1
|
Guilleminault L, Mazzone SB, Chazelas P, Frachet S, Lia AS, Magy L. Cerebellar ataxia, neuropathy and vestibular areflexia syndrome: a neurogenic cough prototype. ERJ Open Res 2024; 10:00024-2024. [PMID: 39076534 PMCID: PMC11284589 DOI: 10.1183/23120541.00024-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/08/2024] [Indexed: 07/31/2024] Open
Abstract
Chronic cough is a frequent disorder that is defined by cough of more than 8 weeks duration. Despite extensive investigation, some patients exhibit no aetiology and others do not respond to specific treatments directed against apparent causes of cough. Such patients are identified as having unexplained or refractory chronic cough. Recently, a high proportion of patients with chronic cough in the context of cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) was highlighted. CANVAS is a rare neurological disorder with a biallelic variation in the replication factor C subunit 1 (RFC1) gene corresponding mostly to an intronic AAGGG repeat expansion. Chronic cough in patients with CANVAS shares similar characteristics with cough hypersensitivity syndrome. The high prevalence of chronic cough in CANVAS gives the opportunity to better understand the neurogenic mechanism of chronic cough. In this review, we will describe the characteristics and mechanisms of CANVAS. We will also address the potential mechanisms responsible for chronic cough in CANVAS. Finally, we will address chronic cough management in the context of CANVAS.
Collapse
Affiliation(s)
- Laurent Guilleminault
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France
- Department of Respiratory Medicine, Faculty of Medicine, Toulouse University Hospital, Toulouse, France
- These authors contributed equally to this work
| | - Stuart B. Mazzone
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
- These authors contributed equally to this work
| | - Pauline Chazelas
- Service de Biochimie et Génétique Moléculaire, CHU Limoges, Limoges, France
- NeurIT-UR20218, Université de Limoges, Limoges, France
| | - Simon Frachet
- NeurIT-UR20218, Université de Limoges, Limoges, France
- Service et Laboratoire de Neurologie, Centre de Référence “Neuropathies Périphériques Rares (NNerf)”, CHU Limoges, Limoges, France
| | - Anne-Sophie Lia
- Service de Biochimie et Génétique Moléculaire, CHU Limoges, Limoges, France
- NeurIT-UR20218, Université de Limoges, Limoges, France
- Service de Bioinformatique, CHU Limoges, Limoges, France
| | - Laurent Magy
- NeurIT-UR20218, Université de Limoges, Limoges, France
- Service et Laboratoire de Neurologie, Centre de Référence “Neuropathies Périphériques Rares (NNerf)”, CHU Limoges, Limoges, France
| |
Collapse
|
2
|
Huo L, Ye Z, Liu M, He Z, Huang M, Li D, Wu Q, Wang Q, Wang X, Cao P, Dong J, Shang C. Brain circuits for retching-like behavior. Natl Sci Rev 2024; 11:nwad256. [PMID: 38288368 PMCID: PMC10824557 DOI: 10.1093/nsr/nwad256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/06/2023] [Accepted: 09/24/2023] [Indexed: 01/31/2024] Open
Abstract
Nausea and vomiting are important defensive responses to cope with pathogens and toxins that invade the body. The nucleus of the solitary tract (NTS) is important for initiating these responses. However, the molecular heterogeneities and cellular diversities of the NTS occlude a better understanding of these defensive responses. Here, we constructed the single-nucleus transcriptomic atlas of NTS cells and found multiple populations of NTS neurons that may be involved in these defensive responses. Among these, we identified Calbindin1-positive (Calb1+) NTS neurons that are molecularly distinct from Tac1+ neurons. These Calb1+ neurons are critical for nausea and retching induced by cereulide; an emetic toxin secreted by Bacillus Cereus. Strikingly, we found that cereulide can directly modulate vagal sensory neurons that innervate Calb1+ NTS neurons, a novel mechanism distinct from that for nausea and retching induced by Staphylococcal enterotoxin A. Together, our transcriptomic atlas of NTS neurons and the functional analyses revealed the neural mechanism for cereulide-induced retching-like behavior. These results demonstrate the molecular and cellular complexities in the brain that underlie defensive responses to the diversities of pathogens and toxins.
Collapse
Affiliation(s)
- Lifang Huo
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Zhimin Ye
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
| | - Meiling Liu
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Ziqing He
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
| | - Meizhu Huang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Dapeng Li
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qian Wang
- Changping Life Science Laboratory, Beijing 102299, China
| | - Xiaoqun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ji Dong
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
| | - Congping Shang
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| |
Collapse
|
3
|
Diamine Oxidase Activity Deficit and Idiopathic Rhinitis: A New Subgroup of Non-Allergic Rhinitis? Life (Basel) 2023; 13:life13010240. [PMID: 36676189 PMCID: PMC9865160 DOI: 10.3390/life13010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Idiopathic rhinitis represents more than 50% of non-allergic rhinitis, a heterogeneous group that involves the symptomatic inflammation of the nasal mucosa. The TRPV1 receptor of unmyelinated C-type neurons appears to be involved in its pathophysiology. Histamine, whose main catabolic enzyme is DAO, is one of the mediators that can activate this receptor. The failure of DAO causes an increase in the level of histamine in the body and, consequently, the activation of TRPV1. The objective was to investigate the existence of a DAO enzyme activity deficit in idiopathic rhinitis and its correlation with symptoms. A cross-sectional study was conducted in 116 idiopathic rhinitis patients, and DAO activity, nasal peak inspiratory flow, and rhinitis severity were recorded. The prevalence of a DAO activity deficit was 41.38% (95%CI 0.33−0.50; p = 0.05). The DAO activity in patients with mild rhinitis was 52.93 ± 8.72 HDU/mL, in those with moderate rhinitis it was 120.33 ± 71.63 HDU/mL, and in those with severe rhinitis it was 92.58 ± 27.75 HDU/mL (p = 0.006). The NPIF in patients with a DAO activity deficit was 107.92 ± 34.05 L/min, compared to 72.35 ± 27.16 L/min in patients with normal enzymatic activity (p < 0.001), demonstrating a linear correlation between activity levels and nasal obstruction (−0.45; p < 0.001). Therefore, patients with a DAO deficiency and idiopathic rhinitis could present a milder disease course, because the repeated and continuous activation of TRPV1 led to a partial or total decrease in their response (desensitization). This new theory represents a different perspective for the study of idiopathic rhinitis and its relationship with TRPV1, with the regulation or modulation of the desensitization of TRPV1 being an important therapeutic target for patients with idiopathic rhinitis in the future.
Collapse
|
4
|
Regulatory Peptides in Asthma. Int J Mol Sci 2021; 22:ijms222413656. [PMID: 34948451 PMCID: PMC8707337 DOI: 10.3390/ijms222413656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Numerous regulatory peptides play a critical role in the pathogenesis of airway inflammation, airflow obstruction and hyperresponsiveness, which are hallmarks of asthma. Some of them exacerbate asthma symptoms, such as neuropeptide Y and tachykinins, while others have ameliorating properties, such as nociception, neurotensin or β-defensin 2. Interacting with peptide receptors located in the lungs or on immune cells opens up new therapeutic possibilities for the treatment of asthma, especially when it is resistant to available therapies. This article provides a concise review of the most important and current findings regarding the involvement of regulatory peptides in asthma pathology.
Collapse
|
5
|
Drake MG, Cook M, Fryer AD, Jacoby DB, Scott GD. Airway Sensory Nerve Plasticity in Asthma and Chronic Cough. Front Physiol 2021; 12:720538. [PMID: 34557110 PMCID: PMC8452850 DOI: 10.3389/fphys.2021.720538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/02/2021] [Indexed: 01/21/2023] Open
Abstract
Airway sensory nerves detect a wide variety of chemical and mechanical stimuli, and relay signals to circuits within the brainstem that regulate breathing, cough, and bronchoconstriction. Recent advances in histological methods, single cell PCR analysis and transgenic mouse models have illuminated a remarkable degree of sensory nerve heterogeneity and have enabled an unprecedented ability to test the functional role of specific neuronal populations in healthy and diseased lungs. This review focuses on how neuronal plasticity contributes to development of two of the most common airway diseases, asthma and chronic cough, and discusses the therapeutic implications of emerging treatments that target airway sensory nerves.
Collapse
Affiliation(s)
- Matthew G. Drake
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Madeline Cook
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Allison D. Fryer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - David B. Jacoby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Gregory D. Scott
- Department of Pathology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
6
|
Verzele NAJ, Chua BY, Law CW, Zhang A, Ritchie ME, Wightman O, Edwards IN, Hulme KD, Bloxham CJ, Bielefeldt-Ohmann H, Trewella MW, Moe AAK, Chew KY, Mazzone SB, Short KR, McGovern AE. The impact of influenza pulmonary infection and inflammation on vagal bronchopulmonary sensory neurons. FASEB J 2021; 35:e21320. [PMID: 33660333 DOI: 10.1096/fj.202001509r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/20/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022]
Abstract
Influenza A virus (IAV) is rapidly detected in the airways by the immune system, with resident parenchymal cells and leukocytes orchestrating viral sensing and the induction of antiviral inflammatory responses. The airways are innervated by heterogeneous populations of vagal sensory neurons which also play an important role in pulmonary defense. How these neurons respond to IAV respiratory infection remains unclear. Here, we use a murine model to provide the first evidence that vagal sensory neurons undergo significant transcriptional changes following a respiratory IAV infection. RNA sequencing on vagal sensory ganglia showed that IAV infection induced the expression of many genes associated with an antiviral and pro-inflammatory response and this was accompanied by a significant increase in inflammatory cell recruitment into the vagal ganglia. Assessment of gene expression in single-vagal sensory neurons confirmed that IAV infection induced a neuronal inflammatory phenotype, which was most prominent in bronchopulmonary neurons, and also evident in some neurons innervating other organs. The altered transcriptome could be mimicked by intranasal treatment with cytokines and the lung homogenates of infected mice, in the absence of infectious virus. These data argue that IAV pulmonary infection and subsequent inflammation induces vagal sensory ganglia neuroinflammation and this may have important implications for IAV-induced morbidity.
