1
|
Zeng Y, Fu BM. Angiogenesis and Microvascular Permeability. Cold Spring Harb Perspect Med 2025; 15:a041163. [PMID: 38692737 PMCID: PMC11694756 DOI: 10.1101/cshperspect.a041163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Angiogenesis, the formation of new blood microvessels, is a necessary physiological process for tissue generation and repair. Sufficient blood supply to the tissue is dependent on microvascular density, while the material exchange between the circulating blood and the surrounding tissue is controlled by microvascular permeability. We thus begin this article by reviewing the key signaling factors, particularly vascular endothelial growth factor (VEGF), which regulates both angiogenesis and microvascular permeability. We then review the role of angiogenesis in tissue growth (bone regeneration) and wound healing. Finally, we review angiogenesis as a pathological process in tumorigenesis, intraplaque hemorrhage, cerebral microhemorrhage, pulmonary fibrosis, and hepatic fibrosis. Since the glycocalyx is important for both angiogenesis and microvascular permeability, we highlight the role of the glycocalyx in regulating the interaction between tumor cells and endothelial cells (ECs) and VEGF-containing exosome release and uptake by tumor-associated ECs, all of which contribute to tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York 10031, USA
| |
Collapse
|
2
|
Sarmah D, Datta A, Rana N, Suthar P, Gupta V, Kaur H, Ghosh B, Levoux J, Rodriguez AM, Yavagal DR, Bhattacharya P. SIRT-1/RHOT-1/PGC-1α loop modulates mitochondrial biogenesis and transfer to offer resilience following endovascular stem cell therapy in ischemic stroke. Free Radic Biol Med 2024; 225:255-274. [PMID: 39306015 DOI: 10.1016/j.freeradbiomed.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 10/12/2024]
Abstract
Current clinical interventions for stroke majorly involve thrombolysis or thrombectomy, however, cessation of the progressive deleterious cellular cascades post-stroke and long-term neuroprotection are yet to be explored. Mitochondria are highly vulnerable organelles and their dysfunction is one of the detrimental consequences following stroke. Mitochondria dysregulation activate unfavourable cellular events over a period of time that leads to the collapse of neuronal machinery in the brain. Hence, strategies to protect and replenish mitochondria in injured neurons may be useful and needs to be explored. Stem cell therapy in ischemic stroke holds a great promise. Past studies have shown beneficial outcomes of endovascularly delivered stem cells in both pre-clinical and clinical settings. Intra-arterial (IA) administration can provide more cells to the stroke foci and affected brain regions than intravenous administration. Supplying new mitochondria to the stroke-compromised neurons either in the core or penumbra by infused stem cells can help increase their survival and longevity. Previously, our lab has demonstrated that IA 1∗105 mesenchymal stem cells (MSCs) in rats were safe, efficacious and rendered neuroprotection by regulating neuronal calcineurin, modulating sirtuin1(SIRT-1) mediated inflammasome signaling, ameliorating endoplasmic reticulum-stress, alleviation of post-stroke edema and reducing cellular apoptosis. To explore further, our present study aims to investigate the potential of IA MSCs in protecting and replenishing mitochondria in the injured neurons post-stroke and the involvement of SIRT-1/RHOT-1/PGC-1α loop towards mitochondria transfer, biogenesis, and neuroprotection. This study will open new avenues for using stem cells for ischemic stroke in clinics as one of the future adjunctive therapies.
Collapse
Affiliation(s)
- Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Nikita Rana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Pramod Suthar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Vishal Gupta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Bijoyani Ghosh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Jennyfer Levoux
- Universite' Paris-Est Cre'teil, INSERM, IMRB, 94010, Cre'teil, France
| | - Anne-Marie Rodriguez
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Dileep R Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
3
|
Borlongan CV, Lee JY, D’Egidio F, de Kalbermatten M, Garitaonandia I, Guzman R. Nose-to-brain delivery of stem cells in stroke: the role of extracellular vesicles. Stem Cells Transl Med 2024; 13:1043-1052. [PMID: 39401332 PMCID: PMC11555476 DOI: 10.1093/stcltm/szae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 11/13/2024] Open
Abstract
Stem cell transplantation offers a promising therapy that can be administered days, weeks, or months after a stroke. We recognize 2 major mitigating factors that remain unresolved in cell therapy for stroke, notably: (1) well-defined donor stem cells and (2) mechanism of action. To this end, we advance the use of ProtheraCytes, a population of non-adherent CD34+ cells derived from human peripheral blood and umbilical cord blood, which have been processed under good manufacturing practice, with testing completed in a phase 2 clinical trial in post-acute myocardial infarction (NCT02669810). We also reveal a novel mechanism whereby ProtheraCytes secrete growth factors and extracellular vesicles (EVs) that are associated with angiogenesis and vasculogenesis. Our recent data revealed that intranasal transplantation of ProtheraCytes at 3 days after experimentally induced stroke in adult rats reduced stroke-induced behavioral deficits and histological damage up to 28 days post-stroke. Moreover, we detected upregulation of human CD63+ EVs in the ischemic brains of stroke animals that were transplanted with ProtheraCytes, which correlated with increased levels of DCX-labeled neurogenesis and VEGFR1-associated angiogenesis and vasculogenesis, as well as reduced Iba1-marked inflammation. Altogether, these findings overcome key laboratory-to-clinic translational hurdles, namely the identification of well-characterized, clinical grade ProtheraCytes and the elucidation of a potential CD63+ EV-mediated regenerative mechanism of action. We envision that additional translational studies will guide the development of clinical trials for intranasal ProtheraCytes allografts in stroke patients, with CD63 serving as a critical biomarker.
Collapse
Affiliation(s)
- Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, United States
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, United States
| | - Francesco D’Egidio
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, United States
| | | | | | - Raphael Guzman
- Department of Neurosurgery, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| |
Collapse
|
4
|
Tanada S, Nakagomi T, Nakano-Doi A, Sawano T, Kubo S, Kuramoto Y, Uchida K, Yamahara K, Doe N, Yoshimura S. Human-Brain-Derived Ischemia-Induced Stem Cell Transplantation Is Associated with a Greater Neurological Functional Improvement Compared with Human-Bone Marrow-Derived Mesenchymal Stem Cell Transplantation in Mice After Stroke. Int J Mol Sci 2024; 25:12065. [PMID: 39596134 PMCID: PMC11593343 DOI: 10.3390/ijms252212065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The transplantation of injury/ischemia-induced stem cells (iSCs) extracted from post-stroke human brains can improve the neurological functions of mice after stroke. However, the usefulness of iSCs as an alternative stem cell source remains unclear. The current study aimed to assess the efficacy of iSC and mesenchymal stem cell (MSC) transplantation. In this experiment, equal numbers of human brain-derived iSCs (h-iSCs) (5.0 × 104 cells/μL) and human bone marrow-derived MSCs (h-MSCs) (5.0 × 104 cells/μL) were intracranially transplanted into post-stroke mouse brains after middle cerebral artery occlusion. Results showed that not only h-iSC transplantation but also h-MSC transplantation activated endogenous neural stem/progenitor cells (NSPCs) around the grafted sites and promoted neurological functional improvement. However, mice that received h-iSC transplantation experienced improvement in a higher number of behavioral tasks compared with those that received h-MSC transplantation. To investigate the underlying mechanism, NSPCs extracted from the ischemic areas of post-stroke mouse brains were cocultured with h-iSCs or h-MSCs. After coincubation, NSPCs, h-iSCs, and h-MSCs were selectively collected via fluorescence-activated cell sorting. Next, their traits were analyzed via microarray analysis. The genes related to various neuronal lineages in NSPCs after coincubation with h-iSCs were enriched compared with those in NSPCs after coincubation with h-MSCs. In addition, the gene expression patterns of h-iSCs relative to those of h-MSCs showed that the expression of genes related to synapse formation and neurotransmitter-producing neurons increased more after coincubation with NSPCs. Hence, cell-cell interactions with NSPCs promoted transdifferentiation toward functional neurons predominantly in h-iSCs. In accordance with these findings, immunohistochemistry showed that the number of neuronal networks between NSPCs and h-iSCs was higher than that between NSPCs and h-MSCs. Therefore, compared with h-MSC transplantation, h-iSC transplantation is associated with a higher neurological functional improvement, presumably by more effectively modulating the fates of endogenous NSPCs and grafted h-iSCs themselves.
Collapse
Affiliation(s)
- Shuichi Tanada
- Department of Neurosurgery, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.T.); (Y.K.); (K.U.); (S.Y.)
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (A.N.-D.); (S.K.); (K.Y.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (A.N.-D.); (S.K.); (K.Y.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
| | - Toshinori Sawano
- Department of Biomedical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan;
| | - Shuji Kubo
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (A.N.-D.); (S.K.); (K.Y.)
| | - Yoji Kuramoto
- Department of Neurosurgery, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.T.); (Y.K.); (K.U.); (S.Y.)
| | - Kazutaka Uchida
- Department of Neurosurgery, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.T.); (Y.K.); (K.U.); (S.Y.)
| | - Kenichi Yamahara
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (A.N.-D.); (S.K.); (K.Y.)
| | - Nobutaka Doe
- Department of Rehabilitation, Hyogo Medical University (Kobe Campus), 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530, Japan;
| | - Shinichi Yoshimura
- Department of Neurosurgery, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.T.); (Y.K.); (K.U.); (S.Y.)
| |
Collapse
|
5
|
Miao ZW, Wang Z, Zheng SL, Wang SN, Miao CY. Anti-stroke biologics: from recombinant proteins to stem cells and organoids. Stroke Vasc Neurol 2024; 9:467-480. [PMID: 38286483 PMCID: PMC11732845 DOI: 10.1136/svn-2023-002883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
The use of biologics in various diseases has dramatically increased in recent years. Stroke, a cerebrovascular disease, is the second most common cause of death, and the leading cause of disability with high morbidity worldwide. For biologics applied in the treatment of acute ischaemic stroke, alteplase is the only thrombolytic agent. Meanwhile, current clinical trials show that two recombinant proteins, tenecteplase and non-immunogenic staphylokinase, are most promising as new thrombolytic agents for acute ischaemic stroke therapy. In addition, stem cell-based therapy, which uses stem cells or organoids for stroke treatment, has shown promising results in preclinical and early clinical studies. These strategies for acute ischaemic stroke mainly rely on the unique properties of undifferentiated cells to facilitate tissue repair and regeneration. However, there is a still considerable journey ahead before these approaches become routine clinical use. This includes optimising cell delivery methods, determining the ideal cell type and dosage, and addressing long-term safety concerns. This review introduces the current or promising recombinant proteins for thrombolysis therapy in ischaemic stroke and highlights the promise and challenges of stem cells and cerebral organoids in stroke therapy.
Collapse
Affiliation(s)
- Zhu-Wei Miao
- Department of Pharmacology, Second Military Medical University/ Naval Medical University, Shanghai, China
| | - Zhi Wang
- Department of Pharmacology, Second Military Medical University/ Naval Medical University, Shanghai, China
| | - Si-Li Zheng
- Department of Pharmacology, Second Military Medical University/ Naval Medical University, Shanghai, China
| | - Shu-Na Wang
- Department of Pharmacology, Second Military Medical University/ Naval Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/ Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Rust R, Nih LR, Liberale L, Yin H, El Amki M, Ong LK, Zlokovic BV. Brain repair mechanisms after cell therapy for stroke. Brain 2024; 147:3286-3305. [PMID: 38916992 PMCID: PMC11449145 DOI: 10.1093/brain/awae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024] Open
Abstract
Cell-based therapies hold great promise for brain repair after stroke. While accumulating evidence confirms the preclinical and clinical benefits of cell therapies, the underlying mechanisms by which they promote brain repair remain unclear. Here, we briefly review endogenous mechanisms of brain repair after ischaemic stroke and then focus on how different stem and progenitor cell sources can promote brain repair. Specifically, we examine how transplanted cell grafts contribute to improved functional recovery either through direct cell replacement or by stimulating endogenous repair pathways. Additionally, we discuss recently implemented preclinical refinement methods, such as preconditioning, microcarriers, genetic safety switches and universal (immune evasive) cell transplants, as well as the therapeutic potential of these pharmacologic and genetic manipulations to further enhance the efficacy and safety of cell therapies. By gaining a deeper understanding of post-ischaemic repair mechanisms, prospective clinical trials may be further refined to advance post-stroke cell therapy to the clinic.
