1
|
Ruigrok YM, Veldink JH, Bakker MK. Drug classes affecting intracranial aneurysm risk: Genetic correlation and Mendelian randomization. Eur Stroke J 2024; 9:687-695. [PMID: 38357878 PMCID: PMC11418413 DOI: 10.1177/23969873241234134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION There is no non-invasive treatment to prevent aneurysmal subarachnoid hemorrhage (ASAH) caused by intracranial aneurysm (IA) rupture. We aimed to identify drug classes that may affect liability to IA using a genetic approach. PATIENTS AND METHODS Using genome-wide association summary statistics we calculated genetic correlation between unruptured IA (N = 2140 cases), ASAH (N = 5140) or the combined group, and liability to drug usage from 23 drug classes (N up to 320,000) independent of the risk factor high blood pressure. Next, we evaluated the causality and therapeutic potential of correlated drug classes using three different Mendelian randomization frameworks. RESULTS Correlations with IA were found for antidepressants, paracetamol, acetylsalicylic acid, opioids, beta-blockers, and peptic ulcer and gastro-esophageal reflux disease drugs. MR showed no evidence that genetically predicted usage of these drug classes caused IA. Genetically predicted high responders to antidepressant drugs were at higher risk of IA (odds ratio [OR] = 1.61, 95% confidence interval (CI) = 1.09-2.39, p = 0.018) and ASAH (OR = 1.68, 95% CI = 1.07-2.65, p = 0.024) if they used antidepressant drugs. This effect was absent in non-users. For beta-blockers, additional analyses showed that this effect was not independent of blood pressure after all. A complex and likely pleiotropic relationship was found between genetic liability to chronic multisite pain, pain medication usage (paracetamol, acetylsalicylic acid, and opioids), and IA. CONCLUSIONS We did not find drugs decreasing liability to IA and ASAH but found that antidepressant drugs may increase liability. We observed pleiotropic relationships between IA and other drug classes and indications. Our results improve understanding of pathogenic mechanisms underlying IA.
Collapse
Affiliation(s)
- Ynte M Ruigrok
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Mark K Bakker
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Delabays B, Trajanoska K, Walonoski J, Mooser V. Cardiovascular Pharmacogenetics: From Discovery of Genetic Association to Clinical Adoption of Derived Test. Pharmacol Rev 2024; 76:791-827. [PMID: 39122647 DOI: 10.1124/pharmrev.123.000750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 08/12/2024] Open
Abstract
Recent breakthroughs in human genetics and in information technologies have markedly expanded our understanding at the molecular level of the response to drugs, i.e., pharmacogenetics (PGx), across therapy areas. This review is restricted to PGx for cardiovascular (CV) drugs. First, we examined the PGx information in the labels approved by regulatory agencies in Europe, Japan, and North America and related recommendations from expert panels. Out of 221 marketed CV drugs, 36 had PGx information in their labels approved by one or more agencies. The level of annotations and recommendations varied markedly between agencies and expert panels. Clopidogrel is the only CV drug with consistent PGx recommendation (i.e., "actionable"). This situation prompted us to dissect the steps from discovery of a PGx association to clinical translation. We found 101 genome-wide association studies that investigated the response to CV drugs or drug classes. These studies reported significant associations for 48 PGx traits mapping to 306 genes. Six of these 306 genes are mentioned in the corresponding PGx labels or recommendations for CV drugs. Genomic analyses also highlighted the wide between-population differences in risk allele frequencies and the individual load of actionable PGx variants. Given the high attrition rate and the long road to clinical translation, additional work is warranted to identify and validate PGx variants for more CV drugs across diverse populations and to demonstrate the utility of PGx testing. To that end, pre-emptive PGx combining genomic profiling with electronic medical records opens unprecedented opportunities to improve healthcare, for CV diseases and beyond. SIGNIFICANCE STATEMENT: Despite spectacular breakthroughs in human molecular genetics and information technologies, consistent evidence supporting PGx testing in the cardiovascular area is limited to a few drugs. Additional work is warranted to discover and validate new PGx markers and demonstrate their utility. Pre-emptive PGx combining genomic profiling with electronic medical records opens unprecedented opportunities to improve healthcare, for CV diseases and beyond.
Collapse
Affiliation(s)
- Benoît Delabays
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Katerina Trajanoska
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Joshua Walonoski
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Vincent Mooser
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| |
Collapse
|
3
|
Sadler MC, Apostolov A, Cevallos C, Ribeiro DM, Altman RB, Kutalik Z. Leveraging large-scale biobank EHRs to enhance pharmacogenetics of cardiometabolic disease medications. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.06.24305415. [PMID: 38633781 PMCID: PMC11023668 DOI: 10.1101/2024.04.06.24305415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Electronic health records (EHRs) coupled with large-scale biobanks offer great promises to unravel the genetic underpinnings of treatment efficacy. However, medication-induced biomarker trajectories stemming from such records remain poorly studied. Here, we extract clinical and medication prescription data from EHRs and conduct GWAS and rare variant burden tests in the UK Biobank (discovery) and the All of Us program (replication) on ten cardiometabolic drug response outcomes including lipid response to statins, HbA1c response to metformin and blood pressure response to antihypertensives (N = 740-26,669). Our findings at genome-wide significance level recover previously reported pharmacogenetic signals and also include novel associations for lipid response to statins (N = 26,669) near LDLR and ZNF800. Importantly, these associations are treatment-specific and not associated with biomarker progression in medication-naive individuals. Furthermore, we demonstrate that individuals with higher genetically determined low-density and total cholesterol baseline levels experience increased absolute, albeit lower relative biomarker reduction following statin treatment. In summary, we systematically investigated the common and rare pharmacogenetic contribution to cardiometabolic drug response phenotypes in over 50,000 UK Biobank and All of Us participants with EHR and identified clinically relevant genetic predictors for improved personalized treatment strategies.
