medicina Social e Preventiva da Universidade Federal de Minas Gerais , Belo Horizonte , MG – Brasil
| | - Daniel Bos
- Departamento de EpidemiologiaErasmus MCHolanda Departamento de Epidemiologia , Erasmus MC – Holanda ,Departamento de Radiologia e Medicina NuclearErasmus MCHolanda Departamento de Radiologia e Medicina Nuclear , Erasmus MC – Holanda ,Departamento de Epidemiologia ClínicaHarvard TH Chan School of Public HealthBostonEUA Departamento de Epidemiologia Clínica - Harvard TH Chan School of Public Health , Boston – EUA
| | - Jesiana Pedrosa
- Departamento de Anatomia e ImagemUniversidade Federal de Minas GeraisBelo HorizonteMGBrasil Departamento de Anatomia e Imagem da Universidade Federal de Minas Gerais , Belo Horizonte , MG – Brasil
| | - Douglas R. M. Azevedo
- Departamento de EstatísticaUniversidade Federal de Minas GeraisBelo HorizonteMGBrasil Departamento de Estatística , Interno, Universidade Federal de Minas Gerais , Belo Horizonte , MG – Brasil
| | - Larissa Fortunato Araújo
- Secretaria de Saúde ComunitáriaUniversidade Federal do CearáFortalezaCEBrasil Secretaria de Saúde Comunitária , Universidade Federal do Ceará , Fortaleza , CE – Brasil
| | - Murilo Foppa
- Hospital das Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrasil Hospital das Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS – Brasil
| | - Bruce B. Duncan
- Hospital das Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrasil Hospital das Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS – Brasil ,Programa de Pós-GraduaçãoUniversidade Federal do Rio Grande do SulPorto AlegreRSBrasil Programa de Pós-Graduação, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS – Brasil
| | - Antonio Luiz P. Ribeiro
- Hospital das ClínicasUniversidade Federal de Minas GeraisBelo HorizonteMGBrasil Hospital das Clínicas , Universidade Federal de Minas Gerais , Belo Horizonte , MG – Brasil ,Faculdade de MedicinaFaculdade de MedicinaPrograma de Pós-GraduaçãoBelo HorizonteMGBrasil Faculdade de Medicina , Programa de Pós-Graduação , Belo Horizonte , MG – Brasil ,Departamento de Medicina InternaUniversidade Federal de Minas GeraisBelo HorizonteMGBrasil Departamento de Medicina Interna, Universidade Federal de Minas Gerais, Belo Horizonte, MG – Brasil
| | - Luisa C. C. Brant
- Hospital das ClínicasUniversidade Federal de Minas GeraisBelo HorizonteMGBrasil Hospital das Clínicas , Universidade Federal de Minas Gerais , Belo Horizonte , MG – Brasil ,Faculdade de MedicinaFaculdade de MedicinaPrograma de Pós-GraduaçãoBelo HorizonteMGBrasil Faculdade de Medicina , Programa de Pós-Graduação , Belo Horizonte , MG – Brasil ,Departamento de Medicina InternaUniversidade Federal de Minas GeraisBelo HorizonteMGBrasil Departamento de Medicina Interna, Universidade Federal de Minas Gerais, Belo Horizonte, MG – Brasil
| |
Collapse
|
33
|
Michel JB, Lagrange J, Regnault V, Lacolley P. Conductance Artery Wall Layers and Their Respective Roles in the Clearance Functions. Arterioscler Thromb Vasc Biol 2022; 42:e253-e272. [PMID: 35924557 DOI: 10.1161/atvbaha.122.317759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evolutionary organization of the arterial wall into layers occurred concomitantly with the emergence of a highly muscularized, pressurized arterial system that facilitates outward hydraulic conductance and mass transport of soluble substances across the arterial wall. Although colliding circulating cells disperse potential energy within the arterial wall, the different layers counteract this effect: (1) the endothelium ensures a partial barrier function; (2) the media comprises smooth muscle cells capable of endocytosis/phagocytosis; (3) the outer adventitia and perivascular adipocytic tissue are the final receptacles of convected substances. While the endothelium forms a physical and a biochemical barrier, the medial layer is avascular, relying on the specific permeability properties of the endothelium for metabolic support. Different components of the media interact with convected molecules: medial smooth muscle cells take up numerous molecules via scavenger receptors and are capable of phagocytosis of macro/micro particles. The outer layers-the highly microvascularized innervated adventitia and perivascular adipose tissue-are also involved in the clearance functions of the media: the adventitia is the seat of immune response development, inward angiogenesis, macromolecular lymphatic drainage, and neuronal stimulation. Consequently, the clearance functions of the arterial wall are physiologically essential, but also may favor the development of arterial wall pathologies. This review describes how the walls of large conductance arteries have acquired physiological clearance functions, how this is determined by the attributes of the endothelial barrier, governed by endocytic and phagocytic capacities of smooth muscle cells, impacting adventitial functions, and the role of these clearance functions in arterial wall diseases.
Collapse
|
34
|
Goel V, Spear E, Cameron W, Thakur U, Sultana N, Chan J, Tan S, Joshi M, Roberts A, Cheen YC, Youn H, Dey D, Davis E, Nicholls S, Brown A, Nerlekar N. Breast arterial calcification and epicardial adipose tissue volume, but not density are independently associated with cardiovascular risk. Int J Cardiol 2022; 360:78-82. [PMID: 35618106 DOI: 10.1016/j.ijcard.2022.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Mammographically detected breast arterial calcification (BAC) has been proposed as surrogate marker for coronary artery disease (CAD) in women. Epicardial adipose tissue (EAT) and peri-coronary adipose tissue (PCAT) are inflammatory fat depots linked to atherogenesis. BAC has demonstrated association with inflammation, therefore we aimed to determine the association between BAC, EAT and PCAT. METHODS Single-centre, retrospective, cross-sectional study of women with digital mammography and coronary computed tomography angiography (CCTA). EAT and PCAT were quantitively assessed using semi-automated software. Patient demographics and cardiovascular risk factors were obtained from medical records and mammograms reviewed for BAC. Pre-test cardiovascular risk was determined with CAD Consortium Score. Chi-square, t-test and Mann-Whitney U tests were used to assess between group differences. Multivariable linear and logistic regression modelling was conducted to adjust for confounders. RESULTS Among 153 patients (age 61, SD 11) included in this study, BAC was present in 37 (24%) patients. BAC-positive patients had higher EAT volume (EATv) (110.2 mL, SD 41 mL vs 94.4 mL, SD 41 mL, p = 0.02) but this association was not significant after adjusting for cardiovascular risk factors (p = 0.26). BAC did not associate with EAT density or PCAT. BAC and EATv were strongly associated with cardiovascular risk and CAD independent of each other: CV risk (BAC OR 7.55 (3.26-18.49), p < 0.001, EATv OR 1.02 (1.01-1.03), p < 0.001), CAD presence (BAC OR 4.26 (1.39-13), p = 0.01; EATv OR 1.01 (1.0-1.03), p = 0.04). CONCLUSION BAC and EATv are independent predictors of CV risk and CAD, but don't independently associate with each other, the relationship confounded by shared cardiovascular risk factors. BAC doesn't appear to associate with adipose tissue density and its presence may be cumulative result of long-term exposure to CV risk factors.
