1
|
Takizawa A, Shimada T, Chubachi S, Arai T, Miyakawa A, Iizuka H, Otake S, Sakurai K, Tanabe N, Yamada Y, Jinzaki M, Nakamura H, Asano K, Fukunaga K. Exploring the pathophysiology of anemia in COPD: Insights from chest CT and longitudinal clinical data. Respir Med 2025; 240:108046. [PMID: 40113102 DOI: 10.1016/j.rmed.2025.108046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/25/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Although anemia has been associated with chronic obstructive pulmonary disease (COPD) severity, the underlying risk factors, such as chest imaging indicators, remain poorly understood. In this study, we aimed to investigate the relationship between anemia and clinical features, including pulmonary and extrapulmonary indicators on chest computed tomography (CT), and to clarify the pathophysiology of anemia in COPD. METHODS A total of 400 patients with COPD were prospectively followed for 3 years. Anemia was defined as hemoglobin <13 g/dl in males and <12 g/dl in females. Patients were categorized into the anemia and non-anemia groups, and their clinical characteristics were compared. RESULTS The anemia group exhibited lower percentage of predicted forced expiratory volume in 1 s (%FEV1) and body mass index (BMI) measurements, worse COPD assessment test (CAT) scores, and more frequent exacerbations. Imaging revealed more severe emphysema, lower cross-sectional areas of the pectoralis and erector spinae muscles, decreased subcutaneous fat, and more severe coronary artery calcification in this group. Additionally, echocardiography demonstrated a higher prevalence of pulmonary hypertension and reduced left ventricular ejection fraction in patients with anemia. Three-year longitudinal data analysis further showed that declining hemoglobin levels correlated with the worsening of nutritional status, a deterioration in bone mineral density (BMD), and an increase in CAT scores. CONCLUSION Anemia in COPD is a multifactorial comorbidity resulting in emphysema, decreased fat and muscle mass, and reduced BMD.
Collapse
Affiliation(s)
- Aya Takizawa
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Shimada
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Tetsuya Arai
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akira Miyakawa
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hideto Iizuka
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shiro Otake
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kaori Sakurai
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitake Yamada
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Hidetoshi Nakamura
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University, School of Medicine, Kanagawa, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Yamaguchi M, Niimi A, Matsumoto H, Ueda T, Takemura M, Jinnai M, Oguma T, Nakano Y, Mishima M. Dynamic property of central airway walls assessed by computed tomography: correlation with asthma pathophysiology. J Asthma 2025:1-8. [PMID: 39976363 DOI: 10.1080/02770903.2025.2469312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/22/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
OBJECTIVE A subset of asthmatics suffers from frequent exacerbations. Various features of airway remodeling and the resultant elastic property of airway walls may play pathophysiological roles in these exacerbations. The aim of the study was to examine the collapsibility of airways and sputum biomarkers associated with airway remodeling with different frequencies of exacerbations. METHODS We studied 29 moderate-to-severe asthmatics classified by the number of exacerbations in the previous year as, ≤1: stable, n = 18; ≥2: difficult, n = 11, and 11 healthy controls (HC). The absolute wall area (Awa) and luminal area (Ai) of a segmental bronchus were measured by computed tomography at full inspiration (FI) and full expiration (FE). We examined the %change of Ai (a measure of airway collapsibility) and Awa (a possible measure of vascular/water contents in the airway wall) from FI to FE. Sputum biomarkers associated with fibrosis [TGF-β1 and matrix metalloproteinase (MMP)-9/tissue inhibitors of metalloproteinase (TIMP)-1 molar ratio] and those associated with angiogenesis/edema [vascular endothelial growth factor (VEGF) and vascular permeability index (sputum/serum ratio of albumin levels)] were examined. RESULTS Airway collapsibility was greater in difficult asthmatics than in stable asthmatics and HC. Sputum TGF-β1 levels were higher and MMP-9/TIMP-1 molar ratios were lower in stable asthmatics than in HC. Sputum VEGF levels and vascular permeability index were higher in difficult asthmatics than in HC. CONCLUSIONS Collapsibility of thickened airway walls may determine their susceptibility to exacerbations. This may depend on the balance between fibrosis and angiogenesis/edema in the airways.
Collapse
Affiliation(s)
- Masafumi Yamaguchi
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Hisako Matsumoto
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Respiratory Medicine & Allergology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Tetsuya Ueda
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaya Takemura
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Makiko Jinnai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Respiratory Medicine, Kyoto City Hospital, Kyoto, Japan
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Michiaki Mishima
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Konietzke P, Weinheimer O, Triphan SMF, Nauck S, Wuennemann F, Konietzke M, Jobst BJ, Jörres RA, Vogelmeier CF, Heussel CP, Kauczor HU, Wielpütz MO, Biederer J. GOLD grade-specific characterization of COPD in the COSYCONET multi-center trial: comparison of semiquantitative MRI and quantitative CT. Eur Radiol 2025:10.1007/s00330-024-11269-3. [PMID: 39779513 DOI: 10.1007/s00330-024-11269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/06/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVES We hypothesized that semiquantitative visual scoring of lung MRI is suitable for GOLD-grade specific characterization of parenchymal and airway disease in COPD and that MRI scores correlate with quantitative CT (QCT) and pulmonary function test (PFT) parameters. METHODS Five hundred ninety-eight subjects from the COSYCONET study (median age = 67 (60-72)) at risk for COPD or with GOLD1-4 underwent PFT, same-day paired inspiratory/expiratory CT, and structural and contrast-enhanced MRI. QCT assessed total lung volume (TLV), emphysema, and air trapping by parametric response mapping (PRMEmph, PRMfSAD) and airway disease by wall percentage (WP). MRI was analyzed using a semiquantitative visual scoring system for parenchymal defects, perfusion defects, and airway abnormalities. Descriptive statistics, Spearman correlations, and ANOVA analyses were performed. RESULTS TLV, PRMEmph, and MRI scores for parenchymal and perfusion defects were all higher with each GOLD grade, reflecting the extension of emphysema (all p < 0.001). Airway analysis showed the same trends with higher WP and higher MRI large airway disease scores in GOLD3 and lower WP and MRI scores in GOLD4 (p = 0.236 and p < 0.001). Regional heterogeneity was less evident on MRI, while PRMEmph and MRI perfusion defect scores were higher in the upper lobes, and WP and MRI large airway disease scores were higher in the lower lobes. MRI parenchymal and perfusion scores correlated moderately with PRMEmph (r = 0.61 and r = 0.60) and moderately with FEV1/FVC (r = -0.56). CONCLUSION Multi-center semiquantitative MRI assessments of parenchymal and airway disease in COPD matched GOLD grade-specific imaging features on QCT and detected regional disease heterogeneity. MRI parenchymal disease scores were correlated with QCT and lung function parameters. KEY POINTS Question Do MRI-based scores correlate with QCT and PFT parameters for GOLD-grade specific disease characterization of COPD? Findings MRI can visualize the parenchymal and airway disease features of COPD. Clinical relevance Lung MRI is suitable for GOLD-grade specific disease characterization of COPD and may serve as a radiation-free imaging modality in scientific and clinical settings, given careful consideration of its potential and limitations.
Collapse
Affiliation(s)
- Philip Konietzke
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany.
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Simon M F Triphan
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Sebastian Nauck
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Felix Wuennemann
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Marilisa Konietzke
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Bertram J Jobst
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Rudolf A Jörres
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-University, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Claus P Heussel
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
- Diagnostic Radiology and Neuroradiology, Greifswald University Hospital, Ferdinand-Sauerbruch-Strasse 1, Greifswald, Germany
| | - Jürgen Biederer
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Faculty of Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
4
|
Fujioka Y, Nakamura Y, Yamamoto K, Tokunaga Y, Nono S, Sasaki T, Sakai K, Okamura K, Ando T, Nakabayashi H, Fukatsu-Chikumoto A, Hirano T, Matsunaga K, Ohta Y, Yujiri T. Bronchial structural changes analyzed with three-dimensional computed tomography correlate with severe acute graft-versus-host disease after allogenic hematopoietic stem cell transplantation. Ann Hematol 2025; 104:729-740. [PMID: 39805943 PMCID: PMC11868157 DOI: 10.1007/s00277-025-06195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Severe acute graft-versus-host disease (GVHD) can occur during allogeneic hematopoietic stem cell transplantation (allo-HSCT), causing considerable morbidity and mortality. Although several biomarkers have been reported for predicting acute GVHD, they are often difficult to measure in routine clinical practice. Recently, three-dimensional computed tomography (3D-CT) has been used to quantify the detailed bronchial structure, which might correlate with acute GVHD. We retrospectively evaluated 55 patients who underwent their first allo-HSCT at our hospital between 2016 and 2020. Using 3D-CT analysis, the airway inner luminal area (Ai), wall area (WA), and wall thickness (WT) were measured at each third- to fifth-generation bronchus. Values were adjusted according to body surface area (BSA). Ratios of values at neutrophil engraftment to those of pre-conditioning were assessed. In the cohort, Ai/BSA narrowed, WA/BSA enlarged, and WT/BSA thickened during neutrophil engraftment compared with pre-conditioning. The cumulative incidence of grade II-IV acute GVHD after allo-HSCT was 24%. The ratio of WA/BSA at neutrophil engraftment to that of pre-conditioning in fourth-generation bronchi (WA4/BSA) was significantly lower in patients with grade II-IV acute GVHD compared with those with grade 0-I (0.99 vs. 1.08, P < 0.01). The ratio of WA4/BSA of < 0.955 was significantly associated with the incidence of grade II-IV acute GVHD (< 0.955; 60% vs. ≥ 0.955; 16%, P < 0.01). This is the first study to demonstrate that 3D-CT analyses could quantify changes in bronchial structure during neutrophil engraftment after allo-HSCT; these changes might correlate with the incidence of severe acute GVHD.
Collapse
Affiliation(s)
- Yuka Fujioka
- Third Department of Internal Medicine, Yamaguchi University Hospital, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yukinori Nakamura
- Third Department of Internal Medicine, Yamaguchi University Hospital, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
- Division of Blood Transfusion, Yamaguchi University Hospital, Ube, Japan.
| | - Kaoru Yamamoto
- Third Department of Internal Medicine, Yamaguchi University Hospital, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshihiro Tokunaga
- Third Department of Internal Medicine, Yamaguchi University Hospital, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shota Nono
- Third Department of Internal Medicine, Yamaguchi University Hospital, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Takahiro Sasaki
- Third Department of Internal Medicine, Yamaguchi University Hospital, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kohei Sakai
- Third Department of Internal Medicine, Yamaguchi University Hospital, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kohei Okamura
- Third Department of Internal Medicine, Yamaguchi University Hospital, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Taishi Ando
- Third Department of Internal Medicine, Yamaguchi University Hospital, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroko Nakabayashi
- Third Department of Internal Medicine, Yamaguchi University Hospital, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ayumi Fukatsu-Chikumoto
- Department of Respiratory Medicine and Infectious Disease, Yamaguchi University Hospital, Ube, Japan
| | - Tsunahiko Hirano
- Department of Respiratory Medicine and Infectious Disease, Yamaguchi University Hospital, Ube, Japan
| | - Kazuto Matsunaga
- Department of Respiratory Medicine and Infectious Disease, Yamaguchi University Hospital, Ube, Japan
| | - Yasuharu Ohta
- Third Department of Internal Medicine, Yamaguchi University Hospital, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Toshiaki Yujiri
- Third Department of Internal Medicine, Yamaguchi University Hospital, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
- Department of Clinical Laboratory Sciences, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
5
|
Nadeem SA, Comellas AP, Chan KS, Hoffman EA, Fain SB, Saha PK. Automated CT-based measurements of radial and longitudinal expansion of airways due to breathing-related lung volume change. Med Phys 2024. [PMID: 39704489 DOI: 10.1002/mp.17592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/04/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Respiratory function is impaired in chronic obstructive pulmonary disease (COPD). Automation of multi-volume CT-based measurements of different components of breathing-related airway deformations will help understand multi-pathway impairments in respiratory mechanics in COPD. PURPOSE To develop and evaluate multi-volume chest CT-based automated measurements of breathing-related radial and longitudinal expansion of individual airways between inspiratory and expiratory lung volumes. METHODS We developed a method to compute breathing-related airway deformation metrics and applied it to total lung capacity (TLC) and functional residual capacity (FRC) chest CT scans. The computational pipeline involves: (1) segmentation of airways; (2) skeletonization of airways; (3) labeling of anatomical airway segments at TLC and FRC; and (4) computation of radial and longitudinal expansion metrics of individual airways across lung volumes. Radial expansion (∆CSA) of an airway is computed as the percent change of its cross-sectional area (CSA) between two lung volumes. Longitudinal expansion (∆L) of an airway is computed as the percent change in its airway path-length from the carina between lung volumes. These measures are summarized at different airway anatomic generations. Agreement of automated measures with their manually derived values was examined in terms of concordance correlation coefficient (CCC) of automated measures with those derived using manual outlining. Intra-class correlation coefficient (ICC) of automated measures from repeat CT scans (n = 37) was computed to assess repeatability. The method was also applied to a set of participants from the Genetic Epidemiology of COPD (COPDGene) Iowa cohort, distributed across COPD severity groups (n = 4 × 60). RESULTS The CCC values for the automated ∆CSA measure with manually derived values were 0.930 at the trachea, 0.898 at primary bronchi, and greater than 0.95 at pre-segmental and segmental airways; these CCC values were consistently greater than 0.95 for ∆L at all airway generations. ICC values for repeatability of ∆CSA were 0.974, 0.950, 0.943, and 0.901 at trachea, primary bronchi, pre-segmental, and segmental airways, respectively; these ICC values for ∆L were 0.973, 0.954, and 0.952 at primary bronchi, pre-segmental, and segmental airways, respectively. ∆CSA values were significantly reduced (p < 0.001) with increasing COPD severity at each of primary bronchi, pre-segmental, and segmental airways. Significantly lower ∆L values were observed for moderate (p = 0.042 at pre-segmental and p = 0.037 at segmental) and severe (p = 0.019 at pre-segmental and p < 0.001 at segmental) COPD groups as compared to the preserved lung function group. Body mass index (BMI) and smoking status were found to significantly associate with ∆CSA at segmental airways (r = 0.17 and -0.19, respectively; significance threshold = 0.13), while age and sex were significantly associated with ∆L (r = -0.21 and -0.17, respectively); COPD severity was significantly associated with both ∆CSA and ∆L (r = -0.35 and -0.22, respectively). CONCLUSION Our CT-based automated measures of breathing-related radial and longitudinal expansion of airways are repeatable and in agreement with manually derived values. Automation of different airway mechanical biomarkers and their observed significant associations with age, sex, BMI, smoking, and COPD severity establish an effective tool to investigate multi-pathway impairments of respiratory mechanics in COPD and other lung diseases.
Collapse
Affiliation(s)
- Syed Ahmed Nadeem
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Alejandro P Comellas
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Kung-Sik Chan
- Department of Statistics and Actuarial Science, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Eric A Hoffman
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Sean B Fain
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, USA
- Department of Electrical and Computer Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Punam K Saha
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Electrical and Computer Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Onuzulu CD, Lee S, Basu S, Comte J, Hai Y, Hizon N, Chadha S, Fauni MS, Halayko AJ, Pascoe CD, Jones MJ. Novel DNA methylation changes in mouse lungs associated with chronic smoking. Epigenetics 2024; 19:2322386. [PMID: 38436597 PMCID: PMC10913724 DOI: 10.1080/15592294.2024.2322386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Smoking is a potent cause of asthma exacerbations, chronic obstructive pulmonary disease (COPD) and many other health defects, and changes in DNA methylation (DNAm) have been identified as a potential link between smoking and these health outcomes. However, most studies of smoking and DNAm have been done using blood and other easily accessible tissues in humans, while evidence from more directly affected tissues such as the lungs is lacking. Here, we identified DNAm patterns in the lungs that are altered by smoking. We used an established mouse model to measure the effects of chronic smoke exposure first on lung phenotype immediately after smoking and then after a period of smoking cessation. Next, we determined whether our mouse model recapitulates previous DNAm patterns observed in smoking humans, specifically measuring DNAm at a candidate gene responsive to cigarette smoke, Cyp1a1. Finally, we carried out epigenome-wide DNAm analyses using the newly released Illumina mouse methylation microarrays. Our results recapitulate some of the phenotypes and DNAm patterns observed in human studies but reveal 32 differentially methylated genes specific to the lungs which have not been previously associated with smoking. The affected genes are associated with nicotine dependency, tumorigenesis and metastasis, immune cell dysfunction, lung function decline, and COPD. This research emphasizes the need to study CS-mediated DNAm signatures in directly affected tissues like the lungs, to fully understand mechanisms underlying CS-mediated health outcomes.
Collapse
Affiliation(s)
- Chinonye Doris Onuzulu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Samantha Lee
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jeannette Comte
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Yan Hai
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nikho Hizon
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shivam Chadha
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maria Shenna Fauni
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J. Halayko
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher D. Pascoe
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Meaghan J. Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Kooner HK, Wyszkiewicz PV, Matheson AM, McIntosh MJ, Abdelrazek M, Dhaliwal I, Nicholson JM, Kirby M, Svenningsen S, Parraga G. Chest CT Airway and Vascular Measurements in Females with COPD or Long-COVID. COPD 2024; 21:2394129. [PMID: 39221567 DOI: 10.1080/15412555.2024.2394129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/27/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Chest CT provides a way to quantify pulmonary airway and vascular tree measurements. In patients with COPD, CT airway measurement differences in females are concomitant with worse quality-of-life and other outcomes. CT total airway count (TAC), airway lumen area (LA), and wall thickness (WT) also differ in females with long-COVID. Our objective was to evaluate CT airway and pulmonary vascular and quality-of-life measurements in females with COPD as compared to ex-smokers and patients with long-COVID. Chest CT was acquired 3-months post-COVID-19 infection in females with long-COVID for comparison with the same inspiratory CT in female ex-smokers and COPD patients. TAC, LA, WT, and pulmonary vascular measurements were quantified. Linear regression models were adjusted for confounders including age, height, body-mass-index, lung volume, pack-years and asthma diagnosis. Twenty-one females (53 ± 14 years) with long-COVID, 17 female ex-smokers (69 ± 9 years) and 13 female COPD (67 ± 6 years) patients were evaluated. In the absence of differences in quality-of-life scores, females with long-COVID reported significantly different LA (p = 0.006) compared to ex-smokers but not COPD (p = 0.7); WT% was also different compared to COPD (p = 0.009) but not ex-smokers (p = 0.5). In addition, there was significantly greater pulmonary small vessel volume (BV5) in long-COVID as compared to female ex-smokers (p = 0.045) and COPD (p = 0.003) patients and different large (BV10) vessel volume as compared to COPD (p = 0.03). In females with long-COVID and highly abnormal quality-of-life scores, there was CT evidence of airway remodelling, similar to ex-smokers and patients with COPD, but there was no evidence of pulmonary vascular remodelling.Clinical Trial Registration: www.clinicaltrials.gov NCT05014516 and NCT02279329.
