1
|
Garrett J, Chak C, Bullock T, Giesbrecht B. A systematic review and Bayesian meta-analysis provide evidence for an effect of acute physical activity on cognition in young adults. COMMUNICATIONS PSYCHOLOGY 2024; 2:82. [PMID: 39242965 PMCID: PMC11358546 DOI: 10.1038/s44271-024-00124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2024] [Indexed: 09/09/2024]
Abstract
Physical exercise is a potential intervention for enhancing cognitive function across the lifespan. However, while studies employing long-term exercise interventions consistently show positive effects on cognition, studies using single acute bouts have produced mixed results. Here, a systematic review and meta-analysis was conducted to determine the impact of acute exercise on cognitive task performance in healthy young adults. A Bayesian hierarchical model quantified probabilistic evidence for a modulatory relationship by synthesizing 651 effect sizes from 113 studies from PsychInfo and Google Scholar representing 4,390 participants. Publication bias was mitigated using the trim-and-fill method. Acute exercise was found to have a small beneficial effect on cognition (g = 0.13 ± 0.04; BF = 3.67) and decrease reaction time. A meta-analysis restricted to executive function tasks revealed improvements in working memory and inhibition. Meta-analytic estimates were consistent across multiple priors and likelihood functions. Physical activities were categorized based on exercise type (e.g., cycling) because many activities have aerobic and anaerobic components, but this approach may limit comparison to studies that categorize activities based on metabolic demands. The current study provides an updated synthesis of the existing literature and insights into the robustness of acute exercise-induced effects on cognition. Funding provided by the United States Army Research Office.
Collapse
Affiliation(s)
- Jordan Garrett
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA.
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, USA.
| | - Carly Chak
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, USA
| | - Tom Bullock
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, USA
| | - Barry Giesbrecht
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA.
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
2
|
Barnes L, Davidson MJ, Alais D. The speed and phase of locomotion dictate saccade probability and simultaneous low-frequency power spectra. Atten Percept Psychophys 2024:10.3758/s13414-024-02932-4. [PMID: 39048846 DOI: 10.3758/s13414-024-02932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
Every day we make thousands of saccades and take thousands of steps as we explore our environment. Despite their common co-occurrence in a typical active state, we know little about the coordination between eye movements, walking behaviour and related changes in cortical activity. Technical limitations have been a major impediment, which we overcome here by leveraging the advantages of an immersive wireless virtual reality (VR) environment with three-dimensional (3D) position tracking, together with simultaneous recording of eye movements and mobile electroencephalography (EEG). Using this approach with participants engaged in unencumbered walking along a clear, level path, we find that the likelihood of eye movements at both slow and natural walking speeds entrains to the rhythm of footfall, peaking after the heel-strike of each step. Compared to previous research, this entrainment was captured in a task that did not require visually guided stepping - suggesting a persistent interaction between locomotor and visuomotor functions. Simultaneous EEG recordings reveal a concomitant modulation entrained to heel-strike, with increases and decreases in oscillatory power for a broad range of frequencies. The peak of these effects occurred in the theta and alpha range for slow and natural walking speeds, respectively. Together, our data show that the phase of the step-cycle influences other behaviours such as eye movements, and produces related modulations of simultaneous EEG following the same rhythmic pattern. These results reveal gait as an important factor to be considered when interpreting saccadic and time-frequency EEG data in active observers, and demonstrate that saccadic entrainment to gait may persist throughout everyday activities.
Collapse
Affiliation(s)
- Lydia Barnes
- School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | | | - David Alais
- School of Psychology, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Davidson MJ, Verstraten FAJ, Alais D. Walking modulates visual detection performance according to stride cycle phase. Nat Commun 2024; 15:2027. [PMID: 38453900 PMCID: PMC10920920 DOI: 10.1038/s41467-024-45780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Walking is among our most frequent and natural of voluntary behaviours, yet the consequences of locomotion upon perceptual and cognitive function remain largely unknown. Recent work has highlighted that although walking feels smooth and continuous, critical phases exist within each step for the successful coordination of perceptual and motor function. Here, we test whether these phasic demands impact upon visual perception, by assessing performance in a visual detection task during natural unencumbered walking. We finely sample visual performance over the stride cycle as participants walk along a smooth linear path at a comfortable speed in a wireless virtual reality environment. At the group-level, accuracy, reaction times, and response likelihood show strong oscillations, modulating at approximately 2 cycles per stride (~2 Hz) with a marked phase of optimal performance aligned with the swing phase of each step. At the participant level, Bayesian inference of population prevalence reveals highly prevalent oscillations in visual detection performance that cluster in two idiosyncratic frequency ranges (2 or 4 cycles per stride), with a strong phase alignment across participants.
Collapse
Affiliation(s)
| | | | - David Alais
- School of Psychology, The University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
Beerendonk L, Mejías JF, Nuiten SA, de Gee JW, Fahrenfort JJ, van Gaal S. A disinhibitory circuit mechanism explains a general principle of peak performance during mid-level arousal. Proc Natl Acad Sci U S A 2024; 121:e2312898121. [PMID: 38277436 PMCID: PMC10835062 DOI: 10.1073/pnas.2312898121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/04/2023] [Indexed: 01/28/2024] Open
Abstract
Perceptual decision-making is highly dependent on the momentary arousal state of the brain, which fluctuates over time on a scale of hours, minutes, and even seconds. The textbook relationship between momentary arousal and task performance is captured by an inverted U-shape, as put forward in the Yerkes-Dodson law. This law suggests optimal performance at moderate levels of arousal and impaired performance at low or high arousal levels. However, despite its popularity, the evidence for this relationship in humans is mixed at best. Here, we use pupil-indexed arousal and performance data from various perceptual decision-making tasks to provide converging evidence for the inverted U-shaped relationship between spontaneous arousal fluctuations and performance across different decision types (discrimination, detection) and sensory modalities (visual, auditory). To further understand this relationship, we built a neurobiologically plausible mechanistic model and show that it is possible to reproduce our findings by incorporating two types of interneurons that are both modulated by an arousal signal. The model architecture produces two dynamical regimes under the influence of arousal: one regime in which performance increases with arousal and another regime in which performance decreases with arousal, together forming an inverted U-shaped arousal-performance relationship. We conclude that the inverted U-shaped arousal-performance relationship is a general and robust property of sensory processing. It might be brought about by the influence of arousal on two types of interneurons that together act as a disinhibitory pathway for the neural populations that encode the available sensory evidence used for the decision.