Collapse
Affiliation(s)
- Marie C. Sadler
- University Center for Primary Care and Public Health, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Alexander Apostolov
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Caterina Cevallos
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Diogo M. Ribeiro
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Russ B. Altman
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Zoltán Kutalik
- University Center for Primary Care and Public Health, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Castaño-Amores C, Antúnez-Rodríguez A, Pozo-Agundo A, García-Rodríguez S, Martínez-González LJ, Dávila-Fajardo CL. Genetic polymorphisms in ADRB1, ADRB2 and CYP2D6 genes and response to beta-blockers in patients with acute coronary syndrome. Biomed Pharmacother 2023; 169:115869. [PMID: 37952358 DOI: 10.1016/j.biopha.2023.115869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
Betablockers (BBs) are prescribed for ischaemia in patients with acute coronary syndrome (ACS). In Spain, bisoprolol and carvedilol are the most prescribed BBs, but patients often had to discontinue them due to adverse effects. Single nucleotide polymorphisms (SNPs) in ADRB1, ADRB2 and CYP2D6 genes have strong evidence of pharmacogenetic association with BBs in heart failure or hypertension, but the evidence in ACS is limited. Therefore, our study focuses on investigating how these genes influence the response to BBs in ACS patients. We analysed the association between SNPs in ADRB1 Gly389Arg (rs1801253) and Ser49Gly (rs1801252), ADRB2 Gly16Arg (rs1042713) and Glu27Gln (rs1042714), and CYP2D* 6 (*2- rs1080985, *4- rs3892097, *10 - rs1065852) and the occurrence of bradycardia/hypotension events during one year of follow-up. We performed an observational study and included 285 ACS-PCI-stent patients. A first analysis including patients treated with bisoprolol and a second analysis including patients treated with other BBs were performed. We found that the presence of the G allele (Glu) of the ADRB2 gene (rs1042714; Glu27Gln) conferred a protective effect against hypotension-induced by BBs; OR (CI 95%) = 0,14 (0,03-0,60), p < 0.01. The ADRB2 (rs1042713; Gly16Arg) GG genotype could also prevent hypotensive events; OR (CI 95%) = 0.49 (0.28-0.88), p = 0015. SNPs in ADRB1 and CYP2D6 * 2, CYP2D6 * 4 weren´t associated with primary events. The effect of CYP2D6 * 10 does not seem to be relevant for the response to BBs. According to our findings, SNPs in ADRB2 (rs1042713, rs1042714) could potentially affect the response and tolerance to BBs in ACS-patients. Further studies are necessary to clarify the impact of ADRB2 polymorphisms.
Collapse
Affiliation(s)
| | - Alba Antúnez-Rodríguez
- GENYO, Genomics Unit, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government (GENYO), Granada, Spain
| | - Ana Pozo-Agundo
- GENYO, Genomics Unit, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government (GENYO), Granada, Spain
| | - Sonia García-Rodríguez
- GENYO, Genomics Unit, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government (GENYO), Granada, Spain
| | - Luis Javier Martínez-González
- University of Granada, Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, PTS, Granada, Spain
| | - Cristina Lucía Dávila-Fajardo
- Pharmacy Department, Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospital Universitario Virgen de las Nieves, Granada, Spain.
| |
Collapse
|
5
|
Luzum JA, Campos-Staffico AM, Li J, She R, Gui H, Peterson EL, Liu B, Sabbah HN, Donahue MP, Kraus WE, Williams LK, Lanfear DE. Genome-Wide Association Study of Beta-Blocker Survival Benefit in Black and White Patients with Heart Failure with Reduced Ejection Fraction. Genes (Basel) 2023; 14:2019. [PMID: 38002962 PMCID: PMC10671316 DOI: 10.3390/genes14112019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
In patients with heart failure with reduced ejection fraction (HFrEF), individual responses to beta-blockers vary. Candidate gene pharmacogenetic studies yielded significant but inconsistent results, and they may have missed important associations. Our objective was to use an unbiased genome-wide association study (GWAS) to identify loci influencing beta-blocker survival benefit in HFrEF patients. Genetic variant × beta-blocker exposure interactions were tested in Cox proportional hazards models for all-cause mortality stratified by self-identified race. The models were adjusted for clinical risk factors and propensity scores. A prospective HFrEF registry (469 black and 459 white patients) was used for discovery, and linkage disequilibrium (LD) clumped variants with a beta-blocker interaction of p < 5 × 10-5, were tested for Bonferroni-corrected validation in a multicenter HFrEF clinical trial (288 black and 579 white patients). A total of 229 and 18 variants in black and white HFrEF patients, respectively, had interactions with beta-blocker exposure at p < 5 × 10-5 upon discovery. After LD-clumping, 100 variants and 4 variants in the black and white patients, respectively, remained for validation but none reached statistical significance. In conclusion, genetic variants of potential interest were identified in a discovery-based GWAS of beta-blocker survival benefit in HFrEF patients, but none were validated in an independent dataset. Larger cohorts or alternative approaches, such as polygenic scores, are needed.
Collapse
Affiliation(s)
- Jasmine A. Luzum
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA;
- Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI 48202, USA (D.E.L.)
| | | | - Jia Li
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202, USA; (J.L.)
| | - Ruicong She
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202, USA; (J.L.)
| | - Hongsheng Gui
- Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI 48202, USA (D.E.L.)
| | - Edward L. Peterson
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202, USA; (J.L.)
| | - Bin Liu
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202, USA; (J.L.)
| | - Hani N. Sabbah
- Heart and Vascular Institute, Henry Ford Health System, Detroit, MI 48202, USA;
| | - Mark P. Donahue
- School of Medicine, Duke University, Durham, NC 27710, USA (W.E.K.)
| | - William E. Kraus
- School of Medicine, Duke University, Durham, NC 27710, USA (W.E.K.)
| | - L. Keoki Williams
- Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI 48202, USA (D.E.L.)
| | - David E. Lanfear
- Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI 48202, USA (D.E.L.)
