1
|
Oliveira-Melo P, Nepomuceno NA, Ruiz LM, Correia AT, Vilela VS, de Oliveira Braga KA, Manzuti GM, Feitosa DDM, Kennedy-Feitosa E, Wang A, Cypel M, Fernandes PMP. Angiotensin-converting enzyme 2 activation attenuates inflammation and oxidative stress in brain death donor followed by rat lung transplantation. Sci Rep 2024; 14:23567. [PMID: 39384890 PMCID: PMC11464679 DOI: 10.1038/s41598-024-75043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024] Open
Abstract
Brain death (BD) provides most of the donor organs destined for lung transplantation (LTx). However, the organs may be affected by inflammatory and oxidative processes. Based on this, we hypothesize that the angiotensin-converting enzyme 2 (ACE2) activation can reduce the lung injury associated with LTx. 3 h after BD induction, rats were injected with saline (BD group) or an ACE2 activator (ACE2a group; 15 mg/kg-1) and kept on mechanical ventilation for additional 3 h. A third group included a control ventilation (Control group) prior to transplant. After BD protocol, left LTx were performed, followed by 2 h-reperfusion. ACE2 activation was associated with better oxygenation after BD management (p = 0.01), attenuating edema (p = 0.05) followed by the reduction in tissue resistance (p = 0.01) and increase of respiratory compliance (p = 0.02). Nrf2 expression was also upregulated in the ACE2a group (p = 0.03). After transplantation, ACE2a group showed lower levels of TNF-α (p = 0.02), IL-6 (p = 0.001), IL-1β (p = 0.01), ROS (p = 0.004) and MDA (p = 0.002), in addition to higher CAT activity (p = 0.04). In conclusion, our study suggests that ACE2 activation improves anti-inflammatory and antioxidant activity in a model of LTx.
Collapse
Affiliation(s)
- Paolo Oliveira-Melo
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Natalia Aparecida Nepomuceno
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Liliane Moreira Ruiz
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Aristides Tadeu Correia
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Vanessa Sana Vilela
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Karina Andrighetti de Oliveira Braga
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Giovana Maria Manzuti
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Emanuel Kennedy-Feitosa
- Departamento de Ciências da Saúde, Laboratório de Morfofisiofarmacologia, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brazil
| | - Aizhou Wang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Marcelo Cypel
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Paulo Manuel Pêgo Fernandes
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
2
|
Al Suleimani YM, Ali BH, Ali H, Manoj P, Almashaiki KS, Abdelrahman AM. The Salutary Effects of Diminazene, Lisinopril or Valsartan on Cisplatin - Induced Acute Kidney Injury in Rats: A Comparative Study. Physiol Res 2024; 73:227-237. [PMID: 38710058 PMCID: PMC11081186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/09/2023] [Indexed: 05/08/2024] Open
Abstract
Nephrotoxicity as a cause of acute kidney injury (AKI) induced by cisplatin (CP), limits its usefulness as an anticancer agent. Diminazene, an angiotensin converting enzyme 2 activator, exhibited renoprotective properties on rat models of kidney diseases. This research aims to investigate the salutary effect of diminazene in comparison with lisinopril or valsartan in CP-induced AKI. The first and second groups of rats received oral vehicle (distilled water) for 9 days, and saline injection or intraperitoneal CP (6 mg/kg) on day 6, respectively. Third, fourth, and fifth groups received intraperitoneal injections of CP on day 6 and diminazene (15 mg/kg/day, orally), lisinopril (10 mg/kg/day, orally), or valsartan (30 mg/kg/day, orally), for 9 days, respectively. 24h after the last day of treatment, blood and kidneys were removed under anesthesia for biochemical and histopathological examination. Urine during the last 24 h before sacrificing the rats was also collected. CP significantly increased plasma urea, creatinine, neutrophil gelatinase-associated lipocalin, calcium, phosphorus, and uric acid. It also increased urinary albumin/creatinine ratio, N-Acetyl-beta-D-Glucosaminidase/creatinine ratio, and reduced creatinine clearance, as well the plasma concentrations of inflammatory cytokines [plasma tumor necrosis factor-alpha, and interleukin-1beta], and significantly reduced antioxidant indices [catalase, glutathione reductase , and superoxide dismutase]. Histopathologically, CP treatment caused necrosis of renal tubules, tubular casts, shrunken glomeruli, and increased renal fibrosis. Diminazine, lisinopril, and valsartan ameliorated CP-induced biochemical and histopathological changes to a similar extent. The salutary effect of the three drugs used is, at least partially, due to their anti-inflammatory and antioxidant effects. Keywords: Cisplatin, Diminazene, ACE2 activator, Lisinopril, Valsartan, Acute kidney injury.
Collapse
Affiliation(s)
- Y M Al Suleimani
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khod, Oman,
| | | | | | | | | | | |
Collapse
|
3
|
He Y, Gang B, Zhang M, Bai Y, Wan Z, Pan J, Liu J, Liu G, Gu W. ACE2 improves endothelial cell function and reduces acute lung injury by downregulating FAK expression. Int Immunopharmacol 2024; 128:111535. [PMID: 38246001 DOI: 10.1016/j.intimp.2024.111535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Endothelial cell (EC) barrier dysfunction and increased adhesion of immune inflammatory cells to ECs crucially contribute to acute lung injury (ALI). Angiotensin-converting enzyme 2 (ACE2) is an essential regulator of the renin-angiotensin system (RAS) and exerts characteristic vasodilatory and anti-inflammatory effects. SARS-COV-2 infects the lungs by binding to ACE2, which can lead to dysregulation of ACE2 expression, further leading to ALI with predominantly vascular inflammation and eventually to more severe acute respiratory distress syndrome (ARDS). Therefore, restoration of ACE2 expression represents a valuable therapeutic approach for SARS-COV-2-related ALI/ARDS. In this study, we used polyinosinic-polycytidylic acid (Poly(I:C)), a double-stranded RNA analog, to construct a mouse ALI model that mimics virus infection. After Poly(I:C) exposure, ACE2 was downregulated in mouse lung tissues and in cultured ECs. Treatment with DIZE, an ACE2-activating compound, upregulated ACE2 expression and relieved ALI in mice. DIZE also improved barrier function and reduced the number of THP-1 monocytes adhering to cultured ECs. Focal adhesion kinase (FAK) and phosphorylated FAK (p-FAK) levels were increased in lung tissues of ALI mice as well as in Poly(I:C)-treated ECs in vitro. Both DIZE and the FAK inhibitor PF562271 decreased FAK/p-FAK expression in both ALI models, attenuating ALI severity in vivo and increasing barrier function and reducing monocyte adhesion in cultured ECs. Furthermore, in vivo experiments using ANG 1-7 and the MAS inhibitor A779 corroborated that DIZE-mediated ACE2 activation stimulated the activity of the ANG 1-7/MAS axis, which inhibited FAK/p-FAK expression in the mouse lung. These findings provide further evidence that activation of ACE2 in ECs may be a valuable therapeutic strategy for ALI.
Collapse
Affiliation(s)
- Yixuan He
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Baocai Gang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Mengjie Zhang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Yuting Bai
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Ziyu Wan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Jiesong Pan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Jie Liu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan Province, PR China
| | - Guoquan Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China.
| | - Wei Gu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China.
| |
Collapse
|
4
|
Bielecka E, Sielatycki P, Pietraszko P, Zapora-Kurel A, Zbroch E. Elevated Arterial Blood Pressure as a Delayed Complication Following COVID-19-A Narrative Review. Int J Mol Sci 2024; 25:1837. [PMID: 38339115 PMCID: PMC10856065 DOI: 10.3390/ijms25031837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Arterial hypertension is one of the most common and significant cardiovascular risk factors. There are many well-known and identified risk factors for its development. In recent times, there has been growing concern about the potential impact of COVID-19 on the cardiovascular system and its relation to arterial hypertension. Various theories have been developed that suggest a connection between COVID-19 and elevated blood pressure. However, the precise link between SARS-CoV-2 infection and the long-term risk of developing hypertension remains insufficiently explored. Therefore, the primary objective of our study was to investigate the influence of COVID-19 infection on blood pressure elevation and the subsequent risk of developing arterial hypertension over an extended period. To accomplish this, we conducted a thorough search review of relevant papers in the PubMed and SCOPUS databases up to 3 September 2023. Our analysis encompassed a total of 30 eligible articles. Out of the 30 papers we reviewed, 19 of them provided substantial evidence showing a heightened risk of developing arterial hypertension following COVID-19 infection. Eight of the studies showed that blood pressure values increased after the infection, while three of the qualified studies did not report any notable impact of COVID-19 on blood pressure levels. The precise mechanism behind the development of hypertension after COVID-19 remains unclear, but it is suggested that endothelial injury and dysfunction of the renin-angiotensin-aldosterone system may be contributory. Additionally, changes in blood pressure following COVID-19 infection could be linked to lifestyle alterations that often occur alongside the illness. Our findings emphasize the pressing requirement for thorough research into the relationship between COVID-19 and hypertension. These insights are essential for the development of effective prevention and management approaches for individuals who have experienced COVID-19 infection.