Collapse
Affiliation(s)
- Lola Beerendonk
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam1001NK, The Netherlands
| | - Jorge F. Mejías
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098XH, The Netherlands
| | - Stijn A. Nuiten
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Universitäre Psychiatrische Kliniken Basel, Wilhelm Klein-Strasse 27, Basel4002, Switzerland
| | - Jan Willem de Gee
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098XH, The Netherlands
| | - Johannes J. Fahrenfort
- Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam1081HV, The Netherlands
- Department of Applied and Experimental Psychology, Vrije Universiteit Amsterdam, Amsterdam1081HV, The Netherlands
| | - Simon van Gaal
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam1001NK, The Netherlands
| |
Collapse
|
5
|
Komiyama T, Takedomi H, Aoyama C, Goya R, Shimegi S. Acute exercise has specific effects on the formation process and pathway of visual perception in healthy young men. Eur J Neurosci 2023; 58:3239-3252. [PMID: 37424403 DOI: 10.1111/ejn.16082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023]
Abstract
Visual perception is formed over time through the formation process and visual pathway. Exercise improves visual perception, but it is unclear whether exercise modulates nonspecifically or specifically the formation process and pathway of visual perception. Healthy young men performed the visual detection task in a backward masking paradigm before and during cycling exercise at a mild intensity or rest (control). The task presented gratings of a circular patch (target) and annulus (mask) arranged concentrically as a visual stimulus and asked if the presence and striped pattern (feature) of the target were detected. The relationship between the orientations of the gratings of the target and the mask included iso-orientation and orthogonal orientation to investigate the orientation selectivity of the masking effect. The masking effect was evaluated by perceptual suppressive index (PSI). Exercise improved feature detection (∆PSI; Exercise: -20.6%, Control: 1.7%) but not presence detection (∆PSI; Exercise: 8.9%, Control: 29.6%) compared to the control condition, and the improving effect resulted from the attenuation of the non-orientation-selective (∆PSI; Exercise: -29.0%, Control: 16.8%) but not orientation-selective masking effect (∆PSI; Exercise: -3.1%, Control: 11.7%). These results suggest that exercise affects the formation process of the perceptual feature of the target stimulus by suppressively modulating the neural networks responsible for the non-orientation-selective surround interaction in the subcortical visual pathways, whose effects are inherited by the cortical visual pathways necessary for perceptual image formation. In conclusion, our findings suggest that acute exercise improves visual perception transiently through the modulation of a specific formation process of visual processing.
Collapse
Affiliation(s)
- Takaaki Komiyama
- Laboratory of Brain Information Science in Sports, Center for Education in Liberal Arts and Science, Osaka University, Toyonaka, Japan
| | - Hiromasa Takedomi
- Graduate School of Frontier of Biosciences, Osaka University, Toyonaka, Japan
| | - Chisa Aoyama
- Graduate School of Medicine, Osaka University, Toyonaka, Japan
| | - Ryoma Goya
- Graduate School of Frontier of Biosciences, Osaka University, Toyonaka, Japan
- Faculty of Sports Science, Fukuoka University, Fukuoka, Japan
| | - Satoshi Shimegi
- Laboratory of Brain Information Science in Sports, Center for Education in Liberal Arts and Science, Osaka University, Toyonaka, Japan
- Graduate School of Frontier of Biosciences, Osaka University, Toyonaka, Japan
- Graduate School of Medicine, Osaka University, Toyonaka, Japan
| |
Collapse
|
6
|
Bullock T, MacLean MH, Santander T, Boone AP, Babenko V, Dundon NM, Stuber A, Jimmons L, Raymer J, Okafor GN, Miller MB, Giesbrecht B, Grafton ST. Habituation of the stress response multiplex to repeated cold pressor exposure. Front Physiol 2023; 13:752900. [PMID: 36703933 PMCID: PMC9871365 DOI: 10.3389/fphys.2022.752900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/21/2022] [Indexed: 01/12/2023] Open
Abstract
Humans show remarkable habituation to aversive events as reflected by changes of both subjective report and objective measures of stress. Although much experimental human research focuses on the effects of stress, relatively little is known about the cascade of physiological and neural responses that contribute to stress habituation. The cold pressor test (CPT) is a common method for inducing acute stress in human participants in the laboratory; however, there are gaps in our understanding of the global state changes resulting from this stress-induction technique and how these responses change over multiple exposures. Here, we measure the stress response to repeated CPT exposures using an extensive suite of physiologic measures and state-of-the-art analysis techniques. In two separate sessions on different days, participants underwent five 90 s CPT exposures of both feet and five warm water control exposures, while electrocardiography (ECG), impedance cardiography, continuous blood pressure, pupillometry, scalp electroencephalography (EEG), salivary cortisol and self-reported pain assessments were recorded. A diverse array of adaptive responses are reported that vary in their temporal dynamics within each exposure as well as habituation across repeated exposures. During cold-water exposure there was a cascade of changes across several cardiovascular measures (elevated heart rate (HR), cardiac output (CO) and Mean Arterial Pressure (MAP) and reduced left ventricular ejection time (LVET), stroke volume (SV) and high-frequency heart rate variability (HF)). Increased pupil dilation was observed, as was increased power in low-frequency bands (delta and theta) across frontal EEG electrode sites. Several cardiovascular measures also habituated over repeated cold-water exposures (HR, MAP, CO, SV, LVET) as did pupil dilation and alpha frequency activity across the scalp. Anticipation of cold water induced stress effects in the time-period immediately prior to exposure, indexed by increased pupil size and cortical disinhibition in the alpha and beta frequency bands across central scalp sites. These results provide comprehensive insight into the evolution of a diverse array of stress responses to an acute noxious stressor, and how these responses adaptively contribute to stress habituation.
Collapse
Affiliation(s)
- Tom Bullock
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States,Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States,*Correspondence: Tom Bullock,
| | - Mary H. MacLean
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States,Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Tyler Santander
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States,Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Alexander P. Boone
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Viktoriya Babenko
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States,Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Neil M. Dundon
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States,Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States,Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University of Freiburg, Freiburg im Breisgau, Germany
| | - Alexander Stuber
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States,Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Liann Jimmons
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States,Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Jamie Raymer
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States,Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Gold N. Okafor
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States,Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Michael B. Miller
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States,Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Barry Giesbrecht
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States,Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Scott T. Grafton
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States,Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
7
|
Albuquerque MR, Hooper B, de Sousa Viana IO, Mesquita PHC, Santos TM, Apolinário‐Souza T, de Sousa Fortes L, Gonçalves DAP. Do executive function performance, gaze behavior, and pupil size change during incremental acute physical exercise? Psychophysiology 2022; 60:e14233. [PMID: 36537715 DOI: 10.1111/psyp.14233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Several studies have investigated the interaction between acute physical exercise and cognitive performance. However, few studies have investigated this issue during acute high-intensity exercise. In the present study, we evaluated executive functions (EFs) during incremental exercise in three different intensities [below lactate threshold (LT), at LT, and above LT], measuring EFs performance, gaze behavior, and pupil diameter. Twenty subjects were familiarized with the EFs test and participated in a graded maximal exercise test on a cycle ergometer on the first visit. On the second visit, they performed the EFs task at rest and while exercising at three different intensities using mobile eye-tracking glasses. Our results showed that the psychophysiological measures differed between the conditions. Regarding EFs performance, during exercise above LT, the subjects showed worse accuracy when compared with rest (p < .001) and below LT (p < .001). In addition, the response time (RT) at LT and above LT was shorter than in the rest condition (p < .050). Further, RT was faster (p = .002) in the above LT than in the below LT condition. In addition, the gaze behavior measures indicated that exercise, independently of the intensity, improves the number of fixations with shorter fixation durations compared to the rest condition (p < .050). Additionally, we found no significant differences in average and peak pupil diameter between conditions. In conclusion, exercise at LT improves the EFs performance while exercising above LT worsens EFs performance. However, there were no significant differences in average and peak pupil diameter between conditions.