- Heart and Vascular Institute, Henry Ford Health System, Detroit, MI 48202, USA;
| |
Collapse
|
6
|
Avvisato R, Mone P, Jankauskas SS, Varzideh F, Kansakar U, Gambardella J, De Luca A, Matarese A, Santulli G. miR-4432 Targets FGFBP1 in Human Endothelial Cells. BIOLOGY 2023; 12:459. [PMID: 36979151 PMCID: PMC10045418 DOI: 10.3390/biology12030459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
MicroRNAs (miRs) are small non-coding RNAs that modulate the expression of several target genes. Fibroblast growth factor binding protein 1 (FGFBP1) has been associated with endothelial dysfunction at the level of the blood-brain barrier (BBB). However, the underlying mechanisms are mostly unknown and there are no studies investigating the relationship between miRs and FGFBP1. Thus, the overarching aim of the present study was to identify and validate which miR can specifically target FGFBP1 in human brain microvascular endothelial cells, which represent the best in vitro model of the BBB. We were able to identify and validate miR-4432 as a fundamental modulator of FGFBP1 and we demonstrated that miR-4432 significantly reduces mitochondrial oxidative stress, a well-established pathophysiological hallmark of hypertension.
Collapse
Affiliation(s)
- Roberta Avvisato
- Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
| | - Pasquale Mone
- Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Stanislovas S. Jankauskas
- Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Fahimeh Varzideh
- Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | | | - Gaetano Santulli
- Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
- Fleischer Institute for Diabetes and Metabolism (FIDAM), New York, NY 10461, USA
- Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
7
|
Mayerhofer E, Malik R, Parodi L, Burgess S, Harloff A, Dichgans M, Rosand J, Anderson CD, Georgakis MK. Genetically predicted on-statin LDL response is associated with higher intracerebral haemorrhage risk. Brain 2022; 145:2677-2686. [PMID: 35598204 PMCID: PMC9612789 DOI: 10.1093/brain/awac186] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/30/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022] Open
Abstract
Statins lower low-density lipoprotein cholesterol and are widely used for the prevention of atherosclerotic cardiovascular disease. Whether statin-induced low-density lipoprotein reduction increases risk of intracerebral haemorrhage has been debated for almost two decades. Here, we explored whether genetically predicted on-statin low-density lipoprotein response is associated with intracerebral haemorrhage risk using Mendelian randomization. Using genomic data from randomized trials, we derived a polygenic score from 35 single nucleotide polymorphisms of on-statin low-density lipoprotein response and tested it in the population-based UK Biobank. We extracted statin drug and dose information from primary care data on a subset of 225 195 UK Biobank participants covering a period of 29 years. We validated the effects of the genetic score on longitudinal low-density lipoprotein measurements with generalized mixed models and explored associations with incident intracerebral haemorrhage using Cox regression analysis. Statins were prescribed at least once to 75 973 (31%) of the study participants (mean 57 years, 55% females). Among statin users, mean low-density lipoprotein decreased by 3.45 mg/dl per year [95% confidence interval (CI): (-3.47, -3.42)] over follow-up. A higher genetic score of statin response [1 standard deviation (SD) increment] was associated with significant additional reductions in low-density lipoprotein levels [-0.05 mg/dl per year, (-0.07, -0.02)], showed concordant lipidomic effects on other lipid traits as statin use and was associated with a lower risk for incident myocardial infarction [hazard ratio per SD increment 0.98 95% CI (0.96, 0.99)] and peripheral artery disease [hazard ratio per SD increment 0.93 95% CI (0.87, 0.99)]. Over a 11-year follow-up period, a higher genetically predicted statin response among statin users was associated with higher intracerebral haemorrhage risk in a model adjusting for statin dose [hazard ratio per SD increment 1.16, 95% CI (1.05, 1.28)]. On the contrary, there was no association with intracerebral haemorrhage risk among statin non-users (P = 0.89). These results provide further support for the hypothesis that statin-induced low-density lipoprotein reduction may be causally associated with intracerebral haemorrhage risk. While the net benefit of statins for preventing vascular disease is well-established, these results provide insights about the personalized response to statin intake and the role of pharmacological low-density lipoprotein lowering in the pathogenesis of intracerebral haemorrhage.