Collapse
Affiliation(s)
- Harkiran K Kooner
- Robarts Research Institute, Western University, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Paulina V Wyszkiewicz
- Robarts Research Institute, Western University, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Alexander M Matheson
- Robarts Research Institute, Western University, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Marrissa J McIntosh
- Robarts Research Institute, Western University, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | | | - Inderdeep Dhaliwal
- Division of Respirology, Department of Medicine, Western University, London, Canada
| | - J Michael Nicholson
- Division of Respirology, Department of Medicine, Western University, London, Canada
| | - Miranda Kirby
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Sarah Svenningsen
- Division of Respirology, Department of Medicine, McMaster University and Firestone Institute for Respiratory Health, St Joseph's Health Care, Hamilton, Canada
| | - Grace Parraga
- Robarts Research Institute, Western University, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
- Department of Medical Imaging, Western University, London, Canada
- Division of Respirology, Department of Medicine, Western University, London, Canada
| |
Collapse
|
8
|
Kirby M, Parraga G. Uncovering early COPD? The T-slope as a novel CT biomarker for evaluating airway narrowing. Eur Respir J 2024; 64:2401849. [PMID: 39638360 DOI: 10.1183/13993003.01849-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 12/07/2024]
Affiliation(s)
- Miranda Kirby
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Grace Parraga
- Robarts Research Institute and Department of Medicine, Division of Respirology, Western University, London, ON, Canada
| |
Collapse
|
9
|
Simborio H, Hayek H, Kosmider B, Elrod JW, Bolla S, Marchetti N, Criner GJ, Bahmed K. Mitochondrial dysfunction and impaired DNA damage repair through PICT1 dysregulation in alveolar type II cells in emphysema. Cell Commun Signal 2024; 22:562. [PMID: 39578839 PMCID: PMC11583753 DOI: 10.1186/s12964-024-01896-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Alveolar type II (ATII) cells have a stem cell potential in the adult lung and repair the epithelium after injury induced by harmful factors. Their damage contributes to emphysema development, characterized by alveolar wall destruction. Cigarette smoke is the main risk factor for this disease development. METHODS ATII cells were obtained from control non-smoker and smoker organ donors and emphysema patients. Isolated cells were used to study the role of PICT1 in this disease. Also, a cigarette smoke-induced murine model of emphysema was applied to define its function in disease progression further. RESULTS Decreased PICT1 expression was observed in human and murine ATII cells in emphysema. PICT1 was immunoprecipitated, followed by mass spectrometry analysis. We identified MRE11, which is involved in DNA damage repair, as its novel interactor. PICT1 and MRE11 protein levels were decreased in ATII cells in this disease. Moreover, cells with PICT1 deletion were exposed to cigarette smoke extract. This treatment induced cellular and mitochondrial ROS, cell cycle arrest, nuclear and mitochondrial DNA damage, decreased mitochondrial respiration, and impaired DNA damage repair. CONCLUSIONS This study indicates that PICT1 dysfunction can negatively affect genome stability and mitochondrial activity in ATII cells, contributing to emphysema development. Targeting PICT1 can lead to novel therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Hannah Simborio
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Hassan Hayek
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
- Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Beata Kosmider
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
- Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - John W Elrod
- Aging & Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Sudhir Bolla
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Nathaniel Marchetti
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Karim Bahmed
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
- Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
10
|
Tanabe N, Nakagawa H, Sakao S, Ohno Y, Shimizu K, Nakamura H, Hanaoka M, Nakano Y, Hirai T. Lung imaging in COPD and asthma. Respir Investig 2024; 62:995-1005. [PMID: 39213987 DOI: 10.1016/j.resinv.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are common lung diseases with heterogeneous clinical presentations. Lung imaging allows evaluations of underlying pathophysiological changes and provides additional personalized approaches for disease management. This narrative review provides an overview of recent advances in chest imaging analysis using various modalities, such as computed tomography (CT), dynamic chest radiography, and magnetic resonance imaging (MRI). Visual CT assessment localizes emphysema subtypes and mucus plugging in the airways. Dedicated software quantifies the severity and spatial distribution of emphysema and the airway tree structure, including the central airway wall thickness, branch count and fractal dimension of the tree, and airway-to-lung size ratio. Nonrigid registration of inspiratory and expiratory CT scans quantifies small airway dysfunction, local volume changes and shape deformations in specific regions. Lung ventilation and diaphragm movement are also evaluated on dynamic chest radiography. Functional MRI detects regional oxygen transfer across the alveolus using inhaled oxygen and ventilation defects and gas diffusion into the alveolar-capillary barrier tissue and red blood cells using inhaled hyperpolarized 129Xe gas. These methods have the potential to determine local functional properties in the lungs that cannot be detected by lung function tests in patients with COPD and asthma. Further studies are needed to apply these technologies in clinical practice, particularly for early disease detection and tailor-made interventions, such as the efficient selection of patients likely to respond to biologics. Moreover, research should focus on the extension of healthy life expectancy in patients at higher risk and with established diseases.
Collapse
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogo-in Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan.
| | - Hiroaki Nakagawa
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Seiichiro Sakao
- Department of Pulmonary Medicine, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686 Japan
| | - Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, Japan
| | - Kaoruko Shimizu
- Division of Emergent Respiratory and Cardiovascular medicine, Hokkaido University Hospital, Hokkaido University Hospital, Kita14, Nishi5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Hidetoshi Nakamura
- Department of Respiratory Medicine, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Masayuki Hanaoka
- First Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogo-in Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
| |
Collapse
|
11
|
Tanabe N, Shimizu K, Shima H, Wakazono N, Shiraishi Y, Terada K, Terada S, Oguma T, Sakamoto R, Suzuki M, Makita H, Sato A, Sato S, Nishimura M, Konno S, Hirai T. Computed tomography mucus plugs and airway tree structure in patients with chronic obstructive pulmonary disease: Associations with airflow limitation, health-related independence and mortality. Respirology 2024; 29:951-961. [PMID: 38924669 DOI: 10.1111/resp.14776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND AND OBJECTIVE Mucus plugs and underlying airway tree structure can affect airflow limitation and prognosis in patients with chronic obstructive pulmonary disease (COPD), but their relative roles are unclear. This study used two COPD cohorts to examine whether mucus plugs on computed tomography (CT) were associated with airflow limitation and clinical outcomes independent of other airway structural changes and emphysema. METHODS Based on visual CT assessment, patients with mucus plugs in 0, 1-2 and ≥3 lung segments were assigned to no-, low- and high-mucus groups. Loss of health-related independence and mortality were prospectively recorded for 3 and 10 years in the Kyoto-Himeji and Hokkaido cohorts, respectively. The percentages of the wall area of the central airways (WA%), total airway count (TAC) and emphysema were quantified on CT. RESULTS Of 199 and 96 patients in the Kyoto-Himeji and Hokkaido cohorts, 34% and 30%, respectively, had high mucus scores. In both cohorts, TAC was lower in the high-mucus group than in the no-mucus group, whereas their emphysema severity did not differ. High mucus score and low TAC were independently associated with airflow limitation after adjustment for WA% and emphysema. In multivariable models adjusted for WA% and emphysema, TAC, rather than mucus score, was associated with a greater rate of loss of independence, whereas high mucus score, rather than TAC, was associated with increased mortality. CONCLUSION Mucus plugs and lower airway branch count on CT had distinct roles in airflow limitation, health-related independence and mortality in patients with COPD.
Collapse
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Rehabilitation, Kyoto University Hospital, Kyoto, Japan
| | - Kaoruko Shimizu
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Shima
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobuyasu Wakazono
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yusuke Shiraishi
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kunihiko Terada
- Terada Clinic, Respiratory Medicine and General Practice, Himeji, Japan
| | - Satoru Terada
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Terada Clinic, Respiratory Medicine and General Practice, Himeji, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Respiratory Medicine, Kyoto City Hospital, Kyoto, Japan
| | - Ryo Sakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaru Suzuki
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hironi Makita
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Hokkaido Medical Research Institute for Respiratory Diseases, Sapporo, Japan
| | - Atsuyasu Sato
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaharu Nishimura
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Hokkaido Medical Research Institute for Respiratory Diseases, Sapporo, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
12
|
Loeb E, Zock JP, Miravitlles M, Rodríguez E, Kromhout H, Vermeulen R, Soler-Cataluña JJ, Soriano JB, García-Río F, de Lucas P, Alfageme I, Casanova C, González-Moro JR, Ancochea J, Cosío BG, Ferrer Sancho J. Occupational Exposures, Chronic Obstructive Pulmonary Disease and Tomographic Findings in the Spanish Population. TOXICS 2024; 12:689. [PMID: 39453109 PMCID: PMC11510821 DOI: 10.3390/toxics12100689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024]
Abstract
Self-reported occupational exposure was previously associated with COPD in the Spanish population. This study aimed to analyse the relationship between occupational exposure to various chemical and biological agents, COPD, emphysema, and the bronchial wall area, which was determined by lung computed tomography (CT) in 226 individuals with COPD and 300 individuals without COPD. Lifetime occupational exposures were assessed using the ALOHA(+) job exposure matrix, and CT and spirometry were also performed. COPD was associated with high exposure to vapours, gases, dust and fumes (VGDF) (OR 2.25 95% CI 1.19-4.22), biological dust (OR 3.01 95% CI 1.22-7.45), gases/fumes (OR 2.49 95% CI 1.20-5.17) and with exposure to various types of solvents. High exposure to gases/fumes, chlorinated solvents and metals (coefficient 8.65 95% CI 1.21-16.09, 11.91 95%CI 0.46- 23.36, 14.45 95% CI 4.42-24.49, respectively) and low exposure to aromatic solvents (coefficient 8.43 95% CI 1.16-15.70) were associated with a low 15th percentile of lung density indicating emphysema. We conclude that occupational exposure to several specific agents is associated with COPD and emphysema in the Spanish population.
Collapse
Affiliation(s)
- Eduardo Loeb
- Departamento de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (E.L.); (E.R.)
- Servicio de Neumología, Centro Médico Teknon, Grupo Quironsalud, 08022 Barcelona, Spain
| | - Jan-Paul Zock
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands;
| | - Marc Miravitlles
- Servicio de Neumología, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.J.S.-C.); (J.B.S.); (F.G.-R.); (J.A.); (B.G.C.)
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Esther Rodríguez
- Departamento de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (E.L.); (E.R.)
- Servicio de Neumología, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.J.S.-C.); (J.B.S.); (F.G.-R.); (J.A.); (B.G.C.)
| | - Hans Kromhout
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands; (H.K.); (R.V.)
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands; (H.K.); (R.V.)
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Juan José Soler-Cataluña
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.J.S.-C.); (J.B.S.); (F.G.-R.); (J.A.); (B.G.C.)
- Departamento de Medicina, Servicio de Neumología, Hospital Arnau de Vilanova-Lliria, Universitat de València, 46015 Valencia, Spain
| | - Joan B. Soriano
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.J.S.-C.); (J.B.S.); (F.G.-R.); (J.A.); (B.G.C.)
- Departamento de Medicina, Servicio de Neumología, Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain
| | - Francisco García-Río
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.J.S.-C.); (J.B.S.); (F.G.-R.); (J.A.); (B.G.C.)
- Departamento de Medicina, Servicio de Neumología, Hospital Universitario La Paz-IdiPAZ, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Pilar de Lucas
- Servicio de Neumología, Hospital General Gregorio Marañon, 28007 Madrid, Spain;
| | - Inmaculada Alfageme
- Departamento de Medicina, Unidad de Gestión Clínica de Neumología, Hospital Universitario Virgen de Valme, Universidad de Sevilla, 41014 Sevilla, Spain;
| | - Ciro Casanova
- Departamento de Medicina, Servicio de Neumología-Unidad de Investigación Hospital Universitario Nuestra Señora de Candelaria, CIBERES, ISCIII, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain;
| | - José Rodríguez González-Moro
- Departamento de Medicina, Servicio de Neumología, Hospital Universitario Vithas Madrid Arturo Soria, Universidad Europea (UE), 28043 Madrid, Spain;
| | - Julio Ancochea
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.J.S.-C.); (J.B.S.); (F.G.-R.); (J.A.); (B.G.C.)
- Departamento de Medicina, Servicio de Neumología, Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain
| | - Borja G. Cosío
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.J.S.-C.); (J.B.S.); (F.G.-R.); (J.A.); (B.G.C.)
- Departamento de Medicina, Servicio de Neumología, Hospital Universitario Son Espases-IdISBa, Universidad de las Islas Baleares, 07120 Palma de Mallorca, Spain
| | - Jaume Ferrer Sancho
- Departamento de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (E.L.); (E.R.)
- Servicio de Neumología, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.J.S.-C.); (J.B.S.); (F.G.-R.); (J.A.); (B.G.C.)
| |
Collapse
|
13
|
Fat M, Andersen T, Fazio JC, Park SC, Abtin F, Buhr RG, Phillips JE, Belperio J, Tashkin DP, Cooper CB, Barjaktarevic I. Association of bronchial disease on CT imaging and clinical definitions of chronic bronchitis in a single-center COPD phenotyping study. Respir Med 2024; 231:107733. [PMID: 38986793 DOI: 10.1016/j.rmed.2024.107733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION Chronic Bronchitis (CB) represents a phenotype of chronic obstructive pulmonary disease (COPD). While several definitions have been used for diagnosis, the relationship between clinical definitions and radiologic assessment of bronchial disease (BD) has not been well studied. The aim of this study was to evaluate the relationship between three clinical definitions of CB and radiographic findings of BD in spirometry-defined COPD patients. METHODS A cross-sectional analysis was performed from a COPD phenotyping study. It was a prospective observational cohort. Participants had spirometry-defined COPD and available chest CT imaging. Comparison between CB definitions, Medical Research Council (CBMRC), St. George's Respiratory Questionnaire (CBSGRQ), COPD Assessment Test (CBCAT) and CT findings were performed using Cohen's Kappa, univariate and multivariate logistic regressions. RESULTS Of 112 participants, 83 met inclusion criteria. Demographics included age of 70.1 ± 7.0 years old, predominantly male (59.0 %), 45.8 ± 30.8 pack-year history, 21.7 % actively smoking, and mean FEV1 61.5 ± 21.1 %. With MRC, SGRQ and CAT definitions, 22.9 %, 36.6 % and 28.0 % had CB, respectively. BD was more often present in CB compared to non-CB patients; however, it did not have a statistically significant relationship between any of the CB definitions. CBSGRQ had better agreement with radiographically assessed BD compared to the other two definitions. CONCLUSION Identification of BD on CT was associated with the diagnoses of CB. However, agreement between imaging and definitions were not significant, suggesting radiologic findings of BD and criteria defining CB may not identify the same COPD phenotype. Research to standardize imaging and clinical methods is needed for more objective identification of COPD phenotypes.
Collapse
Affiliation(s)
- Marisa Fat
- Graduate Education, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Anne Burnett Marion School of Medicine at TCU, Fort Worth, TX, USA
| | - Tyler Andersen
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jane C Fazio
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Seon Cheol Park
- Division of Pulmonology, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | | | - Russell G Buhr
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - John Belperio
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Donald P Tashkin
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Christopher B Cooper
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Exercise Physiology Research Laboratory, Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Igor Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Konietzke P, Weinheimer O, Triphan SMF, Nauck S, Wuennemann F, Konietzke M, Jobst BJ, Jörres RA, Vogelmeier CF, Heussel CP, Kauczor HU, Biederer J, Wielpütz MO. GOLD-Grade Specific Disease Characterization and Phenotyping of COPD Using Quantitative Computed Tomography in the Nationwide COSYCONET Multicenter Trial in Germany. Respiration 2024; 104:133-150. [PMID: 39173593 DOI: 10.1159/000540781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
INTRODUCTION The aim of this study was to apply quantitative computed tomography (QCT) for GOLD-grade specific disease characterization and phenotyping of air-trapping, emphysema, and airway abnormalities in patients with chronic obstructive pulmonary disease (COPD) from a nationwide cohort study. METHODS As part of the COSYCONET multicenter study, standardized CT in ex- and inspiration, lung function assessment (FEV1/FVC), and clinical scores (BODE index) were prospectively acquired in 525 patients (192 women, 327 men, aged 65.7 ± 8.5 years) at risk for COPD and at GOLD1-4. QCT parameters such as total lung volume (TLV), emphysema index (EI), parametric response mapping (PRM) for emphysema (PRMEmph) and functional small airway disease (PRMfSAD), total airway volume (TAV), wall percentage (WP), and total diameter (TD) were computed using automated software. RESULTS TLV, EI, PRMfSAD, and PRMEmph increased incrementally with each GOLD grade (p < 0.001). Aggregated WP5-10 of subsegmental airways was higher from GOLD1 to GOLD3 and lower again at GOLD4 (p < 0.001), whereas TD5-10 was significantly dilated only in GOLD4 (p < 0.001). Fifty-eight patients were phenotyped as "non-airway non-emphysema type," 202 as "airway type," 96 as "emphysema type," and 169 as "mixed type." FEV1/FVC was best in "non-airway non-emphysema type" compared to other phenotypes, while "mixed type" had worst FEV1/FVC (p < 0.001). BODE index was 0.56 ± 0.72 in the "non-airway non-emphysema type" and highest with 2.55 ± 1.77 in "mixed type" (p < 0.001). CONCLUSION QCT demonstrates increasing hyperinflation and emphysema depending on the GOLD grade, while airway wall thickening increases until GOLD3 and airway dilatation occur in GOLD4. QCT identifies four disease phenotypes with implications for lung function and prognosis.
