1
|
Marey A, Alabdullah A, Ghorab H, Ali F, Abdulla J, Narang A, Umair M. Extracellular volume fraction and native T1 mapping in diabetic cardiomyopathy: a comprehensive meta-analysis. BMC Cardiovasc Disord 2025; 25:70. [PMID: 39893360 PMCID: PMC11786336 DOI: 10.1186/s12872-025-04496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is associated with myocardial fibrosis (MF), a major contributor to adverse cardiovascular outcomes. Cardiovascular magnetic resonance (CMR), specifically extracellular volume fraction (ECV) and native T1 mapping, offers a non-invasive approach to quantify MF. This study aims to evaluate the utility of ECV and native T1 mapping as biomarkers for cardiac fibrosis and to assess their relationship with diabetes severity, measured by hemoglobin A1C (HbA1C), in patients with T2DM. METHODS A systematic review and meta-analysis were conducted following PRISMA guidelines. Comprehensive searches identified 19 eligible studies comprising 4,117 participants. Weighted mean differences (WMDs) were calculated for ECV and native T1 values between diabetic and non-diabetic groups. Meta-regression assessed the correlation between ECV and HbA1C. Sensitivity and subgroup analyses were performed to explore heterogeneity. RESULTS Diabetic patients exhibited significantly higher ECV values than controls (WMD: 2.17; 95% CI: 1.32-3.02), consistent across subgroups excluding cardiac comorbidities (WMD: 2.02; 95% CI: 0.74-3.31). HbA1C levels were also significantly elevated in diabetics (WMD: 1.78; 95% CI: 1.37-2.19). However, no significant difference in native T1 values was observed (WMD: 13.40; 95% CI: -13.98-40.79). Meta-regression revealed no significant correlation between ECV and HbA1C, potentially due to limited data and high heterogeneity (I²: 93.37%). CONCLUSIONS ECV is a promising marker for quantifying MF in T2DM, demonstrating significant differences between diabetics and controls. The lack of correlation between ECV and HbA1C underscores the complexity of MF in diabetes and highlights the need for further research. Future studies with standardized protocols are essential to validate these findings and refine the use of CMR in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Ahmed Marey
- Alexandria University Faculty of Medicine, Champollion street،, Al Mesallah Sharq, Al Attarin, Alexandria Governorate, Alexandria, 5372066, Egypt.
| | - Ali Alabdullah
- Department of Surgery, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Hossam Ghorab
- Alexandria University Faculty of Medicine, Champollion street،, Al Mesallah Sharq, Al Attarin, Alexandria Governorate, Alexandria, 5372066, Egypt
| | - Fatima Ali
- CMH Lahore Medical College, Lahore, Pakistan
| | - Jawdat Abdulla
- Department of Cardiology, Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Akhil Narang
- Department of Cardiology, Northwestern University, Evanston, IL, USA
| | - Muhammad Umair
- Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
2
|
Zhang W, Liang G, Lv L, Gu X, Zhang Q, Liu A, Ma J. Predictive value of percutaneous peripheral arterial compliance T in left ventricular diastolic function with coronary artery disease. Front Cardiovasc Med 2024; 11:1366072. [PMID: 39582520 PMCID: PMC11582064 DOI: 10.3389/fcvm.2024.1366072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Background Diastolic dysfunction emerges early in patients with cardiac insufficiency and is prevalent, underscoring the importance of its early identification and intervention in the prevention of heart failure. The study leverages the convenience and accuracy of measuring peripheral arterial sclerosis to facilitate the early detection of diastolic dysfunction, which is instrumental in mitigating and delaying the onset and progression of heart failure, holding significant clinical relevance. Methods This research enrolled 556 patients suspected of experiencing Acute Coronary Syndrome (ACS) and stratified them into Groups A, B, C, and D according to the severity of coronary artery stenosis. The diastolic function of the left ventricle was indicated by the relaxation time constant, denoted as T value, which measures the temporal span from the peak rate of left ventricular pressure rise (dp/dt) to the end-diastolic pressure. Results The T value of the left ventricle demonstrated a significant correlation with the Gensini Score and the T values across various peripheral arteries (P < 0.01). Pearson correlation analysis showed that the average value of peripheral arterial compliance indices in Group C and the average value of peripheral arterial compliance indices in Group D had a significant correlation with LV-T. At the same time, linear analysis of the average values of peripheral arterial compliance indices in both groups revealed that the average compliance indices in Groups C and D had a linear correlation with their LV-T (P < 0.05).When coronary artery stenosis exceeds 50%, the changes in peripheral arterial T values are significantly correlated with changes in LV-T. Conclusions When coronary artery stenosis exceeds 50%, there is a decrease in peripheral artery compliance, showing a positive correlation with changes in left ventricular diastolic function. Measuring this compliance might offer an early diagnostic tool for assessing diastolic function.
Collapse
Affiliation(s)
- Wenhao Zhang
- Department of Cardiology, Jinzhou Medical University, Jinzhou, Liaoning, China
- Department of Cardiology, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Guoliang Liang
- Department of Cardiology, Shanghai Fengxian District Central Hospital, Shanghai, China
- Department of Cardiology, Anhui University of Science and Technology, Huainan, Anhui, China
| | - Liang Lv
- Department of Cardiology, Xi'an Central Hospital, Xi’an, Shaanxi, China
| | - Xinxin Gu
- Department of Cardiology, Jinzhou Medical University, Jinzhou, Liaoning, China
- Department of Cardiology, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Qiong Zhang
- Department of Cardiology, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Ankang Liu
- Department of Cardiology, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Jiangwei Ma
- Department of Cardiology, Jinzhou Medical University, Jinzhou, Liaoning, China
- Department of Cardiology, Shanghai Fengxian District Central Hospital, Shanghai, China
| |
Collapse
|
3
|
Martinez CS, Zheng A, Xiao Q. Mitochondrial Reactive Oxygen Species Dysregulation in Heart Failure with Preserved Ejection Fraction: A Fraction of the Whole. Antioxidants (Basel) 2024; 13:1330. [PMID: 39594472 PMCID: PMC11591317 DOI: 10.3390/antiox13111330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multifarious syndrome, accounting for over half of heart failure (HF) patients receiving clinical treatment. The prevalence of HFpEF is rapidly increasing in the coming decades as the global population ages. It is becoming clearer that HFpEF has a lot of different causes, which makes it challenging to find effective treatments. Currently, there are no proven treatments for people with deteriorating HF or HFpEF. Although the pathophysiologic foundations of HFpEF are complex, excessive reactive oxygen species (ROS) generation and increased oxidative stress caused by mitochondrial dysfunction seem to play a critical role in the pathogenesis of HFpEF. Emerging evidence from animal models and human myocardial tissues from failed hearts shows that mitochondrial aberrations cause a marked increase in mitochondrial ROS (mtROS) production and oxidative stress. Furthermore, studies have reported that common HF medications like beta blockers, angiotensin receptor blockers, angiotensin-converting enzyme inhibitors, and mineralocorticoid receptor antagonists indirectly reduce the production of mtROS. Despite the harmful effects of ROS on cardiac remodeling, maintaining mitochondrial homeostasis and cardiac functions requires small amounts of ROS. In this review, we will provide an overview and discussion of the recent findings on mtROS production, its threshold for imbalance, and the subsequent dysfunction that leads to related cardiac and systemic phenotypes in the context of HFpEF. We will also focus on newly discovered cellular and molecular mechanisms underlying ROS dysregulation, current therapeutic options, and future perspectives for treating HFpEF by targeting mtROS and the associated signal molecules.
Collapse
Affiliation(s)
| | | | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (C.S.M.); (A.Z.)
| |
Collapse
|
4
|
Tada A, Burkhoff D, Naser JA, Harada T, Pourmussa B, Reddy YNV, Jensen MD, Carter R, Demmer RT, Testani J, Chirinos JA, Borlaug BA. Dapagliflozin Enhances Arterial and Venous Compliance During Exercise in Heart Failure With Preserved Ejection Fraction: Insights From the CAMEO-DAPA Trial. Circulation 2024; 150:997-1009. [PMID: 39101201 PMCID: PMC11433515 DOI: 10.1161/circulationaha.124.068788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Systemic arterial compliance and venous capacitance are typically impaired in patients with heart failure with preserved ejection fraction (HFpEF), contributing to hemodynamic congestion with stress. Sodium-glucose cotransporter-2 inhibitors reduce hemodynamic congestion and improve clinical outcomes in patients with HFpEF, but the mechanisms remain unclear. This study tested the hypothesis that Dapagliflozin would improve systemic arterial compliance and venous capacitance during exercise in patients with HFpEF. METHODS In this secondary analysis from the CAMEO-DAPA trial (Cardiac and Metabolic Effects of Dapagliflozin in Heart Failure With Preserved Ejection Fraction Trial), 37 patients with HFpEF (mean age 68 ± 9 years, women 65%) underwent invasive hemodynamic exercise testing with simultaneous echocardiography at baseline and following treatment for 24 weeks with Dapagliflozin or placebo. Radial artery pressure (BP) was measured continuously using a fluid-filled catheter with transformation to aortic pressure, central hemodynamics were measured using high-fidelity micromanometers, and stressed blood volume was estimated from hemodynamic indices fit to a comprehensive cardiovascular model. RESULTS There was no statistically significant effect of Dapagliflozin on resting BP, but Dapagliflozin reduced systolic BP during peak exercise (estimated treatment difference [ETD], -18.8 mm Hg [95% CI, -33.9 to -3.7] P=0.016). Reduction in BP was related to improved exertional total arterial compliance (ETD, 0.06 mL/mm Hg/m2 [95% CI, 0.003-0.11] P=0.039) and aortic root characteristic impedance (ETD, -2.6 mm Hg/mL*sec [95% CI: -5.1 to -0.03] P=0.048), with no significant effect on systemic vascular resistance. Dapagliflozin reduced estimated stressed blood volume at rest and during peak exercise (ETD, -292 mm Hg [95% CI, -530 to -53] P=0.018), and improved venous capacitance evidenced by a decline in ratio of estimated stressed blood volume to total blood volume (ETD, -7.3% [95% CI, -13.3 to -1.3] P=0.020). Each of these effects of Dapagliflozin at peak exercise were also observed during matched 20W exercise intensity. Improvements in total arterial compliance and estimated stressed blood volume were correlated with decreases in body weight, and reduction in systolic BP with treatment was correlated with the change in estimated stressed blood volume during exercise (r=0.40, P=0.019). Decreases in BP were correlated with reduction in pulmonary capillary wedge pressure during exercise (r=0.56, P<0.001). CONCLUSIONS In patients with HFpEF, treatment with Dapagliflozin improved systemic arterial compliance and venous capacitance during exercise, while reducing aortic characteristic impedance, suggesting a reduction in arterial wall stiffness. These vascular effects may partially explain the clinical benefits with sodium-glucose cotransporter-2 inhibitors in HFpEF. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT04730947.