Collapse
Affiliation(s)
- Vinay Goel
- Monash University, Wellington Rd, Clayton 3800, Melbourne, Victoria, Australia; Monash Cardiovascular Research Centre, Monash Health, 246 Clayton Rd, Clayton 3168, Melbourne, Victoria, Australia
| | - Ella Spear
- Monash Cardiovascular Research Centre, Monash Health, 246 Clayton Rd, Clayton 3168, Melbourne, Victoria, Australia
| | - William Cameron
- Monash Cardiovascular Research Centre, Monash Health, 246 Clayton Rd, Clayton 3168, Melbourne, Victoria, Australia
| | - Udit Thakur
- Monash Cardiovascular Research Centre, Monash Health, 246 Clayton Rd, Clayton 3168, Melbourne, Victoria, Australia
| | - Nushrat Sultana
- Monash Cardiovascular Research Centre, Monash Health, 246 Clayton Rd, Clayton 3168, Melbourne, Victoria, Australia
| | - Jasmine Chan
- Monash University, Wellington Rd, Clayton 3800, Melbourne, Victoria, Australia; Monash Cardiovascular Research Centre, Monash Health, 246 Clayton Rd, Clayton 3168, Melbourne, Victoria, Australia
| | - Sean Tan
- Monash University, Wellington Rd, Clayton 3800, Melbourne, Victoria, Australia; Monash Cardiovascular Research Centre, Monash Health, 246 Clayton Rd, Clayton 3168, Melbourne, Victoria, Australia
| | - Mitwa Joshi
- Monash University, Wellington Rd, Clayton 3800, Melbourne, Victoria, Australia; Monash Cardiovascular Research Centre, Monash Health, 246 Clayton Rd, Clayton 3168, Melbourne, Victoria, Australia
| | - Andrew Roberts
- Monash Cardiovascular Research Centre, Monash Health, 246 Clayton Rd, Clayton 3168, Melbourne, Victoria, Australia
| | - Yeong Chee Cheen
- Monash University, Wellington Rd, Clayton 3800, Melbourne, Victoria, Australia; Monash Cardiovascular Research Centre, Monash Health, 246 Clayton Rd, Clayton 3168, Melbourne, Victoria, Australia; Victorian Heart Institute, Blackburn Rd, Clayton 3800, Melbourne, Victoria, Australia
| | - Hannah Youn
- Monash Cardiovascular Research Centre, Monash Health, 246 Clayton Rd, Clayton 3168, Melbourne, Victoria, Australia
| | - Damini Dey
- Cedar-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA 90048, USA
| | - Esther Davis
- Monash University, Wellington Rd, Clayton 3800, Melbourne, Victoria, Australia; Monash Cardiovascular Research Centre, Monash Health, 246 Clayton Rd, Clayton 3168, Melbourne, Victoria, Australia; Victorian Heart Institute, Blackburn Rd, Clayton 3800, Melbourne, Victoria, Australia
| | - Stephen Nicholls
- Monash University, Wellington Rd, Clayton 3800, Melbourne, Victoria, Australia; Monash Cardiovascular Research Centre, Monash Health, 246 Clayton Rd, Clayton 3168, Melbourne, Victoria, Australia; Victorian Heart Institute, Blackburn Rd, Clayton 3800, Melbourne, Victoria, Australia
| | - Adam Brown
- Monash University, Wellington Rd, Clayton 3800, Melbourne, Victoria, Australia; Monash Cardiovascular Research Centre, Monash Health, 246 Clayton Rd, Clayton 3168, Melbourne, Victoria, Australia; Victorian Heart Institute, Blackburn Rd, Clayton 3800, Melbourne, Victoria, Australia
| | - Nitesh Nerlekar
- Monash University, Wellington Rd, Clayton 3800, Melbourne, Victoria, Australia; Monash Cardiovascular Research Centre, Monash Health, 246 Clayton Rd, Clayton 3168, Melbourne, Victoria, Australia; Victorian Heart Institute, Blackburn Rd, Clayton 3800, Melbourne, Victoria, Australia; Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne 3004, Melbourne, Victoria, Australia.
| |
Collapse
|
35
|
Tumkosit M, Han WM, Tankittiwat K, Chattranukulchai P, Siwamogsatham S, Apornpong T, Ureaphongsukkit T, Kerr SJ, Boonyaratavej S, Avihingsanon A. Higher epicardial fat in older adults living with HIV with viral suppression and relationship with liver steatosis, coronary calcium and cardiometabolic risks. AIDS 2022; 36:1073-1081. [PMID: 35212667 DOI: 10.1097/qad.0000000000003204] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES HIV infection is associated with ectopic fat deposition, which leads to chronic inflammation and cardiometabolic dysregulation. We assessed the epicardial adipose tissue (EAT) volume and its associated factors among people with HIV (PWH). DESIGN A cross-sectional study. METHODS We conducted a cross-sectional study among PWH aged at least 50 years and age-matched and sex-matched HIV-negative older individuals in Bangkok, Thailand. Participants underwent a noncontrast, cardiac computed tomography (CT) scan to assess coronary artery calcium (CAC) score and EAT between March 2016 and June 2017. Multivariate linear regression analyses were used to investigate HIV-related factors, cardiac and metabolic markers associated with EAT volume. RESULTS Median age was 55 years [interquartile range (IQR) 52-60] and 63% were men. Median duration of antiretroviral therapy (ART) was 16 years with 97% had HIV-1 RNA less than 50 copies/ml and median CD4 + cell count of 617 cells/μl. Median EAT volume was significantly higher in PWH [99 (IQR 75-122) cm 3 ] than HIV-negative individuals [93 (IQR 69-117) cm 3 ], P = 0.022. In adjusted model, factors associated with EAT volume included male sex ( P = 0.045), older age ( P < 0.001), abnormal waist circumference ( P < 0.001) and HOMA-IR ( P = 0.01). In addition, higher CAC score was independently associated with EAT volume. Higher mean EAT volume was seen in PWH with severe liver steatosis than those without steatosis ( P = 0.018). In adjusted PWH-only model, duration of HIV was significantly associated with higher EAT volume ( P = 0.028). CONCLUSION In an aging cohort, PWH had higher EAT volume than HIV-negative controls. EAT was also independently associated with central fat accumulation, insulin resistance, liver steatosis and CAC score.