Collapse
Affiliation(s)
| | | | | | | | - Edyta Zbroch
- Department of Internal Medicine and Hypertension, Medical University of Bialystok, 15-540 Bialystok, Poland; (E.B.); (P.S.); (P.P.); (A.Z.-K.)
| |
Collapse
|
5
|
Gharbaran R, Sayibou Z, Atamturktur S, Ofosu-Mensah JJ, Soto J, Boodhan N, Kolya S, Onwumere O, Chang L, Somenarain L, Redenti S. Diminazene aceturate-induced cytotoxicity is associated with the deregulation of cell cycle signaling and downregulation of oncogenes Furin, c-MYC, and FOXM1 in human cervical carcinoma Hela cells. J Biochem Mol Toxicol 2024; 38:e23527. [PMID: 37681557 DOI: 10.1002/jbt.23527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/21/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
Diminazene aceturate (DIZE) is an FDA-listed small molecule known for the treatment of African sleeping sickness. In vivo studies showed that DIZE may be beneficial for a range of human ailments. However, there is very limited information on the effects of DIZE on human cancer cells. The current study aimed to investigate the cytotoxic responses of DIZE, using the human carcinoma Hela cell line. WST-1 cell proliferation assay showed that DIZE inhibited the viability of Hela cells in a dose-dependent manner and the observed response was associated with the downregulation of Ki67 and PCNA cell proliferation markers. DIZE-treated cells stained with acridine orange-ethidium and JC-10 dye revealed cell death and loss of mitochondrial membrane potential (Ψm), compared with DMSO (vehicle) control, respectively. Cellular immunofluorescence staining of DIZE-treated cells showed upregulation of caspase 3 activities. DIZE-treated cells showed downregulation of mRNA for G1/S genes CCNA2 and CDC25A, S-phase genes MCM3 and PLK4, and G2/S phase transition/mitosis genes Aurka and PLK1. These effects were associated with decreased mRNA expression of Furin, c-Myc, and FOXM1 oncogenes. These results suggested that DIZE may be considered for its effects on other cancer types. To the best of our knowledge, this is the first study to evaluate the effect of DIZE on human cervical cancer cells.
Collapse
Affiliation(s)
- Rajendra Gharbaran
- Department of Biological Sciences, Bronx Community College/City University of New York, Bronx, New York, USA
- Department of Biological Sciences, Lehman College/City University of New York, Bronx, New York, USA
| | - Zouberou Sayibou
- Department of Biological Sciences, Bronx Community College/City University of New York, Bronx, New York, USA
- Department of Computer Science, Stanford University, Stanford, California, USA
| | - Seher Atamturktur
- Department of Biological Sciences, Bronx Community College/City University of New York, Bronx, New York, USA
| | - Jeithy Jason Ofosu-Mensah
- Department of Biological Sciences, Bronx Community College/City University of New York, Bronx, New York, USA
| | - John Soto
- Department of Biological Sciences, Lehman College/City University of New York, Bronx, New York, USA
| | - Nicholas Boodhan
- Department of Biological Sciences, Lehman College/City University of New York, Bronx, New York, USA
| | - Saaimah Kolya
- Department of Biological Sciences, Lehman College/City University of New York, Bronx, New York, USA
| | - Onyekwere Onwumere
- Department of Biological Sciences, Lehman College/City University of New York, Bronx, New York, USA
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, New York, New York, USA
| | - Lynne Chang
- Department of Biological Sciences, Lehman College/City University of New York, Bronx, New York, USA
| | - Latchman Somenarain
- Department of Biological Sciences, Bronx Community College/City University of New York, Bronx, New York, USA
| | - Stephen Redenti
- Department of Biological Sciences, Lehman College/City University of New York, Bronx, New York, USA
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, New York, New York, USA
| |
Collapse
|
6
|
Novák T, Žaloudíková M, Smolková P, Kaftanová B, Edlmanová J, Krása K, Hampl V. Hypoxia-inducible factors activator, roxadustat, increases pulmonary vascular resistance in rats. Physiol Res 2023; 72:S587-S592. [PMID: 38165762 PMCID: PMC10861249 DOI: 10.33549/physiolres.935220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/12/2023] [Indexed: 02/01/2024] Open
Abstract
Activators of hypoxia inducible factors (HIFs), such as roxadustat, are promising agents for anemia treatment. However, since HIFs are also involved in the regulation of the pulmonary circulation, we hypothesized that roxadustat increases pulmonary vascular resistance and vasoconstrictor reactivity. Using isolated, cell-free solution perfused rat lungs, we found perfusion pressure-flow curves to be shifted to higher pressures by 2 weeks of roxadustat treatment (10 mg/kg every other day), although not as much as by chronic hypoxic exposure. Vasoconstrictor reactivity to angiotensin II and acute hypoxic challenges was not altered by roxadustat. Since roxadustat may inhibit angiotensin-converting enzyme 2 (ACE2), we also tested a purported ACE2 activator, diminazene aceturate (DIZE, 0.1 mM). It produced paradoxical, unexplained pulmonary vasoconstriction. We conclude that the risk of serious pulmonary hypertension is not high when roxadustat is given for 14 days, but monitoring is advisable.
Collapse
Affiliation(s)
- T Novák
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague 5, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
7
|
Papavassiliou KA, Gogou VA, Papavassiliou AG. Angiotensin-Converting Enzyme 2 (ACE2) Signaling in Pulmonary Arterial Hypertension: Underpinning Mechanisms and Potential Targeting Strategies. Int J Mol Sci 2023; 24:17441. [PMID: 38139269 PMCID: PMC10744156 DOI: 10.3390/ijms242417441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a debilitating progressive disease characterized by excessive pulmonary vasoconstriction and abnormal vascular remodeling processes that lead to right-ventricular heart failure and, ultimately, death. Although our understanding of its pathophysiology has advanced and several treatment modalities are currently available for the management of PAH patients, none are curative and the prognosis remains poor. Therefore, further research is required to decipher the molecular mechanisms associated with PAH. Angiotensin-converting enzyme 2 (ACE2) plays an important role through its vasoprotective functions in cardiopulmonary homeostasis, and accumulating preclinical and clinical evidence shows that the upregulation of the ACE2/Angiotensin-(1-7)/MAS1 proto-oncogene, G protein-coupled receptor (Mas 1 receptor) signaling axis is implicated in the pathophysiology of PAH. Herein, we highlight the molecular mechanisms of ACE2 signaling in PAH and discuss its potential as a therapeutic target.
Collapse
Affiliation(s)
- Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, ‘Sotiria’ Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vassiliki A. Gogou
- First University Department of Respiratory Medicine, ‘Sotiria’ Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
8
|
Suleimani YA, Maskari RA, Ali BH, Ali H, Manoj P, Al-Khamiyasi A, Abdelrahman AM. Nephroprotective effects of diminazene on doxorubicin-induced acute kidney injury in rats. Toxicol Rep 2023; 11:460-468. [PMID: 38053572 PMCID: PMC10693989 DOI: 10.1016/j.toxrep.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
This study aimed to investigate the potential protective effects of diminazene, an activator of angiotensin II converting enzyme (ACE2), on kidney function and structure in rats with acute kidney injury (AKI) induced by the anticancer drug doxorubicin (DOX). The impact of diminazene was compared to that of two other drugs: the ACE inhibitor lisinopril and the angiotensin II type 1 (AT1) receptor blocker valsartan. Rats were subjected to a single intraperitoneal injection of DOX (13.5 mg/kg) on the 5th day, either alone or in combination with diminazene (15 mg/kg/day), lisinopril (10 mg/kg/day), or valsartan (30 mg/kg/day) for 8 consecutive days. Various markers related to kidney function, oxidative stress, and inflammation were measured in plasma and urine. Additionally, kidney tissues were assessed histopathologically. DOX-induced nephrotoxicity was confirmed by elevated levels of plasma urea, creatinine, and neutrophil gelatinase-associated lipocalin (NGAL). DOX also led to increased urinary N-acetyl-β-D-glucosaminidase (NAG) activity and decreased creatinine clearance, albumin levels, and osmolality. Moreover, DOX caused a reduction in renal oxidative stress markers, including superoxide dismutase (SOD), glutathione reductase (GR), and catalase activities, while increasing malondialdehyde (MDA) levels. It also raised plasma inflammatory markers, tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β). Concurrently administering diminazene significantly mitigated these DOX-induced changes, including histopathological alterations like renal tubule necrosis, tubular casts, shrunken glomeruli, and increased renal fibrosis. Similar protective effects were observed with lisinopril and valsartan. These protective effects, at least in part, appear to result from the anti-inflammatory and antioxidant properties of these drugs. In summary, this study suggests that the administration of diminazene, lisinopril, or valsartan had comparable effects in ameliorating the biochemical and histopathological aspects of DOX-induced acute kidney injury in rats.