Collapse
Affiliation(s)
- Ruslan Rust
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
| | - Lina R Nih
- Department of Brain Health, University of Nevada, Las Vegas, NV 89154, USA
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Mohamad El Amki
- Department of Neurology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Lin Kooi Ong
- School of Health and Medical Sciences & Centre for Health Research, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
7
|
Liang T, Liu J, Liu F, Su X, Li X, Zeng J, Chen F, Wen H, Chen Y, Tao J, Lei Q, Li G, Cheng P. Application of Pro-angiogenic Biomaterials in Myocardial Infarction. ACS OMEGA 2024; 9:37505-37529. [PMID: 39281944 PMCID: PMC11391569 DOI: 10.1021/acsomega.4c04682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024]
Abstract
Biomaterials have potential applications in the treatment of myocardial infarction (MI). These biomaterials have the ability to mechanically support the ventricular wall and to modulate the inflammatory, metabolic, and local electrophysiological microenvironment. In addition, they can play an equally important role in promoting angiogenesis, which is the primary prerequisite for the treatment of MI. A variety of biomaterials are known to exert pro-angiogenic effects, but the pro-angiogenic mechanisms and functions of different biomaterials are complex and diverse, and have not yet been systematically described. This review will focus on the pro-angiogenesis of biomaterials and systematically describe the mechanisms and functions of different biomaterials in promoting angiogenesis in MI.
Collapse
Affiliation(s)
- Tingting Liang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Xiaohan Su
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Xue Li
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jiao Zeng
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Fuli Chen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Heling Wen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Yu Chen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Jianhong Tao
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| |
Collapse
|
8
|
Okinaka Y, Maeda M, Kataoka Y, Nakagomi T, Doi A, Boltze J, Claussen C, Gul S, Taguchi A. Direct Water-Soluble Molecules Transfer from Transplanted Bone Marrow Mononuclear Cell to Hippocampal Neural Stem Cells. Stem Cells Dev 2024; 33:505-515. [PMID: 39028017 DOI: 10.1089/scd.2024.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Intravascularly transplanted bone marrow cells, including bone marrow mononuclear cells (BM-MNC) and mesenchymal stem cells, transfer water-soluble molecules to cerebral endothelial cells via gap junctions. After transplantation of BM-MNC, this fosters hippocampal neurogenesis and enhancement of neuronal function. Herein, we report the impact of transplanted BM-MNC on neural stem cells (NSC) in the brain. Surprisingly, direct transfer of water-soluble molecules from transplanted BM-MNC and peripheral mononuclear cells to NSC in the hippocampus was observed already 10 min after cell transplantation, and transfer from BM-MNC to GFAP-positive cortical astrocytes was also observed. In vitro investigations revealed that BM-MNC abolish the expression of hypoxia-inducible factor-1α in astrocytes. We suggest that the transient and direct transfer of water-soluble molecules between cells in circulation and NSC in the brain may be one of the biological mechanisms underlying the repair of brain function.
Collapse
Affiliation(s)
- Yuka Okinaka
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Mitsuyo Maeda
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yosky Kataoka
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo Medical University, Nishinomiya, Japan
| | - Akiko Doi
- Institute for Advanced Medical Sciences, Hyogo Medical University, Nishinomiya, Japan
| | - Johannes Boltze
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation, Kobe, Japan
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Carsten Claussen
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation, Kobe, Japan
| |
Collapse
|
9
|
Aili Y, Maimaitiming N, Wang Z, Wang Y. Brain organoids: A new tool for modelling of neurodevelopmental disorders. J Cell Mol Med 2024; 28:e18560. [PMID: 39258535 PMCID: PMC11388061 DOI: 10.1111/jcmm.18560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 09/12/2024] Open
Abstract
Neurodevelopmental disorders are mostly studied using mice as models. However, the mouse brain lacks similar cell types and structures as those of the human brain. In recent years, emergence of three-dimensional brain organoids derived from human embryonic stem cells or induced pluripotent stem cells allows for controlled monitoring and evaluation of early neurodevelopmental processes and has opened a window for studying various aspects of human brain development. However, such organoids lack original anatomical structure of the brain during maturation, and neurodevelopmental maturation processes that rely on unique cellular interactions and neural network connections are limited. Consequently, organoids are difficult to be used extensively and effectively while modelling later stages of human brain development and disease progression. To address this problem, several methods and technologies have emerged that aim to enhance the sophisticated regulation of brain organoids developmental processes through bioengineering approaches, which may alleviate some of the current limitations. This review discusses recent advances and application areas of human brain organoid culture methods, aiming to generalize optimization strategies for organoid systems, improve the ability to mimic human brain development, and enhance the application value of organoids.
Collapse
Affiliation(s)
- Yirizhati Aili
- Department of NeurosurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityXinjiangPeople's Republic of China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System TumorsXinjiang Medical UniversityXinjiangPeople's Republic of China
| | | | - Zengliang Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityXinjiangPeople's Republic of China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System TumorsXinjiang Medical UniversityXinjiangPeople's Republic of China
| | - Yongxin Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityXinjiangPeople's Republic of China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System TumorsXinjiang Medical UniversityXinjiangPeople's Republic of China
| |
Collapse
|
10
|
Gordon J, Borlongan CV. An update on stem cell therapy for stroke patients: Where are we now? J Cereb Blood Flow Metab 2024; 44:1469-1479. [PMID: 38639015 PMCID: PMC11418600 DOI: 10.1177/0271678x241227022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 04/20/2024]
Abstract
With a foundation built upon initial work from the 1980s demonstrating graft viability in cerebral ischemia, stem cell transplantation has shown immense promise in promoting survival, enhancing neuroprotection and inducing neuroregeneration, while mitigating both histological and behavioral deficits that frequently accompany ischemic stroke. These findings have led to a number of clinical trials that have thoroughly supported a strong safety profile for stem cell therapy in patients but have generated variable efficacy. As preclinical evidence continues to expand through the investigation of new cell lines and optimization of stem cell delivery, it remains critical for translational models to adhere to the protocols established through basic scientific research. With the recent shift in approach towards utilization of stem cells as a conjunctive therapy alongside standard thrombolytic treatments, key issues including timing, route of administration, and stem cell type must each be appropriately translated from the laboratory in order to resolve the question of stem cell efficacy for cerebral ischemia that ultimately will enhance therapeutics for stroke patients towards improving quality of life.
Collapse
Affiliation(s)
- Jonah Gordon
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
11
|
da Silva Gonçalves CE, Fock RA. Semaphorins and the bone marrow microenvironment: New candidates that influence the hematopoietic system. Cytokine Growth Factor Rev 2024; 76:22-29. [PMID: 38472041 DOI: 10.1016/j.cytogfr.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
The bone marrow is a haven for hematopoietic and non-hematopoietic cells, creating complex micro-anatomical regions called niches. These distinct niches all participate in an intricate orchestra of cellular interactions that regulates the hematopoietic stem cell and its progenies. In this review, we provide a detailed description of the three most well-known bone marrow niches and their participation in hematopoiesis. We use pre-clinical data, including different in vitro and in vivo studies to discuss how a group of proteins called Semaphorins could potentially modulate both hematopoietic and non-hematopoietic cells, establishing links between the niches, semaphorins, and hematopoietic regulation. Thus, here we provide a deep dive into the inner functioning of the bone marrow and discuss the overarching implications that semaphorins might have on blood formation.
Collapse
Affiliation(s)
- Carlos E da Silva Gonçalves
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Ricardo A Fock
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Yasui K, Ogawa Y, Saino O, Akamatsu R, Fuchizaki A, Irie Y, Nabetani M, Tanaka M, Takihara Y, Taguchi A, Kimura T. X-irradiated umbilical cord blood cells retain their regenerative effect in experimental stroke. Sci Rep 2024; 14:6907. [PMID: 38519559 PMCID: PMC10959937 DOI: 10.1038/s41598-024-57328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
Although regenerative therapy with stem cells is believed to be affected by their proliferation and differentiation potential, there is insufficient evidence regarding the molecular and cellular mechanisms underlying this regenerative effect. We recently found that gap junction-mediated cell-cell transfer of small metabolites occurred very rapidly after stem cell treatment in a mouse model of experimental stroke. This study aimed to investigate whether the tissue repair ability of umbilical cord blood cells is affected by X-irradiation at 15 Gy or more, which suppresses their proliferative ability. In this study, X-irradiated mononuclear (XR) cells were prepared from umbilical cord blood. Even though hematopoietic stem/progenitor cell activity was diminished in the XR cells, the regenerative activity was surprisingly conserved and promoted recovery from experimental stroke in mice. Thus, our study provides evidence regarding the possible therapeutic mechanism by which damaged cerebrovascular endothelial cells or perivascular astrocytes may be rescued by low-molecular-weight metabolites supplied by injected XR cells in 10 min as energy sources, resulting in improved blood flow and neurogenesis in the infarction area. Thus, XR cells may exert their tissue repair capabilities by triggering neo-neuro-angiogenesis, rather than via cell-autonomous effects.
Collapse
Affiliation(s)
- Kazuta Yasui
- Japanese Red Cross Kinki Block Blood Center, Ibaraki city, Osaka, Japan
| | - Yuko Ogawa
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe city, Hyogo, Japan
| | - Orie Saino
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe city, Hyogo, Japan
| | - Rie Akamatsu
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe city, Hyogo, Japan
| | - Akihiro Fuchizaki
- Japanese Red Cross Kinki Block Blood Center, Ibaraki city, Osaka, Japan
| | - Yoriko Irie
- Japanese Red Cross Kinki Block Blood Center, Ibaraki city, Osaka, Japan
| | - Makoto Nabetani
- Department of Pediatrics, Yodogawa Christian Hospital, Osaka, Japan
| | - Mitsunobu Tanaka
- Japanese Red Cross Kinki Block Blood Center, Ibaraki city, Osaka, Japan
| | | | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe city, Hyogo, Japan
| | - Takafumi Kimura
- Japanese Red Cross Kinki Block Blood Center, Ibaraki city, Osaka, Japan.
| |
Collapse
|
13
|
Bi J, Zhou W, Tang Z. Pathogenesis of diabetic complications: Exploring hypoxic niche formation and HIF-1α activation. Biomed Pharmacother 2024; 172:116202. [PMID: 38330707 DOI: 10.1016/j.biopha.2024.116202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Hypoxia is a common feature of diabetic tissues, which highly correlates to the progression of diabetes. The formation of hypoxic context is induced by disrupted oxygen homeostasis that is predominantly driven by vascular remodeling in diabetes. While different types of vascular impairments have been reported, the specific features and underlying mechanisms are yet to be fully understood. Under hypoxic condition, cells upregulate hypoxia-inducible factor-1α (HIF-1α), an oxygen sensor that coordinates oxygen concentration and cell metabolism under hypoxic conditions. However, diabetic context exploits this machinery for pathogenic functions. Although HIF-1α protects cells from diabetic insult in multiple tissues, it also jeopardizes cell function in the retina. To gain a deeper understanding of hypoxia in diabetic complications, we focus on the formation of tissue hypoxia and the outcomes of HIF-1α dysregulation under diabetic context. Hopefully, this review can provide a better understanding on hypoxia biology in diabetes.
