1
|
Fang X, Mo C, Zheng L, Gao F, Xue F, Zheng X. Transfusion-Related Acute Lung Injury: from Mechanistic Insights to Therapeutic Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413364. [PMID: 39836498 PMCID: PMC11923913 DOI: 10.1002/advs.202413364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/08/2024] [Indexed: 01/23/2025]
Abstract
Transfusion-related acute lung injury (TRALI) is a potentially lethal complication of blood transfusions, characterized by the rapid onset of pulmonary edema and hypoxemia within six hours post-transfusion. As one of the primary causes of transfusion-related mortality, TRALI carries a significant mortality rate of 6-12%. However, effective treatment strategies for TRALI are currently lacking, underscoring the urgent need for a comprehensive and in-depth understanding of its pathogenesis. This comprehensive review provides an updated and detailed analysis of the current landscape of TRALI, including its clinical presentation, pathogenetic hypotheses, animal models, cellular mechanisms, signaling pathways, and potential therapeutic targets. By highlighting the critical roles of these pathways and therapies, this review offers valuable insights to inform the development of preventative and therapeutic strategies and to guide future research efforts aimed at addressing this life-threatening condition.
Collapse
Affiliation(s)
- Xiaobin Fang
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOEState Key Laboratory of BiotherapyWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Ling Zheng
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Fei Gao
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Fu‐Shan Xue
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Xiaochun Zheng
- Department of AnesthesiologyFujian Provincial HospitalShengli Clinical Medical College of Fujian Medical University & Fujian Emergency Medical CenterFujian Provincial Key Laboratory of Emergency MedicineFujian Provincial Key Laboratory of Critical MedicineFujian Provincial Co‐constructed Laboratory of “Belt and Road,”FuzhouFujianChina
| |
Collapse
|
2
|
Wu L, Zhang E, Tu Y, Chen Y, Wang C, Ren Y, Fang B. Inherent immunity and adaptive immunity: Mechanism and role in AECOPD. Innate Immun 2025; 31:17534259251322612. [PMID: 40017227 PMCID: PMC11869301 DOI: 10.1177/17534259251322612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 12/20/2024] [Accepted: 02/04/2025] [Indexed: 03/01/2025] Open
Abstract
Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is the leading cause of hospitalization and mortality in COPD patients. The occurrence of antibiotic resistance and the progression of non-infectious diseases contribute to poor patient outcomes. Thus, a comprehensive understanding of the mechanisms underlying AECOPD is essential for effective prevention. It is widely acknowledged that the immune system plays a fundamental role in pathogen clearance and the development of inflammation. Immune dysregulation, either due to deficiency or hyperactivity, has been implicated in AECOPD pathogenesis. Therefore, the purpose of this review is to investigate the possible mechanisms underlying dysregulated immune function and disease progression in COPD patients, specifically focusing on the innate and adaptive immune responses. The ultimate aim is to provide new insights for clinical prevention and treatment strategies targeting AECOPD.
Collapse
Affiliation(s)
- Linguangjin Wu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Emergency Department, Shanghai, China
| | - Erxin Zhang
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yadan Tu
- Chongqing Hospital of Traditional Chinese Medicine, Classic Department of Traditional Chinese Medicine, Chongqing, China
| | - Yong Chen
- Chongqing Hospital of Traditional Chinese Medicine, Classic Department of Traditional Chinese Medicine, Chongqing, China
| | - Chenghu Wang
- Chongqing Hospital of Traditional Chinese Medicine, Classic Department of Traditional Chinese Medicine, Chongqing, China
| | - Yi Ren
- Chongqing Hospital of Traditional Chinese Medicine, Classic Department of Traditional Chinese Medicine, Chongqing, China
| | - Bangjiang Fang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Emergency Department, Shanghai, China
| |
Collapse
|
3
|
Tie K, Aboueisha MA, Wang M, Caradonna DS, Brook CD. The impact of primary immunodeficiency on the severity of chronic rhinosinusitis. Am J Otolaryngol 2025; 46:104541. [PMID: 39647184 DOI: 10.1016/j.amjoto.2024.104541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Primary immunodeficiency has been associated with chronic rhinosinusitis (CRS). However, limited evidence exists on how primary immunodeficiencies affect the severity of CRS. OBJECTIVE To assess how primary IgA and/or IgG immunodeficiency affects the severity of CRS. METHODS Adult patients at the Beth Israel Deaconess Medical Center in Boston with IgA and/or IgG deficiency (group A) or normal IgA and IgG (group B) were queried between January 1, 2016 and December 31, 2022. Other immunodeficiencies were excluded. The groups were analyzed for prevalence of CRS based on ICD-10 codes. The groups were matched based on demographics and comorbidities. Patients with CRS were analyzed for ≥3 acute rhinosinusitis (ARS) episodes, mean lifetime ARS episodes, and mean ARS episodes per year (all with or without antibiotic treatment). Additional analyses included need for functional endoscopic sinus surgery (FESS) and mean lifetime FESS procedures based on CPT codes. A logistic regression analysis was then performed over the same parameters. RESULTS A total of 346 patients had IgA and/or IgG deficiency (group A), and 11,438 patients had normal IgA and IgG (group B). CRS prevalence was higher in group A than group B (12 % vs. 5 %; p < 0.001). Group A had more patients with ≥3 ARS episodes, higher mean lifetime ARS episodes, and ARS episodes per year, though none of these findings were statistically significant. There was no difference in need for FESS or mean lifetime FESS procedures. CONCLUSION CRS prevalence is higher in patients with IgA and/or IgG deficiency, but IgA and/or IgG immunodeficiency does not predispose patients to ARS episodes or predict need for FESS.
Collapse
Affiliation(s)
- Kevin Tie
- Department of Otolaryngology-Head & Neck Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mohamed A Aboueisha
- Department of Otolaryngology-Head & Neck Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Madelyn Wang
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - David S Caradonna
- Department of Otolaryngology-Head & Neck Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christopher D Brook
- Department of Otolaryngology-Head & Neck Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Xu J, Sun X, Cao Y, Zhu H, Yang W, Liu J, Guo J. Fractional exhaled nitric oxide in idiopathic pulmonary arterial hypertension and mixed connective tissue disease complicating pulmonary hypertension. BMC Pulm Med 2024; 24:199. [PMID: 38654208 PMCID: PMC11036718 DOI: 10.1186/s12890-024-03004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Fractional exhaled nitric oxide (FeNO) has been extensively studied in various causes of pulmonary hypertension (PH), but its utility as a noninvasive marker remains highly debated. The objective of our study was to assess FeNO levels in patients with idiopathic pulmonary arterial hypertension (IPAH) and mixed connective tissue disease complicating pulmonary hypertension (MCTD-PH), and to correlate them with respiratory functional data, disease severity, and cardiopulmonary function. METHODS We collected data from 54 patients diagnosed with IPAH and 78 patients diagnosed with MCTD-PH at the Shanghai Pulmonary Hospital Affiliated to Tongji University. Our data collection included measurements of brain natriuretic peptide (pro-BNP), cardiopulmonary exercise test (CPET), pulmonary function test (PFT), impulse oscillometry (IOS), and FeNO levels. Additionally, we assessed World Health Organization functional class (WHO-FC) of each patient. RESULTS (1) The fractional exhaled concentration of nitric oxide was notably higher in patients with IPAH compared to those with MCTD-PH. Furthermore, within the IPAH group, FeNO levels were found to be lower in cases of severe IPAH compared to mild IPAH (P = 0.024); (2) In severe pulmonary hypertension as per the WHO-FC classification, FeNO levels in IPAH exhibited negative correlations with FEV1/FVC (Forced Expiratory Velocity at one second /Forced Vital Capacity), MEF50% (Maximum Expiratory Flow at 50%), MEF25%, and MMEF75/25% (Maximum Mid-expiratory Flow between 75% and 25%), while in severe MCTD-PH, FeNO levels were negatively correlated with R20% (Resistance at 20 Hz); (3) ROC (Receiving operator characteristic curve) analysis indicated that the optimal cutoff value of FeNO for diagnosing severe IPAH was 23ppb; (4) While FeNO levels tend to be negatively correlated with peakPETO2(peak end-tidal partial pressure for oxygen) in severe IPAH, in mild IPAH they had a positive correlation to peakO2/Heart rate (HR). An interesting find was observed in cases of severe MCTD-PH, where FeNO levels were negatively correlated with HR and respiratory exchange ratio (RER), while positively correlated with O2/HR throughout the cardiopulmonary exercise test. CONCLUSION FeNO levels serve as a non-invasive measure of IPAH severity. Although FeNO levels may not assess the severity of MCTD-PH, their significant makes them a valuable tool when assessing severe MCTD-PH.
Collapse
Affiliation(s)
- Jianhua Xu
- Department of Pulmonary Function Test, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Xingxing Sun
- Department of Pulmonary Function Test, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Yuan Cao
- Department of Pulmonary Function Test, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Hanqing Zhu
- Department of Pulmonary Function Test, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Wenlan Yang
- Department of Pulmonary Function Test, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Jinming Liu
- Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Jian Guo
- Department of Pulmonary Function Test, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
5
|
Carlier FM, Detry B, Lecocq M, Collin AM, Planté-Bordeneuve T, Gérard L, Verleden SE, Delos M, Rondelet B, Janssens W, Ambroise J, Vanaudenaerde BM, Gohy S, Pilette C. The memory of airway epithelium damage in smokers and COPD patients. Life Sci Alliance 2024; 7:e202302341. [PMID: 38158219 PMCID: PMC10756916 DOI: 10.26508/lsa.202302341] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a devastating and irreversible lung disease, causes structural and functional defects in the bronchial epithelium, the (ir)reversibility of which remains unexplored in vitro. This study aimed to investigate the persistence of COPD-related epithelial defects in long-term airway epithelial cultures derived from non-smokers, smokers, and COPD patients. Barrier function, polarity, cell commitment, epithelial-to-mesenchymal transition, and inflammation were evaluated and compared with native epithelium characteristics. The role of inflammation was explored using cytokines. We show that barrier dysfunction, compromised polarity, and lineage abnormalities observed in smokers and COPD persisted for up to 10 wk. Goblet cell hyperplasia was associated with recent cigarette smoke exposure. Conversely, increased IL-8/CXCL-8 release and abnormal epithelial-to-mesenchymal transition diminished over time. These ex vivo observations matched surgical samples' abnormalities. Cytokine treatment induced COPD-like changes in control cultures and reactivated epithelial-to-mesenchymal transition in COPD cells. In conclusion, these findings suggest that the airway epithelium of smokers and COPD patients retains a multidimensional memory of its original state and previous cigarette smoke-induced injuries, maintaining these abnormalities for extended periods.
Collapse
Affiliation(s)
- François M Carlier
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
- Department of Pneumology, CHU Mont-Godinne UCL Namur, Yvoir, Belgium
- Lung Transplant Centre, CHU Mont-Godinne UCL Namur, Yvoir, Belgium
| | - Bruno Detry
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Marylène Lecocq
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Amandine M Collin
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Thomas Planté-Bordeneuve
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Ludovic Gérard
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Stijn E Verleden
- Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Monique Delos
- Department of Pathology, CHU Mont-Godinne UCL Namur, Yvoir, Belgium
| | - Benoît Rondelet
- Lung Transplant Centre, CHU Mont-Godinne UCL Namur, Yvoir, Belgium
- Deparment of Cardiovascular and Thoracic Surgery, CHU Mont-Godinne UCL Namur, Yvoir, Belgium
| | - Wim Janssens
- Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jérôme Ambroise
- Centre de Technologies Moléculaires Appliquées, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Bart M Vanaudenaerde
- Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sophie Gohy
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires St-Luc, Brussels, Belgium
- Cystic Fibrosis Reference Center, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires St-Luc, Brussels, Belgium
| |
Collapse
|
6
|
Chae J, Choi J, Chung J. Polymeric immunoglobulin receptor (pIgR) in cancer. J Cancer Res Clin Oncol 2023; 149:17683-17690. [PMID: 37897659 DOI: 10.1007/s00432-023-05335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND The polymeric immunoglobulin receptor (pIgR) is a transmembrane transporter of polymeric IgA through the intestinal epithelium. Its overexpression has been reported in several cancers, but its role as a diagnostic and prognostic biomarker of oncogenesis is currently unclear. METHOD A literature search was conducted to summarize the functions of pIgR, its expression levels, and its clinical implications. RESULTS pIgR expression has previously been investigated by proteomic analysis, RNA sequencing, and tissue microarray at the level of both RNA and protein in various cancers including pancreatic, esophageal, gastric, lung, and liver. However, studies have reported inconsistent results on how pIgR levels affect clinical outcomes such as survival rate and chemotherapy resistance. Possible explanations include pIgR mRNA levels being minimally correlated with the rate of downstream pIgR protein synthesis, and the diversity of antibodies used in immunohistochemistry studies further magnifying this ambiguity. In ovarian cancer cells, the transcytosis of IgA accompanied a series of transcriptional changes in intracellular inflammatory pathways that inhibit the progression of cancer, including the upregulation of IFN-gamma and downregulation of tumor-promoting ephrins. These findings suggest that both the levels of pIgR and secreted IgA from tumor-infiltrating B cells affect clinical outcomes. CONCLUSION Overall, no direct correlation was observed between the levels of pIgR inside tumor tissue and the clinical features in cancer patients. Measuring pIgR protein levels with a more specific and possibly chemically defined antibody, along with tumoral IgA, is a potential solution to better understand the pathways and consequences of pIgR overexpression in cancer cells.
