1
|
Russo RC, Ryffel B. The Chemokine System as a Key Regulator of Pulmonary Fibrosis: Converging Pathways in Human Idiopathic Pulmonary Fibrosis (IPF) and the Bleomycin-Induced Lung Fibrosis Model in Mice. Cells 2024; 13:2058. [PMID: 39768150 PMCID: PMC11674266 DOI: 10.3390/cells13242058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and lethal interstitial lung disease (ILD) of unknown origin, characterized by limited treatment efficacy and a fibroproliferative nature. It is marked by excessive extracellular matrix deposition in the pulmonary parenchyma, leading to progressive lung volume decline and impaired gas exchange. The chemokine system, a network of proteins involved in cellular communication with diverse biological functions, plays a crucial role in various respiratory diseases. Chemokine receptors trigger the activation, proliferation, and migration of lung-resident cells, including pneumocytes, endothelial cells, alveolar macrophages, and fibroblasts. Around 50 chemokines can potentially interact with 20 receptors, expressed by both leukocytes and non-leukocytes such as tissue parenchyma cells, contributing to processes such as leukocyte mobilization from the bone marrow, recirculation through lymphoid organs, and tissue influx during inflammation or immune response. This narrative review explores the complexity of the chemokine system in the context of IPF and the bleomycin-induced lung fibrosis mouse model. The goal is to identify specific chemokines and receptors as potential therapeutic targets. Recent progress in understanding the role of the chemokine system during IPF, using experimental models and molecular diagnosis, underscores the complex nature of this system in the context of the disease. Despite advances in experimental models and molecular diagnostics, discovering an effective therapy for IPF remains a significant challenge in both medicine and pharmacology. This work delves into microarray results from lung samples of IPF patients and murine samples at different stages of bleomycin-induced pulmonary fibrosis. By discussing common pathways identified in both IPF and the experimental model, we aim to shed light on potential targets for therapeutic intervention. Dysregulation caused by abnormal chemokine levels observed in IPF lungs may activate multiple targets, suggesting that chemokine signaling plays a central role in maintaining or perpetuating lung fibrogenesis. The highlighted chemokine axes (CCL8-CCR2, CCL19/CCL21-CCR7, CXCL9-CXCR3, CCL3/CCL4/CCL5-CCR5, and CCL20-CCR6) present promising opportunities for advancing IPF treatment research and uncovering new pharmacological targets within the chemokine system.
Collapse
Affiliation(s)
- Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte 31270-901, MG, Brazil
| | - Bernhard Ryffel
- Laboratory of Immuno-Neuro Modulation (INEM), UMR7355 Centre National de la Recherche Scientifique (CNRS), University of Orleans, 45071 Orleans, France
| |
Collapse
|
2
|
Koschel D, Behr J, Berger M, Bonella F, Hamer O, Joest M, Jonigk D, Kreuter M, Leuschner G, Nowak D, Raulf M, Rehbock B, Schreiber J, Sitter H, Theegarten D, Costabel U. [Diagnosis and Treatment of Hypersensitivity Pneumonitis - S2k Guideline of the German Respiratory Society and the German Society for Allergology and Clinical Immunology]. Pneumologie 2024; 78:963-1002. [PMID: 39227017 DOI: 10.1055/a-2369-8458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Hypersensitivity pneumonitis (HP) is an immune-mediated interstitial lung disease (ILD) in sensitized individuals caused by a large variety of inhaled antigens. The clinical form of acute HP is often misdiagnosed, while the chronic form, especially the chronic fibrotic HP, is difficult to differentiate from other fibrotic ILDs. The present guideline for the diagnosis and treatment of HP replaces the former German recommendations for the diagnosis of HP from 2007 and is amended explicitly by the issue of the chronic fibrotic form, as well as by treatment recommendations for the first time. The evidence was discussed by a multidisciplinary committee of experts. Then, recommendations were formulated for twelve questions on important issues of diagnosis and treatment strategies. Recently published national and international guidelines for ILDs and HP were considered. Detailed background information on HP is useful for a deeper insight into HP and the handling of the guideline.
Collapse
Affiliation(s)
- Dirk Koschel
- Abteilung Innere Medizin und Pneumologie, Fachkrankenhaus Coswig, Lungenzentrum, Coswig, Deutschland
- Bereich Pneumologie, Medizinische Klinik 1, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Deutschland
- Ostdeutsches Lungenzentrum (ODLZ), Coswig/Dresden, Deutschland
| | - Jürgen Behr
- Medizinische Klinik und Poliklinik V, LMU Klinikum der Universität München, München, Deutschland
- Deutsches Zentrum für Lungenforschung, Gießen, Deutschland
| | - Melanie Berger
- Lungenklinik, Kliniken der Stadt Köln gGmbH, Köln
- Lehrstuhl für Pneumologie, Universität Witten/Herdecke, Fakultät für Gesundheit, Köln, Deutschland
| | - Francesco Bonella
- Zentrum für interstitielle und seltene Lungenerkrankungen, Ruhrlandklinik, Universitätsmedizin Essen, Essen, Deutschland
| | - Okka Hamer
- Institut für Röntgendiagnostik, Universitätsklinikum Regensburg, Regensburg, Deutschland
- Abteilung für Radiologie, Lungenfachklinik Donaustauf, Donaustauf, Deutschland
| | - Marcus Joest
- Praxis für Pneumologie und Allergologie, Bonn, Deutschland
| | - Danny Jonigk
- Deutsches Zentrum für Lungenforschung, Gießen, Deutschland
- Institut für Pathologie, RWTH Aachen, Universität Aachen, Aachen, Deutschland
| | - Michael Kreuter
- Lungenzentrum Mainz, Klinik für Pneumologie, Beatmungs- und Schlafmedizin, Marienhaus Klinikum Mainz und Klinik für Pneumologie, ZfT, Universitätsmedizin Mainz, Mainz, Deutschland
| | - Gabriela Leuschner
- Medizinische Klinik und Poliklinik V, LMU Klinikum der Universität München, München, Deutschland
- Deutsches Zentrum für Lungenforschung, Gießen, Deutschland
| | - Dennis Nowak
- Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin, LMU München, München, Deutschland
| | - Monika Raulf
- Abteilung Kompetenz-Zentrum Allergologie/Immunologie, Institut für Prävention und Arbeitsmedizin der DGUV, Institut der Ruhr-Universität Bochum (IPA), Bochum, Deutschland
| | - Beate Rehbock
- Privatpraxis für Diagnostische Radiologie und Begutachtung, Berlin, Deutschland
| | - Jens Schreiber
- Universitätsklinik für Pneumologie, Universitätsklinikum Magdeburg, Magdeburg, Deutschland
| | - Helmut Sitter
- Institut für Theoretische Chirurgie, Philipps-Universität Marburg, Marburg, Deutschland
| | - Dirk Theegarten
- Institut für Pathologie, Universitätsklinikum Essen, Essen, Deutschland
| | - Ulrich Costabel
- Zentrum für interstitielle und seltene Lungenerkrankungen, Ruhrlandklinik, Universitätsmedizin Essen, Essen, Deutschland
| |
Collapse
|
3
|
Zhao LM, Lancaster AC, Patel R, Zhang H, Duong TQ, Jiao Z, Lin CT, Healey T, Wright T, Wu J, Bai HX. Association of clinical and imaging characteristics with pulmonary function testing in patients with Long-COVID. Heliyon 2024; 10:e31751. [PMID: 38845871 PMCID: PMC11153179 DOI: 10.1016/j.heliyon.2024.e31751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Purpose The purpose of this study is to identify clinical and imaging characteristics associated with post-COVID pulmonary function decline. Methods This study included 22 patients recovering from COVID-19 who underwent serial spirometry pulmonary function testing (PFT) before and after diagnosis. Patients were divided into two cohorts by difference between baseline and post-COVID follow-up PFT: Decline group (>10 % decrease in FEV1), and Stable group (≤10 % decrease or improvement in FEV1). Demographic, clinical, and laboratory data were collected, as well as PFT and chest computed tomography (CT) at the time of COVID diagnosis and follow-up. CTs were semi-quantitatively scored on a five-point severity scale for disease extent in each lobe by two radiologists. Mann-Whitney U-tests, T-tests, and Chi-Squared tests were used for comparison. P-values <0.05 were considered statistically significant. Results The Decline group had a higher proportion of neutrophils (79.47 ± 4.83 % vs. 65.45 ± 10.22 %; p = 0.003), a higher absolute neutrophil count (5.73 ± 2.68 × 109/L vs. 3.43 ± 1.74 × 109/L; p = 0.031), and a lower proportion of lymphocytes (9.90 ± 4.20 % vs. 21.21 ± 10.97 %; p = 0.018) compared to the Stable group. The Decline group also had significantly higher involvement of ground-glass opacities (GGO) on follow-up chest CT [8.50 (4.50, 14.50) vs. 3.0 (1.50, 9.50); p = 0.032] and significantly higher extent of reticulations on chest CT at time of COVID diagnosis [6.50 (4.00, 9.00) vs. 2.00 (0.00, 6.00); p = 0.039] and follow-up [5.00 (3.00, 13.00) vs. 2.00 (0.00, 5.00); p = 0.041]. ICU admission was higher in the Decline group than in the Stable group (71.4 % vs. 13.3 %; p = 0.014). Conclusions This study provides novel insight into factors influencing post-COVID lung function, irrespective of pre-existing pulmonary conditions. Our findings underscore the significance of neutrophil counts, reduced lymphocyte counts, pulmonary reticulation on chest CT at diagnosis, and extent of GGOs on follow-up chest CT as potential indicators of decreased post-COVID lung function. This knowledge may guide prediction and further understanding of long-term sequelae of COVID-19 infection.
Collapse
Affiliation(s)
- Lin-Mei Zhao
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Andrew C. Lancaster
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ritesh Patel
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Helen Zhang
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, USA
| | - Tim Q. Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Zhicheng Jiao
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, USA
| | - Cheng Ting Lin
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Terrance Healey
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, USA
| | - Thaddeus Wright
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, USA
| | - Jing Wu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Harrison X. Bai
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Chen C, Luo N, Dai F, Zhou W, Wu X, Zhang J. Advance in pathogenesis of sarcoidosis: Triggers and progression. Heliyon 2024; 10:e27612. [PMID: 38486783 PMCID: PMC10938127 DOI: 10.1016/j.heliyon.2024.e27612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
Sarcoidosis, a multisystemic immune disease, significantly impacts patients' quality of life. The complexity and diversity of its pathogenesis, coupled with limited comprehensive research, had hampered both diagnosis and treatment, resulting in an unsatisfactory prognosis for many patients. In recent years, the research had made surprising progress in the triggers of sarcoidosis (genetic inheritance, infection and environmental factors) and the abnormal regulations on immunity during the formation of granuloma. This review consolidated the latest findings on sarcoidosis research, providing a systematic exploration of advanced studies on triggers, immune-related regulatory mechanisms, and clinical applications. By synthesizing previous discoveries, we aimed to offer valuable insights for future research directions and the development of clinical diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Cong Chen
- Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610097, China
| | - Nanzhi Luo
- Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610097, China
| | - Fuqiang Dai
- Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610097, China
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Wenjing Zhou
- Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610097, China
| | - Xiaoqing Wu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610097, China
| | - Jian Zhang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610097, China
| |
Collapse
|
5
|
Al-Adwi Y, Atzeni IM, Doornbos-van der Meer B, van der Leij MJ, Varkevisser RDM, Kroesen BJ, Stel A, Timens W, Gan CT, van Goor H, Westra J, Mulder DJ. High serum C-X-C motif chemokine ligand 10 (CXCL10) levels may be associated with new onset interstitial lung disease in patients with systemic sclerosis: evidence from observational, clinical, transcriptomic and in vitro studies. EBioMedicine 2023; 98:104883. [PMID: 37995465 PMCID: PMC10708993 DOI: 10.1016/j.ebiom.2023.104883] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Systemic sclerosis-interstitial lung disease (SSc-ILD) is the leading cause of death in patients with SSc. There is an unmet need for predictive biomarkers to identify patients with SSc at risk of ILD. Previous studies have shown that interferon (IFN) pathways may play a role in SSc. We assessed the use of C-X-C motif chemokine ligand 10 (CXCL10) as a predictive biomarker for new onset of ILD in patients with SSc. METHODS One-hundred-sixty-five (Female, N = 130) patients with SSc (SSc-ILD, N = 41) and 13 (Female, N = 8) healthy controls were investigated retrospectively. CXCL10 protein levels were measured by ELISA. We performed log rank analysis with baseline CXCL10 serum levels. CXCL10 nanoString data from lung tissues obtained from transplanted patients with SSc-ILD were extracted. Fifteen (Female, N = 10) patients with SSc (SSc-ILD, N = 7) were recruited for bronchoalveolar lavage (BAL) procedure. Lung fibroblasts were treated with BAL-fluid or serum from patients with SSc with or without ILD. Inflammatory/fibrotic genes were assessed. FINDINGS Serum CXCL10 levels were higher in patients with SSc-ILD compared to SSc patients without ILD [Median (IQR):126 pg/ml (66-282.5) vs. 78.5 pg/ml (50-122), P = 0.029, 95% CI: 1.5 × 10-6 to 0.4284]. Survival analysis showed that baseline CXCL10 levels >78.5 pg/ml have a 2.74-fold increased risk of developing new onset of ILD (Log-rank: P = 0.119) on follow-up. CXCL10 levels in BAL supernatant were not different in patients with SSc-ILD compared to SSc without ILD [76.1 pg/ml (7.2-120.8) vs. 22.3 pg/ml (12.1-43.7), P = 0.24, 95% CI: -19.5 to 100]. NanoString showed that CXCL10 mRNA expression was higher in inflammatory compared to fibrotic lung tissues [4.7 (4.2-5.6) vs. 4.3 (3.6-4.7), P = 0.029]. Fibroblasts treated with SSc-ILD serum or BAL fluids overexpressed CXCL10. INTERPRETATIONS Clinical, transcriptomic, and in vitro data showed that CXCL10 is potentially involved in early SSc-ILD. More research is needed to confirm whether CXCL10 can be classified as a prospective biomarker to detect patients with SSc at higher risk of developing new onset ILD. FUNDING This collaborative project is co-financed by the Ministry of Economic Affairs and Climate Policy of the Netherlands utilizing the PPP-allowance made available by the Top Sector Life Sciences & Health to stimulate public-private partnerships (PPP-2019_007). Part of this study is financially supported by Sanofi Genzyme (NL8921).