Collapse
Affiliation(s)
- Jingjing Bi
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education,Southwest Medical University, Ministry of Education, Southwest Medical University, Luzhou, China
| | - Wenhao Zhou
- Yucebio Technology Co., Ltd., Shenzhen, China
| | - Zonghao Tang
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education,Southwest Medical University, Ministry of Education, Southwest Medical University, Luzhou, China; Baylor College of Medicine, Department of Molecular and Cellular Biology, Houston, TX, USA.
| |
Collapse
|
14
|
Okinaka Y, Shinagawa Y, Claussen C, Gul S, Matsui I, Matsui Y, Taguchi A. RNA Analysis of Circulating Leukocytes in Patients with Alzheimer's Disease. J Alzheimers Dis 2024; 97:1673-1683. [PMID: 38277293 PMCID: PMC10894574 DOI: 10.3233/jad-230874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 01/28/2024]
Abstract
Background One of the key symptoms of Alzheimer's disease (AD) is the impairment of short-term memory. Hippocampal neurogenesis is essential for short-term memory and is known to decrease in patients with AD. Impaired short-term memory and impaired neurogenesis are observed in aged mice alongside changes in RNA expression of gap junction and metabolism-related genes in circulating leukocytes. Moreover, after penetrating the blood-brain barrier via the SDF1/CXCR4 axis, circulating leukocytes directly interact with hippocampal neuronal stem cells via gap junctions. Objective Evaluation of RNA expression profiles in circulating leukocytes in patients with AD. Methods Patients with AD (MMSE≧23, n = 10) and age-matched controls (MMSE≧28, n = 10) were enrolled into this study. RNA expression profiles of gap junction and metabolism-related genes in circulating leukocytes were compared between the groups (jRCT: 1050210166). Results The ratios of gap junction and metabolism-related genes were significantly different between patients with AD and age-matched controls. However, due to large inter-individual variations, there were no statistically significant differences in the level of single RNA expression between these groups. Conclusions Our findings suggest a potential connection between the presence of circulating leukocytes and the process of hippocampal neurogenesis in individuals with AD. Analyzing RNA in circulating leukocytes holds promise as a means to offer novel insights into the pathology of AD, distinct from conventional markers.
Collapse
Affiliation(s)
- Yuka Okinaka
- Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Yoshiyuki Shinagawa
- Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation at Kobe, Hyogo, Japan
- Global Planning Group, Kaneka Corporation, Osaka, Japan
| | - Carsten Claussen
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| | - Ikuko Matsui
- Matsui Dietary and Dementia Clinic, Hyogo, Japan
| | | | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation at Kobe, Hyogo, Japan
| |
Collapse
|
15
|
Taguchi A, Okinaka Y, Takeda A, Okamoto T, Boltze J, Claussen C, Gul S. Activation of neurogenesis in the hippocampus is a novel therapeutic target for Alzheimer's disease. NEUROPROTECTION 2023; 1:139-142. [PMID: 38188232 PMCID: PMC7615480 DOI: 10.1002/nep3.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/08/2023] [Indexed: 01/09/2024]
Abstract
Highlights
Targeting single mechanisms of physiological (aging) and pathological (neurodegeneration) loss of function in the brain may not be sufficient.
Cell–cell interactions between transplanted adult stem cells and resident cells via gap junctions have the potential to support the aging or diseased brain.
These cell–cell interactions can also increase hippocampal neurogenesis.
This may be a novel therapeutic strategy for Alzheimer's disease and other neurodegenerative diseases that could be applied alongside any established treatments.
Collapse
Affiliation(s)
- Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Yuka Okinaka
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Akiko Takeda
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Takayuki Okamoto
- Department of Pharmacology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Johannes Boltze
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Carsten Claussen
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| |
Collapse
|
16
|
Scrutton AM, Ollis F, Boltze J. Mononuclear cell therapy of neonatal hypoxic-ischemic encephalopathy in preclinical versus clinical studies: a systematic analysis of therapeutic efficacy and study design. NEUROPROTECTION 2023; 1:143-159. [PMID: 38213793 PMCID: PMC7615506 DOI: 10.1002/nep3.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/08/2023] [Indexed: 01/13/2024]
Abstract
Background Hypoxic-ischemic encephalopathy (HIE) is a devastating condition affecting around 8.5 in 1000 newborns globally. Therapeutic hypothermia (TH) can reduce mortality and, to a limited extent, disability after HIE. Nevertheless, there is a need for new and effective treatment strategies. Cell based treatments using mononuclear cells (MNC), which can be sourced from umbilical cord blood, are currently being investigated. Despite promising preclinical results, there is currently no strong indicator for clinical efficacy of the approach. This analysis aimed to provide potential explanations for this discrepancy. Methods A systematic review and meta-analysis was conducted according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) guidelines. Preclinical and clinical studies were retrieved from PubMed, Web of Science, Scopus, and clinicaltrials.gov using a predefined search strategy. A total of 17 preclinical and 7 clinical studies were included. We analyzed overall MNC efficacy in preclinical trials, the methodological quality of preclinical trials and relevant design features in preclinical versus clinical trials. Results There was evidence for MNC therapeutic efficacy in preclinical models of HIE. The methodological quality of preclinical studies was not optimal, and statistical design quality was particularly poor. However, methodological quality was above the standard in other fields. There were significant differences in preclinical versus clinical study design including the use of TH as a baseline treatment (only in clinical studies) and much higher MNC doses being applied in preclinical studies. Conclusions Based on the analyzed data, it is unlikely that therapeutic effect size is massively overestimated in preclinical studies. It is more plausible that the many design differences between preclinical and clinical trials are responsible for the so far lacking proof of efficacy of MNC treatments in HIE. Additional preclinical and clinical research is required to optimize the application of MNC for experimental HIE treatment.
Collapse
Affiliation(s)
- Alexander M. Scrutton
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Neurobiology Division, MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - Francesca Ollis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
17
|
Kitamura T, Terashima T, Katagi M, Ohashi N, Nozaki K, Tsuji A. Bone marrow-derived mononuclear cells ameliorate neurological function in chronic cerebral infarction model mice via improvement of cerebral blood flow. Cytotherapy 2023; 25:1186-1199. [PMID: 37552144 DOI: 10.1016/j.jcyt.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND AIMS Stroke is a frequently observed neurological disorder that might lead to permanent and severe disability. Recently, various regenerative therapies have been developed, some of which have already been applied clinically. However, their outcomes have not been fully satisfactory. In particular, the development of regenerative therapies for chronic ischemic stroke is greatly needed. Herein intracerebral administration of bone marrow-derived mononuclear cells (BM-MNCs) was assessed as a potential treatment for chronic ischemic stroke using a severe combined immunodeficiency mouse model characterized by minimal vascular variation unrelated to immunodeficiency. METHODS A reproducible model of permanent middle cerebral artery occlusion was prepared, and intracerebral BM-MNC transplantation was performed 14 days after stroke induction in the infarcted brain. RESULTS Sensorimotor behavioral function and cerebral blood flow were significantly improved upon treatment with BM-MNCs compared to control medium injection. The transplanted cells exhibited characteristics of the vascular endothelium and microglia/macrophages. Significant angiogenesis and suppression of astrogliosis and microgliosis were observed in the affected brain. Messenger RNA expression analysis showed significant increases in anti-inflammatory cytokines, A2 astrocyte/anti-inflammatory microglia markers and vascular endothelial markers such as vascular endothelial growth factor and significant decreases in pro-inflammatory cytokines and A1 astrocyte/pro-inflammatory microglia markers following BM-MNC transplantation. CONCLUSIONS These results suggest that intracerebral administration of BM-MNCs should be considered an effective cell therapy for chronic stroke.
Collapse
Affiliation(s)
- Tomoaki Kitamura
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan; Department of Neurosurgery, Shiga University of Medical Science, Otsu, Japan
| | - Tomoya Terashima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan.
| | - Miwako Katagi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Natsuko Ohashi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Otsu, Japan
| | - Atsushi Tsuji
- Department of Neurosurgery, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
18
|
Nguyen QT, Thanh LN, Hoang VT, Phan TTK, Heke M, Hoang DM. Bone Marrow-Derived Mononuclear Cells in the Treatment of Neurological Diseases: Knowns and Unknowns. Cell Mol Neurobiol 2023; 43:3211-3250. [PMID: 37356043 DOI: 10.1007/s10571-023-01377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
Bone marrow-derived mononuclear cells (BMMNCs) have been used for decades in preclinical and clinical studies to treat various neurological diseases. However, there is still a knowledge gap in the understanding of the underlying mechanisms of BMMNCs in the treatment of neurological diseases. In addition, prerequisite factors for the efficacy of BMMNC administration, such as the optimal route, dose, and number of administrations, remain unclear. In this review, we discuss known and unknown aspects of BMMNCs, including the cell harvesting, administration route and dose; mechanisms of action; and their applications in neurological diseases, including stroke, cerebral palsy, spinal cord injury, traumatic brain injury, amyotrophic lateral sclerosis, autism spectrum disorder, and epilepsy. Furthermore, recommendations on indications for BMMNC administration and the advantages and limitations of BMMNC applications for neurological diseases are discussed. BMMNCs in the treatment of neurological diseases. BMMNCs have been applied in several neurological diseases. Proposed mechanisms for the action of BMMNCs include homing, differentiation and paracrine effects (angiogenesis, neuroprotection, and anti-inflammation). Further studies should be performed to determine the optimal cell dose and administration route, the roles of BMMNC subtypes, and the indications for the use of BMMNCs in neurological conditions with and without genetic abnormalities.
Collapse
Affiliation(s)
- Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam.
- College of Health Science, Vin University, Vinhomes Ocean Park, Gia Lam District, Hanoi, 12400, Vietnam.
- Vinmec International Hospital-Times City, Vinmec Healthcare System, 458 Minh Khai, Hanoi, 11622, Vietnam.
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Trang T K Phan
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| |
Collapse
|
19
|
Fang J, Wang Z, Miao CY. Angiogenesis after ischemic stroke. Acta Pharmacol Sin 2023; 44:1305-1321. [PMID: 36829053 PMCID: PMC10310733 DOI: 10.1038/s41401-023-01061-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
Owing to its high disability and mortality rates, stroke has been the second leading cause of death worldwide. Since the pathological mechanisms of stroke are not fully understood, there are few clinical treatment strategies available with an exception of tissue plasminogen activator (tPA), the only FDA-approved drug for the treatment of ischemic stroke. Angiogenesis is an important protective mechanism that promotes neural regeneration and functional recovery during the pathophysiological process of stroke. Thus, inducing angiogenesis in the peri-infarct area could effectively improve hemodynamics, and promote vascular remodeling and recovery of neurovascular function after ischemic stroke. In this review, we summarize the cellular and molecular mechanisms affecting angiogenesis after cerebral ischemia registered in PubMed, and provide pro-angiogenic strategies for exploring the treatment of ischemic stroke, including endothelial progenitor cells, mesenchymal stem cells, growth factors, cytokines, non-coding RNAs, etc.