Collapse
Affiliation(s)
- Jisu Chae
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinny Choi
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
7
|
de Fays C, Geudens V, Gyselinck I, Kerckhof P, Vermaut A, Goos T, Vermant M, Beeckmans H, Kaes J, Van Slambrouck J, Mohamady Y, Willems L, Aversa L, Cortesi EE, Hooft C, Aerts G, Aelbrecht C, Everaerts S, McDonough JE, De Sadeleer LJ, Gohy S, Ambroise J, Janssens W, Ceulemans LJ, Van Raemdonck D, Vos R, Hackett TL, Hogg JC, Kaminski N, Gayan-Ramirez G, Pilette C, Vanaudenaerde BM. Mucosal immune alterations at the early onset of tissue destruction in chronic obstructive pulmonary disease. Front Immunol 2023; 14:1275845. [PMID: 37915582 PMCID: PMC10616299 DOI: 10.3389/fimmu.2023.1275845] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023] Open
Abstract
Rationale COPD is characterized by chronic airway inflammation, small airways changes, with disappearance and obstruction, and also distal/alveolar destruction (emphysema). The chronology by which these three features evolve with altered mucosal immunity remains elusive. This study assessed the mucosal immune defense in human control and end-stage COPD lungs, by detailed microCT and RNA transcriptomic analysis of diversely affected zones. Methods In 11 control (non-used donors) and 11 COPD (end-stage) explant frozen lungs, 4 cylinders/cores were processed per lung for microCT and tissue transcriptomics. MicroCT was used to quantify tissue percentage and alveolar surface density to classify the COPD cores in mild, moderate and severe alveolar destruction groups, as well as to quantify terminal bronchioles in each group. Transcriptomics of each core assessed fold changes in innate and adaptive cells and pathway enrichment score between control and COPD cores. Immunostainings of immune cells were performed for validation. Results In mildly affected zones, decreased defensins and increased mucus production were observed, along CD8+ T cell accumulation and activation of the IgA pathway. In more severely affected zones, CD68+ myeloid antigen-presenting cells, CD4+ T cells and B cells, as well as MHCII and IgA pathway genes were upregulated. In contrast, terminal bronchioles were decreased in all COPD cores. Conclusion Spatial investigation of end-stage COPD lungs show that mucosal defense dysregulation with decreased defensins and increased mucus and IgA responses, start concomitantly with CD8+ T-cell accumulation in mild emphysema zones, where terminal bronchioles are already decreased. In contrast, adaptive Th and B cell activation is observed in areas with more advanced tissue destruction. This study suggests that in COPD innate immune alterations occur early in the tissue destruction process, which affects both the alveoli and the terminal bronchioles, before the onset of an adaptive immune response.
Collapse
Affiliation(s)
- Charlotte de Fays
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - Vincent Geudens
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - Iwein Gyselinck
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - Pieterjan Kerckhof
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - Astrid Vermaut
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - Tinne Goos
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - Marie Vermant
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - Hanne Beeckmans
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - Janne Kaes
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - Jan Van Slambrouck
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - Yousry Mohamady
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - Lynn Willems
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - Lucia Aversa
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - Emanuela E. Cortesi
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - Charlotte Hooft
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - Gitte Aerts
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - Celine Aelbrecht
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - Stephanie Everaerts
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - John E. McDonough
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Laurens J. De Sadeleer
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - Sophie Gohy
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jerome Ambroise
- Centre de Technologies Moléculaires Appliquées, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Wim Janssens
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - Laurens J. Ceulemans
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - Dirk Van Raemdonck
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - Tillie L. Hackett
- Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
| | - James C. Hogg
- Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bart M. Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery, BREATHE, Department of CHROMETA, KULeuven, Leuven, Belgium
| |
Collapse
|
8
|
Voraphani N, Stern DA, Ledford JG, Spangenberg AL, Zhai J, Wright AL, Morgan WJ, Kraft M, Sherrill DL, Curtin JA, Murray CS, Custovic A, Kull I, Hallberg J, Bergström A, Herrera-Luis E, Halonen M, Martinez FD, Simpson A, Melén E, Guerra S. Circulating CC16 and Asthma: A Population-based, Multicohort Study from Early Childhood through Adult Life. Am J Respir Crit Care Med 2023; 208:758-769. [PMID: 37523710 PMCID: PMC10563188 DOI: 10.1164/rccm.202301-0041oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023] Open
Abstract
Rationale: Club cell secretory protein (CC16) is an antiinflammatory protein highly expressed in the airways. CC16 deficiency has been associated with lung function deficits, but its role in asthma has not been established conclusively. Objectives: To determine 1) the longitudinal association of circulating CC16 with the presence of active asthma from early childhood through adult life and 2) whether CC16 in early childhood predicts the clinical course of childhood asthma into adult life. Methods: We assessed the association of circulating CC16 and asthma in three population-based birth cohorts: the Tucson Children's Respiratory Study (years 6-36; total participants, 814; total observations, 3,042), the Swedish Barn/Children, Allergy, Milieu, Stockholm, Epidemiological survey (years 8-24; total participants, 2,547; total observations, 3,438), and the UK Manchester Asthma and Allergy Study (years 5-18; total participants, 745; total observations, 1,626). Among 233 children who had asthma at the first survey in any of the cohorts, baseline CC16 was also tested for association with persistence of symptoms. Measurements and Main Results: After adjusting for covariates, CC16 deficits were associated with increased risk for the presence of asthma in all cohorts (meta-analyzed adjusted odds ratio per 1-SD CC16 decrease, 1.20; 95% confidence interval [CI], 1.12-1.28; P < 0.0001). The association was particularly strong for asthma with frequent symptoms (meta-analyzed adjusted relative risk ratio, 1.40; 95% CI, 1.24-1.57; P < 0.0001), was confirmed for both atopic and nonatopic asthma, and was independent of lung function impairment. After adjustment for known predictors of persistent asthma, children with asthma in the lowest CC16 tertile had a nearly fourfold increased risk for having frequent symptoms persisting into adult life compared with children with asthma in the other two CC16 tertiles (meta-analyzed adjusted odds ratio, 3.72; 95% CI, 1.78-7.76; P < 0.0001). Conclusions: Circulating CC16 deficits are associated with the presence of asthma with frequent symptoms from childhood through midadult life and predict the persistence of asthma symptoms into adulthood. These findings support a possible protective role of CC16 in asthma and its potential use for risk stratification.
Collapse
Affiliation(s)
- Nipasiri Voraphani
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - Debra A. Stern
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - Julie G. Ledford
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - Amber L. Spangenberg
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - Jing Zhai
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - Anne L. Wright
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - Wayne J. Morgan
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - Monica Kraft
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - Duane L. Sherrill
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - John A. Curtin
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre and National Institute for Health and Care Research Biomedical Research Centre, Manchester University Hospitals National Health Service Foundation Trust, Manchester, United Kingdom
| | - Clare S. Murray
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre and National Institute for Health and Care Research Biomedical Research Centre, Manchester University Hospitals National Health Service Foundation Trust, Manchester, United Kingdom
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Inger Kull
- Department of Clinical Sciences and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs’ Children and Youth Hospital, Stockholm, Sweden
| | - Jenny Hallberg
- Department of Clinical Sciences and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs’ Children and Youth Hospital, Stockholm, Sweden
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; and
| | - Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Spain
| | - Marilyn Halonen
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - Fernando D. Martinez
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - Angela Simpson
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre and National Institute for Health and Care Research Biomedical Research Centre, Manchester University Hospitals National Health Service Foundation Trust, Manchester, United Kingdom
| | - Erik Melén
- Department of Clinical Sciences and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs’ Children and Youth Hospital, Stockholm, Sweden
| | - Stefano Guerra
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
9
|
Blackburn JB, Li NF, Bartlett NW, Richmond BW. An update in club cell biology and its potential relevance to chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2023; 324:L652-L665. [PMID: 36942863 PMCID: PMC10110710 DOI: 10.1152/ajplung.00192.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Club cells are found in human small airways where they play an important role in immune defense, xenobiotic metabolism, and repair after injury. Over the past few years, data from single-cell RNA sequencing (scRNA-seq) studies has generated new insights into club cell heterogeneity and function. In this review, we integrate findings from scRNA-seq experiments with earlier in vitro, in vivo, and microscopy studies and highlight the many ways club cells contribute to airway homeostasis. We then discuss evidence for loss of club cells or club cell products in the airways of patients with chronic obstructive pulmonary disease (COPD) and discuss potential mechanisms through which this might occur.
Collapse
Affiliation(s)
- Jessica B Blackburn
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Ngan Fung Li
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States
| | - Nathan W Bartlett
- Viral Immunology and Respiratory Disease Group, University of Newcastle, Callaghan, New South Wales, Australia
| | - Bradley W Richmond
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
10
|
Shah VS, Hou J, Vinarsky V, Xu J, Surve MV, Lin CP, Rajagopal J. Autofluorescence imaging permits label-free cell type assignment and reveals the dynamic formation of airway secretory cell associated antigen passages (SAPs). eLife 2023; 12:e84375. [PMID: 36994985 PMCID: PMC10154029 DOI: 10.7554/elife.84375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/29/2023] [Indexed: 03/31/2023] Open
Abstract
The specific functional properties of a tissue are distributed amongst its component cell types. The various cells act coherently, as an ensemble, in order to execute a physiologic response. Modern approaches for identifying and dissecting novel physiologic mechanisms would benefit from an ability to identify specific cell types in live tissues that could then be imaged in real time. Current techniques require the use of fluorescent genetic reporters that are not only cumbersome, but which only allow the study of three or four cell types at a time. We report a non-invasive imaging modality that capitalizes on the endogenous autofluorescence signatures of the metabolic cofactors NAD(P)H and FAD. By marrying morphological characteristics with autofluorescence signatures, all seven of the airway epithelial cell types can be distinguished simultaneously in mouse tracheal explants in real time. Furthermore, we find that this methodology for direct cell type-specific identification avoids pitfalls associated with the use of ostensibly cell type-specific markers that are, in fact, altered by clinically relevant physiologic stimuli. Finally, we utilize this methodology to interrogate real-time physiology and identify dynamic secretory cell associated antigen passages (SAPs) that form in response to cholinergic stimulus. The identical process has been well documented in the intestine where the dynamic formation of SAPs and goblet cell associated antigen passages (GAPs) enable luminal antigen sampling. Airway secretory cells with SAPs are frequently juxtaposed to antigen presenting cells, suggesting that airway SAPs, like their intestinal counterparts, not only sample antigen but convey their cargo for immune cell processing.
Collapse
Affiliation(s)
- Viral S Shah
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General HospitalBostonUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - Jue Hou
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Vladimir Vinarsky
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - Jiajie Xu
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - Manalee V Surve
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - Charles P Lin
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Jayaraj Rajagopal
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General HospitalBostonUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
- Klarman Cell Observatory, Broad InstituteCambridgeUnited States
| |
Collapse
|
11
|
Martinu T, Todd JL, Gelman AE, Guerra S, Palmer SM. Club Cell Secretory Protein in Lung Disease: Emerging Concepts and Potential Therapeutics. Annu Rev Med 2023; 74:427-441. [PMID: 36450281 PMCID: PMC10472444 DOI: 10.1146/annurev-med-042921-123443] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Club cell secretory protein (CCSP), also known as secretoglobin 1A1 (gene name SCGB1A1), is one of the most abundant proteins in the lung, primarily produced by club cells of the distal airway epithelium. At baseline, CCSP is found in large concentrations in lung fluid specimens and can also be detected in the blood and urine. Obstructive lung diseases are generally associated with reduced CCSP levels, thought to be due to decreased CCSP production or club cell depletion. Conversely, several restrictive lung diseases have been found to have increased CCSP levels both in the lung and in the circulation, likely related to club cell dysregulation as well as increasedlung permeability. Recent studies demonstrate multiple mechanisms by which CCSP dampens acute and chronic lung inflammation. Given these anti-inflammatory effects, CCSP represents a novel potential therapeutic modality in lung disease.