Collapse
Affiliation(s)
- Monravee Tumkosit
- Department of Radiology, Faculty of Medicine, Chulalongkorn University
| | - Win Min Han
- HIV-NAT, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
- The Kirby Institute, University of New South Wales, Sydney, Australia
- Center of Excellence in Tuberculosis, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | | | | - Stephen J Kerr
- HIV-NAT, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
- The Kirby Institute, University of New South Wales, Sydney, Australia
- Biostatistics Excellence Centre
| | | | - Anchalee Avihingsanon
- HIV-NAT, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
- Center of Excellence in Tuberculosis, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
36
|
Measurement of epicardial adipose tissue using non-contrast routine chest-CT: a consideration of threshold adjustment for fatty attenuation. BMC Med Imaging 2022; 22:114. [PMID: 35752770 PMCID: PMC9233319 DOI: 10.1186/s12880-022-00840-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/03/2022] [Indexed: 11/15/2022] Open
Abstract
Background Epicardial adipose tissue (EAT) is known as an important imaging indicator for cardiovascular risk stratification. The present study aimed to determine whether the EAT volume (EV) and mean EAT attenuation (mEA) measured by non-contrast routine chest CT (RCCT) could be more consistent with those measured by coronary CT angiography (CCTA) by adjusting the threshold of fatty attenuation. Methods In total, 83 subjects who simultaneously underwent CCTA and RCCT were enrolled. EV and mEA were quantified by CCTA using a threshold of (N30) (− 190 HU, − 30 HU) as a reference and measured by RCCT using thresholds of N30, N40 (− 190 HU, − 40 HU), and N45 (− 190 HU, − 45 HU). The correlation and agreement of EAT metrics between the two imaging modalities and differences between patients with coronary plaques (plaque ( +)) and without plaques (plaque ( −)) were analyzed. Results EV obtained from RCCT showed very strong correlation with the reference (r = 0.974, 0.976, 0.972 (N30, N40, N45), P < 0.001), whereas mEA showed a moderate correlation (r = 0.516, 0.500, 0.477 (N30, N40, N45), P < 0.001). Threshold adjustment was able to reduce the bias of EV, while increase the bias of mEA. Data obtained by CCTA and RCCT both demonstrated a significantly larger EV in the plaque ( +) group than in the plaque ( −) group (P < 0.05). A significant difference in mEA was shown only by RCCT using a threshold of N30 (plaque ( +) vs ( −): − 80.0 ± 4.4 HU vs − 78.0 ± 4.0 HU, P = 0.030). The mEA measured on RCCT using threshold of N40 and N45 showed no significant statistical difference between the two groups (P = 0.092 and 0.075), which was consistent with the result obtained on CCTA (P = 0.204). Conclusion Applying more negative threshold, the consistency of EV measurements between the two techniques improves and a consistent result can be obtained when comparing EF measurements between groups, although the bias of mEA increases. Threshold adjustment is necessary when measuring EF with non-contrast RCCT.
Collapse
|
37
|
Dawson LP, Layland J. High-Risk Coronary Plaque Features: A Narrative Review. Cardiol Ther 2022; 11:319-335. [PMID: 35731471 PMCID: PMC9381667 DOI: 10.1007/s40119-022-00271-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Advances in coronary plaque imaging over the last few decades have led to an increased interest in the identification of novel high-risk plaque features that are associated with cardiovascular events. Existing practices focus on risk stratification and lipid monitoring for primary and secondary prevention of cardiac events, which is limited by a lack of assessment and treatment of vulnerable plaque. In this review, we summarize the multitude of studies that have identified plaque, haemodynamic and patient factors associated with risk of acute coronary syndrome. Future progress in multi-modal imaging strategies and in our understanding of high-risk plaque features could expand treatment options for coronary disease and improve patient outcomes.
Collapse
Affiliation(s)
- Luke P Dawson
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia.,Department of Cardiology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Jamie Layland
- Department of Medicine, Monash University, Clayton campus, Melbourne, VIC, Australia. .,Department of Cardiology, Peninsula Health, 2 Hastings Rd, Frankston, VIC, 3199, Australia.
| |
Collapse
|
38
|
Yuvaraj J, Isa M, Che ZC, Lim E, Nerlekar N, Nicholls SJ, Seneviratne S, Lin A, Dey D, Wong DTL. Atherogenic index of plasma is associated with epicardial adipose tissue volume assessed on coronary computed tomography angiography. Sci Rep 2022; 12:9626. [PMID: 35688850 PMCID: PMC9187675 DOI: 10.1038/s41598-022-13479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
The atherogenic index of plasma (AIP) is a novel biomarker of atherogenic dyslipidaemia (AD), but its relationship with cardiac adipose tissue depots is unknown. We aimed to assess the association of AD with cardiac adipose tissue parameters on coronary computed tomography angiography (CCTA). We studied 161 patients who underwent CCTA between 2008 and 2011 (age 59.0 ± 14.0 years). AD was defined as triglyceride (TG) > 1.7 mmol/L and HDL < 1.0 mmol/L (n = 34). AIP was defined as the base 10 logarithmic ratio of TG to HDL. Plaque burden was assessed using the CT-Leaman score (CT-LeSc). We studied volume and attenuation of epicardial adipose tissue (EAT-v and EAT-a) and pericoronary adipose tissue (PCAT-v and PCAT-a) on CCTA using semi-automated software. Patients with AD had higher PCAT-v (p = 0.042) and EAT-v (p = 0.041). AIP was associated with EAT-v (p = 0.006), type II diabetes (p = 0.009) and male sex (p < 0.001) and correlated with CT-LeSc (p = 0.040). On multivariable analysis, AIP was associated with EAT-v ≥ 52.3 cm3, age, male sex and type II diabetes when corrected for traditional risk factors and plaque burden. AIP is associated with increased EAT volume, but not PCAT-a, after multivariable adjustment. These findings indicate AIP is associated with adverse adipose tissue changes which may increase coronary risk.