Collapse
Affiliation(s)
- Atsushi Tada
- The Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Jwan A. Naser
- The Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Tomonari Harada
- The Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Bianca Pourmussa
- Division of Cardiology, Hospital of the University of Pennsylvania
| | - Yogesh N. V. Reddy
- The Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael D. Jensen
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism,Mayo Clinic, Rochester, Minnesota
| | - Rickey Carter
- Department of Quantitative Health Sciences, Division of Clinical Trials & Biostatistics,Mayo Clinic, Jacksonville, Florida
| | - Ryan T. Demmer
- Division of Epidemiology, Department of Quantitative Health Sciences, College of Medicine and Science, Mayo Clinic, Rochester, MN
| | | | | | - Barry A. Borlaug
- The Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
5
|
Miura H, Koseki M, Ide S, Asaumi Y, Morita Y, Ohta Y, Tanaka K, Okada T, Omatsu T, Ogata S, Fukuda T, Sakata Y, Noguchi T. Stronger positive correlation of the left ventricular mass index and extracellular volume fraction with diastolic function in diabetic patients without myocardial infarction. Int J Cardiol 2024; 408:132099. [PMID: 38663814 DOI: 10.1016/j.ijcard.2024.132099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND The structural and functional characteristics of the heart in patients with diabetes mellitus (DM) and without myocardial infarction (MI) are not fully understood. METHODS We retrospectively analysed the data of patients with left ventricular ejection fraction (LVEF) ≥ 40% who underwent contrast-enhanced cardiac magnetic resonance imaging (CMR), which was also used to exclude MI, at two hospitals. Volumetric data and extracellular volume fraction (ECVf) of the myocardium evaluated using CMR were compared between patients with and without DM, and their association with diastolic function was evaluated. RESULTS Among 322 analysed patients, 53 had DM. CMR revealed that the left ventricular mass index (LVMi) and ECVf were increased while LVEF was decreased in patients with DM after adjusting for patient characteristics (all P < 0.05). A stronger positive correlation was observed between LVMi and the early diastolic transmitral flow velocity to early diastolic mitral annular velocity ratio (E/e') in patients with DM than in those without DM (correlation coefficient [R] = 0.46, p = 0.001; R = 0.15, p = 0.021, respectively; p for interaction = 0.011). ECVf correlated with E/e' only in patients with DM (R = 0.61, p = 0.004). CONCLUSIONS Patients with DM have increased LVMi and ECVf. Importantly, there was a difference between patients with and without DM in the relationship between these structural changes and E/e', with a stronger relationship in patients with DM. Furthermore, DM is associated with mildly reduced LVEF even in the absence of MI.
Collapse
Affiliation(s)
- Hiroyuki Miura
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Centre, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan; Division of Cardiovascular Medicine, Department of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Koseki
- Division of Cardiovascular Medicine, Department of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Seiko Ide
- Division of Cardiovascular Medicine, Department of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuhide Asaumi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Centre, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Yoshiaki Morita
- Department of Radiology, National Cerebral and Cardiovascular Centre, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Yasutoshi Ohta
- Department of Radiology, National Cerebral and Cardiovascular Centre, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Katsunao Tanaka
- Division of Cardiovascular Medicine, Department of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Okada
- Division of Cardiovascular Medicine, Department of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Omatsu
- Division of Cardiovascular Medicine, Department of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Soshiro Ogata
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Centre, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Tetsuya Fukuda
- Department of Radiology, National Cerebral and Cardiovascular Centre, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Yasushi Sakata
- Division of Cardiovascular Medicine, Department of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Teruo Noguchi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Centre, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| |
Collapse
|
6
|
Bunsawat K, Nelson MD, Hearon CM, Wray DW. Exercise intolerance in heart failure with preserved ejection fraction: Causes, consequences and the journey towards a cure. Exp Physiol 2024; 109:502-512. [PMID: 38063130 PMCID: PMC10984794 DOI: 10.1113/ep090674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/22/2023] [Indexed: 04/04/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for over 50% of all heart failure cases nationwide and continues to rise in its prevalence. The complex, multi-organ involvement of the HFpEF clinical syndrome requires clinicians and investigators to adopt an integrative approach that considers the contribution of both cardiac and non-cardiac function to HFpEF pathophysiology. Thus, this symposium review outlines the key points from presentations covering the contributions of disease-related changes in cardiac function, arterial stiffness, peripheral vascular function, and oxygen delivery and utilization to exercise tolerance in patients with HFpEF. While many aspects of HFpEF pathophysiology remain poorly understood, there is accumulating evidence for a decline in vascular health in this patient group that may be remediable through pharmacological and lifestyle interventions and could improve outcomes and clinical status in this ever-growing patient population.
Collapse
Affiliation(s)
- Kanokwan Bunsawat
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical CenterSalt Lake CityUtahUSA
- Department of Internal Medicine, Division of GeriatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Michael D. Nelson
- Department of KinesiologyUniversity of Texas at ArlingtonArlingtonTexasUSA
| | - Christopher M. Hearon
- Department of Applied Clinical ResearchThe University of Texas Southwestern Medical CenterDallasTexasUSA
| | - D. Walter Wray
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical CenterSalt Lake CityUtahUSA
- Department of Internal Medicine, Division of GeriatricsUniversity of UtahSalt Lake CityUtahUSA
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
7
|
Larson K, Omar M, Sorimachi H, Omote K, Alogna A, Popovic D, Tada A, Doi S, Naser J, Reddy YN, Redfield MM, Borlaug BA. Clinical phenogroup diversity and multiplicity: Impact on mechanisms of exercise intolerance in heart failure with preserved ejection fraction. Eur J Heart Fail 2024; 26:564-577. [PMID: 38156712 PMCID: PMC11096073 DOI: 10.1002/ejhf.3105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
AIMS We aimed to clarify the extent to which cardiac and peripheral impairments to oxygen delivery and utilization contribute to exercise intolerance and risk for adverse events, and how this relates to diversity and multiplicity in pathophysiologic traits. METHODS AND RESULTS Individuals with heart failure with preserved ejection fraction (HFpEF) and non-cardiac dyspnoea (controls) underwent invasive cardiopulmonary exercise testing and clinical follow-up. Haemodynamics and oxygen transport responses were compared. HFpEF patients were then categorized a priori into previously-proposed, non-exclusive descriptive clinical trait phenogroups, including cardiometabolic, pulmonary vascular disease, left atrial myopathy, and vascular stiffening phenogroups based on clinical and haemodynamic profiles to contrast pathophysiology and clinical risk. Overall, patients with HFpEF (n = 643) had impaired cardiac output reserve with exercise (2.3 vs. 2.8 L/min, p = 0.025) and greater reliance on peripheral oxygen extraction augmentation (4.5 vs. 3.8 ml/dl, p < 0.001) compared to dyspnoeic controls (n = 219). Most (94%) patients with HFpEF met criteria for at least one clinical phenogroup, and 67% fulfilled criteria for multiple overlapping phenogroups. There was greater impairment in peripheral limitations in the cardiometabolic group and greater cardiac output limitations and higher pulmonary vascular resistance during exertion in the other phenogroups. Increasing trait multiplicity within a given patient was associated with worse exercise haemodynamics, poorer exercise capacity, lower cardiac output reserve, and greater risk for heart failure hospitalization or death (hazard ratio 1.74, 95% confidence interval 1.08-2.79 for 0-1 vs. ≥2 phenogroup traits present). CONCLUSIONS Though cardiac output response to exercise is limited in patients with HFpEF compared to those with non-cardiac dyspnoea, the relative contributions of cardiac and peripheral limitations vary with differing numbers and types of clinical phenotypic traits present. Patients fulfilling criteria for greater multiplicity and diversity of HFpEF phenogroup traits have poorer exercise capacity, worsening haemodynamic perturbations, and greater risk for adverse outcome.
Collapse
Affiliation(s)
- Kathryn Larson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Massar Omar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
- Department of Cardiology, Odense University Hospital, Odense, Denmark
- Steno Diabetes Center, Odense University Hospital, Odense, Denmark
| | - Hidemi Sorimachi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kazunori Omote
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Alessio Alogna
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Dejana Popovic
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Atsushi Tada
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Shunichi Doi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Jwan Naser
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | | | | | - Barry A. Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
8
|
Sung KC. Arterial Stiffness and Incident Diabetes. Pulse (Basel) 2024; 12:12-18. [PMID: 38229880 PMCID: PMC10789497 DOI: 10.1159/000535775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/02/2023] [Indexed: 01/18/2024] Open
Abstract
Diabetes may induce multiple organ damage; therefore, early detection of individuals at high-risk of incident diabetes is important for timely risk assessment and intervention. Arterial stiffness (AS) occurs as a result of functional and structural changes in the arterial wall. Growing body of evidence suggests that AS is a risk factor for incident diabetes. Although each study could use different indicators for AS (ex cf-PWV, baPWV, etc.), they came to similar conclusion that AS was associated with higher risk of incident diabetes. The underlying mechanisms for the relationship of AS with risk of diabetes remain to be elucidated, but there could be several potential mechanisms. Diabetes and AS are expected to share common risk factors and influence each other, but recent research showed some evidence that AS can directly increase the risk of diabetes. The link between AS and incident diabetes has important clinical implications. First, it suggests that AS might be a useful marker for identifying people at high risk for developing diabetes. Second, it suggests that reducing AS may prevent or delay the onset of diabetes. Early detection and possible slowing of the vascular stiffening process with pharmacological agents and lifestyle interventions may reduce associated risks for diabetes.
Collapse
Affiliation(s)
- Ki-Chul Sung
- Division of Cardiology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Saeed S, Ali AM, Mahmoud MA, Nilsson PM. Risk factors of newly detected and masked untreated hypertension in a South Asian population of Type-2 diabetes patients. Pak J Med Sci 2023; 39:631-633. [PMID: 37250534 PMCID: PMC10214778 DOI: 10.12669/pjms.39.3.7666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/12/2023] [Accepted: 02/28/2023] [Indexed: 05/31/2023] Open
Abstract
doi: https://doi.org/10.12669/pjms.39.3.7666
How to cite this: Saeed S, Ali AM, Mahmoud MA, Nilsson PM. Risk factors of newly detected and masked untreated hypertension in a South Asian population of Type-2 diabetes patients. Pak J Med Sci. 2023;39(3):631-633. doi: https://doi.org/10.12669/pjms.39.3.7666
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Sahrai Saeed
- Sahrai Saeed, MD, PhD. Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Abukar Mohamed Ali
- Abukar Mohamed Ali, MD. Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Muhiddin Abdi Mahmoud
- Muhiddin Abdi Mahmoud, MD. Department of Nephrology, Mnazi Mmoja Referral Hospital, Zanzibar
| | - Peter M. Nilsson
- Peter M. Nilsson, MD, PhD. Department of Clinical Sciences, Lund University, Skane University Hospital, Malmö, Sweden
| |
Collapse
|
10
|
Chen UL, Liao CW, Wang SM, Lai TS, Huang KH, Chang CC, Lee BC, Lu CC, Chang YR, Chang YY, Hung CS, Chueh JS, Wu VC, Tsai CH, Lin YH. Diabetes mellitus is associated with more adverse non-hemodynamic left ventricular remodeling and less recovery in patients with primary aldosteronism. J Investig Med 2023; 71:101-112. [PMID: 36647318 DOI: 10.1177/10815589221141840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The elevated aldosterone in primary aldosteronism (PA) is associated with increased insulin resistance and prevalence of diabetes mellitus (DM). Both aldosterone excess and DM lead to left ventricular (LV) pathological remodeling. In this study, we investigated the impact of DM on LV non-hemodynamic remodeling in patients with PA. We enrolled 665 PA patients, of whom 112 had DM and 553 did not. Clinical, biochemical, and echocardiographic data were analyzed at baseline and 1 year after adrenalectomy. LV non-hemodynamic remodeling was represented by inappropriate excess left ventricular mass index (ieLVMI), which was defined as the difference between left ventricular mass index (LVMI) and predicted left ventricular mass index (pLVMI). Propensity score matching (PSM) was used with age, sex, systolic, and diastolic blood pressure to adjust for baseline variables. After PSM, the patient characteristics were balanced between the DM and non-DM groups, except for fasting glucose, HbA1c, and lipid profile. A total of 111 DM and 419 non-DM patients were selected for further analysis. Compared to the non-DM group, the DM group had significantly higher ieLVMI and LVMI. After multivariable linear regression analysis, the presence of DM remained a significant predictor of increased ieLVMI. After adrenalectomy, ieLVMI decreased significantly in the non-DM group but not in DM group. The presence of DM in PA patients was associated with more prominent non-hemodynamic LV remodeling and less recovery after adrenalectomy.