Collapse
Affiliation(s)
- Tereza Martinu
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada;
- Division of Respirology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Jamie L Todd
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stefano Guerra
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Scott M Palmer
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| |
Collapse
|
12
|
Nauwelaerts SJD, Van Goethem N, De Cremer K, Sierra NB, Vercauteren J, Stroobants C, Bernard A, Nawrot T, Roosens NHC, De Keersmaecker SCJ. Noninvasive integrative approach applied to children in the context of recent air pollution exposure demonstrates association between fractional exhaled nitric oxide (FeNO) and urinary CC16. ENVIRONMENTAL RESEARCH 2023; 216:114441. [PMID: 36191620 DOI: 10.1016/j.envres.2022.114441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Exposure to the air pollutant particulate matter (PM) is associated with increased risks of respiratory diseases and enhancement of airway inflammation in children. In the context of large scale air pollution studies, it can be challenging to measure fractional exhaled nitric oxide (FeNO) as indicator of lung inflammation. Urinary CC16 (U-CC16) is a potential biomarker of increased lung permeability and toxicity, increasing following short-term PM2.5 exposure. The single nucleotide polymorphism (SNP) CC16 G38A (rs3741240) affects CC16 levels and respiratory health. Our study aimed at assessing the use of U-CC16 (incl. CC16 G38A from saliva) as potential alternative for FeNO by investigating their mutual correlation in children exposed to PM. Samples from a small-scale study conducted in 42 children from urban (n = 19) and rural (n = 23) schools examined at two time points, were analysed. When considering recent (lag1) low level exposure to PM2.5 as air pollution measurement, we found that U-CC16 was positively associated with FeNO (β = 0.23; 95% CI [-0.01; 0.47]; p = 0.06) in an adjusted analysis using a linear mixed effects model. Further, we observed a positive association between PM2.5 and FeNO (β = 0.56; 95% CI [0.02; 1.09]; p = 0.04) and higher FeNO in urban school children as compared to rural school children (β = 0.72; 95% CI [0.12; 1.31]; p = 0.02). Although more investigations are needed, our results suggest that inflammatory responses evidenced by increased FeNO are accompanied by potential increased lung epithelium permeability and injury, evidenced by increased U-CC16. In future large scale studies, where FeNO measurement is less feasible, the integrated analysis of U-CC16 and CC16 G38A, using noninvasive samples, might be a suitable alternative to assess the impact of air pollution exposure on the respiratory health of children, which is critical for policy development at population level.
Collapse
Affiliation(s)
- Sarah J D Nauwelaerts
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium; Centre for Toxicology and Applied Pharmacology, University Catholique de Louvain, Brussels, Belgium
| | - Nina Van Goethem
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - Koen De Cremer
- Platform Chromatography and Mass Spectrometry, Sciensano, Brussels, Belgium
| | | | | | - Christophe Stroobants
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Alfred Bernard
- Centre for Toxicology and Applied Pharmacology, University Catholique de Louvain, Brussels, Belgium
| | - Tim Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium; Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Nancy H C Roosens
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | |
Collapse
|
13
|
Gautam LK, Harriott NC, Caceres AM, Ryan AL. Basic Science Perspective on Engineering and Modeling the Large Airways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:73-106. [PMID: 37195527 DOI: 10.1007/978-3-031-26625-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The airway epithelium provides a physical and biochemical barrier playing a key role in protecting the lung from infiltration of pathogens and irritants and is, therefore, crucial in maintaining tissue homeostasis and regulating innate immunity. Due to continual inspiration and expiration of air during breathing, the epithelium is exposed to a plethora of environmental insults. When severe or persistent, these insults lead to inflammation and infection. The effectiveness of the epithelium as a barrier is reliant upon its capacity for mucociliary clearance, immune surveillance, and regeneration upon injury. These functions are accomplished by the cells that comprise the airway epithelium and the niche in which they reside. Engineering of new physiological and pathological models of the proximal airways requires the generation of complex structures comprising the surface airway epithelium, submucosal gland epithelium, extracellular matrix, and niche cells, including smooth muscle cells, fibroblasts, and immune cells. This chapter focuses on the structure-function relationships in the airways and the challenges of developing complex engineered models of the human airway.
Collapse
Affiliation(s)
- Lalit K Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Noa C Harriott
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Adrian M Caceres
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Amy L Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
14
|
Chen M, Xu K, He Y, Jin J, Mao R, Gao L, Zhang Y, Wang G, Gao P, Xie M, Liu C, Chen Z. CC16 as an Inflammatory Biomarker in Induced Sputum Reflects Chronic Obstructive Pulmonary Disease (COPD) Severity. Int J Chron Obstruct Pulmon Dis 2023; 18:705-717. [PMID: 37139166 PMCID: PMC10150740 DOI: 10.2147/copd.s400999] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
Purpose The progression of an abnormal inflammatory response plays a crucial role in the lung function decline of chronic obstructive pulmonary disease (COPD) patients. Compared to serum biomarkers, inflammatory biomarkers in induced sputum would be a more reliable reflection of inflammatory processes in the airways. Patients and Methods A total of 102 COPD participants were divided into a mild-to-moderate group (FEV1%pred≥ 50%, n=57) and a severe-to-very-severe group (FEV1%pred<50%, n=45). We measured a series of inflammatory biomarkers in induced sputum and analyzed their association with lung function and SGRQ in COPD patients. To evaluate the relationship between inflammatory biomarkers and the inflammatory phenotype, we also analyzed the correlation between biomarkers and airway eosinophilic phenotype. Results We found increased mRNA levels of MMP9, LTB4R, and A1AR and decreased levels of CC16 mRNA in induced sputum in the severe-to-very-severe group. After adjustment for age, sex and other biomarkers, CC16 mRNA expression was positively associated with FEV1%pred (r=0.516, p=0.004) and negatively correlated with SGRQ scores (r=-0.3538, p=0.043). As previously known, decreased CC16 was related to the migration and aggregation of eosinophils in airway. It was also found that CC16 had a moderate negative correlation with the eosinophilic inflammation in airway (r=-0.363, p=0.045) in our COPD patients. Conclusion Low CC16 mRNA expression levels in induced sputum were associated with low FEV1%pred and a high SGRQ score in COPD patients. Sputum CC16 as a potential biomarker for predicting COPD severity in clinical practice might attribute to the involvement of CC16 in airway eosinophilic inflammation.
Collapse
Affiliation(s)
- Mengjie Chen
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People’s Republic of China
| | - Kan Xu
- Geriatric Department of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People’s Republic of China
| | - Yuting He
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People’s Republic of China
| | - Jianjun Jin
- Research Center of Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Ruolin Mao
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People’s Republic of China
| | - Lei Gao
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People’s Republic of China
| | - Yi Zhang
- Air Liquide Holding Co., Ltd, Shanghai, People’s Republic of China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, People’s Republic of China
| | - Min Xie
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical 10 College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chunfang Liu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Chunfang Liu, Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, 12# Wlmq Road, Shanghai, People’s Republic of China, Email
| | - Zhihong Chen
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People’s Republic of China
- Correspondence: Zhihong Chen, Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, No. 180 Fenglin Road, Shanghai, People’s Republic of China, Tel +86-21-64041990-2445, Fax +86-21-64187165, Email
| |
Collapse
|
15
|
Role of Carbon Monoxide in Oxidative Stress-Induced Senescence in Human Bronchial Epithelium. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5199572. [PMID: 36193088 PMCID: PMC9526622 DOI: 10.1155/2022/5199572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022]
Abstract
Prolonged or excessive stimulation from inhaled toxins may cause oxidative stress and DNA damage that can lead to stress-induced senescence in epithelial cells, which can contribute to several airway diseases. Mounting evidence has shown carbon monoxide (CO) confers cytoprotective effects. We investigated the effects of CO on oxidative stress-induced senescence in human airway epithelium and elucidated the underlying molecular mechanisms. Here, CO pretreatment reduced H2O2-mediated increases in total reactive oxygen species (ROS) production and mitochondrial superoxide in a human bronchial epithelial cell line (BEAS-2B). H2O2 treatment triggered a premature senescence-like phenotype with enlarged and flattened cell morphology accompanied by increased SA-β-gal activity, cell cycle arrest in G0/G1, reduced cell viability, and increased transcription of senescence-associated secretory phenotype (SASP) genes. Additionally, exposure to H2O2 increased protein levels of cellular senescence markers (p53 and p21), reduced Sirtuin 3 (SIRT3) and manganese superoxide dismutase (MnSOD) levels, and increased p53 K382 acetylation. These H2O2-mediated effects were attenuated by pretreatment with a CO-containing solution. SIRT3 silencing induced mitochondrial superoxide production and triggered a senescence-like phenotype, whereas overexpression decreased mitochondrial superoxide production and alleviated the senescence-like phenotype. Air-liquid interface (ALI) culture of primary human bronchial cells, which becomes a fully differentiated pseudostratified mucociliary epithelium, was used as a model. We found that apical and basolateral exposure to H2O2 induced a vacuolated structure that impaired the integrity of ALI cultures, increased goblet cell numbers, decreased SCGB1A1+ club cell numbers, increased p21 protein levels, and increased SASP gene transcription, consistent with our observations in BEAS-2B cells. These effects were attenuated in the apical presence of a CO-containing solution. In summary, we revealed that CO has a pivotal role in epithelial senescence by regulating ROS production via the SIRT3/MnSOD/p53/p21 pathway. This may have important implications in the prevention and treatment of age-associated respiratory pathologies.
Collapse
|
16
|
Blackburn JB, Schaff JA, Gutor S, Du RH, Nichols D, Sherrill T, Gutierrez AJ, Xin MK, Wickersham N, Zhang Y, Holtzman MJ, Ware LB, Banovich NE, Kropski JA, Blackwell TS, Richmond BW. Secretory Cells Are the Primary Source of pIgR in Small Airways. Am J Respir Cell Mol Biol 2022; 67:334-345. [PMID: 35687143 PMCID: PMC9447142 DOI: 10.1165/rcmb.2021-0548oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Loss of secretory IgA (SIgA) is common in chronic obstructive pulmonary disease (COPD) small airways and likely contributes to disease progression. We hypothesized that loss of SIgA results from reduced expression of pIgR (polymeric immunoglobulin receptor), a chaperone protein needed for SIgA transcytosis, in the COPD small airway epithelium. pIgR-expressing cells were defined and quantified at single-cell resolution in human airways using RNA in situ hybridization, immunostaining, and single-cell RNA sequencing. Complementary studies in mice used immunostaining, primary murine tracheal epithelial cell culture, and transgenic mice with secretory or ciliated cell-specific knockout of pIgR. SIgA degradation by human neutrophil elastase or secreted bacterial proteases from nontypeable Haemophilus influenzae was evaluated in vitro. We found that secretory cells are the predominant cell type responsible for pIgR expression in human and murine airways. Loss of SIgA in small airways was not associated with a reduction in secretory cells but rather a reduction in pIgR protein expression despite intact PIGR mRNA expression. Neutrophil elastase and nontypeable H. influenzae-secreted proteases are both capable of degrading SIgA in vitro and may also contribute to a deficient SIgA immunobarrier in COPD. Loss of the SIgA immunobarrier in small airways of patients with severe COPD is complex and likely results from both pIgR-dependent defects in IgA transcytosis and SIgA degradation.
Collapse
Affiliation(s)
- Jessica B. Blackburn
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Jacob A. Schaff
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Sergey Gutor
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Rui-Hong Du
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - David Nichols
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Taylor Sherrill
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | | | - Matthew K. Xin
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Nancy Wickersham
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Yong Zhang
- Division of Pulmonary and Critical Care Medicine, Washington University–St. Louis, St. Louis, Missouri
| | - Michael J. Holtzman
- Division of Pulmonary and Critical Care Medicine, Washington University–St. Louis, St. Louis, Missouri
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | | | - Jonathan A. Kropski
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Timothy S. Blackwell
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Bradley W. Richmond
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
17
|
Zhai J, Emond MJ, Spangenberg A, Stern DA, Vasquez MM, Blue EE, Buckingham KJ, Sherrill DL, Halonen M, Gibson RL, Rosenfeld M, Sagel SD, Bamshad MJ, Morgan WJ, Guerra S. Club cell secretory protein and lung function in children with cystic fibrosis. J Cyst Fibros 2022; 21:811-820. [PMID: 35367162 PMCID: PMC9509401 DOI: 10.1016/j.jcf.2022.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Club cell secretory protein (CC16) exerts anti-inflammatory functions in lung disease. We sought to determine the relation of serum CC16 deficits and genetic variants that control serum CC16 to lung function among children with cystic fibrosis (CF). METHODS We used longitudinal data from CF children (EPIC Study) with no positive cultures for Pseudomonas aeruginosa prior to enrollment. Circulating levels of CC16 and an inflammatory score (generated from CRP, SAA, calprotectin, G-CSF) were compared between participants with the lowest and highest FEV1 levels in adolescence (LLF and HLF groups, respectively; N = 130-per-group). Single nucleotide variants (SNVs) in the SCGB1A1, EHF-APIP loci were tested for association with circulating CC16 and with decline of FEV1 and FEV1/FVC% predicted levels between ages 7-16 using mixed models. RESULTS Compared with the HLF group, the LLF group had lower levels of CC16 (geometric means: 8.2 vs 6.5 ng/ml, respectively; p = 0.0002) and higher levels of the normalized inflammatory score (-0.21 vs 0.21, p = 0.0007). Participants in the lowest CC16 and highest inflammation tertile had the highest odds for having LLF (p<0.0001 for comparison with participants in the highest CC16 and lowest inflammation tertile). Among seven SNVs associated with circulating CC16, the top SNV rs3741240 was associated with decline of FEV1/FVC and, marginally, FEV1 (p = 0.003 and 0.025, respectively; N = 611 participants, 20,801 lung function observations). CONCLUSIONS Serum CC16 deficits are strongly associated with severity of CF lung disease and their effects are additive with systemic inflammation. The rs3741240 A allele is associated with low circulating CC16 and, possibly, accelerated lung function decline in CF.