Collapse
Affiliation(s)
- Ernst Mayerhofer
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and the Massachusetts Institute of Technology, Boston, MA, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology and Neurophysiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Livia Parodi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and the Massachusetts Institute of Technology, Boston, MA, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen Burgess
- University of Cambridge, MRC Biostatistics Unit, Cambridge, UK
| | - Andreas Harloff
- Department of Neurology and Neurophysiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jonathan Rosand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and the Massachusetts Institute of Technology, Boston, MA, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher D Anderson
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and the Massachusetts Institute of Technology, Boston, MA, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Marios K Georgakis
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and the Massachusetts Institute of Technology, Boston, MA, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| |
Collapse
|
8
|
Fontana V, Turner RM, Francis B, Yin P, Pütz B, Hiltunen TP, Ruotsalainen S, Kontula KK, Müller-Myhsok B, Pirmohamed M. Chromosomal Region 11p14.1 is Associated with Pharmacokinetics and Pharmacodynamics of Bisoprolol. Pharmgenomics Pers Med 2022; 15:249-260. [PMID: 35356681 PMCID: PMC8958266 DOI: 10.2147/pgpm.s352719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/05/2022] [Indexed: 12/28/2022] Open
Abstract
Purpose Bisoprolol is a widely used beta-blocker in patients with cardiovascular diseases. As with other beta-blockers, there is variability in response to bisoprolol, but the underlying reasons for this have not been clearly elucidated. Our aim was to investigate genetic factors that affect bisoprolol pharmacokinetics (PK) and pharmacodynamics (PD), and potentially the clinical outcomes. Patients and Methods Patients with non-ST elevation acute coronary syndrome were recruited prospectively on admission to hospital and followed up for up to 2 years. Patients from this cohort who were on treatment with bisoprolol, at any dose, had bisoprolol adherence data and a plasma sample, one month after discharge from index hospitalisation were included in the study. Individual bisoprolol clearance values were estimated using population pharmacokinetic modeling. Genome-wide association analysis after genotyping was undertaken using an Illumina HumanOmniExpressExome-8 v1.0 BeadChip array, while CYP2D6 copy number variations were determined by PCR techniques and phenotypes for CYP2D6 and CYP3A were inferred from the genotype. GWAS significant SNPs were analysed for heart rate response to bisoprolol in an independent cohort of hypertensive subjects. Results Six hundred twenty-two patients on bisoprolol underwent both PK and genome wide analysis. The mean (IQR) of the estimated clearance in this population was 13.6 (10.0-18.0) L/h. Bisoprolol clearance was associated with rs11029955 (p=7.17×10-9) mapped to the region of coiled-coil domain containing 34 region (CCDC34) on chromosome 11, and with rs116702638 (p=2.54×10-8). Each copy of the minor allele of rs11029955 was associated with 2.2 L/h increase in clearance. In an independent cohort of hypertensive subjects, rs11029955 was associated with 24-hour heart rate response to 4-week treatment with bisoprolol (p= 9.3×10-5), but not with rs116702638. Conclusion A novel locus on the chromosomal region 11p14.1 was associated with bisoprolol clearance in a real-world cohort of patients and was validated in independent cohort with a pharmacodynamic association.
Collapse
Affiliation(s)
- Vanessa Fontana
- The Wolfson Centre for Personalised Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Richard Myles Turner
- The Wolfson Centre for Personalised Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Ben Francis
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Peng Yin
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Benno Pütz
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Timo P Hiltunen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sanni Ruotsalainen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Kimmo K Kontula
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Bertam Müller-Myhsok
- The Wolfson Centre for Personalised Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Munir Pirmohamed
- The Wolfson Centre for Personalised Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- Royal Liverpool and Broadgreen University Hospitals NHS Trust, and Liverpool Health Partners, Liverpool, UK
| |
Collapse
|
9
|
Nuotio ML, Sánez Tähtisalo H, Lahtinen A, Donner K, Fyhrquist F, Perola M, Kontula KK, Hiltunen TP. Pharmacoepigenetics of hypertension: genome-wide methylation analysis of responsiveness to four classes of antihypertensive drugs using a double-blind crossover study design. Epigenetics 2022; 17:1432-1445. [PMID: 35213289 PMCID: PMC9586691 DOI: 10.1080/15592294.2022.2038418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Essential hypertension remains the leading risk factor of global disease burden, but its treatment goals are often not met. We investigated whether DNA methylation is associated with antihypertensive responses to a diuretic, a beta-blocker, a calcium channel blocker or an angiotensin receptor antagonist. In addition, since we previously showed an SNP at the transcription start site (TSS) of the catecholamine biosynthesis-related ACY3 gene to associate with blood pressure (BP) response to beta-blockers, we specifically analysed the association of methylation sites close to the ACY3 TSS with BP responses to beta-blockers. We conducted an epigenome-wide association study between leukocyte DNA methylation and BP responses to antihypertensive monotherapies in two hypertensive Finnish cohorts: the GENRES (https://clinicaltrials.gov/ct2/show/NCT03276598; amlodipine 5 mg, bisoprolol 5 mg, hydrochlorothiazide 25 mg, or losartan 50 mg daily) and the LIFE-Fin studies (https://clinicaltrials.gov/ct2/show/NCT00338260; atenolol 50 mg or losartan 50 mg daily). The monotherapy groups consisted of approximately 200 individuals each. We identified 64 methylation sites to suggestively associate (P < 1E-5) with either systolic or diastolic BP responses to a particular study drug in GENRES. These associations did not replicate in LIFE-Fin . Three methylation sites close to the ACY3 TSS were associated with systolic BP responses to bisoprolol in GENRES but not genome-wide significantly (P < 0.05). No robust associations between DNA methylation and BP responses to four different antihypertensive drugs were identified. However, the findings on the methylation sites close to the ACY3 TSS may support the role of ACY3 genetic and epigenetic variation in BP response to bisoprolol.
Collapse
Affiliation(s)
- Marja-Liisa Nuotio
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Public Health Solutions, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Heini Sánez Tähtisalo
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Alexandra Lahtinen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kati Donner
- Technology Centre, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Frej Fyhrquist
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Markus Perola
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Public Health Solutions, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Kimmo K Kontula
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo P Hiltunen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
10
|
Babayeva M, Azzi B, Loewy ZG. Pharmacogenomics Informs Cardiovascular Pharmacotherapy. Methods Mol Biol 2022; 2547:201-240. [PMID: 36068466 DOI: 10.1007/978-1-0716-2573-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Precision medicine exemplifies the emergence of personalized treatment options which may benefit specific patient populations based upon their genetic makeup. Application of pharmacogenomics requires an understanding of how genetic variations impact pharmacokinetic and pharmacodynamic properties. This particular approach in pharmacotherapy is helpful because it can assist in and improve clinical decisions. Application of pharmacogenomics to cardiovascular pharmacotherapy provides for the ability of the medical provider to gain critical knowledge on a patient's response to various treatment options and risk of side effects.