Collapse
Affiliation(s)
- Yousuf Al Suleimani
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| | - Raya Al Maskari
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| | - Badreldin H. Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| | - Haytham Ali
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Priyadarsini Manoj
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| | - Ali Al-Khamiyasi
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| | - Aly M. Abdelrahman
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| |
Collapse
|
9
|
Habib YH, Sheta E, Khattab M, Gowayed MA. Diminazene aceturate or losartan ameliorates the functional, radiological and histopathological alterations in knee osteoarthritis rodent model: repurposing of the ACE2/Ang1-7/MasR cascade. J Exp Orthop 2023; 10:107. [PMID: 37878123 PMCID: PMC10600085 DOI: 10.1186/s40634-023-00673-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
PURPOSE Current therapies for osteoarthritis (OA) are limited to analgesics and anti-inflammatory drugs. Considering the importance of oxidative stress and inflammatory mediators in OA etiology, we tested the hypothesis that targeting the renin-angiotensin-aldosterone system (RAAS) can improve OA anomalies. Diminazene (DIZE), an activator of angiotensin-converting enzyme 2 and the angiotensin 2 type-1 receptor blocker losartan (LOS) were used for this purpose. METHODS OA was induced by a single intra-articular injection of monosodium iodoacetate. The effects of exposure to DIZE or LOS for 21 days on OA anomalies in rats' knees were investigated. Evaluation of motor function, nociception, and inflammatory response was done using rotarod, knee bend and knee swelling tests. Markers of knee joint inflammation, and cellular oxidation in addition to the RAAS biomarkers, were assessed in knee tissues, along with radiological and histopathological investigations. RESULTS Elevations in inflammatory and oxidative markers in knee tissues of OA rats were mostly improved by the two therapeutic drugs. Such effect was also reflected in the rotarod, knee bend and knee swelling tests. Treatment with DIZE has shown a more prominent effect than LOS in controlling OA-associated inflammation and cellular oxidation. Markers of RAAS have also shown better responsiveness to DIZE over LOS. CONCLUSIONS DIZE has shown a prominent increase in the angiotensin 1-7 amount, highlighting the involvement of the signaling pathway in the immunomodulatory effect. The radiological and histopathology examination came to confirm the outcome of biochemical markers, nominating diminazene aceturate as a possible therapeutic option for OA.
Collapse
Affiliation(s)
- Yasser H Habib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Canal El- Mahmoudia Str., Smouha, Alexandria, Egypt.
| |
Collapse
|
10
|
Zhou M, Song T, Li W, Huang M, Zheng L, Zhao M. Identification and Screening of Potential ACE2 Activating Peptides from Soybean Protein Isolate Hydrolysate against Ang II-Induced Endothelial Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11957-11969. [PMID: 37501259 DOI: 10.1021/acs.jafc.3c03013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a counterregulator against ACE by converting angiotensin II (Ang II) to Ang-(1-7), and its down-regulation leads to endothelial dysfunction in the vascular system. In the present study, we investigated the effects of soybean protein isolate hydrolysate (SPIH) on Ang II-induced endothelial dysfunction with its underlying mechanisms via ACE2 activation in human umbilical vein endothelial cells (HUVECs). We further screened potential ACE2 activating peptides by peptidomics analysis combined with bioinformatics tools. Results showed that SPIH remarkably attenuated Ang II-induced cell migration from 129 to 92%, decreased the ROS level from 2.22-fold to 1.45-fold, and increased NO concentration from 31.4 ± 0.7 to 43.7 ± 0.1 μM in HUVECs. However, these beneficial effects were reversed by ACE2 inhibitor MLN-4760 to a certain extent, indicating the modulation of ACE2. Further results revealed that SPIH (1 mg/mL) significantly increased the expression and activity of ACE2 and two novel ACE2 activating peptides with different mechanisms were explored from SPIH. IVPQ and IAVPT (50 μM) enhanced ACE2 activity, and only IVPQ (50 μM) increased ACE2 protein expression in HUVECs. These findings furthered our understanding of the antihypertensive mechanism of SPIH mediating the ACE2 activation on vascular endothelium.
Collapse
Affiliation(s)
- Minzhi Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
| | - Tianyuan Song
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P.R. China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, P.R. China
| | - Wen Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, P.R. China
| |
Collapse
|
11
|
Hulme J. COVID-19 and Diarylamidines: The Parasitic Connection. Int J Mol Sci 2023; 24:6583. [PMID: 37047556 PMCID: PMC10094973 DOI: 10.3390/ijms24076583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
As emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants (Omicron) continue to outpace and negate combinatorial vaccines and monoclonal antibody therapies targeting the spike protein (S) receptor binding domain (RBD), the appetite for developing similar COVID-19 treatments has significantly diminished, with the attention of the scientific community switching to long COVID treatments. However, treatments that reduce the risk of "post-COVID-19 syndrome" and associated sequelae remain in their infancy, particularly as no established criteria for diagnosis currently exist. Thus, alternative therapies that reduce infection and prevent the broad range of symptoms associated with 'post-COVID-19 syndrome' require investigation. This review begins with an overview of the parasitic-diarylamidine connection, followed by the renin-angiotensin system (RAS) and associated angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSSR2) involved in SARS-CoV-2 infection. Subsequently, the ability of diarylamidines to inhibit S-protein binding and various membrane serine proteases associated with SARS-CoV-2 and parasitic infections are discussed. Finally, the roles of diarylamidines (primarily DIZE) in vaccine efficacy, epigenetics, and the potential amelioration of long COVID sequelae are highlighted.
Collapse
Affiliation(s)
- John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Sujung-gu, Seongnam-si 461-701, Republic of Korea
| |
Collapse
|
12
|
Bekedam FT, Goumans MJ, Bogaard HJ, de Man FS, Llucià-Valldeperas A. Molecular mechanisms and targets of right ventricular fibrosis in pulmonary hypertension. Pharmacol Ther 2023; 244:108389. [PMID: 36940790 DOI: 10.1016/j.pharmthera.2023.108389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/19/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Right ventricular fibrosis is a stress response, predominantly mediated by cardiac fibroblasts. This cell population is sensitive to increased levels of pro-inflammatory cytokines, pro-fibrotic growth factors and mechanical stimulation. Activation of fibroblasts results in the induction of various molecular signaling pathways, most notably the mitogen-activated protein kinase cassettes, leading to increased synthesis and remodeling of the extracellular matrix. While fibrosis confers structural protection in response to damage induced by ischemia or (pressure and volume) overload, it simultaneously contributes to increased myocardial stiffness and right ventricular dysfunction. Here, we review state-of-the-art knowledge of the development of right ventricular fibrosis in response to pressure overload and provide an overview of all published preclinical and clinical studies in which right ventricular fibrosis was targeted to improve cardiac function.
Collapse
Affiliation(s)
- F T Bekedam
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - M J Goumans
- Department of Cell and Chemical Biology, Leiden UMC, 2300 RC Leiden, the Netherlands
| | - H J Bogaard
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - F S de Man
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| | - A Llucià-Valldeperas
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| |
Collapse
|
13
|
Tiwari P, Tiwari V, Gupta S, Shukla S, Hanif K. Activation of Angiotensin-converting Enzyme 2 Protects Against Lipopolysaccharide-induced Glial Activation by Modulating Angiotensin-converting Enzyme 2/Angiotensin (1-7)/Mas Receptor Axis. Mol Neurobiol 2023; 60:203-227. [PMID: 36251234 DOI: 10.1007/s12035-022-03061-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 10/03/2022] [Indexed: 12/30/2022]
Abstract
Neuroinflammation is associated with activation of glial cells and pro-inflammatory arm of the central Renin Angiotensin System (RAS) namely, Angiotensin-Converting Enzyme/Angiotensin II/Angiotensin Type 1 Receptor (ACE/Ang II/AT1R) axis. Apart from this, another axis of RAS also exists, Angiotensin-Converting Enzyme 2/Angiotensin (1-7)/Mas Receptor (ACE2/Ang (1-7)/MasR), which counters ACE/Ang II/AT1R axis by showing anti-inflammatory properties. However, the role of ACE2/Ang (1-7)/MasR axis has not been explored in glial activation and neuroinflammation. Hence, the present study tries to unveil the role of ACE2/Ang (1-7)/MasR axis in lipopolysaccharide (LPS)-induced neuroinflammation using diminazene aceturate (DIZE), an ACE2 activator, in astroglial (C6) and microglial (BV2) cells as well as male SD rats. We found that ACE2 activation efficiently prevented LPS-induced changes by decreasing glial activation, inflammatory signaling, cell migration, ROS generation via upregulation of ACE2/Ang (1-7)/MasR signaling. In addition, activation of ACE2/Ang (1-7)/MasR axis by DIZE significantly suppressed the pro-inflammatory ACE/Ang II/AT1R axis by reducing Ang II level in neuroinflammatory conditions induced by LPS in both in vitro and in vivo. ACE2/Ang (1-7)/MasR axis activation further decreased mitochondrial depolarization and apoptosis, hence providing neuroprotection. Furthermore, to validate that the beneficial effect of the ACE2 activator was indeed through MasR, a selective MasR antagonist (A779) was used that significantly blocked the anti-inflammatory effect of ACE2 activation by DIZE. Hence, our study demonstrated that ACE2 activation imparted neuroprotection by enhancing ACE2/Ang (1-7)/MasR signaling which in turn decreased glial activation, neuroinflammation, and apoptosis and improved mitochondrial health.