Collapse
Affiliation(s)
- Yehya Al-Adwi
- University of Groningen, University Medical Centre Groningen, Department of Internal Medicine, Division of Vascular Medicine, Groningen, the Netherlands.
| | - Isabella Maria Atzeni
- University of Groningen, University Medical Centre Groningen, Department of Internal Medicine, Division of Vascular Medicine, Groningen, the Netherlands
| | - Berber Doornbos-van der Meer
- University of Groningen, University Medical Centre Groningen, Department of Rheumatology and Clinical Immunology, Groningen, the Netherlands
| | - Marcel John van der Leij
- University of Groningen, University Medical Centre Groningen, Department of Laboratory Medicine, Groningen, the Netherlands
| | | | - Bart-Jan Kroesen
- University of Groningen, University Medical Centre Groningen, Department of Laboratory Medicine, Groningen, the Netherlands
| | - Alja Stel
- University of Groningen, University Medical Centre Groningen, Department of Rheumatology and Clinical Immunology, Groningen, the Netherlands
| | - Wim Timens
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Christiaan Tji Gan
- University of Groningen, University Medical Centre Groningen, Department of Pulmonary Diseases and Tuberculosis, Groningen, the Netherlands
| | - Harry van Goor
- Department of Endocrinology, University Medical Centre Groningen, Groningen, the Netherlands
| | - Johanna Westra
- University of Groningen, University Medical Centre Groningen, Department of Rheumatology and Clinical Immunology, Groningen, the Netherlands
| | - Douwe Johannes Mulder
- University of Groningen, University Medical Centre Groningen, Department of Internal Medicine, Division of Vascular Medicine, Groningen, the Netherlands
| |
Collapse
|
6
|
Zhao AY, Unterman A, Abu Hussein N, Sharma P, Flint J, Yan X, Adams TS, Justet A, Sumida TS, Zhao J, Schupp JC, Raredon MSB, Ahangari F, Zhang Y, Buendia-Roldan I, Adegunsoye A, Sperling AI, Prasse A, Ryu C, Herzog E, Selman M, Pardo A, Kaminski N. Peripheral Blood Single-Cell Sequencing Uncovers Common and Specific Immune Aberrations in Fibrotic Lung Diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558301. [PMID: 37786685 PMCID: PMC10541583 DOI: 10.1101/2023.09.20.558301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Rationale and Objectives The extent and commonality of peripheral blood immune aberrations in fibrotic interstitial lung diseases are not well characterized. In this study, we aimed to identify common and distinct immune aberrations in patients with idiopathic pulmonary fibrosis (IPF) and fibrotic hypersensitivity pneumonitis (FHP) using cutting-edge single-cell profiling technologies. Methods Single-cell RNA sequencing was performed on patients and healthy controls' peripheral blood and bronchoalveolar lavage samples using 10X Genomics 5' gene expression and V(D)J profiling. Cell type composition, transcriptional profiles, cellular trajectories and signaling, and T and B cell receptor repertoires were studied. The standard Seurat R pipeline was followed for cell type composition and differential gene expression analyses. Transcription factor activity was imputed using the DoRothEA-VIPER algorithm. Pseudotime analyses were conducted using Monocle3, while RNA velocity analyses were performed with Velocyto, scVelo, and CellRank. Cell-cell connectomics were assessed using the Connectome R package. V(D)J analyses were conducted using CellRanger and Immcantation frameworks. Across all analyses, disease group differences were assessed using the Wilcoxon rank-sum test. Measurements and Main Results 327,990 cells from 83 samples were profiled. Overall, changes in monocytes were common to IPF and FHP, whereas lymphocytes exhibited disease-specific aberrations. Both diseases displayed enrichment of CCL3 hi /CCL4 hi CD14+ monocytes (p<2.2e-16) and S100A hi CD14+ monocytes (p<2.2e-16) versus controls. Trajectory and RNA velocity analysis suggested that pro-fibrotic macrophages observed in BAL originated from peripheral blood monocytes. Lymphocytes exhibited disease-specific aberrations, with CD8+ GZMK hi T cells and activated B cells primarily enriched in FHP patients. V(D)J analyses revealed unique T and B cell receptor complementarity-determining region 3 (CDR3) amino acid compositions (p<0.05) in FHP and significant IgA enrichment in IPF (p<5.2e-7). Conclusions We identified common and disease-specific immune mechanisms in IPF and FHP; S100A hi monocytes and SPP1 hi macrophages are common to IPF and FHP, whereas GMZK hi T lymphocytes and T and B cell receptor repertoires were unique in FHP. Our findings open novel strategies for the diagnosis and treatment of IPF and FHP.
Collapse
|
7
|
Lee AR, Lee SY, Choi JW, Um IG, Na HS, Lee JH, Cho ML. Establishment of a humanized mouse model of keloid diseases following the migration of patient immune cells to the lesion: Patient-derived keloid xenograft (PDKX) model. Exp Mol Med 2023; 55:1713-1719. [PMID: 37524866 PMCID: PMC10474158 DOI: 10.1038/s12276-023-01045-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/24/2023] [Indexed: 08/02/2023] Open
Abstract
Keloid disorder is an abnormal fibroproliferative reaction that can occur on any area of skin, and it can impair the quality of life of affected individuals. To investigate the pathogenesis and develop a treatment strategy, a preclinical animal model of keloid disorder is needed. However, keloid disorder is unique to humans, and the development of an animal model of keloid disorder is highly problematic. We developed the patient-derived keloid xenograft (PDKX), which is a humanized mouse model, and compared it to the traditional mouse xenograft model (transplantation of only keloid lesions). To establish the PDKX model, peripheral mononuclear cells (PBMCs) from ten keloid patients or five healthy control subjects were injected into NOD/SCID/IL-2Rγnull mice, and their keloid lesions were grafted onto the back after the engraftment of immune cells (transplantation of keloid lesions and KP PBMCs or HC PBMCs). Four weeks after surgery, the grafted keloid lesion was subjected to histologic evaluation. Compared to the traditional model, neotissue formed along the margin of the grafted skin, and lymphocyte infiltration and collagen synthesis were significantly elevated in the PDKX model. The neotissue sites resembled the margin areas of keloids in several respects. In detail, the levels of human Th17 cells, IL-17, HIF-1a, and chemokines were significantly elevated in the neotissue of the PDKX model. Furthermore, the weight of the keloid lesion was increased significantly in the PDKX model, which was due to the proinflammatory microenvironment of the keloid lesion. We confirmed that our patient-derived keloid xenograft (PDKX) model mimicked keloid disorder by recapitulating the in vivo microenvironment. This model will contribute to the investigation of cellular mechanisms and therapeutic treatments for keloid disorders.
Collapse
Affiliation(s)
- A Ram Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seon-Yeong Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Won Choi
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In Gyu Um
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Sik Na
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jung Ho Lee
- Department of Plastic and Reconstructive Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | - Mi-La Cho
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.
| |
Collapse
|
8
|
T cells in idiopathic pulmonary fibrosis: crucial but controversial. Cell Death Discov 2023; 9:62. [PMID: 36788232 PMCID: PMC9929223 DOI: 10.1038/s41420-023-01344-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) has been extensively studied in recent decades due to its rising incidence and high mortality. Despite an abundance of research, the mechanisms, immune-associated mechanisms, of IPF are poorly understood. While defining immunopathogenic mechanisms as the primary pathogenesis is controversial, recent studies have verified the contribution of the immune system to the fibrotic progression of IPF. Extensive evidence has shown the potential role of T cells in fibrotic progression. In this review, we emphasize the features of T cells in IPF and highlight the controversial roles of different subtypes of T cells or even two distinct effects of one type of T-cell in diverse settings, and multiple chemokines and cell products are discussed. Furthermore, we discuss the potential development of treatments targeting the immune molecules of T cells and the feasibility of immune therapies for IPF in clinical practice.
Collapse
|
9
|
Liu S, Liu C, Wang Q, Liu S, Min J. CC Chemokines in Idiopathic Pulmonary Fibrosis: Pathogenic Role and Therapeutic Potential. Biomolecules 2023; 13:biom13020333. [PMID: 36830702 PMCID: PMC9953349 DOI: 10.3390/biom13020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/12/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), characterized by progressive worsening of dyspnea and irreversible decline in lung function, is a chronic and progressive respiratory disease with a poor prognosis. Chronic or repeated lung injury results in inflammation and an excessive injury-repairing response that drives the development of IPF. A number of studies have shown that the development and progression of IPF are associated with dysregulated expression of several chemokines and chemokine receptors, several of which have been used as predictors of IPF outcome. Chemokines of the CC family play significant roles in exacerbating IPF progression by immune cell attraction or fibroblast activation. Modulating levels of detrimental CC chemokines and interrupting the corresponding transduction axis by neutralizing antibodies or antagonists are potential treatment options for IPF. Here, we review the roles of different CC chemokines in the pathogenesis of IPF, and their potential use as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Correspondence:
| | - Chang Liu
- Drug Clinical Trial Institution, Children’s Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| | - Qianrong Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Suosi Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jiali Min
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
10
|
Sari E, He C, Margaroli C. Plasticity towards Rigidity: A Macrophage Conundrum in Pulmonary Fibrosis. Int J Mol Sci 2022; 23:11443. [PMID: 36232756 PMCID: PMC9570276 DOI: 10.3390/ijms231911443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic, and ultimately fatal diffuse parenchymal lung disease. The molecular mechanisms of fibrosis in IPF patients are not fully understood and there is a lack of effective treatments. For decades, different types of drugs such as immunosuppressants and antioxidants have been tested, usually with unsuccessful results. Although two antifibrotic drugs (Nintedanib and Pirfenidone) are approved and used for the treatment of IPF, side effects are common, and they only slow down disease progression without improving patients' survival. Macrophages are central to lung homeostasis, wound healing, and injury. Depending on the stimulus in the microenvironment, macrophages may contribute to fibrosis, but also, they may play a role in the amelioration of fibrosis. In this review, we explore the role of macrophages in IPF in relation to the fibrotic processes, epithelial-mesenchymal transition (EMT), and their crosstalk with resident and recruited cells and we emphasized the importance of macrophages in finding new treatments.
Collapse
Affiliation(s)
- Ezgi Sari
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao He
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Camilla Margaroli
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
11
|
Ma H, Liu S, Li S, Xia Y. Targeting Growth Factor and Cytokine Pathways to Treat Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:918771. [PMID: 35721111 PMCID: PMC9204157 DOI: 10.3389/fphar.2022.918771] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease of unknown origin that usually results in death from secondary respiratory failure within 2–5 years of diagnosis. Recent studies have identified key roles of cytokine and growth factor pathways in the pathogenesis of IPF. Although there have been numerous clinical trials of drugs investigating their efficacy in the treatment of IPF, only Pirfenidone and Nintedanib have been approved by the FDA. However, they have some major limitations, such as insufficient efficacy, undesired side effects and poor pharmacokinetic properties. To give more insights into the discovery of potential targets for the treatment of IPF, this review provides an overview of cytokines, growth factors and their signaling pathways in IPF, which have important implications for fully exploiting the therapeutic potential of targeting cytokine and growth factor pathways. Advances in the field of cytokine and growth factor pathways will help slow disease progression, prolong life, and improve the quality of life for IPF patients in the future.