Collapse
Affiliation(s)
- Maicon Rodrigues Albuquerque
- Neurosciences of Physical Activity and Sports Research Group Universidade Federal de Minas Gerais – UFMG Belo Horizonte Brazil
| | - Beatriz Hooper
- Neurosciences of Physical Activity and Sports Research Group Universidade Federal de Minas Gerais – UFMG Belo Horizonte Brazil
| | - Iasmin Oliveira de Sousa Viana
- Neurosciences of Physical Activity and Sports Research Group Universidade Federal de Minas Gerais – UFMG Belo Horizonte Brazil
| | | | - Tony Meireles Santos
- Graduate Program of Physical Education Pernambuco Federal University Recife Brazil
| | - Tércio Apolinário‐Souza
- Escola de Educação Física, Fisioterapia e Danca Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Leonardo de Sousa Fortes
- Associate Graduate Program of Physical Education Universidade Federal da Paraíba João Pessoa Brazil
| | | |
Collapse
|
8
|
Human visual processing during walking: Dissociable pre- and post-stimulus influences. Neuroimage 2022; 264:119757. [PMID: 36414209 PMCID: PMC9771827 DOI: 10.1016/j.neuroimage.2022.119757] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022] Open
Abstract
Walking influences visual processing but the underlying mechanism remains poorly understood. In this study, we investigated the influence of walking on pre-stimulus and stimulus-induced visual neural activity and behavioural performance in a discrimination task while participants were standing or freely walking. The results showed dissociable pre- and post-stimulus influences by the movement state. Walking was associated with a reduced pre-stimulus alpha power, which predicted enhanced N1 and decreased P3 components during walking. This pre-stimulus alpha activity was additionally modulated by time on the task, which was paralleled by a similar behavioural modulation. In contrast, the post-stimulus alpha power was reduced in its modulation due to stimulus onset during walking but showed no evidence of modulation by time on the task. Additionally, stimulus parameters (eccentricity, laterality, distractor presence significantly influenced post-stimulus alpha power, whereas the visually evoked components showed no evidence of such an influence. There was further no evidence of a correlation between pre-stimulus and post stimulus alpha power. We conclude that walking has two dissociable influences on visual processing: while the walking induced reduction in alpha power suggests an attentional state change that relates to visual awareness, the post-stimulus influence on alpha power modulation indicates changed spatial visual processing during walking.
Collapse
|
9
|
Tonelli A, Lunghi C, Gori M. Moderate physical activity alters the estimation of time, but not space. Front Psychol 2022; 13:1004504. [PMID: 36275247 PMCID: PMC9580464 DOI: 10.3389/fpsyg.2022.1004504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Moderate physical activity can influence cognitive functions and visual cortical activity. However, little is known about the effects of exercise on fundamental perceptual domains, such as spatial and temporal representation. Here we tackled this issue by testing the impact of physical activity on a temporal estimation task in a group of adult volunteers in three different conditions: (1) in a resting condition (baseline), (2) during moderate physical activity (cycling in place – PA), and (3) approximately 15 to 20 min following the physical activity phase, in which participants were seated and returned to a regular heart rate (POST). We show that physical activity specifically impacts time perception, inducing a consistent overestimation for durations in the range of milliseconds. Notably, the effect persisted in the POST session, ruling out the main contribution of either heart rate or cycling rhythmicity. In a control experiment, we found that spatial perception (distance estimation) was unaffected by physical activity, ruling out a major contribution of arousal and fatigue to the observed temporal distortion. We speculate that physical exercise might alter temporal estimation either by up-regulating the dopaminergic system or modulating GABAergic inhibition.
Collapse
Affiliation(s)
- Alessia Tonelli
- UVIP – Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
- *Correspondence: Alessia Tonelli,
| | - Claudia Lunghi
- Laboratoire des Systèmes Perceptifs, Département d’Études Cognitives, École Normale Supérieure, PSL University, CNRS, Paris, France
| | - Monica Gori
- UVIP – Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
10
|
Abuleil D, Thompson B, Dalton K. Aerobic Exercise and Human Visual Cortex Neuroplasticity: A Narrative Review. Neural Plast 2022; 2022:6771999. [PMID: 35915651 PMCID: PMC9338869 DOI: 10.1155/2022/6771999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022] Open
Abstract
There is compelling evidence from animal models that physical exercise can enhance visual cortex neuroplasticity. In this narrative review, we explored whether exercise has the same effect in humans. We found that while some studies report evidence consistent with exercise-induced enhancement of human visual cortex neuroplasticity, others report no effect or even reduced neuroplasticity following exercise. Differences in study methodology may partially explain these varying results. Because the prospect of exercise increasing human visual cortex neuroplasticity has important implications for vision rehabilitation, additional research is required to resolve this discrepancy in the literature.
Collapse
Affiliation(s)
- Dania Abuleil
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
- Center for Eye and Vision Research, Hong Kong, Hong Kong
| | - Benjamin Thompson
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
- Center for Eye and Vision Research, Hong Kong, Hong Kong
| | - Kristine Dalton
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
- Center for Eye and Vision Research, Hong Kong, Hong Kong
| |
Collapse
|
11
|
Kaiser A, Reneman L, Solleveld MM, Coolen BF, Scherder EJA, Knutsson L, Bjørnerud A, van Osch MJP, Wijnen JP, Lucassen PJ, Schrantee A. A Randomized Controlled Trial on the Effects of a 12-Week High- vs. Low-Intensity Exercise Intervention on Hippocampal Structure and Function in Healthy, Young Adults. Front Psychiatry 2022; 12:780095. [PMID: 35126199 PMCID: PMC8814653 DOI: 10.3389/fpsyt.2021.780095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
Physical exercise affects hippocampal structure and function, but the underlying neural mechanisms and the effects of exercise intensity remain incompletely understood. Therefore, we undertook a comprehensive, multi-modal 3T and 7T MRI randomized controlled trial (Netherlands Trial Register - NL5847) in which we randomized 52 young, non-athletic volunteers to a 12-week low- or high-intensity exercise program. Using state-of-the-art methods, we investigated changes in hippocampal volume, as well as changes in vasculature, neuro-metabolites, and peripheral growth factors as potential underpinnings. Cardiorespiratory fitness improved over time (p < 0.001), but no interaction with exercise intensity was found (p = 0.48). Accordingly, we did not observe significant interactions between exercise condition and time on MRI measures (all p > 0.06). However, we found a significant decrease in right hippocampal volume (p < 0.01), an increase in left hippocampal glutathione (p < 0.01), and a decrease of left hippocampal cerebral blood volume (p = 0.01) over time, regardless of exercise condition. Additional exploratory analyses showed that changes in brain-derived neurotrophic factor (p = 0.01), insulin-like growth-factor (p = 0.03), and dorsal anterior cingulate cortex N-acetyl-aspartate levels (p = 0.01) were positively associated with cardiorespiratory fitness changes. Furthermore, a trend toward a positive association of fitness and gray-matter cerebral blood flow (p = 0.06) was found. Our results do not provide evidence for differential effects between high-intensity (aerobic) and low-intensity (toning) exercise on hippocampal structure and function in young adults. However, we show small but significant effects of exercise on hippocampal volume, neurometabolism and vasculature across exercise conditions. Moreover, our exploratory results suggest that exercise might not specifically only benefit hippocampal structure and function, but rather has a more widespread effect. These findings suggest that, in agreement with previous MRI studies demonstrating moderate to strong effects in elderly and diseased populations, but none to only mild effects in young healthy cohorts, the benefits of exercise on the studied brain measures may be age-dependent and restorative rather than stimulatory. Our study highlights the importance of a multi-modal, whole-brain approach to assess macroscopic and microscopic changes underlying exercise-induced brain changes, to better understand the role of exercise as a potential non-pharmacological intervention.