Collapse
Affiliation(s)
- Philip Konietzke
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thorax Clinic at University of Heidelberg, Heidelberg, Germany
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thorax Clinic at University of Heidelberg, Heidelberg, Germany
| | - Simon M F Triphan
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thorax Clinic at University of Heidelberg, Heidelberg, Germany
| | - Sebastian Nauck
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thorax Clinic at University of Heidelberg, Heidelberg, Germany
| | - Felix Wuennemann
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thorax Clinic at University of Heidelberg, Heidelberg, Germany
| | - Marilisa Konietzke
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thorax Clinic at University of Heidelberg, Heidelberg, Germany
| | - Bertram J Jobst
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thorax Clinic at University of Heidelberg, Heidelberg, Germany
| | - Rudolf A Jörres
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig Maximilians University, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, German Center for Lung Research (DZL), University Medical Center Giessen and Marburg, Giessen, Germany
| | - Claus P Heussel
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thorax Clinic at University of Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thorax Clinic at University of Heidelberg, Heidelberg, Germany
| | - Jürgen Biederer
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Faculty of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thorax Clinic at University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
15
|
Kaji S, Tanabe N, Maetani T, Shiraishi Y, Sakamoto R, Oguma T, Suzuki K, Terada K, Fukui M, Muro S, Sato S, Hirai T. Quantification of Airway Structures by Persistent Homology. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2758-2768. [PMID: 38478453 DOI: 10.1109/tmi.2024.3376683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We propose two types of novel morphological metrics for quantifying the geometry of tubular structures on computed tomography (CT) images. We apply our metrics to identify irregularities in the airway of patients with chronic obstructive pulmonary disease (COPD) and demonstrate that they provide complementary information to the conventional metrics used to assess COPD, such as the tissue density distribution in lung parenchyma and the wall area ratio of the segmented airway. The three-dimensional shape of the airway and its abstraction as a rooted tree with the root at the trachea carina are automatically extracted from a lung CT volume, and the two metrics are computed based on a mathematical tool called persistent homology; treeH0 quantifies the distribution of branch lengths to assess the complexity of the tree-like structure and radialH0 quantifies the irregularities in the luminal radius along the airway. We show our metrics are associated with clinical outcomes.
Collapse
|
16
|
Hayashi Y, Tanabe N, Matsumoto H, Shimizu K, Sakamoto R, Oguma T, Sunadome H, Sato A, Sato S, Hirai T. Associations of fractional exhaled nitric oxide with airway dimension and mucus plugs on ultra-high-resolution computed tomography in former smokers and nonsmokers with asthma. Allergol Int 2024; 73:397-405. [PMID: 38403524 DOI: 10.1016/j.alit.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Associations of fractional exhaled nitric oxide (FeNO) with airway wall remodeling and mucus plugs remain to be explored in smokers and nonsmokers with asthma. Ultra-high-resolution computed tomography (U-HRCT), which allows accurate structural quantification of airways >1 mm in diameter, was used in this study to examine whether higher FeNO was associated with thicker walls of the 3rd to 6th generation airways and mucus plugging in patients with asthma. METHODS The retrospective analyses included consecutive former smokers and nonsmokers with asthma who underwent U-HRCT in a hospital. The ratio of wall area to summed lumen and wall area was calculated as the wall area percent (WA%). Mucus plugging was visually scored. RESULTS Ninety-seven patients with asthma (including 59 former smokers) were classified into low (<20 ppb), middle (20-35 ppb), and high (>35 ppb) FeNO groups (n = 24, 26, and 47). In analysis including all patients and subanalysis including nonsmokers or former smokers, WA% in the 6th generation airways was consistently higher in the high FeNO group than in the low FeNO group, whereas WA% in the 3rd to 5th generation airways was not. In multivariable models, WA% in the 6th generation airways and the rate of mucus plugging were higher in the high FeNO group than in the low FeNO group after adjusting for age, sex, body mass index, smoking status, lung volume, and allergic rhinitis presence. CONCLUSIONS Higher FeNO may reflect the inflammation and remodeling of relatively peripheral airways in asthma in both former smokers and nonsmokers.
Collapse
Affiliation(s)
- Yusuke Hayashi
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoya Tanabe
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Hisako Matsumoto
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Respiratory Medicine & Allergology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Kaoruko Shimizu
- Division of Emergent Respiratory and Cardiovascular Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Ryo Sakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Respiratory Medicine, Kyoto City Hospital, Kyoto, Japan
| | - Hironobu Sunadome
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsuyasu Sato
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
17
|
Elbehairy AF, Marshall H, Naish JH, Wild JM, Parraga G, Horsley A, Vestbo J. Advances in COPD imaging using CT and MRI: linkage with lung physiology and clinical outcomes. Eur Respir J 2024; 63:2301010. [PMID: 38548292 DOI: 10.1183/13993003.01010-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/16/2024] [Indexed: 05/04/2024]
Abstract
Recent years have witnessed major advances in lung imaging in patients with COPD. These include significant refinements in images obtained by computed tomography (CT) scans together with the introduction of new techniques and software that aim for obtaining the best image whilst using the lowest possible radiation dose. Magnetic resonance imaging (MRI) has also emerged as a useful radiation-free tool in assessing structural and more importantly functional derangements in patients with well-established COPD and smokers without COPD, even before the existence of overt changes in resting physiological lung function tests. Together, CT and MRI now allow objective quantification and assessment of structural changes within the airways, lung parenchyma and pulmonary vessels. Furthermore, CT and MRI can now provide objective assessments of regional lung ventilation and perfusion, and multinuclear MRI provides further insight into gas exchange; this can help in structured decisions regarding treatment plans. These advances in chest imaging techniques have brought new insights into our understanding of disease pathophysiology and characterising different disease phenotypes. The present review discusses, in detail, the advances in lung imaging in patients with COPD and how structural and functional imaging are linked with common resting physiological tests and important clinical outcomes.
Collapse
Affiliation(s)
- Amany F Elbehairy
- Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Helen Marshall
- POLARIS, Imaging, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Josephine H Naish
- MCMR, Manchester University NHS Foundation Trust, Manchester, UK
- Bioxydyn Limited, Manchester, UK
| | - Jim M Wild
- POLARIS, Imaging, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Insigneo Institute for in silico Medicine, Sheffield, UK
| | - Grace Parraga
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Division of Respirology, Western University, London, ON, Canada
| | - Alexander Horsley
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| |
Collapse
|
18
|
Rodrigues Sousa S, Nunes Caldeira J, Rodrigues C. COPD phenotypes by computed tomography and ventilatory response to exercise. Pulmonology 2024; 30:222-229. [PMID: 35120868 DOI: 10.1016/j.pulmoe.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 10/19/2022] Open
Abstract
INTRODUCTION Computed tomographic (CT) phenotypic patterns of chronic obstructive pulmonary disease (COPD) identify different clinical features of disease. The impact of these variables on the physiological response to exercise has been the focus of a great deal of research as it allows more individualized clinical approaches. The aim of our study was to evaluate the relationships between CT phenotyping of subjects with COPD and the ventilatory response during cardiopulmonary exercise testing (CPET). METHODS Subjects with COPD were classified into four phenotypes based on CT metrics of emphysema (low attenuation area less than a threshold of -950 Hounsfield [%LAA-950]) and airwall thickness (bronchial wall area percentage [%WA]). RESULTS Eighty COPD patients (78.8% males, median age 65±11.3 years) were enrolled in the study. Based on CT phenotype, 25 (31.3%) patients were classified as normal, 27 (33.8%) air dominant, 17 (21.3%) emphysema dominant and 11 (13.8%) mixed type. The emphysema and mixed phenotypes showed the highest ventilatory equivalent for carbon dioxide (VE/VCO2) and VE/VCO2 slope (p<0,05). In all phenotypes, %LAA was positive correlated with VE/VCO2 and VE/VCO2 slope (r = 0.437, p = 0.006 and r = 0.503, p<0.001, respectively). %WA also showed a positive correlation with VE/VCO2 and VE/VCO2 slope (r = 0.541, p<0.001 and r = 0.299, p = 0.033, respectively). In multivariate regression models, after adjustment for age, BMI, sex and FEV1, %LAA was the only independent predictor of VE/VCO2 and VE/VCO2 slope (β 0.343, SE 0.147, 95% CI 0.009/0.610, p = 0.044 and β 0.496, SE 0.081, 95% CI 0.130/0.455, p = 0.001, respectively). CONCLUSION Emphysema (%LAA) and airways metrics (%WA) had strong relationships with the different characteristics of ventilatory response to exercise in subjects with mild to moderate COPD. In particular, %LAA seemed to play an important role as an independent predictor of VE/VCO2 and VE/VCO2 slope. These results suggested that CT phenotyping may help predicting ventilatory response to exercise in subjects with COPD.
Collapse
Affiliation(s)
- S Rodrigues Sousa
- Pulmonology Department, Coimbra University Hospital, Coimbra, Portugal.
| | - J Nunes Caldeira
- Pulmonology Department, Coimbra University Hospital, Coimbra, Portugal
| | - C Rodrigues
- Pulmonology Department, Coimbra University Hospital, Coimbra, Portugal
| |
Collapse
|
19
|
Yehia D, Leung C, Sin DD. Clinical utilization of airway inflammatory biomarkers in the prediction and monitoring of clinical outcomes in patients with chronic obstructive pulmonary disease. Expert Rev Mol Diagn 2024; 24:409-421. [PMID: 38635513 DOI: 10.1080/14737159.2024.2344777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) accounts for 545 million people living with chronic respiratory disorders and is the third leading cause of morbidity and mortality around the world. COPD is a progressive disease, characterized by episodes of acute worsening of symptoms such as cough, dyspnea, and sputum production. AREAS COVERED Airway inflammation is a prominent feature of COPD. Chronic airway inflammation results in airway structural remodeling and emphysema. Persistent airway inflammation is a treatable trait of COPD and plays a significant role in disease development and progression. In this review, the authors summarize the current and emerging biomarkers that reveal the heterogeneity of airway inflammation subtypes, clinical outcomes, and therapeutic response in COPD. EXPERT OPINION Airway inflammation can be broadly categorized as eosinophilic (type 2 inflammation) and non-eosinophilic (non-type 2 inflammation) in COPD. Currently, blood eosinophil counts are incorporated in clinical practice guidelines to identify COPD patients who are at a higher risk of exacerbations and lung function decline, and who are likely to respond to inhaled corticosteroids. As new therapeutics are being developed for the chronic management of COPD, it is essential to identify biomarkers that will predict treatment response.
Collapse
Affiliation(s)
- Dina Yehia
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Clarus Leung
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Lee HW, Lee JK, Kim Y, Jang AS, Hwang YI, Lee JH, Jung KS, Yoo KH, Yoon HK, Kim DK. Differential decline of lung function in COPD patients according to structural abnormality in chest CT. Heliyon 2024; 10:e27683. [PMID: 38560191 PMCID: PMC10980934 DOI: 10.1016/j.heliyon.2024.e27683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Background Different progressions or prognoses of chronic obstructive pulmonary disease (COPD) have been reported according to structural abnormalities based on chest computed tomography (CT). This study aimed to investigate whether different structural abnormalities independently affect annual lung function changes and clinical prognosis in patients with COPD. Methods This longitudinal multicenter observational study was conducted using the KOCOSS cohort (NCT02800499) database in Korea from January 2012 to December 2019. For COPD patients with chest CT findings at baseline enrolment and longitudinal spirometric data, annual forced expiratory volume in 1 s (FEV1) decline rate (mL/year) and clinical outcomes were compared according to structural abnormalities, including emphysema, bronchiectasis (BE), and tuberculosis-destroyed lung (TDL). We estimated the adjusted annual FEV1 changes using a mixed-effect linear regression model. Results Among the enrolled 237 patients, 152 showed structural abnormalities. Emphysema, BE, and TDL were observed in 119 (78.3%), 28 (18.4%), and 27 (17.8%) patients, respectively. The annual decline in FEV1 was faster in COPD patients with structural abnormalities than those without (β = -70.6 mL/year, P-value = 0.039). BE/TDL-dominant or emphysema-dominant structural abnormality contributed to an accelerated annual FEV1 decline compared to no structural abnormality (BE/TDL-dominant, β = -103.7 mL/year, P-value = 0.043; emphysema-dominant, β = -84.1 mL/year, P-value = 0.018). Structural abnormalities made no significant differences in acute exacerbation rate and mortality. Conclusion The lung function decline rate in COPD differed according to structural abnormalities on CT. These findings may suggest that more focus should be placed on earlier intervention or regular follow-up with spirometry in COPD patients with BE or TDL on chest CT.
Collapse
Affiliation(s)
- Hyun Woo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung-Kyu Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Youlim Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Konkuk University Hospital, School of Medicine, Konkuk University, Seoul, South Korea
| | - An-Soo Jang
- Department of Pulmonology and Allergy, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, South Korea
| | - Yong il Hwang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Jae Ha Lee
- Division of Pulmonology, Department of Internal Medicine, Inje University Haeundae Paik Hospital, University of Inje College of Medicine, Busan, South Korea
| | - Ki-Suck Jung
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Kwang Ha Yoo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Konkuk University Hospital, School of Medicine, Konkuk University, Seoul, South Korea
| | - Hyoung Kyu Yoon
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Deog Kyeom Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
21
|
Mochizuki F, Tanabe N, Shimada T, Iijima H, Sakamoto R, Shiraishi Y, Maetani T, Shimizu K, Suzuki M, Chubachi S, Ishikawa H, Naito T, Kanasaki M, Masuda I, Oguma T, Sato S, Hizawa N, Hirai T. Centrilobular emphysema and airway dysanapsis: factors associated with low respiratory function in younger smokers. ERJ Open Res 2024; 10:00695-2023. [PMID: 38444662 PMCID: PMC10910308 DOI: 10.1183/23120541.00695-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/18/2024] [Indexed: 03/07/2024] Open
Abstract
Background Low respiratory function in young adulthood is one of the important factors in the trajectory leading to the future development of COPD, but its morphological characteristics are not well characterised. Methods We retrospectively enrolled 172 subjects aged 40-49 years with ≥10 pack-years smoking history who underwent lung cancer screening by computed tomography (CT) and spirometry at two Japanese hospitals. Emphysema was visually assessed according to the Fleischner Society guidelines and classified into two types: centrilobular emphysema (CLE) and paraseptal emphysema (PSE). Airway dysanapsis was assessed with the airway/lung ratio (ALR), which was calculated by the geometric mean of the lumen diameters of the 14 branching segments divided by the cube root of total lung volume on a CT scan. Results Among the subjects, CLE and PSE were observed in 20.9% and 30.8%, respectively. The mean ALR was 0.04 and did not differ between those with and without each type of emphysema. Multivariable regression analysis models adjusted for age, sex, body mass index and smoking status indicated that CLE and a low ALR were independently associated with lower forced expiratory volume in 1 s (FEV1)/forced vital capacity (estimate -1.64 (95% CI -2.68- -0.60) and 6.73 (95% CI 4.24-9.24), respectively) and FEV1 % pred (estimate -2.81 (95% CI -5.10- -0.52) and 10.9 (95% CI 5.36-16.4), respectively). Conclusions CLE and airway dysanapsis on CT were independently associated with low respiratory function in younger smokers.
Collapse
Affiliation(s)
- Fumi Mochizuki
- Department of Respiratory Medicine, Tsukuba Medical Center Hospital, Tsukuba, Japan
| | - Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takafumi Shimada
- Department of Respiratory Medicine, Tsukuba Medical Center Hospital, Tsukuba, Japan
| | - Hiroaki Iijima
- Department of Respiratory Medicine, Tsukuba Medical Center Hospital, Tsukuba, Japan
| | - Ryo Sakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Shiraishi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Maetani
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kaoruko Shimizu
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaru Suzuki
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroichi Ishikawa
- Department of Respiratory Medicine, Tsukuba Medical Center Hospital, Tsukuba, Japan
| | - Takashi Naito
- Department of Respiratory Medicine, Tsukuba Medical Center Hospital, Tsukuba, Japan
| | | | - Izuru Masuda
- Clinical Research Institute, National Hospital Organization, Kyoto Medical Center, Kyoto, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Respiratory Medicine, Kyoto City Hospital, Kyoto, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuyuki Hizawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Nakamura H, Hirai T, Kurosawa H, Hamada K, Matsunaga K, Shimizu K, Konno S, Muro S, Fukunaga K, Nakano Y, Kuwahira I, Hanaoka M. Current advances in pulmonary functional imaging. Respir Investig 2024; 62:49-65. [PMID: 37948969 DOI: 10.1016/j.resinv.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/26/2023] [Accepted: 09/07/2023] [Indexed: 11/12/2023]
Abstract
Recent advances in imaging analysis have enabled evaluation of ventilation and perfusion in specific regions by chest computed tomography (CT) and magnetic resonance imaging (MRI), in addition to modalities including dynamic chest radiography, scintigraphy, positron emission tomography (PET), ultrasound, and electrical impedance tomography (EIT). In this review, an overview of current functional imaging techniques is provided for each modality. Advances in chest CT have allowed for the analysis of local volume changes and small airway disease in addition to emphysema, using the Jacobian determinant and parametric response mapping with inspiratory and expiratory images. Airway analysis can reveal characteristics of airway lesions in chronic obstructive pulmonary disease (COPD) and bronchial asthma, and the contribution of dysanapsis to obstructive diseases. Chest CT is also employed to measure pulmonary blood vessels, interstitial lung abnormalities, and mediastinal and chest wall components including skeletal muscle and bone. Dynamic CT can visualize lung deformation in respective portions. Pulmonary MRI has been developed for the estimation of lung ventilation and perfusion, mainly using hyperpolarized 129Xe. Oxygen-enhanced and proton-based MRI, without a polarizer, has potential clinical applications. Dynamic chest radiography is gaining traction in Japan for ventilation and perfusion analysis. Single photon emission CT can be used to assess ventilation-perfusion (V˙/Q˙) mismatch in pulmonary vascular diseases and COPD. PET/CT V˙/Q˙ imaging has also been demonstrated using "Galligas". Both ultrasound and EIT can detect pulmonary edema caused by acute respiratory distress syndrome. Familiarity with these functional imaging techniques will enable clinicians to utilize these systems in clinical practice.