Collapse
Affiliation(s)
- Nathalie A J Verzele
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Brendon Y Chua
- The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Charity W Law
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Albert Zhang
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Matthew E Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Oliver Wightman
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Isaac N Edwards
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Katina D Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Conor J Bloxham
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Matthew W Trewella
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Aung Aung Kywe Moe
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Alice E McGovern
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Song WJ, Hui CKM, Hull JH, Birring SS, McGarvey L, Mazzone SB, Chung KF. Confronting COVID-19-associated cough and the post-COVID syndrome: role of viral neurotropism, neuroinflammation, and neuroimmune responses. THE LANCET. RESPIRATORY MEDICINE 2021; 9:533-544. [PMID: 33857435 PMCID: PMC8041436 DOI: 10.1016/s2213-2600(21)00125-9] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 01/08/2023]
Abstract
Cough is one of the most common presenting symptoms of COVID-19, along with fever and loss of taste and smell. Cough can persist for weeks or months after SARS-CoV-2 infection, often accompanied by chronic fatigue, cognitive impairment, dyspnoea, or pain-a collection of long-term effects referred to as the post-COVID syndrome or long COVID. We hypothesise that the pathways of neurotropism, neuroinflammation, and neuroimmunomodulation through the vagal sensory nerves, which are implicated in SARS-CoV-2 infection, lead to a cough hypersensitivity state. The post-COVID syndrome might also result from neuroinflammatory events in the brain. We highlight gaps in understanding of the mechanisms of acute and chronic COVID-19-associated cough and post-COVID syndrome, consider potential ways to reduce the effect of COVID-19 by controlling cough, and suggest future directions for research and clinical practice. Although neuromodulators such as gabapentin or opioids might be considered for acute and chronic COVID-19 cough, we discuss the possible mechanisms of COVID-19-associated cough and the promise of new anti-inflammatories or neuromodulators that might successfully target both the cough of COVID-19 and the post-COVID syndrome.
Collapse
Affiliation(s)
- Woo-Jung Song
- Department of Allergy and Clinical Immunology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | | | - James H Hull
- Department of Respiratory Medicine, Royal Brompton and Harefield NHS Trust, London, UK
| | - Surinder S Birring
- Centre for Human & Applied Physiological Sciences, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Lorcan McGarvey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Stuart B Mazzone
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Kian Fan Chung
- Department of Respiratory Medicine, Royal Brompton and Harefield NHS Trust, London, UK; Experimental Studies Unit, National Heart & Lung Institute, Imperial College London, UK.
| |
Collapse
|
8
|
Gu Q, Lee LY. TRP channels in airway sensory nerves. Neurosci Lett 2021; 748:135719. [PMID: 33587987 PMCID: PMC7988689 DOI: 10.1016/j.neulet.2021.135719] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Transient Receptor Potential (TRP) channels expressed in specific subsets of airway sensory nerves function as transducers and integrators of a diverse range of sensory inputs including chemical, mechanical and thermal signals. These TRP sensors can detect inhaled irritants as well as endogenously released chemical substances. They play an important role in generating the afferent activity carried by these sensory nerves and regulating the centrally mediated pulmonary defense reflexes. Increasing evidence reported in recent investigations has revealed important involvements of several TRP channels (TRPA1, TRPV1, TRPV4 and TRPM8) in the manifestation of various symptoms and pathogenesis of certain acute and chronic airway diseases. This mini-review focuses primarily on these recent findings of the responses of these TRP sensors to the biological stresses emerging under the pathophysiological conditions of the lung and airways.
Collapse
Affiliation(s)
- Qihai Gu
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA.
| | - Lu-Yuan Lee
- Department of Physiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY, 40536-0298, USA.
| |
Collapse
|
9
|
Zalecki M, Juranek J, Pidsudko Z, Mogielnicka-Brzozowska M, Kaleczyc J, Franke-Radowiecka A. Inferior vagal ganglion galaninergic response to gastric ulcers. PLoS One 2020; 15:e0242746. [PMID: 33227035 PMCID: PMC7682887 DOI: 10.1371/journal.pone.0242746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/06/2020] [Indexed: 01/17/2023] Open
Abstract
Galanin is a neuropeptide widely expressed in central and peripheral nerves and is known to be engaged in neuronal responses to pathological changes. Stomach ulcerations are one of the most common gastrointestinal disorders. Impaired stomach function in peptic ulcer disease suggests changes in autonomic nerve reflexes controlled by the inferior vagal ganglion, resulting in stomach dysfunction. In this paper, changes in the galaninergic response of inferior vagal neurons to gastric ulceration in a pig model of the disease were analyzed based on the authors' previous studies. The study was performed on 24 animals (12 control and 12 experimental). Gastric ulcers were induced by submucosal injections of 40% acetic acid solution into stomach submucosa and bilateral inferior vagal ganglia were collected one week afterwards. The number of galanin-immunoreactive perikarya in each ganglion was counted to determine fold-changes between both groups of animals and Q-PCR was applied to verify the changes in relative expression level of mRNA encoding both galanin and its receptor subtypes: GalR1, GalR2, GalR3. The results revealed a 2.72-fold increase in the number of galanin-immunoreactive perikarya compared with the controls. Q-PCR revealed that all studied genes were expressed in examined ganglia in both groups of animals. Statistical analysis revealed a 4.63-fold increase in galanin and a 1.45-fold increase in GalR3 mRNA as compared with the controls. No differences were observed between the groups for GalR1 or GalR2. The current study confirmed changes in the galaninergic inferior vagal ganglion response to stomach ulcerations and demonstrated, for the first time, the expression of mRNA encoding all galanin receptor subtypes in the porcine inferior vagal ganglia.
Collapse
Affiliation(s)
- Michal Zalecki
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
- * E-mail:
| | - Judyta Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Zenon Pidsudko
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| | - Jerzy Kaleczyc
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Amelia Franke-Radowiecka
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
10
|
Taylor-Clark TE. Molecular identity, anatomy, gene expression and function of neural crest vs. placode-derived nociceptors in the lower airways. Neurosci Lett 2020; 742:135505. [PMID: 33197519 DOI: 10.1016/j.neulet.2020.135505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
The lower airways (larynx to alveoli) are protected by a complex array of neural networks that regulate respiration and airway function. Harmful stimuli trigger defensive responses such as apnea, cough and bronchospasm by activating a subpopulation of sensory afferent nerves (termed nociceptors) which are found throughout the airways. Airway nociceptive fibers are projected from the nodose vagal ganglia, the jugular vagal ganglia and the dorsal root ganglia, which are derived from distinct embryological sources: the former from the epibranchial placodes, the latter two from the neural crest. Embryological source determines nociceptive gene expression of receptors and neurotransmitters and recent evidence suggests that placode- and neural crest-derived nociceptors have distinct stimuli sensitivity, innervation patterns and functions. Improved understanding of the function of each subset in specific reflexes has substantial implications for therapeutic targeting of the neuronal components of airway disease such as asthma, viral infections and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
11
|
Wang M, Zhang Y, Xu M, Zhang H, Chen Y, Chung KF, Adcock IM, Li F. Roles of TRPA1 and TRPV1 in cigarette smoke -induced airway epithelial cell injury model. Free Radic Biol Med 2019; 134:229-238. [PMID: 30639616 DOI: 10.1016/j.freeradbiomed.2019.01.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/26/2018] [Accepted: 01/03/2019] [Indexed: 01/05/2023]
Abstract
Transient receptor potential protein (TRP) ion channels TRPA1 and TRPV1 may be important in mediating airway tissue injury and inflammation. This study was designed to clarify the role of TRPA1 and TRPV1 channels in cigarette smoke extract (CSE)-induced damage to bronchial and alveolar epithelial cells. Alveolar epithelial (A549) cells and bronchial epithelial (Beas-2B) cells were treated with CSE in the presence and absence of a TRPA1 inhibitor (100 μM, A967079), a TRPV1 inhibitor (100 μM, AMG9810) or both. DCFH-DA and MitoSOX Red probes were used to assay intracellular and mitochondrial oxidative stress, respectively. The mRNA levels of inflammatory mediators (IL-1β, IL-8, IL-18, IL-33) and antioxidants (HO-1, NQO1, MnSOD, catalase) and the protein expression levels of mitochondrial and inflammasome factors (MFN2, OPA1, DRP1, MFF, NLRP3,caspase-1) were respectively detected by RT-PCR and Western Blot. The results were validated in TRPA1 shRNA and TRPV1 shRNA cells. In both cell types, 10% CSE increased intracellular and mitochondrial oxidative stress, induced Ca2+ influx, increased inflammatory gene expression, reduced antioxidant gene expression and inhibited the activities of mitochondrial respiratory chain (MRC) complexes. 10% CSE increased the expression of mitochondrial fission proteins (MFF and DRP1), Caspase-1 and NLRP3 protein expression and decreased that of mitochondrial fusion proteins (MFN2 and OPA1). Both inhibitors and gene-knockout of TRPA1 and TRPV1 reduced oxidative stress, blocked Ca2+ influx, and inhibited inflammatory and increased antioxidant gene expression. They also prevented the changes in mitochondrial fission and fusion proteins and in MRC complexes activities induced by CSE. Both TRPA1 and TRPV1 mediate CSE-induced damage of bronchial and alveolar epithelial cells via modulation of oxidative stress, inflammation and mitochondrial damage and their inhibition should be considered as potential therapy for COPD.