Collapse
Affiliation(s)
- Jeremy Yuvaraj
- Monash Cardiovascular Research Centre, Victorian Heart Institute, MonashHeart and Monash University, Monash Health, 246 Clayton Road, Clayton, VIC, 3168, Australia.,School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Mourushi Isa
- Monash Cardiovascular Research Centre, Victorian Heart Institute, MonashHeart and Monash University, Monash Health, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Zhu Chung Che
- Monash Cardiovascular Research Centre, Victorian Heart Institute, MonashHeart and Monash University, Monash Health, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Egynne Lim
- Monash Cardiovascular Research Centre, Victorian Heart Institute, MonashHeart and Monash University, Monash Health, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Nitesh Nerlekar
- Monash Cardiovascular Research Centre, Victorian Heart Institute, MonashHeart and Monash University, Monash Health, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, MonashHeart and Monash University, Monash Health, 246 Clayton Road, Clayton, VIC, 3168, Australia.,School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Sujith Seneviratne
- Monash Cardiovascular Research Centre, Victorian Heart Institute, MonashHeart and Monash University, Monash Health, 246 Clayton Road, Clayton, VIC, 3168, Australia.,School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Andrew Lin
- Monash Cardiovascular Research Centre, Victorian Heart Institute, MonashHeart and Monash University, Monash Health, 246 Clayton Road, Clayton, VIC, 3168, Australia.,School of Clinical Sciences, Monash University, Clayton, VIC, Australia.,Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dennis T L Wong
- Monash Cardiovascular Research Centre, Victorian Heart Institute, MonashHeart and Monash University, Monash Health, 246 Clayton Road, Clayton, VIC, 3168, Australia. .,School of Clinical Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
39
|
Yamaura H, Otsuka K, Ishikawa H, Shirasawa K, Fukuda D, Kasayuki N. Determinants of Non-calcified Low-Attenuation Coronary Plaque Burden in Patients Without Known Coronary Artery Disease: A Coronary CT Angiography Study. Front Cardiovasc Med 2022; 9:824470. [PMID: 35463764 PMCID: PMC9021435 DOI: 10.3389/fcvm.2022.824470] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
Background Although epicardial adipose tissue (EAT) is associated with coronary artery disease (CAD), it is unclear whether EAT volume (EAV) can be used to diagnose high-risk coronary plaque burden associated with coronary events. This study aimed to investigate (1) the prognostic impact of low-attenuation non-calcified coronary plaque (LAP) burden on patient level analysis, and (2) the association of EAV with LAP volume in patients without known CAD undergoing coronary computed tomography angiography (CCTA). Materials and Methods This retrospective study consisted of 376 patients (male, 57%; mean age, 65.2 ± 13 years) without known CAD undergoing CCTA. Percent LAP volume (%LAP, <30 HU) was calculated as the LAP volume divided by the vessel volume. EAT was defined as adipose tissue with a CT attenuation value ranging from −250 to −30 HU within the pericardial sac. The primary endpoint was a composite event of death, non-fatal myocardial infarction, and unstable angina and worsening symptoms requiring unplanned coronary revascularization >3 months after CCTA. The determinants of %LAP (Q4) were analyzed using a multivariable logistic regression model. Results During the follow-up period (mean, 2.2 ± 0.9 years), the primary endpoint was observed in 17 patients (4.5%). The independent predictors of the primary endpoint were %LAP (Q4) (hazard ratio [HR], 3.05; 95% confidence interval [CI], 1.09–8.54; p = 0.033] in the Cox proportional hazard model adjusted by CAD-RADS category. Cox proportional hazard ratio analysis demonstrated that %LAP (Q4) was a predictor of the primary endpoint, independnet of CAD severity, Suita score, EAV, or CACS. The independent determinants of %LAP (Q4) were CACS ≥218.3 (p < 0.0001) and EAV ≥125.3 ml (p < 0.0001). The addition of EAV to CACS significantly improved the area under the curve (AUC) to identify %LAP (Q4) than CACS alone (AUC, EAV + CACS vs. CACS alone: 0.728 vs. 0.637; p = 0.013). Conclusions CCTA-based assessment of EAV, CACS, and LAP could help improve personalized cardiac risk management by administering patient-suited therapy.
Collapse
Affiliation(s)
- Hiroki Yamaura
- Department of Cardiovascular Medicine, Kashibaseiki Hospital, Kashiba, Japan
| | - Kenichiro Otsuka
- Department of Cardiovascular Medicine, Kashibaseiki Hospital, Kashiba, Japan.,Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hirotoshi Ishikawa
- Department of Cardiovascular Medicine, Kashibaseiki Hospital, Kashiba, Japan.,Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kuniyuki Shirasawa
- Department of Cardiovascular Medicine, Kashibaseiki Hospital, Kashiba, Japan
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Noriaki Kasayuki
- Department of Cardiovascular Medicine, Kashibaseiki Hospital, Kashiba, Japan
| |
Collapse
|
40
|
Bartoli A, Fournel J, Ait-Yahia L, Cadour F, Tradi F, Ghattas B, Cortaredona S, Million M, Lasbleiz A, Dutour A, Gaborit B, Jacquier A. Automatic Deep-Learning Segmentation of Epicardial Adipose Tissue from Low-Dose Chest CT and Prognosis Impact on COVID-19. Cells 2022; 11:1034. [PMID: 35326485 PMCID: PMC8947414 DOI: 10.3390/cells11061034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background: To develop a deep-learning (DL) pipeline that allowed an automated segmentation of epicardial adipose tissue (EAT) from low-dose computed tomography (LDCT) and investigate the link between EAT and COVID-19 clinical outcomes. Methods: This monocentric retrospective study included 353 patients: 95 for training, 20 for testing, and 238 for prognosis evaluation. EAT segmentation was obtained after thresholding on a manually segmented pericardial volume. The model was evaluated with Dice coefficient (DSC), inter-and intraobserver reproducibility, and clinical measures. Uni-and multi-variate analyzes were conducted to assess the prognosis value of the EAT volume, EAT extent, and lung lesion extent on clinical outcomes, including hospitalization, oxygen therapy, intensive care unit admission and death. Results: The mean DSC for EAT volumes was 0.85 ± 0.05. For EAT volume, the mean absolute error was 11.7 ± 8.1 cm3 with a non-significant bias of −4.0 ± 13.9 cm3 and a correlation of 0.963 with the manual measures (p < 0.01). The multivariate model providing the higher AUC to predict adverse outcome include both EAT extent and lung lesion extent (AUC = 0.805). Conclusions: A DL algorithm was developed and evaluated to obtain reproducible and precise EAT segmentation on LDCT. EAT extent in association with lung lesion extent was associated with adverse clinical outcomes with an AUC = 0.805.