Collapse
Affiliation(s)
- Jie Fang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Zhi Wang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
20
|
Moniche F, Cabezas-Rodriguez JA, Valverde R, Escudero-Martinez I, Lebrato-Hernandez L, Pardo-Galiana B, Ainz L, Medina-Rodriguez M, de la Torre J, Escamilla-Gomez V, Ortega-Quintanilla J, Zapata-Arriaza E, de Albóniga-Chindurza A, Mancha F, Gamero MA, Perez S, Espinosa-Rosso R, Forero-Diaz L, Moya M, Piñero P, Calderón-Cabrera C, Nogueras S, Jimenez R, Martin V, Delgado F, Ochoa-Sepúlveda JJ, Quijano B, Mata R, Santos-González M, Carmona-Sanchez G, Herrera C, Gonzalez A, Montaner J. Safety and efficacy of intra-arterial bone marrow mononuclear cell transplantation in patients with acute ischaemic stroke in Spain (IBIS trial): a phase 2, randomised, open-label, standard-of-care controlled, multicentre trial. Lancet Neurol 2023; 22:137-146. [PMID: 36681446 DOI: 10.1016/s1474-4422(22)00526-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Pilot clinical trials have shown the safety of intra-arterial bone marrow mononuclear cells (BMMNCs) in stroke. However, the efficacy of different doses of intra-arterial BMMNCs in patients with acute stroke has not been tested in a randomised clinical trial. We aimed to show safety and efficacy of two different doses of autologous intra-arterial BMMNC transplantation in patients with acute stroke. METHODS The IBIS trial was a multicentre phase 2, randomised, controlled, investigator-initiated, assessor-blinded, clinical trial, in four stroke centres in Spain. We included patients (aged 18-80 years) with a non-lacunar, middle cerebral artery ischaemic stroke within 1-7 days from stroke onset and with a National Institutes of Health Stroke Scale score of 6-20. We randomly assigned patients (2:1:1) with a computer-generated randomisation sequence to standard of care (control group) or intra-arterial injection of autologous BMMNCs at one of two different doses (2 × 106 BMMNCs/kg or 5 × 106 BMMNCs/kg). The primary efficacy outcome was the proportion of patients with modified Rankin Scale scores of 0-2 at 180 days in the intention-to-treat population, comparing each BMMNC dose group and the pooled BMMNC group versus the control group. The primary safety endpoint was the proportion of serious adverse events. This trial was registered at ClinicalTrials.gov, NCT02178657 and is completed. FINDINGS Between April 1, 2015, and May 20, 2021, we assessed 114 patients for eligibility. We randomly assigned 77 (68%) patients: 38 (49%) to the control group, 20 (26%) to the low-dose BMMNC group, and 19 (25%) the high-dose BMMNC group. The mean age of participants was 62·4 years (SD 12·7), 46 (60%) were men, 31 (40%) were women, all were White, and 63 (82%) received thrombectomy. The median NIHSS score before randomisation was 12 (IQR 9-15), with intra-arterial BMMNC injection done a median of 6 days (4-7) after stroke onset. The primary efficacy outcome occurred in 14 (39%) patients in the control group versus ten (50%) in the low-dose group (adjusted odds ratio 2·08 [95% CI 0·55-7·85]; p=0·28), eight (44%) in the high-dose group (1·89 [0·52-6·96]; p=0·33), and 18 (47%) in the pooled BMMNC group (2·22 [0·72-6·85]; p=0·16). We found no differences in the proportion of patients who had adverse events or dose-related events, but two patients had a groin haematoma after cell injection in the low-dose BMMNC group. INTERPRETATION Intra-arterial BMMNCs were safe in patients with acute ischaemic stroke, but we found no significant improvement at 180 days on the mRS. Further clinical trials are warranted to investigate whether improvements might be possible at different timepoints. FUNDING Instituto de Salud Carlos III co-funded by the European Regional Development Fund/European Social Fund, Mutua Madrileña, and the Regional Ministry of Health of Andalusia.
Collapse
Affiliation(s)
- Francisco Moniche
- Department of Neurology, Virgen del Rocío University Hospital, Seville, Spain; Neurovascular Lab, Instituto de Biomedicina de Sevilla-IBiS, Seville, Spain.
| | | | - Roberto Valverde
- Department of Neurology, Department of Radiology, Reina Sofía University Hospital, Cordoba, Spain
| | - Irene Escudero-Martinez
- Department of Neurology, Virgen del Rocío University Hospital, Seville, Spain; Neurovascular Lab, Instituto de Biomedicina de Sevilla-IBiS, Seville, Spain
| | | | | | - Leire Ainz
- Department of Neurology, Virgen del Rocío University Hospital, Seville, Spain
| | - Manuel Medina-Rodriguez
- Department of Neurology, Virgen del Rocío University Hospital, Seville, Spain; Neurovascular Lab, Instituto de Biomedicina de Sevilla-IBiS, Seville, Spain
| | - Javier de la Torre
- Department of Neurology, Virgen del Rocío University Hospital, Seville, Spain
| | | | | | - Elena Zapata-Arriaza
- Interventional Neuroradiology, Virgen del Rocío University Hospital, Seville, Spain
| | | | - Fernando Mancha
- Neurovascular Lab, Instituto de Biomedicina de Sevilla-IBiS, Seville, Spain
| | - Miguel-Angel Gamero
- Department of Neurology, Virgen Macarena University Hospital, Seville, Spain
| | - Soledad Perez
- Department of Neurology, Virgen Macarena University Hospital, Seville, Spain
| | | | - Lucia Forero-Diaz
- Department of Neurology, Puerta del Mar University Hospital, Cadiz, Spain
| | - Miguel Moya
- Department of Neurology, Puerta del Mar University Hospital, Cadiz, Spain
| | - Pilar Piñero
- Department of Radiology, Virgen del Rocío University Hospital, Seville, Spain
| | | | - Sonia Nogueras
- Cell Therapy Unit, Reina Sofía University Hospital, IMIBIC, University of Córdoba, Córdoba, Spain
| | - Rosario Jimenez
- Cell Therapy Unit, Reina Sofía University Hospital, IMIBIC, University of Córdoba, Córdoba, Spain
| | - Vanesa Martin
- Department of Hematology, Reina Sofía University Hospital, IMIBIC, University of Córdoba, Córdoba, Spain; Cell Therapy Unit, Reina Sofía University Hospital, IMIBIC, University of Córdoba, Córdoba, Spain
| | - Fernando Delgado
- Interventional Neuroradiology, Department of Radiology, Reina Sofía University Hospital, Cordoba, Spain
| | | | - Blanca Quijano
- Coordination Unit of the Andalusian Network for the design and translation of Advanced Therapies, Seville, Spain
| | - Rosario Mata
- Coordination Unit of the Andalusian Network for the design and translation of Advanced Therapies, Seville, Spain
| | - Monica Santos-González
- Production and Reprogramming Cell Unit of Seville, Andalusian Network for the Design and Translation of Advanced Therapies, Seville, Spain; Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
| | - Gloria Carmona-Sanchez
- Coordination Unit of the Andalusian Network for the design and translation of Advanced Therapies, Seville, Spain; Production and Reprogramming Cell Unit of Seville, Andalusian Network for the Design and Translation of Advanced Therapies, Seville, Spain
| | - Concha Herrera
- Department of Hematology, Reina Sofía University Hospital, IMIBIC, University of Córdoba, Córdoba, Spain; Cell Therapy Unit, Reina Sofía University Hospital, IMIBIC, University of Córdoba, Córdoba, Spain
| | - Alejandro Gonzalez
- Interventional Neuroradiology, Virgen del Rocío University Hospital, Seville, Spain
| | - Joan Montaner
- Neurovascular Lab, Instituto de Biomedicina de Sevilla-IBiS, Seville, Spain; Department of Neurology, Virgen Macarena University Hospital, Seville, Spain
| |
Collapse
|
21
|
Luo G, Wosinski P, Salazar-Noratto GE, Bensidhoum M, Bizios R, Marashi SA, Potier E, Sheng P, Petite H. Glucose Metabolism: Optimizing Regenerative Functionalities of Mesenchymal Stromal Cells Postimplantation. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:47-61. [PMID: 35754335 DOI: 10.1089/ten.teb.2022.0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mesenchymal stromal cells (MSCs) are considered promising candidates for regenerative medicine applications. Their clinical performance postimplantation, however, has been disappointing. This lack of therapeutic efficacy is most likely due to suboptimal formulations of MSC-containing material constructs. Tissue engineers, therefore, have developed strategies addressing/incorporating optimized cell, microenvironmental, biochemical, and biophysical cues/stimuli to enhance MSC-containing construct performance. Such approaches have had limited success because they overlooked that maintenance of MSC viability after implantation for a sufficient time is necessary for MSCs to develop their regenerative functionalities fully. Following a brief overview of glucose metabolism and regulation in MSCs, the present literature review includes recent pertinent findings that challenge old paradigms and notions. We hereby report that glucose is the primary energy substrate for MSCs, provides precursors for biomass generation, and regulates MSC functions, including proliferation and immunosuppressive properties. More importantly, glucose metabolism is central in controlling in vitro MSC expansion, in vivo MSC viability, and MSC-mediated angiogenesis postimplantation when addressing MSC-based therapies. Meanwhile, in silico models are highlighted for predicting the glucose needs of MSCs in specific regenerative medicine settings, which will eventually enable tissue engineers to design viable and potent tissue constructs. This new knowledge should be incorporated into developing novel effective MSC-based therapies. Impact statement The clinical use of mesenchymal stromal cells (MSCs) has been unsatisfactory due to the inability of MSCs to survive and be functional after implantation for sufficient periods to mediate directly or indirectly a successful regenerative tissue response. The present review summarizes the endeavors in the past, but, most importantly, reports the latest findings that elucidate underlying mechanisms and identify glucose metabolism as the crucial parameter in MSC survival and the subsequent functions pertinent to new tissue formation of importance in tissue regeneration applications. These latest findings justify further basic research and the impetus for developing new strategies to improve the modalities and efficacy of MSC-based therapies.
Collapse
Affiliation(s)
- Guotian Luo
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Pauline Wosinski
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Giuliana E Salazar-Noratto
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Morad Bensidhoum
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Rena Bizios
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Sayed-Amir Marashi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Esther Potier
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Puyi Sheng
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hervé Petite
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| |
Collapse
|
22
|
Different Contacted Cell Types Contribute to Acquiring Different Properties in Brain Microglial Cells upon Intercellular Interaction. Int J Mol Sci 2023; 24:ijms24021774. [PMID: 36675286 PMCID: PMC9861207 DOI: 10.3390/ijms24021774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Microglial cells (MGs), originally derived from progenitor cells in a yolk sac during early development, are glial cells located in a physiological and pathological brain. Since the brain contains various cell types, MGs could frequently interact with different cells, such as astrocytes (ACs), pericytes (PCs), and endothelial cells (ECs). However, how microglial traits are regulated via cell-cell interactions by ACs, PCs, or ECs and how they are different depending on the contacted cell types is unclear. This study aimed to clarify these questions by coculturing MGs with ACs, PCs, or ECs using mouse brain-derived cells, and microglial phenotypic changes were investigated under culture conditions that enabled direct cell-cell contact. Our results showed that ACs or PCs dose-dependently increased the number of MG, while ECs decreased it. Microarray and gene ontology analysis showed that cell fate-related genes (e.g., cell cycle, proliferation, growth, death, and apoptosis) of MGs were altered after a cell-cell contact with ACs, PCs, and ECs. Notably, microarray analysis showed that several genes, such as gap junction protein alpha 1 (Gja1), were prominently upregulated in MGs after coincubation with ACs, PCs, or ECs, regardless of cell types. Similarly, immunohistochemistry showed that an increased Gja1 expression was observed in MGs after coincubation with ACs, PCs, or ECs. Immunofluorescent and fluorescence-activated cell sorting analysis also showed that calcein-AM was transferred into MGs after coincubation with ACs, PCs, or ECs, confirming that intercellular interactions occurred between these cells. However, while Gja1 inhibition reduced the number of MGs after coincubation with ACs and PCs, this was increased after coincubation with ECs; this indicates that ACs and PCs positively regulate microglial numbers via Gja1, while ECs decrease it. Results show that ACs, PCs, or ECs exert both common and specific cell type-dependent effects on MGs through intercellular interactions. These findings also suggest that brain microglial phenotypes are different depending on their surrounding cell types, such as ACs, PCs, or ECs.
Collapse
|
23
|
Ogawa Y, Akamatsu R, Fuchizaki A, Yasui K, Saino O, Tanaka M, Kikuchi-Taura A, Kimura T, Taguchi A. Gap Junction-Mediated Transport of Metabolites Between Stem Cells and Vascular Endothelial Cells. Cell Transplant 2022; 31:9636897221136151. [PMID: 36401520 PMCID: PMC9679345 DOI: 10.1177/09636897221136151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have previously demonstrated that small molecular transfer, such as glucose, between hematopoietic stem cells (HSCs) or mesenchymal stem cells (MSCs) and vascular endothelial cells via gap junctions constitutes an important mechanism of stem cell therapy. Cell metabolites are high-potential small-molecule candidates that can be transferred to small molecules between stem cells and vascular endothelial cells. Here, we investigated the differences in metabolite levels between stem cells (HSCs and MSCs), vascular endothelial cells, and the levels of circulating non-hematopoietic white blood cells (WBCs). The results showed remarkable differences in metabolite concentrations between cells. Significantly higher concentrations of adenosine triphosphate (ATP), guanosine triphosphate (GTP), total adenylate or guanylate levels, glycolytic intermediates, and amino acids were found in HSCs compared with vascular endothelial cells. In contrast, there was no significant difference in the metabolism of MSCs and vascular endothelial cells. From the results of this study, it became clear that HSCs and MSCs differ in their metabolites. That is, metabolites that transfer between stem cells and vascular endothelial cells differ between HSCs and MSCs. HSCs may donate various metabolites, several glycolytic and tricarboxylic acid cycle metabolites, and amino acids to damaged vascular endothelial cells as energy sources and activate the energy metabolism of vascular endothelial cells. In contrast, MSCs and vascular endothelial cells regulate each other under normal conditions. As the existing MSCs cannot ameliorate the dysregulation during insult, exogenous MSCs administered by cell therapy may help restore normal metabolic function in the vascular endothelial cells by taking up excess energy sources from the lumens of blood vessels. Results of this study suggested that the appropriate timing of cell therapy is different between HSCs and MSCs.