Collapse
Affiliation(s)
| | | | - Zvi G Loewy
- Touro College of Pharmacy, New York, NY, USA.
- School of Medicine, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
11
|
McDonough CW, Warren HR, Jack JR, Motsinger-Reif AA, Armstrong ND, Bis JC, House JS, Singh S, El Rouby NM, Gong Y, Mychaleckyj JC, Rotroff DM, Benavente OR, Caulfield MJ, Doria A, Pepine CJ, Psaty BM, Glorioso V, Glorioso N, Hiltunen TP, Kontula KK, Arnett DK, Buse JB, Irvin MR, Johnson JA, Munroe PB, Wagner MJ, Cooper-DeHoff RM. Adverse Cardiovascular Outcomes and Antihypertensive Treatment: A Genome-Wide Interaction Meta-Analysis in the International Consortium for Antihypertensive Pharmacogenomics Studies. Clin Pharmacol Ther 2021; 110:723-732. [PMID: 34231218 PMCID: PMC8672325 DOI: 10.1002/cpt.2355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/11/2021] [Indexed: 01/01/2023]
Abstract
We sought to identify genome-wide variants influencing antihypertensive drug response and adverse cardiovascular outcomes, utilizing data from four randomized controlled trials in the International Consortium for Antihypertensive Pharmacogenomics Studies (ICAPS). Genome-wide antihypertensive drug-single nucleotide polymorphism (SNP) interaction tests for four drug classes (β-blockers, n = 9,195; calcium channel blockers (CCBs), n = 10,511; thiazide/thiazide-like diuretics, n = 3,516; ACE-inhibitors/ARBs, n = 2,559) and cardiovascular outcomes (incident myocardial infarction, stroke, or death) were analyzed among patients with hypertension of European ancestry. Top SNPs from the meta-analyses were tested for replication of cardiovascular outcomes in an independent Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) study (n = 21,267), blood pressure (BP) response in independent ICAPS studies (n = 1,552), and ethnic validation in African Americans from the Genetics of Hypertension Associated Treatment study (GenHAT; n = 5,115). One signal reached genome-wide significance in the β-blocker-SNP interaction analysis (rs139945292, Interaction P = 1.56 × 10-8 ). rs139945292 was validated through BP response to β-blockers, with the T-allele associated with less BP reduction (systolic BP response P = 6 × 10-4 , Beta = 3.09, diastolic BP response P = 5 × 10-3 , Beta = 1.53). The T-allele was also associated with increased adverse cardiovascular risk within the β-blocker treated patients' subgroup (P = 2.35 × 10-4 , odds ratio = 1.57, 95% confidence interval = 1.23-1.99). The locus showed nominal replication in CHARGE, and consistent directional trends in β-blocker treated African Americans. rs139945292 is an expression quantitative trait locus for the 50 kb upstream gene NTM (neurotrimin). No SNPs attained genome-wide significance for any other drugs classes. Top SNPs were located near CALB1 (CCB), FLJ367777 (ACE-inhibitor), and CES5AP1 (thiazide). The NTM region is associated with increased risk for adverse cardiovascular outcomes and less BP reduction in β-blocker treated patients. Further investigation into this region is warranted.
Collapse
Affiliation(s)
- Caitrin W. McDonough
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Helen R. Warren
- Clinical Pharmacology Department, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - John R. Jack
- Bioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA
| | - Alison A. Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Nicole D. Armstrong
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - John S. House
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Sonal Singh
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Nihal M. El Rouby
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Joesyf C. Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel M. Rotroff
- Bioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA
| | - Oscar R. Benavente
- Department of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark J. Caulfield
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Center, Queen Mary University of London, London, UK
| | - Alessandrio Doria
- Research Division, Joslin Diabetes Center; and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Carl J. Pepine
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Valeria Glorioso
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milano, Italy
| | - Nicola Glorioso
- Department of Clinical, Surgical and Experimental Science, University of Sassari, Medical School, Sassari, Italy
| | - Timo P. Hiltunen
- Department of Medicine and Research Program for Clinical and Molecular Metabolism, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kimmo K. Kontula
- Department of Medicine and Research Program for Clinical and Molecular Metabolism, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Donna K. Arnett
- College of Public Health, Dean’s Office, University of Kentucky, Lexington, Kentucky, USA
| | - John B. Buse
- Division of Endocrinology, Department of Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Julie A. Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Patricia B. Munroe
- Clinical Pharmacology Department, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michael J. Wagner
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rhonda M. Cooper-DeHoff
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
12
|
Nevola KT, Nagarajan A, Hinton AC, Trajanoska K, Formosa MM, Xuereb-Anastasi A, van der Velde N, Stricker BH, Rivadeneira F, Fuggle NR, Westbury LD, Dennison EM, Cooper C, Kiel DP, Motyl KJ, Lary CW. Pharmacogenomic Effects of β-Blocker Use on Femoral Neck Bone Mineral Density. J Endocr Soc 2021; 5:bvab092. [PMID: 34195528 PMCID: PMC8237849 DOI: 10.1210/jendso/bvab092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 11/19/2022] Open
Abstract
CONTEXT Recent studies have shown that β-blocker (BB) users have a decreased risk of fracture and higher bone mineral density (BMD) compared to nonusers, likely due to the suppression of adrenergic signaling in osteoblasts, leading to increased BMD. There is also variability in the effect size of BB use on BMD in humans, which may be due to pharmacogenomic effects. OBJECTIVE To investigate potential single-nucleotide variations (SNVs) associated with the effect of BB use on femoral neck BMD, we performed a cross-sectional analysis using clinical data, dual-energy x-ray absorptiometry, and genetic data from the Framingham Heart Study's (FHS) Offspring Cohort. We then sought to validate our top 4 genetic findings using data from the Rotterdam Study, the BPROOF Study, the Malta Osteoporosis Fracture Study (MOFS), and the Hertfordshire Cohort Study. METHODS We used sex-stratified linear mixed models to determine SNVs that had a significant interaction effect with BB use on femoral neck (FN) BMD across 11 gene regions. We also evaluated the association of our top SNVs from the FHS with microRNA (miRNA) expression in blood and identified potential miRNA-mediated mechanisms by which these SNVs may affect FN BMD. RESULTS One variation (rs11124190 in HDAC4) was validated in females using data from the Rotterdam Study, while another (rs12414657 in ADRB1) was validated in females using data from the MOFS. We performed an exploratory meta-analysis of all 5 studies for these variations, which further validated our findings. CONCLUSION This analysis provides a starting point for investigating the pharmacogenomic effects of BB use on BMD measures.