Collapse
Affiliation(s)
- Jing Zhai
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Mary J Emond
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Amber Spangenberg
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Debra A Stern
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Monica M Vasquez
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Elizabeth E Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States; Brotman-Baty Institute for Precision Medicine, Seattle, WA, United States
| | - Kati J Buckingham
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Duane L Sherrill
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Marilyn Halonen
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Ronald L Gibson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Margaret Rosenfeld
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Scott D Sagel
- Department of Pediatrics, Children's Hospital Colorado and University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael J Bamshad
- Brotman-Baty Institute for Precision Medicine, Seattle, WA, United States; Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, United States; Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Wayne J Morgan
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States; Department of Pediatrics, University of Arizona, Tucson, AZ, United States.
| | - Stefano Guerra
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States; Department of Medicine, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
18
|
Immune Response to Biofilm Growing Pulmonary Pseudomonas aeruginosa Infection. Biomedicines 2022; 10:biomedicines10092064. [PMID: 36140163 PMCID: PMC9495460 DOI: 10.3390/biomedicines10092064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
Biofilm infections are tolerant to the host responses and recalcitrance to antibiotic drugs and disinfectants. The induced host-specific innate and adaptive immune responses by established biofilms are significantly implicated and contributes to the course of the infections. Essentially, the host response may be the single one factor impacting the outcome most, especially in cases where the biofilm is caused by low virulent opportunistic bacterial species. Due to the chronicity of biofilm infections, activation of the adaptive immune response mechanisms is frequently experienced, and instead of clearing the infection, the adaptive response adds to the pathogenesis. To a high degree, this has been reported for chronic Pseudomonas aeruginosa lung infections, where both a pronounced antibody response and a skewed Th1/Th2 balance has been related to a poorer outcome. In addition, detection of an adaptive immune response can be used as a significant indicator of a chronic P. aeruginosa lung infection and is included in the clinical definitions as such. Those issues are presented in the present review, along with a characterization of the airway structure in relation to immune responses towards P. aeruginosa pulmonary infections.
Collapse
|
19
|
Di Stefano A, Dossena F, Gnemmi I, D'Anna SE, Brun P, Balbi B, Piraino A, Spanevello A, Nucera F, Carriero V, Bertolini F, Maniscalco M, Adcock IM, Caramori G, Ricciardolo FLM. Decreased humoral immune response in the bronchi of rapid decliners with chronic obstructive pulmonary disease. Respir Res 2022; 23:200. [PMID: 35922811 PMCID: PMC9351175 DOI: 10.1186/s12931-022-02125-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background Identification of COPD patients with a rapid decline in FEV1 is of particular interest for prognostic and therapeutic reasons.
Objective To determine the expression of markers of inflammation in COPD patients with rapid functional decline in comparison to slow or no decliners. Methods In COPD patients monitored for at least 3 years (mean ± SD: 5.8 ± 3 years) for lung functional decline, the expression and localization of inflammatory markers was measured in bronchial biopsies of patients with no lung functional decline (FEV1% + 30 ± 43 ml/year, n = 21), slow (FEV1% ml/year, − 40 ± 19, n = 14) and rapid decline (FEV1% ml/year, − 112 ± 53, n = 15) using immunohistochemistry. ELISA test was used for polymeric immunoglobulin receptor (pIgR) quantitation “in vitro”. Results The expression of secretory IgA was significantly reduced in bronchial epithelium (p = 0.011) and plasma cell numbers was significantly reduced in the bronchial lamina propria (p = 0.017) of rapid decliners compared to no decliners. Bronchial inflammatory cell infiltration, CD4, CD8, CD68, CD20, NK, neutrophils, eosinophils, mast cells, pIgR, was not changed in epithelium and lamina propria of rapid decliners compared to other groups. Plasma cells/mm2 correlated positively with scored total IgA in lamina propria of all patients. “In vitro” stimulation of 16HBE cells with LPS (10 μg/ml) and IL-8 (10 ng/ml) induced a significant increase while H2O2 (100 μM) significantly decreased pIgR epithelial expression. Conclusion These data show an impaired humoral immune response in rapid decliners with COPD, marked by reduced epithelial secretory IgA and plasma cell numbers in the bronchial lamina propria. These findings may help in the prognostic stratification and treatment of COPD.
Collapse
Affiliation(s)
- Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Respiratory Rehabilitation Unit of Veruno Institute, Via Per Revislate, 13, 28010, Veruno, NO, Italy.
| | - Francesca Dossena
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Respiratory Rehabilitation Unit of Veruno Institute, Via Per Revislate, 13, 28010, Veruno, NO, Italy
| | - Isabella Gnemmi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Respiratory Rehabilitation Unit of Veruno Institute, Via Per Revislate, 13, 28010, Veruno, NO, Italy
| | - Silvestro Ennio D'Anna
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Telese, BN, Italy
| | - Paola Brun
- Department of Molecular Medicine, Histology Unit, University of Padova, Padua, Italy
| | - Bruno Balbi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Respiratory Rehabilitation Unit of Veruno Institute, Via Per Revislate, 13, 28010, Veruno, NO, Italy
| | | | - Antonio Spanevello
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Tradate, VA, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Vitina Carriero
- Department of Clinical and Biological Sciences, Rare Lung Disease Unit and Severe Asthma Centre, San Luigi Gonzaga University Hospital, University of Turin, Orbassano, Turin, Italy
| | - Francesca Bertolini
- Department of Clinical and Biological Sciences, Rare Lung Disease Unit and Severe Asthma Centre, San Luigi Gonzaga University Hospital, University of Turin, Orbassano, Turin, Italy
| | - Mauro Maniscalco
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Telese, BN, Italy
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Fabio L M Ricciardolo
- Department of Clinical and Biological Sciences, Rare Lung Disease Unit and Severe Asthma Centre, San Luigi Gonzaga University Hospital, University of Turin, Orbassano, Turin, Italy
| |
Collapse
|
20
|
Sajjan U. Secretory Cells - New Players in Small Airway Mucosal Immunity? Am J Respir Cell Mol Biol 2022; 67:269-270. [PMID: 35704450 DOI: 10.1165/rcmb.2022-0210ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Umadevi Sajjan
- Temple University, 6558, Thoracic Medicine and Surgery, Philadelphia, Pennsylvania, United States;
| |
Collapse
|
21
|
de Fays C, Carlier FM, Gohy S, Pilette C. Secretory Immunoglobulin A Immunity in Chronic Obstructive Respiratory Diseases. Cells 2022; 11:1324. [PMID: 35456002 PMCID: PMC9027823 DOI: 10.3390/cells11081324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), asthma and cystic fibrosis (CF) are distinct respiratory diseases that share features such as the obstruction of small airways and disease flare-ups that are called exacerbations and are often caused by infections. Along the airway epithelium, immunoglobulin (Ig) A contributes to first line mucosal protection against inhaled particles and pathogens. Dimeric IgA produced by mucosal plasma cells is transported towards the apical pole of airway epithelial cells by the polymeric Ig receptor (pIgR), where it is released as secretory IgA. Secretory IgA mediates immune exclusion and promotes the clearance of pathogens from the airway surface by inhibiting their adherence to the epithelium. In this review, we summarize the current knowledge regarding alterations of the IgA/pIgR system observed in those major obstructive airway diseases and discuss their implication for disease pathogenesis.
Collapse
Affiliation(s)
- Charlotte de Fays
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (C.d.F.); (F.M.C.); (S.G.)
| | - François M. Carlier
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (C.d.F.); (F.M.C.); (S.G.)
- Department of Pneumology, CHU UCL Namur, Site Mont-Godinne, 5530 Yvoir, Belgium
- Lung Transplant Centre, CHU UCL Namur, Site Mont-Godinne, 5530 Yvoir, Belgium
| | - Sophie Gohy
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (C.d.F.); (F.M.C.); (S.G.)
- Department of Pneumology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Cystic Fibrosis Reference Centre, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (C.d.F.); (F.M.C.); (S.G.)
- Department of Pneumology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
22
|
Garcia-Arcos I, Park SS, Mai M, Alvarez-Buve R, Chow L, Cai H, Baumlin-Schmid N, Agudelo CW, Martinez J, Kim MD, Dabo AJ, Salathe M, Goldberg IJ, Foronjy RF. LRP1 loss in airway epithelium exacerbates smoke-induced oxidative damage and airway remodeling. J Lipid Res 2022; 63:100185. [PMID: 35202607 PMCID: PMC8953659 DOI: 10.1016/j.jlr.2022.100185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
The LDL receptor-related protein 1 (LRP1) partakes in metabolic and signaling events regulated in a tissue-specific manner. The function of LRP1 in airways has not been studied. We aimed to study the function of LRP1 in smoke-induced disease. We found that bronchial epithelium of patients with chronic obstructive pulmonary disease and airway epithelium of mice exposed to smoke had increased LRP1 expression. We then knocked out LRP1 in human bronchial epithelial cells in vitro and in airway epithelial club cells in mice. In vitro, LRP1 knockdown decreased cell migration and increased transforming growth factor β activation. Tamoxifen-inducible airway-specific LRP1 knockout mice (club Lrp1-/-) induced after complete lung development had increased inflammation in the bronchoalveolar space and lung parenchyma at baseline. After 6 months of smoke exposure, club Lrp1-/- mice showed a combined restrictive and obstructive phenotype, with lower compliance, inspiratory capacity, and forced expiratory volume0.05/forced vital capacity than WT smoke-exposed mice. This was associated with increased values of Ashcroft fibrotic index. Proteomic analysis of room air exposed-club Lrp1-/- mice showed significantly decreased levels of proteins involved in cytoskeleton signaling and xenobiotic detoxification as well as decreased levels of glutathione. The proteome fingerprint created by smoke eclipsed many of the original differences, but club Lrp1-/- mice continued to have decreased lung glutathione levels and increased protein oxidative damage and airway cell proliferation. Therefore, LRP1 deficiency leads to greater lung inflammation and damage and exacerbates smoke-induced lung disease.
Collapse
Affiliation(s)
- Itsaso Garcia-Arcos
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA.
| | - Sangmi S Park
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Michelle Mai
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Roger Alvarez-Buve
- Respiratory Department, Hospital University Arnau de Vilanova and Santa Maria, IRB Lleida, University of Lleida, Lleida, Catalonia, Spain
| | - Lillian Chow
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Huchong Cai
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | | | - Christina W Agudelo
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Jennifer Martinez
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Michael D Kim
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Abdoulaye J Dabo
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ira J Goldberg
- Department of Medicine, NYU Langone School of Medicine, New York, NY, USA
| | - Robert F Foronjy
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| |
Collapse
|
23
|
Sánchez Montalvo A, Gohy S, Rombaux P, Pilette C, Hox V. The Role of IgA in Chronic Upper Airway Disease: Friend or Foe? FRONTIERS IN ALLERGY 2022; 3:852546. [PMID: 35386640 PMCID: PMC8974816 DOI: 10.3389/falgy.2022.852546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 01/28/2023] Open
Abstract
Chronic upper airway inflammation is amongst the most prevalent chronic disease entities in the Western world with prevalence around 30% (rhinitis) and 11% (rhinosinusitis). Chronic rhinitis and rhinosinusitis may severely impair the quality of life, leading to a significant socio-economic burden. It becomes more and more clear that the respiratory mucosa which forms a physiological as well as chemical barrier for inhaled particles, plays a key role in maintaining homeostasis and driving disease. In a healthy state, the mucosal immune system provides protection against pathogens as well as maintains a tolerance toward non-harmful commensal microbes and benign environmental substances such as allergens. One of the most important players of the mucosal immune system is immunoglobulin (Ig) A, which is well-studied in gut research where it has emerged as a key factor in creating tolerance to potential food allergens and maintaining a healthy microbiome. Although, it is very likely that IgA plays a similar role at the level of the respiratory epithelium, very little research has been performed on the role of this protein in the airways, especially in chronic upper airway diseases. This review summarizes what is known about IgA in upper airway homeostasis, as well as in rhinitis and rhinosinusitis, including current and possible new treatments that may interfere with the IgA system. By doing so, we identify unmet needs in exploring the different roles of IgA in the upper airways required to find new biomarkers or therapeutic options for treating chronic rhinitis and rhinosinusitis.
Collapse
Affiliation(s)
- Alba Sánchez Montalvo
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Sophie Gohy
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Pulmonology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Cystic Fibrosis Reference Center, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Philippe Rombaux
- Department of Otorhinolaryngology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Pulmonology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Valérie Hox
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Otorhinolaryngology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- *Correspondence: Valérie Hox
| |
Collapse
|
24
|
Expression characteristics of polymeric immunoglobulin receptor in Bactrian camel (Camelus bactrianus) lungs. PLoS One 2022; 17:e0264815. [PMID: 35245335 PMCID: PMC8896721 DOI: 10.1371/journal.pone.0264815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/17/2022] [Indexed: 12/22/2022] Open
Abstract
Polymeric immunoglobulin receptor (pIgR), the transmembrane transporter of polymeric immunoglobulin A and M, has multiple immune functions. To explore the characteristics of pIgR expression in Bactrian camel lungs, twelve healthy adult (2-7 years old) Bactrian camels were systematically studied. The results showed that pIgR was mainly expressed in the cytoplasm and membrane of ciliated cells, as well as in the cytoplasm and membrane of basal cells, serous cells of bronchial glands, club cells and alveolar type 2 cells in Bactrian camel lungs. Specially, as the bronchial branches extended, the pIgR expression level in ciliated cells significantly declined (p<0.05), and the corresponding bronchial luminal areas obviously decreased (p<0.05). However, pIgR was not expressed in goblet cells, endocrine cells, alveolar type 1 cells and mucous cells of bronchial glands. The results demonstrated that ciliated cells continuously distributed throughout the whole bronchial tree mucosa were the major expression sites of pIgR, and pIgR was also expressed in basal cells, serous cells of bronchial glands, club cells and alveolar type 2 cells, which would facilitate secretory immunoglobulin A (SIgA) transmembrane transport by pIgR and form an intact protective barrier. Moreover, the pIgR expression level in ciliated cells was positively correlated with the bronchial luminal areas; but negatively correlated with the cleanliness of airflow through the bronchial cross-sections, showing that the pIgR expression level in the bronchial epithelium was inhomogeneous. Our study provided a foundation for further exploring the regulatory functions of immunoglobulins (i.e., SIgA) after transport across the membrane by pIgR in Bactrian camel lungs.