Collapse
Affiliation(s)
- Muyun Wang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, NO.241, West HuaiHai Road, Shanghai 200030, PR China; Department of Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, NO.218, Jixi Road, Hefei, Anhui, 230022, .PR China
| | - Yanbei Zhang
- Department of Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, NO.218, Jixi Road, Hefei, Anhui, 230022, .PR China
| | - Mengmeng Xu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, NO.241, West HuaiHai Road, Shanghai 200030, PR China; Department of Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, NO.218, Jixi Road, Hefei, Anhui, 230022, .PR China
| | - Hai Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, NO.241, West HuaiHai Road, Shanghai 200030, PR China
| | - Yuqing Chen
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, NO.241, West HuaiHai Road, Shanghai 200030, PR China
| | - Kian Fan Chung
- Airway Disease Section, National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK
| | - Feng Li
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, NO.241, West HuaiHai Road, Shanghai 200030, PR China.
| |
Collapse
|
12
|
Kantar A, Seminara M. Why chronic cough in children is different. Pulm Pharmacol Ther 2019; 56:51-55. [PMID: 30851475 DOI: 10.1016/j.pupt.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
Recently, there have been robust changes in our knowledge of the neurophysiology of cough and novel clinical etiologies. Specifically, cough hypersensitivity in adults and protracted bacterial bronchitis (PBB) in children have been increasingly investigated, and differences between chronic cough in children and adults have been widely reported. In young children, postinfectious cough, bronchiectasis, airway malacia, PBB, and asthma appear to be the main causes of cough; however, by adolescence, the causes of cough are more likely to become those common in adults, namely, gastroesophageal reflux, asthma, and upper airway syndrome. These differences are attributed to changes in various characteristics of the respiratory tract, immune system, and nervous system between children and adults. New knowledge about the neural aspects of cough has revealed a complex network of pathways that initiate cough. The effect of inflammation on cough neural processing occurs at multiple peripheral and central sites within the nervous system. Evidence exists that direct or indirect neuroimmune interaction induces a complex response, which can be altered by mediators released by the sensory or parasympathetic neurons and vice versa. During childhood, the respiratory tract and the nervous system undergo a series of anatomical and physiological maturation processes that produce the cough neural circuits. Alterations provoked by various pathological processes, noxious agents, infection, and inflammation during the developmental period can lead to persistent or irreversible modifications, which may explain why many adult patients, in addition to expressing high cough sensitivity, remain refractive to disease-specific therapies.
Collapse
Affiliation(s)
- Ahmad Kantar
- Paediatric Asthma and Cough Centre, University and Research Hospitals, Gruppo Ospedaliero San Donato, Bergamo, Italy.
| | - Manuela Seminara
- Paediatric Asthma and Cough Centre, University and Research Hospitals, Gruppo Ospedaliero San Donato, Bergamo, Italy
| |
Collapse
|
13
|
Han M, Rajput C, Ishikawa T, Jarman CR, Lee J, Hershenson MB. Small Animal Models of Respiratory Viral Infection Related to Asthma. Viruses 2018; 10:E682. [PMID: 30513770 PMCID: PMC6316391 DOI: 10.3390/v10120682] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022] Open
Abstract
Respiratory viral infections are strongly associated with asthma exacerbations. Rhinovirus is most frequently-detected pathogen; followed by respiratory syncytial virus; metapneumovirus; parainfluenza virus; enterovirus and coronavirus. In addition; viral infection; in combination with genetics; allergen exposure; microbiome and other pathogens; may play a role in asthma development. In particular; asthma development has been linked to wheezing-associated respiratory viral infections in early life. To understand underlying mechanisms of viral-induced airways disease; investigators have studied respiratory viral infections in small animals. This report reviews animal models of human respiratory viral infection employing mice; rats; guinea pigs; hamsters and ferrets. Investigators have modeled asthma exacerbations by infecting mice with allergic airways disease. Asthma development has been modeled by administration of virus to immature animals. Small animal models of respiratory viral infection will identify cell and molecular targets for the treatment of asthma.
Collapse
Affiliation(s)
- Mingyuan Han
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Charu Rajput
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Tomoko Ishikawa
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Caitlin R Jarman
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Julie Lee
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Marc B Hershenson
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
14
|
Grundy L, Chess-Williams R, Brierley SM, Mills K, Moore KH, Mansfield K, Rose'Meyer R, Sellers D, Grundy D. NKA enhances bladder-afferent mechanosensitivity via urothelial and detrusor activation. Am J Physiol Renal Physiol 2018; 315:F1174-F1185. [PMID: 29897284 DOI: 10.1152/ajprenal.00106.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tachykinins are expressed within bladder-innervating sensory afferents and have been shown to generate detrusor contraction and trigger micturition. The release of tachykinins from these sensory afferents may also activate tachykinin receptors on the urothelium or sensory afferents directly. Here, we investigated the direct and indirect influence of tachykinins on mechanosensation by recording sensory signaling from the bladder during distension, urothelial transmitter release ex vivo, and direct responses to neurokinin A (NKA) on isolated mouse urothelial cells and bladder-innervating DRG neurons. Bath application of NKA induced concentration-dependent increases in bladder-afferent firing and intravesical pressure that were attenuated by nifedipine and by the NK2 receptor antagonist GR159897 (100 nM). Intravesical NKA significantly decreased bladder compliance but had no direct effect on mechanosensitivity to bladder distension (30 µl/min). GR159897 alone enhanced bladder compliance but had no effect on mechanosensation. Intravesical NKA enhanced both the amplitude and frequency of bladder micromotions during distension, which induced significant transient increases in afferent firing, and were abolished by GR159897. NKA increased intracellular calcium levels in primary urothelial cells but not bladder-innervating DRG neurons. Urothelial ATP release during bladder distention was unchanged in the presence of NKA, whereas acetylcholine levels were reduced. NKA-mediated activation of urothelial cells and enhancement of bladder micromotions are novel mechanisms for NK2 receptor-mediated modulation of bladder mechanosensation. These results suggest that NKA influences bladder afferent activity indirectly via changes in detrusor contraction and urothelial mediator release. Direct actions on sensory nerves are unlikely to contribute to the effects of NKA.
Collapse
Affiliation(s)
- Luke Grundy
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University , Gold Coast, Queensland , Australia.,Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University , Bedford Park, South Australia , Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University , Gold Coast, Queensland , Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University , Bedford Park, South Australia , Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Kylie Mills
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University , Gold Coast, Queensland , Australia
| | - Kate H Moore
- Department of Urogynaecology, St. George Hospital, University of New South Wales , Sydney, New South Wales , Australia
| | - Kylie Mansfield
- Graduate School of Medicine, University of Wollongong , Wollongong, New South Wales , Australia
| | | | - Donna Sellers
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University , Gold Coast, Queensland , Australia
| | - David Grundy
- Department of Biomedical Science, University of Sheffield , Sheffield , United Kingdom
| |
Collapse
|
15
|
Drake MG, Lebold KM, Roth-Carter QR, Pincus AB, Blum ED, Proskocil BJ, Jacoby DB, Fryer AD, Nie Z. Eosinophil and airway nerve interactions in asthma. J Leukoc Biol 2018; 104:61-67. [PMID: 29633324 DOI: 10.1002/jlb.3mr1117-426r] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 12/19/2022] Open
Abstract
Airway eosinophils are increased in asthma and are especially abundant around airway nerves. Nerves control bronchoconstiction and in asthma, airway hyperreactivity (where airways contract excessively to inhaled stimuli) develops when eosinophils alter both parasympathetic and sensory nerve function. Eosinophils release major basic protein, which is an antagonist of inhibitory M2 muscarinic receptors on parasympathetic nerves. Loss of M2 receptor inhibition potentiates parasympathetic nerve-mediated bronchoconstriction. Eosinophils also increase sensory nerve responsiveness by lowering neurons' activation threshold, stimulating nerve growth, and altering neuropeptide expression. Since sensory nerves activate parasympathetic nerves via a central neuronal reflex, eosinophils' effects on both sensory and parasympathetic nerves potentiate bronchoconstriction. This review explores recent insights into mechanisms and effects of eosinophil and airway nerve interactions in asthma.
Collapse
Affiliation(s)
- Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Katherine M Lebold
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Quinn R Roth-Carter
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Alexandra B Pincus
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Emily D Blum
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Becky J Proskocil
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Zhenying Nie
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
16
|
Keller JA, McGovern AE, Mazzone SB. Translating Cough Mechanisms Into Better Cough Suppressants. Chest 2017; 152:833-841. [DOI: 10.1016/j.chest.2017.05.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/14/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022] Open
|
17
|
Suvas S. Role of Substance P Neuropeptide in Inflammation, Wound Healing, and Tissue Homeostasis. THE JOURNAL OF IMMUNOLOGY 2017; 199:1543-1552. [PMID: 28827386 DOI: 10.4049/jimmunol.1601751] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 06/13/2017] [Indexed: 11/19/2022]
Abstract
Substance P (SP) is an undecapeptide present in the CNS and the peripheral nervous system. SP released from the peripheral nerves exerts its biological and immunological activity via high-affinity neurokinin 1 receptor (NK1R). SP is also produced by immune cells and acts as an autocrine or paracrine fashion to regulate the function of immune cells. In addition to its proinflammatory role, SP and its metabolites in combination with insulin-like growth factor-1 are shown to promote the corneal epithelial wound healing. Recently, we showed an altered ocular surface homeostasis in unmanipulated NK1R-/- mice, suggesting the role of SP-NK1R signaling in ocular surface homeostasis under steady-state. This review summarizes the immunobiology of SP and its effect on immune cells and immunity to microbial infection. In addition, the effect of SP in inflammation, wound healing, and corneal epithelial homeostasis in the eye is discussed.