Collapse
Affiliation(s)
- Kathleen T Nevola
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - Archana Nagarajan
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME 04101, USA
| | - Alexandra C Hinton
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME 04101, USA
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam 3015 GD, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Melissa M Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida MSD 2080, Malta
- Centre for Molecular Medicine and Biobanking, MSD 2080, Malta
| | - Angela Xuereb-Anastasi
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida MSD 2080, Malta
- Centre for Molecular Medicine and Biobanking, MSD 2080, Malta
| | - Nathalie van der Velde
- Department of Internal Medicine, Geriatrics, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, 1105 AZ, the Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam 3015 GD, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Nicholas R Fuggle
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, SO16 6YD, UK
| | - Leo D Westbury
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Elaine M Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, SO16 6YD, UK
- Victoria University of Wellington, Wellington, New Zealand
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Douglas P Kiel
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Hinda and Arthur Marcus Institute for Aging Research Hebrew SeniorLife, Boston, MA 02131, USA
| | - Katherine J Motyl
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA
| | - Christine W Lary
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME 04101, USA
| |
Collapse
|
13
|
McDonough CW. Pharmacogenomics in Cardiovascular Diseases. Curr Protoc 2021; 1:e189. [PMID: 34232575 DOI: 10.1002/cpz1.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardiovascular pharmacogenomics is the study and identification of genomic markers that are associated with variability in cardiovascular drug response, cardiovascular drug-related outcomes, or cardiovascular drug-related adverse events. This overview presents an introduction and historical background to cardiovascular pharmacogenomics, and a protocol for designing a cardiovascular pharmacogenomics study. Important considerations are also included for constructing a cardiovascular pharmacogenomics phenotype, designing the replication or validation strategy, common statistical approaches, and how to put the results in context with the cardiovascular drug or cardiovascular disease under investigation. © 2021 Wiley Periodicals LLC. Basic Protocol: Designing a cardiovascular pharmacogenomics study.
Collapse
Affiliation(s)
- Caitrin W McDonough
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida
| |
Collapse
|
14
|
AlHabeeb W, Mrabeti S, Abdelsalam AAI. Therapeutic Properties of Highly Selective β-blockers With or Without Additional Vasodilator Properties: Focus on Bisoprolol and Nebivolol in Patients With Cardiovascular Disease. Cardiovasc Drugs Ther 2021; 36:959-971. [PMID: 34106365 PMCID: PMC9519665 DOI: 10.1007/s10557-021-07205-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Bisoprolol and nebivolol are highly selective β1-adrenoceptor antagonists, with clinical indications in many countries within the management of heart failure with reduced left ventricular ejection fraction (HFrEF), ischaemic heart disease (IHD), and hypertension. Nebivolol has additional vasodilator actions, related to enhanced release of NO in the vascular wall. In principle, this additional mechanism compared with bisoprolol might lead to more potent vasodilatation, which in turn might influence the effectiveness of nebivolol in the management of HFrEF, IHD and hypertension. In this article, we review the therapeutic properties of bisoprolol and nebivolol, as representatives of “second generation” and “third generation” β-blockers, respectively. Although head-to-head trials are largely lacking, there is no clear indication from published studies of an additional effect of nebivolol on clinical outcomes in patients with HFrEF or the magnitude of reductions of BP in patients with hypertension.
Collapse
Affiliation(s)
- Waleed AlHabeeb
- Cardiac Sciences Department, King Saud University, Riyadh, 12372, Saudi Arabia.
| | - Sanaa Mrabeti
- General Medicine and Endocrinology, Medical Affairs EMEA, Merck Serono Middle East FZ-LLC, Dubai, United Arab Emirates
| | | |
Collapse
|
15
|
A Genome-Wide Association Study for Hypertensive Kidney Disease in Korean Men. Genes (Basel) 2021; 12:genes12050751. [PMID: 34067580 PMCID: PMC8155956 DOI: 10.3390/genes12050751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 11/26/2022] Open
Abstract
Hypertension is one of the major risk factors for chronic kidney disease (CKD), and the coexistence of hypertension and CKD increases morbidity and mortality. Although many genetic factors have been identified separately for hypertension and kidney disease, studies specifically focused on hypertensive kidney disease (HKD) have been rare. Therefore, this study aimed to identify loci or genes associated with HKD. A genome-wide association study (GWAS) was conducted using two Korean cohorts, the Health Examinee (HEXA) and Korean Association REsource (KARE). Consequently, 19 single nucleotide polymorphisms (SNPs) were found to be significantly associated with HKD in the discovery and replication phases (p < 5 × 10−8, p < 0.05, respectively). We further analyzed HKD-related traits such as the estimated glomerular filtration rate (eGFR), creatinine, blood urea nitrogen (BUN), systolic blood pressure (SBP) and diastolic blood pressure (DBP) at the 14q21.2 locus, which showed a strong linkage disequilibrium (LD). Expression quantitative trait loci (eQTL) analysis was also performed to determine whether HKD-related SNPs affect gene expression changes in glomerular and arterial tissues. The results suggested that the FANCM gene may affect the development of HKD through an integrated analysis of eQTL and GWAS and was the most significantly associated candidate gene. Taken together, this study indicated that the FANCM gene is involved in the pathogenesis of HKD. Additionally, our results will be useful in prioritizing other genes for further experiments.