Collapse
Affiliation(s)
- Uei-Lin Chen
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei.,Cardiovascular Center, National Taiwan University Hospital, Taipei
| | - Che-Wei Liao
- Department of Medicine, National Taiwan University Cancer Center, Taipei
| | - Shuo-Meng Wang
- Department of Urology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei
| | - Tai-Shuan Lai
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei
| | - Kuo-How Huang
- Department of Urology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei
| | - Chin-Chen Chang
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei
| | - Bo-Ching Lee
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei
| | - Ching-Chu Lu
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei
| | - Yi-Ru Chang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei.,Cardiovascular Center, National Taiwan University Hospital, Taipei
| | - Yi-Yao Chang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei.,Cardiology Division of Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City.,Center of General Education, Chihlee University of Technology, New Taipei City
| | - Chi-Sheng Hung
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei.,Cardiovascular Center, National Taiwan University Hospital, Taipei
| | - Jeff S Chueh
- Department of Urology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei
| | - Vin-Cent Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei
| | - Cheng-Hsuan Tsai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei.,Cardiovascular Center, National Taiwan University Hospital, Taipei.,National Taiwan University College of Medicine Graduate Institute of Clinical Medicine
| | - Yen-Hung Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei.,Cardiovascular Center, National Taiwan University Hospital, Taipei
| | | |
Collapse
|
11
|
Fotaki A, Velasco C, Prieto C, Botnar RM. Quantitative MRI in cardiometabolic disease: From conventional cardiac and liver tissue mapping techniques to multi-parametric approaches. Front Cardiovasc Med 2023; 9:991383. [PMID: 36756640 PMCID: PMC9899858 DOI: 10.3389/fcvm.2022.991383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023] Open
Abstract
Cardiometabolic disease refers to the spectrum of chronic conditions that include diabetes, hypertension, atheromatosis, non-alcoholic fatty liver disease, and their long-term impact on cardiovascular health. Histological studies have confirmed several modifications at the tissue level in cardiometabolic disease. Recently, quantitative MR methods have enabled non-invasive myocardial and liver tissue characterization. MR relaxation mapping techniques such as T1, T1ρ, T2 and T2* provide a pixel-by-pixel representation of the corresponding tissue specific relaxation times, which have been shown to correlate with fibrosis, altered tissue perfusion, oedema and iron levels. Proton density fat fraction mapping approaches allow measurement of lipid tissue in the organ of interest. Several studies have demonstrated their utility as early diagnostic biomarkers and their potential to bear prognostic implications. Conventionally, the quantification of these parameters by MRI relies on the acquisition of sequential scans, encoding and mapping only one parameter per scan. However, this methodology is time inefficient and suffers from the confounding effects of the relaxation parameters in each single map, limiting wider clinical and research applications. To address these limitations, several novel approaches have been proposed that encode multiple tissue parameters simultaneously, providing co-registered multiparametric information of the tissues of interest. This review aims to describe the multi-faceted myocardial and hepatic tissue alterations in cardiometabolic disease and to motivate the application of relaxometry and proton-density cardiac and liver tissue mapping techniques. Current approaches in myocardial and liver tissue characterization as well as latest technical developments in multiparametric quantitative MRI are included. Limitations and challenges of these novel approaches, and recommendations to facilitate clinical validation are also discussed.
Collapse
Affiliation(s)
- Anastasia Fotaki
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom,*Correspondence: Anastasia Fotaki,
| | - Carlos Velasco
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom,School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile,Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile,Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| | - René M. Botnar
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom,School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile,Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile,Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| |
Collapse
|
12
|
Cohen JB, Mitchell GF, Gill D, Burgess S, Rahman M, Hanff T, Ramachandran VS, Mutalik K, Townsend RR, Chirinos JA. Arterial Stiffness and Diabetes Risk in Framingham Heart Study and UK Biobank. Circ Res 2022; 131:545-554. [PMID: 35946401 PMCID: PMC7613487 DOI: 10.1161/circresaha.122.320796] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/26/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Microvascular damage from large artery stiffness (LAS) in pancreatic, hepatic, and skeletal muscles may affect glucose homeostasis. Our goal was to evaluate the association between LAS and the risk of type 2 diabetes using prospectively collected, carefully phenotyped measurements of LAS as well as Mendelian randomization analyses. METHODS Carotid-femoral pulse wave velocity (CF-PWV) and brachial and central pulse pressure were measured in 5676 participants of the FHS (Framingham Heart Study) without diabetes. We used Cox proportional hazards regression to evaluate the association of CF-PWV and pulse pressure with incident diabetes. We subsequently performed 2-sample Mendelian randomization analyses evaluating the associations of genetically predicted brachial pulse pressure with type 2 diabetes in the UKBB (United Kingdom Biobank). RESULTS In FHS, individuals with higher CF-PWV were older, more often male, and had higher body mass index and mean arterial pressure compared to those with lower CF-PWV. After a median follow-up of 7 years, CF-PWV and central pulse pressure were associated with an increased risk of new-onset diabetes (per SD increase, multivariable-adjusted CF-PWV hazard ratio, 1.36 [95% CI, 1.03-1.76]; P=0.030; central pulse pressure multivariable-adjusted CF-PWV hazard ratio, 1.26 [95% CI, 1.08-1.48]; P=0.004). In United Kingdom Biobank, genetically predicted brachial pulse pressure was associated with type 2 diabetes, independent of mean arterial pressure (adjusted odds ratio, 1.16 [95% CI, 1.00-1.35]; P=0.049). CONCLUSIONS Using prospective cohort data coupled with Mendelian randomization analyses, we found evidence supporting that greater LAS is associated with increased risk of developing diabetes. LAS may play an important role in glucose homeostasis and may serve as a useful marker of future diabetes risk.
Collapse
Affiliation(s)
- Jordana B. Cohen
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Stephen Burgess
- Medical Research Council Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Mahboob Rahman
- Department of Medicine, Case Western University, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Thomas Hanff
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Vasan S. Ramachandran
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | | | - Raymond R. Townsend
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julio A. Chirinos
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Stamatelopoulos K, Delialis D, Georgiopoulos G, Tselegkidi MI, Theodorakakou F, Dialoupi I, Bambatsias D, Petropoulos I, Vergaro G, Ikonomidis I, Tzortzis S, Briasoulis A, Kanakakis J, Trougakos I, Dimopoulos MA, Kastritis E. Determining patterns of vascular function and structure in wild-type transthyretin cardiac amyloidosis. A comparative study. Int J Cardiol 2022; 363:102-110. [PMID: 35716935 DOI: 10.1016/j.ijcard.2022.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/26/2022] [Accepted: 06/10/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The impact of wild-type transthyretin-related cardiac amyloidosis (ATTRwt) on functional and structural peripheral vascular measures is unknown. In the present study, we explored patterns of vascular dysfunction in patients with ATTRwt in comparison to diseases with similar cardiac phenotype. METHODS Treatment-naïve patients with ATTRwt (n = 32) were compared to: 1. Age-and sex-matched reference population without amyloidosis (n = 32), 2. Age-and sex-matched patients with systemic AL amyloidosis (n = 32), and 3. patients with cardiac AL amyloidosis (AL-HF, n = 23) or elderly patients with heart failure with preserved ejection fraction (HFpEF) (n = 16). All subjects underwent peripheral vascular assessment using carotid artery ultrasonography, brachial artery flow-mediated dilation (FMD), measurement of arterial stiffness and aortic hemodynamics including heart rate-adjusted time of return of reflected waves (Tr/HR). RESULTS After adjustment for traditional cardiovascular risk factors and coronary artery disease (core model), peripheral and aortic blood pressures (BP) were lower in patients with ATTRwt (p < 0.05) whereas other vascular markers were preserved compared to the reference non-amyloidosis group. ATTRwt was independently associated with lower BP and longer Tr/HR compared to AL. Compared to AL-HF, FMD was lower in ATTRwt (p = 0.033). ATTRwt patients had lower BP and higher Tr/HR than HFpEF (p < 0.05). By ROC analysis, Tr/HR discriminated ATTRwt vs. AL-HF (sensitivity 93%, specificity 75%) and HFpEF (sensitivity 100%, specificity 94%) and lower FMD increased the likelihood for ATTRwt at low Tr/HR values. CONCLUSION ATTRwt patients present a distinct peripheral vascular fingerprint which is different from AL-HF or HFpEF, consisting of lower peripheral and aortic BP, prolonged Tr/HR and FMD at reference-population range.
Collapse
Affiliation(s)
- Kimon Stamatelopoulos
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece..
| | - Dimitrios Delialis
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Maria-Irini Tselegkidi
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Foteini Theodorakakou
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Ioanna Dialoupi
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Dimitrios Bambatsias
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Ioannis Petropoulos
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Giuseppe Vergaro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Ignatios Ikonomidis
- 2(nd) Department of Cardiology, School of Medicine of the National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Stavros Tzortzis
- 2(nd) Department of Cardiology, School of Medicine of the National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Alexandros Briasoulis
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - John Kanakakis
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Ioannis Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy..
| |
Collapse
|
14
|
Zhang H, Hu W, Wang Y, Liu J, You L, Dong Q, Chang G, Cheng X, Liu Z, Zhang D. The relationship between ambulatory arterial stiffness index and left ventricular diastolic dysfunction in HFpEF: a prospective observational study. BMC Cardiovasc Disord 2022; 22:246. [PMID: 35655132 PMCID: PMC9161538 DOI: 10.1186/s12872-022-02679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
Background The relationship between ambulatory arterial stiffness index (AASI) and left ventricular diastolic dysfunction (LVDD) in patients with heart failure with preserved ejection fraction (HFpEF) is unknown. We aimed to investigate the association between the AASI and LVDD in HFpEF. Methods We prospective enrolled consecutive patients with HFpEF in Chongqing, China. Twenty-four-hour ambulatory blood pressure monitoring (24 h-ABPM) and echocardiography were performed in each patient. AASI was obtained through individual 24 h-ABPM. The relationship between AASI and LVDD was analyzed. Results A total of 107 patients with HFpEF were included. The mean age was 68.45 ± 14.02 years and 63 (59%) were women. The patients were divided into two groups according to the upper normal border of AASI (0.55). AASI > 0.55 group were more likely to be older, to have higher mean systolic blood pressure and worsen left ventricular diastolic function than AASI group ≤ 0.55. AASI was closely positive related to the diastolic function parameters, including mean E/e′ (r = 0.307, P = 0.001), septal E/e′ (r = 0.290, P = 0.002), lateral E/e′ (r = 0.276, P = 0.004) and E (r = 0.274, P = 0.004). After adjusting for conventional risk factors, AASI was still an independent risk factors of mean E/e′ > 10 in patients with HFpEF (OR: 2.929, 95%CI: 1.214–7.064, P = 0.017), and the association between AASI and mean E/e′ > 14 was reduced (OR: 2.457, 95%CI: 1.030–5.860, P = 0.043). AASI had a partial predictive value for mean E/e′ > 10 (AUC = 0.691, P = 0.002), while the predictive value for mean E/e′ > 14 was attenuated (AUC = 0.624, P = 0.034). Conclusion AASI was positive related to E/e′ in HFpEF and might be an independent risk factor for the increase of mean E/e′. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02679-6.