Collapse
Affiliation(s)
- Susmit Suvas
- Department of Ophthalmology/Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI 48201; .,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201; and .,Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
18
|
Mazzone SB, Undem BJ. Vagal Afferent Innervation of the Airways in Health and Disease. Physiol Rev 2017; 96:975-1024. [PMID: 27279650 DOI: 10.1152/physrev.00039.2015] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vagal sensory neurons constitute the major afferent supply to the airways and lungs. Subsets of afferents are defined by their embryological origin, molecular profile, neurochemistry, functionality, and anatomical organization, and collectively these nerves are essential for the regulation of respiratory physiology and pulmonary defense through local responses and centrally mediated neural pathways. Mechanical and chemical activation of airway afferents depends on a myriad of ionic and receptor-mediated signaling, much of which has yet to be fully explored. Alterations in the sensitivity and neurochemical phenotype of vagal afferent nerves and/or the neural pathways that they innervate occur in a wide variety of pulmonary diseases, and as such, understanding the mechanisms of vagal sensory function and dysfunction may reveal novel therapeutic targets. In this comprehensive review we discuss historical and state-of-the-art concepts in airway sensory neurobiology and explore mechanisms underlying how vagal sensory pathways become dysfunctional in pathological conditions.
Collapse
Affiliation(s)
- Stuart B Mazzone
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| | - Bradley J Undem
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| |
Collapse
|
19
|
|
20
|
Zaccone EJ, Lieu T, Muroi Y, Potenzieri C, Undem BE, Gao P, Han L, Canning BJ, Undem BJ. Parainfluenza 3-Induced Cough Hypersensitivity in the Guinea Pig Airways. PLoS One 2016; 11:e0155526. [PMID: 27213574 PMCID: PMC4877001 DOI: 10.1371/journal.pone.0155526] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/29/2016] [Indexed: 02/06/2023] Open
Abstract
The effect of respiratory tract viral infection on evoked cough in guinea pigs was evaluated. Guinea pigs were inoculated intranasally with either parainfluenza type 3 (PIV3) and cough was quantified in conscious animals. The guinea pigs infected with PIV3 (day 4) coughed nearly three times more than those treated with the viral growth medium in response to capsaicin, citric acid, and bradykinin. Since capsaicin, citric acid, and bradykinin evoked coughing in guinea pigs can be inhibited by drugs that antagonize the transient receptor potential cation channel, subfamily V, member 1 (TRPV1), it was reasoned that the virally-induced hypertussive state may involve alterations in TPRV1 activity. PIV3 infection caused a phenotypic switch in tracheal nodose Aδ “cough receptors” such that nearly 50% of neurons began to express, de novo, TRPV1 mRNA. There was also an increase TRPV1 expression in jugular C-fiber neurons as determined by qPCR. It has previously been reported that tracheal-specific nodose neurons express the BDNF receptor TrkB and jugular neurons express the NGF receptor TrkA. Jugular neurons also express the artemin receptor GFRα3. All these neurotrophic factors have been associated with increases in TRPV1 expression. In an ex vivo perfused guinea pig tracheal preparation, we demonstrated that within 8 h of PIV3 infusion there was no change in NGF mRNA expression, but there was nearly a 10-fold increase in BDNF mRNA in the tissue, and a small but significant elevation in the expression of artemin mRNA. In summary, PIV3 infection leads to elevations in TRPV1 expression in the two key cough evoking nerve subtypes in the guinea pig trachea, and this is associated with a hypertussive state with respect to various TRPV1 activating stimuli.
Collapse
Affiliation(s)
- Eric J. Zaccone
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - TinaMarie Lieu
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Yukiko Muroi
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Carl Potenzieri
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Blair E. Undem
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Peisong Gao
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Liang Han
- The Solomon H. Snyder Department of Neuroscience, Center of Sensory Biology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Brendan J. Canning
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Bradley J. Undem
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
21
|
Taylor-Clark TE. Role of reactive oxygen species and TRP channels in the cough reflex. Cell Calcium 2016; 60:155-62. [PMID: 27016063 DOI: 10.1016/j.ceca.2016.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/15/2022]
Abstract
The cough reflex is evoked by noxious stimuli in the airways. Although this reflex is essential for health, it can be triggered chronically in inflammatory and infectious airway disease. Neuronal transient receptor potential (TRP) channels such as ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) are polymodal receptors expressed on airway nociceptive afferent nerves. Reactive oxygen species (ROS) and other reactive compounds are associated with inflammation, from either NADPH oxidase or mitochondria. These reactive compounds cause activation and hyperexcitability of nociceptive afferents innervating the airways, and evidence suggests key contributions of TRPA1 and TRPV1.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
22
|
Airway Vagal Neuroplasticity Associated with Respiratory Viral Infections. Lung 2015; 194:25-9. [PMID: 26678280 DOI: 10.1007/s00408-015-9832-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/08/2015] [Indexed: 01/19/2023]
Abstract
Respiratory virus infections leads to coughing, sneezing, and increases in reflex parasympathetic bronchoconstriction and secretions. These responses to viral infection are exclusively or largely secondary to changes in the function of the nervous system. For many with underlying airway pathologies such as asthma and COPD, this neuroplasticity can lead to disease exacerbations and hospitalization. Relatively little is understood about the cellular and molecular mechanisms that underlie the changes in neuronal control of the respiratory tract during viral infection, but the evidence supports the idea that changes occur in the physiology of both the sensory and autonomic innervation. Virus infection can lead to acute increases in the activity of sensory nerves as well as to genetic changes causing alterations in sensory nerve phenotype. In addition, respiratory viral infections are associated with changes in the control of neurotransmitter release from cholinergic nerve endings terminating at the level of the airway smooth muscle.
Collapse
|
23
|
Niimi A, Chung KF. Evidence for neuropathic processes in chronic cough. Pulm Pharmacol Ther 2015; 35:100-4. [PMID: 26474678 DOI: 10.1016/j.pupt.2015.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 12/16/2022]
Abstract
Chronic cough is a very common symptom for which patients seek medical attention but can often be difficult to manage, because associated causes may remain elusive and treatment of any associated causes does not always provide adequate relief. Current antitussives have limited efficacy and undesirable side-effects. Patients with chronic cough typically describe sensory symptoms suggestive of upper airway and laryngeal neural dysfunction. They often report cough triggered by low-level physical and chemical stimuli supporting the recently emerging concept of 'cough hypersensitivity syndrome'. Chronic cough is a neuropathic condition that could be secondary to sensory nerve damage caused by inflammatory, infective and allergic factors. Mechanisms underlying peripheral and central augmentation of the afferent cough pathways have been identified. Successful treatment of chronic cough with agents used for treating neuropathic pain, such as gabapentin and amitriptyline, would also support this concept. Further research of neuropathic cough may lead to the discovery of more effective antitussives in the future.
Collapse
Affiliation(s)
- Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Kian Fan Chung
- Experimental Studies, National Heart and Lung Institute, Imperial College London, UK; Royal Brompton NIHR Biomedical Research Unit, London, UK
| |
Collapse
|
24
|
Undem BJ, Zaccone E, McGarvey L, Mazzone SB. Neural dysfunction following respiratory viral infection as a cause of chronic cough hypersensitivity. Pulm Pharmacol Ther 2015; 33:52-6. [PMID: 26141017 DOI: 10.1016/j.pupt.2015.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/16/2015] [Accepted: 06/26/2015] [Indexed: 02/03/2023]
Abstract
Respiratory viral infections are a common cause of acute coughing, an irritating symptom for the patient and an important mechanism of transmission for the virus. Although poorly described, the inflammatory consequences of infection likely induce coughing by chemical (inflammatory mediator) or mechanical (mucous) activation of the cough-evoking sensory nerves that innervate the airway wall. For some individuals, acute cough can evolve into a chronic condition, in which cough and aberrant airway sensations long outlast the initial viral infection. This suggests that some viruses have the capacity to induce persistent plasticity in the neural pathways mediating cough. In this brief review we present the clinical evidence of acute and chronic neural dysfunction following viral respiratory tract infections and explore possible mechanisms by which the nervous system may undergo activation, sensitization and plasticity.
Collapse
Affiliation(s)
- Bradley J Undem
- Department of Medicine, Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA.
| | - Eric Zaccone
- Department of Medicine, Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA
| | - Lorcan McGarvey
- Centre of Infection and Immunity, The Queen's University of Belfast, Belfast, Northern Ireland, BT12 6BJ, UK.
| | - Stuart B Mazzone
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
25
|
NMDA and GABA receptors as potential targets in cough hypersensitivity syndrome. Curr Opin Pharmacol 2015; 22:29-36. [DOI: 10.1016/j.coph.2015.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 12/21/2022]
|
26
|
Peripheral neural circuitry in cough. Curr Opin Pharmacol 2015; 22:9-17. [PMID: 25704498 DOI: 10.1016/j.coph.2015.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 01/22/2023]
Abstract
Cough is a reflex that serves to protect the airways. Excessive or chronic coughing is a major health issue that is poorly controlled by current therapeutics. Significant effort has been made to understand the mechanisms underlying the cough reflex. The focus of this review is the evidence supporting the role of specific airway sensory nerve (afferent) populations in the initiation and modulation of the cough reflex in health and disease.