Collapse
Affiliation(s)
- Priya Tiwari
- Division of Pharmacology, CSIR- Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Virendra Tiwari
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shivangi Gupta
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shubha Shukla
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Kashif Hanif
- Division of Pharmacology, CSIR- Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
14
|
Yang Z, Roth K, Ding J, Kassotis CD, Mor G, Petriello MC. Exposure to a mixture of per-and polyfluoroalkyl substances modulates pulmonary expression of ACE2 and circulating hormones and cytokines. Toxicol Appl Pharmacol 2022; 456:116284. [PMID: 36270329 PMCID: PMC10325118 DOI: 10.1016/j.taap.2022.116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 01/01/2023]
Abstract
Genetic and environmental factors impact on the interindividual variability of susceptibility to communicable and non-communicable diseases. A class of ubiquitous chemicals, Per- and polyfluoroalkyl substances (PFAS) have been linked in epidemiological studies to immunosuppression and increased susceptibility to viral infections, but possible mechanisms are not well elucidated. To begin to gain insight into the role of PFAS in susceptibility to one such viral infection, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), male and female C57BL/6 J mice were exposed to control water or a mixture of 5 PFAS (PFOS, PFOA, PFNA, PFHxS, Genx) for 12 weeks and lungs were isolated for examination of expression of SARS-CoV-2-related receptors Angiotensin-Converting Enzyme 2 (ACE2) and others. Secondary analyses included circulating hormones and cytokines which have been shown to directly or indirectly impact on ACE2 expression and severity of viral infections. Changes in mRNA and protein expression were analyzed by RT-qPCR and western blotting and circulating hormones and cytokines were determined by ELISA and MESO QuickPlex. The PFAS mixture decreased Ace2 mRNA 2.5-fold in male mice (p < 0.0001), with no significant change observed in females. In addition, TMPRSS2, ANPEP, ENPEP and DPP4 (other genes implicated in COVID-19 infection) were modulated due to PFAS. Plasma testosterone, but not estrogen were strikingly decreased due to PFAS which corresponded to PFAS-mediated repression of 4 representative pulmonary AR target genes; hemoglobin, beta adult major chain (Hbb-b1), Ferrochelatase (Fech), Collagen Type XIV Alpha 1 Chain (Col14a1), 5'-Aminolevulinate Synthase 2 (Alas2). Finally, PFAS modulated circulating pro and anti-inflammatory mediators including IFN-γ (downregulated 3.0-fold in females; p = 0.0301, 2.1-fold in males; p = 0.0418) and IL-6 (upregulated 5.6-fold in males; p = 0.030, no change in females). In conclusion, our data indicate long term exposure to a PFAS mixture impacts mechanisms related to expression of ACE2 in the lung. This work provides a mechanistic rationale for important future studies of PFAS exposure and subsequent viral infection.
Collapse
Affiliation(s)
- Zhao Yang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Jiahui Ding
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Gil Mor
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA
| | - Michael C Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
15
|
Coles MJ, Masood M, Crowley MM, Hudgi A, Okereke C, Klein J. It Ain't Over 'Til It's Over: SARS CoV-2 and Post-infectious Gastrointestinal Dysmotility. Dig Dis Sci 2022; 67:5407-5415. [PMID: 35357608 PMCID: PMC8968095 DOI: 10.1007/s10620-022-07480-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023]
Abstract
The ongoing pandemic resulting from severe acute respiratory syndrome-caused by coronavirus 2 (SARS-CoV-2)-has posed a multitude of healthcare challenges of unprecedented proportions. Intestinal enterocytes have the highest expression of angiotensin-converting enzyme-2 (ACE2), which functions as the key receptor for SARS-CoV-2 entry into cells. As such, particular interest has been accorded to SARS-CoV-2 and how it manifests within the gastrointestinal system. The acute and chronic alimentary clinical implications of infection are yet to be fully elucidated, however, the gastrointestinal consequences from non-SARS-CoV-2 viral GI tract infections, coupled with the generalized nature of late sequelae following COVID-19 disease, would predict that motility disorders are likely to be seen in these patients. Determination of the chronic effects of COVID-19 disease, herein defined as GI disease which is persistent or recurrent more than 3 months following recovery from the acute respiratory illness, will require comprehensive investigations comprising combined endoscopic- and motility-based evaluation. It will be fascinating to ascertain whether the specific post-COVID-19 phenotype is hypotonic or hypertonic in nature and to identify the most vulnerable target portions of the gut. A specific biological hypothesis is that motility disorders may result from SARS-CoV-2-induced angiotensin-converting enzyme 2 (ACE2) depletion. Since SARS-CoV-2 is known to exhibit direct neuronal tropism, the potential also exists for the development of neurogenic motility disorders. This review aims to explore some of the potential pathophysiologic mechanisms underlying motility dysfunction as it relates to ACE2 and thereby aims to provide the foundation for mechanism-based potential therapeutic options.
Collapse
Affiliation(s)
- Michael J Coles
- Department of Gastroenterology, Temple University Hospital, Philadelphia, USA.
| | - Muaaz Masood
- Department of Internal Medicine, Medical College of Georgia, Augusta, USA
| | - Madeline M Crowley
- Department of Biomedical Engineering, University of British Colombia, Vancouver, Canada
| | - Amit Hudgi
- Department of Internal Medicine, Medical College of Georgia, Augusta, USA
| | - Chijioke Okereke
- Department of Internal Medicine, Medical College of Georgia, Augusta, USA
| | - Jeremy Klein
- Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| |
Collapse
|
16
|
Devaux CA, Camoin-Jau L. An update on angiotensin-converting enzyme 2 structure/functions, polymorphism, and duplicitous nature in the pathophysiology of coronavirus disease 2019: Implications for vascular and coagulation disease associated with severe acute respiratory syndrome coronavirus infection. Front Microbiol 2022; 13:1042200. [PMID: 36519165 PMCID: PMC9742611 DOI: 10.3389/fmicb.2022.1042200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/07/2022] [Indexed: 08/01/2023] Open
Abstract
It has been known for many years that the angiotensin-converting enzyme 2 (ACE2) is a cell surface enzyme involved in the regulation of blood pressure. More recently, it was proven that the severe acute respiratory syndrome coronavirus (SARS-CoV-2) interacts with ACE2 to enter susceptible human cells. This functional duality of ACE2 tends to explain why this molecule plays such an important role in the clinical manifestations of coronavirus disease 2019 (COVID-19). At the very start of the pandemic, a publication from our Institute (entitled "ACE2 receptor polymorphism: susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome"), was one of the first reviews linking COVID-19 to the duplicitous nature of ACE2. However, even given that COVID-19 pathophysiology may be driven by an imbalance in the renin-angiotensin system (RAS), we were still far from understanding the complexity of the mechanisms which are controlled by ACE2 in different cell types. To gain insight into the physiopathology of SARS-CoV-2 infection, it is essential to consider the polymorphism and expression levels of the ACE2 gene (including its alternative isoforms). Over the past 2 years, an impressive amount of new results have come to shed light on the role of ACE2 in the pathophysiology of COVID-19, requiring us to update our analysis. Genetic linkage studies have been reported that highlight a relationship between ACE2 genetic variants and the risk of developing hypertension. Currently, many research efforts are being undertaken to understand the links between ACE2 polymorphism and the severity of COVID-19. In this review, we update the state of knowledge on the polymorphism of ACE2 and its consequences on the susceptibility of individuals to SARS-CoV-2. We also discuss the link between the increase of angiotensin II levels among SARS-CoV-2-infected patients and the development of a cytokine storm associated microvascular injury and obstructive thrombo-inflammatory syndrome, which represent the primary causes of severe forms of COVID-19 and lethality. Finally, we summarize the therapeutic strategies aimed at preventing the severe forms of COVID-19 that target ACE2. Changing paradigms may help improve patients' therapy.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
- Center National de la Recherche Scientifique, Marseille, France
| | - Laurence Camoin-Jau
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
- Laboratoire d’Hématologie, Hôpital de La Timone, APHM, Boulevard Jean-Moulin, Marseille, France
| |
Collapse
|
17
|
Esfahani SH, Jayaraman S, Karamyan VT. Is Diminazene an Angiotensin-Converting Enzyme 2 (ACE2) Activator? Experimental Evidence and Implications. J Pharmacol Exp Ther 2022; 383:149-156. [PMID: 36507848 PMCID: PMC9553104 DOI: 10.1124/jpet.122.001339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/17/2022] [Indexed: 01/07/2023] Open
Abstract
Antiprotozoal veterinary drug diminazene aceturate (DIZE) has been proposed to be an angiotensin-converting enzyme 2 (ACE2) activator. Since then, DIZE was used in dozens of experimental studies, but its mechanism of action attributed to ACE2 activation and enhanced formation of angiontensin-(1-7) [Ang-(1-7)] from Ang II was not carefully verified. The aim of this study was to confirm the effect of DIZE on catalytic activity of ACE2 and extend it to other peptidases involved in formation and degradation of Ang-(1-7). Concentration-dependent effect of DIZE on the initial rate of a fluorogenic substrate hydrolysis by human and mouse recombinant ACE2 was measured at assay conditions imitating that of the original report, but no activation of ACE2 was documented. Similar results were obtained with a more physiologically relevant assay buffer. In addition, DIZE did not affect activity of recombinant neprilysin, neurolysin, thimet oligopeptidase, and ACE. Efficiency of the fluorogenic substrate hydrolysis (Vmax/Km value) by ACE2 in response to different concentrations of DIZE was also measured, but no substantial effects were documented. Likewise, DIZE failed to enhance the hydrolysis of ACE2 endogenous substrate Ang II. Identity of the commercial recombinant ACE2 variants used in these experiments was confirmed by inhibition with two well characterized inhibitors (DX600 and MLN4760), activation by NaCl, and Western Blotting using validated antibodies. These observations challenge the widely accepted notion about the molecular mechanism of DIZE action and call for not ascribing this molecule as an ACE2 activator. SIGNIFICANCE STATEMENT: DIZE has been proposed and widely used in experimental studies as an ACE2 activator. The detailed in vitro pharmacological studies failed to confirm that DIZE is an ACE2 activator. In addition, DIZE did not substantially affect the activity of other peptidases involved in formation and degradation of angiotensin-(1-7). Researchers should refrain from calling DIZE an ACE2 activator. Other mechanisms are responsible for the therapeutic benefits attributed to DIZE.