Collapse
Affiliation(s)
- Axel Bartoli
- Department of Radiology, Hôpital de la TIMONE, AP-HM, 13005 Marseille, France; (L.A.-Y.); (F.C.); (F.T.); (A.J.)
- CRMBM—UMR CNRS 7339, Aix-Marseille University, 27, Boulevard Jean Moulin, 13005 Marseille, France;
| | - Joris Fournel
- CRMBM—UMR CNRS 7339, Aix-Marseille University, 27, Boulevard Jean Moulin, 13005 Marseille, France;
| | - Léa Ait-Yahia
- Department of Radiology, Hôpital de la TIMONE, AP-HM, 13005 Marseille, France; (L.A.-Y.); (F.C.); (F.T.); (A.J.)
| | - Farah Cadour
- Department of Radiology, Hôpital de la TIMONE, AP-HM, 13005 Marseille, France; (L.A.-Y.); (F.C.); (F.T.); (A.J.)
- CRMBM—UMR CNRS 7339, Aix-Marseille University, 27, Boulevard Jean Moulin, 13005 Marseille, France;
| | - Farouk Tradi
- Department of Radiology, Hôpital de la TIMONE, AP-HM, 13005 Marseille, France; (L.A.-Y.); (F.C.); (F.T.); (A.J.)
| | - Badih Ghattas
- I2M—UMR CNRS 7373, Luminy Faculty of Sciences, Aix-Marseille University, 163 Avenue de Luminy, Case 901, 13009 Marseille, France;
| | - Sébastien Cortaredona
- IHU Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (S.C.); (M.M.)
- VITROME, SSA, IRD, Aix-Marseille University, 13005 Marseille, France
| | - Matthieu Million
- IHU Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (S.C.); (M.M.)
- MEPHI, IRD, AP-HM, Aix Marseille University, 13005 Marseille, France
| | - Adèle Lasbleiz
- C2VN, INRAE, INSERM, Aix Marseille University, 27, Boulevard Jean Moulin, 13005 Marseille, France; (A.L.); (A.D.); (B.G.)
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, AP-HM, 13915 Marseille, France
| | - Anne Dutour
- C2VN, INRAE, INSERM, Aix Marseille University, 27, Boulevard Jean Moulin, 13005 Marseille, France; (A.L.); (A.D.); (B.G.)
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, AP-HM, 13915 Marseille, France
| | - Bénédicte Gaborit
- C2VN, INRAE, INSERM, Aix Marseille University, 27, Boulevard Jean Moulin, 13005 Marseille, France; (A.L.); (A.D.); (B.G.)
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, AP-HM, 13915 Marseille, France
| | - Alexis Jacquier
- Department of Radiology, Hôpital de la TIMONE, AP-HM, 13005 Marseille, France; (L.A.-Y.); (F.C.); (F.T.); (A.J.)
- CRMBM—UMR CNRS 7339, Aix-Marseille University, 27, Boulevard Jean Moulin, 13005 Marseille, France;
| |
Collapse
|
41
|
Ayton SL, Gulsin GS, McCann GP, Moss AJ. Epicardial adipose tissue in obesity-related cardiac dysfunction. Heart 2022; 108:339-344. [PMID: 33985985 DOI: 10.1136/heartjnl-2020-318242] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/31/2021] [Accepted: 04/22/2021] [Indexed: 11/04/2022] Open
Abstract
Obesity is associated with the development of heart failure and is a major risk factor for heart failure with preserved ejection fraction (HFpEF). Epicardial adipose tissue (EAT) is a unique visceral fat in close proximity to the heart and is of particular interest to the study of cardiac disease. Small poorly differentiated adipocytes with altered lipid:water content are associated with a proinflammatory secretome and may contribute to the pathophysiology observed in HFpEF. Multimodality imaging approaches can be used to quantify EAT volume and characterise EAT composition. Current research studies remain unclear as to the magnitude of effect that EAT plays on myocardial dysfunction and further work using multimodality imaging techniques is ongoing. Pharmacological interventions, including glucagon-like peptide 1 receptor agonists and sodium-dependent glucose linked transporter 2 inhibitors have shown promise in attenuating the deleterious metabolic and inflammatory changes seen in EAT. Clinical studies are ongoing to explore whether these therapies exert their beneficial effects by modifying this unique adipose deposit.
Collapse
Affiliation(s)
- Sarah L Ayton
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Gaurav S Gulsin
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Gerry P McCann
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Alastair J Moss
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
42
|
Turkmen K, Ozer H, Kusztal M. The Relationship of Epicardial Adipose Tissue and Cardiovascular Disease in Chronic Kidney Disease and Hemodialysis Patients. J Clin Med 2022; 11:1308. [PMID: 35268399 PMCID: PMC8911356 DOI: 10.3390/jcm11051308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular diseases remain the most common cause of morbidity and mortality in chronic kidney disease patients undergoing hemodialysis. Epicardial adipose tissue (EAT), visceral fat depot of the heart, was found to be associated with coronary artery disease in cardiac and non-cardiac patients. Additionally, EAT has been proposed as a novel cardiovascular risk in the general population and in end-stage renal disease patients. It has also been shown that EAT, more than other subcutaneous adipose tissue deposits, acts as a highly active organ producing several bioactive adipokines, and proinflammatory and proatherogenic cytokines. Therefore, increased visceral adiposity is associated with proinflammatory activity, impaired insulin sensitivity, increased risk of atherosclerosis, and high morbidity and mortality in hemodialysis patients. In the present review, we aimed to demonstrate the role of EAT in the pathophysiological mechanisms of increased cardiovascular morbidity and mortality in hemodialysis patients.