Collapse
Affiliation(s)
- Antonia Kaiser
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Michelle M. Solleveld
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bram F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Erik J. A. Scherder
- Department of Clinical Neuropsychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Linda Knutsson
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Atle Bjørnerud
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | | | - Jannie P. Wijnen
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Paul J. Lucassen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Center for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Center for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
12
|
Differential effects of walking across visual cortical processing stages. Cortex 2022; 149:16-28. [DOI: 10.1016/j.cortex.2022.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/12/2021] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
|
13
|
Salazar S, Oyewole F, Obi T, Baron R, Mahony D, Kropelnicki A, Cohen A, Putrino D, Fry A. Steady-state visual evoked potentials are unchanged following physical and cognitive exertion paradigms. JOURNAL OF CONCUSSION 2021. [DOI: 10.1177/20597002211055346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background There is a need for objective biomarkers of sports-related concussion that are unaffected by physical and cognitive exertion. Electroencephalography-based biomarkers such as steady-state visually evoked potentials (SSVEPs) have been proposed as one such biomarker. The aim of this study was to investigate the effects of cognitive and physical exertion on SSVEP signal-to-noise ratio (SNR). Methods This study involved two experiments. The first experiment was performed in a controlled laboratory environment and involved a treadmill run designed to induce physical fatigue and a Stroop task designed to induce mental fatigue, completed in a randomized order on two separate visits. SSVEPs were evoked using a 15-Hz strobe using a Nurochek headset before and after each task. Changes in the 15-Hz SSVEP SNR and self-reported fatigue (visual analog scales) were assessed. In the second experiment, SSVEP SNR was measured before and after real-world boxing matches. Paired t-tests compared pre- and post-task SSVEP SNR and fatigue scores. Results Eighteen participants were recruited for experiment 1. Following the treadmill run, participants reported higher physical fatigue, mental fatigue, and overall fatigue ( p ≤ 0.005; d ≥ 0.90). Following the Stroop task, participants reported higher mental fatigue and overall fatigue ( p < 0.001; d ≥ 1.16), but not physical fatigue. SSVEP SNR scores were unchanged following either the Stroop task ( p = 0.059) or the treadmill task ( p = 0.590). Seven participants were recruited for experiment 2. SSVEP SNR scores were unchanged following the boxing matches ( p = 0.967). Conclusions The results of both experiments demonstrate that SSVEP SNR scores were not different following the treadmill run, Stroop task or amateur boxing match. These findings provide preliminary evidence that SSVEP fidelity may not be significantly affected by physical and cognitive exertion paradigms.
Collapse
Affiliation(s)
- Sophia Salazar
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Femi Oyewole
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ted Obi
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebecca Baron
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - David Putrino
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Fry
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
Bullock T, Giesbrecht B, Beaudin AE, Goodyear BG, Poulin MJ. Effects of changes in end-tidal PO 2 and PCO 2 on neural responses during rest and sustained attention. Physiol Rep 2021; 9:e15106. [PMID: 34755481 PMCID: PMC8578925 DOI: 10.14814/phy2.15106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 01/23/2023] Open
Abstract
Impairments of cognitive function during alterations in arterial blood gases (e.g., high-altitude hypoxia) may result from the disruption of neurovascular coupling; however, the link between changes in arterial blood gases, cognition, and cerebral blood flow (CBF) is poorly understood. To interrogate this link, we developed a multimodal empirical strategy capable of monitoring neural correlates of cognition and CBF simultaneously. Human participants performed a sustained attention task during hypoxia, hypercapnia, hypocapnia, and normoxia while electroencephalographic (EEG) activity and CBF (middle and posterior cerebral arteries; transcranial Doppler ultrasound) were simultaneously measured. The protocol alternated between rest and engaging in a visual target detection task that required participants to monitor a sequence of brief-duration colored circles and detect infrequent, longer duration circles (targets). The target detection task was overlaid on a large, circular checkerboard that provided robust visual stimulation. Spectral decomposition and event-related potential (ERP) analyses were applied to the EEG data to investigate spontaneous and task-specific fluctuations in neural activity. There were three main sets of findings: (1) spontaneous alpha oscillatory activity was modulated as a function of arterial CO2 (hypocapnia and hypercapnia), (2) task-related neurovascular coupling was disrupted by all arterial blood gas manipulations, and (3) changes in task-related alpha and theta band activity and attenuation of the P3 ERP component amplitude were observed during hypocapnia. Since alpha and theta are linked with suppression of visual processing and executive control and P3 amplitude with task difficulty, these data suggest that transient arterial blood gas changes can modulate multiple stages of cognitive information processing.