Collapse
Affiliation(s)
- Hongbo Ma
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Shengming Liu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Shanrui Li
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yong Xia
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| |
Collapse
|
12
|
Shi L, Wang J, Guo HX, Han XL, Tang YP, Liu GY. Circulating Th2 cell reduction and Th1/Th2 imbalance are correlated with primary Sjogren's syndrome-associated interstitial lung disease. Arthritis Res Ther 2022; 24:121. [PMID: 35606782 PMCID: PMC9125859 DOI: 10.1186/s13075-022-02811-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Primary Sjogren's syndrome (pSS) is a heterogeneous chronic autoimmune disorder characterized by lymphocyte infiltration of the exocrine glands and the involvement and dysfunction of multiple organs and tissues. Interstitial lung disease (ILD) is the most common type of respiratory system damage. This study ascertained the factors related to ILD in patients with pSS (pSS-ILD), such as altered levels of circulating lymphocyte subtypes. METHODS Eighty healthy controls and 142 patients diagnosed with pSS were included. The pSS patients were classified into groups with pSS-ILD or pSS without ILD (pSS-non-ILD). Baseline clinical and laboratory data were collected for all subjects, including the levels of lymphocytes measured by modified flow cytometry. RESULTS The pSS-ILD patients were older, had higher ESSDAI scores, had higher positivity rates for anti-SSB and anti-Ro52 antibodies, and had more frequent symptoms of respiratory system involvement than pSS-non-ILD patients. pSS-ILD patients had the lowest Th2 cell counts among the three groups. Although the absolute numbers of Treg and NK cells were lower in pSS patients with and without ILD than in the healthy controls, there was no significant difference between the two pSS groups. The Th1/Th2 ratio was significantly higher in patients with ILD than in patients without ILD. Further analysis showed that older age (OR=1.084), lower Th2 count (OR=0.947), higher Th1/Th2 ratio (OR=1.021), and positivity for anti-SSB (OR=3.620) and anti-Ro52 (OR=5.184) antibodies were associated with the occurrence of ILD in patients with pSS. CONCLUSION Decreased circulating Th2 cells and an elevated Th1/Th2 ratio may be the immunological mechanism underlying the development of ILD in pSS patients.
Collapse
Affiliation(s)
- Lei Shi
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Jia Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hong-Xia Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiao-Lei Han
- Department of Mental Health, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Yu-Ping Tang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guang-Ying Liu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
13
|
Takahashi M, Mizumura K, Gon Y, Shimizu T, Kozu Y, Shikano S, Iida Y, Hikichi M, Okamoto S, Tsuya K, Fukuda A, Yamada S, Soda K, Hashimoto S, Maruoka S. Iron-Dependent Mitochondrial Dysfunction Contributes to the Pathogenesis of Pulmonary Fibrosis. Front Pharmacol 2022; 12:643980. [PMID: 35058772 PMCID: PMC8765595 DOI: 10.3389/fphar.2021.643980] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 12/09/2021] [Indexed: 12/31/2022] Open
Abstract
Although the pathogenesis of pulmonary fibrosis remains unclear, it is known to involve epithelial injury and epithelial-mesenchymal transformation (EMT) as a consequence of cigarette smoke (CS) exposure. Moreover, smoking deposits iron in the mitochondria of alveolar epithelial cells. Iron overload in mitochondria causes the Fenton reaction, leading to reactive oxygen species (ROS) production, and ROS leakage from the mitochondria induces cell injury and inflammation in the lungs. Nevertheless, the mechanisms underlying iron metabolism and pulmonary fibrosis are yet to be elucidated. In this study, we aimed to determine whether iron metabolism and mitochondrial dysfunction are involved in the pathogenesis of pulmonary fibrosis. We demonstrated that administration of the iron chelator deferoxamine (DFO) reduced CS-induced pulmonary epithelial cell death, mitochondrial ROS production, and mitochondrial DNA release. Notably, CS-induced cell death was reduced by the administration of an inhibitor targeting ferroptosis, a unique iron-dependent form of non-apoptotic cell death. Transforming growth factor-β-induced EMT of pulmonary epithelial cells was also reduced by DFO. The preservation of mitochondrial function reduced Transforming growth factor-β-induced EMT. Furthermore, transbronchial iron chelation ameliorated bleomycin-induced pulmonary fibrosis and leukocyte migration in a murine model. Our findings indicate that iron metabolism and mitochondrial dysfunction are involved in the pathogenesis of pulmonary fibrosis. Thus, they may be leveraged as new therapeutic targets for pulmonary fibrosis.
Collapse
Affiliation(s)
- Mai Takahashi
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kenji Mizumura
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tetsuo Shimizu
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yutaka Kozu
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Sotaro Shikano
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yuko Iida
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Mari Hikichi
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shinichi Okamoto
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kota Tsuya
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Asami Fukuda
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shiho Yamada
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kaori Soda
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shu Hashimoto
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shuichiro Maruoka
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Vukmirovic M, Yan X, Gibson KF, Gulati M, Schupp JC, DeIuliis G, Adams TS, Hu B, Mihaljinec A, Woolard TN, Lynn H, Emeagwali N, Herzog EL, Chen ES, Morris A, Leader JK, Zhang Y, Garcia JGN, Maier LA, Collman RG, Drake WP, Becich MJ, Hochheiser H, Wisniewski SR, Benos PV, Moller DR, Prasse A, Koth LL, Kaminski N. Transcriptomics of bronchoalveolar lavage cells identifies new molecular endotypes of sarcoidosis. Eur Respir J 2021; 58:2002950. [PMID: 34083402 PMCID: PMC9759791 DOI: 10.1183/13993003.02950-2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/20/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Sarcoidosis is a multisystem granulomatous disease of unknown origin with a variable and often unpredictable course and pattern of organ involvement. In this study we sought to identify specific bronchoalveolar lavage (BAL) cell gene expression patterns indicative of distinct disease phenotypic traits. METHODS RNA sequencing by Ion Torrent Proton was performed on BAL cells obtained from 215 well-characterised patients with pulmonary sarcoidosis enrolled in the multicentre Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study. Weighted gene co-expression network analysis and nonparametric statistics were used to analyse genome-wide BAL transcriptome. Validation of results was performed using a microarray expression dataset of an independent sarcoidosis cohort (Freiburg, Germany; n=50). RESULTS Our supervised analysis found associations between distinct transcriptional programmes and major pulmonary phenotypic manifestations of sarcoidosis including T-helper type 1 (Th1) and Th17 pathways associated with hilar lymphadenopathy, transforming growth factor-β1 (TGFB1) and mechanistic target of rapamycin (MTOR) signalling with parenchymal involvement, and interleukin (IL)-7 and IL-2 with airway involvement. Our unsupervised analysis revealed gene modules that uncovered four potential sarcoidosis endotypes including hilar lymphadenopathy with increased acute T-cell immune response; extraocular organ involvement with PI3K activation pathways; chronic and multiorgan disease with increased immune response pathways; and multiorgan involvement, with increased IL-1 and IL-18 immune and inflammatory responses. We validated the occurrence of these endotypes using gene expression, pulmonary function tests and cell differentials from Freiburg. CONCLUSION Taken together, our results identify BAL gene expression programmes that characterise major pulmonary sarcoidosis phenotypes and suggest the presence of distinct disease molecular endotypes.
Collapse
Affiliation(s)
- Milica Vukmirovic
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Dept of Medicine, Division of Respirology, McMaster University, Hamilton, ON, Canada
- Equally contributing authors
| | - Xiting Yan
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Dept of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Equally contributing authors
| | - Kevin F Gibson
- Dept of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, US
| | - Mridu Gulati
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jonas C Schupp
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Giuseppe DeIuliis
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Taylor S Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Buqu Hu
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Antun Mihaljinec
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Tony N Woolard
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Heather Lynn
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- University of Arizona Health Sciences, Tucson, AZ, USA
| | - Nkiruka Emeagwali
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Erica L Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | - Alison Morris
- Dept of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, US
| | - Joseph K Leader
- Dept of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yingze Zhang
- Dept of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, US
| | | | | | | | | | - Michael J Becich
- Dept of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Harry Hochheiser
- Dept of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Steven R Wisniewski
- Dept of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, US
| | - Panayiotis V Benos
- Dept of Computational and Systems Biology and Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Antje Prasse
- Hannover Medical School (MHH), Hannover, Germany
- Fraunhofer ITEM, Hannover, Germany
| | - Laura L Koth
- University of California San Francisco, San Francisco, CA, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
15
|
Dexamethasone Alters Tracheal Aspirate T-Cell Cytokine Production in Ventilated Preterm Infants. CHILDREN-BASEL 2021; 8:children8100879. [PMID: 34682144 PMCID: PMC8535110 DOI: 10.3390/children8100879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022]
Abstract
Postnatal corticosteroids improve respiratory status and facilitate respiratory support weaning in preterm infants with bronchopulmonary dysplasia (BPD). Older literature describes characteristic cytokine profiles in tracheal aspirates (TA) of BPD patients which are altered with corticosteroids. Corticosteroids also influence peripheral blood T-cell presence. However, little is known regarding TA T-cell phenotype and cytokine production before or after exogenous corticosteroids. We hypothesized that postnatal dexamethasone alters the TA T-cell cytokine profiles of preterm infants. TA samples were collected from 14 infants born from 23 0/7 to 28 6/7 weeks who were mechanically ventilated for at least 14 days. Samples were collected up to 72 h before a ten-day dexamethasone course and again 1 to 3 calendar days after dexamethasone initiation. The primary outcome was change in T cell populations present in TA and their intracellular cytokine profile after dexamethasone treatment, ascertained via flow cytometry. Following dexamethasone treatment, there were significant decreases in respiratory severity score (RSS), percent CD4+IL-6+ cells, CD8+IL-6+ cells, CXCR3+IL-6+ cells, and CXCR3+IL-2+ cells and total intracellular IFN-γ in TA. RSS significantly correlated with TA percent CD4+IL-6+ cells. To our knowledge, this is the first study demonstrating that dexamethasone reduced T-cell IL-6 and this reduction was associated with improved RSS in pre-term infants with evolving BPD.
Collapse
|
16
|
Utsunomiya A, Oyama N, Hasegawa M. Potential Biomarkers in Systemic Sclerosis: A Literature Review and Update. J Clin Med 2020; 9:E3388. [PMID: 33105647 PMCID: PMC7690387 DOI: 10.3390/jcm9113388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by dysregulation of the immune system, vascular damage, and fibrosis of the skin and internal organs. Patients with SSc show a heterogeneous phenotype and a range of clinical courses. Therefore, biomarkers that are helpful for precise diagnosis, prediction of clinical course, and evaluation of the therapeutic responsiveness of disease are required in clinical practice. SSc-specific autoantibodies are currently used for diagnosis and prediction of clinical features, as other biomarkers have not yet been fully vetted. Krebs von den Lungen-6 (KL-6), surfactant protein-D (SP-D), and CCL18 have been considered as serum biomarkers of SSc-related interstitial lung disease. Moreover, levels of circulating brain natriuretic peptide (BNP) and N-terminal pro-brain natriuretic peptide (NT-proBNP) can provide diagnostic information and indicate the severity of pulmonary arterial hypertension. Assessment of several serum/plasma cytokines, chemokines, growth factors, adhesion molecules, and other molecules may also reflect the activity or progression of fibrosis and vascular involvement in affected organs. Recently, microRNAs have also been implicated as possible circulating indicators of SSc. In this review, we focus on several potential SSc biomarkers and discuss their clinical utility.
Collapse
Affiliation(s)
| | | | - Minoru Hasegawa
- Department of Dermatology, Divison of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan; (A.U.); (N.O.)
| |
Collapse
|
17
|
Arger NK, Ho ME, Allen IE, Benn BS, Woodruff PG, Koth LL. CXCL9 and CXCL10 are differentially associated with systemic organ involvement and pulmonary disease severity in sarcoidosis. Respir Med 2019; 161:105822. [PMID: 31783271 DOI: 10.1016/j.rmed.2019.105822] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Sarcoidosis is a granulomatous inflammatory disease with limited blood markers to predict outcomes. The interferon-gamma (IFN-γ)-inducible chemotactic cytokines (chemokines), CXCL9 and CXCL10, are both increased in sarcoidosis patients, yet they possess important molecular differences. Our study determined if serum chemokines correlated with different aspects of disease severity. METHODS We measured CXCL9 and CXCL10 serum levels at initial study visits and longitudinally in sarcoidosis subjects using ELISA. We examined these chemokines' relationships with pulmonary and organ involvement outcomes, their gene expression, peripheral blood immune cell populations, and immunosuppression use. RESULTS Higher CXCL10 levels negatively correlated with FVC, TLC, and DLCO at subjects' initial visit and when measured repeatedly over two years. CXCL10 also positively correlated with longitudinal respiratory symptom severity. Additionally, for every log10(CXCL10) increase, the risk of longitudinal pulmonary function decline increased 8.8 times over the 5-year study period (95% CI 1.6-50, p = 0.014, log10(CXCL0) range 0.84-2.7). In contrast, CXCL9 levels positively correlated with systemic organ involvement at initial study visit (1.5 additional organs involved for every log10(CXCL9) increase, 95% CI 1.1-2.0, p = 0.022, log10(CXCL9) range 1.3-3.3). CXCL10, not CXCL9, positively correlated with its own blood gene expression and monocyte level. Immunosuppressive treatment was associated with lower levels of both chemokines. CONCLUSIONS In sarcoidosis subjects, serum CXCL9 levels correlated with systemic organ involvement and CXCL10 levels strongly correlated with respiratory outcomes, which may ultimately prove helpful in clinical management. These differing associations may be due to differences in cellular regulation and tissue origin.