Collapse
Affiliation(s)
- Hidetoshi Nakamura
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan.
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hajime Kurosawa
- Center for Environmental Conservation and Research Safety and Department of Occupational Health, Tohoku University School of Medicine, Sendai, Japan
| | - Kazuki Hamada
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Kazuto Matsunaga
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Kaoruko Shimizu
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shigeo Muro
- Department of Respiratory Medicine, Nara Medical University, Nara, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Ichiro Kuwahira
- Division of Pulmonary Medicine, Department of Medicine, Tokai University Tokyo Hospital, Tokyo, Japan
| | - Masayuki Hanaoka
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
23
|
Kirby M, Smith BM. Quantitative CT Scan Imaging of the Airways for Diagnosis and Management of Lung Disease. Chest 2023; 164:1150-1158. [PMID: 36871841 PMCID: PMC10792293 DOI: 10.1016/j.chest.2023.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
CT scan imaging provides high-resolution images of the lungs in patients with chronic respiratory diseases. Extensive research over the last several decades has focused on developing novel quantitative CT scan airway measurements that reflect abnormal airway structure. Despite many observational studies demonstrating that associations between CT scan airway measurements and clinically important outcomes such as morbidity, mortality, and lung function decline, few quantitative CT scan measurements are applied in clinical practice. This article provides an overview of the relevant methodologic considerations for implementing quantitative CT scan airway analyses and provides a review of the scientific literature involving quantitative CT scan airway measurements used in clinical or randomized trials and observational studies of humans. We also discuss emerging evidence for the clinical usefulness of quantitative CT scan imaging of the airways and discuss what is required to bridge the gap between research and clinical application. CT scan airway measurements continue to improve our understanding of disease pathophysiologic features, diagnosis, and outcomes. However, a literature review revealed a need for studies evaluating clinical benefit when quantitative CT scan imaging is applied in the clinical setting. Technical standards for quantitative CT scan imaging of the airways and high-quality evidence of clinical benefit from management guided by quantitative CT scan imaging of the airways are required.
Collapse
Affiliation(s)
- Miranda Kirby
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada; iBEST, St. Michael's Hospital, Toronto, ON, Canada.
| | - Benjamin M Smith
- Department of Medicine, McGill University, Montreal, QC, Canada; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
24
|
Mizusawa H, Shiraishi O, Shiraishi M, Sugiya R, Kimura T, Ishikawa A, Yasuda T, Higashimoto Y. Quantitative emphysema on computed tomography imaging of chest is a risk factor for prognosis of esophagectomy: A retrospective cohort study. Medicine (Baltimore) 2023; 102:e35547. [PMID: 37832075 PMCID: PMC10578713 DOI: 10.1097/md.0000000000035547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
The low attenuation area percentage (LAA%) is gaining popularity. LAA% is an index of quantitative emphysema on computed tomography (CT) imaging of the chest. This study aims to retrospectively investigate whether preoperative LAA% is associated with postoperative prognosis in patients with esophageal cancer who were scheduled for esophagectomy. From January 2016 to March 2020, 105 patients with esophageal cancer underwent esophagectomy via right thoracotomy and neoadjuvant chemotherapy. A Synapse Vincent volume analyzer (Fujifilm Medical, Tokyo, Japan) was used for measurement. The software automatically quantified LAA% using a threshold of less than - 950 Hounsfield units on CT images of lung regions. Cox proportional hazard analyses were performed in univariable and multivariable forms. Estimates of the receiver operating curve are used to determine the cutoff value for death of LAA%, and the binary value is then inserted into Cox proportional hazard analyses. The preoperative LAA% cutoff value was ≥ 6.3%. Patients with a preoperative LAA% ≥6.3% had a significantly worse prognosis than those with a preoperative LAA% of < 6.3%. LAA% ≥6.3% (hazard ratio: 6.76; 95% confidence interval: 2.56-17.90, P < .001) was the most influential preoperative factor for overall survival after esophagectomy in multivariate Cox proportional hazard analyses. LAA% is one of the preoperative risk factors for survival after esophagectomy and an indicator of lung condition using routinely performed preoperative CT images. We quantified the extent of preoperative emphysema in patients with esophageal cancer, who were scheduled for surgery, and for the first time, reported LAA% as one of the preoperative risk factors for survival after esophagectomy.
Collapse
Affiliation(s)
- Hiroki Mizusawa
- Faculty of Medicine, Department of Rehabilitation Medicine, Kindai University, Osaka, Japan
- Department of Public Health, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Osamu Shiraishi
- Faculty of Medicine, Department of Surgery, Kindai University, Osaka, Japan
| | - Masashi Shiraishi
- Faculty of Medicine, Department of Rehabilitation Medicine, Kindai University, Osaka, Japan
| | - Ryuji Sugiya
- Faculty of Medicine, Department of Rehabilitation Medicine, Kindai University, Osaka, Japan
| | - Tamotsu Kimura
- Faculty of Medicine, Department of Rehabilitation Medicine, Kindai University, Osaka, Japan
| | - Akira Ishikawa
- Department of Public Health, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Takushi Yasuda
- Faculty of Medicine, Department of Surgery, Kindai University, Osaka, Japan
| | - Yuji Higashimoto
- Faculty of Medicine, Department of Rehabilitation Medicine, Kindai University, Osaka, Japan
- Department of Respiratory Medicine and Allergology, School of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
25
|
Iwasawa T, Matsushita S, Hirayama M, Baba T, Ogura T. Quantitative Analysis for Lung Disease on Thin-Section CT. Diagnostics (Basel) 2023; 13:2988. [PMID: 37761355 PMCID: PMC10528918 DOI: 10.3390/diagnostics13182988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Thin-section computed tomography (CT) is widely employed not only for assessing morphology but also for evaluating respiratory function. Three-dimensional images obtained from thin-section CT provide precise measurements of lung, airway, and vessel volumes. These volumetric indices are correlated with traditional pulmonary function tests (PFT). CT also generates lung histograms. The volume ratio of areas with low and high attenuation correlates with PFT results. These quantitative image analyses have been utilized to investigate the early stages and disease progression of diffuse lung diseases, leading to the development of novel concepts such as pre-chronic obstructive pulmonary disease (pre-COPD) and interstitial lung abnormalities. Quantitative analysis proved particularly valuable during the COVID-19 pandemic when clinical evaluations were limited. In this review, we introduce CT analysis methods and explore their clinical applications in the context of various lung diseases. We also highlight technological advances, including images with matrices of 1024 × 1024 and slice thicknesses of 0.25 mm, which enhance the accuracy of these analyses.
Collapse
Affiliation(s)
- Tae Iwasawa
- Department of Radiology, Kanagawa Cardiovascular & Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama 236-0051, Japan; (S.M.); (M.H.)
| | - Shoichiro Matsushita
- Department of Radiology, Kanagawa Cardiovascular & Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama 236-0051, Japan; (S.M.); (M.H.)
| | - Mariko Hirayama
- Department of Radiology, Kanagawa Cardiovascular & Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama 236-0051, Japan; (S.M.); (M.H.)
| | - Tomohisa Baba
- Department of Respiratory Medicine, Kanagawa Cardiovascular & Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama 236-0051, Japan; (T.B.); (T.O.)
| | - Takashi Ogura
- Department of Respiratory Medicine, Kanagawa Cardiovascular & Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama 236-0051, Japan; (T.B.); (T.O.)
| |
Collapse
|
26
|
Raoof S, Shah M, Braman S, Agrawal A, Allaqaband H, Bowler R, Castaldi P, DeMeo D, Fernando S, Hall CS, Han MK, Hogg J, Humphries S, Lee HY, Lee KS, Lynch D, Machnicki S, Mehta A, Mehta S, Mina B, Naidich D, Naidich J, Ohno Y, Regan E, van Beek EJR, Washko G, Make B. Lung Imaging in COPD Part 2: Emerging Concepts. Chest 2023; 164:339-354. [PMID: 36907375 PMCID: PMC10475822 DOI: 10.1016/j.chest.2023.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/13/2023] Open
Abstract
The diagnosis, prognostication, and differentiation of phenotypes of COPD can be facilitated by CT scan imaging of the chest. CT scan imaging of the chest is a prerequisite for lung volume reduction surgery and lung transplantation. Quantitative analysis can be used to evaluate extent of disease progression. Evolving imaging techniques include micro-CT scan, ultra-high-resolution and photon-counting CT scan imaging, and MRI. Potential advantages of these newer techniques include improved resolution, prediction of reversibility, and obviation of radiation exposure. This article discusses important emerging techniques in imaging patients with COPD. The clinical usefulness of these emerging techniques as they stand today are tabulated for the benefit of the practicing pulmonologist.
Collapse
Affiliation(s)
- Suhail Raoof
- Northwell Health, Lenox Hill Hospital, New York, NY.
| | - Manav Shah
- Northwell Health, Lenox Hill Hospital, New York, NY
| | - Sidney Braman
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | | | | | - Dawn DeMeo
- Brigham and Women's Hospital, Boston, MA
| | | | | | | | - James Hogg
- University of British Columbia, Vancouver, BC, Canada
| | | | - Ho Yun Lee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Health Sciences and Technology, Sungkyunkwan University, ChangWon, South Korea
| | - Kyung Soo Lee
- Sungkyunkwan University School of Medicine, Samsung ChangWon Hospital, ChangWon, South Korea
| | | | | | | | | | - Bushra Mina
- Northwell Health, Lenox Hill Hospital, New York, NY
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Konietzke P, Brunner C, Konietzke M, Wagner WL, Weinheimer O, Heußel CP, Herth FJF, Trudzinski F, Kauczor HU, Wielpütz MO. GOLD stage-specific phenotyping of emphysema and airway disease using quantitative computed tomography. Front Med (Lausanne) 2023; 10:1184784. [PMID: 37534319 PMCID: PMC10393128 DOI: 10.3389/fmed.2023.1184784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/22/2023] [Indexed: 08/04/2023] Open
Abstract
Background In chronic obstructive pulmonary disease (COPD) abnormal lung function is related to emphysema and airway obstruction, but their relative contribution in each GOLD-stage is not fully understood. In this study, we used quantitative computed tomography (QCT) parameters for phenotyping of emphysema and airway abnormalities, and to investigate the relative contribution of QCT emphysema and airway parameters to airflow limitation specifically in each GOLD stage. Methods Non-contrast computed tomography (CT) of 492 patients with COPD former GOLD 0 COPD and COPD stages GOLD 1-4 were evaluated using fully automated software for quantitative CT. Total lung volume (TLV), emphysema index (EI), mean lung density (MLD), and airway wall thickness (WT), total diameter (TD), lumen area (LA), and wall percentage (WP) were calculated for the entire lung, as well as for all lung lobes separately. Results from the 3rd-8th airway generation were aggregated (WT3-8, TD3-8, LA3-8, WP3-8). All subjects underwent whole-body plethysmography (FEV1%pred, VC, RV, TLC). Results EI was higher with increasing GOLD stages with 1.0 ± 1.8% in GOLD 0, 4.5 ± 9.9% in GOLD 1, 19.4 ± 15.8% in GOLD 2, 32.7 ± 13.4% in GOLD 3 and 41.4 ± 10.0% in GOLD 4 subjects (p < 0.001). WP3-8 showed no essential differences between GOLD 0 and GOLD 1, tended to be higher in GOLD 2 with 52.4 ± 7.2%, and was lower in GOLD 4 with 50.6 ± 5.9% (p = 0.010 - p = 0.960). In the upper lobes WP3-8 showed no significant differences between the GOLD stages (p = 0.824), while in the lower lobes the lowest WP3-8 was found in GOLD 0/1 with 49.9 ± 6.5%, while higher values were detected in GOLD 2 with 51.9 ± 6.4% and in GOLD 3/4 with 51.0 ± 6.0% (p < 0.05). In a multilinear regression analysis, the dependent variable FEV1%pred can be predicted by a combination of both the independent variables EI (p < 0.001) and WP3-8 (p < 0.001). Conclusion QCT parameters showed a significant increase of emphysema from GOLD 0-4 COPD. Airway changes showed a different spatial pattern with higher values of relative wall thickness in the lower lobes until GOLD 2 and subsequent lower values in GOLD3/4, whereas there were no significant differences in the upper lobes. Both, EI and WP5-8 are independently correlated with lung function decline.
Collapse
Affiliation(s)
- Philip Konietzke
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Christian Brunner
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Marilisa Konietzke
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Willi Linus Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Claus Peter Heußel
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Felix J. F. Herth
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Pulmonology, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Franziska Trudzinski
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Pulmonology, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Mark Oliver Wielpütz
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
28
|
Matsuo Y, Ogawa E, Tsunoda Y, Yamazaki A, Kawashima S, Uchida Y, Nakagawa H, Kinose D, Yamaguchi M, Nakano Y. Inspiratory and Expiratory Computed Tomography Imaging Clusters Reflect Functional Characteristics in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:1047-1055. [PMID: 37304764 PMCID: PMC10257425 DOI: 10.2147/copd.s405845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023] Open
Abstract
Purpose Disease probability measure (DPM) is a useful voxel-wise imaging assessment of gas-trapping and emphysematous lesions in patients with chronic obstructive pulmonary disease (COPD). To elucidate the progression of COPD, we performed a cluster analysis using the following DPM parameters: normal (DPMNormal), gas-trapping (DPMGasTrap), and emphysematous lesions (DPMEmph). Our findings revealed the characteristics of each cluster and the 3-year disease progression using imaging parameters. Patients and Methods Inspiratory and expiratory chest computed tomography (CT) images of 131 patients with COPD were examined, of which 84 were followed up for 3 years. The percentage of low attenuation volume (LAV%) and the square root of the wall area of a hypothetical airway with an internal perimeter of 10 mm (√Aaw at Pi10) were quantitatively measured using inspiratory chest CT. A hierarchical cluster analysis was performed using the DPM parameters at baseline. Five clusters were named according to the dominant DPM parameters: normal (NL), normal-GasTrap (NL-GT), GasTrap (GT), GasTrap-Emphysema (GT-EM), and Emphysema (EM). Results Women were predominantly diagnosed with GT. Forced expiratory volume in 1 s gradually decreased in the following order: NL, NL-GT, GT, GT-EM, and EM. DPMEmph correlated well with LAV%. Four clusters other than NL showed significantly higher values of √Aaw at Pi10 than NL; however, no significant differences were observed among them. In all clusters, DPMEmph increased after 3 years. DPMNormal only increased in the GT cluster. Conclusion Clusters using DPM parameters may reflect the characteristics of COPD and help understand the pathophysiology of the disease.
Collapse
Affiliation(s)
- Yumiko Matsuo
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
- Health Administration Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Emiko Ogawa
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
- Health Administration Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yoko Tsunoda
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Akio Yamazaki
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Satoru Kawashima
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yasuki Uchida
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroaki Nakagawa
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Daisuke Kinose
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Masafumi Yamaguchi
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
29
|
Yang Y, Ge H, Lu J, Huang X, Wang K, Jin L, Qi L, Li M. Structural features on quantitative chest computed tomography of patients with maximal mid-expiratory flow impairment in a normal lung function population. BMC Pulm Med 2023; 23:86. [PMID: 36922831 PMCID: PMC10015933 DOI: 10.1186/s12890-023-02380-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Maximal mid-expiratory flow (MMEF) is an earlier predictor of chronic obstructive pulmonary disease (COPD) development than forced expiratory volume in 1 s (FEV1). Changes of lung structure in patients with MMEF impairment only is still not clear. Therefore, this study aimed to investigate the structural features of patients with decreased MMEF by quantitative computed tomography (QCT) and develop a predictive model for predicting patients with reduced MMEF in normal lung function population. METHODS In this study, 131 patients with normal spirometry results and available volumetric chest CT images were enrolled and divided into the reduced MMEF group (FEV1/forced expiratory vital capacity (FEV1/FVC) > 0.7, FEV1% predictive values (FEV1%pred) > 80%, MMEF%pred < 80%, n = 52) and the normal MMEF group (FEV1/FVC > 0.7, FEV1%pred > 80%, MMEF%pred ≥ 80%, n = 79). The emphysema, small airway disease and medium-size airway parameters were measured by a commercial software. The differences were investigated in clinical features, spirometrical parameters and QCT parameters between the two groups. A nomogram model was constructed based on the results of the multivariable logistic regression model. Spearman's correlation coefficients were calculated between QCT measurements and spirometrical parameters. RESULTS There were more males in reduced MMEF group than normal group (P < 0.05). Lung parenchyma parameter (PRMEmph) and airway-related parameters (functional small airway disease (PRMfSAD), luminal area of fifth- and sixth- generation airway (LA5, LA6) were significantly different between the reduced MMEF group and the normal group (20.2 ± 17.4 vs 9.4 ± 6.7, 3.4 ± 3.5 vs 1.9 ± 2.0, 12.2 ± 2.5 vs 13.7 ± 3.4, 7.7 ± 2.4 vs 8.9 ± 2.8, respectively, all P < 0.01). After multivariable logistical regression, only sex (odds ratio [OR]: 2.777; 95% confidence interval [CI]:1.123-3.867), PRMfSAD (OR:1.102, 95%CI:1.045-1.162) and LA6 (OR:0.650, 95%CI:0.528-0.799) had significant differences between the two groups (P < 0.05) and a model incorporating with the three indicators was constructed (area under curve, 0.836). Correlation analysis showed MMEF%pred had mild to moderate correlation with airway-related measurements. CONCLUSION In normal lung function population, patients with reduced MMEF have potential medium-size and small airway changes, and MMEF%pred is significantly associated with airway-related CT parameters. The nomogram incorporating with sex, PRMfSAD and LA6 has good predictive value and offers more objective evidences in a group with reduced MMEF.