Collapse
Affiliation(s)
- Tom Bullock
- Department of Psychological and Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Institute for Collaborative BiotechnologiesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Barry Giesbrecht
- Department of Psychological and Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Institute for Collaborative BiotechnologiesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Interdepartmental Graduate Program in Dynamical NeuroscienceUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Andrew E. Beaudin
- Department of Physiology & PharmacologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Bradley G. Goodyear
- Hotchkiss Brain InstituteCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Department of RadiologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Marc J. Poulin
- Department of Physiology & PharmacologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- O’Brien Institute for Public HealthUniversity of CalgaryCalgaryAlbertaCanada
- Libin Cardiovascular Institute of AlbertaUniversity of CalgaryCalgaryAlbertaCanada
- Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
15
|
Cao L, Chen X, Haendel BF. Overground Walking Decreases Alpha Activity and Entrains Eye Movements in Humans. Front Hum Neurosci 2021; 14:561755. [PMID: 33414709 PMCID: PMC7782973 DOI: 10.3389/fnhum.2020.561755] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/02/2020] [Indexed: 01/25/2023] Open
Abstract
Experiments in animal models have shown that running increases neuronal activity in early visual areas in light as well as in darkness. This suggests that visual processing is influenced by locomotion independent of visual input. Combining mobile electroencephalography, motion- and eye-tracking, we investigated the influence of overground free walking on cortical alpha activity (~10 Hz) and eye movements in healthy humans. Alpha activity has been considered a valuable marker of inhibition of sensory processing and shown to negatively correlate with neuronal firing rates. We found that walking led to a decrease in alpha activity over occipital cortex compared to standing. This decrease was present during walking in darkness as well as during light. Importantly, eye movements could not explain the change in alpha activity. Nevertheless, we found that walking and eye related movements were linked. While the blink rate increased with increasing walking speed independent of light or darkness, saccade rate was only significantly linked to walking speed in the light. Pupil size, on the other hand, was larger during darkness than during light, but only showed a modulation by walking in darkness. Analyzing the effect of walking with respect to the stride cycle, we further found that blinks and saccades preferentially occurred during the double support phase of walking. Alpha power, as shown previously, was lower during the swing phase than during the double support phase. We however could exclude the possibility that the alpha modulation was introduced by a walking movement induced change in electrode impedance. Overall, our work indicates that the human visual system is influenced by the current locomotion state of the body. This influence affects eye movement pattern as well as neuronal activity in sensory areas and might form part of an implicit strategy to optimally extract sensory information during locomotion.
Collapse
Affiliation(s)
- Liyu Cao
- Department of Psychology (III), Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Xinyu Chen
- Department of Psychology (III), Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Barbara F Haendel
- Department of Psychology (III), Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
16
|
Parker PRL, Brown MA, Smear MC, Niell CM. Movement-Related Signals in Sensory Areas: Roles in Natural Behavior. Trends Neurosci 2020; 43:581-595. [PMID: 32580899 PMCID: PMC8000520 DOI: 10.1016/j.tins.2020.05.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/02/2020] [Accepted: 05/24/2020] [Indexed: 11/24/2022]
Abstract
Recent studies have demonstrated prominent and widespread movement-related signals in the brain of head-fixed mice, even in primary sensory areas. However, it is still unknown what role these signals play in sensory processing. Why are these sensory areas 'contaminated' by movement signals? During natural behavior, animals actively acquire sensory information as they move through the environment and use this information to guide ongoing actions. In this context, movement-related signals could allow sensory systems to predict self-induced sensory changes and extract additional information about the environment. In this review we summarize recent findings on the presence of movement-related signals in sensory areas and discuss how their study, in the context of natural freely moving behaviors, could advance models of sensory processing.
Collapse
Affiliation(s)
- Philip R L Parker
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| | - Morgan A Brown
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Matthew C Smear
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; Department of Psychology, University of Oregon, Eugene, OR 97403, USA
| | - Cristopher M Niell
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; Department of Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
17
|
Abstract
Neural activity and behavior are both notoriously variable, with responses differing widely between repeated presentation of identical stimuli or trials. Recent results in humans and animals reveal that these variations are not random in their nature, but may in fact be due in large part to rapid shifts in neural, cognitive, and behavioral states. Here we review recent advances in the understanding of rapid variations in the waking state, how variations are generated, and how they modulate neural and behavioral responses in both mice and humans. We propose that the brain has an identifiable set of states through which it wanders continuously in a nonrandom fashion, owing to the activity of both ascending modulatory and fast-acting corticocortical and subcortical-cortical neural pathways. These state variations provide the backdrop upon which the brain operates, and understanding them is critical to making progress in revealing the neural mechanisms underlying cognition and behavior.
Collapse
Affiliation(s)
- David A McCormick
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA;
| | - Dennis B Nestvogel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA;
| | - Biyu J He
- Departments of Neurology, Neuroscience and Physiology, and Radiology, Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
18
|
Mechanisms underlying gain modulation in the cortex. Nat Rev Neurosci 2020; 21:80-92. [PMID: 31911627 DOI: 10.1038/s41583-019-0253-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2019] [Indexed: 01/19/2023]
Abstract
Cortical gain regulation allows neurons to respond adaptively to changing inputs. Neural gain is modulated by internal and external influences, including attentional and arousal states, motor activity and neuromodulatory input. These influences converge to a common set of mechanisms for gain modulation, including GABAergic inhibition, synaptically driven fluctuations in membrane potential, changes in cellular conductance and changes in other biophysical neural properties. Recent work has identified GABAergic interneurons as targets of neuromodulatory input and mediators of state-dependent gain modulation. Here, we review the engagement and effects of gain modulation in the cortex. We highlight key recent findings that link phenomenological observations of gain modulation to underlying cellular and circuit-level mechanisms. Finally, we place these cellular and circuit interactions in the larger context of their impact on perception and cognition.
Collapse
|
19
|
Cao L, Händel B. Walking enhances peripheral visual processing in humans. PLoS Biol 2019; 17:e3000511. [PMID: 31603894 PMCID: PMC6808500 DOI: 10.1371/journal.pbio.3000511] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/23/2019] [Accepted: 09/30/2019] [Indexed: 02/08/2023] Open
Abstract
Cognitive processes are almost exclusively investigated under highly controlled settings during which voluntary body movements are suppressed. However, recent animal work suggests differences in sensory processing between movement states by showing drastically changed neural responses in early visual areas between locomotion and stillness. Does locomotion also modulate visual cortical activity in humans, and what are the perceptual consequences? Our study shows that walking increased the contrast-dependent influence of peripheral visual input on central visual input. This increase is prevalent in stimulus-locked electroencephalogram (EEG) responses (steady-state visual evoked potential [SSVEP]) alongside perceptual performance. Ongoing alpha oscillations (approximately 10 Hz) further positively correlated with the walking-induced changes of SSVEP amplitude, indicating the involvement of an altered inhibitory process during walking. The results predicted that walking leads to an increased processing of peripheral visual input. A second study indeed showed an increased contrast sensitivity for peripheral compared to central stimuli when subjects were walking. Our work shows complementary neurophysiological and behavioural evidence corroborating animal findings that walking leads to a change in early visual neuronal activity in humans. That neuronal modulation due to walking is indeed linked to specific perceptual changes extends the existing animal work.