Collapse
Affiliation(s)
- Nicholas K Arger
- University of California, San Francisco, Division of Pulmonary and Critical Care, 505 Parnassus Ave, San Francisco, CA, 94143, USA.
| | - Melissa E Ho
- University of California, San Francisco, Division of Pulmonary and Critical Care, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Isabel E Allen
- University of California, San Francisco, Department of Epidemiology and Biostatistics, 550 16thSt, San Francisco, CA, 94158, USA
| | - Bryan S Benn
- University of California, San Francisco, Division of Pulmonary and Critical Care, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Prescott G Woodruff
- University of California, San Francisco, Division of Pulmonary and Critical Care, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Laura L Koth
- University of California, San Francisco, Division of Pulmonary and Critical Care, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| |
Collapse
|
18
|
Nukui Y, Yamana T, Masuo M, Tateishi T, Kishino M, Tateishi U, Tomita M, Hasegawa T, Aritsu T, Miyazaki Y. Serum CXCL9 and CCL17 as biomarkers of declining pulmonary function in chronic bird-related hypersensitivity pneumonitis. PLoS One 2019; 14:e0220462. [PMID: 31369605 PMCID: PMC6675044 DOI: 10.1371/journal.pone.0220462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/16/2019] [Indexed: 11/18/2022] Open
Abstract
The clinical course of chronic hypersensitivity pneumonitis (HP) with fibrosis is similar to that of idiopathic pulmonary fibrosis (IPF). Current research is expected to identify biomarkers effective in predicting the deterioration of lung function in a clinical setting. Our group analyzed the relationships between the following parameters in chronic bird-related HP: patient characteristics, serum markers, lung function, HRCT findings, BALF profiles, and the worsening of lung function. We also analyzed serum levels of CXCL9, CCL17, and Krebs von den Lungen 6 (KL-6) as serum markers. Patients showing declines in vital capacity (VC) of over 5% at 6 months after first admission were categorized as the “decline group”; the others were categorized as the “stable group.” The serum level of CCL17 and the percentage of BALF macrophages were significantly higher in the decline group compared to the stable group. Serum levels of CXCL9 and CCL17 were significant variables in a multivariate logistic regression analysis of factors associated with VC decline. Patients with a chemokine profile combining lower serum CXCL9 and higher serum CCL17 exhibited significantly larger VC decline in a cluster analysis. Higher serum CCL17 and lower serum CXCL9 were important predictors of worsening lung function in patients with chronic bird-related HP.
Collapse
Affiliation(s)
- Yoshihisa Nukui
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takashi Yamana
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Masahiro Masuo
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Tomoya Tateishi
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Mitsuhiro Kishino
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Ukihide Tateishi
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Makoto Tomita
- Department of Clinical Research Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | | | | | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
19
|
Guo Y, Lei I, Tian S, Gao W, Hacer K, Li Y, Wang S, Liu L, Wang Z. Chemical suppression of specific C-C chemokine signaling pathways enhances cardiac reprogramming. J Biol Chem 2019; 294:9134-9146. [PMID: 31023824 DOI: 10.1074/jbc.ra118.006000] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/25/2019] [Indexed: 01/02/2023] Open
Abstract
Reprogramming of fibroblasts into induced cardiomyocytes (iCMs) is a potentially promising strategy for regenerating a damaged heart. However, low fibroblast-cardiomyocyte conversion rates remain a major challenge in this reprogramming. To this end, here we conducted a chemical screen and identified four agents, insulin-like growth factor-1, Mll1 inhibitor MM589, transforming growth factor-β inhibitor A83-01, and Bmi1 inhibitor PTC-209, termed IMAP, which coordinately enhanced reprogramming efficiency. Using α-muscle heavy chain-GFP-tagged mouse embryo fibroblasts as a starting cell type, we observed that the IMAP treatment increases iCM formation 6-fold. IMAP stimulated higher cardiac troponin T and α-actinin expression and increased sarcomere formation, coinciding with up-regulated expression of many cardiac genes and down-regulated fibroblast gene expression. Furthermore, IMAP promoted higher spontaneous beating and calcium transient activities of iCMs derived from neonatal cardiac fibroblasts. Intriguingly, we also observed that the IMAP treatment repressed many genes involved in immune responses, particularly those in specific C-C chemokine signaling pathways. We therefore investigated the roles of C-C motif chemokine ligand 3 (CCL3), CCL6, and CCL17 in cardiac reprogramming and observed that they inhibited iCM formation, whereas inhibitors of C-C motif chemokine receptor 1 (CCR1), CCR4, and CCR5 had the opposite effect. These results indicated that the IMAP treatment directly suppresses specific C-C chemokine signaling pathways and thereby enhances cardiac reprogramming. In conclusion, a combination of four chemicals, named here IMAP, suppresses specific C-C chemokine signaling pathways and facilitates Mef2c/Gata4/Tbx5 (MGT)-induced cardiac reprogramming, providing a potential means for iCM formation in clinical applications.
Collapse
Affiliation(s)
- Yijing Guo
- From the Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan 48109.,Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ienglam Lei
- From the Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan 48109.,Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China
| | - Shuo Tian
- From the Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan 48109
| | - Wenbin Gao
- From the Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan 48109.,First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Karatas Hacer
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan 48109.,Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, and.,Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109
| | - Yangbing Li
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan 48109.,Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, and.,Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109
| | - Shaomeng Wang
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan 48109.,Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, and.,Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109
| | - Liu Liu
- From the Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan 48109,
| | - Zhong Wang
- From the Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan 48109,
| |
Collapse
|
20
|
Venosa A, Katzen J, Tomer Y, Kopp M, Jamil S, Russo SJ, Mulugeta S, Beers MF. Epithelial Expression of an Interstitial Lung Disease-Associated Mutation in Surfactant Protein-C Modulates Recruitment and Activation of Key Myeloid Cell Populations in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 202:2760-2771. [PMID: 30910861 DOI: 10.4049/jimmunol.1900039] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/04/2019] [Indexed: 12/24/2022]
Abstract
Patients with idiopathic pulmonary fibrosis (IPF) often experience precipitous deteriorations, termed "acute exacerbations" (AE), marked by diffuse alveolitis and altered gas exchange, resulting in a significant loss of lung function or mortality. The missense isoleucine to threonine substitution at position 73 (I73T) in the alveolar type 2 cell-restricted surfactant protein-C (SP-C) gene (SFTPC) has been linked to clinical IPF. To better understand the sequence of events that impact AE-IPF, we leveraged a murine model of inducible SP-CI73T (SP-CI73T/I73TFlp+/- ) expression. Following administration of tamoxifen to 8-12-wk-old mice, an upregulation of SftpcI73T initiated a diffuse lung injury marked by increases in bronchoalveolar lavage fluid (BALF) protein and histochemical evidence of CD45+ and CD11b+ cell infiltrates. Flow cytometry of collagenase-digested lung cells revealed a transient, early reduction in SiglecFhiCD11blowCD64hiCD11chi macrophages, countered by the sequential accumulation of SiglecFloCD11b+CD64-CD11c-CCR2+Ly6C+ immature macrophages (3 d), Ly6G+ neutrophils (7 d), and SiglecFhiCD11bhiCD11clo eosinophils (2 wk). By mRNA analysis, BALF cells demonstrated a time-dependent phenotypic shift from a proinflammatory (3 d) to an anti-inflammatory/profibrotic activation state, along with serial elaboration of monocyte and eosinophil recruitment factors. The i.v. administration of clodronate effectively reduced total BALF cell numbers, CCR2+ immature macrophages, and eosinophil influx while improving survival. In contrast, resident macrophage depletion from the intratracheal delivery of clodronate liposomes enhanced SftpcI73T -induced mortality. These results using SftpcI73T mice provide a detailed ontogeny for AE-IPF driven by alveolar epithelial dysfunction that induces a polycellular inflammation initiated by the early influx of proinflammatory CCR2+Ly6Chi immature macrophages.
Collapse
Affiliation(s)
- Alessandro Venosa
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Jeremy Katzen
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Yaniv Tomer
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Meghan Kopp
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Sarita Jamil
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Scott J Russo
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Surafel Mulugeta
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and.,Penn Center for Pulmonary Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104
| | - Michael F Beers
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and .,Penn Center for Pulmonary Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
21
|
Brunetti G, Malovini A, Testoni C, Bellazzi R, Balestrino A, Meriggi A, Moscato G, Alessandrini A, Rivolta F, Pignatti P. Clusterization of patients with idiopathic pulmonary fibrosis with chemokine receptors: a possible role in the diagnostic work-up of idiopathic pulmonary fibrosis? SARCOIDOSIS VASCULITIS AND DIFFUSE LUNG DISEASES 2018; 35:35-43. [PMID: 32476878 DOI: 10.36141/svdld.v35i1.6165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/25/2017] [Indexed: 11/02/2022]
Abstract
Background and objective: Idiopathic pulmonary fibrosis (IPF) is a chronic and irreversible interstitial lung disease whose diagnosis often requires surgical lung biopsies (SLB) in cases without consistent radiological findings. We previously published that the expression of the chemokine receptors CXCR3 and CCR4 on T cells is significantly different in bronchoalveolar lavage (BAL) of IPF patients from other interstitial lung diseases. The aim of the study was to evaluate cut-off values of CXCR3 and CCR4 receptors expressed on bronchoalveolar lavage (BAL) and peripheral blood (PB) T cells useful for a differential diagnosis. Methods: Ninety-three patients were enrolled: 35 IPF, 36 interstitial lung diseases (nIPF) and 22 sarcoidosis. CXCR3 and CCR4 were evaluated on BAL and PB T lymphocytes with flow cytometry. Results: Among PB and BAL variables considered, the values of the ratio of BAL and PB CXCR3 on CD4 cells were clustered in the most informative way to obtain a classification rule for the diagnosis of patients without steroid therapy (n = 66/93). Patients with a CXCR3 ratio BAL/PB on CD4 T cells lower or equal than 1.43 were assigned to the IPF group with sensitivity = 0.87 and specificity = 0.90. All the other variables considered showed lower sensitivity and specificity in discriminating IPF patients. Conclusions: The evaluation of chemokine receptors on BAL and PB T lymphocytes could aid to discriminate IPF in subjects without steroid therapy, particularly in those patients with a high-resolution computed tomography (HRCT) non typical for Usual Interstitial Pneumonia (UIP). (Sarcoidosis Vasc Diffuse Lung Dis 2018; 35: 35-43).
Collapse
Affiliation(s)
| | - Alberto Malovini
- Laboratorio di Informatica e Sistemistica per la Ricerca Clinica
| | - Claudia Testoni
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | | | | | - Antonio Meriggi
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Gianna Moscato
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Arnaldo Alessandrini
- SSD Pneumologia e Fisiopatologia respiratoria. Azienda ospedaliera Ospedale civile di Legnano, Presidio di Abbiategrasso, Italy
| | - Federica Rivolta
- SSD Pneumologia e Fisiopatologia respiratoria. Azienda ospedaliera Ospedale civile di Legnano, Presidio di Abbiategrasso, Italy
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy.,Division of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS, Tradate (VA), Italy
| |
Collapse
|
22
|
Kunicki MA, Amaya Hernandez LC, Davis KL, Bacchetta R, Roncarolo MG. Identity and Diversity of Human Peripheral Th and T Regulatory Cells Defined by Single-Cell Mass Cytometry. THE JOURNAL OF IMMUNOLOGY 2017; 200:336-346. [PMID: 29180490 DOI: 10.4049/jimmunol.1701025] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/26/2017] [Indexed: 12/26/2022]
Abstract
Human CD3+CD4+ Th cells, FOXP3+ T regulatory (Treg) cells, and T regulatory type 1 (Tr1) cells are essential for ensuring peripheral immune response and tolerance, but the diversity of Th, Treg, and Tr1 cell subsets has not been fully characterized. Independent functional characterization of human Th1, Th2, Th17, T follicular helper (Tfh), Treg, and Tr1 cells has helped to define unique surface molecules, transcription factors, and signaling profiles for each subset. However, the adequacy of these markers to recapitulate the whole CD3+CD4+ T cell compartment remains questionable. In this study, we examined CD3+CD4+ T cell populations by single-cell mass cytometry. We characterize the CD3+CD4+ Th, Treg, and Tr1 cell populations simultaneously across 23 memory T cell-associated surface and intracellular molecules. High-dimensional analysis identified several new subsets, in addition to the already defined CD3+CD4+ Th, Treg, and Tr1 cell populations, for a total of 11 Th cell, 4 Treg, and 1 Tr1 cell subsets. Some of these subsets share markers previously thought to be selective for Treg, Th1, Th2, Th17, and Tfh cells, including CD194 (CCR4)+FOXP3+ Treg and CD183 (CXCR3)+T-bet+ Th17 cell subsets. Unsupervised clustering displayed a phenotypic organization of CD3+CD4+ T cells that confirmed their diversity but showed interrelation between the different subsets, including similarity between Th1-Th2-Tfh cell populations and Th17 cells, as well as similarity of Th2 cells with Treg cells. In conclusion, the use of single-cell mass cytometry provides a systems-level characterization of CD3+CD4+ T cells in healthy human blood, which represents an important baseline reference to investigate abnormalities of different subsets in immune-mediated pathologies.