Collapse
Affiliation(s)
- Kultigin Turkmen
- Division of Nephrology, Department of Internal Medicine, Meram Medical Faculty, Necmettin Erbakan University, Konya 42090, Turkey;
| | - Hakan Ozer
- Division of Nephrology, Department of Internal Medicine, Meram Medical Faculty, Necmettin Erbakan University, Konya 42090, Turkey;
| | - Mariusz Kusztal
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| |
Collapse
|
43
|
Canu M, Broisat A, Riou L, Vanzetto G, Fagret D, Ghezzi C, Djaileb L, Barone-Rochette G. Non-invasive Multimodality Imaging of Coronary Vulnerable Patient. Front Cardiovasc Med 2022; 9:836473. [PMID: 35282382 PMCID: PMC8907666 DOI: 10.3389/fcvm.2022.836473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerotic plaque rupture or erosion remain the primary mechanism responsible for myocardial infarction and the major challenge of cardiovascular researchers is to develop non-invasive methods of accurate risk prediction to identify vulnerable plaques before the event occurs. Multimodal imaging, by CT-TEP or CT-SPECT, provides both morphological and activity information about the plaque and cumulates the advantages of anatomic and molecular imaging to identify vulnerability features among coronary plaques. However, the rate of acute coronary syndromes remains low and the mechanisms leading to adverse events are clearly more complex than initially assumed. Indeed, recent studies suggest that the detection of a state of vulnerability in a patient is more important than the detection of individual sites of vulnerability as a target of focal treatment. Despite this evolution of concepts, multimodal imaging offers a strong potential to assess patient's vulnerability. Here we review the current state of multimodal imaging to identify vulnerable patients, and then focus on emerging imaging techniques and precision medicine.
Collapse
Affiliation(s)
- Marjorie Canu
- Department of Cardiology, University Hospital, Grenoble Alpes, Grenoble, France
| | - Alexis Broisat
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
| | - Laurent Riou
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
| | - Gerald Vanzetto
- Department of Cardiology, University Hospital, Grenoble Alpes, Grenoble, France
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
- French Alliance Clinical Trial, French Clinical Research Infrastructure Network, Paris, France
| | - Daniel Fagret
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
- Department of Nuclear Medicine, University Hospital, Grenoble Alpes, Grenoble, France
| | - Catherine Ghezzi
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
| | - Loic Djaileb
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
- Department of Nuclear Medicine, University Hospital, Grenoble Alpes, Grenoble, France
| | - Gilles Barone-Rochette
- Department of Cardiology, University Hospital, Grenoble Alpes, Grenoble, France
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
- French Alliance Clinical Trial, French Clinical Research Infrastructure Network, Paris, France
- *Correspondence: Gilles Barone-Rochette
| |
Collapse
|
44
|
Muzurović E, Cojić M, Stanković Z, Janež A. Epicardial Adipocyte-derived TNF-α Modulates Local Inflammation in Patients with Advanced Coronary Artery Disease. Curr Vasc Pharmacol 2022; 20:94-95. [PMID: 35040396 DOI: 10.2174/157016112001211228145754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Emir Muzurović
- Department of Internal Medicine, Endocrinology Section, Clinical Center of Montenegro, Podgorica, Montenegro
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Milena Cojić
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
- Primary Health Center Podgorica, Trg Nikole Kovačevića 6, Podgorica 81000, Montenegro
| | - Zoja Stanković
- Department of Internal Medicine, Endocrinology Section, Clinical Center of Montenegro, Podgorica, Montenegro
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Zaloska 7, 1000, Ljubljana, Slovenia
| |
Collapse
|
45
|
Du Y, Zhu Y, Liu Y, Liu J, Hu C, Sun Y, Zhang D, Lv S, Cheng Y, Han H, Zhang J, Zhao Y, Zhou Y. Expression profiles of long noncoding and messenger RNAs in epicardial adipose tissue derived from patients with coronary atherosclerosis. Curr Vasc Pharmacol 2022; 20:189-200. [PMID: 35049433 DOI: 10.2174/1570161120666220114095320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/21/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Given its close anatomical location to the heart and its endocrine properties, attention on epicardial adipose tissue (EAT) has increased. OBJECTIVE This study investigated the expression profiles of long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) in EAT derived from patients with coronary artery disease (CAD). METHODS EAT samples from 8 CAD and 8 non-CAD patients were obtained during open-heart surgery. The expression of lncRNAs and mRNAs in each EAT sample was investigated using microarray analysis and further verified using reverse transcription-quantitative polymerase chain reaction. RESULTS Overall, 1,093 differentially expressed mRNAs and 2,282 differentially expressed lncRNAs were identified in EAT from CAD vs non-CAD patients. Analysis using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes showed that these differentially expressed genes were mainly enriched in various inflammatory, immune, and metabolic processes. They were also involved in osteoclast differentiation, B cell receptor and adipocytokine signaling, and insulin resistance pathways. Additionally, lncRNA-mRNA and lncRNA-target pathway networks were built to identify potential core genes (e.g. Lnc-CCDC68-2:1, AC010148.1, NONHSAT104810) involved in atherosclerosis pathogenesis. CONCLUSION In summary, lncRNA and mRNA profiles in EAT were markedly different between CAD and non-CAD patients. Our study identifies several potential key genes and pathways that may participate in atherosclerosis development.
Collapse
Affiliation(s)
- Yu Du
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing100029, China
| | - Yong Zhu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing100029, China
| | - Yan Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing100029, China
| | - Jinxing Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing100029, China
| | - Chengping Hu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing100029, China
| | - Yan Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing100029, China
| | - Dai Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing100029, China
| | - Sai Lv
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing100029, China
| | - Yujing Cheng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing100029, China
| | - Hongya Han
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing100029, China
| | - Jianwei Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing100029, China
| | - Yingxin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing100029, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing100029, China
| |
Collapse
|
46
|
Liu J, Fan W, Liu Y, Bu H, Song J, Sun L. Association of Epicardial and Pericardial Adipose Tissue Volumes with Coronary Artery Calcification. Int Heart J 2022; 63:1019-1025. [DOI: 10.1536/ihj.22-006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jingyi Liu
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University
| | - Wenjun Fan
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University
| | - Yixiang Liu
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University
| | - Haiwei Bu
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University
| | - Jian Song
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University
| | - Lixian Sun
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University
| |
Collapse
|
47
|
Chavez J, Hai R. Effects of Cigarette Smoking on Influenza Virus/Host Interplay. Pathogens 2021; 10:pathogens10121636. [PMID: 34959590 PMCID: PMC8704216 DOI: 10.3390/pathogens10121636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
Cigarette smoking has been shown to increase the risk of respiratory infection, resulting in the exacerbation of infectious disease outcomes. Influenza viruses are a major respiratory viral pathogen, which are responsible for yearly epidemics that result in between 20,000 and 50,000 deaths in the US alone. However, there are limited general summaries on the impact of cigarette smoking on influenza pathogenic outcomes. Here, we will provide a systematic summarization of the current understanding of the interplay of smoking and influenza viral infection with a focus on examining how cigarette smoking affects innate and adaptive immune responses, inflammation levels, tissues that contribute to systemic chronic inflammation, and how this affects influenza A virus (IAV) disease outcomes. This summarization will: (1) help to clarify the conflict in the reports on viral pathogenicity; (2) fill knowledge gaps regarding critical anti-viral defenses such as antibody responses to IAV; and (3) provide an updated understanding of the underlying mechanism behind how cigarette smoking influences IAV pathogenicity.