Collapse
|
16
|
Human essential hypertension: no significant association of polygenic risk scores with antihypertensive drug responses. Sci Rep 2020; 10:11940. [PMID: 32686723 PMCID: PMC7371738 DOI: 10.1038/s41598-020-68878-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/30/2020] [Indexed: 11/08/2022] Open
Abstract
Polygenic risk scores (PRSs) for essential hypertension, calculated from > 900 genomic loci, were recently found to explain a significant fraction of hypertension heritability and complications. To investigate whether variation of hypertension PRS also captures variation of antihypertensive drug responsiveness, we calculated two different PRSs for both systolic and diastolic blood pressure: one based on the top 793 independent hypertension-associated single nucleotide polymorphisms and another based on over 1 million genome-wide variants. Using our pharmacogenomic GENRES study comprising four different antihypertensive monotherapies (n ~ 200 for all drugs), we identified a weak, but (after Bonferroni correction) statistically nonsignificant association of higher genome-wide PRSs with weaker response to a diuretic. In addition, we noticed a correlation between high genome-wide PRS and electrocardiographic left ventricular hypertrophy. Finally, using data of the Finnish arm of the LIFE study (n = 346), we found that PRSs for systolic blood pressure were slightly higher in patients with drug-resistant hypertension than in those with drug-controlled hypertension (p = 0.03, not significant after Bonferroni correction). In conclusion, our results indicate that patients with elevated hypertension PRSs may be predisposed to difficult-to-control hypertension and complications thereof. No general association between a high PRS and less efficient drug responsiveness was noticed.
Collapse
|
17
|
Van Tassell JC, Shimbo D, Hess R, Kittles R, Wilson JG, Jorde LB, Li M, Lange LA, Lange EM, Muntner P, Bress AP. Association of West African ancestry and blood pressure control among African Americans taking antihypertensive medication in the Jackson Heart Study. J Clin Hypertens (Greenwich) 2020; 22:157-166. [PMID: 32049421 PMCID: PMC7219977 DOI: 10.1111/jch.13824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 01/05/2023]
Abstract
African Americans have a wide range of continental genetic ancestry. It is unclear whether racial differences in blood pressure (BP) control are related to ancestral background. The authors analyzed data from the Jackson Heart Study, a cohort exclusively comprised of self-identified African Americans, to assess the association between estimated West African ancestry (WAA) and BP control (systolic and diastolic BP < 140/90 mm Hg). Three nested modified Poisson regression models were used to calculate prevalence ratios for BP control associated with the three upper quartiles, separately, vs the lowest quartile of West African ancestry. The authors analyzed data from 1658 participants with hypertension who reported taking all of their antihypertensive medications in the previous 24 hours. WAA was estimated using 389 ancestry informative markers and categorized into quartiles (Q1: <73.7%, Q2: >73.7%-81.0%, Q3: >81.0%-86.3%, and Q4: >86.3%). The proportion of participants with controlled BP in the lowest-to-highest WAA quartile was 75.2%, 76.1%, 76.6%, and 74.4%. The prevalence ratios (95% CI) for controlled BP comparing Q2, Q3, and Q4 to Q1 of WAA were 1.00 (0.93-1.08), 1.02 (0.94-1.10), and 0.99 (0.91-1.07), respectively. Among African Americans in the Jackson Heart Study taking antihypertensive medication, BP control rates did not differ across quartiles of WAA.
Collapse
Affiliation(s)
| | - Daichi Shimbo
- Department of MedicineColumbia UniversityNew YorkNew York
| | - Rachel Hess
- Division of Health System Innovation and ResearchDepartment of Population Health SciencesUniversity of UtahSalt Lake CityUtah
| | - Rick Kittles
- Division of Health EquitiesDepartment of Population SciencesCity of HopeDuarteCalifornia
| | - James G. Wilson
- Department of Physiology and BiophysicsUniversity of MississippiJacksonMississippi
| | - Lynn B. Jorde
- Department of Human GeneticsUniversity of Utah School of MedicineSalt Lake CityUtah
| | - Man Li
- Division of Nephrology & HypertensionDepartment of Internal MedicineUniversity of UtahSalt Lake CityUtah
| | - Leslie A. Lange
- Division of Biomedical Informatics and Personalized MedicineDepartment of MedicineUniversity of Colorado, Anschutz Medical CampusAuroraColorado
| | - Ethan M. Lange
- Division of Biomedical Informatics and Personalized MedicineDepartment of MedicineUniversity of Colorado, Anschutz Medical CampusAuroraColorado
| | - Paul Muntner
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamAlabama
| | - Adam P. Bress
- Division of Health System Innovation and ResearchDepartment of Population Health SciencesUniversity of UtahSalt Lake CityUtah
| |
Collapse
|
18
|
Oliveira-Paula GH, Pereira SC, Tanus-Santos JE, Lacchini R. Pharmacogenomics And Hypertension: Current Insights. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:341-359. [PMID: 31819590 PMCID: PMC6878918 DOI: 10.2147/pgpm.s230201] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/05/2019] [Indexed: 11/23/2022]
Abstract