Collapse
Affiliation(s)
- Matthew A Kunicki
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA 94305
| | - Laura C Amaya Hernandez
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA 94305.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305; and
| | - Kara L Davis
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA 94305
| | - Rosa Bacchetta
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA 94305
| | - Maria-Grazia Roncarolo
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA 94305; .,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305; and
| |
Collapse
|
23
|
Adegunsoye A, Hrusch CL, Bonham CA, Jaffery MR, Blaine KM, Sullivan M, Churpek MM, Strek ME, Noth I, Sperling AI. Skewed Lung CCR4 to CCR6 CD4 + T Cell Ratio in Idiopathic Pulmonary Fibrosis Is Associated with Pulmonary Function. Front Immunol 2016; 7:516. [PMID: 27933058 PMCID: PMC5120085 DOI: 10.3389/fimmu.2016.00516] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/04/2016] [Indexed: 11/13/2022] Open
Abstract
Rationale Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal lung disease. While it has been suggested that T cells may contribute to IPF pathogenesis, these studies have focused primarily on T cells outside of the pulmonary interstitium. Thus, the role of T cells in the diseased lung tissue remains unclear. Objective To identify whether specific CD4+ T cell subsets are differentially represented in lung tissue from patients with IPF. Methods CD4+ T cell subsets were measured in lung tissue obtained from patients with IPF at the time of lung transplantation, and from age- and gender-matched organ donors with no known lung disease. Subsets were identified by their surface expression of CCR4, CCR6, and CXCR3 chemokine receptors. CD4+ T cell subsets were correlated with measurements of lung function obtained prior to transplantation. Results Compared to controls, IPF patients had a higher proportion of lung CD4+ T cells, a higher proportion of CCR4+ CD4+ T cells, and a lower proportion of CCR6+ CD4+ T cells. The increase in CCR4+ CD4+ T cells in IPF lung tissue was not due to increased Tregs. Intriguingly, the increase in the ratio of CCR4+ cells to CCR6+ cells correlated significantly with better lung function. Conclusion Our findings suggest a new paradigm that not all T cell infiltrates in IPF lungs are detrimental, but instead, specialized subsets may actually be protective. Thus, augmentation of the chemokines that recruit protective T cells, while blocking chemokines that recruit detrimental T cells, may constitute a novel approach to IPF therapy.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago , Chicago, IL , USA
| | - Cara L Hrusch
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Catherine A Bonham
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago , Chicago, IL , USA
| | - Mohammad R Jaffery
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago , Chicago, IL , USA
| | - Kelly M Blaine
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago , Chicago, IL , USA
| | - Meghan Sullivan
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago , Chicago, IL , USA
| | - Matthew M Churpek
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago , Chicago, IL , USA
| | - Mary E Strek
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago , Chicago, IL , USA
| | - Imre Noth
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago , Chicago, IL , USA
| | - Anne I Sperling
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
Kolahian S, Fernandez IE, Eickelberg O, Hartl D. Immune Mechanisms in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2016; 55:309-22. [DOI: 10.1165/rcmb.2016-0121tr] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
25
|
Koli K, Sutinen E, Rönty M, Rantakari P, Fortino V, Pulkkinen V, Greco D, Sipilä P, Myllärniemi M. Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment - A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine. PLoS One 2016; 11:e0159010. [PMID: 27428020 PMCID: PMC4948891 DOI: 10.1371/journal.pone.0159010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/25/2016] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung.
Collapse
Affiliation(s)
- Katri Koli
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Eva Sutinen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
- University of Helsinki and Helsinki University Hospital, Heart and Lung Center, Department of Pulmonary Medicine, Helsinki, Finland
| | - Mikko Rönty
- Department of Pathology, University of Helsinki and Fimlab laboratories, Pathology, Tampere, Finland
| | - Pia Rantakari
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Vittorio Fortino
- Unit of Systems Toxicology and Nanosafety Centre, Finnish Institute of Occupational Health (FIOH), Helsinki, Finland
| | - Ville Pulkkinen
- University of Helsinki and Helsinki University Hospital, Heart and Lung Center, Department of Pulmonary Medicine, Helsinki, Finland
| | - Dario Greco
- Unit of Systems Toxicology and Nanosafety Centre, Finnish Institute of Occupational Health (FIOH), Helsinki, Finland
| | - Petra Sipilä
- Department of Physiology, Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Marjukka Myllärniemi
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
- University of Helsinki and Helsinki University Hospital, Heart and Lung Center, Department of Pulmonary Medicine, Helsinki, Finland
| |
Collapse
|
26
|
Liu M, Zeng X, Wang J, Fu Z, Wang J, Liu M, Ren D, Yu B, Zheng L, Hu X, Shi W, Xu J. Immunomodulation by mesenchymal stem cells in treating human autoimmune disease-associated lung fibrosis. Stem Cell Res Ther 2016; 7:63. [PMID: 27107963 PMCID: PMC4842299 DOI: 10.1186/s13287-016-0319-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 03/09/2016] [Accepted: 04/08/2016] [Indexed: 12/25/2022] Open
Abstract
Background Interstitial pneumonia in connective tissue diseases (CTD-IP) featuring inflammation and fibrosis is a leading cause of death in CTD-IP patients. The related autoimmune lung injury and disturbed self-healing process make conventional anti-inflammatory drugs ineffective. Equipped with unique immunoregulatory and regenerative properties, mesenchymal stem cells (MSCs) may represent a promising therapeutic agent in CTD-IP. In this study, we aim to define the immunopathology involved in pulmonary exacerbation during autoimmunity and to determine the potential of MSCs in correcting these disorders. Methods Lung and blood specimens, bronchoalveolar lavage fluid cells collected from CTD-IP patients, and human primary lung fibroblasts (HLFs) from patients pathologically diagnosed with usual interstitial pneumonia (UIP) and healthy controls were analyzed by histology, flow cytometry and molecular biology. T cell subsets involved in the process of CTD-IP were defined, while the regulatory functions of MSCs isolated from the bone marrow of normal individuals (HBMSCs) on cytotoxic T cells and CTD-UIP HLFs were investigated in vitro. Results Higher frequencies of cytotoxic T cells were observed in the lung and peripheral blood of CTD-IP patients, accompanied with a reduced regulatory T cell (Treg) level. CTD-UIP HLFs secreted proinflammatory cytokines in combination with upregulation of α-smooth muscle actin (α-SMA). The addition of HBMSCs in vitro increased Tregs concomitant with reduced cytotoxic T cells in an experimental cell model with dominant cytotoxic T cells, and promoted Tregs expansion in T cell subsets from patients with idiopathic pulmonary fibrosis (IPF). HBMSCs also significantly decreased proinflammatory chemokine/cytokine expression, and blocked α-SMA activation in CTD-UIP HLFs through a TGF-β1-mediated mechanism, which modulates excessive IL-6/STAT3 signaling leading to IP-10 expression. MSCs secreting a higher level of TGF-β1 appear to have an optimal anti-fibrotic efficacy in BLM-induced pulmonary fibrosis in mice. Conclusions Impairment of TGF-β signal transduction relevant to a persistent IL-6/STAT3 transcriptional activation contributes to reduction of Treg differentiation in CTD-IP and to myofibroblast differentiation in CTD-UIP HLFs. HBMSCs can sensitize TGF-β1 downstream signal transduction that regulates IL-6/STAT3 activation, thereby stimulating Treg expansion and facilitating anti-fibrotic IP-10 production. This may in turn block progression of lung fibrosis in autoimmunity. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0319-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P. R. China
| | - Xiansheng Zeng
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P. R. China.,Department of Respiratory Medicine, Xiangyang Central Hospital, Xiangyang, Hubei province, P. R. China
| | - Junli Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P. R. China
| | - Zhiping Fu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P. R. China
| | - Jinsong Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P. R. China.,Shenzhen Beike Cell Engineering Research Institute, Shenzhen, P. R. China
| | - Muyun Liu
- Shenzhen Beike Cell Engineering Research Institute, Shenzhen, P. R. China
| | - Dunqiang Ren
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P. R. China
| | - Baodan Yu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P. R. China
| | - Lixia Zheng
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P. R. China
| | - Xiang Hu
- Shenzhen Beike Cell Engineering Research Institute, Shenzhen, P. R. China
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, Department of Surgery, The Saban Research Institute of Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Jun Xu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P. R. China.
| |
Collapse
|
27
|
O'Beirne SL, Walsh SM, Fabre A, Reviriego C, Worrell JC, Counihan IP, Lumsden RV, Cramton-Barnes J, Belperio JA, Donnelly SC, Boylan D, Marchal-Sommé J, Kane R, Keane MP. CXCL9 Regulates TGF-β1-Induced Epithelial to Mesenchymal Transition in Human Alveolar Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:2788-96. [PMID: 26268659 DOI: 10.4049/jimmunol.1402008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 07/12/2015] [Indexed: 01/22/2023]
Abstract
Epithelial to mesenchymal cell transition (EMT), whereby fully differentiated epithelial cells transition to a mesenchymal phenotype, has been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). CXCR3 and its ligands are recognized to play a protective role in pulmonary fibrosis. In this study, we investigated the presence and extent of EMT and CXCR3 expression in human IPF surgical lung biopsies and assessed whether CXCR3 and its ligand CXCL9 modulate EMT in alveolar epithelial cells. Coexpression of the epithelial marker thyroid transcription factor-1 and the mesenchymal marker α-smooth muscle actin and CXCR3 expression was examined by immunohistochemical staining of IPF surgical lung biopsies. Epithelial and mesenchymal marker expression was examined by quantitative real-time PCR, Western blotting, and immunofluorescence in human alveolar epithelial (A549) cells treated with TGF-β1 and CXCL9, with Smad2, Smad3, and Smad7 expression and cellular localization examined by Western blotting. We found that significantly more cells were undergoing EMT in fibrotic versus normal areas of lung in IPF surgical lung biopsy samples. CXCR3 was expressed by type II pneumocytes and fibroblasts in fibrotic areas in close proximity to cells undergoing EMT. In vitro, CXCL9 abrogated TGF-β1-induced EMT. A decrease in TGF-β1-induced phosphorylation of Smad2 and Smad3 occurred with CXCL9 treatment. This was associated with increased shuttling of Smad7 from the nucleus to the cytoplasm where it inhibits Smad phosphorylation. This suggests a role for EMT in the pathogenesis of IPF and provides a novel mechanism for the inhibitory effects of CXCL9 on TGF-β1-induced EMT.
Collapse
Affiliation(s)
- Sarah L O'Beirne
- St. Vincent's University Hospital and School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Sinead M Walsh
- St. Vincent's University Hospital and School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Aurélie Fabre
- St. Vincent's University Hospital and School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
| | - Carlota Reviriego
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Julie C Worrell
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Ian P Counihan
- St. Vincent's University Hospital and School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Robert V Lumsden
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Jennifer Cramton-Barnes
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - John A Belperio
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095; and
| | - Seamas C Donnelly
- St. Vincent's University Hospital and School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Denise Boylan
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Joëlle Marchal-Sommé
- INSERM Unité Mixte de Recherche 700, Physiopathologie et Epidémiologie de l'Insuffisance Respiratoire, Universite Denis Diderot, Paris 7, Unité de Formation et de Recherche de Médecine, 75018 Paris, France
| | - Rosemary Kane
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Michael P Keane
- St. Vincent's University Hospital and School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland;
| |
Collapse
|
28
|
Pivotal roles of GM-CSF in autoimmunity and inflammation. Mediators Inflamm 2015; 2015:568543. [PMID: 25838639 PMCID: PMC4370199 DOI: 10.1155/2015/568543] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/23/2015] [Indexed: 12/14/2022] Open
Abstract
Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic growth factor, which stimulates the proliferation of granulocytes and macrophages from bone marrow precursor cells. In autoimmune and inflammatory diseases, Th17 cells have been considered as strong inducers of tissue inflammation. However, recent evidence indicates that GM-CSF has prominent proinflammatory functions and that this growth factor (not IL-17) is critical for the pathogenicity of CD4+ T cells. Therefore, the mechanism of GM-CSF-producing CD4+ T cell differentiation and the role of GM-CSF in the development of autoimmune and inflammatory diseases are gaining increasing attention. This review summarizes the latest knowledge of GM-CSF and its relationship with autoimmune and inflammatory diseases. The potential therapies targeting GM-CSF as well as their possible side effects have also been addressed in this review.