Collapse
|
27
|
Bonvini SJ, Birrell MA, Smith JA, Belvisi MG. Targeting TRP channels for chronic cough: from bench to bedside. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:401-20. [PMID: 25572384 DOI: 10.1007/s00210-014-1082-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/16/2014] [Indexed: 12/24/2022]
Abstract
Cough is currently the most common reason for patients to visit a primary care physician in the UK, yet it remains an unmet medical need. Current therapies have limited efficacy or have potentially dangerous side effects. Under normal circumstances, cough is a protective reflex to clear the lungs of harmful particles; however, in disease, cough can become excessive, dramatically impacting patients' lives. In many cases, this condition is linked to inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD), but can also be refractory to treatment and idiopathic in nature. Therefore, there is an urgent need to develop therapies, and targeting the sensory afferent arm of the reflex which initiates the cough reflex may uncover novel therapeutic targets. The cough reflex is initiated following activation of ion channels present on vagal sensory afferents. These ion channels include the transient receptor potential (TRP) family of cation-selective ion channels which act as cellular sensors and respond to changes in the external environment. Many direct activators of TRP channels, including arachidonic acid derivatives, a lowered airway pH, changes in temperature, and altered airway osmolarity are present in the diseased airway where responses to challenge agents which activate airway sensory nerve activity are known to be enhanced. Furthermore, the expression of some TRP channels is increased in airway disease. Together, this makes them promising targets for the treatment of chronic cough. This review will cover the current understanding of the role of the TRP family of ion channels in the activation of airway sensory nerves and cough, focusing on four members, transient receptor potential vanilloid (TRPV) 1, transient receptor potential ankyrin (TRPA) 1, TRPV4, and transient receptor potential melastatin (TRPM) 8 as these represent the channels where most information has been gathered with relevance to the airways. We will describe recent data and highlight the possible therapeutic utility of specific TRP channel antagonists as antitussives in the clinic.
Collapse
Affiliation(s)
- Sara J Bonvini
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | | | | | | |
Collapse
|
28
|
Barker JS, Wu Z, Hunter DD, Dey RD. Ozone exposure initiates a sequential signaling cascade in airways involving interleukin-1beta release, nerve growth factor secretion, and substance P upregulation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:397-407. [PMID: 25734767 PMCID: PMC4491938 DOI: 10.1080/15287394.2014.971924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Previous studies demonstrated that interleukin-1β (IL-1β) and nerve growth factor (NGF) increase synthesis of substance P (SP) in airway neurons both after ozone (O3) exposure and by direct application. It was postulated that NGF mediates O3-induced IL-1β effects on SP. The current study specifically focused on the influence of O3 on IL-1β, NGF, and SP levels in mice bronchoalveolar lavage fluid (BALF) and whether these mediators may be linked in an inflammatory-neuronal cascade in vivo. The findings showed that in vivo O3 exposure induced an increase of all three proteins in mouse BALF and that O3-induced elevations in both NGF and SP are mediated by the inflammatory cytokine IL-1β. Further, inhibition of NGF reduced O3 induced increases of SP in both the lung BALF and lung tissue, demonstrating NGF serves as a mediator of IL-1β effects on SP. These data indicate that IL-1β is an early mediator of O3-induced rise in NGF and subsequent SP release in mice in vivo.
Collapse
Affiliation(s)
- Joshua S Barker
- a Department of Neurobiology and Anatomy , West Virginia School of Medicine , Morgantown , West Virginia , USA
| | | | | | | |
Collapse
|
29
|
Abstract
Sensory nerves innervating the lung and airways play an important role in regulating various cardiopulmonary functions and maintaining homeostasis under both healthy and disease conditions. Their activities conducted by both vagal and sympathetic afferents are also responsible for eliciting important defense reflexes that protect the lung and body from potential health-hazardous effects of airborne particulates and chemical irritants. This article reviews the morphology, transduction properties, reflex functions, and respiratory sensations of these receptors, focusing primarily on recent findings derived from using new technologies such as neural immunochemistry, isolated airway-nerve preparation, cultured airway neurons, patch-clamp electrophysiology, transgenic mice, and other cellular and molecular approaches. Studies of the signal transduction of mechanosensitive afferents have revealed a new concept of sensory unit and cellular mechanism of activation, and identified additional types of sensory receptors in the lung. Chemosensitive properties of these lung afferents are further characterized by the expression of specific ligand-gated ion channels on nerve terminals, ganglion origin, and responses to the action of various inflammatory cells, mediators, and cytokines during acute and chronic airway inflammation and injuries. Increasing interest and extensive investigations have been focused on uncovering the mechanisms underlying hypersensitivity of these airway afferents, and their role in the manifestation of various symptoms under pathophysiological conditions. Several important and challenging questions regarding these sensory nerves are discussed. Searching for these answers will be a critical step in developing the translational research and effective treatments of airway diseases.
Collapse
Affiliation(s)
- Lu-Yuan Lee
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | | |
Collapse
|
30
|
Turner RD, Bothamley GH. Cough and the transmission of tuberculosis. J Infect Dis 2014; 211:1367-72. [PMID: 25387581 DOI: 10.1093/infdis/jiu625] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/30/2014] [Indexed: 01/27/2023] Open
Abstract
Cough is a predominant feature of respiratory infection and, in tuberculosis, is of prime importance for transmitting infection. Tuberculosis is transmitted by the air, yet the process by which bacilli are aerosolized has received little attention. Features of cough may account for differences in transmission rates from source cases of pulmonary disease. We review the literature on the mechanisms and characteristics of cough in tuberculosis in the context of the dissemination of infection. Coughing is probably more important than other respiratory maneuvers, and characteristics of mucus may have an important role but data are scarce. Direct mechanisms of cough in tuberculosis are unknown, as are temporal and other patterns that correlate with the release of viable airborne bacilli. Other than antituberculous chemotherapy and masks, there are few methods of modulating cough in tuberculosis. This is an increasingly important area for research.
Collapse
Affiliation(s)
- Richard D Turner
- Department of Respiratory Medicine, Homerton University Hospital NHS Trust, London, United Kingdom
| | - Graham H Bothamley
- Department of Respiratory Medicine, Homerton University Hospital NHS Trust, London, United Kingdom
| |
Collapse
|
31
|
Chung KF. Approach to chronic cough: the neuropathic basis for cough hypersensitivity syndrome. J Thorac Dis 2014; 6:S699-707. [PMID: 25383203 DOI: 10.3978/j.issn.2072-1439.2014.08.41] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 08/21/2014] [Indexed: 12/29/2022]
Abstract
Chronic cough is a common symptom that can be difficult to manage because associated causes may remain elusive and treatment of any associated cause may not provide relief. Current antitussives have limited efficacy and undesirable side-effects. Patients with chronic cough describe sensory symptoms suggestive of upper airway and laryngeal neural dysfunction, and report cough triggered by low-level physical and chemical stimuli supporting the concept of cough reflex hypersensitivity. Mechanisms underlying peripheral and central augmentation of the afferent cough pathways have been identified. Chronic cough is a neuropathic condition that could be secondary to sensory nerve damage caused by inflammatory, infective and allergic factors. Recent success in the treatment of chronic cough with agents used for treating neuropathic pain such as gabapentin and amitryptiline would also support this concept. Research into neuropathic cough may lead to the discovery of more effective antitussives.
Collapse
Affiliation(s)
- Kian Fan Chung
- Experimental Studies Unit, National Heart & Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, UK
| |
Collapse
|
32
|
Brito R, Sheth S, Mukherjea D, Rybak LP, Ramkumar V. TRPV1: A Potential Drug Target for Treating Various Diseases. Cells 2014; 3:517-45. [PMID: 24861977 PMCID: PMC4092862 DOI: 10.3390/cells3020517] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is an ion channel present on sensory neurons which is activated by heat, protons, capsaicin and a variety of endogenous lipids termed endovanilloids. As such, TRPV1 serves as a multimodal sensor of noxious stimuli which could trigger counteractive measures to avoid pain and injury. Activation of TRPV1 has been linked to chronic inflammatory pain conditions and peripheral neuropathy, as observed in diabetes. Expression of TRPV1 is also observed in non-neuronal sites such as the epithelium of bladder and lungs and in hair cells of the cochlea. At these sites, activation of TRPV1 has been implicated in the pathophysiology of diseases such as cystitis, asthma and hearing loss. Therefore, drugs which could modulate TRPV1 channel activity could be useful for the treatment of conditions ranging from chronic pain to hearing loss. This review describes the roles of TRPV1 in the normal physiology and pathophysiology of selected organs of the body and highlights how drugs targeting this channel could be important clinically.
Collapse
Affiliation(s)
- Rafael Brito
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Sandeep Sheth
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Debashree Mukherjea
- Department of Surgery (Otoloryngalogy), Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Leonard P Rybak
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Vickram Ramkumar
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| |
Collapse
|
33
|
Grace MS, Baxter M, Dubuis E, Birrell MA, Belvisi MG. Transient receptor potential (TRP) channels in the airway: role in airway disease. Br J Pharmacol 2014; 171:2593-607. [PMID: 24286227 PMCID: PMC4009002 DOI: 10.1111/bph.12538] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/18/2013] [Indexed: 12/16/2022] Open
Abstract
Over the last few decades, there has been an explosion of scientific publications reporting the many and varied roles of transient receptor potential (TRP) ion channels in physiological and pathological systems throughout the body. The aim of this review is to summarize the existing literature on the role of TRP channels in the lungs and discuss what is known about their function under normal and diseased conditions. The review will focus mainly on the pathogenesis and symptoms of asthma and chronic obstructive pulmonary disease and the role of four members of the TRP family: TRPA1, TRPV1, TRPV4 and TRPM8. We hope that the article will help the reader understand the role of TRP channels in the normal airway and how their function may be changed in the context of respiratory disease.