Collapse
Affiliation(s)
- Yuling Yang
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, No. 221 West Yanan Road, Shanghai, 200040, China
| | - Haiyan Ge
- Department of Respiratory Medicine, Huadong Hospital Affiliated With Fudan University, No. 221 West Yanan Road, Shanghai, 200040, China
| | - Jinjuan Lu
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, No. 221 West Yanan Road, Shanghai, 200040, China
| | - Xuemei Huang
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, No. 221 West Yanan Road, Shanghai, 200040, China
| | - Kun Wang
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, No. 221 West Yanan Road, Shanghai, 200040, China
| | - Liang Jin
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, No. 221 West Yanan Road, Shanghai, 200040, China
| | - Lin Qi
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, No. 221 West Yanan Road, Shanghai, 200040, China.
| | - Ming Li
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, No. 221 West Yanan Road, Shanghai, 200040, China.
| |
Collapse
|
30
|
Kim JH, Shin KE, Chang HS, Lee JU, Park SL, Park JS, Park JS, Park CS. Relationships Between High-Resolution Computed Tomographic Features and Lung Function Trajectory in Patients With Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:174-185. [PMID: 37021504 PMCID: PMC10079522 DOI: 10.4168/aair.2023.15.2.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/01/2022] [Accepted: 10/17/2022] [Indexed: 04/07/2023]
Abstract
PURPOSE A subset of asthmatics suffers from persistent airflow limitation, known as remodeled asthma, despite optimal treatment. Typical quantitative scoring methods to evaluate structural changes of airway remodeling on high-resolution computed tomography (HRCT) are time-consuming and laborious. Thus, easier and simpler methods are required in clinical practice. We evaluated the clinical usefulness of a simple, semi-quantitative method based on 8 HRCT parameters by comparing asthmatics with a persistent decline of post-bronchodilator (BD)-FEV1 to those with a BD-FEV1 that normalized over time and evaluated the relationships of the parameters with BD-FEV1. METHODS Asthmatics (n = 59) were grouped into 5 trajectories (Trs) according to the changes of BD-FEV1 over 1 year. After 9-12 months of guideline-based treatment, HRCT parameters including emphysema, bronchiectasis, anthracofibrosis, bronchial wall thickening (BWT), fibrotic bands, mosaic attenuation on inspiration, air-trapping on expiration, and centrilobular nodules were classified as present (1) or absent (0) in 6 zones. RESULTS The Tr5 group (n = 11) was older and exhibited a persistent decline in BD-FEV1. The Tr5 and Tr4 groups (n = 12), who had a lower baseline BD-FEV1 that normalized over time, had longer durations of asthma, frequent exacerbations, and higher doses of steroid use compared to the Tr1-3 groups (n = 36), who had a normal baseline BD-FEV1. The Tr5 group had higher emphysema and BWT scores than the Tr4 (P = 8.25E-04 and P = 0.044, respectively). Scores for the other 6 parameters were not significantly different among the Tr groups. BD-FEV1 was inversely correlated with the emphysema and BWT scores in multivariate analysis (P = 1.70E-04, P = 0.006, respectively). CONCLUSIONS Emphysema and BWT are associated with airway remodeling in asthmatics. Our simple, semi-quantitative scoring system based on HRCT may be an easy-to-use method for estimating airflow limitation.
Collapse
Affiliation(s)
- Joo-Hee Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Kyung Eun Shin
- Department of Radiology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Hun Soo Chang
- Department of Anatomy and BK21 FOUR Project, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jong-Uk Lee
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Seung-Lee Park
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Jai Soung Park
- Department of Radiology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Jong Sook Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea.
| | - Choon-Sik Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea.
| |
Collapse
|
31
|
Dysbiosis and leaky gut in hyper-inflated COPD patients: Have smoking and exercise training any role? Respir Med Res 2023; 83:100995. [PMID: 36822132 DOI: 10.1016/j.resmer.2023.100995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND To characterize the leaky gut syndrome in a cohort of COPD patients with lung hyperinflation according to their clinical history (i.e. hyperinflation severity, chronic respiratory failure [CRF] presence, GOLD stage, prescribed therapy, smoking history) and with or without recent exercise training activity. METHODS At the ambulatory visit, we evaluated selected COPD patients with lung hyperinflation [residual volume (RV)≥110% pred, TLC≤120% pred)] in clinical stability, identifying them as those who have attended a recent program of exercise training and those who were waiting for it. Clinical and respiratory characteristics (forced expiratory volume at the first second, forced vital capacity, and arterial blood gasses) were collected. Microbiota composition (CFU/ml), and intestinal permeability (i.e., Zonulin ng/ml) were measured in the stool and normalized to the normality cutoff value. RESULTS All patients [n = 32, median age: 67 years, median RV: 185.0% pred (IQR: 162.0-206.0) and TLC 125.0% pred (IQR: 113.0-138.0)] showed depletion of Lactobacilli, Bacteroides and a great increase in E. Coli, KES (2 and 6.4 times) and Saccharomyces concentrations (2.5 times) other than normality. All evaluations on gut microbiota composition in the whole population were independent of BMI, CRF, GOLD stage or hyperinflation severity, and inhaled steroid therapy. Smoking habits (smokers vs ex-smokers) influenced only Bacteroides species (p<0.05) and no systemic inflammation was present in these patients. On the contrary, Zonulin concentration, a marker of intestinal permeability, was significantly higher than normal (2.8 times) and was correlated with Saccharomyces (p = 0.013). Zonulin (p = 0.001) and Saccharomyces (p<0.0001) were also significantly different in patients undergoing exercise training with respect to those on the waiting list for training. These findings were not influenced by smoking habits. CONCLUSIONS A marked dysbiosis and leaky gut alteration characterize all COPD hyper-inflated patients, being worse in patients waiting for exercise training. A pre-to-post study is necessary to confirm these preliminary findings.
Collapse
|
32
|
Chen KY, Kuo HY, Lee KY, Feng PH, Wu SM, Chuang HC, Chen TT, Sun WL, Tseng CH, Liu WT, Cheng WH, Majumdar A, Stettler M, Tsai CY, Ho SC. Associations of the distance-saturation product and low-attenuation area percentage in pulmonary computed tomography with acute exacerbation in patients with chronic obstructive pulmonary disease. Front Med (Lausanne) 2023; 9:1047420. [PMID: 36687440 PMCID: PMC9846059 DOI: 10.3389/fmed.2022.1047420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) has high global health concerns, and previous research proposed various indicators to predict mortality, such as the distance-saturation product (DSP), derived from the 6-min walk test (6MWT), and the low-attenuation area percentage (LAA%) in pulmonary computed tomographic images. However, the feasibility of using these indicators to evaluate the stability of COPD still remains to be investigated. Associations of the DSP and LAA% with other COPD-related clinical parameters are also unknown. This study, thus, aimed to explore these associations. Methods This retrospective study enrolled 111 patients with COPD from northern Taiwan. Individuals' data we collected included results of a pulmonary function test (PFT), 6MWT, life quality survey [i.e., the modified Medical Research Council (mMRC) scale and COPD assessment test (CAT)], history of acute exacerbation of COPD (AECOPD), and LAA%. Next, the DSP was derived by the distance walked and the lowest oxygen saturation recorded during the 6MWT. In addition, the DSP and clinical phenotype grouping based on clinically significant outcomes by previous study approaches were employed for further investigation (i.e., DSP of 290 m%, LAA% of 20%, and AECOPD frequency of ≥1). Mean comparisons and linear and logistic regression models were utilized to explore associations among the assessed variables. Results The low-DSP group (<290 m%) had significantly higher values for the mMRC, CAT, AECOPD frequency, and LAA% at different lung volume scales (total, right, and left), whereas it had lower values of the PFT and 6MWT parameters compared to the high-DSP group. Significant associations (with high odds ratios) were observed of the mMRC, CAT, AECOPD frequency, and PFT with low- and high-DSP groupings. Next, the risk of having AECOPD was associated with the mMRC, CAT, DSP, and LAA% (for the total, right, and left lungs). Conclusion A lower value of the DSP was related to a greater worsening of symptoms, more-frequent exacerbations, poorer pulmonary function, and more-severe emphysema (higher LAA%). These readily determined parameters, including the DSP and LAA%, can serve as indicators for assessing the COPD clinical course and may can serve as a guide to corresponding treatments.
Collapse
Affiliation(s)
- Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Hsiao-Yun Kuo
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Hsiao-Chi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,School of Respiratory Therapy, College of Medicine, Taipei Medical University, New Taipei City, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Tzu-Tao Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Wei-Lun Sun
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chien-Hua Tseng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan,Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wen-Te Liu
- Sleep Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Research Center of Artificial Intelligence in Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Wun-Hao Cheng
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Arnab Majumdar
- Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
| | - Marc Stettler
- Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
| | - Cheng-Yu Tsai
- Sleep Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom,Cheng-Yu Tsai,
| | - Shu-Chuan Ho
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,School of Respiratory Therapy, College of Medicine, Taipei Medical University, New Taipei City, Taiwan,*Correspondence: Shu-Chuan Ho,
| |
Collapse
|
33
|
Lu D, Yu Q, Chen L, Liao Q, Lan J, Chen SB, Wang C, Zeng W, Wu L, Fan C, Lu P, Yu H. HRCT quantitative analysis of airway remodeling and airway trapping in the small airway asthma phenotype and its correlation with pulmonary function. J Asthma 2023; 60:32-42. [PMID: 34962447 DOI: 10.1080/02770903.2021.2023821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES We aimed to explore whether large airway remodeling and small airway structural changes exist in subjects with small airway asthma phenotype and to evaluate the relationships between quantitative high-resolution computed tomography (qHRCT) parameters and lung function. METHODS We enrolled 15 subjects with small airway asthma phenotype and 18 healthy controls. The two groups were matched by age, sex and body square area (BSA) with propensity score matching (PSM). Pulmonary function and qHRCT parameters [wall thickness (WT), wall area (WA), lumen area (LA), wall area percentage (WA%) of the 4th-6th generations in the right upper lobe apical segmental bronchus (RB1), adjusted by BSA, WT/BSA, WA/BSA, and LA/BSA, relative volume change -860 HU to -950 HU (RVC-860 to -950) and the expiration to inspiration ratio of mean lung density (MLDE/I)) were compared between the groups. Correlation analysis was employed to assess the relationship between qHRCT parameters and pulmonary function. RESULTS The small airway asthma phenotype had significantly higher WA%, RVC-860 to -950 and MLDE/I and lower LA/BSA than the healthy control. Additionally, we found moderate to strong correlations between impulse oscillation (IOS) indices and WA6% and WT6/BSA. No significant correlation was found between bronchial parameters and air trapping parameters (p > 0.05). CONCLUSIONS Combining physiological tests with imaging approaches can lead to better evaluation of small airway disfunction (SAD) in asthmatic patients. Additionally, despite nonexistent airflow obstruction in patients with small airway asthma phenotype, large airway remodeling and small airway structural changes may appear simultaneously in the early stage of disease.
Collapse
Affiliation(s)
- Dongzhu Lu
- Department of Pulmonary and Critical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Yu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lichang Chen
- Department of Pulmonary and Critical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qiannuan Liao
- Department of Pulmonary and Critical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junkang Lan
- Department of Pulmonary and Critical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shu-Bing Chen
- Department of Pulmonary and Critical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cuilan Wang
- Department of Pulmonary and Critical Medicine, Shenzhen Hospital of Southern Medical University, Southern Medical University, Shenzhen, China
| | - Wenyi Zeng
- Department of Pulmonary and Critical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lingling Wu
- Department of Pulmonary and Critical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chaofan Fan
- Department of Pulmonary and Critical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peifeng Lu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huapeng Yu
- Department of Pulmonary and Critical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Hayden LP, Hobbs BD, Busch R, Cho MH, Liu M, Lopes-Ramos CM, Lomas DA, Bakke P, Gulsvik A, Silverman EK, Crapo JD, Beaty TH, Laird NM, Lange C, DeMeo DL. X chromosome associations with chronic obstructive pulmonary disease and related phenotypes: an X chromosome-wide association study. Respir Res 2023; 24:38. [PMID: 36726148 PMCID: PMC9891756 DOI: 10.1186/s12931-023-02337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The association between genetic variants on the X chromosome to risk of COPD has not been fully explored. We hypothesize that the X chromosome harbors variants important in determining risk of COPD related phenotypes and may drive sex differences in COPD manifestations. METHODS Using X chromosome data from three COPD-enriched cohorts of adult smokers, we performed X chromosome specific quality control, imputation, and testing for association with COPD case-control status, lung function, and quantitative emphysema. Analyses were performed among all subjects, then stratified by sex, and subsequently combined in meta-analyses. RESULTS Among 10,193 subjects of non-Hispanic white or European ancestry, a variant near TMSB4X, rs5979771, reached genome-wide significance for association with lung function measured by FEV1/FVC ([Formula: see text] 0.020, SE 0.004, p 4.97 × 10-08), with suggestive evidence of association with FEV1 ([Formula: see text] 0.092, SE 0.018, p 3.40 × 10-07). Sex-stratified analyses revealed X chromosome variants that were differentially trending in one sex, with significantly different effect sizes or directions. CONCLUSIONS This investigation identified loci influencing lung function, COPD, and emphysema in a comprehensive genetic association meta-analysis of X chromosome genetic markers from multiple COPD-related datasets. Sex differences play an important role in the pathobiology of complex lung disease, including X chromosome variants that demonstrate differential effects by sex and variants that may be relevant through escape from X chromosome inactivation. Comprehensive interrogation of the X chromosome to better understand genetic control of COPD and lung function is important to further understanding of disease pathology. Trial registration Genetic Epidemiology of COPD Study (COPDGene) is registered at ClinicalTrials.gov, NCT00608764 (Active since January 28, 2008). Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints Study (ECLIPSE), GlaxoSmithKline study code SCO104960, is registered at ClinicalTrials.gov, NCT00292552 (Active since February 16, 2006). Genetics of COPD in Norway Study (GenKOLS) holds GlaxoSmithKline study code RES11080, Genetics of Chronic Obstructive Lung Disease.
Collapse
Affiliation(s)
- Lystra P. Hayden
- grid.38142.3c000000041936754XDivision of Pulmonary Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XChanning Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave, Boston, MA 02115 USA
| | - Brian D. Hobbs
- grid.38142.3c000000041936754XChanning Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Robert Busch
- grid.417587.80000 0001 2243 3366Division of Pulmonology, Allergy, and Critical Care, U.S. Food and Drug Administration, Silver Spring, MD USA
| | - Michael H. Cho
- grid.38142.3c000000041936754XChanning Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Ming Liu
- grid.268323.e0000 0001 1957 0327Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA USA
| | - Camila M. Lopes-Ramos
- grid.38142.3c000000041936754XChanning Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - David A. Lomas
- grid.83440.3b0000000121901201UCL Respiratory, University College London, London, UK
| | - Per Bakke
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Amund Gulsvik
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Edwin K. Silverman
- grid.38142.3c000000041936754XChanning Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - James D. Crapo
- grid.240341.00000 0004 0396 0728Division of Pulmonary Sciences and Critical Care Medicine, National Jewish Health, Denver, CO USA
| | - Terri H. Beaty
- grid.21107.350000 0001 2171 9311Johns Hopkins School of Public Health, Baltimore, MD USA
| | - Nan M. Laird
- grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Christoph Lange
- grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Dawn L. DeMeo
- grid.38142.3c000000041936754XChanning Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
35
|
Kahnert K, Jörres RA, Kauczor HU, Alter P, Trudzinski FC, Herth F, Jobst B, Weinheimer O, Nauck S, Mertsch P, Kauffmann-Guerrero D, Behr J, Bals R, Watz H, Rabe KF, Welte T, Vogelmeier CF, Biederer J. Standardized airway wall thickness Pi10 from routine CT scans of COPD patients as imaging biomarker for disease severity, lung function decline, and mortality. Ther Adv Respir Dis 2023; 17:17534666221148663. [PMID: 36718763 PMCID: PMC9896094 DOI: 10.1177/17534666221148663] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Chest computed tomography (CT) is increasingly used for phenotyping and monitoring of patients with COPD. The aim of this work was to evaluate the association of Pi10 as a measure of standardized airway wall thickness on CT with exacerbations, mortality, and response to triple therapy. METHODS Patients of GOLD grades 1-4 of the COSYCONET cohort with prospective CT scans were included. Pi10 was automatically computed and analyzed for its relationship to COPD severity, comorbidities, lung function, respiratory therapy, and mortality over a 6-year period, using univariate and multivariate comparisons. RESULTS We included n = 433 patients (61%male). Pi10 was dependent on both GOLD grades 1-4 (p = 0.009) and GOLD groups A-D (p = 0.008); it was particularly elevated in group D, and ROC analysis yielded a cut-off of 0.26 cm. Higher Pi10 was associated to lower FEV1 % predicted and higher RV/TLC, moreover the annual changes of lung function parameters (p < 0.05), as well as to an airway-dominated phenotype and a history of myocardial infarction (p = 0.001). These associations were confirmed in multivariate analyses. Pi10 was lower in patients receiving triple therapy, in particular in patients of GOLD groups C and D. Pi10 was also a significant predictor for mortality (p = 0.006), even after including multiple other predictors. CONCLUSION In summary, Pi10 was found to be predictive for the course of the disease in COPD, in particular mortality. The fact that Pi10 was lower in patients with severe COPD receiving triple therapy might hint toward additional effects of this functional therapy on airway remodeling. REGISTRATION ClinicalTrials.gov, Identifier: NCT01245933.