Collapse
Affiliation(s)
- Liyu Cao
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | - Barbara Händel
- Department of Psychology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Movement and VIP Interneuron Activation Differentially Modulate Encoding in Mouse Auditory Cortex. eNeuro 2019; 6:ENEURO.0164-19.2019. [PMID: 31481397 PMCID: PMC6751373 DOI: 10.1523/eneuro.0164-19.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/02/2019] [Accepted: 08/14/2019] [Indexed: 11/22/2022] Open
Abstract
Information processing in sensory cortex is highly sensitive to nonsensory variables such as anesthetic state, arousal, and task engagement. Recent work in mouse visual cortex suggests that evoked firing rates, stimulus–response mutual information, and encoding efficiency increase when animals are engaged in movement. A disinhibitory circuit appears central to this change: inhibitory neurons expressing vasoactive intestinal peptide (VIP) are activated during movement and disinhibit pyramidal cells by suppressing other inhibitory interneurons. Paradoxically, although movement activates a similar disinhibitory circuit in auditory cortex (ACtx), most ACtx studies report reduced spiking during movement. It is unclear whether the resulting changes in spike rates result in corresponding changes in stimulus–response mutual information. We examined ACtx responses evoked by tone cloud stimuli, in awake mice of both sexes, during spontaneous movement and still conditions. VIP+ cells were optogenetically activated on half of trials, permitting independent analysis of the consequences of movement and VIP activation, as well as their intersection. Movement decreased stimulus-related spike rates as well as mutual information and encoding efficiency. VIP interneuron activation tended to increase stimulus-evoked spike rates but not stimulus–response mutual information, thus reducing encoding efficiency. The intersection of movement and VIP activation was largely consistent with a linear combination of these main effects: VIP activation recovered movement-induced reduction in spike rates, but not information transfer.
Collapse
|
21
|
MacLean MH, Bullock T, Giesbrecht B. Dual Process Coding of Recalled Locations in Human Oscillatory Brain Activity. J Neurosci 2019; 39:6737-6750. [PMID: 31300523 PMCID: PMC6703892 DOI: 10.1523/jneurosci.0059-19.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/14/2019] [Accepted: 07/04/2019] [Indexed: 11/21/2022] Open
Abstract
A mental representation of the location of an object can be constructed using sensory information selected from the environment and information stored internally. Human electrophysiological evidence indicates that behaviorally relevant locations, regardless of the source of sensory information, are represented in alpha-band oscillations suggesting a shared process. Here, we present evidence from human subjects of either sex for two distinct alpha-band-based processes that separately support the representation of location, exploiting sensory evidence sampled either externally or internally.SIGNIFICANCE STATEMENT Our sensory environment and our internal trains of thought are coded in patterns of brain activity and are used to guide coherent behavior. Oscillations in the alpha-frequency band are a predominant feature of human brain activity. This oscillation plays a central role in both selective attention and working memory, suggesting that these important cognitive functions are mediated by a unitary mechanism. We show that the alpha oscillation reflects two distinct processes, one that is supported by continuous sampling of the external sensory environment, and one that is based on sampling from internal representations coded in visual short-term memory. This represents a significant change in our understanding of the nature of alpha oscillations and their relationship to attention and memory.
Collapse
Affiliation(s)
- Mary H MacLean
- Department of Psychological and Brain Sciences,
- Institute for Collaborative Biotechnologies, and
| | - Tom Bullock
- Department of Psychological and Brain Sciences
- Institute for Collaborative Biotechnologies, and
| | - Barry Giesbrecht
- Department of Psychological and Brain Sciences,
- Institute for Collaborative Biotechnologies, and
- Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, California 93106
| |
Collapse
|
22
|
Scanlon JE, Townsend KA, Cormier DL, Kuziek JW, Mathewson KE. Taking off the training wheels: Measuring auditory P3 during outdoor cycling using an active wet EEG system. Brain Res 2019; 1716:50-61. [DOI: 10.1016/j.brainres.2017.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
|
23
|
Rahman M, Karwowski W, Fafrowicz M, Hancock PA. Neuroergonomics Applications of Electroencephalography in Physical Activities: A Systematic Review. Front Hum Neurosci 2019; 13:182. [PMID: 31214002 PMCID: PMC6558147 DOI: 10.3389/fnhum.2019.00182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/20/2019] [Indexed: 11/13/2022] Open
Abstract
Recent years have seen increased interest in neuroergonomics, which investigates the brain activities of people engaged in diverse physical and cognitive activities at work and in everyday life. The present work extends upon prior assessments of the state of this art. However, here we narrow our focus specifically to studies that use electroencephalography (EEG) to measure brain activity, correlates, and effects during physical activity. The review uses systematically selected, openly published works derived from a guided search through peer-reviewed journals and conference proceedings. Identified studies were then categorized by the type of physical activity and evaluated considering methodological and chronological aspects via statistical and content-based analyses. From the identified works (n = 110), a specific number (n = 38) focused on less mobile muscular activities, while an additional group (n = 22) featured both physical and cognitive tasks. The remainder (n = 50) investigated various physical exercises and sporting activities and thus were here identified as a miscellaneous grouping. Most of the physical activities were isometric exertions, moving parts of upper and lower limbs, or walking and cycling. These primary categories were sub-categorized based on movement patterns, the use of the event-related potentials (ERP) technique, the use of recording methods along with EEG and considering mental effects. Further information on subjects' gender, EEG recording devices, data processing, and artifact correction methods and citations was extracted. Due to the heterogeneous nature of the findings from various studies, statistical analyses were not performed. These were thus included in a descriptive fashion. Finally, contemporary research gaps were pointed out, and future research prospects to address those gaps were discussed.
Collapse
Affiliation(s)
- Mahjabeen Rahman
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Neurobiology Department, The Maloploska Center of Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Peter A Hancock
- Department of Psychology, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
24
|
Lefferts WK, DeBlois JP, White CN, Heffernan KS. Effects of Acute Aerobic Exercise on Cognition and Constructs of Decision-Making in Adults With and Without Hypertension. Front Aging Neurosci 2019; 11:41. [PMID: 30906257 PMCID: PMC6418781 DOI: 10.3389/fnagi.2019.00041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 02/13/2019] [Indexed: 12/30/2022] Open
Abstract
Hypertension accelerates brain aging, resulting in cognitive dysfunction with advancing age. Exercise is widely recommended for adults with hypertension to attenuate cognitive dysfunction. Whether acute exercise benefits cognitive function in this at-risk population is unknown. The purpose of this study was to compare the effects of acute aerobic exercise on cognitive function in 30 middle-aged hypertensive (HTN) and 30 age, sex, and body mass index (BMI)-matched non-HTN adults (56 ± 6 years, BMI 28.2 ± 2.9 kg/m2; 32 men). Subjects underwent cognitive testing pre/post 30-min cycling (≈55% peak oxygen consumption). Cognition was assessed using standard metrics of accuracy and reaction time (RT) across memory recognition, 2-back, and Flanker tasks. Behavioral data was further analyzed using drift-diffusion modeling to examine underlying components of decision-making (strength of evidence, caution, bias) and RT (non-decision time). Exercise elicited similar changes in cognitive function in both HTN and non-HTN groups (p > 0.05). Accuracy was unaltered for Flanker and 2-back tasks, while hits and false alarms increased for memory recognition post-exercise (p < 0.05). Modeling results indicated changes in memory hits/false alarms were due to significant changes in stimulus bias post-exercise. RT decreased for Flanker and memory recognition tasks and was driven by reductions in post-exercise non-decision time (p < 0.05). Our data indicate acute exercise resulted in similar, beneficial cognitive responses in both middle-age HTN and non-HTN adults, marked by unaltered task accuracy, and accelerated RT post-exercise. Additionally, drift-diffusion modeling revealed that beneficial acceleration of cognitive processing post-exercise (RT) is driven by changes in non-decision components (encoding/motor response) rather than the decision-making process itself.