Collapse
|
25
|
Immunoglobulin A Mucosal Immunity and Altered Respiratory Epithelium in Cystic Fibrosis. Cells 2021; 10:cells10123603. [PMID: 34944110 PMCID: PMC8700636 DOI: 10.3390/cells10123603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022] Open
Abstract
The respiratory epithelium represents the first chemical, immune, and physical barrier against inhaled noxious materials, particularly pathogens in cystic fibrosis. Local mucus thickening, altered mucociliary clearance, and reduced pH due to CFTR protein dysfunction favor bacterial overgrowth and excessive inflammation. We aimed in this review to summarize respiratory mucosal alterations within the epithelium and current knowledge on local immunity linked to immunoglobulin A in patients with cystic fibrosis.
Collapse
|
26
|
Pausder A, Fricke J, Schughart K, Schreiber J, Strowig T, Bruder D, Boehme JD. Exogenous and Endogenous Triggers Differentially Stimulate Pigr Expression and Antibacterial Secretory Immunity in the Murine Respiratory Tract. Lung 2021; 200:119-128. [PMID: 34825965 PMCID: PMC8881272 DOI: 10.1007/s00408-021-00498-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/15/2021] [Indexed: 10/25/2022]
Abstract
PURPOSE Transport of secretory immunoglobulin A (SIgA) through the airway epithelial cell barrier into the mucosal lumen by the polymeric immunoglobulin receptor (pIgR) is an important mechanism of respiratory mucosal host defense. Identification of immunomodulating substances that regulate secretory immunity might have therapeutic implications with regard to an improved immune exclusion. Thus, we sought to analyze secretory immunity under homeostatic and immunomodulating conditions in different compartments of the murine upper and lower respiratory tract (URT&LRT). METHODS Pigr gene expression in lung, trachea, and nasal-associated lymphoid tissue (NALT) of germ-free mice, specific pathogen-free mice, mice with an undefined microbiome, as well as LPS- and IFN-γ-treated mice was determined by quantitative real-time PCR. IgA levels in bronchoalveolar lavage (BAL), nasal lavage (NAL), and serum were determined by ELISA. LPS- and IFN-γ-treated mice were colonized with Streptococcus pneumoniae and bacterial CFUs were determined in URT and LRT. RESULTS Respiratory Pigr expression and IgA levels were dependent on the degree of exposure to environmental microbial stimuli. While immunostimulation with LPS and IFN-γ differentially impacts respiratory Pigr expression and IgA in URT vs. LRT, only prophylactic IFN-γ treatment reduces nasal colonization with S. pneumoniae. CONCLUSION Airway-associated secretory immunity can be partly modulated by exposure to microbial ligands and proinflammatory stimuli. Prophylactic IFN-γ-treatment modestly improves antibacterial immunity in the URT, but this does not appear to be mediated by SIgA or pIgR.
Collapse
Affiliation(s)
- Alexander Pausder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-Von-Guericke-University, Leipziger Strasse 44, 39120, Magdeburg, Germany.,Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,ESF Graduate School ABINEP, Magdeburg, Germany
| | - Jennifer Fricke
- Research Group Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Current Address: Research Group Nanoinfection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Schughart
- Research Group Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,University of Veterinary Medicine, Hannover, Germany.,University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jens Schreiber
- Experimental Pneumology, Health Campus Immunology, Infectiology and Inflammation, University Hospital for Pneumology, Otto-Von-Guericke-University, Magdeburg, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dunja Bruder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-Von-Guericke-University, Leipziger Strasse 44, 39120, Magdeburg, Germany.,Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Julia D Boehme
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-Von-Guericke-University, Leipziger Strasse 44, 39120, Magdeburg, Germany. .,Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
27
|
The NOTCH3 Downstream Target HEYL Is Required for Efficient Human Airway Basal Cell Differentiation. Cells 2021; 10:cells10113215. [PMID: 34831437 PMCID: PMC8620267 DOI: 10.3390/cells10113215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Basal cells (BCs) are stem/progenitor cells of the mucociliary airway epithelium, and their differentiation is orchestrated by the NOTCH signaling pathway. NOTCH3 receptor signaling regulates BC to club cell differentiation; however, the downstream responses that regulate this process are unknown. Overexpression of the active NOTCH3 intracellular domain (NICD3) in primary human bronchial epithelial cells (HBECs) on in vitro air–liquid interface culture promoted club cell differentiation. Bulk RNA-seq analysis identified 692 NICD3-responsive genes, including the classical NOTCH target HEYL, which increased in response to NICD3 and positively correlated with SCGB1A1 (club cell marker) expression. siRNA knockdown of HEYL decreased tight junction formation and cell proliferation. Further, HEYL knockdown reduced club, goblet and ciliated cell differentiation. In addition, we observed decreased expression of HEYL in HBECs from donors with chronic obstructive pulmonary disease (COPD) vs. normal donors which correlates with the impaired differentiation capacity of COPD cells. Finally, overexpression of HEYL in COPD HBECs promoted differentiation into club, goblet and ciliated cells, suggesting the impaired capacity of COPD cells to generate a normal airway epithelium is a reversible phenotype that can be regulated by HEYL. Overall, our data identify the NOTCH3 downstream target HEYL as a key regulator of airway epithelial differentiation.
Collapse
|
28
|
Wyatt TA, Warren KJ, Wetzel TJ, Suwondo T, Rensch GP, DeVasure JM, Mosley DD, Kharbanda KK, Thiele GM, Burnham EL, Bailey KL, Yeligar SM. Malondialdehyde-Acetaldehyde Adduct Formation Decreases Immunoglobulin A Transport across Airway Epithelium in Smokers Who Abuse Alcohol. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1732-1742. [PMID: 34186073 PMCID: PMC8485061 DOI: 10.1016/j.ajpath.2021.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022]
Abstract
Alcohol misuse and smoking are risk factors for pneumonia, yet the impact of combined cigarette smoke and alcohol on pneumonia remains understudied. Smokers who misuse alcohol form lung malondialdehyde-acetaldehyde (MAA) protein adducts and have decreased levels of anti-MAA secretory IgA (sIgA). Transforming growth factor-β (TGF-β) down-regulates polymeric Ig receptor (pIgR) on mucosal epithelium, resulting in decreased sIgA transcytosis to the mucosa. It is hypothesized that MAA-adducted lung protein increases TGF-β, preventing expression of epithelial cell pIgR and decreasing sIgA. Cigarette smoke and alcohol co-exposure on sIgA and TGF-β in human bronchoalveolar lavage fluid and in mice instilled with MAA-adducted surfactant protein D (SPD-MAA) were studied herein. Human bronchial epithelial cells (HBECs) and mouse tracheal epithelial cells were treated with SPD-MAA and sIgA and TGF-β was measured. Decreased sIgA and increased TGF-β were observed in bronchoalveolar lavage from combined alcohol and smoking groups in humans and mice. CD204 (MAA receptor) knockout mice showed no changes in sIgA. SPD-MAA decreased pIgR in HBECs. Conversely, SPD-MAA stimulated TGF-β release in both HBECs and mouse tracheal epithelial cells, but not in CD204 knockout mice. SPD-MAA stimulated TGF-β in alveolar macrophage cells. These data show that MAA-adducted surfactant protein stimulates lung epithelial cell TGF-β, down-regulates pIgR, and decreases sIgA transcytosis. These data provide a mechanism for the decreased levels of sIgA observed in smokers who misuse alcohol.
Collapse
Affiliation(s)
- Todd A Wyatt
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Kristi J Warren
- Department of Medicine-Pulmonary Division, University of Utah/VA Salt Lake Health Care System, Salt Lake City, Utah
| | - Tanner J Wetzel
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Troy Suwondo
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Gage P Rensch
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jane M DeVasure
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Deanna D Mosley
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Geoffrey M Thiele
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ellen L Burnham
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado
| | - Kristina L Bailey
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Samantha M Yeligar
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia; Research Service, Atlanta VA Health Care System, Decatur, Georgia
| |
Collapse
|
29
|
Carlier FM, de Fays C, Pilette C. Epithelial Barrier Dysfunction in Chronic Respiratory Diseases. Front Physiol 2021; 12:691227. [PMID: 34248677 PMCID: PMC8264588 DOI: 10.3389/fphys.2021.691227] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Mucosal surfaces are lined by epithelial cells, which provide a complex and adaptive module that ensures first-line defense against external toxics, irritants, antigens, and pathogens. The underlying mechanisms of host protection encompass multiple physical, chemical, and immune pathways. In the lung, inhaled agents continually challenge the airway epithelial barrier, which is altered in chronic diseases such as chronic obstructive pulmonary disease, asthma, cystic fibrosis, or pulmonary fibrosis. In this review, we describe the epithelial barrier abnormalities that are observed in such disorders and summarize current knowledge on the mechanisms driving impaired barrier function, which could represent targets of future therapeutic approaches.
Collapse
Affiliation(s)
- François M. Carlier
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology and Lung Transplant, Centre Hospitalier Universitaire UCL Namur, Yvoir, Belgium
| | - Charlotte de Fays
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology, Cliniques universitaires St-Luc, Brussels, Belgium
| |
Collapse
|
30
|
Cass SP, Yang Y, Xiao J, McGrath JJC, Fantauzzi MF, Thayaparan D, Wang F, Liang Z, Long F, Stevenson CS, Chen R, Stampfli MR. Current smoking status is associated with reduced sputum immunoglobulin M and G expression in COPD. Eur Respir J 2021; 57:13993003.02338-2019. [PMID: 32883677 DOI: 10.1183/13993003.02338-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 08/13/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Steven P Cass
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Yuqiong Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Jing Xiao
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medical Science, Guangzhou Medical University, Guangzhou, P.R. China
| | - Joshua J C McGrath
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Matthew F Fantauzzi
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Danya Thayaparan
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Fengyan Wang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medical Science, Guangzhou Medical University, Guangzhou, P.R. China
| | - Zhenyu Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Fei Long
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medical Science, Guangzhou Medical University, Guangzhou, P.R. China
| | - Christopher S Stevenson
- Janssen Disease Interception Accelerator, Janssen Pharmaceutical Companies of Johnson and Johnson, Raritan, NJ, USA
| | - Rongchang Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China.,Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, P.R. China
| | - Martin R Stampfli
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China.,Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.,Dept of Medicine, Firestone Institute of Respiratory Health at St. Joseph's Health Care, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
31
|
Lange P, Ahmed E, Lahmar ZM, Martinez FJ, Bourdin A. Natural history and mechanisms of COPD. Respirology 2021; 26:298-321. [PMID: 33506971 DOI: 10.1111/resp.14007] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
The natural history of COPD is complex, and the disease is best understood as a syndrome resulting from numerous interacting factors throughout the life cycle with smoking being the strongest inciting feature. Unfortunately, diagnosis is often delayed with several longitudinal cohort studies shedding light on the long 'preclinical' period of COPD. It is now accepted that individuals presenting with different COPD phenotypes may experience varying natural history of their disease. This includes its inception, early stages and progression to established disease. Several scenarios regarding lung function course are possible, but it may conceptually be helpful to distinguish between individuals with normal maximally attained lung function in their early adulthood who thereafter experience faster than normal FEV1 decline, and those who may achieve a lower than normal maximally attained lung function. This may be the main mechanism behind COPD in the latter group, as the decline in FEV1 during their adult life may be normal or only slightly faster than normal. Regardless of the FEV1 trajectory, continuous smoking is strongly associated with disease progression, development of structural lung disease and poor prognosis. In developing countries, factors such as exposure to biomass and sequelae after tuberculosis may lead to a more airway-centred COPD phenotype than seen in smokers. Mechanistically, COPD is characterized by a combination of structural and inflammatory changes. It is unlikely that all patients share the same individual or combined mechanisms given the heterogeneity of resultant phenotypes. Lung explants, bronchial biopsies and other tissue studies have revealed important features. At the small airway level, progression of COPD is clinically imperceptible, and the pathological course of the disease is poorly described. Asthmatic features can further add confusion. However, the small airway epithelium is likely to represent a key focus of the disease, combining impaired subepithelial crosstalk and structural/inflammatory changes. Insufficient resolution of inflammatory processes may facilitate these changes. Pathologically, epithelial metaplasia, inversion of the goblet to ciliated cell ratio, enlargement of the submucosal glands and neutrophil and CD8-T-cell infiltration can be detected. Evidence of type 2 inflammation is gaining interest in the light of new therapeutic agents. Alarmin biology is a promising area that may permit control of inflammation and partial reversal of structural changes in COPD. Here, we review the latest work describing the development and progression of COPD with a focus on lung function trajectories, exacerbations and survival. We also review mechanisms focusing on epithelial changes associated with COPD and lack of resolution characterizing the underlying inflammatory processes.