Collapse
Affiliation(s)
- Kathrin Kahnert
- Department of Medicine V, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), University Hospital, LMU Munich, Ziemssenstr. 5, Munich 80336, Germany
| | - Rudolf A Jörres
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC), Member of the German Center for Lung Research, Heidelberg, Germany
| | - Peter Alter
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Franziska C Trudzinski
- Thoraxklinik-Heidelberg gGmbH, Translational Lung Research Centre.,Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Felix Herth
- Thoraxklinik-Heidelberg gGmbH, Translational Lung Research Centre.,Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Bertram Jobst
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC), Member of the German Center for Lung Research, Heidelberg, Germany
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC), Member of the German Center for Lung Research, Heidelberg, Germany
| | - Sebastian Nauck
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC), Member of the German Center for Lung Research, Heidelberg, Germany
| | - Pontus Mertsch
- Department of Medicine V, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), University Hospital, LMU Munich, Munich, Germany
| | - Diego Kauffmann-Guerrero
- Department of Medicine V, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), University Hospital, LMU Munich, Munich, Germany
| | - Jürgen Behr
- Department of Medicine V, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), University Hospital, LMU Munich, Munich, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, Homburg, Germany.,Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, Saarbrücken, Germany
| | - Henrik Watz
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Klaus F Rabe
- Lung Clinic Grosshansdorf, Airway Research Center (ARCN), Grosshansdorf, German.,Faculty of Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Tobias Welte
- Department of Pneumology, Hannover Medical School, Hannover, Germany
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Jürgen Biederer
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC), Member of the German Center for Lung Research, Heidelberg, Germany.,Faculty of Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,University of Latvia, Faculty of Medicine, Raina bulvaris 19, Riga, LV-1586 Latvia
| |
Collapse
|
36
|
Maetani T, Tanabe N, Terada S, Shiraishi Y, Shima H, Kaji S, Sakamoto R, Oguma T, Sato S, Masuda I, Hirai T. Physiological impacts of computed tomography airway dysanapsis, fractal dimension, and branch count in asymptomatic never smokers. J Appl Physiol (1985) 2023; 134:20-27. [PMID: 36269294 DOI: 10.1152/japplphysiol.00385.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dysanapsis, a mismatch between airway tree caliber and lung size, contributes to a large variation in lung function on spirometry in healthy subjects. However, it remains unclear whether other morphological features of the airway tree could be associated with the variation in lung function independent of dysanapsis. This study used lung cancer screening chest computed tomography (CT) and spirometry data from asymptomatic never smokers. Dysanapsis and the complexity of airway tree geometry were quantified on CT by measuring airway to lung ratio (ALR) and airway fractal dimension (AFD). Moreover, total airway count (TAC), ratio of airway luminal surface area to volume (SA/V), longitudinal tapering and irregularity of the radius of the internal lumen from the central to peripheral airways (Tapering index and Irregularity index) were quantified. In 431 asymptomatic never smokers without a history of lung diseases, lower ALR was associated with lower forced expiratory volume in 1 s (FEV1) and FEV1/forced vital capacity (FEV1/FVC). The associations of ALR with AFD and TAC (r = 0.41 and 0.13) were weaker than the association between TAC and AFD (r = 0.64). In multivariable models adjusted for age, sex, height, and mean lung density, lower AFD and TAC were associated with lower FEV1 and FEV1/FVC independent of ALR, whereas SA/V and Tapering index were not. These results suggest that the smaller airway tree relative to a given lung size and the lower complexity of airway tree shape, including lower branch count, are independently associated with lower lung function in healthy subjects.NEW & NOTEWORTHY This study showed that fractal dimension and total airway count of the airway tree on computed tomography are associated with lung function on spirometry independent of a smaller airway for a given lung size (dysanapsis) in asymptomatic never smokers without a history of lung diseases. In addition to dysanapsis, the morphometric complexity of the airway tree and the airway branch count may cause a substantial variation of lung function in these subjects.
Collapse
Affiliation(s)
- Tomoki Maetani
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoru Terada
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Shiraishi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Shima
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shizuo Kaji
- Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
| | - Ryo Sakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Izuru Masuda
- Medical Examination Center, Takeda Hospital, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
37
|
Weinheimer O, Konietzke P, Wagner WL, Weber D, Newman B, Galbán CJ, Kauczor HU, Mall MA, Robinson TE, Wielpütz MO. MDCT-based longitudinal automated airway and air trapping analysis in school-age children with mild cystic fibrosis lung disease. Front Pediatr 2023; 11:1068103. [PMID: 36816383 PMCID: PMC9932328 DOI: 10.3389/fped.2023.1068103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Quantitative computed tomography (QCT) offers some promising markers to quantify cystic fibrosis (CF)-lung disease. Air trapping may precede irreversible bronchiectasis; therefore, the temporal interdependencies of functional and structural lung disease need to be further investigated. We aim to quantify airway dimensions and air trapping on chest CT of school-age children with mild CF-lung disease over two years. METHODS Fully-automatic software analyzed 144 serial spirometer-controlled chest CT scans of 36 children (median 12.1 (10.2-13.8) years) with mild CF-lung disease (median ppFEV1 98.5 (90.8-103.3) %) at baseline, 3, 12 and 24 months. The airway wall percentage (WP5-10), bronchiectasis index (BEI), as well as severe air trapping (A3) were calculated for the total lung and separately for all lobes. Mixed linear models were calculated, considering the lobar distribution of WP5-10, BEI and A3 cross-sectionally and longitudinally. RESULTS WP5-10 remained stable (P = 0.248), and BEI changed from 0.41 (0.28-0.7) to 0.54 (0.36-0.88) (P = 0.156) and A3 from 2.26% to 4.35% (P = 0.086) showing variability over two years. ppFEV1 was also stable (P = 0.276). A robust mixed linear model showed a cross-sectional, regional association between WP5-10 and A3 at each timepoint (P < 0.001). Further, BEI showed no cross-sectional, but another mixed model showed short-term longitudinal interdependencies with air trapping (P = 0.003). CONCLUSIONS Robust linear/beta mixed models can still reveal interdependencies in medical data with high variability that remain hidden with simpler statistical methods. We could demonstrate cross-sectional, regional interdependencies between wall thickening and air trapping. Further, we show short-term regional interdependencies between air trapping and an increase in bronchiectasis. The data indicate that regional air trapping may precede the development of bronchiectasis. Quantitative CT may capture subtle disease progression and identify regional and temporal interdependencies of distinct manifestations of CF-lung disease.
Collapse
Affiliation(s)
- Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC), German Lung Research Center (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Philip Konietzke
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC), German Lung Research Center (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Willi L Wagner
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC), German Lung Research Center (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Dorothea Weber
- Translational Lung Research Center (TLRC), German Lung Research Center (DZL), University of Heidelberg, Heidelberg, Germany.,Institute of Medical Biometry and Informatics (IMBI), University of Heidelberg, Heidelberg, Germany
| | - Beverly Newman
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Craig J Galbán
- Department of Radiology, University of Michigan, Ann Arbor, United States
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC), German Lung Research Center (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Marcus A Mall
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health @ Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Terry E Robinson
- Department of Pediatrics, Center of Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC), German Lung Research Center (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
38
|
Bhatt SP, Bodduluri S, Nakhmani A, Kim YI, Reinhardt JM, Hoffman EA, Motahari A, Wilson CG, Humphries SM, Regan EA, DeMeo DL. Sex Differences in Airways at Chest CT: Results from the COPDGene Cohort. Radiology 2022; 305:699-708. [PMID: 35916677 PMCID: PMC9713451 DOI: 10.1148/radiol.212985] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/10/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022]
Abstract
Background The prevalence of chronic obstructive pulmonary disease (COPD) in women is fast approaching that in men, and women experience greater symptom burden. Although sex differences in emphysema have been reported, differences in airways have not been systematically characterized. Purpose To evaluate whether structural differences in airways may underlie some of the sex differences in COPD prevalence and clinical outcomes. Materials and Methods In a secondary analyses of a multicenter study of never-, current-, and former-smokers enrolled from January 2008 to June 2011 and followed up longitudinally until November 2020, airway disease on CT images was quantified using seven metrics: airway wall thickness, wall area percent, and square root of the wall thickness of a hypothetical airway with internal perimeter of 10 mm (referred to as Pi10) for airway wall; and lumen diameter, airway volume, total airway count, and airway fractal dimension for airway lumen. Least-squares mean values for each airway metric were calculated and adjusted for age, height, ethnicity, body mass index, pack-years of smoking, current smoking status, total lung capacity, display field of view, and scanner type. In ever-smokers, associations were tested between each airway metric and postbronchodilator forced expiratory volume in 1 second (FEV1)-to-forced vital capacity (FVC) ratio, modified Medical Research Council dyspnea scale, St George's Respiratory Questionnaire score, and 6-minute walk distance. Multivariable Cox proportional hazards models were created to evaluate the sex-specific association between each airway metric and mortality. Results In never-smokers (n = 420), men had thicker airway walls than women as quantified on CT images for segmental airway wall area percentage (least-squares mean, 47.68 ± 0.61 [standard error] vs 45.78 ± 0.55; difference, -1.90; P = .02), whereas airway lumen dimensions were lower in women than men after accounting for height and total lung capacity (segmental lumen diameter, 8.05 mm ± 0.14 vs 9.05 mm ± 0.16; difference, -1.00 mm; P < .001). In ever-smokers (n = 9363), men had greater segmental airway wall area percentage (least-squares mean, 52.19 ± 0.16 vs 48.89 ± 0.18; difference, -3.30; P < .001), whereas women had narrower segmental lumen diameter (7.80 mm ± 0.05 vs 8.69 mm ± 0.04; difference, -0.89; P < .001). A unit change in each of the airway metrics (higher wall or lower lumen measure) resulted in lower FEV1-to-FVC ratio, more dyspnea, poorer respiratory quality of life, lower 6-minute walk distance, and worse survival in women compared with men (all P < .01). Conclusion Airway lumen sizes quantified at chest CT were smaller in women than in men after accounting for height and lung size, and these lower baseline values in women conferred lower reserves against respiratory morbidity and mortality for equivalent changes compared with men. © RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Surya P. Bhatt
- From the UAB Lung Imaging Lab (S.P.B., S.B., A.N.), UAB Lung Health
Center (S.P.B., S.B.), Division of Pulmonary, Allergy and Critical Care Medicine
(S.P.B., S.B.), Department of Electrical and Computer Engineering (A.N.), and
Division of Preventive Medicine (Y.I.K.), University of Alabama at Birmingham,
1720 2nd Ave S, THT 422, Birmingham, AL 35294; Roy J. Carver Department
of Biomedical Engineering (J.M.R.) and Department of Radiology (E.A.H., A.M.),
University of Iowa, Iowa City, Iowa; Departments of Biostatistics and
Bioinformatics (C.G.W.), Radiology (S.M.H.), and Medicine (E.A.R.), National
Jewish Health, Denver, Colo; and Channing Division of Network Medicine and the
Division of Pulmonary and Critical Care Medicine, Brigham and Women's
Hospital, Harvard Medical School, Boston, Mass (D.L.D.)
| | - Sandeep Bodduluri
- From the UAB Lung Imaging Lab (S.P.B., S.B., A.N.), UAB Lung Health
Center (S.P.B., S.B.), Division of Pulmonary, Allergy and Critical Care Medicine
(S.P.B., S.B.), Department of Electrical and Computer Engineering (A.N.), and
Division of Preventive Medicine (Y.I.K.), University of Alabama at Birmingham,
1720 2nd Ave S, THT 422, Birmingham, AL 35294; Roy J. Carver Department
of Biomedical Engineering (J.M.R.) and Department of Radiology (E.A.H., A.M.),
University of Iowa, Iowa City, Iowa; Departments of Biostatistics and
Bioinformatics (C.G.W.), Radiology (S.M.H.), and Medicine (E.A.R.), National
Jewish Health, Denver, Colo; and Channing Division of Network Medicine and the
Division of Pulmonary and Critical Care Medicine, Brigham and Women's
Hospital, Harvard Medical School, Boston, Mass (D.L.D.)
| | - Arie Nakhmani
- From the UAB Lung Imaging Lab (S.P.B., S.B., A.N.), UAB Lung Health
Center (S.P.B., S.B.), Division of Pulmonary, Allergy and Critical Care Medicine
(S.P.B., S.B.), Department of Electrical and Computer Engineering (A.N.), and
Division of Preventive Medicine (Y.I.K.), University of Alabama at Birmingham,
1720 2nd Ave S, THT 422, Birmingham, AL 35294; Roy J. Carver Department
of Biomedical Engineering (J.M.R.) and Department of Radiology (E.A.H., A.M.),
University of Iowa, Iowa City, Iowa; Departments of Biostatistics and
Bioinformatics (C.G.W.), Radiology (S.M.H.), and Medicine (E.A.R.), National
Jewish Health, Denver, Colo; and Channing Division of Network Medicine and the
Division of Pulmonary and Critical Care Medicine, Brigham and Women's
Hospital, Harvard Medical School, Boston, Mass (D.L.D.)
| | - Young-il Kim
- From the UAB Lung Imaging Lab (S.P.B., S.B., A.N.), UAB Lung Health
Center (S.P.B., S.B.), Division of Pulmonary, Allergy and Critical Care Medicine
(S.P.B., S.B.), Department of Electrical and Computer Engineering (A.N.), and
Division of Preventive Medicine (Y.I.K.), University of Alabama at Birmingham,
1720 2nd Ave S, THT 422, Birmingham, AL 35294; Roy J. Carver Department
of Biomedical Engineering (J.M.R.) and Department of Radiology (E.A.H., A.M.),
University of Iowa, Iowa City, Iowa; Departments of Biostatistics and
Bioinformatics (C.G.W.), Radiology (S.M.H.), and Medicine (E.A.R.), National
Jewish Health, Denver, Colo; and Channing Division of Network Medicine and the
Division of Pulmonary and Critical Care Medicine, Brigham and Women's
Hospital, Harvard Medical School, Boston, Mass (D.L.D.)
| | - Joseph M. Reinhardt
- From the UAB Lung Imaging Lab (S.P.B., S.B., A.N.), UAB Lung Health
Center (S.P.B., S.B.), Division of Pulmonary, Allergy and Critical Care Medicine
(S.P.B., S.B.), Department of Electrical and Computer Engineering (A.N.), and
Division of Preventive Medicine (Y.I.K.), University of Alabama at Birmingham,
1720 2nd Ave S, THT 422, Birmingham, AL 35294; Roy J. Carver Department
of Biomedical Engineering (J.M.R.) and Department of Radiology (E.A.H., A.M.),
University of Iowa, Iowa City, Iowa; Departments of Biostatistics and
Bioinformatics (C.G.W.), Radiology (S.M.H.), and Medicine (E.A.R.), National
Jewish Health, Denver, Colo; and Channing Division of Network Medicine and the
Division of Pulmonary and Critical Care Medicine, Brigham and Women's
Hospital, Harvard Medical School, Boston, Mass (D.L.D.)
| | - Eric A. Hoffman
- From the UAB Lung Imaging Lab (S.P.B., S.B., A.N.), UAB Lung Health
Center (S.P.B., S.B.), Division of Pulmonary, Allergy and Critical Care Medicine
(S.P.B., S.B.), Department of Electrical and Computer Engineering (A.N.), and
Division of Preventive Medicine (Y.I.K.), University of Alabama at Birmingham,
1720 2nd Ave S, THT 422, Birmingham, AL 35294; Roy J. Carver Department
of Biomedical Engineering (J.M.R.) and Department of Radiology (E.A.H., A.M.),
University of Iowa, Iowa City, Iowa; Departments of Biostatistics and
Bioinformatics (C.G.W.), Radiology (S.M.H.), and Medicine (E.A.R.), National
Jewish Health, Denver, Colo; and Channing Division of Network Medicine and the
Division of Pulmonary and Critical Care Medicine, Brigham and Women's
Hospital, Harvard Medical School, Boston, Mass (D.L.D.)
| | - Amin Motahari
- From the UAB Lung Imaging Lab (S.P.B., S.B., A.N.), UAB Lung Health
Center (S.P.B., S.B.), Division of Pulmonary, Allergy and Critical Care Medicine
(S.P.B., S.B.), Department of Electrical and Computer Engineering (A.N.), and
Division of Preventive Medicine (Y.I.K.), University of Alabama at Birmingham,
1720 2nd Ave S, THT 422, Birmingham, AL 35294; Roy J. Carver Department
of Biomedical Engineering (J.M.R.) and Department of Radiology (E.A.H., A.M.),
University of Iowa, Iowa City, Iowa; Departments of Biostatistics and
Bioinformatics (C.G.W.), Radiology (S.M.H.), and Medicine (E.A.R.), National
Jewish Health, Denver, Colo; and Channing Division of Network Medicine and the
Division of Pulmonary and Critical Care Medicine, Brigham and Women's
Hospital, Harvard Medical School, Boston, Mass (D.L.D.)
| | - Carla G. Wilson
- From the UAB Lung Imaging Lab (S.P.B., S.B., A.N.), UAB Lung Health
Center (S.P.B., S.B.), Division of Pulmonary, Allergy and Critical Care Medicine
(S.P.B., S.B.), Department of Electrical and Computer Engineering (A.N.), and
Division of Preventive Medicine (Y.I.K.), University of Alabama at Birmingham,
1720 2nd Ave S, THT 422, Birmingham, AL 35294; Roy J. Carver Department
of Biomedical Engineering (J.M.R.) and Department of Radiology (E.A.H., A.M.),
University of Iowa, Iowa City, Iowa; Departments of Biostatistics and
Bioinformatics (C.G.W.), Radiology (S.M.H.), and Medicine (E.A.R.), National
Jewish Health, Denver, Colo; and Channing Division of Network Medicine and the
Division of Pulmonary and Critical Care Medicine, Brigham and Women's
Hospital, Harvard Medical School, Boston, Mass (D.L.D.)