Hypertension is a multifactorial disease that affects approximately one billion subjects worldwide and is a major risk factor associated with cardiovascular events, including coronary heart disease and cerebrovascular accidents. Therefore, adequate blood pressure control is important to prevent these events, reducing premature mortality and disability. However, only one third of patients have the effective control of blood pressure, despite several classes of antihypertensive drugs available. These disappointing outcomes may be at least in part explained by interpatient variability in drug response due to genetic polymorphisms. To address the effects of genetic polymorphisms on blood pressure responses to the antihypertensive drug classes, studies have applied candidate genes and genome wide approaches. More recently, a third approach that considers gene-gene interactions has also been applied in hypertension pharmacogenomics. In this article, we carried out a comprehensive review of recent findings on the pharmacogenomics of antihypertensive drugs, including diuretics, β-blockers, angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers, and calcium channel blockers. We also discuss the limitations and inconsistences that have been found in hypertension pharmacogenomics and the challenges to implement this valuable approach in clinical practice.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA.,Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Sherliane C Pereira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
19
|
Singh S, Warren HR, Hiltunen TP, McDonough CW, El Rouby N, Salvi E, Wang Z, Garofalidou T, Fyhrquist F, Kontula KK, Glorioso V, Zaninello R, Glorioso N, Pepine CJ, Munroe PB, Turner ST, Chapman AB, Boerwinkle E, Johnson JA, Gong Y, Cooper‐DeHoff RM. Genome-Wide Meta-Analysis of Blood Pressure Response to β 1-Blockers: Results From ICAPS (International Consortium of Antihypertensive Pharmacogenomics Studies). J Am Heart Assoc 2019; 8:e013115. [PMID: 31423876 PMCID: PMC6759913 DOI: 10.1161/jaha.119.013115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/15/2019] [Indexed: 12/26/2022]
Abstract
BackgroundThere exists a wide interindividual variability in blood pressure (BP) response to β1-blockers. To identify the genetic determinants of this variability, we performed a pharmacogenomic genome-wide meta-analysis of genetic variants influencing β1-blocker BP response.Methods and ResultsGenome-wide association analysis for systolic BP and diastolic BP response to β1-blockers from 5 randomized clinical trials consisting of 1254 patients with hypertension of European ancestry were combined in meta-analysis and single nucleotide polymorphisms (SNPs) with P<10-4 were tested for replication in 2 independent randomized clinical trials of β1-blocker-treated patients of European ancestry (n=1552). Regions harboring the replicated SNPs were validated in a β1-blocker-treated black cohort from 2 randomized clinical trials (n=315). A missense SNP rs28404156 in BST1 was associated with systolic BP response to β1-blockers in the discovery meta-analysis (P=9.33×10-5, β=-3.21 mm Hg) and replicated at Bonferroni significance (P=1.85×10-4, β=-4.86 mm Hg) in the replication meta-analysis with combined meta-analysis approaching genome-wide significance (P=2.18×10-7). This SNP in BST1 is in linkage disequilibrium with several SNPs with putative regulatory functions in nearby genes, including CD38, FBXL5, and FGFBP1, all of which have been implicated in BP regulation. SNPs in this genetic region were also associated with BP response in the black cohort.ConclusionsData from randomized clinical trials of 8 European ancestry and 2 black cohorts support the assumption that BST1 containing locus on chromosome 4 is associated with β1-blocker BP response. Given the previous associations of this region with BP, this is a strong candidate region for future functional studies and potential use in precision medicine approaches for BP management and risk prediction.
Collapse
Affiliation(s)
- Sonal Singh
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision MedicineUniversity of FloridaGainesvilleFL
| | - Helen R. Warren
- William Harvey Research InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonUnited Kingdom
- National Institute for Health
ResearchBarts Cardiovascular Biomedical Research CenterQueen Mary University of LondonUnited Kingdom
| | - Timo P. Hiltunen
- Department of MedicineUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Research Program for Clinical and Molecular MedicineUniversity of HelsinkiFinland
| | - Caitrin W. McDonough
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision MedicineUniversity of FloridaGainesvilleFL
| | - Nihal El Rouby
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision MedicineUniversity of FloridaGainesvilleFL
| | - Erika Salvi
- Neuroalgology UnitFondazione IRCCS Istituto Neurologico “Carlo Besta,”MilanItaly
| | - Zhiying Wang
- Human Genetics and Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTX
| | - Tatiana Garofalidou
- William Harvey Research InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonUnited Kingdom
| | - Frej Fyhrquist
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Kimmo K. Kontula
- Department of MedicineUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Research Program for Clinical and Molecular MedicineUniversity of HelsinkiFinland
| | | | - Roberta Zaninello
- Hypertension and related diseases CentreDepartment of Clinical and Experimental MedicineUniversity of SassariItaly
| | - Nicola Glorioso
- Hypertension and related diseases CentreDepartment of Clinical and Experimental MedicineUniversity of SassariItaly
| | - Carl J. Pepine
- Division of Cardiovascular MedicineDepartment of MedicineUniversity of FloridaGainesvilleFL
| | - Patricia B. Munroe
- William Harvey Research InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonUnited Kingdom
- National Institute for Health
ResearchBarts Cardiovascular Biomedical Research CenterQueen Mary University of LondonUnited Kingdom
| | | | | | - Eric Boerwinkle
- Human Genetics and Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTX
| | - Julie A. Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision MedicineUniversity of FloridaGainesvilleFL
- Division of Cardiovascular MedicineDepartment of MedicineUniversity of FloridaGainesvilleFL
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision MedicineUniversity of FloridaGainesvilleFL
| | - Rhonda M. Cooper‐DeHoff
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision MedicineUniversity of FloridaGainesvilleFL
- Division of Cardiovascular MedicineDepartment of MedicineUniversity of FloridaGainesvilleFL
| |
Collapse
|