Collapse
Affiliation(s)
- Peter Lange
- Department of Internal Medicine, Section of Respiratory Medicine, Copenhagen University Hospital - Herlev, Herlev, Denmark.,Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Engi Ahmed
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France.,Department of Respiratory Diseases, University of Montpellier, CHU Montpellier, INSERM, Montpellier, France
| | - Zakaria Mohamed Lahmar
- Department of Respiratory Diseases, University of Montpellier, CHU Montpellier, INSERM, Montpellier, France
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Arnaud Bourdin
- Department of Respiratory Diseases, University of Montpellier, CHU Montpellier, INSERM, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| |
Collapse
|
32
|
Richmond BW, Mansouri S, Serezani A, Novitskiy S, Blackburn JB, Du RH, Fuseini H, Gutor S, Han W, Schaff J, Vasiukov G, Xin MK, Newcomb DC, Jin L, Blackwell TS, Polosukhin VV. Monocyte-derived dendritic cells link localized secretory IgA deficiency to adaptive immune activation in COPD. Mucosal Immunol 2021; 14:431-442. [PMID: 32968197 PMCID: PMC7946625 DOI: 10.1038/s41385-020-00344-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 02/04/2023]
Abstract
Although activation of adaptive immunity is a common pathological feature of chronic obstructive pulmonary disease (COPD), particularly during later stages of the disease, the underlying mechanisms are poorly understood. In small airways of COPD patients, we found that localized disruption of the secretory immunoglobulin A (SIgA)-containing mucosal immunobarrier correlated with lymphocyte accumulation in airway walls and development of tertiary lymphoid structures (TLS) around small airways. In SIgA-deficient mice, we observed bacterial invasion into the airway epithelial barrier with lymphocytic infiltration and TLS formation, which correlated with the progression of COPD-like pathology with advanced age. Depletion of either CD4+ or CD8+ T lymphocytes reduced the severity of emphysema in SIgA-deficient mice, indicating that adaptive immune activation contributes to progressive lung destruction. Further studies revealed that lymphocyte infiltration into the lungs of SIgA-deficient mice was dependent on monocyte-derived dendritic cells (moDCs), which were recruited through a CCR2-dependent mechanism in response to airway bacteria. Consistent with these results, we found that moDCs were increased in lungs of COPD patients, along with CD4+ and CD8+ effector memory T cells. Together, these data indicate that endogenous bacteria in SIgA-deficient airways orchestrate a persistent and pathologic T lymphocyte response through monocyte recruitment and moDC differentiation.
Collapse
Affiliation(s)
- Bradley W. Richmond
- grid.413806.8Department of Veterans Affairs Medical Center, Nashville, TN USA ,grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Samira Mansouri
- grid.15276.370000 0004 1936 8091Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, Gainesville, FL USA
| | - Ana Serezani
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Sergey Novitskiy
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Jessica B. Blackburn
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Rui-Hong Du
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Hubaida Fuseini
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Sergey Gutor
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Wei Han
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Jacob Schaff
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Georgii Vasiukov
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Matthew K. Xin
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Dawn C. Newcomb
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Lei Jin
- grid.15276.370000 0004 1936 8091Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, Gainesville, FL USA
| | - Timothy S. Blackwell
- grid.413806.8Department of Veterans Affairs Medical Center, Nashville, TN USA ,grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Vasiliy V. Polosukhin
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| |
Collapse
|
33
|
Southworth T, Higham A, Kolsum U, Li J, Scott T, Dungwa J, Sridhar S, Pham TH, Newbold P, Singh D. The relationship between airway immunoglobulin activity and eosinophils in COPD. J Cell Mol Med 2020; 25:2203-2212. [PMID: 33369092 PMCID: PMC7882983 DOI: 10.1111/jcmm.16206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
In chronic obstructive pulmonary disease (COPD), the effects of inhaled corticosteroids are predicted by blood eosinophil counts. We previously briefly reported increased immunoglobulin (Ig)A and IgM levels in bronchoalveolar lavage (BAL) of COPD patients with higher (eosinophilhigh) compared to lower (eosinophillow) blood eosinophils (>250/μL versus < 150/μL), suggesting differences in adaptive immune function. An inverse relationship exists between eosinophil counts and airway pathogenic bacteria levels. The mechanistic reasons for these associations between eosinophils, corticosteroids and pathogenic bacteria are unclear. IgA, IgM and IgG levels were assessed in BAL, bronchial biopsies and epithelium collected from eosinophilhigh (n = 20) and eosinophillow (n = 21) patients. Bronchial B‐cell numbers were measured by immunohistochemistry. B‐cell activity was assessed in bronchial samples and following exposure to BAL from eosinophilhigh and eosinophillow patients. BAL levels of non‐typeable Haemophilus influenza (NTHi)‐specific immunoglobulins were quantified. Results showed airway expression of IgA, IgG1 and IgM were lower in eosinophillow compared to eosinophilhigh patients, with lower levels of NTHi‐specific IgA and IgM. Bronchial B‐cell numbers were similar in both groups, but B‐cell activity was lower in eosinophillow patients. In conclusion, COPD eosinophillow patients show differences in adaptive immune function compared to COPD eosinophilhigh patients. These differences may cause different microbiomes in these COPD phenotypes.
Collapse
Affiliation(s)
- Thomas Southworth
- Division of Infection, Immunity and Respiratory Medicine, Manchester University NHS Foundation Trust, University of Manchester, Manchester, UK.,Medicines Evaluation Unit, Manchester, UK
| | - Andrew Higham
- Division of Infection, Immunity and Respiratory Medicine, Manchester University NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Umme Kolsum
- Division of Infection, Immunity and Respiratory Medicine, Manchester University NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Jian Li
- Division of Infection, Immunity and Respiratory Medicine, Manchester University NHS Foundation Trust, University of Manchester, Manchester, UK
| | | | | | - Sriram Sridhar
- Translational Science, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Tuyet-Hang Pham
- Translational Science & Experimental Medicine, Early Respiratory & Immunology, Research & Early Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Paul Newbold
- BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD, USA
| | - Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, Manchester University NHS Foundation Trust, University of Manchester, Manchester, UK.,Medicines Evaluation Unit, Manchester, UK
| |
Collapse
|
34
|
Almuntashiri S, Zhu Y, Han Y, Wang X, Somanath PR, Zhang D. Club Cell Secreted Protein CC16: Potential Applications in Prognosis and Therapy for Pulmonary Diseases. J Clin Med 2020; 9:jcm9124039. [PMID: 33327505 PMCID: PMC7764992 DOI: 10.3390/jcm9124039] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Club cell secretory protein (CC16) is encoded by the SCGB1A1 gene. It is also known as CC10, secretoglobin, or uteroglobin. CC16 is a 16 kDa homodimeric protein secreted primarily by the non-ciliated bronchial epithelial cells, which can be detected in the airways, circulation, sputum, nasal fluid, and urine. The biological activities of CC16 and its pathways have not been completely understood, but many studies suggest that CC16 has anti-inflammatory and anti-oxidative effects. The human CC16 gene is located on chromosome 11, p12-q13, where several regulatory genes of allergy and inflammation exist. Studies reveal that factors such as gender, age, obesity, renal function, diurnal variation, and exercise regulate CC16 levels in circulation. Current findings indicate CC16 not only may reflect the pathogenesis of pulmonary diseases, but also could serve as a potential biomarker in several lung diseases and a promising treatment for chronic obstructive pulmonary disease (COPD). In this review, we summarize our current understanding of CC16 in pulmonary diseases.
Collapse
Affiliation(s)
- Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (Y.Z.); (Y.H.); (P.R.S.)
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (Y.Z.); (Y.H.); (P.R.S.)
| | - Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (Y.Z.); (Y.H.); (P.R.S.)
| | - Xiaoyun Wang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA;
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (Y.Z.); (Y.H.); (P.R.S.)
- Department of Medicine, Augusta University, Augusta, GA 30912, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (Y.Z.); (Y.H.); (P.R.S.)
- Correspondence: ; Tel.: +1-706-721-6491; Fax: +1-706-721-3994
| |
Collapse
|
35
|
Canonical WNT pathway is activated in the airway epithelium in chronic obstructive pulmonary disease. EBioMedicine 2020; 61:103034. [PMID: 33045470 PMCID: PMC7559244 DOI: 10.1016/j.ebiom.2020.103034] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a devastating lung disease, mainly due to cigarette smoking, which represents the third cause of mortality worldwide. The mechanisms driving its epithelial salient features remain largely elusive. We aimed to evaluate the activation and the role of the canonical, β-catenin-dependant WNT pathway in the airway epithelium from COPD patients. METHODS The WNT/β-catenin pathway was first assessed by WNT-targeted RNA sequencing of the air/liquid interface-reconstituted bronchial epithelium from COPD and control patients. Airway expression of total and active β-catenin was assessed in lung sections, as well as WNT components in laser-microdissected airway epithelium. Finally, we evaluated the role of WNT at the bronchial epithelial level by modulating the pathway in the reconstituted COPD epithelium. FINDINGS We show that the WNT/β-catenin pathway is upregulated in the COPD airway epithelium as compared with that of non-smokers and control smokers, in targeted RNA-sequencing of in vitro reconstituted airway epithelium, and in situ in lung tissue and laser-microdissected epithelium. Extrinsic activation of this pathway in COPD-derived airway epithelium inhibited epithelial differentiation, polarity and barrier function, and induced TGF-β-related epithelial-to-mesenchymal transition (EMT). Conversely, canonical WNT inhibition increased ciliated cell numbers, epithelial polarity and barrier function, whilst inhibiting EMT, thus reversing COPD features. INTERPRETATION In conclusion, the aberrant reactivation of the canonical WNT pathway in the adult airway epithelium recapitulates the diseased phenotype observed in COPD patients, suggesting that this pathway or its downstream effectors could represent a future therapeutic target. FUNDING This study was supported by the Fondation Mont-Godinne, the FNRS and the WELBIO.
Collapse
|
36
|
Yang YY, Lin CJ, Wang CC, Chen CM, Kao WJ, Chen YH. Consecutive Hypoxia Decreases Expression of NOTCH3, HEY1, CC10, and FOXJ1 via NKX2-1 Downregulation and Intermittent Hypoxia-Reoxygenation Increases Expression of BMP4, NOTCH1, MKI67, OCT4, and MUC5AC via HIF1A Upregulation in Human Bronchial Epithelial Cells. Front Cell Dev Biol 2020; 8:572276. [PMID: 33015064 PMCID: PMC7500169 DOI: 10.3389/fcell.2020.572276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/17/2020] [Indexed: 01/11/2023] Open
Abstract
Previous studies have shown that the experimental models of hypoxia-reoxygenation (H/R) mimics the physiological conditions of ischemia-reperfusion and induce oxidative stress and injury in various types of organs, tissues, and cells, both in vivo and in vitro, including human lung adenocarcinoma epithelial cells. Nonetheless, it had not been reported whether H/R affected proliferation, apoptosis, and expression of stem/progenitor cell markers in the bronchial epithelial cells. In this study, we investigated differential effects of consecutive hypoxia and intermittent 24/24-h cycles of H/R on human bronchial epithelial (HBE) cells derived from the same-race and age-matched healthy subjects (i.e., NHBE) and subjects with chronic obstructive pulmonary disease (COPD) (i.e., DHBE). To analyze gene/protein expression during differentiation, both the NHBE and DHBE cells at the 2nd passage were cultured at the air-liquid interface (ALI) in the differentiation medium under normoxia for 3 days, followed by either culturing under hypoxia (1% O2) for consecutively 9 days and then returning to normoxia for another 9 days, or culturing under 24/24-h cycles of H/R (i.e., 24 h of 1% O2 followed by 24 h of 21% O2, repetitively) for 18 days in total, so that all differentiating HBE cells were exposed to hypoxia for a total of 9 days. In both the normal and diseased HBE cells, intermittent H/R significantly increased HIF1A, BMP4, NOTCH1, MKI67, OCT4, and MUC5AC expression, while consecutive hypoxia significantly decreased NKX2-1, NOTCH3, HEY1, CC10, and FOXJ1 expression. Inhibition of HIF1A or NKX2-1 expression by siRNA transfection respectively decreased BMP4/NOTCH1/MKI67/OCT4/MUC5AC and NOTCH3/HEY1/CC10/FOXJ1 expression in the HBE cells cultured under intermittent H/R to the same levels under normoxia. Overexpression of NKX2-1 via cDNA transfection caused more than 2.8-fold increases in NOTCH3, HEY1, and FOXJ1 mRNA levels in the HBE cells cultured under consecutive hypoxia compared to the levels under normoxia. Taken together, our results show for the first time that consecutive hypoxia decreased expression of the co-regulated gene module NOTCH3/HEY1/CC10 and the ciliogenesis-inducing transcription factor gene FOXJ1 via NKX2-1 mRNA downregulation, while intermittent H/R increased expression of the co-regulated gene module BMP4/NOTCH1/MKI67/OCT4 and the predominant airway mucin gene MUC5AC via HIF1A mRNA upregulation.