| | - Stephen M. Humphries
- From the UAB Lung Imaging Lab (S.P.B., S.B., A.N.), UAB Lung Health
Center (S.P.B., S.B.), Division of Pulmonary, Allergy and Critical Care Medicine
(S.P.B., S.B.), Department of Electrical and Computer Engineering (A.N.), and
Division of Preventive Medicine (Y.I.K.), University of Alabama at Birmingham,
1720 2nd Ave S, THT 422, Birmingham, AL 35294; Roy J. Carver Department
of Biomedical Engineering (J.M.R.) and Department of Radiology (E.A.H., A.M.),
University of Iowa, Iowa City, Iowa; Departments of Biostatistics and
Bioinformatics (C.G.W.), Radiology (S.M.H.), and Medicine (E.A.R.), National
Jewish Health, Denver, Colo; and Channing Division of Network Medicine and the
Division of Pulmonary and Critical Care Medicine, Brigham and Women's
Hospital, Harvard Medical School, Boston, Mass (D.L.D.)
| | - Elizabeth A. Regan
- From the UAB Lung Imaging Lab (S.P.B., S.B., A.N.), UAB Lung Health
Center (S.P.B., S.B.), Division of Pulmonary, Allergy and Critical Care Medicine
(S.P.B., S.B.), Department of Electrical and Computer Engineering (A.N.), and
Division of Preventive Medicine (Y.I.K.), University of Alabama at Birmingham,
1720 2nd Ave S, THT 422, Birmingham, AL 35294; Roy J. Carver Department
of Biomedical Engineering (J.M.R.) and Department of Radiology (E.A.H., A.M.),
University of Iowa, Iowa City, Iowa; Departments of Biostatistics and
Bioinformatics (C.G.W.), Radiology (S.M.H.), and Medicine (E.A.R.), National
Jewish Health, Denver, Colo; and Channing Division of Network Medicine and the
Division of Pulmonary and Critical Care Medicine, Brigham and Women's
Hospital, Harvard Medical School, Boston, Mass (D.L.D.)
| | - Dawn L. DeMeo
- From the UAB Lung Imaging Lab (S.P.B., S.B., A.N.), UAB Lung Health
Center (S.P.B., S.B.), Division of Pulmonary, Allergy and Critical Care Medicine
(S.P.B., S.B.), Department of Electrical and Computer Engineering (A.N.), and
Division of Preventive Medicine (Y.I.K.), University of Alabama at Birmingham,
1720 2nd Ave S, THT 422, Birmingham, AL 35294; Roy J. Carver Department
of Biomedical Engineering (J.M.R.) and Department of Radiology (E.A.H., A.M.),
University of Iowa, Iowa City, Iowa; Departments of Biostatistics and
Bioinformatics (C.G.W.), Radiology (S.M.H.), and Medicine (E.A.R.), National
Jewish Health, Denver, Colo; and Channing Division of Network Medicine and the
Division of Pulmonary and Critical Care Medicine, Brigham and Women's
Hospital, Harvard Medical School, Boston, Mass (D.L.D.)
| |
Collapse
|
39
|
Muramatsu S, Sato K. [Quantitative Evaluation of Airway Lesions in Chronic Obstructive Pulmonary Disease by Applying Deep Learning Reconstruction to Ultra-high-resolution CT Images: Correlation between Wall Area Percentage and Forced Expiratory Volume in One Second Percentage]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2022; 78:1167-1175. [PMID: 35989253 DOI: 10.6009/jjrt.2022-1271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PURPOSE Using ultra-high-resolution images reconstructed with the Advanced intelligent Clear-IQ Engine (AiCE) lung to measure wall area percentage (WA%), we demonstrated that WA% measured in more distal bronchus has a stronger correlation with respiratory function (FEV1%). Furthermore, we also demonstrated that WA% measured from images with the higher spatial resolution has a stronger correlation with FEV1%. METHODS The modulation transfer function (MTF) and noise power spectrum (NPS) of the ultra-high-resolution images reconstructed by the AiCE body and the AiCE lung were compared. In addition, WA% from the first- to seventh-generation bronchus was measured for B1 and B10 in the right lung from clinical images obtained with the two reconstruction methods, and the correlation coefficients with FEV1% were evaluated. RESULTS The MTF was more superior for the AiCE lung than for the AiCE body, and the NPS was lower for the AiCE lung than for the AiCE body in the low-frequency region. The correlation between WA% and FEV1% was slightly stronger in the AiCE lung than in the AiCE body. CONCLUSION This study showed that WA% measured from the 7th-generation bronchus using ultra-high-resolution images reconstructed with the AiCE lung strengthens the correlation with FEV1%. Furthermore, the higher the spatial resolution of the measurement images, the stronger the correlation between WA% and FEV1%.
Collapse
Affiliation(s)
| | - Kazuhiro Sato
- Faculty of Health Sciences, Hokkaido University of Science
| |
Collapse
|
40
|
Park J, Kim EK, Lee SH, Kim MA, Kim JH, Lee SM, Lee JS, Oh YM, Lee SD, Lee JH. Phenotyping COPD Patients with Emphysema Distribution Using Quantitative CT Measurement; More Severe Airway Involvement in Lower Dominant Emphysema. Int J Chron Obstruct Pulmon Dis 2022; 17:2013-2025. [PMID: 36072609 PMCID: PMC9441583 DOI: 10.2147/copd.s362906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Jisoo Park
- Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Eun-Kyung Kim
- Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Se Hee Lee
- Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Mi-Ae Kim
- Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jung-Hyun Kim
- Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Sang Min Lee
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Seung Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Do Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji-Hyun Lee
- Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
- Correspondence: Ji-Hyun Lee, Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, 59, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea, Tel +82-31-780-5205, Fax +82-31-780-2992, Email
| | | |
Collapse
|
41
|
Moslemi A, Makimoto K, Tan WC, Bourbeau J, Hogg JC, Coxson HO, Kirby M. Quantitative CT Lung Imaging and Machine Learning Improves Prediction of Emergency Room Visits and Hospitalizations in COPD. Acad Radiol 2022; 30:707-716. [PMID: 35690537 DOI: 10.1016/j.acra.2022.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/15/2022] [Indexed: 12/12/2022]
Abstract
RATIONALE Predicting increased risk of future healthcare utilization in chronic obstructive pulmonary disease (COPD) patients is an important goal for improving patient management. OBJECTIVE Our objective was to determine the importance of computed tomography (CT) lung imaging measurements relative to other demographic and clinical measurements for predicting future health services use with machine learning in COPD. MATERIALS AND METHODS In this retrospective study, lung function measurements and chest CT images were acquired from Canadian Cohort of Obstructive Lung Disease study participants from 2010 to 2017 (https://clinicaltrials.gov, NCT00920348). Up to two follow-up visits (1.5- and 3-year follow-up) were performed and participants were asked for details related to healthcare utilization. Healthcare utilization was defined as any COPD hospitalization or emergency room visit due to respiratory problems in the 12 months prior to the follow-up visits. CT analysis was performed (VIDA Diagnostics Inc.); a total of 108 CT quantitative emphysema, airway and vascular measurements were investigated. A hybrid feature selection method with support vector machine classifier was used to predict healthcare utilization. Performance was determined using accuracy, F1-measure and area under the receiver operating characteristic curve (AUC) and Matthews's correlation coefficient (MC). RESULTS Of the 527 COPD participants evaluated, 179 (35%) used healthcare services at follow-up. There were no significant differences between the participants with or without healthcare utilization at follow-up for age (p = 0.50), sex (p = 0.44), BMI (p = 0.05) or pack-years (p = 0.76). The accuracy for predicting subsequent healthcare utilization was 80% ± 3% (F1-measure = 74%, AUC = 0.80, MC = 0.6) when all measurements were considered, 76% ± 6% (F1-measure = 72%, AUC = 0.77, MC = 0.55) for CT measurements alone and 65% ± 5% (F1-measure = 60%, AUC = 0.67, MC = 0.34) for demographic and lung function measurements alone. CONCLUSION The combination of CT lung imaging and conventional measurements leads to greater prediction accuracy of subsequent health services use than conventional measurements alone, and may provide needed prognostic information for patients suffering from COPD.
Collapse
Affiliation(s)
- Amir Moslemi
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Kalysta Makimoto
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Wan C Tan
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Jean Bourbeau
- Montreal Chest Institute of the Royal Victoria Hospital, McGill University Health Centre, Montreal, QC, Canada; Respiratory Epidemiology and Clinical Research Unit, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - James C Hogg
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Harvey O Coxson
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Miranda Kirby
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada; Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
42
|
Tang M, Elicker BM, Henry T, Gierada DS, Schiebler ML, Huang BK, Peters MC, Castro M, Hoffman EA, Fain SB, Ash SY, Choi J, Hall C, Phillips BR, Mauger DT, Denlinger LC, Jarjour NN, Israel E, Phipatanakul W, Levy BD, Wenzel SE, Bleecker ER, Woodruff PG, Fahy JV, Dunican EM. Mucus Plugs Persist in Asthma, and Changes in Mucus Plugs Associate with Changes in Airflow over Time. Am J Respir Crit Care Med 2022; 205:1036-1045. [PMID: 35104436 PMCID: PMC9851493 DOI: 10.1164/rccm.202110-2265oc] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/31/2022] [Indexed: 02/07/2023] Open
Abstract
Rationale: Cross-sectional analysis of mucus plugs in computed tomography (CT) lung scans in the Severe Asthma Research Program (SARP)-3 showed a high mucus plug phenotype. Objectives: To determine if mucus plugs are a persistent asthma phenotype and if changes in mucus plugs over time associate with changes in lung function. Methods: In a longitudinal analysis of baseline and Year 3 CT lung scans in SARP-3 participants, radiologists generated mucus plug scores to assess mucus plug persistence over time. Changes in mucus plug score were analyzed in relation to changes in lung function and CT air trapping measures. Measurements and Main Results: In 164 participants, the mean (range) mucus plug score was similar at baseline and Year 3 (3.4 [0-20] vs. 3.8 [0-20]). Participants and bronchopulmonary segments with a baseline plug were more likely to have plugs at Year 3 than those without baseline plugs (risk ratio, 2.8; 95% confidence interval [CI], 2.0-4.1; P < 0.001; and risk ratio, 5.0; 95% CI, 4.5-5.6; P < 0.001, respectively). The change in mucus plug score from baseline to Year 3 was significantly negatively correlated with change in FEV1% predicted (rp = -0.35; P < 0.001) and with changes in CT air trapping measures (all P values < 0.05). Conclusions: Mucus plugs identify a persistent asthma phenotype, and susceptibility to mucus plugs occurs at the subject and the bronchopulmonary segment level. The association between change in mucus plug score and change in airflow over time supports a causal role for mucus plugs in mechanisms of airflow obstruction in asthma.
Collapse
Affiliation(s)
- Monica Tang
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine
| | | | - Travis Henry
- Duke Radiology, Department of Radiology, Duke University, Durham, North Carolina
| | - David S. Gierada
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Mark L. Schiebler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Brendan K. Huang
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine
| | - Michael C. Peters
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine
| | - Mario Castro
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas School of Medicine, Kansas City, Kansas
| | - Eric A. Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa
| | - Sean B. Fain
- Department of Radiology, University of Iowa, Iowa City, Iowa
| | - Samuel Y. Ash
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Jiwoong Choi
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas School of Medicine, Kansas City, Kansas
| | - Chase Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas School of Medicine, Kansas City, Kansas
| | - Brenda R. Phillips
- Center for Biostatistics and Epidemiology, Pennsylvania State University School of Medicine, Harrisburg, Pennsylvania
| | - David T. Mauger
- Division of Biostatistics and Bioinformatics, Penn State College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania
| | - Loren C. Denlinger
- Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Nizar N. Jarjour
- Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Elliot Israel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Wanda Phipatanakul
- Asthma, Allergy, Dermatology, Rheumatology, and Immunology, Boston Children’s Hospital, Boston, Massachusetts
| | - Bruce D. Levy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Sally E. Wenzel
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eugene R. Bleecker
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Prescott G. Woodruff
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - John V. Fahy
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - Eleanor M. Dunican
- Education and Research Centre, St. Vincent’s University Hospital, Dublin, Ireland; and
- UCD School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
43
|
Moslemi A, Kontogianni K, Brock J, Wood S, Herth F, Kirby M. Differentiating COPD and Asthma using Quantitative CT Imaging and Machine Learning. Eur Respir J 2022; 60:13993003.03078-2021. [PMID: 35210316 DOI: 10.1183/13993003.03078-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/04/2022] [Indexed: 11/05/2022]
Abstract
There are similarities and differences between chronic obstructive pulmonary disease (COPD) and asthma patients in terms of computed tomography (CT) disease-related features. Our objective was to determine the optimal subset of CT imaging features for differentiating COPD and asthma using machine learning.COPD and asthma patients were recruited from Heidelberg University Hospital. CT was acquired and 93 features were extracted (VIDA Diagnostics): percentage of low-attenuating-areas below -950HU (LAA950), LAA950 hole count, estimated airway-wall-thickness for a 10 mm internal perimeter airway (Pi10), total-airway-count (TAC), as well as inner/outer perimeter/areas and wall thickness for each of five segmental airways, and the average of those five airways. Hybrid feature selection was used to select the optimum number of features, and support vector machine was used to classify COPD and asthma.Ninety-five participants were included (n=48 COPD; n=47 asthma); there were no differences between COPD and asthma for age (p=0.25) or FEV1 (p=0.31). In a model including all CT features, the accuracy and F1-score was 80% and 81%, respectively. The top features were: LAA950, LAA950 hole count, average outer and inner airway perimeter, outer and inner airway area RB1, and TAC. In the model with only airway features, the accuracy and F1-score were 66% and 68%, respectively. The top features were: inner area RB1, wall thickness RB1, outer area LB1, TAC LB10, average outer/inner perimeter, Pi10, and TAC.In conclusions, COPD and asthma can be differentiated using machine learning with moderate-high accuracy by a subset of only 7 CT features.
Collapse
Affiliation(s)
- Amir Moslemi
- Department of Physics, Ryerson University, Toronto, ON, Canada.,Co-first authors
| | - Konstantina Kontogianni
- Department of Pneumology and Critical Care Medicine, Thoraxklinik and Translational Lung Research Center (TLRCH), University of Heidelberg, Germany.,Co-first authors
| | - Judith Brock
- Department of Pneumology and Critical Care Medicine, Thoraxklinik and Translational Lung Research Center (TLRCH), University of Heidelberg, Germany
| | | | - Felix Herth
- Department of Pneumology and Critical Care Medicine, Thoraxklinik and Translational Lung Research Center (TLRCH), University of Heidelberg, Germany .,Co-senior authors
| | - Miranda Kirby
- Department of Physics, Ryerson University, Toronto, ON, Canada.,Co-senior authors
| |
Collapse
|
44
|
Dudurych I, Muiser S, McVeigh N, Kerstjens HAM, van den Berge M, de Bruijne M, Vliegenthart R. Bronchial wall parameters on CT in healthy never-smoking, smoking, COPD, and asthma populations: a systematic review and meta-analysis. Eur Radiol 2022; 32:5308-5318. [PMID: 35192013 PMCID: PMC9279249 DOI: 10.1007/s00330-022-08600-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/14/2021] [Accepted: 01/29/2022] [Indexed: 11/25/2022]
Abstract
Objective Research on computed tomography (CT) bronchial parameter measurements shows that there are conflicting results on the values for bronchial parameters in the never-smoking, smoking, asthma, and chronic obstructive pulmonary disease (COPD) populations. This review assesses the current CT methods for obtaining bronchial wall parameters and their comparison between populations. Methods A systematic review of MEDLINE and Embase was conducted following PRISMA guidelines (last search date 25th October 2021). Methodology data was collected and summarised. Values of percentage wall area (WA%), wall thickness (WT), summary airway measure (Pi10), and luminal area (Ai) were pooled and compared between populations. Results A total of 169 articles were included for methodologic review; 66 of these were included for meta-analysis. Most measurements were obtained from multiplanar reconstructions of segmented airways (93 of 169 articles), using various tools and algorithms; third generation airways in the upper and lower lobes were most frequently studied. COPD (12,746) and smoking (15,092) populations were largest across studies and mostly consisted of men (median 64.4%, IQR 61.5 – 66.1%). There were significant differences between populations; the largest WA% was found in COPD (mean SD 62.93 ± 7.41%, n = 6,045), and the asthma population had the largest Pi10 (4.03 ± 0.27 mm, n = 442). Ai normalised to body surface area (Ai/BSA) (12.46 ± 4 mm2, n = 134) was largest in the never-smoking population. Conclusions Studies on CT-derived bronchial parameter measurements are heterogenous in methodology and population, resulting in challenges to compare outcomes between studies. Significant differences between populations exist for several parameters, most notably in the wall area percentage; however, there is a large overlap in their ranges. Key Points • Diverse methodology in measuring airways contributes to overlap in ranges of bronchial parameters among the never-smoking, smoking, COPD, and asthma populations. • The combined number of never-smoking participants in studies is low, limiting insight into this population and the impact of participant characteristics on bronchial parameters. • Wall area percent of the right upper lobe apical segment is the most studied (87 articles) and differentiates all except smoking vs asthma populations. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-022-08600-1.