Collapse
|
29
|
Tomankova T, Kriegova E, Liu M. Chemokine receptors and their therapeutic opportunities in diseased lung: far beyond leukocyte trafficking. Am J Physiol Lung Cell Mol Physiol 2015; 308:L603-18. [PMID: 25637606 DOI: 10.1152/ajplung.00203.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/28/2015] [Indexed: 12/13/2022] Open
Abstract
Chemokine receptors and their chemokine ligands, key mediators of inflammatory and immune cell trafficking, are involved in the regulation of both physiological and pathological processes in the lung. The discovery that chemokine receptors/chemokines, typically expressed by inflammatory and immune cells, are also expressed in structural lung tissue cells suggests their role in mediating the restoration of lung tissue structure and functions. Thus, chemokine receptors/chemokines contribute not only to inflammatory and immune responses in the lung but also play a critical role in the regulation of lung tissue repair, regeneration, and remodeling. This review aims to summarize current state-of-the-art on chemokine receptors and their ligands in lung diseases such as chronic obstructive pulmonary disease, asthma/allergy, pulmonary fibrosis, acute lung injury, and lung infection. Furthermore, the therapeutic opportunities of chemokine receptors in aforementioned lung diseases are discussed. The review also aims to delineate the potential contribution of chemokine receptors to the processes leading to repair/regeneration of the lung tissue.
Collapse
Affiliation(s)
- Tereza Tomankova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Czech Republic; Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; and
| | - Eva Kriegova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Czech Republic
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; and Faculty of Medicine, Departments of Physiology, Surgery, and Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Moore BB, Fry C, Zhou Y, Murray S, Han MK, Martinez FJ, Flaherty KR. Inflammatory leukocyte phenotypes correlate with disease progression in idiopathic pulmonary fibrosis. Front Med (Lausanne) 2014; 1. [PMID: 25580363 PMCID: PMC4286285 DOI: 10.3389/fmed.2014.00056] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive deposition of extracellular matrix, worsening dyspnea, and eventual mortality. Pathogenesis of IPF is poorly understood and the role inflammation and activated leukocytes play in the disease process is controversial. Previous studies demonstrated that activated leukocyte subsets characterize IPF patients. We sought to validate this observation in a well-defined cohort of 35 IPF patients and to correlate the observed leukocyte phenotypes with robust parameters of disease progression. We demonstrate that in univariate and multivariate analyses, increases in the CD14hi, CD16hi subset of monocytes measured at baseline correlated with disease progression, with a threshold value >0.5% of the total peripheral blood mononuclear cells being a significant predictor for worse outcome. In addition, several T cell subsets, including CD25 expressing CD4 cells, and CXCR3 expressing CD4 and CD8 subsets correlated with disease progression when found in increased percentages in the peripheral blood of IPF patients when sampled at baseline. Somewhat surprising in comparison to previous literature, the CD4 T cells did not appear to have lost expression of the co-stimulatory molecule, CD28, but the CD8 T cells did. Taken together, these results are consistent with the presence of an inflammatory process in IPF patients who eventually progress. However, when longitudinal measurements of these same markers were examined, there was significant heterogeneity of expression and these biomarkers did not necessarily remain elevated in IPF patients with progressive disease. We interpret this heterogeneity to suggest that IPF patients experience episodic inflammatory events that once triggered, may lead to disease progression. This longitudinal heterogeneity in biomarker analyses may explain why such markers are not consistently measured in all IPF cohorts.
Collapse
Affiliation(s)
- Bethany B Moore
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA ; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Chris Fry
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yueren Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Susan Murray
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - MeiLan K Han
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Fernando J Martinez
- Department of Internal Medicine, Weill Cornell Medical School, NewYork, NY, USA
| | - Kevin R Flaherty
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
31
|
Baroke E, Gauldie J, Kolb M. New treatment and markers of prognosis for idiopathic pulmonary fibrosis: lessons learned from translational research. Expert Rev Respir Med 2014; 7:465-78. [PMID: 24138691 DOI: 10.1586/17476348.2013.838015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease with increasing prevalence, high mortality rates and poor treatment options. The diagnostic process is complex and often requires an interdisciplinary approach between different specialists. Information gained over the past 10 years of intense research resulted in improved diagnostic algorithms, a better understanding of the underlying pathogenesis and the development of new therapeutic options. Specifically, the change from the traditional concept that viewed IPF as a chronic inflammatory disorder to the current belief that is primarily resulting from aberrant wound healing enabled the identification of novel treatment targets. This increased the clinical trial activity dramatically and resulted in the approval of the first IPF-specific therapy in many countries. Still, the natural history and intrinsic behavior of IPF are very difficult to predict. There is an urgent need for new therapies and also for development and validation of prognostic markers that predict disease progression, survival and also response to antifibrotic drugs. This review provides an up to date summary of the most relevant clinical trials, novel therapeutic drug targets and outlines a spectrum of potential prognostic biomarkers for IPF.
Collapse
Affiliation(s)
- Eva Baroke
- Department of Medicine, McMaster University, ON, Canada, L8S4L8 and Department of Pathology & Molecular Medicine, McMaster University, Ontario ON, Canada, L8S4L8
| | | | | |
Collapse
|
32
|
Abstract
Sarcoidosis is a systemic disease of unknown cause that is characterised by the formation of immune granulomas in various organs, mainly the lungs and the lymphatic system. Studies show that sarcoidosis might be the result of an exaggerated granulomatous reaction after exposure to unidentified antigens in individuals who are genetically susceptible. Several new insights have been made, particularly with regards to the diagnosis and care of some important manifestations of sarcoidosis. The indications for endobronchial ultrasound in diagnosis and for PET in the assessment of inflammatory activity are now better specified. Recognition of unexplained persistent disabling symptoms, fatigue, small-fibre neurological impairment, cognitive failure, and changes to health state and quality of life, has improved. Mortality in patients with sarcoidosis is higher than that of the general population, mainly due to pulmonary fibrosis. Predicted advances for the future are finding the cause of sarcoidosis, and the elucidation of relevant biomarkers, reliable endpoints, and new efficient treatments, particularly in patients with refractory sarcoidosis, lung fibrosis, and those with persistent disabling symptoms.
Collapse
Affiliation(s)
- Dominique Valeyre
- Department of Pneumology, Assistance Publique Hôpitaux de Paris, Avicenne University Hospital, Bobigny, France; University Paris 13, Sorbonne Paris Cité, Bobigny, France.
| | - Antje Prasse
- Department of Pneumology, University Hospital, Freiburg, Germany
| | - Hilario Nunes
- Department of Pneumology, Assistance Publique Hôpitaux de Paris, Avicenne University Hospital, Bobigny, France; University Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - Yurdagul Uzunhan
- Department of Pneumology, Assistance Publique Hôpitaux de Paris, Avicenne University Hospital, Bobigny, France; University Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - Pierre-Yves Brillet
- Department of Radiology, Assistance Publique Hôpitaux de Paris, Avicenne University Hospital, Bobigny, France; University Paris 13, Sorbonne Paris Cité, Bobigny, France
| | | |
Collapse
|
33
|
Hirata H, Arima M, Fukushima Y, Sugiyama K, Tokuhisa T, Fukuda T. Leukotriene C4 aggravates bleomycin-induced pulmonary fibrosis in mice. Respirology 2013; 18:674-81. [PMID: 23432979 DOI: 10.1111/resp.12072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 09/11/2012] [Accepted: 11/11/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Synthesis of cysteinyl leukotrienes (cys-LT) is thought to cause inflammatory disorders such as bronchial asthma and allergic rhinitis. Recent reports have suggested that leukotriene C4 (LTC4 ) is an important regulator of pulmonary fibrosis. This study examined the effect of LTC4 in LTC4 synthase-overexpressed transgenic mice with bleomycin-induced pulmonary fibrosis. The function of lung-derived fibroblasts from transgenic mice was also investigated. METHODS Bleomycin was administrated to transgenic mice and wild-type (WT) mice by intratracheal instillation. Concentrations of interleukin (IL)-4 and -13, interferon-γ, and transforming growth factor (TGF)-β1 in bronchoalveolar lavage fluid were measured 1, 3, 7 and 14 days after the administration of bleomycin. Lung tissue was examined histopathologically on day 14. In addition, lung-derived fibroblasts from transgenic and WT mice were cultured for 7 days. Expression of TGF-β1 mRNA was measured by real-time polymerase chain reaction. RESULTS Both the pathological scores for pulmonary fibrosis (3.8 ± 0.4 vs 2.0 ± 0.1, P < 0.05) and the levels of IL-4 (12.1 ± 2.3 vs <7.8 pg/mL, P < 0.05), IL-13 (26.5 ± 5.2 vs <7.8 pg/mL, P < 0.01) and TGF-β1 (211.1 ± 30.2 vs 21.3 ± 1.2 pg/mL, P < 0.01) on day 14 were significantly greater in transgenic than in WT mice. Furthermore, the reduction of LTC4 by pranlukast hydrate, a cys-LT1 receptor antagonist, in fibroblasts from transgenic significantly (P < 0.05) decreased the expression of TGF-β1 mRNA (by ∼50%) compared with those from WT mice. CONCLUSIONS Overexpression of LTC4 , amplifies bleomycin-induced pulmonary fibrosis in mice. Our findings suggest a role for LTC4 in lung fibrosis.
Collapse
Affiliation(s)
- Hirokuni Hirata
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Travis WD, Costabel U, Hansell DM, King TE, Lynch DA, Nicholson AG, Ryerson CJ, Ryu JH, Selman M, Wells AU, Behr J, Bouros D, Brown KK, Colby TV, Collard HR, Cordeiro CR, Cottin V, Crestani B, Drent M, Dudden RF, Egan J, Flaherty K, Hogaboam C, Inoue Y, Johkoh T, Kim DS, Kitaichi M, Loyd J, Martinez FJ, Myers J, Protzko S, Raghu G, Richeldi L, Sverzellati N, Swigris J, Valeyre D. An official American Thoracic Society/European Respiratory Society statement: Update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med 2013; 188:733-48. [PMID: 24032382 DOI: 10.1164/rccm.201308-1483st] [Citation(s) in RCA: 2840] [Impact Index Per Article: 236.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In 2002 the American Thoracic Society/European Respiratory Society (ATS/ERS) classification of idiopathic interstitial pneumonias (IIPs) defined seven specific entities, and provided standardized terminology and diagnostic criteria. In addition, the historical "gold standard" of histologic diagnosis was replaced by a multidisciplinary approach. Since 2002 many publications have provided new information about IIPs. PURPOSE The objective of this statement is to update the 2002 ATS/ERS classification of IIPs. METHODS An international multidisciplinary panel was formed and developed key questions that were addressed through a review of the literature published between 2000 and 2011. RESULTS Substantial progress has been made in IIPs since the previous classification. Nonspecific interstitial pneumonia is now better defined. Respiratory bronchiolitis-interstitial lung disease is now commonly diagnosed without surgical biopsy. The clinical course of idiopathic pulmonary fibrosis and nonspecific interstitial pneumonia is recognized to be heterogeneous. Acute exacerbation of IIPs is now well defined. A substantial percentage of patients with IIP are difficult to classify, often due to mixed patterns of lung injury. A classification based on observed disease behavior is proposed for patients who are difficult to classify or for entities with heterogeneity in clinical course. A group of rare entities, including pleuroparenchymal fibroelastosis and rare histologic patterns, is introduced. The rapidly evolving field of molecular markers is reviewed with the intent of promoting additional investigations that may help in determining diagnosis, and potentially prognosis and treatment. CONCLUSIONS This update is a supplement to the previous 2002 IIP classification document. It outlines advances in the past decade and potential areas for future investigation.
Collapse
|
35
|
Miyazaki Y, Unoura K, Tateishi T, Akashi T, Takemura T, Tomita M, Inase N, Yoshizawa Y. Higher serum CCL17 may be a promising predictor of acute exacerbations in chronic hypersensitivity pneumonitis. Respir Res 2013; 14:57. [PMID: 23705860 PMCID: PMC3665443 DOI: 10.1186/1465-9921-14-57] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 05/17/2013] [Indexed: 12/04/2022] Open
Abstract
Background Recent research has suggested that the Th1 and Th2 chemokine/cytokine axis contributes to the development of chronic hypersensitivity pneumonitis (HP). Acute exacerbations (AE) are significant factors in the prognosis of chronic HP. Little is known, however, about these biomarkers in association with AE in chronic HP patients. Methods Fifty-six patients with chronic HP were evaluated, including 14 patients during episodes of AE. Th1 mediators (C-X-C chemokine ligand [CXCL]10 and interferon [IFN]-γ), Th2 mediators (C-C chemokine ligand [CCL]17, interleukin-4, and interleukin-13), and pro-fibrotic mediator (transforming growth factor [TGF]-β) were measured to evaluate the mediators as predictors of AE. C-C chemokine receptor (CCR)4 (receptor for CCL17)-positive lymphocytes were quantified in lung specimens. Results Serum CCL17 levels at baseline independently predicted the first episode of AE (HR, 72.0; 95% CI, 5.03-1030.23; p = 0.002). AE was significantly more frequent in the higher-CCL17 group (≥285 pg/ml) than in the lower-CCL17 group (<285 pg/ml) (log-rank test, p = 0.0006; 1-year incidence: higher CCL17 vs. lower CCL17, 14.3% vs. 0.0%). Serum CCL17 levels and CCR4-positive cells during episodes of AE were increased from the baseline (p = 0.01 and 0.031). Conclusions Higher serum concentrations of CCL17 at baseline may be predictive of AE in patients with chronic HP, and CCL17 may contribute to the pathology of AE by inducing the accumulation of CCR4-positive lymphocytes in the lungs.