Collapse
|
15
|
Rabkin SW. Evaluating the adverse outcome of subtypes of heart failure with preserved ejection fraction defined by machine learning: A systematic review focused on defining high risk phenogroups. EXCLI JOURNAL 2022; 21:487-518. [PMID: 35391918 PMCID: PMC8983850 DOI: 10.17179/excli2021-4572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
The ability to distinguish clinically meaningful subtypes of heart failure with preserved ejection fraction (HFpEF) has recently been examined by machine learning techniques but studies appear to have produced discordant results. The objective of this study is to synthesize the types of HFpEF by examining their features and relating them to phenotypes with adverse prognosis. A systematic search was conducted using the search terms "Diastolic Heart Failure" OR "heart failure with preserved ejection fraction" OR "heart failure with normal ejection fraction" OR "HFpEF" AND "machine learning" OR "artificial intelligence" OR 'computational biology'. Ten studies were identified and they varied in their prevalence of ten clinical variables: age, sex, body mass index (BMI) or obesity, hypertension, diabetes mellitus, coronary artery disease, atrial fibrillation, chronic kidney disease, chronic obstructive pulmonary disease or symptom severity (NYHA class or BNP). The clinical findings associated with the different phenotypes in > 85 % of studies were age, hypertension, atrial fibrillation, chronic kidney disease and worse symptoms severity; an adverse outcome was in 65 % to 85 % of studies identified diabetes mellitus and female sex and in less than 65 % of studies was body mass index or obesity, and coronary artery disease. COPD was a relevant factor in only 33 % of studies. Adverse clinical outcome - death or admission to hospital (for heart failure) defined phenogroups with the worst outcome. Combining the 4 studies that calculated the MAGGIC score showed a significant (p<0.05) linear relationship between MAGGIC score and outcome, using the one-year event rate. A new score based on strength of the evidence of the HFpEF studies analyzed here, using 9 variables (eliminating COPD), showed a significant (p<0.009) linear relationship with one-year event rate. Three studies examined biomarkers in detail and the ones most prominently related to outcome or consistently found in the studies were GDF15, FABP4, FGF23, sST2, renin and TNF. The dominant factors that identified phenotypes of HFpEF with adverse outcome were hypertension, atrial fibrillation, chronic kidney disease and worse symptoms severity. A new simplified score, based on clinical factors, was proposed to assess prognosis in HFpEF. Several biomarkers were consistently elevated in phenogroups with adverse outcomes and may indicate the underlying mechanism or pathophysiology specific for phenotypes with an adverse prognosis.
Collapse
Affiliation(s)
- Simon W. Rabkin
- University of British Columbia,*To whom correspondence should be addressed: Simon W. Rabkin, University of British Columbia, 9th Floor 2775 Laurel St., Vancouver, B.C., Canada V5Z 1M9; Phone: (604) 875 5847, Fax: (604) 875 5849, E-mail:
| |
Collapse
|
16
|
Jiang Y, Wang L, Lu Z, Chen S, Teng Y, Li T, Li Y, Xie Y, Zhao M. Brain Imaging Changes and Related Risk Factors of Cognitive Impairment in Patients With Heart Failure. Front Cardiovasc Med 2022; 8:838680. [PMID: 35155623 PMCID: PMC8826966 DOI: 10.3389/fcvm.2021.838680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
Background/Aims To explore the imaging changes and related risk factors of heart failure (HF) patients with cognitive impairment (CI). Methods A literature search was systematically carried out in PubMed, Web of Science, Embase, and Cochrane Library. In this systematic review, important relevant information was extracted according to the inclusion and exclusion criteria. The methodological quality was assessed by three scales according to the different study types. Results Finally, 66 studies were included, involving 33,579 patients. In the imaging changes, the severity of medial temporal lobe atrophy (MTA) and the decrease of gray Matter (GM) volume were closely related to the cognitive decline. The reduction of cerebral blood flow (CBF) may be correlated with CI. However, the change of white matter (WM) volume was possibly independent of CI in HF patients. Specific risk factors were analyzed, and the data indicated that the increased levels of B-type natriuretic peptide (BNP)/N-terminal pro-B-type natriuretic peptide (NT-proBNP), and the comorbidities of HF, including atrial fibrillation (AF), diabetes mellitus (DM) and anemia were definitely correlated with CI in patients with HF, respectively. Certain studies had also obtained independent correlation results. Body mass index (BMI), depression and sleep disorder exhibited a tendency to be associated with CI. Low ejection fraction (EF) value (<30%) was inclined to be associated with the decline in cognitive function. However, no significant differences were noted between heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF) in cognitive scores. Conclusion BNP/NT-proBNP and the comorbidities of HF including AF, DM and anemia were inextricably correlated with CI in patients with HF, respectively. These parameters were independent factors. The severity of MTA, GM volume, BMI index, depression, sleep disorder, and low EF value (<30%) have a disposition to associated with CI. The reduction in the CBF volume may be related to CI, whereas the WM volume may not be associated with CI in HF patients. The present systematic review provides an important basis for the prevention and treatment of CI following HF.
Collapse
Affiliation(s)
- Yangyang Jiang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Lei Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Ziwen Lu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Shiqi Chen
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yu Teng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tong Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yang Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yingzhen Xie
- Department of Encephalopathy, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Mingjing Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
RIPK1-RIPK3 mediates myocardial fibrosis in type 2 diabetes mellitus by impairing autophagic flux of cardiac fibroblasts. Cell Death Dis 2022; 13:147. [PMID: 35165268 PMCID: PMC8844355 DOI: 10.1038/s41419-022-04587-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022]
Abstract
Receptor-interacting protein kinase 1 (RIPK1) and 3 (RIPK3) are critical regulators of programmed necrosis or necroptosis. However, the role of the RIPK1/RIPK3 signaling pathway in myocardial fibrosis and related diabetic cardiomyopathy is still unclear. We hypothesized that RIPK1/RIPK3 activation mediated myocardial fibrosis by impairing the autophagic flux. To this end, we established in vitro and in vivo models of type 2 diabetes mellitus with high glucose fat (HGF) medium and diet respectively. HGF induced myocardial fibrosis, and impaired cardiac diastolic and systolic function by activating the RIPK1/RIPK3 pathway, which increased the expression of autophagic related proteins such as LC3-II, P62 and active-cathepsin D. Inhibition of RIPK1 or RIPK3 alleviated HGF-induced death and fibrosis of cardiac fibroblasts by restoring the impaired autophagic flux. The autophagy blocker neutralized the effects of the RIPK1 inhibitor necrostatin-1 (Nec-1) and RIPK3 inhibitor GSK872 (GSK). RIPK1/RIPK3 inhibition respectively decreased the levels of RIPK3/p-RIPK3 and RIPK1/p-RIPK1. P62 forms a complex with RIPK1-RIPK3 and promotes the binding of RIPK1 and RIPK3, silencing of RIPK1 decreased the association of RIPK1 with P62 and the binding of P62 to LC3. Furthermore, inhibition of both kinases in combination with a low dose of Nec-1 and GSK in the HGF-treated fibroblasts significantly decreased cell death and fibrosis, and restored the autophagic flux. In the diabetic rat model, Nec-1 (1.65 mg/kg) treatment for 4 months markedly alleviated myocardial fibrosis, downregulated autophagic related proteins, and improved cardiac systolic and diastolic function. In conclusion, HGF induces myocardial fibrosis and cardiac dysfunction by activating the RIPK1-RIPK3 pathway and by impairing the autophagic flux, which is obviated by the pharmacological and genetic inhibition of RIPK1/RIPK3.
Collapse
|
18
|
Tremamunno S, De Vita A, Villano A, Melita V, Ingrasciotta G, Ruscio E, Filice M, Bisignani A, Ravenna SE, Tartaglione L, Rizzo GE, Di Leo M, Felici T, Pitocco D, Lanza GA. Relation of endothelial and cardiac autonomic function with left ventricle diastolic function in patients with type 2 diabetes mellitus. Diabetes Metab Res Rev 2022; 38:e3484. [PMID: 34240534 PMCID: PMC9285062 DOI: 10.1002/dmrr.3484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Diabetes mellitus (DM) is a risk factor for left ventricle (LV) diastolic dysfunction. Aim of this study was to investigate whether endothelial and/or autonomic dysfunction are associated with LV diastolic dysfunction in DM patients. METHODS We studied 84 non-insulin-dependent type 2 DM (T2DM) patients with no heart disease by assessing: 1) LV diastolic function by echocardiography; 2) peripheral vasodilator function, by measuring flow-mediated dilation (FMD) and nitrate-mediate dilation (NMD); 3) heart rate variability (HRV) on 24-h Holter electrocardiographic monitoring. RESULTS Twenty-five patients (29.8%) had normal LV diastolic function, while 47 (55.9%) and 12 (14.3%) showed a mild and moderate/severe diastolic dysfunction, respectively. FMD in these 3 groups was 5.25 ± 2.0, 4.95 ± 1.6 and 4.43 ± 1.8% (p = 0.42), whereas NMD was 10.8 ± 2.3, 8.98 ± 3.0 and 8.82 ± 3.2%, respectively (p = 0.02). HRV variables did not differ among groups. However, the triangular index tended to be lower in patients with moderate/severe diastolic dysfunction (p = 0.09) and a significant correlation was found between the E/e' ratio and both the triangular index (r = -0.26; p = 0.022) and LF amplitude (r = -0.29; p = 0.011). CONCLUSIONS In T2DM patients an impairment of endothelium-independent, but not endothelium-dependent, dilatation seems associated with LV diastolic dysfunction. The possible role of cardiac autonomic dysfunction in diastolic dysfunction deserves investigation in larger populations of patients.
Collapse
Affiliation(s)
- Saverio Tremamunno
- Department of Cardiovascular MedicineFondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro CuoreRomeItaly
| | - Antonio De Vita
- Department of Cardiovascular MedicineFondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro CuoreRomeItaly
| | - Angelo Villano
- Department of Cardiovascular MedicineFondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro CuoreRomeItaly
| | - Veronica Melita
- Department of Cardiovascular MedicineFondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro CuoreRomeItaly
| | - Gessica Ingrasciotta
- Department of Cardiovascular MedicineFondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro CuoreRomeItaly
| | - Eleonora Ruscio
- Department of Cardiovascular MedicineFondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro CuoreRomeItaly
| | - Monica Filice
- Department of Cardiovascular MedicineFondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro CuoreRomeItaly
| | - Antonio Bisignani
- Department of Cardiovascular MedicineFondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro CuoreRomeItaly
| | - Salvatore Emanuele Ravenna
- Department of Cardiovascular MedicineFondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro CuoreRomeItaly
| | - Linda Tartaglione
- Diabetic CenterFondazione Policlinico Universitario A. Gemelli IRCCSUniversità Cattolica del Sacro CuoreRomeItaly
| | - Gaetano Emanuele Rizzo
- Diabetic CenterFondazione Policlinico Universitario A. Gemelli IRCCSUniversità Cattolica del Sacro CuoreRomeItaly
| | - Mauro Di Leo
- Diabetic CenterFondazione Policlinico Universitario A. Gemelli IRCCSUniversità Cattolica del Sacro CuoreRomeItaly
| | - Tamara Felici
- Department of Cardiovascular MedicineFondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro CuoreRomeItaly
| | - Dario Pitocco
- Diabetic CenterFondazione Policlinico Universitario A. Gemelli IRCCSUniversità Cattolica del Sacro CuoreRomeItaly
| | - Gaetano Antonio Lanza
- Department of Cardiovascular MedicineFondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro CuoreRomeItaly
| |
Collapse
|
19
|
Omote K, Verbrugge FH, Borlaug BA. Heart Failure with Preserved Ejection Fraction: Mechanisms and Treatment Strategies. Annu Rev Med 2022; 73:321-337. [PMID: 34379445 PMCID: PMC9002335 DOI: 10.1146/annurev-med-042220-022745] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Approximately half of all patients with heart failure (HF) have a preserved ejection fraction, and the prevalence is growing rapidly given the aging population in many countries and the rising prevalence of obesity, diabetes, and hypertension. Functional capacity and quality of life are severely impaired in heart failure with preserved ejection fraction (HFpEF), and morbidity and mortality are high. In striking contrast to HF with reduced ejection fraction, there are few effective treatments currently identified for HFpEF, and these are limited to decongestion by diuretics, promotion of a healthy active lifestyle, and management of comorbidities. Improved phenotyping of subgroups within the overall HFpEF population might enhance individualization of treatment. This review focuses on the current understanding of the pathophysiologic mechanisms underlying HFpEF and treatment strategies for this complex syndrome.