Collapse
Affiliation(s)
- Ivan Dudurych
- Department of Radiology, EB49, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9700RB, Groningen, The Netherlands
| | - Susan Muiser
- Department of Pulmonology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Niall McVeigh
- Department of Cardiothoracic Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Huib A M Kerstjens
- Department of Pulmonology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Department of Pulmonology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Marleen de Bruijne
- Department of Radiology and Nuclear Medicine, Biomedical Imaging Group Rotterdam, Erasmus MC, Rotterdam, The Netherlands
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Rozemarijn Vliegenthart
- Department of Radiology, EB49, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9700RB, Groningen, The Netherlands.
| |
Collapse
|
45
|
Muramatsu S, Sato K, Yamashiro T, Doi K. Quantitative measurements of emphysema in ultra-high resolution computed tomography using model-based iterative reconstruction in comparison to that using hybrid iterative reconstruction. Phys Eng Sci Med 2022; 45:115-124. [PMID: 35023075 DOI: 10.1007/s13246-021-01091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
The percentage of low attenuation volume ratio (LAVR), which is measured using computed tomography (CT), is an index of the severity of emphysema. For LAVR evaluation, ultra-high-resolution (U-HR) CT images are useful. To improve the image quality of U-HRCT, iterative reconstruction is used. There are two types of iterative reconstruction: hybrid iterative reconstruction (HIR) and model-based iterative reconstruction (MBIR). In this study, we physically and clinically evaluated U-HR images reconstructed with HIR and MBIR, and demonstrated the usefulness of U-HR images with MBIR for quantitative measurements of emphysema. Both images were reconstructed with a slice thickness of 0.25 mm and an image matrix size of 1024 × 1024 pixels. For physical evaluation, the modulation transfer function (MTF) and noise power spectrum (NPS) of HIR and MBIR were compared. For clinical evaluation, LAVR calculated from HIR and MBIR were compared using the Wilcoxon matched-pairs signed-rank test. In addition, the correlation between LAVR and forced expiratory volume in one second (FEV1%) was evaluated using the Spearman rank correlation test. The MTFs of HIR and MBIR were comparable. The NPS of MBIR was lower than that of HIR. The mean LAVR values calculated from HIR and MBIR were 19.5 ± 12.6% and 20.4 ± 11.7%, respectively (p = 0.84). The correlation coefficients between LAVR and FEV1% that were taken from HIR and MBIR were 0.64 and 0.74, respectively (p < 0.01). MBIR is more useful than HIR for the quantitative measurements of emphysema with U-HR images.
Collapse
Affiliation(s)
- Shun Muramatsu
- Department of Radiology, Ohara General Hospital, 6-1 Ue-machi, Fukushima-shi, Fukushima, 960-8611, Japan.
| | - Kazuhiro Sato
- Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Tsuneo Yamashiro
- Department of Diagnostic Radiology, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Kunio Doi
- Department of Radiology, University of Chicago, 5841 Maryland Av, Chicago, IL, 60637, USA.,Gunma Prefectural College of Health Sciences, 323-1, Kamioki-machi, Maebashi-shi, Gunma-ken, 371-0052, Japan
| |
Collapse
|
46
|
Tanabe N, Hirai T. Recent advances in airway imaging using micro-computed tomography and computed tomography for chronic obstructive pulmonary disease. Korean J Intern Med 2021; 36:1294-1304. [PMID: 34607419 PMCID: PMC8588974 DOI: 10.3904/kjim.2021.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex lung disease characterized by a combination of airway disease and emphysema. Emphysema is classified as centrilobular emphysema (CLE), paraseptal emphysema (PSE), or panlobular emphysema (PLE), and airway disease extends from the respiratory, terminal, and preterminal bronchioles to the central segmental airways. Although clinical computed tomography (CT) cannot be used to visualize the small airways, micro-CT has shown that terminal bronchiole disease is more severe in CLE than in PSE and PLE, and micro-CT findings suggest that the loss and luminal narrowing of terminal bronchioles is an early pathological change in CLE. Furthermore, the introduction of ultra-high-resolution CT has enabled direct evaluation of the proximal small (1 to 2-mm diameter) airways, and new CT analytical methods have enabled estimation of small airway disease and prediction of future COPD onset and lung function decline in smokers with and without COPD. This review discusses the literature on micro-CT and the technical advancements in clinical CT analysis for COPD. Hopefully, novel micro-CT findings will improve our understanding of the distinct pathogeneses of the emphysema subtypes to enable exploration of new therapeutic targets, and sophisticated CT imaging methods will be integrated into clinical practice to achieve more personalized management.
Collapse
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
47
|
Wallat EM, Wuschner AE, Flakus MJ, Christensen GE, Reinhardt JM, Shanmuganayagam D, Bayouth JE. Radiation-induced airway changes and downstream ventilation decline in a swine model. Biomed Phys Eng Express 2021; 7:10.1088/2057-1976/ac3197. [PMID: 34670195 PMCID: PMC8785227 DOI: 10.1088/2057-1976/ac3197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/20/2021] [Indexed: 11/11/2022]
Abstract
Purpose.To investigate indirect radiation-induced changes in airways as precursors to atelectasis post radiation therapy (RT).Methods.Three Wisconsin Miniature Swine (WMSTM) underwent a research course of 60 Gy in 5 fractions delivered to a targeted airway/vessel in the inferior left lung. The right lung received a max point dose <5 Gy. Airway segmentation was performed on the pre- and three months post-RT maximum inhale phase of the four-dimensional (4D) computed tomography (CT) scans. Changes in luminal area (Ai) and square root of wall area (WA) for each airway were investigated. Changes in ventilation were assessed using the Jacobian ratio and were measured in three different regions: the inferior left lung <5 Gy (ILL), the superior left lung <5 Gy (SLL), and the contralateral right lung <5 Gy (RL).Results.Airways (n = 25) in the right lung for all swine showed no significant changes (p = 0.48) in Ai post-RT compared to pre-RT. Airways (n = 28) in the left lung of all swine were found to have a significant decrease (p < 0.001) in Ai post-RT compared to pre-RT, correlated (Pearson R = -0.97) with airway dose. Additionally,WAdecreased significantly (p < 0.001) with airway dose. Lastly, the Jacobian ratio of the ILL (0.883) was lower than that of the SLL (0.932) and the RL (0.955).Conclusions.This work shows that for the swine analyzed, there were significant correlations between Ai andWAchange with radiation dose. Additionally, there was a decrease in lung function in the regions of the lung supplied by the irradiated airways compared to the regions supplied by unirradiated airways. These results support the hypothesis that airway dose should be considered during treatment planning in order to potentially preserve functional lung and reduce lung toxicities.
Collapse
Affiliation(s)
- Eric M Wallat
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, United States of America
| | - Antonia E Wuschner
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, United States of America
| | - Mattison J Flakus
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, United States of America
| | - Gary E Christensen
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242, United States of America
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, United States of America
| | - Joseph M Reinhardt
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, United States of America
- Department of Radiology, University of Iowa, Iowa City, IA 52242, United States of America
| | - Dhanansayan Shanmuganayagam
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53705, United States of America
| | - John E Bayouth
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, United States of America
| |
Collapse
|
48
|
Ibaraki T, Tomoda K, Fujioka N, Sakaguchi K, Fujita Y, Yamamoto Y, Hontsu S, Yamauchi M, Yoshikawa M, Tanabe N, Tanimura K, Sato S, Saeki K, Muro S. Fractal dimension in CT low attenuation areas is predictive of long-term oxygen therapy initiation in COPD patients: Results from two observational cohort studies. Respir Investig 2021; 60:137-145. [PMID: 34583896 DOI: 10.1016/j.resinv.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Some chronic obstructive pulmonary disease (COPD) patients develop hypoxemia with disease progression, with some even requiring long-term oxygen therapy (LTOT). Lung function, especially diffusing capacity, and the annual decline in PaO2, are reported to be predictive factors of chronic respiratory failure. However, the association between lung morphometry evaluated using computed tomography (CT) images and LTOT initiation is unknown. METHODS We retrospectively evaluated the relationship between clinical indices, including pulmonary function, body mass index (BMI), and CT parameters, at baseline and LTOT initiation in two prospective COPD cohorts. In the Nara Medical University cohort (n = 76), the low attenuation area (LAA) and its fractal dimension (fractal D) were adapted as the indices for parenchymal destruction in CT images. The association between these CT measurements and LTOT initiation was replicated in the Kyoto University cohort (n = 130). RESULTS In the Nara Medical University cohort, lower BMI (hazard ratio [HR]:0.70, p = 0.006), lower % diffusing capacity (%DLCO) (HR: 0.92, p = 0.006), lower %DLCO/VA (HR, 0.90, p = 0.008), higher RV/TLC (HR, 1.26, p = 0.012), higher LAA% (HR: 1.18, p = 0.001), and lower fractal D (HR: 3.27 × 10-8, p < 0.001) were associated with LTOT initiation. Multivariate analysis in the Kyoto University cohort confirmed that lower %DLCO and lower fractal D were independently associated with LTOT initiation, whereas LAA% was not. CONCLUSION Fractal D, which is the index for morphometric complexity of LAA in CT analysis, is predictive of LTOT initiation in COPD patients.
Collapse
Affiliation(s)
- Takahiro Ibaraki
- Department of Respiratory Medicine, Nara Medical University, Nara, Japan; Saiseikai Suita Hospital, Osaka, Japan
| | - Koich Tomoda
- Department of General Internal Medicine 1, Kawasaki Medical School, Okayama, Japan
| | - Nobuhiro Fujioka
- Department of Respiratory Medicine, Nara Medical University, Nara, Japan
| | - Kazuhiro Sakaguchi
- Department of Respiratory Medicine, Nara Medical University, Nara, Japan
| | - Yukio Fujita
- Department of Respiratory Medicine, Nara Medical University, Nara, Japan
| | - Yoshifumi Yamamoto
- Department of Respiratory Medicine, Nara Medical University, Nara, Japan
| | - Shigeto Hontsu
- Department of Respiratory Medicine, Nara Medical University, Nara, Japan
| | - Motoo Yamauchi
- Department of Respiratory Medicine, Nara Medical University, Nara, Japan
| | - Masanori Yoshikawa
- Department of Respiratory Medicine, Nara Medical University, Nara, Japan
| | - Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuya Tanimura
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keigo Saeki
- Department of Epidemiology, Nara Medical University, Nara, Japan
| | - Shigeo Muro
- Department of Respiratory Medicine, Nara Medical University, Nara, Japan.
| |
Collapse
|
49
|
Gomes P, Bastos HNE, Carvalho A, Lobo A, Guimarães A, Rodrigues RS, Zin WA, Carvalho ARS. Pulmonary Emphysema Regional Distribution and Extent Assessed by Chest Computed Tomography Is Associated With Pulmonary Function Impairment in Patients With COPD. Front Med (Lausanne) 2021; 8:705184. [PMID: 34631729 PMCID: PMC8494782 DOI: 10.3389/fmed.2021.705184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/24/2021] [Indexed: 01/17/2023] Open
Abstract
Objective: This study aimed to evaluate how emphysema extent and its regional distribution quantified by chest CT are associated with clinical and functional severity in patients with chronic obstructive pulmonary disease (COPD). Methods/Design: Patients with a post-bronchodilator forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) < 0.70, without any other obstructive airway disease, who presented radiological evidence of emphysema on visual CT inspection were retrospectively enrolled. A Quantitative Lung Imaging (QUALI) system automatically quantified the volume of pulmonary emphysema and adjusted this volume to the measured (EmphCTLV) or predicted total lung volume (TLV) (EmphPLV) and assessed its regional distribution based on an artificial neural network (ANN) trained for this purpose. Additionally, the percentage of lung volume occupied by low-attenuation areas (LAA) was computed by dividing the total volume of regions with attenuation lower or equal to -950 Hounsfield units (HU) by the predicted [LAA (%PLV)] or measured CT lung volume [LAA (%CTLV)]. The LAA was then compared with the QUALI emphysema estimations. The association between emphysema extension and its regional distribution with pulmonary function impairment was then assessed. Results: In this study, 86 patients fulfilled the inclusion criteria. Both EmphCTLV and EmphPLV were significantly lower than the LAA indices independently of emphysema severity. CT-derived TLV significantly increased with emphysema severity (from 6,143 ± 1,295 up to 7,659 ± 1,264 ml from mild to very severe emphysema, p < 0.005) and thus, both EmphCTLV and LAA significantly underestimated emphysema extent when compared with those values adjusted to the predicted lung volume. All CT-derived emphysema indices presented moderate to strong correlations with residual volume (RV) (with correlations ranging from 0.61 to 0.66), total lung capacity (TLC) (from 0.51 to 0.59), and FEV1 (~0.6) and diffusing capacity for carbon monoxide DLCO (~0.6). The values of FEV1 and DLCO were significantly lower, and RV (p < 0.001) and TLC (p < 0.001) were significantly higher with the increasing emphysema extent and when emphysematous areas homogeneously affected the lungs. Conclusions: Emphysema volume must be referred to the predicted and not to the measured lung volume when assessing the CT-derived emphysema extension. Pulmonary function impairment was greater in patients with higher emphysema volumes and with a more homogeneous emphysema distribution. Further studies are still necessary to assess the significance of CTpLV in the clinical and research fields.
Collapse
Affiliation(s)
- Plácido Gomes
- Faculty of Medicine, Universidade do Porto, Porto, Portugal
| | - Hélder Novais e Bastos
- Faculty of Medicine, Universidade do Porto, Porto, Portugal
- Serviço de Pneumologia, Centro Hospitalar de São João EPE, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - André Carvalho
- Faculty of Medicine, Universidade do Porto, Porto, Portugal
- Serviço de Radiologia, Centro Hospitalar de São João EPE, Porto, Portugal
| | - André Lobo
- Centro Hospitalar Vila Nova de Gaia/Espinho, Porto, Portugal
| | - Alan Guimarães
- Laboratory of Pulmonary Engineering, Biomedical Engineering Program, Alberto Luiz Coimbra Institute of Post-Graduation and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosana Souza Rodrigues
- Department of Radiology, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- IDOR–D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Walter Araujo Zin
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alysson Roncally S. Carvalho
- Faculty of Medicine, Universidade do Porto, Porto, Portugal
- Laboratory of Pulmonary Engineering, Biomedical Engineering Program, Alberto Luiz Coimbra Institute of Post-Graduation and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Cardiovascular R&D Center, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
50
|
Zhao D, Abbasi A, Casaburi R, Adami A, Tiller NB, Yuan W, Yee C, Jendzjowsky NG, MacDonald DM, Kunisaki KM, Stringer WW, Porszasz J, Make BJ, Bowler RP, Rossiter HB. Identifying a Heart Rate Recovery Criterion After a 6-Minute Walk Test in COPD. Int J Chron Obstruct Pulmon Dis 2021; 16:2545-2560. [PMID: 34511898 PMCID: PMC8427685 DOI: 10.2147/copd.s311572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Slow heart rate recovery (HRR) after exercise is associated with autonomic dysfunction and increased mortality. What HRR criterion at 1-minute after a 6-minute walk test (6MWT) best defines pulmonary impairment?. STUDY DESIGN AND METHODS A total of 5008 phase 2 COPDGene (NCT00608764) participants with smoking history were included. A total of 2127 had COPD and, of these, 385 were followed-up 5-years later. Lung surgery, transplant, bronchiectasis, atrial fibrillation, heart failure and pacemakers were exclusionary. HR was measured from pulse oximetry at end-walk and after 1-min seated recovery. A receiver operator characteristic (ROC) identified optimal HRR cut-off. Generalized linear regression determined HRR association with spirometry, chest CT, symptoms and exacerbations. RESULTS HRR after 6MWT (bt/min) was categorized in quintiles: ≤5 (23.0% of participants), 6-10 (20.7%), 11-15 (18.9%), 16-22 (18.5%) and ≥23 (18.9%). Compared to HRR≤5, HRR≥11 was associated with (p<0.001): lower pre-walk HR and 1-min post HR; greater end-walk HR; greater 6MWD; greater FEV1%pred; lower airway wall area and wall thickness. HRR was positively associated with FEV1%pred and negatively associated with airway wall thickness. An optimal HRR ≤10 bt/min yielded an area under the ROC curve of 0.62 (95% CI 0.58-0.66) for identifying FEV1<30%pred. HRR≥11 bt/min was the lowest HRR associated with consistently less impairment in 6MWT, spirometry and CT variables. In COPD, HRR≤10 bt/min was associated with (p<0.001): ≥2 exacerbations in the previous year (OR=1.76[1.33-2.34]); CAT≥10 (OR=1.42[1.18-1.71]); mMRC≥2 (OR=1.42[1.19-1.69]); GOLD 4 (OR=1.98[1.44-2.73]) and GOLD D (OR=1.51[1.18-1.95]). HRR≤10 bt/min was predicted COPD exacerbations at 5-year follow-up (RR=1.83[1.07-3.12], P=0.027). CONCLUSION HRR≤10 bt/min after 6MWT in COPD is associated with more severe expiratory flow limitation, airway wall thickening, worse dyspnoea and quality of life, and future exacerbations, suggesting that an abnormal HRR≤10 bt/min after a 6MWT may be used in a comprehensive assessment in COPD for risk of severity, symptoms and future exacerbations.
Collapse
Affiliation(s)
- Dongxing Zhao
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Asghar Abbasi
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Richard Casaburi
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alessandra Adami
- Department of Kinesiology, University of Rhode Island, Kingston, RI, USA
| | - Nicholas B Tiller
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Wei Yuan
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Respiratory Medicine Department, Beijing Friendship Hospital Affiliated of Capital Medical University, Beijing, 100050, People’s Republic of China
| | | | - Nicholas G Jendzjowsky
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - David M MacDonald
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Ken M Kunisaki
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - William W Stringer
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Janos Porszasz
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | | | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - On behalf of the COPDGene Investigators
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People’s Republic of China
- Department of Kinesiology, University of Rhode Island, Kingston, RI, USA
- Respiratory Medicine Department, Beijing Friendship Hospital Affiliated of Capital Medical University, Beijing, 100050, People’s Republic of China
- MemorialCare Long Beach Medical Center, Long Beach, CA, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- National Jewish Health, Denver, CO, USA
| |
Collapse
|