Collapse
Affiliation(s)
| | - Jacob P DeBlois
- Exercise Science, Syracuse University, Syracuse, NY, United States
| | - Corey N White
- Department of Psychology, Missouri Western State University, St. Joseph, MO, United States
| | | |
Collapse
|
25
|
Gardner JL, Liu T. Inverted Encoding Models Reconstruct an Arbitrary Model Response, Not the Stimulus. eNeuro 2019; 6:ENEURO.0363-18.2019. [PMID: 30923743 PMCID: PMC6437661 DOI: 10.1523/eneuro.0363-18.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 01/24/2023] Open
Abstract
Probing how large populations of neurons represent stimuli is key to understanding sensory representations as many stimulus characteristics can only be discerned from population activity and not from individual single-units. Recently, inverted encoding models have been used to produce channel response functions from large spatial-scale measurements of human brain activity that are reminiscent of single-unit tuning functions and have been proposed to assay "population-level stimulus representations" (Sprague et al., 2018a). However, these channel response functions do not assay population tuning. We show by derivation that the channel response function is only determined up to an invertible linear transform. Thus, these channel response functions are arbitrary, one of an infinite family and therefore not a unique description of population representation. Indeed, simulations demonstrate that bimodal, even random, channel basis functions can account perfectly well for population responses without any underlying neural response units that are so tuned. However, the approach can be salvaged by extending it to reconstruct the stimulus, not the assumed model. We show that when this is done, even using bimodal and random channel basis functions, a unimodal function peaking at the appropriate value of the stimulus is recovered which can be interpreted as a measure of population selectivity. More precisely, the recovered function signifies how likely any value of the stimulus is, given the observed population response. Whether an analysis is recovering the hypothetical responses of an arbitrary model rather than assessing the selectivity of population representations is not an issue unique to the inverted encoding model and human neuroscience, but a general problem that must be confronted as more complex analyses intervene between measurement of population activity and presentation of data.
Collapse
Affiliation(s)
| | - Taosheng Liu
- Department of Psychology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
26
|
Lunghi C, Sframeli AT, Lepri A, Lepri M, Lisi D, Sale A, Morrone MC. A new counterintuitive training for adult amblyopia. Ann Clin Transl Neurol 2019; 6:274-284. [PMID: 30847360 PMCID: PMC6389748 DOI: 10.1002/acn3.698] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/23/2022] Open
Abstract
Objectives The aim of this study was to investigate whether short-term inverse occlusion, combined with moderate physical exercise, could promote the recovery of visual acuity and stereopsis in a group of adult anisometropic amblyopes. Methods Ten adult anisometropic patients underwent six brief (2 h) training sessions over a period of 4 weeks. Each training session consisted in the occlusion of the amblyopic eye combined with physical exercise (intermittent cycling on a stationary bike). Visual acuity (measured with ETDRS charts), stereoacuity (measured with the TNO test), and sensory eye dominance (measured with binocular rivalry) were tested before and after each training session, as well as in follow-up visits performed 1 month, 3 months, and 1 year after the end of the training. Results After six brief (2 h) training sessions, visual acuity improved in all 10 patients (0.15 ± 0.02 LogMar), and six of them also recovered stereopsis. The improvement was preserved for up to 1 year after training. A pilot experiment suggested that physical activity might play an important role for the recovery of visual acuity and stereopsis. Conclusions Our results suggest a noninvasive training strategy for adult human amblyopia based on an inverse-occlusion procedure combined with physical exercise.
Collapse
Affiliation(s)
- Claudia Lunghi
- Department of Translational Research on New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
- Laboratoire des systèmes perceptifsDépartement d’études cognitivesÉcole normale supérieurePSL UniversityCNRS75005ParisFrance
| | - Angela T. Sframeli
- Ophthalmology UnitDepartment of Surgical, Medical, Molecular and Critical Area PathologyUniversity of PisaPisaItaly
| | - Antonio Lepri
- Ophthalmology UnitDepartment of Surgical, Medical, Molecular and Critical Area PathologyUniversity of PisaPisaItaly
| | - Martina Lepri
- Ophthalmology UnitDepartment of Surgical, Medical, Molecular and Critical Area PathologyUniversity of PisaPisaItaly
| | - Domenico Lisi
- Ophthalmology UnitDepartment of Surgical, Medical, Molecular and Critical Area PathologyUniversity of PisaPisaItaly
| | - Alessandro Sale
- Neuroscience InstituteNational Research Council (CNR)PisaItaly
| | - Maria C. Morrone
- Department of Translational Research on New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
- IRCCS Stella MarisCalambronePisaItaly
| |
Collapse
|
27
|
Busse L. The influence of locomotion on sensory processing and its underlying neuronal circuits. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/nf-2017-a046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractProcessing of sensory information can be modulated in both cortex and thalamus by behavioral context, such as locomotion. During active behaviors, coding of sensory stimuli and perception are improved, in particular during physical activity of moderate intensity. These locomotion-related modulations seem to arise from a combination of mechanisms, including neuromodulation, the recruitment of inhibitory interneurons, and specific top-down or motor-related inputs. The application of new experimental methods in mice during walking under head-fixation on treadmills made it possible to study the circuit and cellular basis underlying modulations by behavioral context with unprecedented detail. This article reviews the current state of these studies and highlights some important open questions.
Collapse
Affiliation(s)
- Laura Busse
- Division of Neurobiology, Department Biology II, LMU Munich, Germany; Bernstein Center for Computational Neuroscience Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany, Phone: 49 (0) 89 218074305
| |
Collapse
|
28
|
The Effect of Locomotion on Early Visual Contrast Processing in Humans. J Neurosci 2018; 38:3050-3059. [PMID: 29463642 PMCID: PMC5864146 DOI: 10.1523/jneurosci.1428-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 09/18/2017] [Accepted: 10/23/2017] [Indexed: 01/23/2023] Open
Abstract
Most of our knowledge about vision comes from experiments in which stimuli are presented to immobile human subjects or animals. In the case of human subjects, movement during psychophysical, electrophysiological, or neuroimaging experiments is considered to be a source of noise to be eliminated. Animals used in visual neuroscience experiments are typically restrained and, in many cases, anesthetized. In reality, however, vision is often used to guide the motion of awake, ambulating organisms. Recent work in mice has shown that locomotion elevates visual neuronal response amplitudes (Niell and Stryker, 2010; Erisken et al., 2014; Fu et al., 2014; Lee et al., 2014; Mineault et al., 2016) and reduces long-range gain control (Ayaz et al., 2013). Here, we used both psychophysics and steady-state electrophysiology to investigate whether similar effects of locomotion on early visual processing can be measured in humans. Our psychophysical results show that brisk walking has little effect on subjects' ability to detect briefly presented contrast changes and that co-oriented flankers are, if anything, more effective masks when subjects are walking. Our electrophysiological data were consistent with the psychophysics indicating no increase in stimulus-driven neuronal responses while walking and no reduction in surround suppression. In summary, we have found evidence that early contrast processing is altered by locomotion in humans but in a manner that differs from that reported in mice. The effects of locomotion on very low-level visual processing may differ on a species-by-species basis and may reflect important differences in the levels of arousal associated with locomotion. SIGNIFICANCE STATEMENT Mice are the current model of choice for studying low-level visual processing. Recent studies have shown that mouse visual cortex is modulated by behavioral state: primary visual cortex neurons in locomoting mice tend to be more sensitive and less influenced by long-range gain control. Here, we tested these effects in humans by measuring psychophysical detection thresholds and electroencephalography (EEG) responses while subjects walked on a treadmill. We found no evidence of increased contrast sensitivity or reduced surround suppression in walking humans. Our data show that fundamental measurements of early visual processing differ between humans and mice and this has important implications for recent work on the links among arousal, behavior, and vision in these two species.