Collapse
Affiliation(s)
- Shiva Hadi Esfahani
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Srinidhi Jayaraman
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| |
Collapse
|
18
|
Diminazene aceturate attenuates hepatic ischemia/reperfusion injury in mice. Sci Rep 2022; 12:18158. [PMID: 36307457 PMCID: PMC9616812 DOI: 10.1038/s41598-022-21865-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/04/2022] [Indexed: 12/31/2022] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury is one of the leading causes of mortality following partial hepatectomy, liver transplantation, hypovolemic shock and trauma; however, effective therapeutic targets for the treatment of hepatic I/R injury are lacking. Recent studies have shown that diminazene aceturate (DIZE) has protective effects against inflammation, oxidative stress and cell death, which are the main pathogenetic mechanisms associated with hepatic I/R injury. However, the mechanistic effects DIZE exerts on hepatic I/R remain unknown. C57BL/6 male mice were pretreated with either 15 mg/kg DIZE or vehicle control (saline) and subjected to partial liver ischemia for 60 min. One day after induction of hepatic I/R, liver damage, inflammatory responses, oxidative stress and apoptosis were analyzed. By evaluating plasma alanine aminotransferase levels and histology, we found that DIZE treatment attenuated liver failure and was associated with a reduction in histologically-apparent liver damage. We also found that DIZE-treated mice had milder inflammatory responses, less reactive oxidative damage and less apoptosis following hepatic I/R compared to vehicle-treated mice. Taken together, our study demonstrates that DIZE protects against ischemic liver injury by attenuating inflammation and oxidative damage and may be a potential therapeutic agent for the prevention and treatment of ischemic liver failure.
Collapse
|
19
|
Santos ES, Silva PC, Sousa PSA, Aquino CC, Pacheco G, Teixeira LFLS, Araujo AR, Sousa FBM, Barros RO, Ramos RM, Rocha JA, Nicolau LAD, Medeiros JVR. Antiviral potential of diminazene aceturate against SARS-CoV-2 proteases using computational and in vitro approaches. Chem Biol Interact 2022; 367:110161. [PMID: 36116513 PMCID: PMC9476334 DOI: 10.1016/j.cbi.2022.110161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022]
Abstract
Diminazene aceturate (DIZE), an antiparasitic, is an ACE2 activator, and studies show that activators of this enzyme may be beneficial for COVID-19, disease caused by SARS-CoV-2. Thus, the objective was to evaluate the in silico and in vitro affinity of diminazene aceturate against molecular targets of SARS-CoV-2. 3D structures from DIZE and the proteases from SARS-CoV-2, obtained through the Protein Data Bank and Drug Database (Drubank), and processed in computer programs like AutodockTools, LigPlot, Pymol for molecular docking and visualization and GROMACS was used to perform molecular dynamics. The results demonstrate that DIZE could interact with all tested targets, and the best binding energies were obtained from the interaction of Protein S (closed conformation −7.87 kcal/mol) and Mpro (−6.23 kcal/mol), indicating that it can act both by preventing entry and viral replication. The results of molecular dynamics demonstrate that DIZE was able to promote a change in stability at the cleavage sites between S1 and S2, which could prevent binding to ACE2 and fusion with the membrane. In addition, in vitro tests confirm the in silico results showing that DIZE could inhibit the binding between the spike receptor-binding domain protein and ACE2, which could promote a reduction in the virus infection. However, tests in other experimental models with in vivo approaches are needed.
Collapse
Affiliation(s)
- Esley S Santos
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil; Medicinal Plants Research Center (NPPM), Federal University of Piauí, Teresina, Brazil
| | - Priscila C Silva
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | - Paulo S A Sousa
- Laboratory of Medicinal Chemistry and Biotechnology, QUIMEBIO, Federal University of Maranhão, São Bernardo, MA, Brazil; Biodiversity and Biotechnology Research Center, BIOTEC, Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | - Cristhyane C Aquino
- Postgraduate Program in Medical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Gabriella Pacheco
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil; Medicinal Plants Research Center (NPPM), Federal University of Piauí, Teresina, Brazil
| | - Luiz F L S Teixeira
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil; Biodiversity and Biotechnology Research Center, BIOTEC, Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | - Alyne R Araujo
- Biodiversity and Biotechnology Research Center, BIOTEC, Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | - Francisca B M Sousa
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | - Romulo O Barros
- Research Laboratory in Information Systems, Department of Information, Environment, Health and Food Production, Federal Institute of Piauí, LaPeSI/IFPI, Teresina, Piauí, Brazil
| | - Ricardo M Ramos
- Research Laboratory in Information Systems, Department of Information, Environment, Health and Food Production, Federal Institute of Piauí, LaPeSI/IFPI, Teresina, Piauí, Brazil
| | - Jefferson A Rocha
- Laboratory of Medicinal Chemistry and Biotechnology, QUIMEBIO, Federal University of Maranhão, São Bernardo, MA, Brazil; Biodiversity and Biotechnology Research Center, BIOTEC, Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | - Lucas A D Nicolau
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil; Biodiversity and Biotechnology Research Center, BIOTEC, Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | - Jand V R Medeiros
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil; Medicinal Plants Research Center (NPPM), Federal University of Piauí, Teresina, Brazil; Biodiversity and Biotechnology Research Center, BIOTEC, Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil.
| |
Collapse
|
20
|
Chen F, Chen Y, Wang Y, Ke Q, Cui L. The COVID-19 pandemic and Alzheimer's disease: mutual risks and mechanisms. Transl Neurodegener 2022; 11:40. [PMID: 36089575 PMCID: PMC9464468 DOI: 10.1186/s40035-022-00316-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a life-threatening disease, especially in elderly individuals and those with comorbidities. The predominant clinical manifestation of COVID-19 is respiratory dysfunction, while neurological presentations are increasingly being recognized. SARS-CoV-2 invades host cells primarily via attachment of the spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor expressed on cell membranes. Patients with Alzheimer's disease (AD) are more susceptible to SARS-CoV-2 infection and prone to severe clinical outcomes. Recent studies have revealed some common risk factors for AD and COVID-19. An understanding of the association between COVID-19 and AD and the potential related mechanisms may lead to the development of novel approaches to treating both diseases. In the present review, we first summarize the mechanisms by which SARS-CoV-2 invades the central nervous system (CNS) and then discuss the associations and potential shared key factors between COVID-19 and AD, with a focus on the ACE2 receptor, apolipoprotein E (APOE) genotype, age, and neuroinflammation.
Collapse
Affiliation(s)
- Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province Kunming Institute of Zoology Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yongxiang Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qiongwei Ke
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
21
|
Gasperetti T, Sharma GP, Frei AC, Pierce L, Veley D, Szalewski N, Narayanan J, Fish BL, Himburg HA. Mitigation of Multi-Organ Radiation Injury with ACE2 Agonist Diminazene Aceturate. Radiat Res 2022; 198:325-335. [PMID: 35904437 DOI: 10.1667/rade-22-00055.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/17/2022] [Indexed: 11/03/2022]
Abstract
The renin-angiotensin system (RAS) is known to regulate the pathogenesis of radiation-induced injury as inhibitors of the RAS enzyme angiotensin converting enzyme (ACE) have established function as mitigators of multi-organ radiation injury. To further elucidate the role of RAS signaling during both the acute and delayed syndromes of radiation exposure, we have evaluated whether pharmacologic modulation of alternate RAS enzyme angiotensin converting enzyme 2 (ACE2) reduces the pathogenesis of multi-organ radiation-induced injuries. Here, we demonstrate pharmacologic ACE2 activation with the small molecule ACE2 agonist diminazene aceturate (DIZE) improves survival in rat models of both hematologic acute radiation syndrome (H-ARS) and multi-organ delayed effects of acute radiation exposure (DEARE). In the H-ARS model, DIZE treatment increased 30-day survival by 30% compared to vehicle control rats after a LD50/30 total-body irradiation (TBI) dose of 7.75 Gy. In the mitigation of DEARE, ACE2 agonism with DIZE increased median survival by 30 days, reduced breathing rate, and reduced blood urea nitrogen (BUN) levels compared to control rats after partial-body irradiation (PBI) of 13.5 Gy. DIZE treatment was observed to have systemic effects which may explain the multi-organ benefits observed including mobilization of hematopoietic progenitors to the circulation and a reduction in plasma TGF-beta levels. These data suggest the ACE2 enzyme plays a critical role in the RAS-mediated pathogenesis of radiation injury and may be a potential therapeutic target for the development of medical countermeasures for acute radiation exposure.