Collapse
Affiliation(s)
- Yuko Ogawa
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Rie Akamatsu
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | | | - Kazuta Yasui
- Japanese Red Cross Kinki Block Blood Center, Osaka, Japan
| | - Orie Saino
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | | | - Akie Kikuchi-Taura
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | | | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan,Akihiko Taguchi, Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
24
|
The Role of Connexin in Ophthalmic Neovascularization and the Interaction between Connexin and Proangiogenic Factors. J Ophthalmol 2022; 2022:8105229. [PMID: 35783340 PMCID: PMC9242797 DOI: 10.1155/2022/8105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/11/2022] [Indexed: 12/02/2022] Open
Abstract
The formation of new blood vessels is an important physiological process that occurs during development. When the body is injured, new blood vessel formation helps the body recuperate by supplying more oxygen and nutrients. However, this mechanism can have a negative effect. In ophthalmologic diseases, such as corneal new blood vessels, neonatal vascular glaucoma, and diabetes retinopathy, the formation of new blood vessels has become a critical component in patient survival. Connexin is a protein that regulates the cellular and molecular material carried by cells. It has been demonstrated that it is widely expressed in vascular endothelial cells, where it forms a slit connection between adjacent cells to promote cell-cell communication via hemichannels, as well as substance exchange into intracellular environments. Numerous studies have demonstrated that connexin in vascular endothelial cells plays an important role in angiogenesis and vascular leakage. The purpose of this study was to investigate the effect between the angiogenesis-associated factor and the connexin. It also reveals the effect of connexin on ophthalmic neovascularization.
Collapse
|
25
|
Wrobeln A, Leu T, Jablonska J, Geisthoff U, Lang S, Fandrey J, Droege F. Altered hypoxia inducible factor regulation in hereditary haemorrhagic telangiectasia. Sci Rep 2022; 12:5877. [PMID: 35393474 PMCID: PMC8988913 DOI: 10.1038/s41598-022-09759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/29/2022] [Indexed: 11/09/2022] Open
Abstract
Patients with hereditary haemorrhagic telangiectasia (HHT), also known as Rendu–Osler–Weber syndrome, suffer from the consequences of abnormal vessel structures. These structures can lead to haemorrhages or shunt effects in liver, lungs and brain. This inherited and rare disease is characterized by mutations affecting the transforming growth factor-β (TGF-β)/Bone Morphogenetic Protein (BMP) pathway that results in arteriovenous malformations and studies indicate an impaired immune response. The mechanism underlying this altered immune response in HHT patients is still unknown. TGF-β interacts with hypoxia inducible factors (HIF), which both orchestrate inflammatory and angiogenic processes. Therefore, we analysed the expression of HIF and related genes in whole blood samples from HHT patients. We could show significantly decreased expression of HIF-1α on the mRNA and protein level. However, commonly known upstream regulators of HIF-1α in inflammatory responses were not affected, whereas HIF-1α target genes were significantly downregulated. There was no correlation between HIF1A or HIF2A gene expression and the severity of HHT detected. Our results represent a rare case of HIF-1α downregulation in a human disease, which underlines the relevance of HIFs in HHT. The study indicates an interaction of the known mutation in HHT and the dysregulation of HIF-1α in HHT patients, which might contribute to the clinical phenotype.
Collapse
Affiliation(s)
- Anna Wrobeln
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany.
| | - Tristan Leu
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Jadwiga Jablonska
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstaße 55, 45147, Essen, Germany
| | - Urban Geisthoff
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Joachim Fandrey
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Freya Droege
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| |
Collapse
|
26
|
Jin X, Li P, Michalski D, Li S, Zhang Y, Jolkkonen J, Cui L, Didwischus N, Xuan W, Boltze J. Perioperative stroke: A perspective on challenges and opportunities for experimental treatment and diagnostic strategies. CNS Neurosci Ther 2022; 28:497-509. [PMID: 35224865 PMCID: PMC8928912 DOI: 10.1111/cns.13816] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/06/2023] Open
Abstract
Perioperative stroke is an ischemic or hemorrhagic cerebral event during or up to 30 days after surgery. It is a feared condition due to a relatively high incidence, difficulties in timely detection, and unfavorable outcome compared to spontaneously occurring stroke. Recent preclinical data suggest that specific pathophysiological mechanisms such as aggravated neuroinflammation contribute to the detrimental impact of perioperative stroke. Conventional treatment options are limited in the perioperative setting due to difficult diagnosis and medications affecting coagulation in may cases. On the contrary, the chance to anticipate cerebrovascular events at the time of surgery may pave the way for prevention strategies. This review provides an overview on perioperative stroke incidence, related problems, and underlying pathophysiological mechanisms. Based on this analysis, we assess experimental stroke treatments including neuroprotective approaches, cell therapies, and conditioning medicine strategies regarding their potential use in perioperative stroke. Interestingly, the specific aspects of perioperative stroke might enable a more effective application of experimental treatment strategies such as classical neuroprotection whereas others including cell therapies may be of limited use. We also discuss experimental diagnostic options for perioperative stroke augmenting classical clinical and imaging stroke diagnosis. While some experimental stroke treatments may have specific advantages in perioperative stroke, the paucity of established guidelines or multicenter clinical research initiatives currently limits their thorough investigation.
Collapse
Affiliation(s)
- Xia Jin
- Department of Anesthesiology, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | | | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yueman Zhang
- Department of Anesthesiology, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Jukka Jolkkonen
- Department of Neurology and A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Lili Cui
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Nadine Didwischus
- School of Life Sciences, University of Warwick, Coventry, UK.,Department of Radiology, University of Pittsburgh, Pittsburgh, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Wei Xuan
- Department of Anesthesiology, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
27
|
Tracy EP, Stielberg V, Rowe G, Benson D, Nunes SS, Hoying JB, Murfee WL, LeBlanc AJ. State of the field: cellular and exosomal therapeutic approaches in vascular regeneration. Am J Physiol Heart Circ Physiol 2022; 322:H647-H680. [PMID: 35179976 PMCID: PMC8957327 DOI: 10.1152/ajpheart.00674.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/19/2023]
Abstract
Pathologies of the vasculature including the microvasculature are often complex in nature, leading to loss of physiological homeostatic regulation of patency and adequate perfusion to match tissue metabolic demands. Microvascular dysfunction is a key underlying element in the majority of pathologies of failing organs and tissues. Contributing pathological factors to this dysfunction include oxidative stress, mitochondrial dysfunction, endoplasmic reticular (ER) stress, endothelial dysfunction, loss of angiogenic potential and vascular density, and greater senescence and apoptosis. In many clinical settings, current pharmacologic strategies use a single or narrow targeted approach to address symptoms of pathology rather than a comprehensive and multifaceted approach to address their root cause. To address this, efforts have been heavily focused on cellular therapies and cell-free therapies (e.g., exosomes) that can tackle the multifaceted etiology of vascular and microvascular dysfunction. In this review, we discuss 1) the state of the field in terms of common therapeutic cell population isolation techniques, their unique characteristics, and their advantages and disadvantages, 2) common molecular mechanisms of cell therapies to restore vascularization and/or vascular function, 3) arguments for and against allogeneic versus autologous applications of cell therapies, 4) emerging strategies to optimize and enhance cell therapies through priming and preconditioning, and, finally, 5) emerging strategies to bolster therapeutic effect. Relevant and recent clinical and animal studies using cellular therapies to restore vascular function or pathologic tissue health by way of improved vascularization are highlighted throughout these sections.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Virginia Stielberg
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Gabrielle Rowe
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Daniel Benson
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
- Department of Bioengineering, University of Louisville, Louisville, Kentucky
| | - Sara S Nunes
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario, Canada
| | - James B Hoying
- Advanced Solutions Life Sciences, Manchester, New Hampshire
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Amanda Jo LeBlanc
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
28
|
Ogawa Y, Okinaka Y, Kikuchi-Taura A, Saino O, Tani-Yokoyama A, Masuda S, Komatsu-Horii M, Ikemoto Y, Kawamoto A, Fukushima M, Taguchi A. Pre-Clinical Proof of Concept: Intra-Carotid Injection of Autologous CD34-Positive Cells for Chronic Ischemic Stroke. Front Med (Lausanne) 2022; 9:681316. [PMID: 35360717 PMCID: PMC8963182 DOI: 10.3389/fmed.2022.681316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 02/04/2022] [Indexed: 11/24/2022] Open
Abstract
This study was conducted to evaluate the safety and efficacy of human peripheral blood CD34 positive (CD34+) cells transplanted into a murine chronic stroke model to obtain pre-clinical proof of concept, prior to clinical testing. Granulocyte colony stimulating factor (G-CSF) mobilized human CD34+ cells [1 × 104 cells in 50 μl phosphate-buffered saline (PBS)] were intravenously (iv) or intra-carotid arterially (ia) transplanted 4 weeks after the induction of stroke (chronic stage), and neurological function was evaluated. In this study, severe combined immune deficiency (SCID) mice were used to prevent excessive immune response after cell therapy. Two weeks post cell therapy, the ia CD34+ cells group demonstrated a significant improvement in neurological functions compared to the PBS control. The therapeutic effect was maintained 8 weeks after the treatment. Even after a single administration, ia transplantation of CD34+ cells had a significant therapeutic effect on chronic stroke. Based on the result of this pre-clinical proof of concept study, a future clinical trial of autologous peripheral blood CD34+ cells administration in the intra-carotid artery for chronic stroke patients is planned.
Collapse
Affiliation(s)
- Yuko Ogawa
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Yuka Okinaka
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Akie Kikuchi-Taura
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Orie Saino
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Ayumi Tani-Yokoyama
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Satoru Masuda
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Miki Komatsu-Horii
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Yoshihiko Ikemoto
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Atsuhiko Kawamoto
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | | | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
- *Correspondence: Akihiko Taguchi
| |
Collapse
|
29
|
Lyu H, Sun DM, Ng CP, Cheng WS, Chen JF, He YZ, Lam SY, Zheng ZY, Huang GD, Wang CC, Young W, Poon WS. Umbilical Cord Blood Mononuclear Cell Treatment for Neonatal Rats With Hypoxic Ischemia. Front Cell Neurosci 2022; 16:823320. [PMID: 35308119 PMCID: PMC8924590 DOI: 10.3389/fncel.2022.823320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Background Hypoxic-ischemic encephalopathy (HIE) occurs when an infant’s brain has not received adequate oxygen and blood supply, resulting in ischemic and hypoxic damage. Currently, supportive care and hypothermia therapy have been the standard treatment for HIE. However, there are still over 20% of treated infants died and 19–30% survived with significant disability. HIE animal model was first established by Rice et al., involving the ligation of one common carotid artery followed by hypoxia. In this study, we investigated human umbilical cord blood (HUCB) and its two components mononuclear cell (MNC) and red cell fraction (RCF) in both short and long term study using a modified HIE rat model. Methods In this modified HIE model, both common carotid arteries were occluded, breathing 8% oxygen in a hypoxic chamber for 60-min, followed by the release of the common carotid arteries ligature, mimicking reperfusion injury. For cell therapeutic study, cells were intravenously injected to HIE rat pups, and both behavioral and histological changes were assessed at selected time points. Result Statistically significant behavioral improvements were demonstrated on Day 7 and 1 month between saline treated HIE rats and UCB/MNC treated rats. However, at 3 months, the therapeutic improvements were only showed between saline treated HIE animals and MNC treated HIE rats. For histological analysis 1 month after cell injection, the number of functional neurons were statistically increased between saline treated HIE and UCB/MNC/RCF treated HIE rats. At 3 months, the significant increase in functional neurons was only present in MNC treated HIE rats. Conclusion We have used a bilateral temporary occlusion of 60 min, a moderately brain damaged model, for cell therapeutic studies. HUCB mononuclear cell (MNC) therapy showed benefits in neonatal HIE rats in both short and long term behavioral and histological assessments.