Collapse
Affiliation(s)
- Kazunori Omote
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Frederik H. Verbrugge
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States;,Centre for Cardiovascular Diseases, University Hospital Brussels, Jette, Belgium;,Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Barry A. Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
20
|
AYDIN OZTURK P, ÖZTÜRK Ü, ÖZTÜRK Ö. The relationship between aortic stiffness index and stroke severity in patients with acute ischemic stroke. CUKUROVA MEDICAL JOURNAL 2021. [DOI: 10.17826/cumj.976695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
21
|
Werhane ML, Thomas KR, Bangen KJ, Weigand AJ, Edmonds EC, Nation DA, Sundermann EE, Bondi MW, Delano-Wood L. Arterial Stiffening Moderates the Relationship Between Type-2 Diabetes Mellitus and White Matter Hyperintensity Burden in Older Adults With Mild Cognitive Impairment. Front Aging Neurosci 2021; 13:716638. [PMID: 34759811 PMCID: PMC8574966 DOI: 10.3389/fnagi.2021.716638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Cerebrovascular dysfunction has been proposed as a possible mechanism underlying cognitive impairment in the context of type 2 diabetes mellitus (DM). Although magnetic resonance imaging (MRI) evidence of cerebrovascular disease, such as white matter hyperintensities (WMH), is often observed in DM, the vascular dynamics underlying this pathology remain unclear. Thus, we assessed the independent and combined effects of DM status and different vascular hemodynamic measures (i.e., systolic, diastolic, and mean arterial blood pressure and pulse pressure index [PPi]) on WMH burden in cognitively unimpaired (CU) older adults and those with mild cognitive impairment (MCI). Methods: 559 older adults (mean age: 72.4 years) from the Alzheimer's Disease Neuroimaging Initiative were categorized into those with diabetes (DM+; CU = 43, MCI = 34) or without diabetes (DM-; CU = 279; MCI = 203). Participants underwent BP assessment, from which all vascular hemodynamic measures were derived. T2-FLAIR MRI was used to quantify WMH burden. Hierarchical linear regression, adjusting for age, sex, BMI, intracranial volume, CSF amyloid, and APOE ε4 status, examined the independent and interactive effects of DM status and each vascular hemodynamic measure on total WMH burden. Results: The presence of DM (p = 0.046), but not PPi values (p = 0.299), was independently associated with greater WMH burden overall after adjusting for covariates. Analyses stratified by cognitive status revealed a significant DM status x PPi interaction within the MCI group (p = 0.001) such that higher PPi values predicted greater WMH burden in the DM + but not DM- group. No significant interactions were observed in the CU group (all ps > 0.05). Discussion: Results indicate that higher PPi values are positively associated with WMH burden in diabetic older adults with MCI, but not their non-diabetic or CU counterparts. Our findings suggest that arterial stiffening and reduced vascular compliance may have a role in development of cerebrovascular pathology within the context of DM in individuals at risk for future cognitive decline. Given the specificity of these findings to MCI, future exploration of the sensitivity of earlier brain markers of vascular insufficiency (i.e., prior to macrostructural white matter changes) to the effects of DM and arterial stiffness/reduced vascular compliance in CU individuals is warranted.
Collapse
Affiliation(s)
- Madeleine L. Werhane
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| | - Kelsey R. Thomas
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Katherine J. Bangen
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Alexandra J. Weigand
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, San Diego, CA, United States
| | - Emily C. Edmonds
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Daniel A. Nation
- Department of Psychological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Erin E. Sundermann
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Mark W. Bondi
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Lisa Delano-Wood
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
22
|
Zhou Y, Fu L, Sun J, Zhu Z, Xing Z, Zhou S, Tai S, Wang Y. Association Between Metabolic Syndrome and an Increased Risk of Hospitalization for Heart Failure in Population of HFpEF. Front Cardiovasc Med 2021; 8:698117. [PMID: 34595217 PMCID: PMC8476762 DOI: 10.3389/fcvm.2021.698117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/04/2021] [Indexed: 01/14/2023] Open
Abstract
Background: The association between metabolic syndrome and the development of heart failure (HF) with preserved ejection fraction (HFpEF) has not been completely clarified. Aim: To evaluate the association between metabolic syndrome and the risk of HF hospitalization for patients with HFpEF. Methods: Patient data were obtained from the American cohort of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) trial database. Data for the primary outcome (hospitalization for HF) and secondary outcomes (all-cause mortality, cardiovascular mortality, and all-cause hospitalization) were collected, and hazard ratios (HRs) for the patients with and without metabolic syndrome were analyzed by applying a multivariable Cox proportional hazard model. Results: Among the 1,548 total participants, 1,197 had metabolic syndrome. The patients with metabolic syndrome exhibited worse heart function and a lower quality of life than those without metabolic syndrome. During the 3.3 years of follow-up, 351 patients were hospitalized for HF. After a multivariable adjustment, the risk of hospitalization for HF and all-cause hospitalization (adjusted HR = 1.42, 95% CI: 1.01–2.00; p = 0.042 and adjusted HR = 1.27; 95% CI: 1.04–1.54; p = 0.017, respectively) were independently associated with HFpEF for the patients with metabolic syndrome. In addition, the risks of HF hospitalization and all-cause hospitalization among 267 propensity score-matched patients were higher for patients with metabolic syndrome (HR = 1.53, 95% CI = 1.05–2.23, and p = 0.025 and HR = 1.34, 95% CI = 1.08–1.67, and p = 0.009, respectively). Conclusion: The risks of HF hospitalization and all-cause hospitalization were higher for patients with HFpEF having metabolic syndrome than for those without metabolic syndrome.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyao Fu
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiaxing Sun
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhaowei Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhenhua Xing
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shi Tai
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yongjun Wang
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
23
|
Jain S, Obeid MJ, Yenigalla S, Paravathaneni M, Gadela NV, Singh G, Kulkarni V, Kondaveety S, Gade KC, Lee J, Kulick-Soper CM, Sanchez N, Satija V, Hashmath Z, Zamani P, Akers S, Chirinos JA. Impact of Chronic Obstructive Pulmonary Disease in Heart Failure With Preserved Ejection Fraction. Am J Cardiol 2021; 149:47-56. [PMID: 33757785 DOI: 10.1016/j.amjcard.2021.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
COPD often coexists with HFpEF, but its impact on cardiovascular structure and function in HFpEF is incompletely understood. We aimed to compare cardiovascular phenotypes in patients with Chronic Obstructive Pulmonary Disease (COPD), Heart Failure with Preserved Ejection Fraction (HFpEF), or both. We studied 159 subjects with COPD alone (n = 48), HFpEF alone (n = 79) and HFpEF + COPD (n = 32). We used MRI and arterial tonometry to assess cardiac structure and function, thoracic aortic stiffness, and measures of body composition. Relative to participants with COPD only, those with HFpEF with or without COPD exhibited a greater prevalence of female sex and obesity, whereas those with HFpEF + COPD were more often African-American. Compared to the other groups, participants with HFpEF and COPD demonstrated a more concentric LV geometry (LV wall-cavity ratio 1.2, 95%CI: 1.1-1.3; p = 0.003), a greater LV mass (67.4, 95%CI: 60.7-74.2; p = 0.03, and LV extracellular volume (49.4, 95%CI: 40.9-57.9; p = 0.002). Patients with comorbid HFpEF + COPD also exhibited greater thoracic aortic stiffness assessed by pulse-wave velocity (11.3, 95% CI: 8.7-14.0 m/s; p = 0.004) and pulsatile load imposed by the ascending aorta as measured by aortic characteristic impedance (139 dsc; 95%CI=111-166; p = 0.005). Participants with HFpEF, with or without COPD, exhibited greater abdominal and pericardial fat, without difference in thoracic skeletal muscle size. In conclusion, individuals with co-morbid HFpEF and COPD have a greater degree of systemic large artery stiffening, LV remodeling, and LV fibrosis than those with either condition alone.
Collapse
|
24
|
Mishra S, Kass DA. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 2021; 18:400-423. [PMID: 33432192 PMCID: PMC8574228 DOI: 10.1038/s41569-020-00480-6] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 01/30/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) affects half of all patients with heart failure worldwide, is increasing in prevalence, confers substantial morbidity and mortality, and has very few effective treatments. HFpEF is arguably the greatest unmet medical need in cardiovascular disease. Although HFpEF was initially considered to be a haemodynamic disorder characterized by hypertension, cardiac hypertrophy and diastolic dysfunction, the pandemics of obesity and diabetes mellitus have modified the HFpEF syndrome, which is now recognized to be a multisystem disorder involving the heart, lungs, kidneys, skeletal muscle, adipose tissue, vascular system, and immune and inflammatory signalling. This multiorgan involvement makes HFpEF difficult to model in experimental animals because the condition is not simply cardiac hypertrophy and hypertension with abnormal myocardial relaxation. However, new animal models involving both haemodynamic and metabolic disease, and increasing efforts to examine human pathophysiology, are revealing new signalling pathways and potential therapeutic targets. In this Review, we discuss the cellular and molecular pathobiology of HFpEF, with the major focus being on mechanisms relevant to the heart, because most research has focused on this organ. We also highlight the involvement of other important organ systems, including the lungs, kidneys and skeletal muscle, efforts to characterize patients with the use of systemic biomarkers, and ongoing therapeutic efforts. Our objective is to provide a roadmap of the signalling pathways and mechanisms of HFpEF that are being characterized and which might lead to more patient-specific therapies and improved clinical outcomes.
Collapse
Affiliation(s)
- Sumita Mishra
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David A. Kass
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,
| |
Collapse
|
25
|
Lewis GA, Pearce K, Williams SG, Schelbert EB, Macnab A, Miller CA. The utility of cardiovascular imaging in heart failure with preserved ejection fraction: diagnosis, biological classification and risk stratification. Heart Fail Rev 2021; 26:661-678. [PMID: 33155067 PMCID: PMC8024231 DOI: 10.1007/s10741-020-10047-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 01/09/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) does not exist as a singular clinical or pathological entity but as a syndrome encompassing a wide range of clinical and biological phenotypes. There is an urgent need to progress from the unsuccessful 'one-size-fits-all' approach to more precise disease classification, in order to develop targeted therapies, personalise risk stratification and guide future research. In this regard, this review discusses the current and emerging roles of cardiovascular imaging for the diagnosis of HFpEF, for distilling HFpEF into distinct disease entities according to underlying pathobiology and for risk stratification.
Collapse
Affiliation(s)
- Gavin A Lewis
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Manchester University NHS Foundation Trust, Southmoor Road, WythenshaweManchester, M23 9LT, UK
| | - Keith Pearce
- Manchester University NHS Foundation Trust, Southmoor Road, WythenshaweManchester, M23 9LT, UK
| | - Simon G Williams
- Manchester University NHS Foundation Trust, Southmoor Road, WythenshaweManchester, M23 9LT, UK
| | - Erik B Schelbert
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Cardiovascular Magnetic Resonance Center, Heart and Vascular Institute, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anita Macnab
- Manchester University NHS Foundation Trust, Southmoor Road, WythenshaweManchester, M23 9LT, UK
| | - Christopher A Miller
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Manchester University NHS Foundation Trust, Southmoor Road, WythenshaweManchester, M23 9LT, UK.
- Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
26
|
Tuleta I, Frangogiannis NG. Diabetic fibrosis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166044. [PMID: 33378699 PMCID: PMC7867637 DOI: 10.1016/j.bbadis.2020.166044] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Diabetes-associated morbidity and mortality is predominantly due to complications of the disease that may cause debilitating conditions, such as heart and renal failure, hepatic insufficiency, retinopathy or peripheral neuropathy. Fibrosis, the excessive and inappropriate deposition of extracellular matrix in various tissues, is commonly found in patients with advanced type 1 or type 2 diabetes, and may contribute to organ dysfunction. Hyperglycemia, lipotoxic injury and insulin resistance activate a fibrotic response, not only through direct stimulation of matrix synthesis by fibroblasts, but also by promoting a fibrogenic phenotype in immune and vascular cells, and possibly also by triggering epithelial and endothelial cell conversion to a fibroblast-like phenotype. High glucose stimulates several fibrogenic pathways, triggering reactive oxygen species generation, stimulating neurohumoral responses, activating growth factor cascades (such as TGF-β/Smad3 and PDGFs), inducing pro-inflammatory cytokines and chemokines, generating advanced glycation end-products (AGEs) and stimulating the AGE-RAGE axis, and upregulating fibrogenic matricellular proteins. Although diabetes-activated fibrogenic signaling has common characteristics in various tissues, some organs, such as the heart, kidney and liver develop more pronounced and clinically significant fibrosis. This review manuscript summarizes current knowledge on the cellular and molecular pathways involved in diabetic fibrosis, discussing the fundamental links between metabolic perturbations and fibrogenic activation, the basis for organ-specific differences, and the promises and challenges of anti-fibrotic therapies for diabetic patients.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
27
|
Nishino M, Yano M, Ukita K, Kawamura A, Nakamura H, Matsuhiro Y, Yasumoto K, Tsuda M, Okamoto N, Tanaka A, Matsunaga-Lee Y, Egami Y, Shutta R, Tanouchi J, Yamada T, Yasumura Y, Tamaki S, Hayashi T, Nakagawa A, Nakagawa Y, Suna S, Nakatani D, Hikoso S, Sakata Y. Impact of readmissions on octogenarians with heart failure with preserved ejection fraction: PURSUIT-HFpEF registry. ESC Heart Fail 2021; 8:2120-2132. [PMID: 33689231 PMCID: PMC8120360 DOI: 10.1002/ehf2.13293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 11/30/2022] Open
Abstract
Aims Heart failure (HF) readmissions with preserved ejection fraction (HFpEF) are increasing in the elderly, which is a major socioeconomic problem. We investigated the clinical impact of HF readmissions (HFR) on octogenarians with HFpEF. Methods and results We enrolled consecutive octogenarians (≥80 years old) from June 2016 to February 2020 in PURSUIT‐HFpEF registry. We divided them into HFR group readmitted for HF during the follow‐up period and non‐HF readmission (non‐HFR) group. We evaluated the impact of HFR on all‐cause mortality, cardiac death, and quality of life (QOL). Additionally, we evaluated the factors at discharge correlated with HFR. HFR group comprised 116 patients (21.4%). Among all‐cause deaths, 40 patients suffered cardiac deaths (48.2%). The Kaplan–Meier analysis revealed a similar prognosis between HFR and non‐HFR groups as well as similar incidences of HF deaths. The QOL scores had significantly deteriorated by 1 year later in the HFR group (0.71 ± 0.19 vs. 0.59 ± 0.21, P < 0.001), while it was similar at 1 year in the non‐HFR group. In the multivariate analysis, diabetes mellitus (DM) (P = 0.019), N‐terminal pro‐B‐type natriuretic peptide (NT‐pro BNP) levels ≥ 1611 pg/mL (P < 0.001), and serum albumin level ≤ 3.7 g/dL (P = 0.011) were useful markers for HFR in octogenarians. Conclusions In octogenarians with HFpEF, HF readmission was not directly correlated with the prognosis but was well correlated with the QOL. Close follow‐up is essential to decrease HFR of octogenarians with HFpEF with DM, high NT‐pro BNP (≥1611 pg/mL) and low albumin (≤3.7 g/dL) levels at discharge.
Collapse
Affiliation(s)
- Masami Nishino
- Division of Cardiology, Osaka Rosai Hospital, 1179-3, Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Masamichi Yano
- Division of Cardiology, Osaka Rosai Hospital, 1179-3, Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Kohei Ukita
- Division of Cardiology, Osaka Rosai Hospital, 1179-3, Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Akito Kawamura
- Division of Cardiology, Osaka Rosai Hospital, 1179-3, Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Hitoshi Nakamura
- Division of Cardiology, Osaka Rosai Hospital, 1179-3, Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Yutaka Matsuhiro
- Division of Cardiology, Osaka Rosai Hospital, 1179-3, Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Koji Yasumoto
- Division of Cardiology, Osaka Rosai Hospital, 1179-3, Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Masaki Tsuda
- Division of Cardiology, Osaka Rosai Hospital, 1179-3, Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Naotaka Okamoto
- Division of Cardiology, Osaka Rosai Hospital, 1179-3, Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Akihiro Tanaka
- Division of Cardiology, Osaka Rosai Hospital, 1179-3, Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Yasuharu Matsunaga-Lee
- Division of Cardiology, Osaka Rosai Hospital, 1179-3, Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Yasuyuki Egami
- Division of Cardiology, Osaka Rosai Hospital, 1179-3, Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Ryu Shutta
- Division of Cardiology, Osaka Rosai Hospital, 1179-3, Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Jun Tanouchi
- Division of Cardiology, Osaka Rosai Hospital, 1179-3, Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Takahisa Yamada
- Division of Cardiology, Osaka General Medical Center, Osaka, Japan
| | - Yoshio Yasumura
- Division of Cardiology, Amagasaki Chuo Hospital, Amagasaki, Japan
| | - Shunsuke Tamaki
- Division of Cardiology, Osaka General Medical Center, Osaka, Japan
| | | | - Akito Nakagawa
- Division of Cardiology, Amagasaki Chuo Hospital, Amagasaki, Japan.,Department of Medical Informatics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yusuke Nakagawa
- Division of Cardiology, Kawanishi City Hospital, Kawanishi, Japan
| | - Shinichiro Suna
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Medical Innovation, Osaka University Hospital, Suita, Japan
| | - Daisaku Nakatani
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Medical Innovation, Osaka University Hospital, Suita, Japan
| | - Shungo Hikoso
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | | |
Collapse
|
28
|
The influence of arterial stiffness in heart failure: a clinical review. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2021; 18:135-140. [PMID: 33747062 PMCID: PMC7940962 DOI: 10.11909/j.issn.1671-5411.2021.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Lejeune S, Roy C, Slimani A, Pasquet A, Vancraeynest D, Vanoverschelde JL, Gerber BL, Beauloye C, Pouleur AC. Diabetic phenotype and prognosis of patients with heart failure and preserved ejection fraction in a real life cohort. Cardiovasc Diabetol 2021; 20:48. [PMID: 33608002 PMCID: PMC7893869 DOI: 10.1186/s12933-021-01242-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/08/2021] [Indexed: 12/29/2022] Open
Abstract
Background Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome, with several underlying etiologic and pathophysiologic factors. The presence of diabetes might identify an important phenotype, with implications for therapeutic strategies. While diabetes is associated with worse prognosis in HFpEF, the prognostic impact of glycemic control is yet unknown. Hence, we investigated phenotypic differences between diabetic and non-diabetic HFpEF patients (pts), and the prognostic impact of glycated hemoglobin (HbA1C). Methods We prospectively enrolled 183 pts with HFpEF (78 ± 9 years, 38% men), including 70 (38%) diabetics (type 2 diabetes only). They underwent 2D echocardiography (n = 183), cardiac magnetic resonance (CMR) (n = 150), and were followed for a combined outcome of all-cause mortality and first HF hospitalization. The prognostic impact of diabetes and glycemic control were determined with Cox proportional hazard models, and illustrated by adjusted Kaplan Meier curves. Results Diabetic HFpEF pts were younger (76 ± 9 vs 80 ± 8 years, p = 0.002), more obese (BMI 31 ± 6 vs 27 ± 6 kg/m2, p = 0.001) and suffered more frequently from sleep apnea (18% vs 7%, p = 0.032). Atrial fibrillation, however, was more frequent in non-diabetic pts (69% vs 53%, p = 0.028). Although no echocardiographic difference could be detected, CMR analysis revealed a trend towards higher LV mass (66 ± 18 vs 71 ± 14 g/m2, p = 0.07) and higher levels of fibrosis (53% vs 36% of patients had ECV by T1 mapping > 33%, p = 0.05) in diabetic patients. Over 25 ± 12 months, 111 HFpEF pts (63%) reached the combined outcome (24 deaths and 87 HF hospitalizations). Diabetes was a significant predictor of mortality and hospitalization for heart failure (HR: 1.72 [1.1–2.6], p = 0.011, adjusted for age, BMI, NYHA class and renal function). In diabetic patients, lower levels of glycated hemoglobin (HbA1C < 7%) were associated with worse prognosis (HR: 2.07 [1.1–4.0], p = 0.028 adjusted for age, BMI, hemoglobin and NT-proBNP levels). Conclusion Our study highlights phenotypic features characterizing diabetic patients with HFpEF. Notably, they are younger and more obese than their non-diabetic counterpart, but suffer less from atrial fibrillation. Although diabetes is a predictor of poor outcome in HFpEF, intensive glycemic control (HbA1C < 7%) in diabetic patients is associated with worse prognosis.
Collapse
Affiliation(s)
- Sibille Lejeune
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Clotilde Roy
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Alisson Slimani
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Agnès Pasquet
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - David Vancraeynest
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Jean-Louis Vanoverschelde
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Bernhard L Gerber
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Christophe Beauloye
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Anne-Catherine Pouleur
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium.
| |
Collapse
|
30
|
Madsen NL, Haley JE, Moore RA, Khoury PR, Urbina EM. Increased Arterial Stiffness Is Associated With Reduced Diastolic Function in Youth With Obesity and Type 2 Diabetes. Front Pediatr 2021; 9:781496. [PMID: 34912763 PMCID: PMC8666894 DOI: 10.3389/fped.2021.781496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Increased arterial stiffness is associated with diastolic dysfunction in adults. Data in youth are lacking, so we examined the impact of arterial stiffness on diastolic function in youth. Methods: We obtained diastolic function and augmentation index, pulse wave velocity, brachial artery distensibility, and carotid stiffness on 612 youth [10-24 years, 65% female, 38% normal weight, 36% obese, and 26% with type 2 diabetes mellitus (T2DM)]. Participants were classified as compliant (C) vs. stiff (S) arteries based on seven arterial stiffness parameters [Global Stiffness Index (GSI), S = GSI > 4). Mean differences in covariates were evaluated by Student's t-tests. A stepwise regression analysis was performed to determine if GSI was an independent predictor of diastolic function. Results: Lower diastolic function and more adverse cardiovascular disease (CVD) risk factors were present in the S group (n = 67) than the C group (n = 545) (p < 0.001). Covariates that were associated with diastolic dysfunction were higher GSI, male sex, higher body mass index (BMI), and systolic blood pressure (SBP) z-score (R 2 = 0.18 to 0.25; p ≤ 0.05). Conclusion: Adverse diastolic function is seen in youth with increased arterial stiffness independent of CVD risk factors. Interventions to improve arterial stiffness prior to clinical onset of diastolic dysfunction are needed to prevent development of heart failure.