Collapse
Affiliation(s)
- Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Guru Prasad Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anne C Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lauren Pierce
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Dana Veley
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nathan Szalewski
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
22
|
Matsoukas JM, Gadanec LK, Zulli A, Apostolopoulos V, Kelaidonis K, Ligielli I, Moschovou K, Georgiou N, Plotas P, Chasapis CT, Moore G, Ridgway H, Mavromoustakos T. Diminazene Aceturate Reduces Angiotensin II Constriction and Interacts with the Spike Protein of Severe Acute Respiratory Syndrome Coronavirus 2. Biomedicines 2022; 10:biomedicines10071731. [PMID: 35885036 PMCID: PMC9312513 DOI: 10.3390/biomedicines10071731] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022] Open
Abstract
Diminazene aceturate (DIZE) is a putative angiotensin-converting enzyme 2 (ACE2) activator and angiotensin type 1 receptor antagonist (AT1R). Its simple chemical structure possesses a negatively charged triazene segment that is homologous to the tetrazole of angiotensin receptor blockers (ARB), which explains its AT1R antagonistic activity. Additionally, the activation of ACE2 by DIZE converts the toxic octapeptide angiotensin II (AngII) to the heptapeptides angiotensin 1–7 and alamandine, which promote vasodilation and maintains homeostatic balance. Due to DIZE’s protective cardiovascular and pulmonary effects and its ability to target ACE2 (the predominant receptor utilized by severe acute respiratory syndrome coronavirus 2 to enter host cells), it is a promising treatment for coronavirus 2019 (COVID-19). To determine DIZE’s ability to inhibit AngII constriction, in vitro isometric tension analysis was conducted on rabbit iliac arteries incubated with DIZE or candesartan and constricted with cumulative doses of AngII. In silico docking and ligand interaction studies were performed to investigate potential interactions between DIZE and other ARBs with AT1R and the spike protein/ACE2 complex. DIZE, similar to the other ARBs investigated, was able to abolish vasoconstriction in response to AngII and exhibited a binding affinity for the spike protein/ACE2 complex (PDB 6LZ6). These results support the potential of DIZE as a treatment for COVID-19.
Collapse
Affiliation(s)
- John M. Matsoukas
- NewDrug PC, Patras Science Park, 26500 Patras, Greece;
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (A.Z.); (V.A.)
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence: (J.M.M.); (T.M.)
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (A.Z.); (V.A.)
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (A.Z.); (V.A.)
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (A.Z.); (V.A.)
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | | | - Irene Ligielli
- Department of Chemistry National and Kapodistrian, University of Athens, Zographou, 15784 Athens, Greece; (I.L.); (K.M.); (N.G.)
| | - Kalliopi Moschovou
- Department of Chemistry National and Kapodistrian, University of Athens, Zographou, 15784 Athens, Greece; (I.L.); (K.M.); (N.G.)
| | - Nikitas Georgiou
- Department of Chemistry National and Kapodistrian, University of Athens, Zographou, 15784 Athens, Greece; (I.L.); (K.M.); (N.G.)
| | - Panagiotis Plotas
- Laboratory of Primary Health Care, School of Health Rehabilitation Sciences, University of Patras, 26504 Patras, Greece;
| | - Christos T. Chasapis
- NMR Facility, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, 26504 Patras, Greece;
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - Graham Moore
- Pepmetics Incorporated, 772 Murphy Pace, Victoria, BC V8Y 3H4, Canada;
| | - Harry Ridgway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia;
- AquaMem Consultants, Rodeo, NM 88056, USA
| | - Thomas Mavromoustakos
- Department of Chemistry National and Kapodistrian, University of Athens, Zographou, 15784 Athens, Greece; (I.L.); (K.M.); (N.G.)
- Correspondence: (J.M.M.); (T.M.)
| |
Collapse
|
23
|
Lu Z, Wu D, Wang Z, Zhang H, Du Y, Wang G. Diminazene aceturate mitigates cardiomyopathy by interfering with renin-angiotensin system in a septic rat model. BMC Pharmacol Toxicol 2022; 23:44. [PMID: 35787308 PMCID: PMC9251020 DOI: 10.1186/s40360-022-00584-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
Background There were limited studies investigating treatments of septic cardiomyopathy (SCM), which is a common complication during sepsis. A septic rat model created by cecal ligation and puncture (CLP) was used to investigate the effects of diminazene aceturate (DIZE) in SCM. Methods A total of 151 Wistar rats were randomly assigned into the sham, CLP, or CLP + DIZE group. Data evaluated postoperatively at 6, 12, 24, and 48 hours included: cardiac function; plasma concentrations of tumor necrosis factor-alpha (TNF-α), interleukin-6, angiotensin-(1–7) [Ang-(1–7)], angiotensin II (AngII), troponin I, and brain natriuretic peptide; expression levels of myocardial Ang-(1–7), angiotensin-converting enzyme (ACE), ACE2, and angiotensin type 1 and Mas receptors; and histological changes. Results We found that the CLP + DIZE group had a lower mortality compared to the CLP group (38.5% versus 61.5%) within 48 h postoperatively, although without statistical significance. In contrast to the sham group, the CLP group had decreased cardiac functions, increased myocardial injuries, and higher TNF-α levels, which were ameliorated in the CLP + DIZE group. Furthermore, administration of DIZE could reverse the decreases of myocardial Ang-(1–7) and ACE2 expressions in the CLP group, which finally minimized the myocardial microstructure disruptions. Conclusions It was concluded that DIZE could mitigate the development of SCM and preserve cardiac function during sepsis possibly by interfering with the renin-angiotensin system through promoting myocardial ACE2 expression and restoring local Ang-(1–7) levels. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00584-4.
Collapse
Affiliation(s)
- Zhaoqing Lu
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Di Wu
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zheng Wang
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Hanyu Zhang
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yufan Du
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Guoxing Wang
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
24
|
p-Aminobenzamidine attenuates cardiovascular dysfunctions in spontaneously hypertensive rats. Life Sci 2022; 304:120693. [DOI: 10.1016/j.lfs.2022.120693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/19/2022]
|
25
|
Christou H, Khalil RA. Mechanisms of pulmonary vascular dysfunction in pulmonary hypertension and implications for novel therapies. Am J Physiol Heart Circ Physiol 2022; 322:H702-H724. [PMID: 35213243 PMCID: PMC8977136 DOI: 10.1152/ajpheart.00021.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
Abstract
Pulmonary hypertension (PH) is a serious disease characterized by various degrees of pulmonary vasoconstriction and progressive fibroproliferative remodeling and inflammation of the pulmonary arterioles that lead to increased pulmonary vascular resistance, right ventricular hypertrophy, and failure. Pulmonary vascular tone is regulated by a balance between vasoconstrictor and vasodilator mediators, and a shift in this balance to vasoconstriction is an important component of PH pathology, Therefore, the mainstay of current pharmacological therapies centers on pulmonary vasodilation methodologies that either enhance vasodilator mechanisms such as the NO-cGMP and prostacyclin-cAMP pathways and/or inhibit vasoconstrictor mechanisms such as the endothelin-1, cytosolic Ca2+, and Rho-kinase pathways. However, in addition to the increased vascular tone, many patients have a "fixed" component in their disease that involves altered biology of various cells in the pulmonary vascular wall, excessive pulmonary artery remodeling, and perivascular fibrosis and inflammation. Pulmonary arterial smooth muscle cell (PASMC) phenotypic switch from a contractile to a synthetic and proliferative phenotype is an important factor in pulmonary artery remodeling. Although current vasodilator therapies also have some antiproliferative effects on PASMCs, they are not universally successful in halting PH progression and increasing survival. Mild acidification and other novel approaches that aim to reverse the resident pulmonary vascular pathology and structural remodeling and restore a contractile PASMC phenotype could ameliorate vascular remodeling and enhance the responsiveness of PH to vasodilator therapies.