Collapse
|
48
|
Cosson E, Nguyen MT, Rezgani I, Berkane N, Pinto S, Bihan H, Tatulashvili S, Taher M, Sal M, Soussan M, Brillet PY, Valensi P. Epicardial adipose tissue volume and myocardial ischemia in asymptomatic people living with diabetes: a cross-sectional study. Cardiovasc Diabetol 2021; 20:224. [PMID: 34819079 PMCID: PMC8613918 DOI: 10.1186/s12933-021-01420-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/14/2021] [Indexed: 12/18/2022] Open
Abstract
Background Epicardial adipose tissue (EAT) is considered a novel diagnostic marker for cardiometabolic disease. This study aimed to evaluate whether EAT volume was associated with stress-induced myocardial ischemia in asymptomatic people living with diabetes—independently of confounding factors—and whether it could predict this condition. Methods We included asymptomatic patients with diabetes and no coronary history, who had undergone both a stress a myocardial scintigraphy to diagnose myocardial ischemia, and a computed tomography to measure their coronary artery calcium (CAC) score. EAT volume was retrospectively measured from computed tomography imaging. Determinants of EAT volume and asymptomatic myocardial ischemia were evaluated. Results The study population comprised 274 individuals, including 153 men. Mean (± standard deviation) age was 62 ± 9 years, and 243, 23 and 8 had type 2, type 1, or another type of diabetes, respectively. Mean body mass index was 30 ± 6 kg/m2, and mean EAT volume 96 ± 36 cm3. Myocardial ischemia was detected in 32 patients (11.7%). EAT volume was positively correlated with age, body mass index and triglyceridemia, but negatively correlated with HbA1c, HDL- and LDL-cholesterol levels. Furthermore, EAT volume was lower in people with retinopathy, but higher in men, in current smokers, in patients with nephropathy, those with a CAC score > 100 Agatston units, and finally in individuals with myocardial ischemia (110 ± 37 cm3 vs 94 ± 37 cm3 in those without myocardial ischemia, p < 0.05). The association between EAT volume and myocardial ischemia remained significant after adjustment for gender, diabetes duration, peripheral macrovascular disease and CAC score. We also found that area under the ROC curve analysis showed that EAT volume (AROC: 0.771 [95% confidence interval 0.683–0.858]) did not provide improved discrimination of myocardial ischemia over the following classic factors: gender, diabetes duration, peripheral macrovascular disease, retinopathy, nephropathy, smoking, atherogenic dyslipidemia, and CAC score (AROC 0.773 [0.683–0.862]). Conclusions EAT may play a role in coronary atherosclerosis and coronary circulation in patients with diabetes. However, considering EAT volume is not a better marker for discriminating the risk of asymptomatic myocardial ischemia than classic clinical data.
Collapse
Affiliation(s)
- Emmanuel Cosson
- Department of Endocrinology-Diabetology-Nutrition, Avicenne Hospital, CRNH-IdF, CINFO, AP-HP, Université Paris 13, Sorbonne Paris Cité, 125 Rue de Stalingrad, 93000, Bobigny Cedex, France. .,Unité de Recherche Epidémiologique Nutritionnelle, UMR U1153 INSERM/U11125 INRA/CNAM/Université Paris 13, Bobigny, France.
| | - Minh Tuan Nguyen
- Unit of Endocrinology-Diabetology-Nutrition, Jean Verdier Hospital, AP-HP, Université Paris 13, Bondy, France
| | - Imen Rezgani
- Department of Endocrinology-Diabetology-Nutrition, Avicenne Hospital, CRNH-IdF, CINFO, AP-HP, Université Paris 13, Sorbonne Paris Cité, 125 Rue de Stalingrad, 93000, Bobigny Cedex, France
| | - Narimane Berkane
- Department of Endocrinology-Diabetology-Nutrition, Avicenne Hospital, CRNH-IdF, CINFO, AP-HP, Université Paris 13, Sorbonne Paris Cité, 125 Rue de Stalingrad, 93000, Bobigny Cedex, France
| | - Sara Pinto
- Unit of Diabetology, Jean Verdier Hospital, CRNH-IdF, CINFO, AP-HP, Université Paris 13, Sorbonne Paris Cité, Bondy, France
| | - Hélène Bihan
- Department of Endocrinology-Diabetology-Nutrition, Avicenne Hospital, CRNH-IdF, CINFO, AP-HP, Université Paris 13, Sorbonne Paris Cité, 125 Rue de Stalingrad, 93000, Bobigny Cedex, France.,Laboratoire Educations et Pratiques de Santé UR 3412, UFR Santé, Médecine, Biologie Humaine, Université Paris Sorbonne Paris Nord, 74, Rue Marcel Cachin, 93017, Bobigny Cedex, France
| | - Sopio Tatulashvili
- Department of Endocrinology-Diabetology-Nutrition, Avicenne Hospital, CRNH-IdF, CINFO, AP-HP, Université Paris 13, Sorbonne Paris Cité, 125 Rue de Stalingrad, 93000, Bobigny Cedex, France
| | - Malak Taher
- Department of Endocrinology-Diabetology-Nutrition, Avicenne Hospital, CRNH-IdF, CINFO, AP-HP, Université Paris 13, Sorbonne Paris Cité, 125 Rue de Stalingrad, 93000, Bobigny Cedex, France
| | - Meriem Sal
- Department of Endocrinology-Diabetology-Nutrition, Avicenne Hospital, CRNH-IdF, CINFO, AP-HP, Université Paris 13, Sorbonne Paris Cité, 125 Rue de Stalingrad, 93000, Bobigny Cedex, France
| | - Michael Soussan
- Department of Nuclear Medicine, Avicenne Hospital, AP-HP, Bobigny, France
| | | | - Paul Valensi
- Unit of Diabetology, Jean Verdier Hospital, CRNH-IdF, CINFO, AP-HP, Université Paris 13, Sorbonne Paris Cité, Bondy, France
| |
Collapse
|
49
|
McLaughlin T, Schnittger I, Nagy A, Zanley E, Xu Y, Song Y, Nieman K, Tremmel JA, Dey D, Boyd J, Sacks H. Relationship Between Coronary Atheroma, Epicardial Adipose Tissue Inflammation, and Adipocyte Differentiation Across the Human Myocardial Bridge. J Am Heart Assoc 2021; 10:e021003. [PMID: 34726081 PMCID: PMC8751937 DOI: 10.1161/jaha.121.021003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background Inflammation in epicardial adipose tissue (EAT) may contribute to coronary atherosclerosis. Myocardial bridge is a congenital anomaly in which the left anterior descending coronary artery takes a "tunneled" course under a bridge of myocardium: while atherosclerosis develops in the proximal left anterior descending coronary artery, the bridged portion is spared, highlighting the possibility that geographic separation from inflamed EAT is protective. We tested the hypothesis that inflammation in EAT was related to atherosclerosis by comparing EAT from proximal and bridge depots in individuals with myocardial bridge and varying degrees