Collapse
|
29
|
Connell CJW, Thompson B, Green H, Sullivan RK, Gant N. Effects of regular aerobic exercise on visual perceptual learning. Vision Res 2017; 152:110-117. [PMID: 29183780 DOI: 10.1016/j.visres.2017.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 08/17/2017] [Accepted: 08/23/2017] [Indexed: 12/26/2022]
Abstract
This study investigated the influence of five days of moderate intensity aerobic exercise on the acquisition and consolidation of visual perceptual learning using a motion direction discrimination (MDD) task. The timing of exercise relative to learning was manipulated by administering exercise either before or after perceptual training. Within a matched-subjects design, twenty-seven healthy participants (n = 9 per group) completed five consecutive days of perceptual training on a MDD task under one of three interventions: no exercise, exercise before the MDD task, or exercise after the MDD task. MDD task accuracy improved in all groups over the five-day period, but there was a trend for impaired learning when exercise was performed before visual perceptual training. MDD task accuracy (mean ± SD) increased in exercise before by 4.5 ± 6.5%; exercise after by 11.8 ± 6.4%; and no exercise by 11.3 ± 7.2%. All intervention groups displayed similar MDD threshold reductions for the trained and untrained motion axes after training. These findings suggest that moderate daily exercise does not enhance the rate of visual perceptual learning for an MDD task or the transfer of learning to an untrained motion axis. Furthermore, exercise performed immediately prior to a visual perceptual learning task may impair learning. Further research with larger groups is required in order to better understand these effects.
Collapse
Affiliation(s)
- Charlotte J W Connell
- Department of Exercise Sciences, Centre for Brain Research, University of Auckland, Auckland 1142, New Zealand
| | - Benjamin Thompson
- School of Optometry and Vision Science, University of Waterloo, Ontario N2L 3G1, Canada; Department of Optometry and Vision Science, University of Auckland, Auckland 1142, New Zealand
| | - Hayden Green
- Department of Exercise Sciences, Centre for Brain Research, University of Auckland, Auckland 1142, New Zealand
| | - Rachel K Sullivan
- Department of Exercise Sciences, Centre for Brain Research, University of Auckland, Auckland 1142, New Zealand
| | - Nicholas Gant
- Department of Exercise Sciences, Centre for Brain Research, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
30
|
Inverted Encoding Models of Human Population Response Conflate Noise and Neural Tuning Width. J Neurosci 2017; 38:398-408. [PMID: 29167406 DOI: 10.1523/jneurosci.2453-17.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 01/02/2023] Open
Abstract
Channel-encoding models offer the ability to bridge different scales of neuronal measurement by interpreting population responses, typically measured with BOLD imaging in humans, as linear sums of groups of neurons (channels) tuned for visual stimulus properties. Inverting these models to form predicted channel responses from population measurements in humans seemingly offers the potential to infer neuronal tuning properties. Here, we test the ability to make inferences about neural tuning width from inverted encoding models. We examined contrast invariance of orientation selectivity in human V1 (both sexes) and found that inverting the encoding model resulted in channel response functions that became broader with lower contrast, thus apparently violating contrast invariance. Simulations showed that this broadening could be explained by contrast-invariant single-unit tuning with the measured decrease in response amplitude at lower contrast. The decrease in response lowers the signal-to-noise ratio of population responses that results in poorer population representation of orientation. Simulations further showed that increasing signal to noise makes channel response functions less sensitive to underlying neural tuning width, and in the limit of zero noise will reconstruct the channel function assumed by the model regardless of the bandwidth of single units. We conclude that our data are consistent with contrast-invariant orientation tuning in human V1. More generally, our results demonstrate that population selectivity measures obtained by encoding models can deviate substantially from the behavior of single units because they conflate neural tuning width and noise and are therefore better used to estimate the uncertainty of decoded stimulus properties.SIGNIFICANCE STATEMENT It is widely recognized that perceptual experience arises from large populations of neurons, rather than a few single units. Yet, much theory and experiment have examined links between single units and perception. Encoding models offer a way to bridge this gap by explicitly interpreting population activity as the aggregate response of many single neurons with known tuning properties. Here we use this approach to examine contrast-invariant orientation tuning of human V1. We show with experiment and modeling that due to lower signal to noise, contrast-invariant orientation tuning of single units manifests in population response functions that broaden at lower contrast, rather than remain contrast-invariant. These results highlight the need for explicit quantitative modeling when making a reverse inference from population response profiles to single-unit responses.
Collapse
|
31
|
Locomotion Induces Stimulus-Specific Response Enhancement in Adult Visual Cortex. J Neurosci 2017; 37:3532-3543. [PMID: 28258167 DOI: 10.1523/jneurosci.3760-16.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/20/2017] [Accepted: 02/18/2017] [Indexed: 11/21/2022] Open
Abstract
The responses of neurons in the visual cortex (V1) of adult mammals have long been thought to be stable over long periods. Here, we investigated whether repeated exposure to specific stimuli would enhance V1 visual responses in mice using intrinsic signal imaging through the intact skull and two-photon imaging of calcium signals in single neurons. Mice ran on Styrofoam balls floating on air while viewing one of three different, high-contrast visual stimuli. V1 responses to the stimuli that were viewed by the animal were specifically enhanced, while responses to other stimuli were unaffected. Similar exposure in stationary mice or in mice in which NMDA receptors were partially blocked did not significantly enhance responses. These findings indicate that stimulus-specific plasticity in the adult visual cortex depends on concurrent locomotion, presumably as a result of the high-gain state of the visual cortex induced by locomotion.SIGNIFICANCE STATEMENT We report a rapid and persistent increase in visual cortical responses to visual stimuli presented during locomotion in intact mice. We first used a method that is completely noninvasive to image intrinsic signals through the intact skull. We then measured the same effects on single neurons using two-photon calcium imaging and found that the increase in response to a particular stimulus produced by locomotion depends on how well the neuron is initially driven by the stimulus. To our knowledge, this is the first time such enhancement has been described in single neurons or using noninvasive measurements.
Collapse
|