Collapse
Affiliation(s)
- Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
26
|
Coutinho DCO, Santos-Miranda A, Joviano-Santos JV, Foureaux G, Santos A, Rodrigues-Ferreira C, Martins-Júnior PA, Resende RR, Medei E, Vieyra A, Santos RAS, Cruz JS, Ferreira AJ. Diminazene Aceturate, an angiotensin converting enzyme 2 (ACE2) activator, promotes cardioprotection in ischemia/reperfusion-induced cardiac injury. Peptides 2022; 151:170746. [PMID: 35033621 DOI: 10.1016/j.peptides.2022.170746] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 01/03/2023]
Abstract
This study aimed to investigate whether the Diminazene Aceturate (DIZE), an angiotensin-converting enzyme 2 (ACE2) activator, can revert cardiac dysfunction in ischemia reperfusion-induced (I/R) injury in animals and examine the mechanism underlying this effect. Wistar rats systemically received DIZE (1 mg/kg) for thirty days. Cardiac function in isolated rat hearts was evaluated using the Langendorff technique. After I/R, ventricular non-I/R and I/R samples were used to evaluate ATP levels. Mitochondrial function was assessed using cardiac permeabilized fibers and isolated cardiac mitochondria. Cardiac cellular electrophysiology was evaluated using the patch clamp technique. DIZE protected the heart after I/R from arrhythmia and cardiac dysfunction by preserving ATP levels, independently of any change in coronary flow and heart rate. DIZE improved mitochondrial function, increasing the capacity for generating ATP and reducing proton leak without changing the specific citrate synthase activity. The activation of the ACE2 remodeled cardiac electrical profiles, shortening the cardiac action potential duration at 90 % repolarization. Additionally, cardiomyocytes from DIZE-treated animals exhibited reduced sensibility to diazoxide (KATP agonist) and a higher KATP current compared to the controls. DIZE was able to improve mitochondrial function and modulate cardiac electrical variables with a cardio-protective profile, resulting in direct myocardial cell protection from I/R injury.
Collapse
Affiliation(s)
| | - Artur Santos-Miranda
- Laboratory of CardioBiology, Department of Biophysics, Federal University of Sao Paulo, Brazil
| | | | - Giselle Foureaux
- Department of Morphology, Federal University of Minas Gerais, Brazil
| | - Anderson Santos
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Brazil
| | - Clara Rodrigues-Ferreira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo A Martins-Júnior
- Department of Child and Adolescent Oral Health, Federal University of Minas Gerais, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Brazil
| | - Emiliano Medei
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson A S Santos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Brazil
| | - Jader S Cruz
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Brazil
| | | |
Collapse
|
27
|
Li Z, Peng M, Chen P, Liu C, Hu A, Zhang Y, Peng J, Liu J, Li Y, Li W, Zhu W, Guan D, Zhang Y, Chen H, Li J, Fan D, Huang K, Lin F, Zhang Z, Guo Z, Luo H, He X, Zhu Y, Li L, Huang B, Cai W, Gu L, Lu Y, Deng K, Yan L, Chen S. Imatinib and methazolamide ameliorate COVID-19-induced metabolic complications via elevating ACE2 enzymatic activity and inhibiting viral entry. Cell Metab 2022; 34:424-440.e7. [PMID: 35150639 PMCID: PMC8832557 DOI: 10.1016/j.cmet.2022.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/22/2021] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) represents a systemic disease that may cause severe metabolic complications in multiple tissues including liver, kidney, and cardiovascular system. However, the underlying mechanisms and optimal treatment remain elusive. Our study shows that impairment of ACE2 pathway is a key factor linking virus infection to its secondary metabolic sequelae. By using structure-based high-throughput virtual screening and connectivity map database, followed with experimental validations, we identify imatinib, methazolamide, and harpagoside as direct enzymatic activators of ACE2. Imatinib and methazolamide remarkably improve metabolic perturbations in vivo in an ACE2-dependent manner under the insulin-resistant state and SARS-CoV-2-infected state. Moreover, viral entry is directly inhibited by these three compounds due to allosteric inhibition of ACE2 binding to spike protein on SARS-CoV-2. Taken together, our study shows that enzymatic activation of ACE2 via imatinib, methazolamide, or harpagoside may be a conceptually new strategy to treat metabolic sequelae of COVID-19.
Collapse
Affiliation(s)
- Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| | - Meixiu Peng
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Pin Chen
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Chenshu Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Ao Hu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yixin Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Jiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Yihui Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Wenxue Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong 510440, China
| | - Wei Zhu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong 510440, China
| | - Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yang Zhang
- School of Public Health, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Hongyin Chen
- School of Public Health, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Jiuzhou Li
- School of Public Health, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Dongxiao Fan
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Kan Huang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Fen Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Zefeng Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Zeling Guo
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Hengli Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xi He
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Yuanyuan Zhu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Linghua Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Bingding Huang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Lei Gu
- Max Planck Institute for Heart and Lung Research and Cardiopulmonary Institute (CPI), Bad Nauheim 61231, Germany
| | - Yutong Lu
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| | - Li Yan
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China.
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
28
|
Esfahani SH, Karamyan VT. Challenges with the proposed ACE2 activation mechanism of diminazene aceturate. Clin Exp Pharmacol Physiol 2022; 49:608-610. [PMID: 35199858 DOI: 10.1111/1440-1681.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Shiva Hadi Esfahani
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.,Center for Blood Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| |
Collapse
|
29
|
Simon MA, Hanrott K, Budd DC, Torres F, Grünig E, Escribano‐Subias P, Meseguer ML, Halank M, Opitz C, Hall DA, Hewens D, Powley WM, Siederer S, Bayliffe A, Lazaar AL, Cahn A, Rosenkranz S. An open‐label, dose‐escalation study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of single doses of GSK2586881 in participants with pulmonary arterial hypertension. Pulm Circ 2022; 12:e12024. [PMID: 35506108 PMCID: PMC9053011 DOI: 10.1002/pul2.12024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/13/2023] Open
Abstract
Preclinical and early clinical studies suggest that angiotensin‐converting enzyme type 2 activity may be impaired in patients with pulmonary arterial hypertension (PAH); therefore, administration of exogenous angiotensin‐converting enzyme type 2 (ACE2) may be beneficial. This Phase IIa, multi‐center, open‐label, exploratory, single‐dose, dose‐escalation study (NCT03177603) assessed the potential vasodilatory effects of single doses of GSK2586881 (a recombinant human ACE2) on acute cardiopulmonary hemodynamics in hemodynamically stable adults with documented PAH who were receiving background PAH therapy. Successive cohorts of participants were administered a single intravenous dose of GSK2586881 of 0.1, 0.2, 0.4, or 0.8 mg/kg. Dose escalation occurred after four or more participants per cohort were dosed and a review of safety, tolerability, pharmacokinetics, and hemodynamic data up to 24 h postdose was undertaken. The primary endpoint was a change in cardiopulmonary hemodynamics (pulmonary vascular resistance, cardiac index, and mean pulmonary artery pressure) from baseline. Secondary/exploratory objectives included safety and tolerability, effect on renin‐angiotensin system peptides, and pharmacokinetics. GSK2586881 demonstrated no consistent or sustained effect on acute cardiopulmonary hemodynamics in participants with PAH receiving background PAH therapy (N = 23). All doses of GSK2586881 were well tolerated. GSK2586881 was quantifiable in plasma for up to 4 h poststart of infusion in all participants and caused a consistent and sustained reduction in angiotensin II and a corresponding increase in angiotensin (1–7) and angiotensin (1–5). While there does not appear to be a consistent acute vasodilatory response to single doses of GSK2586881 in participants with PAH, the potential benefits in terms of chronic vascular remodeling remain to be determined.