Collapse
Affiliation(s)
- M S Grace
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M Baxter
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - E Dubuis
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M A Birrell
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M G Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| |
Collapse
|
34
|
Abstract
Cough may be the first overt sign of disease of the airways or lungs when it represents more than a defense mechanism, and may by its persistence become a helpful pointer of potential disease for both patient and physician. On the other hand, impairment or absence of the coughing mechanism can be harmful and even fatal; this is why cough suppression is rarely indicated in childhood. Pediatricians are concerned more with the etiology of the cough and making the right diagnosis. Whereas chronic cough in adults has been universally defined as a cough that lasts more than 8 weeks, in childhood, different timing has been reported. Many reasons support defining a cough that lasts more than 4 weeks in preschool children as chronic, however; and this is particularly true when the cough is wet. During childhood, the respiratory tract and nervous system undergo a series of anatomical and physiological maturation processes that influence the cough reflex. In addition, immunological response undergoes developmental and memorial processes that make infection and congenital abnormalities the overwhelming causes of cough in preschool children. Cough in children should be treated on the basis of etiology, and there is no evidence in support of the use of medication for symptomatic cough relief or adopting empirical approaches. Most cases of chronic cough in preschool age are caused by protracted bacterial bronchitis, tracheobronchomalacia, foreign body aspiration, post-infectious cough or some combination of these. Other causes of chronic cough, such as bronchiectasis, asthma, gastroesophageal reflux, and upper respiratory syndrome appear to be less frequent in this age group. The prevalence of each depends on the population in consideration, the epidemiology of infectious diseases, socioeconomic aspects, and the local health system.
Collapse
Affiliation(s)
- Ahmad Kantar
- Pediatric Asthma and Cough Centre, Istituti Ospedalieri Bergamaschi, Bergamo, Italy.
| | | | | | | | | |
Collapse
|
35
|
Liu C, Chen R, Luo W, Lai K, Zhong N. Neurogenic airway inflammation induced by repeated intra-esophageal instillation of HCl in guinea pigs. Inflammation 2013; 36:493-500. [PMID: 23225164 DOI: 10.1007/s10753-012-9570-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This study was conducted to investigate if repeated intra-esophageal acid administrations may induce neurogenic inflammation in the airways and nodose ganglion in a guinea pig model. Guinea pigs were sedated and perfused with 0.1 N HCl in the distal esophagus via a nasoesophageal catheter for 14 consecutive days. Substance P (SP), neurokinin A (NKA), neurokinin B (NKB), and calcitonin gene-related peptide concentration were measured by ELISA or radioimmunoassay. Neuropeptide expression in the airways and nodose ganglion was detected by immunohistochemistry and assessed semi-quantitatively. Inflammation was found in the trachea and bronchi. There was a threefold increase in substance P concentration in the trachea, main bronchi, and lung homogenate and a twofold increase in NKA and NKB concentration in the main bronchi, lung homogenate, and bronchial alveolus lavage fluid, respectively. The SP and NKA expressions in the airways and nodose ganglion were also significantly increased. Chronic intra-esophageal acid instillation induces significant neurogenic inflammation in the airways and nodose ganglion in the vagus nerve in guinea pigs.
Collapse
Affiliation(s)
- Chunli Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical College, 151 Yanjiang Rd., Guangzhou, 510120, China
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Grace MS, Dubuis E, Birrell MA, Belvisi MG. Pre-clinical studies in cough research: role of Transient Receptor Potential (TRP) channels. Pulm Pharmacol Ther 2013; 26:498-507. [PMID: 23474212 PMCID: PMC3763377 DOI: 10.1016/j.pupt.2013.02.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/19/2013] [Accepted: 02/24/2013] [Indexed: 02/08/2023]
Abstract
Cough is a protective reflex and defence mechanism in healthy individuals, which helps clear excessive secretions and foreign material from the lungs. Cough often presents as the first and most persistent symptom of many respiratory diseases and some non-respiratory disorders, but can also be idiopathic, and is a common respiratory complaint for which medical attention is sought. Chronic cough of various aetiologies is a regular presentation to specialist respiratory clinics, and is reported as a troublesome symptom by a significant proportion of the population. Despite this, the treatment options for cough are limited. The lack of effective anti-tussives likely stems from our incomplete understanding of how the tussive reflex is mediated. However, research over the last decade has begun to shed some light on the mechanisms which provoke cough, and may ultimately provide us with better anti-tussive therapies. This review will focus on the in vitro and in vivo models that are currently used to further our understanding of the sensory innervation of the respiratory tract, and how these nerves are involved in controlling the cough response. Central to this are the Transient Receptor Potential (TRP) ion channels, a family of polymodal receptors that can be activated by such diverse stimuli as chemicals, temperature, osmotic stress, and mechanical perturbation. These ion channels are thought to be molecular pain integrators and targets for novel analgesic agents for the treatment of various pain disorders but some are also being developed as anti-tussives.
Collapse
Affiliation(s)
- Megan S Grace
- Respiratory Pharmacology, Pharmacology & Toxicology Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
38
|
Murray NPS, McKenzie DK, Gandevia SC, Butler JE. Effect of airway inflammation on short-latency reflex inhibition to inspiratory loading in human scalene muscles. Respir Physiol Neurobiol 2012; 181:148-53. [PMID: 22415066 DOI: 10.1016/j.resp.2012.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/03/2012] [Accepted: 02/17/2012] [Indexed: 11/15/2022]
Abstract
The short-latency reflex inhibition of human inspiratory muscles produced by loading is prolonged in asthma and obstructive sleep apnoea, both diseases involving airway and systemic inflammation. Both diseases also involve repetitive inspiratory loading. Although airway mucosal afferents are not critical components of the normal reflex arc, during airway inflammation, prolongation of the reflex may be caused by altered mucosal afferent sensitivity, or altered central processing of their inputs. We hypothesised that acute viral airway inflammation would replicate the reflex abnormality. The reflex was tested in 9 subjects with a "common cold" during both the acute infection and when well. Surface electrodes recorded electromyographic (EMG) activity bilaterally from scalene muscles. Latencies of the inhibitory response (IR) did not differ significantly (IR peak 67 vs 70 ms (p=0.12), and IR offset 87 vs 90 ms (p=0.23), between the inflamed and well conditions, respectively). There was no difference in any measure of the size of the reflex inhibition.
Collapse
Affiliation(s)
- Nicholas P S Murray
- Neuroscience Research Australia and University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
39
|
Lieu T, Undem BJ. Neuroplasticity in vagal afferent neurons involved in cough. Pulm Pharmacol Ther 2011; 24:276-9. [PMID: 21376130 DOI: 10.1016/j.pupt.2011.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 11/25/2022]
Abstract
Neurotrophic factors are produced in the airways during allergic and viral inflammation. Their selective interaction with cognate receptors on sensory nerves likely accounts for some of the neuroplasticity that can accompany inflammatory diseases. We have previously described a nodose Aδ fiber in the guinea pig trachea that evokes cough upon stimulation. These nerves do not express TRPV1 and accordingly are capsaicin-insensitive. We evaluated the neurotrophic factor expression in nodose tracheal Aδ fiber neurons using single identified neuron RT-PCR. We found these neuron expressed mainly TRKB; the receptor for brain-derived neurotrophic factor, (BDNF) and NT4. They also expressed GFRα1; the receptor for glial-derived neurotrophic factor (GDNF). Treating the trachea with BDNF, to activate the TRKB receptors, caused a phenotypic change in the vast majority of nodose Aδ neurons such that they expressed TRPV1. These results strengthen the conclusion that the phenotypic characteristics of afferent nerves involved in cough may vary, depending on the context in which they are studied.
Collapse
Affiliation(s)
- TinaMarie Lieu
- The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | |
Collapse
|
40
|
Lieu T, Kollarik M, Myers AC, Undem BJ. Neurotrophin and GDNF family ligand receptor expression in vagal sensory nerve subtypes innervating the adult guinea pig respiratory tract. Am J Physiol Lung Cell Mol Physiol 2011; 300:L790-8. [PMID: 21335521 DOI: 10.1152/ajplung.00449.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We combined retrograde tracing techniques with single-neuron RT-PCR to compare the expression of neurotrophic factor receptors in nodose vs. jugular vagal sensory neurons. The neurons were further categorized based on location of their terminals (tracheal or lungs) and based on expression of the ionotropic capsaicin receptor TRPV1. Consistent with functional studies, nearly all jugular neurons innervating the trachea and lungs expressed TRPV1. With respect to the neurotrophin receptors, the TRPV1-expressing jugular C-fiber neurons innervating both the trachea and lung compartments preferentially expressed tropomyosin-receptor kinase A (TrkA), with only a minority of neurons expressing TrkB or TrkC. The nodose neurons that express TRPV1 (presumed nodose C-fibers) innervate mainly intrapulmonary structures. These neurons preferentially expressed TrkB, with only a minority expressing TrkA or TrkC. The expression pattern in tracheal TRPV1-negative neurons, nodose tracheal presumed Aδ-fiber neurons as well as the intrapulmonary TRPV1-negative presumed Aβ-fiber neurons, was similar to that observed in the nodose C-fiber neurons. We also evaluated the expression of GFRα receptors and RET (receptors for the GDNF family ligands). Virtually all vagal sensory neurons innervating the respiratory tract expressed RET and GFRα1. The jugular neurons also categorically expressed GFRα3, as well as ∼50% of the nodose neurons. GFRα2 was expressed in ∼50% of the neurons irrespective of subtype. The results reveal that Trk receptor expression in vagal afferent neurons innervating the adult respiratory tract depends more on the location of the cell bodies (jugular vs. nodose ganglion) than either the location of the terminals or the functional phenotype of the nerve. The data also reveal that in addition to neurotrophins, the GDNF family ligands may be important neuromodulators of vagal afferent nerves innervating the adult respiratory tract.