Collapse
Affiliation(s)
- Nicolas L Madsen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jessica E Haley
- Department of Pediatrics, Rady Children's Hospital, San Diego, CA, United States
| | - Ryan A Moore
- The Heart Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, United States
| | - Philip R Khoury
- The Heart Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, United States
| | - Elaine M Urbina
- The Heart Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
31
|
Affiliation(s)
- Julio A Chirinos
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Philadelphia
| |
Collapse
|
32
|
Loutradis C, Schoina M, Dimitroulas T, Doumas M, Garyfallos A, Karagiannis A, Papagianni A, Sarafidis P. Comparison of ambulatory central hemodynamics and arterial stiffness in patients with diabetic and non-diabetic CKD. J Clin Hypertens (Greenwich) 2020; 22:2239-2249. [PMID: 33125832 PMCID: PMC8029709 DOI: 10.1111/jch.14089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 01/09/2023]
Abstract
Increased arterial stiffness is independently associated with renal function decline in patients with diabetes mellitus (DM). Whether DM has additional deleterious effects on central hemodynamics and arterial stiffness in chronic kidney disease (CKD) patients is yet unknown. This study aimed to compare ambulatory central BP, arterial stiffness parameters, and trajectories between patients with diabetic and non‐diabetic CKD. This study examined 48 diabetic and 48 non‐diabetic adult patients (>18 years) with CKD (eGFR: <90 and ≥15 ml/min/1.73 m2), matched in a 1:1 ratio for age, sex, and eGFR within CKD stages (2, 3a, 3b and 4). All patients underwent 24‐h ABPM with the Mobil‐O‐Graph device. Parameters of central hemodynamics [central systolic (cSBP) and diastolic blood pressure (cDBP), pulse pressure (PP)], wave reflection [augmentation index (AIx), and pressure (AP)] and pulse wave velocity (PWV) were estimated from the 24‐h recordings. Diabetic CKD patients had higher 24‐h cSBP (118.57 ± 10.05 vs. 111.59 ± 9.46, P = .001) and 24‐h cPP (41.48 ± 6.80 vs. 35.25 ± 6.98, P < .001) but similar 24‐h cDBP (77.09 ± 8.14 vs. 76.34 ± 6.75 mmHg, P = .625) levels compared to patients with non‐diabetic CKD. During day‐ and nighttime periods, cSBP and cPP levels were higher in diabetics compared to non‐diabetics. 24‐h PWV (10.10 ± 1.62 vs. 9.61 ± 1.80 m/s, P = .165) was numerically higher in patients with DM, but no between‐group differences were noted in augmentation pressure and index. In multivariate analysis, DM, female gender, and peripheral SBP were independently associated with higher cPP levels. Patients with diabetic CKD have higher ambulatory cSBP and increased arterial stiffness, as indicated by higher ambulatory cPP. These finding suggest that DM is a factor independently contributing to the adverse macrocirculatory profile of CKD patients.
Collapse
Affiliation(s)
- Charalampos Loutradis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Schoina
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodoros Dimitroulas
- Fourth Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michael Doumas
- Second Propaedeutic Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Garyfallos
- Fourth Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Asterios Karagiannis
- Second Propaedeutic Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
33
|
Kucukseymen S, Neisius U, Rodriguez J, Tsao CW, Nezafat R. Negative synergism of diabetes mellitus and obesity in patients with heart failure with preserved ejection fraction: a cardiovascular magnetic resonance study. Int J Cardiovasc Imaging 2020; 36:2027-2038. [PMID: 32533279 DOI: 10.1007/s10554-020-01915-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022]
Abstract
In patients with heart failure with preserved ejection fraction (HFpEF), diabetes mellitus (DM) and obesity are important comorbidities as well as major risk factors. Their conjoint impact on the myocardium provides insight into the HFpEF aetiology. We sought to investigate the association between obesity, DM, and their combined effect on alterations in the myocardial tissue in HFpEF patients. One hundred and sixty-two HFpEF patients (55 ± 12 years, 95 men) and 45 healthy subjects (53 ± 12 years, 27 men) were included. Patients were classified according to comorbidity prevalence (36 obese patients without DM, 53 diabetic patients without obesity, and 73 patients with both). Myocardial remodeling, fibrosis, and longitudinal contractility were quantified with cardiovascular magnetic resonance imaging using cine and myocardial native T1 images. Patients with DM and obesity had impaired global longitudinal strain (GLS) and increased myocardial native T1 compared to patients with only one comorbidity (DM + Obesity vs. DM and Obesity; GLS, - 15 ± 2.1 vs - 16.5 ± 2.4 and - 16.7 ± 2.2%; native T1, 1162 ± 37 vs 1129 ± 25 and 1069 ± 29 ms; P < 0.0001 for all). A negative synergistic effect of combined obesity and DM prevalence was observed for native T1 (np2 = 0.273, p = 0.002) and GLS (np2 = 0.288, p < 0.0001). Additionally, severity of insulin resistance was associated with GLS (R = 0.590, P < 0.0001), and native T1 (R = 0.349, P < 0.0001). The conjoint effect of obesity and DM in HFpEF patients is associated with diffuse myocardial fibrosis and deterioration in GLS. The negative synergistic effects observed on the myocardium may be related to severity of insulin resistance.
Collapse
Affiliation(s)
- Selcuk Kucukseymen
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave., Boston, MA, 02215, USA
| | - Ulf Neisius
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave., Boston, MA, 02215, USA
| | - Jennifer Rodriguez
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave., Boston, MA, 02215, USA
| | - Connie W Tsao
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave., Boston, MA, 02215, USA
| | - Reza Nezafat
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave., Boston, MA, 02215, USA.
| |
Collapse
|
34
|
Large-Artery Stiffness in Health and Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 74:1237-1263. [PMID: 31466622 DOI: 10.1016/j.jacc.2019.07.012] [Citation(s) in RCA: 555] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022]
Abstract
A healthy aorta exerts a powerful cushioning function, which limits arterial pulsatility and protects the microvasculature from potentially harmful fluctuations in pressure and blood flow. Large-artery (aortic) stiffening, which occurs with aging and various pathologic states, impairs this cushioning function, and has important consequences on cardiovascular health, including isolated systolic hypertension, excessive penetration of pulsatile energy into the microvasculature of target organs that operate at low vascular resistance, and abnormal ventricular-arterial interactions that promote left ventricular remodeling, dysfunction, and failure. Large-artery stiffness independently predicts cardiovascular risk and represents a high-priority therapeutic target to ameliorate the global burden of cardiovascular disease. This paper provides an overview of key physiologic and biophysical principles related to arterial stiffness, the impact of aortic stiffening on target organs, noninvasive methods for the measurement of arterial stiffness, mechanisms leading to aortic stiffening, therapeutic approaches to reduce it, and clinical applications of arterial stiffness measurements.
Collapse
|
35
|
Cheng H, Lu T, Wang J, Xia Y, Chai X, Zhang M, Yao Y, Zhou N, Zhou S, Chen X, Su W, Liu C, Yi W, Chen Y, Yao L. HuangqiGuizhiWuwu Decoction Prevents Vascular Dysfunction in Diabetes via Inhibition of Endothelial Arginase 1. Front Physiol 2020; 11:201. [PMID: 32269530 PMCID: PMC7109290 DOI: 10.3389/fphys.2020.00201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Hyperglycemia induces vascular endothelial dysfunction, which contributes to the development of vascular complication of diabetes. A classic prescription of traditional medicine, HuangqiGuizhiWuwu Decoction (HGWWD) has been used for the treatment of various cardiovascular and cerebrovascular diseases, which all are related with vascular pathology. The present study investigated the effect of HGWWD treatment in streptozocin (STZ)-induced vascular dysfunction in mouse models. In vivo studies were performed using wild type mice as well as arginase 1 knockout specific in endothelial cells (EC-A1-/-) of control mice, diabetes mice and diabetes mice treated with HGWWD (60 g crude drugs/kg/d) for 2 weeks. For in vitro studies, aortic tissues were treated with mice serum containing HGWWD with or without adenoviral arginase 1 (Ad-A1) transduction in high glucose (HG) medium. We found that HGWWD treatment restored STZ-induced impaired mean velocity and pulsatility index of mouse left femoral arteries, aortic pulse wave velocity and vascular endothelial relaxation accompanied by elevated NO production in the aorta and plasma, as well as reduced endothelial arginase activity and aortic arginase 1 expression. The protective effect of HGWWD is reversed by an inhibitor of nitric oxide synthesis. Meanwhile, the preventive effect of serum containing HGWWD in endothelial vascular dysfunction is completely blocked by Ad-A1 transduction in HG incubated aortas. HGWWD treatment further improved endothelial vascular dysfunction in STZ induced EC-A1-/- mice. This study demonstrates that HGWWD improved STZ-induced vascular dysfunction through arginase 1 - NO signaling, specifically targeting endothelial arginase 1.
Collapse
Affiliation(s)
- Hong Cheng
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tian Lu
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingya Wang
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yucen Xia
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoshu Chai
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minyi Zhang
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yutong Yao
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Na Zhou
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sisi Zhou
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyi Chen
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiwei Su
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Cunzhi Liu
- Acupuncture Research Center, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Yi
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongjun Chen
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Yao
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
36
|
Hametner B, Bauer A, Wassertheurer S. Unveiling the Vascular Mechanisms Behind Long-Term Effects of Coarctation Treatment Using Pulse Wave Dynamics. J Am Heart Assoc 2020; 8:e012278. [PMID: 30929552 PMCID: PMC6509706 DOI: 10.1161/jaha.119.012278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
See Article by Martins et al and Kowalski et al
Collapse
Affiliation(s)
- Bernhard Hametner
- 1 Center for Health & Bioresources AIT Austrian Institute of Technology Vienna Austria
| | - Andreas Bauer
- 1 Center for Health & Bioresources AIT Austrian Institute of Technology Vienna Austria.,2 Institute for Analysis and Scientific Computing Vienna University of Technology Vienna Austria
| | | |
Collapse
|
37
|
Prenner SB, Pillutla R, Yenigalla S, Gaddam S, Lee J, Obeid MJ, Ans AH, Jehangir Q, Kim J, Zamani P, Mazurek JA, Akers SR, Chirinos JA. Serum Albumin Is a Marker of Myocardial Fibrosis, Adverse Pulsatile Aortic Hemodynamics, and Prognosis in Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2020; 9:e014716. [PMID: 32009529 PMCID: PMC7033884 DOI: 10.1161/jaha.119.014716] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Data regarding the phenotypic correlates and prognostic value of albumin in heart failure with preserved ejection fraction (HFpEF) are scarce. The goal of the current study is to determine phenotypic correlates (myocardial hypertrophy, myocardial fibrosis, detailed pulsatile hemodynamics, and skeletal muscle mass) and prognostic implications of serum albumin in HFpEF. Methods and Results We studied 118 adults with HFpEF. All‐cause death or heart‐failure–related hospitalization was ascertained over a median follow‐up of 57.6 months. We measured left ventricular mass, myocardial extracellular volume, and axial muscle areas using magnetic resonance imaging. Pulsatile arterial hemodynamics were assessed with a combination of arterial tonometry and phase‐contrast magnetic resonance imaging. Subjects with lower serum albumin exhibited a higher body mass index, and a greater proportion of black ethnicity and diabetes mellitus. A low serum albumin was associated with higher myocardial extracellular volume (52.3 versus 57.4 versus 39.3 mL in lowest to highest albumin tertile, respectively; P=0.0023) and greater N‐terminal pro B‐type natriuretic peptide levels, but not with a higher myocardial cellular volume (123 versus 114 versus 102 mL; P=0.13). Lower serum albumin was also associated with an increased forward wave amplitude and markedly increased pulsatile power in the aorta. Serum albumin was a strong predictor of death or heart failure hospitalization even after adjustment for N‐terminal pro B‐type natriuretic peptide levels and the Meta‐Analysis Global Group in Chronic Heart Failure (MAGGIC) risk score (adjusted standardized hazard ratio=0.56; 95% CI=0.37–0.83; P<0.0001). Conclusions Serum albumin is associated with myocardial fibrosis, adverse pulsatile aortic hemodynamics, and prognosis in HFpEF. This readily available clinical biomarker can enhance risk stratification in HFpEF and identifies a subgroup with specific pathophysiological abnormalities.