Collapse
|
36
|
Andonegui G, Ni A, Léger C, Kelly MM, Wong JF, Jalloul A, Winston BW. Sequential expression of IGF-IB followed by active TGF-β1 induces synergistic pulmonary fibroproliferation in vivo. Am J Physiol Lung Cell Mol Physiol 2012; 303:L788-98. [PMID: 22923639 DOI: 10.1152/ajplung.00008.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary fibrosis, the end stage of a variety of fibroproliferative lung diseases, is usually induced after repetitive or chronic lung injury or inflammation. The mechanisms of fibroproliferation are poorly understood. Insulin-like growth factor-I (IGF-I) is significantly elevated in patients with pulmonary fibrosis and fibroproliferative acute respiratory distress syndrome. However, we showed that IGF-I overexpression alone in wild-type mouse lungs does not cause fibroproliferation. We therefore questioned whether IGF-I, acting together with active TGF-β1, a known profibrotic cytokine, enhances pulmonary fibroproliferation caused by active TGF-β1. A unique sequential adenoviral transgene mouse model was used expressing AdEmpty/AdTGF-β1 or AdhIGF-IB/AdTGF-β1 transgenes. IGF-IB plus active TGF-β1 transgene expression synergistically increased collagen deposition in the lung parenchyma compared with active TGF-β1 expression alone. The enhanced fibrosis was accompanied by an increased recruitment of macrophages and lymphocytes into the bronchoalveolar lavage fluid (BALF) and inflammatory cells in the lungs. α-Smooth muscle actin expression, a marker of myofibroblast proliferation and differentiation, was also increased. Finally, fibroblasts exposed ex vivo to BALF isolated from AdhIGF-IB/AdTGF-β1-transduced mice showed synergistic collagen induction compared with BALF from AdEmpty/AdTGF-β1-transduced mice. This study provides the first direct evidence that IGF-I is able to synergistically enhance pulmonary fibroproliferation in cooperation with TGF-β1.
Collapse
Affiliation(s)
- Graciela Andonegui
- Department of Critical Care Medicine, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Todd NW, Luzina IG, Atamas SP. Molecular and cellular mechanisms of pulmonary fibrosis. FIBROGENESIS & TISSUE REPAIR 2012; 5:11. [PMID: 22824096 PMCID: PMC3443459 DOI: 10.1186/1755-1536-5-11] [Citation(s) in RCA: 309] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/28/2012] [Indexed: 12/22/2022]
Abstract
Pulmonary fibrosis is a chronic lung disease characterized by excessive accumulation of extracellular matrix (ECM) and remodeling of the lung architecture. Idiopathic pulmonary fibrosis is considered the most common and severe form of the disease, with a median survival of approximately three years and no proven effective therapy. Despite the fact that effective treatments are absent and the precise mechanisms that drive fibrosis in most patients remain incompletely understood, an extensive body of scientific literature regarding pulmonary fibrosis has accumulated over the past 35 years. In this review, we discuss three broad areas which have been explored that may be responsible for the combination of altered lung fibroblasts, loss of alveolar epithelial cells, and excessive accumulation of ECM: inflammation and immune mechanisms, oxidative stress and oxidative signaling, and procoagulant mechanisms. We discuss each of these processes separately to facilitate clarity, but certainly significant interplay will occur amongst these pathways in patients with this disease.
Collapse
Affiliation(s)
- Nevins W Todd
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
38
|
Müller-Quernheim J, Prasse A, Zissel G. Pathogenesis of sarcoidosis. Presse Med 2012; 41:e275-87. [PMID: 22595775 DOI: 10.1016/j.lpm.2012.03.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 03/14/2012] [Indexed: 01/12/2023] Open
Abstract
Sarcoidosis is a systemic granulomatous disorder of unknown origin. Recent research uncovered underlying immunological and genetic mechanisms, which will pave the way for more effective pharmaceutical studies. At present some of this knowledge is clinically exploited to monitor therapy and expected genetic progress will allow the development of prognostic genetic patterns or molecular signatures. Moreover, it has become obvious that several etiologic agents and cofactors will exist. These will be of animate and inanimate nature and their interplay with host mechanisms discussed in this review determines disease phenotypes.
Collapse
Affiliation(s)
- Joachim Müller-Quernheim
- University Medical Center, Department of Pneumology, Hugstetter Street, 49, 79095 Freiburg, Germany.
| | | | | |
Collapse
|
39
|
Cytokine-like factor 1 gene expression is enriched in idiopathic pulmonary fibrosis and drives the accumulation of CD4+ T cells in murine lungs: evidence for an antifibrotic role in bleomycin injury. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1963-78. [PMID: 22429962 DOI: 10.1016/j.ajpath.2012.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 11/22/2011] [Accepted: 01/20/2012] [Indexed: 11/21/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and typically fatal lung disease. To gain insight into the pathogenesis of IPF, we reanalyzed our previously published gene expression data profiling IPF lungs. Cytokine receptor-like factor 1 (CRLF1) was among the most highly up-regulated genes in IPF lungs, compared with normal controls. The protein product (CLF-1) and its partner, cardiotrophin-like cytokine (CLC), function as members of the interleukin 6 (IL-6) family of cytokines. Because of earlier work implicating IL-6 family members in IPF pathogenesis, we tested whether CLF-1 expression contributes to inflammation in experimental pulmonary fibrosis. In IPF, we detected CLF-1 expression in both type II alveolar epithelial cells and macrophages. We found that the receptor for CLF-1/CLC signaling, ciliary neurotrophic factor receptor (CNTFR), was expressed only in type II alveolar epithelial cells. Administration of CLF-1/CLC to both uninjured and bleomycin-injured mice led to the pulmonary accumulation of CD4(+) T cells. We also found that CLF-1/CLC administration increased inflammation but decreased pulmonary fibrosis. CLF-1/CLC leads to significantly enriched expression of T-cell-derived chemokines and cytokines, including the antifibrotic cytokine interferon-γ. We propose that, in IPF, CLF-1 is a selective stimulus of type II alveolar epithelial cells and may potentially drive an antifibrotic response by augmenting both T-helper-1-driven and T-regulatory-cell-driven inflammatory responses in the lung.
Collapse
|
40
|
De Luca A, Rindi L, Celi A, Melosini L, Paggiaro P, Ceccherini Nelli L, Garzelli C, Freer G. Intracellular detection of interleukin 17 and other cytokines in human bronchoalveolar lavage fluid: A first assessment. Immunol Lett 2012; 141:204-9. [DOI: 10.1016/j.imlet.2011.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 09/30/2011] [Accepted: 10/09/2011] [Indexed: 10/16/2022]
|
41
|
Palchevskiy V, Hashemi N, Weigt SS, Xue YY, Derhovanessian A, Keane MP, Strieter RM, Fishbein MC, Deng JC, Lynch JP, Elashoff R, Belperio JA. Immune response CC chemokines CCL2 and CCL5 are associated with pulmonary sarcoidosis. FIBROGENESIS & TISSUE REPAIR 2011; 4:10. [PMID: 21463523 PMCID: PMC3080805 DOI: 10.1186/1755-1536-4-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 04/04/2011] [Indexed: 11/17/2022]
Abstract
Background Pulmonary sarcoidosis involves an intense leukocyte infiltration of the lung with the formation of non-necrotizing granulomas. CC chemokines (chemokine (C-C motif) ligand 2 (CCL2)-CCL5) are chemoattractants of mononuclear cells and act through seven transmembrane G-coupled receptors. Previous studies have demonstrated conflicting results with regard to the associations of these chemokines with sarcoidosis. In an effort to clarify previous discrepancies, we performed the largest observational study to date of CC chemokines in bronchoalveolar lavage fluid (BALF) from patients with pulmonary sarcoidosis. Results BALF chemokine levels from 72 patients affected by pulmonary sarcoidosis were analyzed by enzyme-linked immunosorbent assay (ELISA) and compared to 8 healthy volunteers. BALF CCL3 and CCL4 levels from pulmonary sarcoidosis patients were not increased compared to controls. However, CCL2 and CCL5 levels were elevated, and subgroup analysis showed higher levels of both chemokines in all stages of pulmonary sarcoidosis. CCL2, CCL5, CC chemokine receptor type 1 (CCR1), CCR2 and CCR3 were expressed from mononuclear cells forming the lung granulomas, while CCR5 was only found on mast cells. Conclusions These data suggest that CCL2 and CCL5 are important mediators in recruiting CCR1, CCR2, and CCR3 expressing mononuclear cells as well as CCR5-expressing mast cells during all stages of pulmonary sarcoidosis.
Collapse
Affiliation(s)
- Vyacheslav Palchevskiy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nastran Hashemi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Stephen S Weigt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ying Ying Xue
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ariss Derhovanessian
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Michael P Keane
- Department of Medicine, St Vincent's University Hospital and University College Dublin, Dublin, Ireland
| | - Robert M Strieter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jane C Deng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Joseph P Lynch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - John A Belperio
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
42
|
Groom JR, Luster AD. CXCR3 in T cell function. Exp Cell Res 2011; 317:620-31. [PMID: 21376175 PMCID: PMC3065205 DOI: 10.1016/j.yexcr.2010.12.017] [Citation(s) in RCA: 720] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/13/2010] [Accepted: 12/15/2010] [Indexed: 12/22/2022]
Abstract
CXCR3 is a chemokine receptor that is highly expressed on effector T cells and plays an important role in T cell trafficking and function. CXCR3 is rapidly induced on naïve cells following activation and preferentially remains highly expressed on Th1-type CD4(+) T cells and effector CD8(+) T cells. CXCR3 is activated by three interferon-inducible ligands CXCL9 (MIG), CXCL10 (IP-10) and CXCL11 (I-TAC). Early studies demonstrated a role for CXCR3 in the trafficking of Th1 and CD8 T cells to peripheral sites of Th1-type inflammation and the establishment of a Th1 amplification loop mediated by IFNγ and the IFNγ-inducible CXCR3 ligands. More recent studies have also suggested that CXCR3 plays a role in the migration of T cells in the microenvironment of the peripheral tissue and lymphoid compartment, facilitating the interaction of T cells with antigen presenting cells leading to the generation of effector and memory cells.
Collapse
Affiliation(s)
- Joanna R Groom
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
43
|
Jimenez-Martinez MC, Cruz F, Groman-Lupa S, Zenteno JC. Immunophenotyping in peripheral blood mononuclear cells, aqueous humour and vitreous in a Blau syndrome patient caused by a novel NOD2 mutation. Int J Immunogenet 2011; 38:233-42. [DOI: 10.1111/j.1744-313x.2011.00998.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Groom JR, Luster AD. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol 2011; 89:207-15. [PMID: 21221121 DOI: 10.1038/icb.2010.158] [Citation(s) in RCA: 710] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CXCR3 is a chemokine receptor that is rapidly induced on naïve T cells following activation, and preferentially remains highly expressed on type-1 helper (Th1)-type CD4(+) T cells, effector CD8(+) T cells and innate-type lymphocytes, such as natural killer (NK) and NKT cells. CXCR3 is activated by three interferon (IFN)-γ-inducible ligands CXCL9 (monokine induced by gamma-interferon), CXCL10 (interferon-induced protein-10) and CXCL11 (interferon-inducible T-cell alpha chemoattractant). Although some studies have revealed that these ligands have redundant functions in vivo, other studies have demonstrated that the three CXCR3 ligands can also collaborate and even compete with each other. Differential regulation of the three ligands at specific times in defined anatomically restricted locations in vivo likely participates in the fine control of T-cell trafficking over the course of an immune response. Among the differences in regulation, CXCL10 is induced by a variety of innate stimuli that induce IFN-α/β as well as the adaptive immune cell cytokine IFN-γ, whereas CXCL9 induction is restricted to IFN-γ. In this review, we will discuss how the balance, timing and pattern of CXCR3 ligand expression appears to regulate the generation of effector T cells in the lymphoid compartment and subsequent migration into peripheral sites of Th1-type inflammation in which the CXCR3 ligands also then regulate the interactions and migratory behavior of effector T cells in an inflamed peripheral tissue.