Collapse
Affiliation(s)
- Tinamarie Lieu
- The Johns Hopkins University Medical Institutions, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
41
|
Ye XM, Zhong NS, Liu CL, Chen RC. Cough reflex sensitivity is increased in guinea pigs with parainfluenza virus infection. Exp Lung Res 2011; 37:186-94. [PMID: 21417816 DOI: 10.3109/01902148.2010.540768] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of this study was to investigate for the change in cough reflex sensitivity (CRS) caused by parainfluenza virus type 3 (PIV3) infection. Guinea pigs were randomized into a vehicle control, an asthma control, or 1 of 4 PIV3-inoculated groups (referred to as postinfection day [PID] 6, 12, 28, and 42 groups). Evidence of viral protein and nucleic acid within the lung confirmed successful PIV3 infection. Plethysmography was used to assess CRS and airway reaction and airway inflammation was assessed via bronchoalveolar lavage fluid cytology and lung histopathology. Compared with the vehicle control group, CRS was significantly increased in all PID groups (P <.05) in concert with an obvious airway hyperresponsiveness in the PID 6 group. Though a small increase in CRS in the asthma control group was noted, it was not significant compared to the vehicle control group. Total cell counts from the bronchoalveolar lavage fluid of all PIV3-inoculated groups increased markedly and the number of lymphocytes was significantly increased in the PID 6 and PID 12 groups. The lung pathology of PIV3-inoculated animals showed airway inflammation without pneumonia in the acute infectious phase. The temporal and spatial variation of CRS may be the essential mechanism of cough caused by PIV3.
Collapse
Affiliation(s)
- X M Ye
- Department of Respiration, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | |
Collapse
|
42
|
Christophersen OA, Haug A. Animal products, diseases and drugs: a plea for better integration between agricultural sciences, human nutrition and human pharmacology. Lipids Health Dis 2011; 10:16. [PMID: 21247506 PMCID: PMC3031257 DOI: 10.1186/1476-511x-10-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 01/20/2011] [Indexed: 12/17/2022] Open
Abstract
Eicosanoids are major players in the pathogenesis of several common diseases, with either overproduction or imbalance (e.g. between thromboxanes and prostacyclins) often leading to worsening of disease symptoms. Both the total rate of eicosanoid production and the balance between eicosanoids with opposite effects are strongly dependent on dietary factors, such as the daily intakes of various eicosanoid precursor fatty acids, and also on the intakes of several antioxidant nutrients including selenium and sulphur amino acids. Even though the underlying biochemical mechanisms have been thoroughly studied for more than 30 years, neither the agricultural sector nor medical practitioners have shown much interest in making practical use of the abundant high-quality research data now available. In this article, we discuss some specific examples of the interactions between diet and drugs in the pathogenesis and therapy of various common diseases. We also discuss, using common pain conditions and cancer as specific examples, how a better integration between agricultural science, nutrition and pharmacology could lead to improved treatment for important diseases (with improved overall therapeutic effect at the same time as negative side effects and therapy costs can be strongly reduced). It is shown how an unnaturally high omega-6/omega-3 fatty acid concentration ratio in meat, offal and eggs (because the omega-6/omega-3 ratio of the animal diet is unnaturally high) directly leads to exacerbation of pain conditions, cardiovascular disease and probably most cancers. It should be technologically easy and fairly inexpensive to produce poultry and pork meat with much more long-chain omega-3 fatty acids and less arachidonic acid than now, at the same time as they could also have a similar selenium concentration as is common in marine fish. The health economic benefits of such products for society as a whole must be expected vastly to outweigh the direct costs for the farming sector.
Collapse
|
43
|
Zellner LC, Brundage KM, Hunter DD, Dey RD. Early Postnatal Ozone Exposure Alters Rat Nodose and Jugular Sensory Neuron Development. TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY 2011; 93:2055-2071. [PMID: 22140294 PMCID: PMC3226817 DOI: 10.1080/02772248.2011.610882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 08/02/2011] [Indexed: 05/31/2023]
Abstract
Sensory neurons originating in nodose and jugular ganglia that innervate airway epithelium (airway neurons) play a role in inflammation observed following exposure to inhaled environmental irritants such as ozone (O(3)). Airway neurons can mediate airway inflammation through release of the neuropeptide substance P (SP). While susceptibility to airway irritants is increased in early life, the developmental dynamics of afferent airway neurons are not well characterized. The hypothesis of this study was that airway neuron number might increase with increasing age, and that an acute, early postnatal O(3) exposure might increase both the number of sensory airway neurons as well as the number SP-containing airway neurons. Studies using Fischer 344 rat pups were conducted to determine if age or acute O(3) exposure might alter airway neuron number. Airway neurons in nodose and jugular ganglia were retrogradely labeled, removed, dissociated, and counted by means of a novel technique employing flow cytometry. In Study 1, neuron counts were conducted on postnatal days (PD) 6, 10, 15, 21, and 28. Numbers of total and airway neurons increased significantly between PD6 and PD10, then generally stabilized. In Study 2, animals were exposed to O(3) (2 ppm) or filtered air (FA) on PD5 and neurons were counted on PD10, 15, 21, and 28. O(3) exposed animals displayed significantly less total neurons on PD21 than FA controls. This study shows that age-related changes in neuron number occur, and that an acute, early postnatal O(3) exposure significantly alters sensory neuron development.
Collapse
Affiliation(s)
- Leor C. Zellner
- 4052 Health Sciences Center North, Morgantown, WV 26506-9128, USA
| | | | - Dawn D. Hunter
- 4052 Health Sciences Center North, Morgantown, WV 26506-9128, USA
| | - Richard D. Dey
- 4052 Health Sciences Center North, Morgantown, WV 26506-9128, USA
| |
Collapse
|
44
|
Hunter DD, Carrell-Jacks LA, Batchelor TP, Dey RD. Role of nerve growth factor in ozone-induced neural responses in early postnatal airway development. Am J Respir Cell Mol Biol 2010; 45:359-65. [PMID: 21075861 DOI: 10.1165/rcmb.2010-0345oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway neural plasticity contributes to the process of airway remodeling in response to airway irritants. However, the mechanisms of neural remodeling in the airways during the early postnatal period, when responses to airway irritation may be most sensitive, have not been characterized. This study used a rat model to examine a possible mechanism of ozone (O(3))-induced neural hyperresponsiveness during a critical period of developmental, postnatal day (PD) 6, that may be mediated by the neurotrophin nerve growth factor (NGF), resulting in an enhanced release of inflammatory neuropeptide substance P (SP) from airway nerves. Rat pups between PD6-PD28 were killed 24 hours after exposure to O(3) (2 ppm, 3 hours) or filtered air (FA), to establish a timeline of NGF synthesis, or else they were exposed to O(3) or NGF on PD6 or PD21 and re-exposed to O(3) on PD28, and killed on PD29. Measurement endpoints included NGF mRNA in tracheal epithelial cells, NGF protein in bronchoalveolar lavage fluid, airway SP-nerve fiber density (NFD), and SP-positive airway neurons in vagal ganglia. Acute exposure to O(3) increased NGF in bronchoalveolar lavage fluid on PD10 and PD15, and mRNA expression in epithelial cells on PD6, compared with FA controls. NGF protein and mRNA expression in the O(3)-PD6/O(3)-PD28 groups were significantly higher than in the O(3)-PD21/O(3)-PD28 and O(3)-PD6/FA-PD28 groups. NGF-PD6/O(3)-PD28 increased the SP innervation of airway smooth muscle and SP-positive sensory neurons, compared with the NGF-PD21/O(3)-PD28 or NGF-PD6/FA-PD28 groups. NGF enhanced sensory innervation, which may mediate acute responses or prolong sensitivity to O(3) during early life. The model may be relevant in O(3) responses during early childhood.
Collapse
Affiliation(s)
- Dawn D Hunter
- Department of Neurobiology and Anatomy, West Virginia University, Morgantown, 26506, USA.
| | | | | | | |
Collapse
|
45
|
Verhein KC, Hazari MS, Moulton BC, Jacoby IW, Jacoby DB, Fryer AD. Three days after a single exposure to ozone, the mechanism of airway hyperreactivity is dependent on substance P and nerve growth factor. Am J Physiol Lung Cell Mol Physiol 2010; 300:L176-84. [PMID: 21056958 DOI: 10.1152/ajplung.00060.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ozone causes persistent airway hyperreactivity in humans and animals. One day after ozone exposure, airway hyperreactivity is mediated by release of eosinophil major basic protein that inhibits neuronal M(2) muscarinic receptors, resulting in increased acetylcholine release and increased smooth muscle contraction in guinea pigs. Three days after ozone, IL-1β, not eosinophils, mediates ozone-induced airway hyperreactivity, but the mechanism at this time point is largely unknown. IL-1β increases NGF and the tachykinin substance P, both of which are involved in neural plasticity. These experiments were designed to test whether there is a role for NGF and tachykinins in sustained airway hyperreactivity following a single ozone exposure. Guinea pigs were exposed to filtered air or ozone (2 parts per million, 4 h). In anesthetized and vagotomized animals, ozone potentiated vagally mediated airway hyperreactivity 24 h later, an effect that was sustained over 3 days. Pretreatment with antibody to NGF completely prevented ozone-induced airway hyperreactivity 3 days, but not 1 day, after ozone and significantly reduced the number of substance P-positive airway nerve bundles. Three days after ozone, NK(1) and NK(2) receptor antagonists also blocked this sustained hyperreactivity. Although the effect of inhibiting NK(2) receptors was independent of ozone, the NK(1) receptor antagonist selectively blocked vagal hyperreactivity 3 days after ozone. These data confirm mechanisms of ozone-induced airway hyperreactivity change over time and demonstrate 3 days after ozone that there is an NGF-mediated role for substance P, or another NK(1) receptor agonist, that enhances acetylcholine release and was not present 1 day after ozone.