Collapse
Affiliation(s)
- Stuart B Prenner
- Department of Medicine University of Pennsylvania Perelman School of Medicine Philadelphia PA.,Department of Medicine Hospital of the University of Pennsylvania Philadelphia PA
| | - Raj Pillutla
- Department of Medicine Hospital of the University of Pennsylvania Philadelphia PA
| | | | - Sowmya Gaddam
- Department of Medicine Hospital of the University of Pennsylvania Philadelphia PA
| | - Jonathan Lee
- Department of Medicine University of Pennsylvania Perelman School of Medicine Philadelphia PA.,Department of Medicine Hospital of the University of Pennsylvania Philadelphia PA
| | - Mary Jo Obeid
- Department of Medicine Hospital of the University of Pennsylvania Philadelphia PA
| | - Armghan Haider Ans
- Department of Medicine Hospital of the University of Pennsylvania Philadelphia PA
| | - Qasim Jehangir
- Department of Medicine Hospital of the University of Pennsylvania Philadelphia PA
| | - Jessica Kim
- Department of Medicine University of Pennsylvania Perelman School of Medicine Philadelphia PA.,Department of Medicine Hospital of the University of Pennsylvania Philadelphia PA
| | - Payman Zamani
- Department of Medicine University of Pennsylvania Perelman School of Medicine Philadelphia PA
| | - Jeremy A Mazurek
- Department of Medicine University of Pennsylvania Perelman School of Medicine Philadelphia PA
| | - Scott R Akers
- Department of Medicine Hospital of the University of Pennsylvania Philadelphia PA
| | - Julio A Chirinos
- Department of Medicine University of Pennsylvania Perelman School of Medicine Philadelphia PA.,Department of Medicine Hospital of the University of Pennsylvania Philadelphia PA.,Departments of Internal Medicine and Radiology Corporal Michael J. Crescenz VAMC Philadelphia PA
| |
Collapse
|
38
|
Figueroa A, Maharaj A, Johnson SA, Fischer SM, Arjmandi BH, Jaime SJ. Exaggerated Aortic Pulse Pressure and Wave Amplitude During Muscle Metaboreflex Activation in Type 2 Diabetes Patients. Am J Hypertens 2020; 33:70-76. [PMID: 31877218 DOI: 10.1093/ajh/hpz135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 08/09/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Peripheral mean arterial pressure (MAP) responses to muscle metaboreflex activation using postexercise muscle ischemia (PEMI) in type 2 diabetes patients (T2D) are contradictory. Given that aortic pulse pressure (PP) and wave reflections are better indicators of cardiac load than peripheral MAP, we evaluated aortic blood pressure (BP) and wave amplitude during PEMI. METHODS Aortic BP and pressure wave amplitudes were measured at rest and during PEMI following isometric handgrip at 30% maximum voluntary contraction (MVC) in 16 T2D and 15 controls. Resting aortic stiffness (carotid-femoral pulse wave velocity, cfPWV) and fasting blood glucose (FBG) were measured. RESULTS Increases in aortic MAP (Δ26 ± 2 mmHg vs. Δ17 ± 2 mmHg), PP (Δ15 ± 2 mmHg vs. Δ10 ± 1 mmHg), augmentation index (AIx) (Δ8.2 ± 1.0% vs. Δ4.5 ± 1.3%), augmented pressure (AP) (Δ11 ± 1 mmHg vs. Δ5 ± 1 mmHg), forward (Pf) (Δ9 ± 1 mmHg vs. Δ5 ± 1 mmHg), and backward pressure waves (Pb) (Δ10 ± 1 mmHg vs. Δ5 ± 1 mmHg) responses to PEMI were greater in T2D than controls (P < 0.05). Aortic PP, but not MAP, response to PEMI was correlated to Pf (r = 0.63, P < 0.001) and Pb (r = 0.82, P < 0.001) responses and cfPWV (r = 0.37, P < 0.05). CONCLUSIONS Aortic BP and pressure wave responses to muscle metaboreflex activation are exaggerated in T2D. Aortic PP during PEMI was related to increased wave reflection, forward wave amplitude, and aortic stiffness in T2D patients.
Collapse
Affiliation(s)
- Arturo Figueroa
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, USA
| | - Arun Maharaj
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, USA
| | - Sarah A Johnson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| | - Stephen M Fischer
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, USA
| | - Bahram H Arjmandi
- Department of Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, Florida, USA
| | - Salvador J Jaime
- Department of Exercise and Sport Science, University of Wisconsin–La Crosse, La Crosse, Wisconsin, USA
| |
Collapse
|
39
|
Czestkowska E, Rożanowska A, Długosz D, Bolt K, Świerszcz J, Kruszelnicka O, Chyrchel B, Surdacki A. Depressed systemic arterial compliance and impaired left ventricular midwall performance in aortic stenosis with concomitant type 2 diabetes: a retrospective cross-sectional study. Cardiovasc Diabetol 2019; 18:92. [PMID: 31315620 PMCID: PMC6636034 DOI: 10.1186/s12933-019-0894-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/07/2019] [Indexed: 02/06/2023] Open
Abstract
Background Degenerative aortic stenosis (AS), a disease of the elderly, frequently coexists with concomitant diseases, including type 2 diabetes (T2DM) which amplifies the cardiovascular (CV) risk. T2DM affects left ventricular (LV) structure and function via hemodynamic and metabolic factors. In concentric LV geometry, typical for AS, indices of LV midwall mechanics are better estimates of LV function than ejection fraction (EF). Effects of T2DM coexisting with AS on circumferential LV midwall systolic function and large artery properties have not been reported so far. Our aim was to compare characteristics of AS patients with and without T2DM, with a focus on LV midwall systolic function and arterial compliance. Methods Medical records of 130 electively hospitalized patients with moderate or severe isolated degenerative AS were retrospectively analyzed. Exclusion criteria included clinical instability, atrial fibrillation, coronary artery disease and relevant non-cardiac diseases. From in-hospital echocardiography and blood pressure, we calculated LV midwall fractional shortening (mwFS), circumferential end-systolic LV wall stress (cESS) and valvulo-arterial impedance (Zva), estimates of LV afterload, as well as systemic arterial compliance. Results Patients with (n = 50) and without T2DM (n = 80) did not differ in age, AS severity, LV mass and LV diastolic diameter. T2DM patients exhibited elevated cESS (247 ± 105 vs. 209 ± 84 hPa, p = 0.025) and Zva (5.8 ± 2.2 vs. 5.1 ± 1.8 mmHg per mL/m2, p = 0.04), and lower stroke volume index (33 ± 10 vs. 38 ± 12 mL/m2, p = 0.01) and systemic arterial compliance (0.53 ± 0.16 vs. 0.62 ± 0.22 mL/m2 per mmHg, p = 0.01). mwFS (11.9 ± 3.9 vs. 14.1 ± 3.7%, p = 0.001), but not EF (51 ± 14 vs. 54 ± 13%, p = n.s.), was reduced in T2DM. mwFS and cESS were inversely interrelated in patients both with (r = − 0.59, p < 0.001) and without T2DM (r = − 0.53, p < 0.001) By multiple regression, higher cESS (p < 0.001) and T2DM (p = 0.02) were independent predictors of depressed mwFS. Conclusions In AS, coexistent T2DM appears associated with reduced systemic arterial compliance and LV dysfunction at the midwall level, corresponding to slightly depressed myocardial contractility. Electronic supplementary material The online version of this article (10.1186/s12933-019-0894-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ewa Czestkowska
- Students' Scientific Group at the Second Department of Cardiology, Jagiellonian University Medical College, Cracow, Poland
| | - Agnieszka Rożanowska
- Students' Scientific Group at the Second Department of Cardiology, Jagiellonian University Medical College, Cracow, Poland
| | - Dorota Długosz
- Students' Scientific Group at the Second Department of Cardiology, Jagiellonian University Medical College, Cracow, Poland
| | - Klaudiusz Bolt
- Students' Scientific Group at the Second Department of Cardiology, Jagiellonian University Medical College, Cracow, Poland
| | - Jolanta Świerszcz
- Department of Medical Education, Jagiellonian University Medical College, Cracow, Poland
| | - Olga Kruszelnicka
- Department of Coronary Artery Disease and Heart Failure, Jagiellonian University Medical College, Cracow, Poland
| | - Bernadeta Chyrchel
- Second Department of Cardiology, Jagiellonian University Medical College, 17 Kopernika Street, PL31-501, Cracow, Poland
| | - Andrzej Surdacki
- Second Department of Cardiology, Jagiellonian University Medical College, 17 Kopernika Street, PL31-501, Cracow, Poland.
| |
Collapse
|
40
|
Chirinos JA, Bhattacharya P, Kumar A, Proto E, Konda P, Segers P, Akers SR, Townsend RR, Zamani P. Impact of Diabetes Mellitus on Ventricular Structure, Arterial Stiffness, and Pulsatile Hemodynamics in Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2019; 8:e011457. [PMID: 30764699 PMCID: PMC6405670 DOI: 10.1161/jaha.118.011457] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/22/2019] [Indexed: 01/05/2023]
Abstract
Background Heterogeneity in the underlying processes that contribute to heart failure with preserved ejection fraction ( HF p EF ) is increasingly recognized. Diabetes mellitus is a frequent comorbidity in HF p EF , but its impact on left ventricular and arterial structure and function in HF p EF is unknown. Methods and Results We assessed the impact of diabetes mellitus on left ventricular cellular and interstitial hypertrophy (assessed with cardiac magnetic resonance imaging, including T1 mapping pregadolinium and postgadolinium administration), arterial stiffness (assessed with arterial tonometry), and pulsatile arterial hemodynamics (assessed with in-office pressure-flow analyses and 24-hour ambulatory monitoring) among 53 subjects with HF p EF (32 diabetic and 21 nondiabetic subjects). Despite few differences in clinical characteristics, diabetic subjects with HFpEF exhibited a markedly greater left ventricular mass index (78.1 [95% CI , 70.4-85.9] g versus 63.6 [95% CI , 55.8-71.3] g; P=0.0093) and indexed extracellular volume (23.6 [95% CI , 21.2-26.1] mL/m2 versus 16.2 [95% CI , 13.1-19.4] mL/m2; P=0.0008). Pronounced aortic stiffening was also observed in the diabetic group (carotid-femoral pulse wave velocity, 11.86 [95% CI , 10.4-13.1] m/s versus 8.8 [95% CI , 7.5-10.1] m/s; P=0.0027), with an adverse pulsatile hemodynamic profile characterized by increased oscillatory power (315 [95% CI , 258-373] mW versus 190 [95% CI , 144-236] mW; P=0.0007), aortic characteristic impedance (0.154 [95% CI , 0.124-0.183] mm Hg/mL per second versus 0.096 [95% CI , 0.072-0.121] mm Hg/mL per second; P=0.0024), and forward (59.5 [95% CI , 52.8-66.1] mm Hg versus 40.1 [95% CI , 31.6-48.6] mm Hg; P=0.0010) and backward (19.6 [95% CI , 16.2-22.9] mm Hg versus 14.1 [95% CI , 10.9-17.3] mm Hg; P=0.0169) wave amplitude. Abnormal pulsatile hemodynamics were also evident in 24-hour ambulatory monitoring, despite the absence of significant differences in 24-hour systolic blood pressure between the groups. Conclusions Diabetes mellitus is a key determinant of left ventricular remodeling, arterial stiffness, adverse pulsatile hemodynamics, and ventricular-arterial interactions in HF p EF . Clinical Trial Registration URL : https://www.clinicaltrials.gov . Unique identifier: NCT 01516346.
Collapse
Affiliation(s)
- Julio A. Chirinos
- Division of Cardiovascular MedicineHospital of the University of PennsylvaniaPhiladelphiaPA
- Division of Cardiovascular MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA
- Department of RadiologyCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPA
| | - Priyanka Bhattacharya
- Division of Cardiovascular MedicineHospital of the University of PennsylvaniaPhiladelphiaPA
| | - Anupam Kumar
- Division of Cardiovascular MedicineHospital of the University of PennsylvaniaPhiladelphiaPA
- Division of Cardiovascular MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA
| | - Elizabeth Proto
- Division of Cardiovascular MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA
| | - Prasad Konda
- Division of Cardiovascular MedicineHospital of the University of PennsylvaniaPhiladelphiaPA
| | - Patrick Segers
- Biofluid, Tissue and Solid Mechanics for Medical ApplicationsGhent UniversityGhentBelgium
| | - Scott R. Akers
- Department of RadiologyCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPA
| | - Raymond R. Townsend
- Division of Cardiovascular MedicineHospital of the University of PennsylvaniaPhiladelphiaPA
- Division of Cardiovascular MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA
| | - Payman Zamani
- Division of Cardiovascular MedicineHospital of the University of PennsylvaniaPhiladelphiaPA
- Division of Cardiovascular MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA
| |
Collapse
|