Collapse
Affiliation(s)
- Yung-Yu Yang
- Department of General Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chao-Ju Lin
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chin Wang
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan.,Section of Respiratory Therapy, Rueifang Miner Hospital, New Taipei City, Taiwan
| | - Chieh-Min Chen
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Jen Kao
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Hui Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
37
|
Lung immunoglobulin A immunity dysregulation in cystic fibrosis. EBioMedicine 2020; 60:102974. [PMID: 32927272 PMCID: PMC7495088 DOI: 10.1016/j.ebiom.2020.102974] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In cystic fibrosis (CF), recurrent infections suggest impaired mucosal immunity but whether production of secretory immunoglobulin A (S-IgA) is impaired remains elusive. S-IgA is generated following polymeric immunoglobulin receptor (pIgR)-mediated transepithelial transport of dimeric (d-)IgA and represents a major defence through neutralisation of inhaled pathogens like Pseudomonas aeruginosa (Pa). METHODS Human lung tissue (n = 74), human sputum (n = 118), primary human bronchial epithelial cells (HBEC) (cultured in air-liquid interface) (n = 19) and mouse lung tissue and bronchoalveolar lavage were studied for pIgR expression, IgA secretion and regulation. FINDINGS Increased epithelial pIgR immunostaining was observed in CF lung explants, associated with more IgA-producing plasma cells, sputum and serum IgA, especially Pa-specific IgA. In contrast, pIgR and IgA transport were downregulated in F508del mice, CFTR-inhibited HBEC, and CF HBEC. Moreover, the unfolded protein response (UPR) due to F508del mutation, inhibited IgA transport in Calu-3 cells. Conversely, pIgR expression and IgA secretion were strongly upregulated following Pa lung infection in control and F508del mice, through an inflammatory host response involving interleukin-17. INTERPRETATION A complex regulation of IgA secretion occurs in the CF lung, UPR induced by CFTR mutation/dysfunction inhibiting d-IgA transcytosis, and Pa infection unexpectedly unleashing this secretory defence mechanism. FUNDING This work was supported by the Forton's grant of the King Baudouin's Foundation, Belgium, the Fondazione Ricerca Fibrosi Cistica, Italy, and the Fonds National de la Recherche Scientifique, Belgium.
Collapse
|
38
|
Milne S, Li X, Hernandez Cordero AI, Yang CX, Cho MH, Beaty TH, Ruczinski I, Hansel NN, Bossé Y, Brandsma CA, Sin DD, Obeidat M. Protective effect of club cell secretory protein (CC-16) on COPD risk and progression: a Mendelian randomisation study. Thorax 2020; 75:934-943. [PMID: 32839289 DOI: 10.1136/thoraxjnl-2019-214487] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND The anti-inflammatory pneumoprotein club cell secretory protein-16 (CC-16) is associated with the clinical expression of chronic obstructive pulmonary disease (COPD). We aimed to determine if there is a causal effect of serum CC-16 level on the risk of having COPD and/or its progression using Mendelian randomisation (MR) analysis. METHODS We performed a genome-wide association meta-analysis for serum CC-16 in two COPD cohorts (Lung Health Study (LHS), n=3850 and ECLIPSE, n=1702). We then used the CC-16-associated single-nucleotide polymorphisms (SNPs) as instrumental variables in MR analysis to identify a causal effect of serum CC-16 on 'COPD risk' (ie, case status in the International COPD Genetics Consortium/UK-Biobank dataset; n=35 735 COPD cases, n=222 076 controls) and 'COPD progression' (ie, annual change in forced expiratory volume in 1 s in LHS and ECLIPSE). We also determined the associations between SNPs associated with CC-16 and gene expression using n=1111 lung tissue samples from the Lung Expression Quantitative Trait Locus Study. RESULTS We identified seven SNPs independently associated (p<5×10-8) with serum CC-16 levels; six of these were novel. MR analysis suggested a protective causal effect of increased serum CC-16 on COPD risk (MR estimate (SE) -0.11 (0.04), p=0.008) and progression (LHS only, MR estimate (SE) 7.40 (3.28), p=0.02). Five of the SNPs were also associated with gene expression in lung tissue (at false discovery rate <0.1) of several genes, including the CC-16-encoding gene SCGB1A1. CONCLUSION We have identified several novel genetic variants associated with serum CC-16 level in COPD cohorts. These genetic associations suggest a potential causal effect of serum CC-16 on the risk of having COPD and its progression, the biological basis of which warrants further investigation.
Collapse
Affiliation(s)
- Stephen Milne
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada .,Division of Respiratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Xuan Li
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ana I Hernandez Cordero
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Chen Xi Yang
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael H Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Terri H Beaty
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nadia N Hansel
- Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Québec City, Québec, Canada
| | - Corry-Anke Brandsma
- University of Groningen Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Don D Sin
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada.,Division of Respiratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Maen Obeidat
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
39
|
Lin J, Li J, Shu M, Wu W, Zhang W, Dou Q, Wu J, Zeng X. The rCC16 Protein Protects Against LPS-Induced Cell Apoptosis and Inflammatory Responses in Human Lung Pneumocytes. Front Pharmacol 2020; 11:1060. [PMID: 32760279 PMCID: PMC7371929 DOI: 10.3389/fphar.2020.01060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/30/2020] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Our previous clinical study showed that low lung levels of CC16 strongly influence the occurrence and development of ARDS. The aim of the present study was to evaluate the therapeutic effect of rCC16 on LPS-induced inflammation in A549 cells and to determine its mechanism. METHODS Cell apoptosis and inflammation was induced by LPS stimulation. The cytotoxic effect of rCC16 was evaluated using the MTT assay. Cytokine levels were determined using enzyme-linked immunosorbent assays. The molecular mechanism of rCC16 was investigated by analyzing relevant signaling pathways. RESULTS The LPS treatment of A549 cells significantly decreased cell viability, increased the levels of the apoptotic proteins Bax, Bak and Cleaved Caspase-3, the secretion of inflammatory cytokines, and the expression levels of TLR4, p-NF/κB, MAPK proteins. While the levels of Bcl-2, p-AKT, p-mTOR, p-ERK1/2, NF/κB, p-AMPK, and p-p38 were significantly decreased in LPS-treated A549 cells. Our experimental results also confirmed that rCC16 inhibited LPS-induced apoptosis, promoted A549 cell proliferation by activating the PI3K/AKT/mTOR/ERK1/2 pathway, and inhibited the release of certain inflammatory factors, especially HMGB1, through dephosphorylation and inactivation of the TLR4/NF-κB/AMPK signaling pathways. CONCLUSION These results highlight the potential utility of CC16 as an important cytokine for the prevention or treatment of inflammation and show that CC16 may play an important role in the future clinical treatment of ARDS.
Collapse
Affiliation(s)
- Jinle Lin
- Department of Emergency Medicine, Shenzhen Baoan First People’s Hospital, Nanfang Medical University, Shenzhen, China
- Department of Respiratory and Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Jiemei Li
- Center Laboratory of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Min Shu
- Emergency Department, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Weigang Wu
- Center Laboratory of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Wenwu Zhang
- Department of Emergency Medicine, Shenzhen Baoan First People’s Hospital, Nanfang Medical University, Shenzhen, China
| | - Qingli Dou
- Department of Emergency Medicine, Shenzhen Baoan First People’s Hospital, Nanfang Medical University, Shenzhen, China
| | - Jian Wu
- Department of Respiratory and Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Xiaobin Zeng
- Center Laboratory of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, China
| |
Collapse
|
40
|
Ladjemi MZ, Gras D, Gohy S, Chanez P, Pilette C. Reply to Upham: The Bronchial Epithelial Secretory IgA System in Asthma. Am J Respir Crit Care Med 2019; 198:1236-1238. [PMID: 30059234 DOI: 10.1164/rccm.201806-1128le] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Maha Zohra Ladjemi
- 1 Université Catholique de Louvain Brussels, Belgium.,2 Institute for Walloon Excellence in Life Sciences and Biotechnology Brussels, Belgium
| | | | - Sophie Gohy
- 1 Université Catholique de Louvain Brussels, Belgium.,4 Cliniques Universitaires Saint-Luc Brussels, Belgium and
| | - Pascal Chanez
- 3 Université Aix-Marseille Marseille, France.,5 Hôpital Nord Marseille, France
| | - Charles Pilette
- 1 Université Catholique de Louvain Brussels, Belgium.,2 Institute for Walloon Excellence in Life Sciences and Biotechnology Brussels, Belgium.,4 Cliniques Universitaires Saint-Luc Brussels, Belgium and
| |
Collapse
|
41
|
Ladjemi MZ, Gras D, Dupasquier S, Detry B, Lecocq M, Garulli C, Fregimilicka C, Bouzin C, Gohy S, Chanez P, Pilette C. Bronchial Epithelial IgA Secretion Is Impaired in Asthma. Role of IL-4/IL-13. Am J Respir Crit Care Med 2019; 197:1396-1409. [PMID: 29652177 DOI: 10.1164/rccm.201703-0561oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
RATIONALE Asthma is associated with increased lung IgE production, but whether the secretory IgA system is affected in this disease remains unknown. OBJECTIVES We explored mucosal IgA transport in human asthma and its potential regulation by T-helper cell type 2 inflammation. METHODS Bronchial biopsies from asthma and control subjects were assayed for bronchial epithelial polymeric immunoglobulin receptor (pIgR) expression and correlated to T-helper cell type 2 biomarkers. Bronchial epithelium reconstituted in vitro from these subjects, on culture in air-liquid interface, was assayed for pIgR expression and regulation by IL-4/IL-13. MEASUREMENTS AND MAIN RESULTS Downregulation of pIgR protein was observed in the bronchial epithelium from patients with asthma (P = 0.0002 vs. control subjects). This epithelial defect was not observed ex vivo in the cultured epithelium from patients with asthma. Exogenous IL-13 and IL-4 could inhibit pIgR expression and IgA transcytosis. Mechanistic experiments showed that autocrine transforming growth factor-β mediates the IL-4/IL-13 effect on the pIgR, with a partial contribution of upregulated transforming growth factor-α/epidermal growth factor receptor. CONCLUSIONS This study shows impaired bronchial epithelial pIgR expression in asthma, presumably affecting secretory IgA-mediated frontline defense as a result of type 2 immune activation of the transforming growth factor pathway.
Collapse
Affiliation(s)
- Maha Zohra Ladjemi
- 1 Pôle de Pneumologie, ORL, et Dermatologie and.,2 Institute for Walloon Excellence in Lifesciences and Biotechnology, Brussels, Belgium
| | - Delphine Gras
- 3 INSERM U 1067, CNRS UMR 7333, Université Aix-Marseille, Marseille, France
| | | | - Bruno Detry
- 1 Pôle de Pneumologie, ORL, et Dermatologie and.,2 Institute for Walloon Excellence in Lifesciences and Biotechnology, Brussels, Belgium
| | - Marylène Lecocq
- 1 Pôle de Pneumologie, ORL, et Dermatologie and.,4 Service de Pneumologie, Cliniques universitaires Saint-Luc, Brussels, Belgium; and
| | - Céline Garulli
- 3 INSERM U 1067, CNRS UMR 7333, Université Aix-Marseille, Marseille, France
| | - Chantal Fregimilicka
- 5 Imaging Platform, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Caroline Bouzin
- 5 Imaging Platform, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Sophie Gohy
- 1 Pôle de Pneumologie, ORL, et Dermatologie and.,4 Service de Pneumologie, Cliniques universitaires Saint-Luc, Brussels, Belgium; and
| | - Pascal Chanez
- 3 INSERM U 1067, CNRS UMR 7333, Université Aix-Marseille, Marseille, France.,6 Clinique des bronches, de l'allergie et du sommeil, Hôpital Nord, Assistance Publique Hôpitaux de Marseille (APHM), Marseille, France
| | - Charles Pilette
- 1 Pôle de Pneumologie, ORL, et Dermatologie and.,2 Institute for Walloon Excellence in Lifesciences and Biotechnology, Brussels, Belgium.,4 Service de Pneumologie, Cliniques universitaires Saint-Luc, Brussels, Belgium; and
| |
Collapse
|
42
|
Li XX, Peng T, Gao J, Feng JG, Wu DD, Yang T, Zhong L, Fu WP, Sun C. Allele-specific expression identified rs2509956 as a novel long-distance cis-regulatory SNP for SCGB1A1, an important gene for multiple pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2019; 317:L456-L463. [PMID: 31322430 DOI: 10.1152/ajplung.00275.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
SCGB1A1 (secretoglobin family 1A member 1) is an important protein for multiple pulmonary diseases, especially asthma, chronic obstructive pulmonary disease, and lung cancer. One single-nucleotide polymorphism (SNP) at 5'-untranslated region of SCGB1A1, rs3741240, has been suggested to be associated with reduced protein expression and further asthma susceptibility. However, it was still unclear whether there were other cis-regulatory elements for SCGB1A1 that might further contribute to pulmonary diseases. Allele-specific expression (ASE) is a novel approach to identify the functional region in human genome. In the present study, we measured ASE on rs3741240 in lung tissues and observed a consistent excess of G allele over A (P < 10-6), which indicated that this SNP or the one(s) in linkage disequilibrium (LD) could regulate SCGB1A1 expression. By analyzing 1000 Genomes Project data for Chinese, one SNP locating ~10.2 kb away and downstream of SCGB1A1, rs2509956, was identified to be in strong LD with rs3741240. Reporter gene assay confirmed that both SNPs could regulate gene expression in the lung cell. By chromosome conformation capture, it was verified that the region surrounding rs2509956 could interact with SCGB1A1 promoter region and act as an enhancer. Through chromatin immunoprecipitation and overexpression assay, the related transcription factor RELA (RELA proto-oncogene, NF-kB subunit) was recognized to bind the region spanning rs2509956. Our work identified a novel long-distance cis-regulatory SNP for SCGB1A1, which might contribute to multiple pulmonary diseases.