Collapse
Affiliation(s)
- Hao Lyu
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, The Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Dong Ming Sun
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Chi Ping Ng
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wendy S. Cheng
- Mononuclear Therapeutics Limited, Hong Kong, Hong Kong SAR, China
| | - Jun Fan Chen
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yu Zhong He
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Sin Yu Lam
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhi Yuan Zheng
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Neurosurgery, Hainan Hospital of People’s Liberation Army General Hospital, Sanya, China
| | - Guo Dong Huang
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, The Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynecology, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, Shatin, Hong Kong SAR, China
| | - Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- *Correspondence: Wise Young,
| | - Wai Sang Poon
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- *Correspondence: Wise Young,
| |
Collapse
|
30
|
Takeuchi Y, Saino O, Okinaka Y, Ogawa Y, Akamatsu R, Kikuchi-Taura A, Kataoka Y, Maeda M, Gul S, Claussen C, Boltze J, Taguchi A. Increased RNA Transcription of Energy Source Transporters in Circulating White Blood Cells of Aged Mice. Front Aging Neurosci 2022; 14:759159. [PMID: 35185523 PMCID: PMC8850360 DOI: 10.3389/fnagi.2022.759159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Circulating white blood cells (WBC) contribute toward maintenance of cerebral metabolism and brain function. Recently, we showed that during aging, transcription of metabolism related genes, including energy source transports, in the brain significantly decreased at the hippocampus resulting in impaired neurological functions. In this article, we investigated the changes in RNA transcription of metabolism related genes (glucose transporter 1 [Glut1], Glut3, monocarboxylate transporter 4 [MCT4], hypoxia inducible factor 1-α [Hif1-α], prolyl hydroxylase 3 [PHD3] and pyruvate dehydrogenase kinase 1 [PDK1]) in circulating WBC and correlated these with brain function in mice. Contrary to our expectations, most of these metabolism related genes in circulating WBC significantly increased in aged mice, and correlation between their increased RNA transcription and impaired neurological functions was observed. Bone marrow mononuclear transplantation into aged mice decreased metabolism related genes in WBC with accelerated neurogenesis in the hippocampus. In vitro analysis revealed that cell-cell interaction between WBC and endothelial cells via gap junction is impaired with aging, and blockade of the interaction increased their transcription in WBC. Our findings indicate that gross analysis of RNA transcription of metabolism related genes in circulating WBC has the potential to provide significant information relating to impaired cell-cell interaction between WBC and endothelial cells of aged mice. Additionally, this can serve as a tool to evaluate the change of the cell-cell interaction caused by various treatments or diseases.
Collapse
Affiliation(s)
- Yukiko Takeuchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Orie Saino
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Yuka Okinaka
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Yuko Ogawa
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Rie Akamatsu
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Akie Kikuchi-Taura
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Yosky Kataoka
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, RIKEN, Hyogo, Japan
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, RIKEN, Hyogo, Japan
| | - Mitsuyo Maeda
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, RIKEN, Hyogo, Japan
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, RIKEN, Hyogo, Japan
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Hamburg, Germany
| | - Carsten Claussen
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Hamburg, Germany
| | - Johannes Boltze
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
- *Correspondence: Akihiko Taguchi,
| |
Collapse
|
31
|
Rapposelli S, Gaudio E, Bertozzi F, Gul S. Editorial: Protein-Protein Interactions: Drug Discovery for the Future. Front Chem 2021; 9:811190. [PMID: 34912787 PMCID: PMC8666435 DOI: 10.3389/fchem.2021.811190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
| | | | | | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology, Hamburg, Germany
| |
Collapse
|
32
|
Abstract
Mitochondria play a central role in the pathophysiological processes of acute ischemic stroke. Disruption of the cerebral blood flow during acute ischemic stroke interrupts oxygen and glucose delivery, leading to the dysfunction of mitochondrial oxidative phosphorylation and cellular bioenergetic stress. Cells can respond to such stress by activating mitochondrial quality control mechanisms, including the mitochondrial unfolded protein response, mitochondrial fission and fusion, mitophagy, mitochondrial biogenesis, and intercellular mitochondrial transfer. Collectively, these adaptive response strategies contribute to retaining the integrity and function of the mitochondrial network, thereby helping to recover the homeostasis of the neurovascular unit. In this review, we focus on mitochondrial quality control mechanisms occurring in acute ischemic stroke. A better understanding of how these regulatory pathways work in maintaining mitochondrial homeostasis will provide a rationale for developing innovative neuroprotectants when these mechanisms fail in acute ischemic stroke.
Collapse
Affiliation(s)
- Hong An
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Bing Zhou
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China.,Interdisciplinary Innovation Institute of Medicine and Engineering Interdisciplinary, Beihang University, Beijing, China
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China.,Interdisciplinary Innovation Institute of Medicine and Engineering Interdisciplinary, Beihang University, Beijing, China.,Department of Neurosurgery, 71044Xuanwu Hospital, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Yu W, Jin H, Sun W, Nan D, Deng J, Jia J, Yu Z, Huang Y. Connexin43 promotes angiogenesis through activating the HIF-1α/VEGF signaling pathway under chronic cerebral hypoperfusion. J Cereb Blood Flow Metab 2021; 41:2656-2675. [PMID: 33899559 PMCID: PMC8504949 DOI: 10.1177/0271678x211010354] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chronic cerebral hypoperfusion, a major vascular contributor to vascular cognitive impairment and dementia, can exacerbate small vessel pathology. Connexin43, the most abundant gap junction protein in brain tissue, has been found to be critically involved in the pathological changes of vascular cognitive impairment and dementia caused by chronic cerebral hypoperfusion. However, the precise mechanisms underpinning its role are unclear. We established a mouse model via bilateral common carotid arteries stenosis on connexin43 heterozygous male mice and demonstrated that connexin43 improves brain blood flow recovery by mediating reparative angiogenesis under chronic cerebral hypoperfusion, which subsequently reduces the characteristic pathologies of vascular cognitive impairment and dementia including white matter lesions and irreversible neuronal injury. We additionally found that connexin43 mediates hypoxia inducible factor-1α expression and then activates the PKA signaling pathway to regulate vascular endothelial growth factor-induced angiogenesis. All the above findings were replicated in bEnd.3 cells treated with 375 µM CoCl2in vitro. These results suggest that connexin 43 could be instrumental in developing potential therapies for vascular cognitive impairment and dementia caused by chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Weiwei Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Ding Nan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jingjing Jia
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zemou Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
34
|
Ogawa Y, Saino O, Okinaka Y, Kikuchi-Taura A, Takeuchi Y, Taguchi A. Bone Marrow Mononuclear Cells Transplantation and Training Increased Transplantation of Energy Source Transporters in Chronic Stroke. J Stroke Cerebrovasc Dis 2021; 30:105932. [PMID: 34148020 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/16/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVES Bone marrow mononuclear cells (BM-MNC) show a significant therapeutic effect in combination with training even in the chronic phase of stroke. However, the mechanism of this combination therapy has not been investigated. Here, we examined its effects on brain metabolism in chronic stroke mice. MATERIALS AND METHODS BM-MNC (1x105 cells in 100 µL of phosphate-buffered saline) were intravenously transplanted at 4 weeks (chronic stage) after the middle cerebral artery occlusion. At 3 h and 10 weeks after the administration of BM-MNC, we evaluated transcription changes of the metabolism-related genes, hypoxia inducible factor 1-α (Hif-1α), prolyl hydroxylase 3 (Phd3), pyruvate dehydrogenase kinase 1 (Pdk1), Na+/K+-ATPase (Atp1α1‒3), connexins, glucose transporters, and monocarboxylate transporters, in the brain during chronic phase of stroke using quantitative polymerase chain reaction. RESULTS The results showed transcriptional activation of the metabolism-related genes in the contralateral cortex at 3 h after BM-MNC transplantation. Behavioral tests were performed after cell therapy, and the brain metabolism of mice with improved motor function was examined at 10 weeks after cell therapy. The therapeutic efficacy of the combination therapy with BM-MNC transplantation and training was evident in the form of transcriptional activation of ipsilateral anterior cerebral artery (ACA) cortex. CONCLUSIONS BM-MNC transplantation combined with training for chronic stroke activated gene expression in both the ipsilateral and the contralateral side.
Collapse
MESH Headings
- Animals
- Behavior, Animal
- Bone Marrow Cells/metabolism
- Bone Marrow Transplantation
- Brain/metabolism
- Brain/physiopathology
- Chronic Disease
- Combined Modality Therapy
- Connexins/genetics
- Connexins/metabolism
- Disease Models, Animal
- Energy Metabolism/genetics
- Gene Expression Regulation
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Infarction, Middle Cerebral Artery/genetics
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/physiopathology
- Infarction, Middle Cerebral Artery/therapy
- Male
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Mice, Inbred C57BL
- Mice, SCID
- Motor Activity
- Physical Conditioning, Animal
- Recovery of Function
- Sodium-Potassium-Exchanging ATPase/genetics
- Sodium-Potassium-Exchanging ATPase/metabolism
- Transcription, Genetic
- Mice
Collapse
Affiliation(s)
- Yuko Ogawa
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan.
| | - Orie Saino
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan.
| | - Yuka Okinaka
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan.
| | - Akie Kikuchi-Taura
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan.
| | - Yukiko Takeuchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan.
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan.
| |
Collapse
|
35
|
Kikuchi-Taura A, Okinaka Y, Saino O, Takeuchi Y, Ogawa Y, Kimura T, Gul S, Claussen C, Boltze J, Taguchi A. Gap junction-mediated cell-cell interaction between transplanted mesenchymal stem cells and vascular endothelium in stroke. Stem Cells 2021; 39:904-912. [PMID: 33704866 PMCID: PMC8807299 DOI: 10.1002/stem.3360] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/05/2021] [Indexed: 01/07/2023]
Abstract
We have shown previously that transplanted bone marrow mononuclear cells (BM-MNC), which are a cell fraction rich in hematopoietic stem cells, can activate cerebral endothelial cells via gap junction-mediated cell-cell interaction. In the present study, we investigated such cell-cell interaction between mesenchymal stem cells (MSC) and cerebral endothelial cells. In contrast to BM-MNC, for MSC we observed suppression of vascular endothelial growth factor uptake into endothelial cells and transfer of glucose from endothelial cells to MSC in vitro. The transfer of such a small molecule from MSC to vascular endothelium was subsequently confirmed in vivo and was followed by suppressed activation of macrophage/microglia in stroke mice. The suppressive effect was absent by blockade of gap junction at MSC. Furthermore, gap junction-mediated cell-cell interaction was observed between circulating white blood cells and MSC. Our findings indicate that gap junction-mediated cell-cell interaction is one of the major pathways for MSC-mediated suppression of inflammation in the brain following stroke and provides a novel strategy to maintain the blood-brain barrier in injured brain. Furthermore, our current results have the potential to provide a novel insight for other ongoing clinical trials that make use of MSC transplantation aiming to suppress excess inflammation, as well as other diseases such as COVID-19 (coronavirus disease 2019).
Collapse
Affiliation(s)
- Akie Kikuchi-Taura
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Yuka Okinaka
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Orie Saino
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Yukiko Takeuchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Yuko Ogawa
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | | | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| | - Carsten Claussen
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| | - Johannes Boltze
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| |
Collapse
|
36
|
Mizutani KI. [Spatiotemporally Dependent Vascularization Regulates Neural Stem and Progenitor Cells]. YAKUGAKU ZASSHI 2021; 141:335-341. [PMID: 33642501 DOI: 10.1248/yakushi.20-00198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blood vessels including arteries, veins, and capillaries, are densely spread throughout the body. One round of systemic blood circulation through these blood vessels occurs approximately every minute, and blood sent by the heart transports oxygen, nutrients, and fluid to cells throughout the body. This nourishes cells, tissues, and organs and maintains homeostasis. The relatively simple structure of blood vessels consists of endothelial cells surrounded by a basal lamina and pericytes covering the outer layer. However, blood vessels patterning markedly varies among tissues. The diversity and plasticity of vascular networks are considered vital for this system to facilitate distinct functions for each tissue. Recent studies revealed that blood vessels create a tissue-specific niche, thus attracting attention as biologically active sites for tissue development. This vascular niche establishes specialized microenvironments through both direct physical contact and secreted-soluble factors. Here, we review advances in our understanding of how the vascular niche is utilized by neural stem and progenitor cells during neocortical development, and describe future perspectives regarding new treatment strategies for neural diseases utilizing this vascular niche.