of atherosclerotic plaque. Methods and Results Maximal plaque burden was quantified by intravascular ultrasound, and inflammation was quantified by pericoronary EAT signal attenuation (pericoronary adipose tissue attenuation) from cardiac computed tomography scans. EAT overlying the proximal left anterior descending coronary artery and myocardial bridge was harvested for measurement of mRNA and microRNA (miRNA) using custom chips by Nanostring; inflammatory cytokines were measured in tissue culture supernatants. Pericoronary adipose tissue attenuation was increased, indicating inflammation, in proximal versus bridge EAT, in proportion to atherosclerotic plaque. Individuals with moderate-high versus low plaque burden exhibited greater expression of inflammation and hypoxia genes, and lower expression of adipogenesis genes. Comparison of gene expression in proximal versus bridge depots revealed differences only in participants with moderate-high plaque: inflammation was higher in proximal and adipogenesis lower in bridge EAT. Secreted inflammatory cytokines tended to be higher in proximal EAT. Hypoxia-inducible factor 1a was highly associated with inflammatory gene expression. Seven miRNAs were differentially expressed by depot: 3192-5P, 518D-3P, and 532-5P were upregulated in proximal EAT, whereas miR 630, 575, 16-5P, and 320E were upregulated in bridge EAT. miR 630 correlated directly with plaque burden and inversely with adipogenesis genes. miR 3192-5P, 518D-3P, and 532-5P correlated inversely with hypoxia/oxidative stress, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PCG1a), adipogenesis, and angiogenesis genes. Conclusions Inflammation is specifically elevated in EAT overlying atherosclerotic plaque, suggesting that EAT inflammation is caused by atherogenic molecular signals, including hypoxia-inducible factor 1a and/or miRNAs in an "inside-to-out" relationship. Adipogenesis was suppressed in the bridge EAT, but only in the presence of atherosclerotic plaque, supporting cross talk between the vasculature and EAT. miR 630 in EAT, expressed differentially according to burden of atherosclerotic plaque, and 3 other miRNAs appear to inhibit key genes related to adipogenesis, angiogenesis, hypoxia/oxidative stress, and thermogenesis in EAT, highlighting a role for miRNA in mediating cross talk between the coronary vasculature and EAT.
Collapse
Affiliation(s)
- Tracey McLaughlin
- Division of Endocrinology Stanford University School of Medicine Stanford CA
| | - Ingela Schnittger
- Division of Cardiovascular Medicine Stanford University School of Medicine Stanford CA
| | - Anna Nagy
- Division of Endocrinology Stanford University School of Medicine Stanford CA
| | - Elizabeth Zanley
- Division of Endocrinology Stanford University School of Medicine Stanford CA
| | - Yue Xu
- Division of Endocrinology Stanford University School of Medicine Stanford CA
| | - Yanqiu Song
- Cardiovascular Institute Tianjin Chest Hospital Tianjin China
| | - Koen Nieman
- Division of Cardiovascular Medicine Stanford University School of Medicine Stanford CA
| | - Jennifer A Tremmel
- Division of Cardiovascular Medicine Stanford University School of Medicine Stanford CA
| | - Damini Dey
- Department of Biomedical Sciences and Medicine Cedars-Sinai Medical Center Biomedical Imaging Research Institute Los Angeles CA
| | - Jack Boyd
- Department of Cardiothoracic Surgery Stanford University School of Medicine Stanford CA
| | - Harold Sacks
- Division of Endocrinology Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| |
Collapse
|
50
|
Ellis CN, Neville SJ, Sayyouh M, Elder JT, Nair RP, Gudjonsson JE, Ma T, Kazerooni EA, Rubenfire M, Agarwal PP. Epicardial adipose tissue volume is greater in men with severe psoriasis, implying an increased cardiovascular disease risk: A cross-sectional study. J Am Acad Dermatol 2021; 86:535-543. [PMID: 34678237 DOI: 10.1016/j.jaad.2021.09.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Patients with psoriasis have elevated risk of coronary artery disease. OBJECTIVE Do patients with severe psoriasis have larger epicardial adipose tissue volumes (EAT-V) that are associated with cardiovascular risk? METHODS For this cross-sectional study, we recruited dermatology patients with severe psoriasis and control patients without psoriasis or rheumatologic disease themselves or in a first-degree relative. Participants aged 34 to 55 years without known coronary artery disease or diabetes mellitus underwent computed tomography (CT); EAT-V was obtained from noncontrast CT heart images. RESULTS Twenty-five patients with psoriasis (14 men, 11 women) and 16 controls (5 men, 11 women) participated. Groups had no statistical difference in age, body mass index, various cardiovascular risk factors (except high-sensitivity C-reactive protein in men), CT-determined coronary artery calcium scores or plaque, or family history of premature cardiovascular disease. Mean EAT-V was greater in the psoriasis group compared to controls (P = .04). There was no statistically significant difference among women; however, male patients with psoriasis had significantly higher EAT-V than controls (P = .03), even when corrected for elevated high-sensitivity C-reactive protein (P = .05). LIMITATIONS A single-center convenience sample may not be representative. CONCLUSION Males with psoriasis without known coronary disease or diabetes had greater EAT-V than controls. EAT-V may be an early identifier of those at increased risk for cardiovascular events.
Collapse
Affiliation(s)
- Charles N Ellis
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Stephen J Neville
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Mohamed Sayyouh
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - James T Elder
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Rajan P Nair
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Tianwen Ma
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Ella A Kazerooni
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan; Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Melvyn Rubenfire
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Prachi P Agarwal
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|