Collapse
Affiliation(s)
- Xiu-Xiong Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Tao Peng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Jing Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Jia-Gang Feng
- Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Dan-Dan Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, People's Republic of China
| | - Ting Yang
- Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Li Zhong
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, People's Republic of China.,Provincial Demonstration Center for Experimental Biology Education, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Wei-Ping Fu
- Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Chang Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, People's Republic of China
| |
Collapse
|
43
|
Stampfli MR, Churg AM. Does Compromised Immune Exclusion Drive Inflammatory Processes in Chronic Obstructive Pulmonary Disease? Am J Respir Cell Mol Biol 2019; 58:671-672. [PMID: 29856258 DOI: 10.1165/rcmb.2018-0039ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Martin R Stampfli
- 1 McMaster Immunology Research Centre.,2 Firestone Institute for Respiratory Health at St. Joseph's Healthcare McMaster University Hamilton, Ontario, Canada and
| | - Andrew M Churg
- 3 Department of Pathology Vancouver General Hospital, and University of British Columbia Vancouver, British Columbia
| |
Collapse
|
44
|
Zhu L, An L, Ran D, Lizarraga R, Bondy C, Zhou X, Harper RW, Liao SY, Chen Y. The Club Cell Marker SCGB1A1 Downstream of FOXA2 is Reduced in Asthma. Am J Respir Cell Mol Biol 2019; 60:695-704. [PMID: 30576223 PMCID: PMC6543749 DOI: 10.1165/rcmb.2018-0199oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/21/2018] [Indexed: 01/08/2023] Open
Abstract
Human SCGB1A1 protein has been shown to be significantly reduced in BAL, sputum, and serum from humans with asthma as compared with healthy individuals. However, the mechanism of this reduction and its functional impact have not been entirely elucidated. By mining online datasets, we found that the mRNA of SCGB1A1 was significantly repressed in brushed human airway epithelial cells from individuals with asthma, and this repression appeared to be associated with reduced expression of FOXA2. Consistently, both Scgb1A1 and FoxA2 were downregulated in an ovalbumin-induced mouse model of asthma. Furthermore, compared with wild-type mice, Scgb1a1 knockout mice had increased airway hyperreactivity and inflammation when they were exposed to ovalbumin, confirming the antiinflammatory role of Scgb1a1 in protection against asthma phenotypes. To search for potential asthma-related stimuli of SCGB1A1 repression, we tested T-helper cell type 2 cytokines. Both IL-4 and IL-13 repressed epithelial expression of SCGB1A1 and FOXA2. Importantly, infection of epithelial cells with human rhinovirus similarly reduced expression of these two genes, which suggests that FOXA2 may be the common regulator of SCGB1A1. To establish the causal role of reduced FOXA2 in SCGB1A1 repression, we demonstrated that FOXA2 was required for SCGB1A1 expression at baseline. FOXA2 overexpression was sufficient to drive promoter activity and expression of SCGB1A1 and was also able to restore the repressed SCGB1A1 expression in IL-13-treated or rhinovirus-infected cells. Taken together, these findings suggest that low levels of epithelial SCGB1A1 in asthma are caused by reduced FOXA2 expression.
Collapse
Affiliation(s)
- Lingxiang Zhu
- Department of Pharmacology and Toxicology, School of Pharmacy
| | - Lingling An
- Department of Epidemiology Biostatistics
- Interdisciplinary Program in Statistics
- Department of Biosystems Engineering, and
| | - Di Ran
- Department of Epidemiology Biostatistics
| | - Rosa Lizarraga
- Department of Pharmacology and Toxicology, School of Pharmacy
| | - Cheryl Bondy
- Department of Pharmacology and Toxicology, School of Pharmacy
| | - Xu Zhou
- Department of Pharmacology and Toxicology, School of Pharmacy
| | - Richart W. Harper
- Department of Internal Medicine, University of California, Davis, California
| | - Shu-Yi Liao
- Department of Internal Medicine, University of California, Davis, California
| | - Yin Chen
- Department of Pharmacology and Toxicology, School of Pharmacy
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona; and
| |
Collapse
|
45
|
Ladjemi MZ, Burgel PR, Pilette C. Reply to Polverino: Deconvoluting Chronic Obstructive Pulmonary Disease: Are B Cells the Frontrunners? Am J Respir Crit Care Med 2019; 199:1171-1172. [PMID: 30633554 PMCID: PMC6515872 DOI: 10.1164/rccm.201812-2249le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Maha Zohra Ladjemi
- 1 Université Catholique de Louvain Brussels, Belgium.,2 Walloon Excellence in Life Sciences and Biotechnology Brussels, Belgium
| | - Pierre Régis Burgel
- 3 Université Paris Descartes Paris, France.,4 Hôpital Cochin, AP-HP Paris, France and
| | - Charles Pilette
- 1 Université Catholique de Louvain Brussels, Belgium.,2 Walloon Excellence in Life Sciences and Biotechnology Brussels, Belgium.,5 Cliniques Universitaires Saint-Luc Brussels, Belgium
| |
Collapse
|
46
|
Knabe L, Petit A, Vernisse C, Charriot J, Pugnière M, Henriquet C, Sasorith S, Molinari N, Chanez P, Berthet JP, Suehs C, Vachier I, Ahmed E, Bourdin A. CCSP counterbalances airway epithelial-driven neutrophilic chemotaxis. Eur Respir J 2019; 54:13993003.02408-2018. [DOI: 10.1183/13993003.02408-2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 04/08/2019] [Indexed: 11/05/2022]
Abstract
Club cell secretory protein (CCSP) knockout mice exhibit increased airway neutrophilia, as found in chronic obstructive pulmonary disease (COPD). We therefore investigated whether treating COPD airway epithelia with recombinant human CCSP (rhCCSP) could dampen exaggerated airway neutrophilia.Control, smoker and COPD air–liquid interface (ALI) cultures exposed to cigarette smoke extract (CSE) were treated with and without rhCCSP. The chemotactic properties of the supernatants were assessed using Dunn chambers. Neutrophil chemotaxis along recombinant human interleukin 8 (rhIL8) gradients (with and without rhCCSP) was also determined. rhCCSP–rhIL8 interactions were tested through co-immunoprecipitation, Biacore surface plasmon resonance (SPR) andin silicomodelling. The relationship between CCSP/IL8 concentration ratios in the supernatant of induced sputum from COPD patientsversusneutrophilic airway infiltration assessed in lung biopsies was assessed.Increased neutrophilic chemotactic activity of CSE-treated ALI cultures followed IL8 concentrations and returned to normal when supplemented with rhCCSP. rhIL8-induced chemotaxis of neutrophils was reduced by rhCCSP. rhCCSP and rhIL8 co-immunoprecipitated. SPR confirmed thisin vitrointeraction (equilibrium dissociation constant=8 µM).In silicomodelling indicated that this interaction was highly likely. CCSP/IL8 ratios in induced sputum correlated well with the level of small airway neutrophilic infiltration (r2=0.746, p<0.001).CCSP is a biologically relevant counter-balancer of neutrophil chemotactic activity. These different approaches used in this study suggest that, among the possible mechanisms involved, CCSP may directly neutralise IL8.
Collapse
|
47
|
Higham A, Quinn AM, Cançado JED, Singh D. The pathology of small airways disease in COPD: historical aspects and future directions. Respir Res 2019; 20:49. [PMID: 30832670 PMCID: PMC6399904 DOI: 10.1186/s12931-019-1017-y] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/25/2019] [Indexed: 12/16/2022] Open
Abstract
Small airways disease (SAD) is a cardinal feature of chronic obstructive pulmonary disease (COPD) first recognized in the nineteenth century. The diverse histopathological features associated with SAD underpin the heterogeneous nature of COPD. Our understanding of the key molecular mechanisms which drive the pathological changes are not complete. In this article we will provide a historical overview of key histopathological studies which have helped shape our understanding of SAD and discuss the hallmark features of airway remodelling, mucous plugging and inflammation. We focus on the relationship between SAD and emphysema, SAD in the early stages of COPD, and the mechanisms which cause SAD progression, including bacterial colonization and exacerbations. We discuss the need to specifically target SAD to attenuate the progression of COPD.
Collapse
Affiliation(s)
- Andrew Higham
- The University of Manchester Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Anne Marie Quinn
- Department of Histopathology, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Dave Singh
- The University of Manchester Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,Medicines Evaluation Unit, The Langley Building, Southmoor Road, Manchester, UK
| |
Collapse
|
48
|
Ladjemi MZ, Martin C, Lecocq M, Detry B, Nana FA, Moulin C, Weynand B, Fregimilicka C, Bouzin C, Thurion P, Carlier F, Serré J, Gayan-Ramirez G, Delos M, Ocak S, Burgel PR, Pilette C. Increased IgA Expression in Lung Lymphoid Follicles in Severe Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2019; 199:592-602. [DOI: 10.1164/rccm.201802-0352oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Maha Zohra Ladjemi
- Pôle de Pneumologie, ORL & Dermatologie
- Institute for Walloon Excellence in Lifesciences and Biotechnology, Brussels, Belgium
| | - Clémence Martin
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Service de Pneumologie, Hôpital Cochin, Paris, France
| | - Marylène Lecocq
- Pôle de Pneumologie, ORL & Dermatologie
- Service de Pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bruno Detry
- Pôle de Pneumologie, ORL & Dermatologie
- Institute for Walloon Excellence in Lifesciences and Biotechnology, Brussels, Belgium
| | | | | | | | - Chantal Fregimilicka
- Institut de Recherche Expérimentale & Clinique Imaging Platform, Institut de Recherche Expérimentale & Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Caroline Bouzin
- Institut de Recherche Expérimentale & Clinique Imaging Platform, Institut de Recherche Expérimentale & Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Pascal Thurion
- Service d’anatomopathologie, CHU de Mont-Godinne, Yvoir, Belgium
| | | | - Jef Serré
- KU Leuven, Laboratory of Respiratory Diseases, Leuven, Belgium; and
| | | | - Monique Delos
- Service d’anatomopathologie, CHU de Mont-Godinne, Yvoir, Belgium
| | - Sebahat Ocak
- Pôle de Pneumologie, ORL & Dermatologie
- Service de Pneumologie, CHU Université Catholique de Louvain Namur (Site Godinne), Yvoir, Belgium
| | - Pierre Régis Burgel
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Service de Pneumologie, Hôpital Cochin, Paris, France
| | - Charles Pilette
- Pôle de Pneumologie, ORL & Dermatologie
- Institute for Walloon Excellence in Lifesciences and Biotechnology, Brussels, Belgium
- Service de Pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
49
|
Curtis JL. B Cells Caught in the Act: Class Switching to IgA in Lung Lymphoid Follicles in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2019; 199:548-550. [PMID: 30352169 PMCID: PMC6396857 DOI: 10.1164/rccm.201810-1907ed] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Jeffrey L Curtis
- 1 Medical Service VA Ann Arbor Healthcare System Ann Arbor, Michigan and
- 2 Pulmonary & Critical Care Medicine Division University of Michigan Ann Arbor, Michigan
| |
Collapse
|
50
|
Ji S, Wu C, Tong L, Wang L, Zhou J, Chen C, Song Y. Better therapeutic potential of bone marrow-derived mesenchymal stem cells compared with chorionic villi-derived mesenchymal stem cells in airway injury model. Regen Med 2019; 14:165-177. [PMID: 30994416 DOI: 10.2217/rme-2018-0152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: To determine the efficiency of mesenchymal stem cells (MSCs) of different sources on airway epithelial cells regeneration and track where and to what extent transplanted MSCs home to injured tissues. Materials & methods: We performed DiO-labeled human bone marrow-derived MSCs (hBMSCs) or human chorionic villi-derived MSCs transplantation studies using naphthalene-induced airway injury animal models. Results: Compared with human chorionic villi-derived MSCs, hBMSCs facilitated airway epithelium regeneration faster and better from day 5 after transplantation; moreover, more transplanted hBMSCs distributed in injured lung tissues at the early stage of postinjury, which was mediated by C-X-C motif chemokine ligand 12. Conclusion: hBMSCs possessed better potential of migration to the damaged lung and promoting the repair of the injured airway epithelium.
Collapse
Affiliation(s)
- Shimeng Ji
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chaomin Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Qingpu Branch, Fudan University, Shanghai 201700, China
| | - Lin Tong
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Linlin Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Zhou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cuicui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Department of Pulmonary Medicine, Zhongshan Hospital, Qingpu Branch, Fudan University, Shanghai 201700, China.,Shanghai Public Health Clinical Center, Shanghai 201508, China.,National Clinical Research Center for Aging & Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|