Collapse
Affiliation(s)
- Ken-Ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
37
|
Okamoto T, Park EJ, Kawamoto E, Usuda H, Wada K, Taguchi A, Shimaoka M. Endothelial connexin-integrin crosstalk in vascular inflammation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166168. [PMID: 33991620 DOI: 10.1016/j.bbadis.2021.166168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/18/2021] [Accepted: 05/02/2021] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases including blood vessel disorders represent a major cause of death globally. The essential roles played by local and systemic vascular inflammation in the pathogenesis of cardiovascular diseases have been increasingly recognized. Vascular inflammation triggers the aberrant activation of endothelial cells, which leads to the functional and structural abnormalities in vascular vessels. In addition to humoral mediators such as pro-inflammatory cytokines and prostaglandins, the alteration of physical and mechanical microenvironment - including vascular stiffness and shear stress - modify the gene expression profiles and metabolic profiles of endothelial cells via mechano-transduction pathways, thereby contributing to the pathogenesis of vessel disorders. Notably, connexins and integrins crosstalk each other in response to the mechanical stress, and, thereby, play an important role in regulating the mechano-transduction of endothelial cells. Here, we provide an overview on how the inter-play between connexins and integrins in endothelial cells unfold during the mechano-transduction in vascular inflammation.
Collapse
Affiliation(s)
- Takayuki Okamoto
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan.
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan; Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
| | - Haruki Usuda
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan
| | - Koichiro Wada
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan.
| |
Collapse
|
38
|
Makkiyah F, Sadewo W, Nurrizka R. Comparative Dose of Intracarotid Autologous Bone Marrow Mononuclear Therapy in Chronic Ischemic Stroke in Rats. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Research on chronic ischemic stroke is limited. One of the more promising approaches showing positive effects in the acute stage is mononuclear bone marrow cell therapy. This research may be the first which presents data about the optimum dose of bone marrow mononuclear cells (BM-MNCs) for chronic ischemic stroke in rats and discusses factors influencing recovery in the chronic stage.
We performed temporary middle cerebral artery occlusion (MCAO) procedures on the rats which were then randomly assigned to one of two experimental groups in which they were given either low or high doses of autologous BM-MNCs (5 million or 10 million cells per kg body weight).
Rat brains were fixed for HE, CD31, and doublecortin staining for analysis of the effects. Rat behavior was assessed weekly using the cylinder test and a modified neurological severity score (NSS) test.
In the four weeks prior to administration of BM-MNC, cylinder test scores improved to near normal, and NSS test scores improved moderately. The infarct zone decreased significantly (p <0,01), there was an improvement in angiogenesis (p = 0.1590) and a significant improvement in neurogenesis (p <0,01). Reduction of the infarct zone was associated with a higher dose whereas both higher and lower doses were found to have a similar effect on improving angiogenesis, and neurogenesis. Recovery was superior after twelve weeks compared with the recovery assessment at eight weeks.
In conclusion, a dose of 10 million cells was more effective than a dose of 5 million cells per kg body weight for reducing the infarct zone and ameliorating neurogenesis. There was an improvement of histopathological parameters associated with the longer infarct period.
Collapse
|
39
|
Nabetani M, Mukai T, Shintaku H. Preventing Brain Damage from Hypoxic-Ischemic Encephalopathy in Neonates: Update on Mesenchymal Stromal Cells and Umbilical Cord Blood Cells. Am J Perinatol 2021; 39:1754-1763. [PMID: 33853147 PMCID: PMC9674406 DOI: 10.1055/s-0041-1726451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) causes permanent motor deficit "cerebral palsy (CP)," and may result in significant disability and death. Therapeutic hypothermia (TH) had been established as the first effective therapy for neonates with HIE; however, TH must be initiated within the first 6 hours after birth, and the number needed to treat is from 9 to 11 to prevent brain damage from HIE. Therefore, additional therapies for HIE are highly needed. In this review, we provide an introduction on the mechanisms of HIE cascade and how TH and cell therapies such as umbilical cord blood cells and mesenchymal stromal cells (MSCs), especially umbilical cord-derived MSCs (UC-MSCs), may protect the brain in newborns, and discuss recent progress in regenerative therapies using UC-MSCs for neurological disorders.The brain damage process "HIE cascade" was divided into six stages: (1) energy depletion, (2) impairment of microglia, (3) inflammation, (4) excitotoxity, (5) oxidative stress, and (6) apoptosis in capillary, glia, synapse and/or neuron. The authors showed recent 13 clinical trials using UC-MSCs for neurological disorders.The authors suggest that the next step will include reaching a consensus on cell therapies for HIE and establishment of effective protocols for cell therapy for HIE. KEY POINTS: · This study includes new insights about cell therapy for neonatal HIE and CP in schema.. · This study shows precise mechanism of neonatal HIE cascade.. · The mechanism of cell therapy by comparing umbilical cord blood stem cell with MSC is shown.. · The review of recent clinical trials of UC-MSC is shown..
Collapse
Affiliation(s)
- Makoto Nabetani
- Department of Pediatrics, Yodogawa Christian Hospital, Osaka, Japan,Address for correspondence Makoto Nabetani, MD, PhD Department of Pediatrics, Yodogawa Christian HospitalOsaka, Japan, 1-7-50 Kunijima, Higashi-yodogawa-ku, Osaka 5330024Japan
| | - Takeo Mukai
- Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Haruo Shintaku
- Department of Pediatrics, Faculty of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
40
|
Zhou G, Wang Y, Gao S, Fu X, Cao Y, Peng Y, Zhuang J, Hu J, Shao A, Wang L. Potential Mechanisms and Perspectives in Ischemic Stroke Treatment Using Stem Cell Therapies. Front Cell Dev Biol 2021; 9:646927. [PMID: 33869200 PMCID: PMC8047216 DOI: 10.3389/fcell.2021.646927] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke (IS) remains one of the major causes of death and disability due to the limited ability of central nervous system cells to regenerate and differentiate. Although several advances have been made in stroke therapies in the last decades, there are only a few approaches available to improve IS outcome. In the acute phase of IS, mechanical thrombectomy and the administration of tissue plasminogen activator have been widely used, while aspirin or clopidogrel represents the main therapy used in the subacute or chronic phase. However, in most cases, stroke patients fail to achieve satisfactory functional recovery under the treatments mentioned above. Recently, cell therapy, especially stem cell therapy, has been considered as a novel and potential therapeutic strategy to improve stroke outcome through mechanisms, including cell differentiation, cell replacement, immunomodulation, neural circuit reconstruction, and protective factor release. Different stem cell types, such as mesenchymal stem cells, marrow mononuclear cells, and neural stem cells, have also been considered for stroke therapy. In recent years, many clinical and preclinical studies on cell therapy have been carried out, and numerous results have shown that cell therapy has bright prospects in the treatment of stroke. However, some cell therapy issues are not yet fully understood, such as its optimal parameters including cell type choice, cell doses, and injection routes; therefore, a closer relationship between basic and clinical research is needed. In this review, the role of cell therapy in stroke treatment and its mechanisms was summarized, as well as the function of different stem cell types in stroke treatment and the clinical trials using stem cell therapy to cure stroke, to reveal future insights on stroke-related cell therapy, and to guide further studies.
Collapse
Affiliation(s)
- Guoyang Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjie Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiongjie Fu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junwen Hu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Current Status of Angiogenic Cell Therapy and Related Strategies Applied in Critical Limb Ischemia. Int J Mol Sci 2021; 22:ijms22052335. [PMID: 33652743 PMCID: PMC7956816 DOI: 10.3390/ijms22052335] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Critical limb ischemia (CLI) constitutes the most severe form of peripheral arterial disease (PAD), it is characterized by progressive blockade of arterial vessels, commonly correlated to atherosclerosis. Currently, revascularization strategies (bypass grafting, angioplasty) remain the first option for CLI patients, although less than 45% of them are eligible for surgical intervention mainly due to associated comorbidities. Moreover, patients usually require amputation in the short-term. Angiogenic cell therapy has arisen as a promising alternative for these "no-option" patients, with many studies demonstrating the potential of stem cells to enhance revascularization by promoting vessel formation and blood flow recovery in ischemic tissues. Herein, we provide an overview of studies focused on the use of angiogenic cell therapies in CLI in the last years, from approaches testing different cell types in animal/pre-clinical models of CLI, to the clinical trials currently under evaluation. Furthermore, recent alternatives related to stem cell therapies such as the use of secretomes, exosomes, or even microRNA, will be also described.
Collapse
|
42
|
Liu H, Reiter S, Zhou X, Chen H, Ou Y, Lenahan C, He Y. Insight Into the Mechanisms and the Challenges on Stem Cell-Based Therapies for Cerebral Ischemic Stroke. Front Cell Neurosci 2021; 15:637210. [PMID: 33732111 PMCID: PMC7959708 DOI: 10.3389/fncel.2021.637210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/03/2021] [Indexed: 01/01/2023] Open
Abstract
Strokes are the most common types of cerebrovascular disease and remain a major cause of death and disability worldwide. Cerebral ischemic stroke is caused by a reduction in blood flow to the brain. In this disease, two major zones of injury are identified: the lesion core, in which cells rapidly progress toward death, and the ischemic penumbra (surrounding the lesion core), which is defined as hypoperfusion tissue where cells may remain viable and can be repaired. Two methods that are approved by the Food and Drug Administration (FDA) include intravenous thrombolytic therapy and endovascular thrombectomy, however, the narrow therapeutic window poses a limitation, and therefore a low percentage of stroke patients actually receive these treatments. Developments in stem cell therapy have introduced renewed hope to patients with ischemic stroke due to its potential effect for reversing the neurological sequelae. Over the last few decades, animal tests and clinical trials have been used to treat ischemic stroke experimentally with various types of stem cells. However, several technical and ethical challenges must be overcome before stem cells can become a choice for the treatment of stroke. In this review, we summarize the mechanisms, processes, and challenges of using stem cells in stroke treatment. We also discuss new developing trends in this field.
Collapse
Affiliation(s)
- Huiyong Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sydney Reiter
- Department of Kinesiology, University of Texas at Austin, Austin, TX, United States
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanmin Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
de Fátima Dos Santos Sampaio M, Santana Bastos Boechat M, Augusto Gusman Cunha I, Gonzaga Pereira M, Coimbra NC, Giraldi-Guimarães A. Neurotrophin-3 upregulation associated with intravenous transplantation of bone marrow mononuclear cells induces axonal sprouting and motor functional recovery in the long term after neocortical ischaemia. Brain Res 2021; 1758:147292. [PMID: 33516814 DOI: 10.1016/j.brainres.2021.147292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Bone marrow mononuclear cells (BMMCs) have been identified as a relevant therapeutic strategy for the treatment of several chronic diseases of the central nervous system. The aim of this work was to evaluate whether intravenous treatment with BMMCs facilitates the reconnection of lesioned cortico-cortical and cortico-striatal pathways, together with motor recovery, in injured adult Wistar rats using an experimental model of unilateral focal neocortical ischaemia. Animals with cerebral cortex ischaemia underwent neural tract tracing for axonal fibre analysis, differential expression analysis of genes involved in apoptosis and neuroplasticity by RT-qPCR, and motor performance assessment by the cylinder test. Quantitative and qualitative analyses of axonal fibres labelled by an anterograde neural tract tracer were performed. Ischaemic animals treated with BMMCs showed a significant increase in axonal sprouting in the ipsilateral neocortex and in the striatum contralateral to the injured cortical areas compared to untreated rodents. In BMMC-treated animals, there was a trend towards upregulation of the Neurotrophin-3 gene compared to the other genes, as well as modulation of apoptosis by BMMCs. On the 56th day after ischaemia, BMMC-treated animals showed significant improvement in motor performance compared to untreated rats. These results suggest that in the acute phase of ischaemia, Neurotrophin-3 is upregulated in response to the lesion itself. In the long run, therapy with BMMCs causes axonal sprouting, reconnection of damaged neuronal circuitry and a significant increase in motor performance.