Collapse
Affiliation(s)
- Kirsten C Verhein
- Department of Physiology & Pharmacology, Oregon Health & Science Univ., Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
46
|
Nassenstein C, Taylor-Clark TE, Myers AC, Ru F, Nandigama R, Bettner W, Undem BJ. Phenotypic distinctions between neural crest and placodal derived vagal C-fibres in mouse lungs. J Physiol 2010; 588:4769-83. [PMID: 20937710 DOI: 10.1113/jphysiol.2010.195339] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Two major types of nociceptors have been described in dorsal root ganglia (DRGs). In comparison, little is known about the vagal nociceptor subtypes. The vagus nerves provide much of the capsaicin-sensitive nociceptive innervation to visceral tissues, and are likely to contribute to the overall pathophysiology of visceral inflammatory diseases. The cell bodies of these afferent nerves are located in the vagal sensory ganglia referred to as nodose and jugular ganglia. Neurons of the nodose ganglion are derived from the epibranchial placodes, whereas jugular ganglion neurons are derived from the neural crest. In the adult mouse, however, there is often only a single ganglionic structure situated alone in the vagus nerve. By employing Wnt1Cre/R26R mice, which express β-galactosidase only in neural crest derived neurons, we found that this single vagal sensory ganglion is a fused ganglion consisting of both neural crest neurons in the rostral portion and non-neural crest (nodose) neurons in the more central and caudal portions of the structure. Based on their activation and gene expression profiles, we identified two major vagal capsaicin-sensitive nociceptor phenotypes, which innervated a defined target, namely the lung in adult mice. One subtype is non-peptidergic, placodal in origin, expresses P2X2 and P2X3 receptors, responds to α,β-methylene ATP, and expresses TRKB, GFRα1 and RET. The other phenotype is derived from the cranial neural crest and does not express P2X2 receptors and fails to respond to α,β-methylene ATP. This population can be further subdivided into two phenotypes, a peptidergic TRKA(+) and GFRα3(+) subpopulation, and a non-peptidergic TRKB(+) and GFRα1(+) subpopulation. Consistent with their similar embryonic origin, the TRPV1 expressing neurons in the rostral dorsal root ganglia were more similar to jugular than nodose vagal neurons. The data support the hypothesis that vagal nociceptors innervating visceral tissues comprise at least two major subtypes. Due to distinctions in their gene expression profile, each type will respond to noxious or inflammatory conditions in their own unique manner.
Collapse
|
47
|
Messeguer A, Planells-Cases R, Ferrer-Montiel A. Physiology and pharmacology of the vanilloid receptor. Curr Neuropharmacol 2010; 4:1-15. [PMID: 18615132 DOI: 10.2174/157015906775202995] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The identification and cloning of the vanilloid receptor 1 (TRPV1) represented a significant step for the understanding of the molecular mechanisms underlying the transduction of noxious chemical and thermal stimuli by peripheral nociceptors. TRPV1 is a non-selective cation channel gated by noxious heat, vanilloids and extracellular protons. TRPV1 channel activity is remarkably potentiated by pro-inflammatory agents, a phenomenon that is thought to underlie the peripheral sensitisation of nociceptors that leads to thermal hyperalgesia. Cumulative evidence is building a strong case for the involvement of this receptor in the etiology of both peripheral and visceral inflammatory pain, such as inflammatory bowel disease, bladder inflammation and cancer pain. The validation of TRPV1 receptor as a key therapeutic target for pain management has thrust intensive drug discovery programs aimed at developing orally active antagonists of the receptor protein. Nonetheless, the real challenge of these drug discovery platforms is to develop antagonists that preserve the physiological activity of TRPV1 receptors while correcting over-active channels. This is a condition to ensure normal pro-prioceptive and nociceptive responses that represent a safety mechanism to prevent tissue injury. Recent and exciting advances in the function, dysfunction and modulation of this receptor will be the focus of this review.
Collapse
Affiliation(s)
- Angel Messeguer
- Department of Biological Organic Chemistry, IIQAB-CSIC, J. Girona 23, 080034 Barcelona, Spain
| | | | | |
Collapse
|
48
|
Hunter DD, Wu Z, Dey RD. Sensory neural responses to ozone exposure during early postnatal development in rat airways. Am J Respir Cell Mol Biol 2010; 43:750-7. [PMID: 20118220 DOI: 10.1165/rcmb.2009-0191oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway infections or irritant exposures during early postnatal periods may contribute to the onset of childhood asthma. The purpose of this study was to examine critical periods of postnatal airway development during which ozone (O(3)) exposure leads to heightened neural responses. Rats were exposed to O(3) (2 ppm) or filtered air for 1 hour on specific postnatal days (PDs) between PD1 and PD29, and killed 24 hours after exposure. In a second experiment, rats were exposed to O(3) on PD2-PD6, inside a proposed critical period of development, or on PD19-PD23, outside the critical period. Both groups were re-exposed to O(3) on PD28, and killed 24 hours later. Airways were removed, fixed, and prepared for substance P (SP) immunocytochemistry. SP nerve fiber density (NFD) in control extrapulmonary (EXP) epithelium/lamina propria (EPLP) increased threefold, from 1% to 3.3% from PD1-PD3 through PD13-PD15, and maintained through PD29. Upon O(3) exposure, SP-NFD in EXP-smooth muscle (SM) and intrapulmonary (INT)-SM increased at least twofold at PD1-PD3 through PD13-PD15 in comparison to air exposure. No change was observed at PD21-PD22 or PD28-PD29. In critical period studies, SP-NFD in the INT-SM and EXP-SM of the PD2-PD6 O(3) group re-exposed to O(3) on PD28 was significantly higher than that of the group exposed at PD19-PD23 and re-exposed at PD28. These findings suggest that O(3)-mediated changes in sensory innervation of SM are more responsive during earlier postnatal development. Enhanced responsiveness of airway sensory nerves may be a contributing mechanism of increased susceptibility to environmental exposures observed in human infants and children.
Collapse
Affiliation(s)
- Dawn D Hunter
- Department of Neurobiology and Anatomy, West Virginia University, Morgantown, WV 26506, USA.
| | | | | |
Collapse
|
49
|
Abstract
Acute cough is a major symptom of viral respiratory tract infection and causes excessive morbidity in human populations across the world. A wide variety of viruses play a role in the development of cough after acute infection and all of these manifest a similar clinical picture across different age groups. Despite the large disease burden surprisingly little is known about the mechanism of acute cough following viral infection. Both in vitro and in vivo experiments show that increased production of neuropeptides and leukotrienes mediate cough after viral infection, along with altered expression of neural receptors. Increased airway mucus production is also likely to play a significant role. This work is reviewed in this article. Following the recent development of a mouse model for rhinovirus infection and the establishment of experimental models of rhinovirus challenge in human subjects with both asthma and COPD the field is expanding to translate in vitro research into clinical studies and hopefully eventually into clinical practice. Developing a clearer understanding of the mechanisms underlying virus induced cough may lead to more specific and effective therapies.
Collapse
Affiliation(s)
- Joseph Footitt
- Department of Respiratory Medicine, National Heart and Lung Institute, Imperial College London, Norfolk Place, London, UK
| | | |
Collapse
|
50
|
Lee LY. Respiratory sensations evoked by activation of bronchopulmonary C-fibers. Respir Physiol Neurobiol 2009; 167:26-35. [PMID: 18586581 PMCID: PMC2759402 DOI: 10.1016/j.resp.2008.05.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/08/2008] [Accepted: 05/09/2008] [Indexed: 10/22/2022]
Abstract
C-fibers represent the majority of vagal afferents innervating the airways and lung, and can be activated by inhaled chemical irritants and certain endogenous substances. Stimulation of bronchopulmonary C-fibers with selective chemical activators by either inhalation or intravenous injection evokes irritation, burning and choking sensations in the throat, neck and upper chest (mid-sternum region) in healthy human subjects. These irritating sensations are often accompanied by bouts of coughs either during inhalation challenge or when a higher dose of the chemical activator is administered by intravenous injection. Dyspnea and breathless sensation are not always evoked when these afferents are activated by different types of chemical stimulants. This variability probably reflects the chemical nature of the stimulants, as well as the possibility that different subtypes of C-fibers encoded by different receptor proteins are activated. These respiratory sensations and reflex responses (e.g., cough) are believed to play an important role in protecting the lung against inhaled irritants and preventing overexertion under unusual physiological stresses (e.g., during strenuous exercise) in healthy individuals. More importantly, recent studies have revealed that the sensitivity of bronchopulmonary C-fibers can be markedly elevated in acute and chronic airway inflammatory diseases, probably caused by a sensitizing effect of certain endogenously released inflammatory mediators (e.g., prostaglandin E(2)) that act directly or indirectly on specific ion channels expressed on the sensory terminals. Normal physiological actions such as an increase in tidal volume (e.g., during mild exercise) can then activate these C-fiber afferents, and consequently may contribute, in part, to the lingering respiratory discomforts and other debilitating symptoms in patients with lung diseases.
Collapse
|