Collapse
Affiliation(s)
- Joanna R Groom
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | |
Collapse
|
45
|
Abstract
BACKGROUND T-helper (Th)-2 background in the lungs may favor the development of pulmonary fibrosis. We hypothesized that usual interstitial pneumonia (UIP) and nonspecific interstitial pneumonia (NSIP), major pathologic patterns of chronic interstitial pneumonia, would have different expression profiles of TH1 and TH2 chemokines. METHODS Total RNA was isolated from lung tissues obtained by surgical biopsy (18 cases of UIP and 29 cases of NSIP). The expression of ligands for CXCR3 [TH1 cells chemoattractant: monokine induced by interferon (IFN)-gamma (MIG), IFN-gamma-inducible protein of 10 kD, and IFN-inducible T cell alpha chemoattractant] and ligands for CCR4 [TH2 cells chemoattractant: thymus- and activation-regulated chemokine and macrophage-derived chemokine (MDC)] were analyzed by real-time reverse transcriptase polymerase chain reaction. RESULTS MIG and IFNgamma-inducible protein of 10 kD expression were significantly higher in NSIP compared with UIP. MDC expression was increased in UIP compared with NSIP, although the difference was not significant. MIG/MDC is significantly elevated in NSIP but not UIP. Interestingly, MIG/MDC was significantly higher in NSIP group 3 (NSIP with extensive fibrosis) compared with UIP. CONCLUSIONS These results may indicate that these 2 diseases have a different pathophysiology. MIG/MDC may be a useful marker to distinguish these 2 diseases.
Collapse
|
46
|
Gilani SR, Vuga LJ, Lindell KO, Gibson KF, Xue J, Kaminski N, Valentine VG, Lindsay EK, George MP, Steele C, Duncan SR. CD28 down-regulation on circulating CD4 T-cells is associated with poor prognoses of patients with idiopathic pulmonary fibrosis. PLoS One 2010; 5:e8959. [PMID: 20126467 PMCID: PMC2813297 DOI: 10.1371/journal.pone.0008959] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 01/04/2010] [Indexed: 11/18/2022] Open
Abstract
Background Although the etiology of idiopathic pulmonary fibrosis (IPF) remains perplexing, adaptive immune activation is evident among many afflicted patients. Repeated cycles of antigen-induced proliferation cause T-cells to lose surface expression of CD28, and we hypothesized this process might also occur in IPF. Methodology/Principal Findings Peripheral blood CD4 T-cells from 89 IPF patients were analyzed by flow cytometry and cytokine multiplex assays, and correlated with clinical events. In comparison to autologous CD4+CD28+cells, the unusual CD4+CD28null lymphocytes seen in many IPF patients had discordant expressions of activation markers, more frequently produced cytotoxic mediators perforin (2.4±0.8% vs. 60.0±7.4%, p<0.0001) and granzyme B (4.5±2.8% vs.74.9±6.5%, p<0.0001), produced greater amounts of many pro-inflammatory cytokines, and less frequently expressed the regulatory T-cell marker FoxP3 (12.9±1.1% vs. 3.3±0.6% p<0.0001). Infiltration of CD4+CD28null T-cells in IPF lungs was confirmed by confocal microscopy. Interval changes of CD28 expression among subjects who had replicate studies were correlated with conterminous changes of their forced vital capacities (rs = 0.49, p = 0.012). Most importantly, one-year freedom from major adverse clinical events (either death or lung transplantation) was 56±6% among 78 IPF patients with CD4+CD28+/CD4total≥82%, compared to 9±9% among those with more extensive CD28 down-regulation (CD4+CD28+/CD4total<82%) (p = 0.0004). The odds ratio for major adverse events among those with the most extensive CD28 down-regulation was 13.0, with 95% confidence intervals 1.6-111.1. Conclusions/Significance Marked down-regulation of CD28 on circulating CD4 T-cells, a result of repeated antigen-driven proliferations, is associated with poor outcomes in IPF patients. The CD4+CD28null cells of these patients have potentially enhanced pathogenic characteristics, including increased productions of cytotoxic mediators and pro-inflammatory cytokines. These findings show proliferative T-cell responses to antigen(s) resulting in CD28 down-regulation are associated with progression and manifestations of IPF, and suggest assays of circulating CD4 T-cells may identify patients at greatest risk for clinical deterioration.
Collapse
Affiliation(s)
- Syed R. Gilani
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Louis J. Vuga
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kathleen O. Lindell
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kevin F. Gibson
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jianmin Xue
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Naftali Kaminski
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Vincent G. Valentine
- Department of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Emily K. Lindsay
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - M. Patricia George
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chad Steele
- Department of Medicine, University of Alabama, Birmingham, Alabama, United States of America
| | - Steven R. Duncan
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
47
|
Kaur J, Adya R, Tan BK, Chen J, Randeva HS. Identification of chemerin receptor (ChemR23) in human endothelial cells: chemerin-induced endothelial angiogenesis. Biochem Biophys Res Commun 2009; 391:1762-8. [PMID: 20044979 DOI: 10.1016/j.bbrc.2009.12.150] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 12/24/2009] [Indexed: 12/13/2022]
Abstract
Chemerin acting via its distinct G protein-coupled receptor CMKLR1 (ChemR23), is a novel adipokine, circulating levels of which are raised in inflammatory states. Chemerin shows strong correlation with various facets of the metabolic syndrome; these states are associated with an increased incidence of cardiovascular disease (CVD) and dysregulated angiogenesis. We therefore, investigated the regulation of ChemR23 by pro-inflammatory cytokines and assessed the angiogenic potential of chemerin in human endothelial cells (EC). We have demonstrated the novel presence of ChemR23 in human ECs and its significant up-regulation (P<0.001) by pro-inflammatory cytokines, TNF-alpha, IL-1beta and IL-6. More importantly, chemerin was potently angiogenic, as assessed by conducting functional in-vitro angiogenic assays; chemerin also dose-dependently induced gelatinolytic (MMP-2 & MMP-9) activity of ECs (P<0.001). Furthermore, chemerin dose-dependently activated PI3K/Akt and MAPKs pathways (P<0.01), key angiogenic and cell survival cascades. Our data provide the first evidence of chemerin-induced endothelial angiogenesis and MMP production and activity.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Endocrinology and Metabolism Research Group, University of Warwick Medical School, Gibbet Hill Road, Coventry CV4 7AL, UK
| | | | | | | | | |
Collapse
|
48
|
Holm CK, Petersen CC, Hvid M, Petersen L, Paludan SR, Deleuran B, Hokland M. TLR3 ligand polyinosinic:polycytidylic acid induces IL-17A and IL-21 synthesis in human Th cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:4422-31. [PMID: 19748983 DOI: 10.4049/jimmunol.0804318] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
TLR3 and TLR9 recognize the pathogen-associated microbial patterns dsRNA and unmethylated DNA, respectively. The recent discovery that these receptors also recognize endogenous ligands from necrotic material has drawn increased attention to their involvement in autoimmunity. Th cell cytokines IL-17A and IL-21 have been assigned with pivotal roles in the regulation of such autoimmune diseases. IL-17A is the hallmark cytokine of the recently discovered proinflammatory Th cell subset T(H)17. By contrast, the expression of IL-21 does not seem to be limited to a single distinct Th cell subset. We investigated the expression of IL-17A and IL-21 in human CD4+ T cells in response to stimulation with the TLR3 ligand polyinosinic:polycytidylic acid (poly(I:C)) and the TLR9 ligand CpG. We discovered that poly(I:C) induced synthesis of both IL-17A and IL-21. Moreover, we found that poly(I:C) was able to drive the differentiation of naive Th cells into an IL-21 but not into an IL-17A-producing phenotype and did this without affecting the levels of transcription factors T-bet, GATA-3, or retinoic acid receptor-related orphan receptor C. Finally, we found that the IL-21-producing cells that were differentiated in response to poly(I:C) expressed the chemokine receptor CXCR3, which is important in the recruitment of T cells into inflamed joints in rheumatoid arthritis. This is the first report to show that the TLR3 ligand poly(I:C) can directly induce the synthesis of IL-17A and IL-21 and drive differentiation of human naive CD4+ T cells.
Collapse
Affiliation(s)
- Christian K Holm
- Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
49
|
Yogo Y, Fujishima S, Inoue T, Saito F, Shiomi T, Yamaguchi K, Ishizaka A. Macrophage derived chemokine (CCL22), thymus and activation-regulated chemokine (CCL17), and CCR4 in idiopathic pulmonary fibrosis. Respir Res 2009; 10:80. [PMID: 19715610 PMCID: PMC2741459 DOI: 10.1186/1465-9921-10-80] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Accepted: 08/29/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronically progressive interstitial lung disease of unknown etiology. Previously, we have demonstrated the selective upregulation of the macrophage-derived chemokine CCL22 and the thymus activation-regulated chemokine CCL17 among chemokines, in a rat model of radiation pneumonitis/pulmonary fibrosis and preliminarily observed an increase in bronchoalveolar (BAL) fluid CCL22 levels of IPF patients. METHODS We examined the expression of CCR4, a specific receptor for CCL22 and CCL17, in bronchoalveolar lavage (BAL) fluid cells, as well as the levels of CCL22 and CCL17, to elucidate their pathophysiological roles in pulmonary fibrosis. We also studied their immunohistochemical localization. RESULTS BAL fluid CCL22 and CCL17 levels were significantly higher in patients with IPF than those with collagen vascular diseases and healthy volunteers, and there was a significant correlation between the levels of CCL22 and CCL17 in patients with IPF. CCL22 levels in the BAL fluid did not correlate with the total cell numbers, alveolar lymphocytes, or macrophages in BAL fluid. However, the CCL22 levels significantly correlated with the numbers of CCR4-expressing alveolar macrophages. By immunohistochemical and immunofluorescence analysis, localization of CCL22 and CCR4 to CD68-positive alveolar macrophages as well as that of CCL17 to hyperplastic epithelial cells were shown. Clinically, CCL22 BAL fluid levels inversely correlated with DLco/VA values in IPF patients. CONCLUSION We speculated that locally overexpressed CCL22 may induce lung dysfunction through recruitment and activation of CCR4-positive alveolar macrophages.
Collapse
Affiliation(s)
- Yurika Yogo
- Division of Pulmonary Medicine, Department of Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Seitaro Fujishima
- Department of Emergency and Critical Care Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Takashi Inoue
- Division of Pulmonary Medicine, Department of Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Fumitake Saito
- Division of Pulmonary Medicine, Department of Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Takayuki Shiomi
- Department of Pathology, School of Medicine, Keio University, Tokyo, JapanSadakazu Aiso, Department of Anatomy, School of Medicine, Keio University, Tokyo, Japan
| | - Kazuhiro Yamaguchi
- Division of Pulmonary Medicine, Department of Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Akitoshi Ishizaka
- Division of Pulmonary Medicine, Department of Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
50
|
Al Alam D, Deslee G, Tournois C, Lamkhioued B, Lebargy F, Merten M, Belaaouaj A, Guenounou M, Gangloff SC. Impaired interleukin-8 chemokine secretion by staphylococcus aureus-activated epithelium and T-cell chemotaxis in cystic fibrosis. Am J Respir Cell Mol Biol 2009; 42:644-50. [PMID: 19597126 DOI: 10.1165/rcmb.2008-0021oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is frequently isolated from lungs of patients with cystic fibrosis (CF). Upon lung infection with S. aureus, airway epithelial cells (AEC) produce high levels of chemokines that enhance T-cell chemotaxis. Although the number of lymphocytes is increased in the airways and bronchoalveolar lavage fluid of patients with CF, the mechanisms responsible for their accumulation and the role of S. aureus in this process are largely unknown. This study investigated early S. aureus impact on chemokine secretion by CF epithelial cells and chemotaxis of CF T cells. CF and non-CF AEC were grown in a cell culture model and apically stimulated with S. aureus. Supernatants were quantified for chemokine secretions and assayed for T-cell chemotaxis. CF AEC secreted constitutively larger amounts of IL-8, GROalpha, MIG, MIP-3beta, and MCP-1 than non-CF epithelial cells. S. aureus interaction with epithelial cells increased chemokine production by non-CF cells but had no effect on CF cells. Chemotaxis of T cells derived from patients with CF was greater than that of T cells from subjects without CF. Moreover, there were more CF T cells expressing CXCR1 as compared with non-CF T cells. Under our experimental conditions, inhibition of IL-8 or its receptor CXCR1 resulted in a considerable decrease in T-cell chemotaxis (up to 80%). These data suggest that IL-8 and its receptor CXCR1 are key players in the chemotaxis of CF T cells and could be used as targets to develop therapies for CF.
Collapse
Affiliation(s)
- Denise Al Alam
- Laboratoire d'Immunologie et de Microbiologie EA3796, IFR53, UFR de Pharmacie 1 avenue du Maréchal Juin 51100 Reims, France
| | | | | | | | | | | | | | | | | |
Collapse
|