Collapse
Affiliation(s)
- Maria de Fátima Dos Santos Sampaio
- Laboratory of Tissue and Cellular Biology, Centre of Biosciences and Biotechnology of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil.
| | - Marcela Santana Bastos Boechat
- Laboratory of Plant Breeding of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Igor Augusto Gusman Cunha
- Laboratory of Tissue and Cellular Biology, Centre of Biosciences and Biotechnology of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Messias Gonzaga Pereira
- Laboratory of Plant Breeding of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil.
| | - Arthur Giraldi-Guimarães
- Laboratory of Tissue and Cellular Biology, Centre of Biosciences and Biotechnology of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Mulkearns-Hubert EE, Reizes O, Lathia JD. Connexins in Cancer: Jekyll or Hyde? Biomolecules 2020; 10:E1654. [PMID: 33321749 PMCID: PMC7764653 DOI: 10.3390/biom10121654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
The expression, localization, and function of connexins, the protein subunits that comprise gap junctions, are often altered in cancer. In addition to cell-cell coupling through gap junction channels, connexins also form hemichannels that allow communication between the cell and the extracellular space and perform non-junctional intracellular activities. Historically, connexins have been considered tumor suppressors; however, they can also serve tumor-promoting functions in some contexts. Here, we review the literature surrounding connexins in cancer cells in terms of specific connexin functions and propose that connexins function upstream of most, if not all, of the hallmarks of cancer. The development of advanced connexin targeting approaches remains an opportunity for the field to further interrogate the role of connexins in cancer phenotypes, particularly through the use of in vivo models. More specific modulators of connexin function will both help elucidate the functions of connexins in cancer and advance connexin-specific therapies in the clinic.
Collapse
Affiliation(s)
- Erin E. Mulkearns-Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
45
|
Ogawa Y, Okinaka Y, Takeuchi Y, Saino O, Kikuchi-Taura A, Taguchi A. Intravenous Bone Marrow Mononuclear Cells Transplantation Improves the Effect of Training in Chronic Stroke Mice. Front Med (Lausanne) 2020; 7:535902. [PMID: 33324656 PMCID: PMC7726263 DOI: 10.3389/fmed.2020.535902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
There is no effective treatment for chronic stroke if the acute or subacute phase is missed. Rehabilitation alone cannot easily achieve a dramatic recovery in function. In contrast to significant therapeutic effects of bone marrow mononuclear cells (BM-MNC) transplantation for acute stroke, mild and non-significant effects have been shown for chronic stroke. In this study, we have evaluated the effect of a combination of BM-MNC transplantation and neurological function training in chronic stroke. The effect of BM-MNC on neurological functional was tested four weeks after permanent middle cerebral artery occlusion (MCAO) insult in mice. BM-MNC (1 × 105cells in 100 μl PBS) were injected into the vein of MCAO model mice, followed by behavioral tests as functional evaluations. Interestingly, there was a significant therapeutic effect of BM-MNC only when repeated training was performed. This suggested that cell therapy alone was not sufficient for chronic stroke treatment; however, training with cell therapy was effective. The combination of these differently targeted therapies provided a significant benefit in the chronic stroke mouse model. Therefore, targeted cell therapy via BM-MNC transplantation with appropriate training presents a promising novel therapeutic option for patients in the chronic stroke period.
Collapse
Affiliation(s)
- Yuko Ogawa
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Yuka Okinaka
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Yukiko Takeuchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Orie Saino
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Akie Kikuchi-Taura
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| |
Collapse
|
46
|
Watanabe C, Imaizumi T, Kawai H, Suda K, Honma Y, Ichihashi M, Ema M, Mizutani KI. Aging of the Vascular System and Neural Diseases. Front Aging Neurosci 2020; 12:557384. [PMID: 33132896 PMCID: PMC7550630 DOI: 10.3389/fnagi.2020.557384] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Vertebrates have acquired complex high-order functions facilitated by the dispersion of vascular and neural networks to every corner of the body. Blood vessels deliver oxygen and nutrients to all cells and provide essential transport systems for removing waste products. For these functions, tissue vascularization must be spatiotemporally appropriate. Recent studies revealed that blood vessels create a tissue-specific niche, thus attracting attention as biologically active sites for tissue development. Each capillary network is critical for maintaining proper brain function because age-related and disease-related impairment of cognitive function is associated with the loss or diminishment of brain capillaries. This review article highlights how structural and functional alterations in the brain vessels may change with age and neurogenerative diseases. Capillaries are also responsible for filtering toxic byproducts, providing an appropriate vascular environment for neuronal function. Accumulation of amyloid β is a key event in Alzheimer’s disease pathogenesis. Recent studies have focused on associations reported between Alzheimer’s disease and vascular aging. Furthermore, the glymphatic system and meningeal lymphatic systems contribute to a functional unit for clearance of amyloid β from the brain from the central nervous system into the cervical lymph nodes. This review article will also focus on recent advances in stem cell therapies that aim at repopulation or regeneration of a degenerating vascular system for neural diseases.
Collapse
Affiliation(s)
- Chisato Watanabe
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan.,Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Tsutomu Imaizumi
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Hiromi Kawai
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Kazuma Suda
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Yoichi Honma
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Masamitsu Ichihashi
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University Institute for Advanced Study, Kyoto, Japan
| | - Ken-Ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| |
Collapse
|
47
|
Boltze J, Didwischus N, Li S, Jolkkonen J, Taguchi A. Increased migratory and homing abilities of neural and mesenchymal stem cell populations by transient cell modifications: Preclinical progress and clinical relevance. EBioMedicine 2020; 60:103022. [PMID: 32980689 PMCID: PMC7519243 DOI: 10.1016/j.ebiom.2020.103022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Johannes Boltze
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom.
| | - Nadine Didwischus
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Shen Li
- Department of Neurology, Dalian Municipal Central Hospital affiliated with Dalian Medical University, No. 826 Xinan Road, Dalian 116033, China
| | - Jukka Jolkkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70150 Kuopio, Finland; Institute of Clinical Medicine-Neurology, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation, Minatojima-Minamimachi 2-2, Kobe 650-0047, Hyogo, Japan
| |
Collapse
|
48
|
Suda S, Nito C, Yokobori S, Sakamoto Y, Nakajima M, Sowa K, Obinata H, Sasaki K, Savitz SI, Kimura K. Recent Advances in Cell-Based Therapies for Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21186718. [PMID: 32937754 PMCID: PMC7555943 DOI: 10.3390/ijms21186718] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Stroke is the most prevalent cardiovascular disease worldwide, and is still one of the leading causes of death and disability. Stem cell-based therapy is actively being investigated as a new potential treatment for certain neurological disorders, including stroke. Various types of cells, including bone marrow mononuclear cells, bone marrow mesenchymal stem cells, dental pulp stem cells, neural stem cells, inducible pluripotent stem cells, and genetically modified stem cells have been found to improve neurological outcomes in animal models of stroke, and there are some ongoing clinical trials assessing their efficacy in humans. In this review, we aim to summarize the recent advances in cell-based therapies to treat stroke.
Collapse
Affiliation(s)
- Satoshi Suda
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
- Correspondence: ; Tel.: +81-3-3822-2131; Fax: +81-3-3822-4865
| | - Chikako Nito
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| | - Shoji Yokobori
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan; (S.Y.); (H.O.); (K.S.)
| | - Yuki Sakamoto
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| | - Masataka Nakajima
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| | - Kota Sowa
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| | - Hirofumi Obinata
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan; (S.Y.); (H.O.); (K.S.)
| | - Kazuma Sasaki
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan; (S.Y.); (H.O.); (K.S.)
| | - Sean I. Savitz
- Institute for Stroke and Cerebrovascular Disease, UTHealth, Houston, TX 77030, USA;
| | - Kazumi Kimura
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| |
Collapse
|
49
|
Cell Therapies under Clinical Trials and Polarized Cell Therapies in Pre-Clinical Studies to Treat Ischemic Stroke and Neurological Diseases: A Literature Review. Int J Mol Sci 2020; 21:ijms21176194. [PMID: 32867222 PMCID: PMC7503631 DOI: 10.3390/ijms21176194] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Stroke remains a major cause of serious disability because the brain has a limited capacity to regenerate. In the last two decades, therapies for stroke have dramatically changed. However, half of the patients cannot achieve functional independence after treatment. Presently, cell-based therapies are being investigated to improve functional outcomes. This review aims to describe conventional cell therapies under clinical trial and outline the novel concept of polarized cell therapies based on protective cell phenotypes, which are currently in pre-clinical studies, to facilitate functional recovery after post-reperfusion treatment in patients with ischemic stroke. In particular, non-neuronal stem cells, such as bone marrow-derived mesenchymal stem/stromal cells and mononuclear cells, confer no risk of tumorigenesis and are safe because they do not induce rejection and allergy; they also pose no ethical issues. Therefore, recent studies have focused on them as a cell source for cell therapies. Some clinical trials have shown beneficial therapeutic effects of bone marrow-derived cells in this regard, whereas others have shown no such effects. Therefore, more clinical trials must be performed to reach a conclusion. Polarized microglia or peripheral blood mononuclear cells might provide promising therapeutic strategies after stroke because they have pleiotropic effects. In traumatic injuries and neurodegenerative diseases, astrocytes, neutrophils, and T cells were polarized to the protective phenotype in pre-clinical studies. As such, they might be useful therapeutic targets. Polarized cell therapies are gaining attention in the treatment of stroke and neurological diseases.
Collapse
|
50
|
Takeuchi Y, Okinaka Y, Ogawa Y, Kikuchi-Taura A, Kataoka Y, Gul S, Claussen C, Boltze J, Taguchi A. Intravenous Bone Marrow Mononuclear Cells Transplantation in Aged Mice Increases Transcription of Glucose Transporter 1 and Na +/K +-ATPase at Hippocampus Followed by Restored Neurological Functions. Front Aging Neurosci 2020; 12:170. [PMID: 32595487 PMCID: PMC7301702 DOI: 10.3389/fnagi.2020.00170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/15/2020] [Indexed: 01/03/2023] Open
Abstract
We recently reported that intravenous bone marrow mononuclear cell (BM-MNC) transplantation in stroke improves neurological function through improvement of cerebral metabolism. Cerebral metabolism is known to diminish with aging, and the reduction of metabolism is one of the presumed causes of neurological decline in the elderly. We report herein that transcription of glucose transporters, monocarboxylate transporters, and Na+/K+-ATPase is downregulated in the hippocampus of aged mice with impaired neurological functions. Intravenous BM-MNC transplantation in aged mice stimulated the transcription of glucose transporter 1 and Na+/K+-ATPase α1 followed by restoration of neurological function. As glucose transporters and Na+/K+-ATPases are closely related to cerebral metabolism and neurological function, our data indicate that BM-MNC transplantation in aged mice has the potential to restore neurological function by activating transcription of glucose transporter and Na+/K+-ATPase. Furthermore, our data indicate that changes in transcription of glucose transporter and Na+/K+-ATPase could be surrogate biomarkers for age-related neurological impairment as well as quantifying the efficacy of therapies.
Collapse
Affiliation(s)
- Yukiko Takeuchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Yuka Okinaka
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Yuko Ogawa
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Akie Kikuchi-Taura
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Yosky Kataoka
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, RIKEN, Hyogo, Japan.,Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, RIKEN, Hyogo, Japan
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME - ScreeningPort, Hamburg, Germany.,Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hamburg Site, Hamburg, Germany
| | - Carsten Claussen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME - ScreeningPort, Hamburg, Germany.,Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hamburg Site, Hamburg, Germany
| | - Johannes Boltze
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan.,School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| |
Collapse
|