Collapse
Affiliation(s)
- Marc A. Simon
- Division of Cardiology, Department of Medicine University of California San Francisco California USA
| | - Kate Hanrott
- Research and Development, Medicines Research Centre GlaxoSmithKline plc. Stevenage UK
| | - David C. Budd
- Research and Development, Medicines Research Centre GlaxoSmithKline plc. Stevenage UK
| | | | - Ekkehard Grünig
- Centre for Pulmonary Hypertension Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital Heidelberg Germany
| | - Pilar Escribano‐Subias
- CIBER‐CV Cardiology Department, Pulmonary Hypertension Unit Hospital Universitario 12 de Octubre Madrid Spain
| | - Manuel L. Meseguer
- Lung Transplant and Pulmonary Vascular Diseases Department Hospital Universitari Vall d'Hebron Barcelona Spain
| | - Michael Halank
- Department of Internal Medicine I University Hospital Carl Gustav Carus Dresden Germany
| | - Christian Opitz
- Department of Cardiology DRK Kliniken Berlin Germany
- Department of Cardiology, University Heart Center Berlin Charité University Medicine Berlin Germany
| | - David A. Hall
- Research and Development, Medicines Research Centre GlaxoSmithKline plc. Stevenage UK
| | - Deborah Hewens
- Research and Development, Medicines Research Centre GlaxoSmithKline plc. Stevenage UK
| | - William M. Powley
- Research and Development, Medicines Research Centre GlaxoSmithKline plc. Stevenage UK
| | - Sarah Siederer
- Research and Development, Medicines Research Centre GlaxoSmithKline plc. Stevenage UK
| | - Andrew Bayliffe
- Research and Development, Medicines Research Centre GlaxoSmithKline plc. Stevenage UK
- Marengo Therapeutics and Apple Tree Partners Cambridge Massachusetts USA
| | - Aili L. Lazaar
- Discovery Medicine, Clinical Pharmacology and Experimental Medicine GlaxoSmithKline plc. Collegeville Pennsylvania USA
| | - Anthony Cahn
- Research and Development, Medicines Research Centre GlaxoSmithKline plc. Stevenage UK
| | - Stephan Rosenkranz
- Department III of Internal Medicine, Cologne Cardiovascular Research Center (CCRC) Cologne University Heart Center Cologne Germany
| |
Collapse
|
30
|
Shirbhate E, Pandey J, Patel VK, Kamal M, Jawaid T, Gorain B, Kesharwani P, Rajak H. Understanding the role of ACE-2 receptor in pathogenesis of COVID-19 disease: a potential approach for therapeutic intervention. Pharmacol Rep 2021; 73:1539-1550. [PMID: 34176080 PMCID: PMC8236094 DOI: 10.1007/s43440-021-00303-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
Angiotensin-converting enzyme (ACE) and its homologue, ACE2, are commonly allied with hypertension, renin-angiotensin-aldosterone system pathway, and other cardiovascular system disorders. The recent pandemic of COVID-19 has attracted the attention of numerous researchers on ACE2 receptors, where the causative viral particle, SARS-CoV-2, is established to exploit these receptors for permitting their entry into the human cells. Therefore, studies on the molecular origin and pathophysiology of the cell response in correlation to the role of ACE2 receptors to these viruses are bringing novel theories. The varying level of manifestation and importance of ACE proteins, underlying irregularities and disorders, intake of specific medications, and persistence of assured genomic variants at the ACE genes are potential questions raising nowadays while observing the marked alteration in response to the SARS-CoV-2-infected patients. Therefore, the present review has focused on several raised opinions associated with the role of the ACE2 receptor and its impact on COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Ekta Shirbhate
- Institute of Pharmaceutical Sciences, Guru Ghasidas University (A Central University), Bilaspur, Chhattisgarh, 495 009, India
| | - Jaiprakash Pandey
- Institute of Pharmaceutical Sciences, Guru Ghasidas University (A Central University), Bilaspur, Chhattisgarh, 495 009, India
| | - Vijay K Patel
- Institute of Pharmaceutical Sciences, Guru Ghasidas University (A Central University), Bilaspur, Chhattisgarh, 495 009, India
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box No. 173, Al-Kharj, 11942, Kingdom of Saudi Arabia
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Al Imam Bin Saud Islamic University, Riyadh, 13314, Kingdom of Saudi Arabia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Harish Rajak
- Institute of Pharmaceutical Sciences, Guru Ghasidas University (A Central University), Bilaspur, Chhattisgarh, 495 009, India.
| |
Collapse
|
31
|
Wang LF, Sun YY, Pan Q, Yin YQ, Tian XM, Liu Y, Bu T, Zhang Q, Wang YA, Zhao J, Luo Y. Diminazen Aceturate Protects Pulmonary Ischemia-Reperfusion Injury via Inhibition of ADAM17-Mediated Angiotensin-Converting Enzyme 2 Shedding. Front Pharmacol 2021; 12:713632. [PMID: 34712133 PMCID: PMC8546118 DOI: 10.3389/fphar.2021.713632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/16/2021] [Indexed: 01/30/2023] Open
Abstract
Lung ischemia-reperfusion (IR) injury is induced by pulmonary artery occlusion and reperfusion. Lung IR injury commonly happens after weaning from extracorporeal circulation, lung transplantation, and pulmonary thromboendarterectomy; it is a lethal perioperative complication. A definite therapeutic intervention remains to be determined. It is known that the enzyme activity of angiotensin-converting enzyme 2 (ACE2) is critical in maintaining pulmonary vascular tone and epithelial integrity. In a noxious environment to the lungs, inactivation of ACE2 is mainly due to a disintegrin and metalloprotease 17 (ADAM17) protein-mediated ACE2 shedding. Thus, we assumed that protection of local ACE2 in the lung against ADAM17-mediated shedding would be a therapeutic target for lung IR injury. In this study, we established both in vivo and in vitro models to demonstrate that the damage degree of lung IR injury depends on the loss of ACE2 and ACE2 enzyme dysfunction in lung tissue. Treatment with ACE2 protectant diminazen aceturate (DIZE) maintained higher ACE2 enzyme activity and reduced angiotensin II, angiotensin type 1 receptor, and ADAM17 levels in the lung tissue. Concurrently, DIZE-inhibited oxidative stress and nitrosative stress via p38MAPK and NF-κB pathways consequently reduced release of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β. The underlying molecular mechanism of DIZE contributed to its protective effect against lung IR injury and resulted in the improvement of oxygenation index and ameliorating pulmonary pathological damage. We concluded that DIZE protects the lungs from IR injury via inhibition of ADAM17-mediated ACE2 shedding.
Collapse
Affiliation(s)
| | - Yang-Yang Sun
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Qian Pan
- China-Japan Friendship Hospital, Beijing, China
| | - Yi-Qing Yin
- China-Japan Friendship Hospital, Beijing, China
| | | | - Yue Liu
- China-Japan Friendship Hospital, Beijing, China
| | - Tegeleqi Bu
- China-Japan Friendship Hospital, Beijing, China
| | - Qingy Zhang
- China-Japan Friendship Hospital, Beijing, China
| | - Yong-An Wang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jing Zhao
- China-Japan Friendship Hospital, Beijing, China
| | - Yuan Luo
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences (AMMS), Beijing, China
| |
Collapse
|
32
|
Vasam G, S SJ, Miyat SY, Adam H, Jarajapu YP. Early onset of aging phenotype in vascular repair by Mas receptor deficiency. GeroScience 2021; 44:311-327. [PMID: 34661816 DOI: 10.1007/s11357-021-00473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022] Open
Abstract
Aging is associated with impaired vascular repair following ischemic insult, largely due to reparative dysfunctions of progenitor cells. Activation of Mas receptor (MasR) was shown to reverse aging-associated vasoreparative dysfunction. This study tested the impact of MasR-deficiency on mobilization and vasoreparative functions with aging. Wild type (WT) or MasR-deficient mice (MasR-/- or MasR+/-) at 12-14 weeks (young) or middle age (11-12 months) (MA) were used in the study. Mobilization of lineage-negative, Sca-1-positive cKit-positive (LSK) cells in response to G-CSF or plerixafor was determined. Hindlimb ischemia (HLI) was induced by femoral artery ligation. Mobilization and blood flow recovery were monitored post-HLI. Radiation chimeras were made by lethal irradiation of WT or MasR-/- mice followed by administration of bone marrow cells from MasR-/- or WT mice, respectively. Nitric oxide (NO) generation by stromal-derived factor-1α (SDF) and mitochondrial reactive oxygen species (mitoROS) levels were determined by flow cytometry. Effect of A779 treatment on mobilization, blood flow recovery, and NO and ROS levels were determined in young WT and MasR+/- mice. Circulating LSK cells in basal or in response to plerixafor or G-CSF or in response to ischemic injury were lower in MasR-/- mice compared to the WT. Responses in MasR+/- mice were similar to the WT at young age but at the middle age, impairments were observed. Impaired mobilization to ischemia or G-CSF was rescued in WT → MasR-/- chimeras. NO levels were lower and mitoROS were higher in MasR-/- LSK cells compared to WT cells. A779 precipitated dysfunctions in young-MasR+/- mice similar to that observed in MA-MasR+/-, and this accompanied decreased NO generation by SDF and enhanced mitoROS levels. This study shows that mice at MA do not exhibit vasoreparative dysfunction. Either partial or total loss of MasR precipitates advanced-aging phenotype likely due to lack of NO and oxidative stress.
Collapse
Affiliation(s)
- Goutham Vasam
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Shrinidh Joshi S
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Su Yamin Miyat
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Hashim Adam
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Yagna P Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
33
|
Gupta D, Kumar A, Mandloi A, Shenoy V. Renin angiotensin aldosterone system in pulmonary fibrosis: Pathogenesis to therapeutic possibilities. Pharmacol Res 2021; 174:105924. [PMID: 34607005 DOI: 10.1016/j.phrs.2021.105924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 01/12/2023]
Abstract
Pulmonary fibrosis is a devastating lung disease with multifactorial etiology characterized by alveolar injury, fibroblast proliferation and excessive deposition of extracellular matrix proteins, which progressively results in respiratory failure and death. Accumulating evidence from experimental and clinical studies supports a central role of the renin angiotensin aldosterone system (RAAS) in the pathogenesis and progression of idiopathic pulmonary fibrosis. Angiotensin II (Ang II), a key vasoactive peptide of the RAAS mediates pro-inflammatory and pro-fibrotic effects on the lungs, adversely affecting organ function. Recent years have witnessed seminal discoveries in the field of RAAS. Identification of new enzymes, peptides and receptors has led to the development of several novel concepts. Of particular interest is the establishment of a protective axis of the RAAS comprising of Angiotensin converting enzyme 2 (ACE2), Angiotensin-(1-7) [Ang-(1-7)], and the Mas receptor (the ACE2/Ang-(1-7)/Mas axis), and the discovery of a functional role for the Angiotensin type 2 (AT2) receptor. Herein, we will review our current understanding of the role of RAAS in lung fibrogenesis, provide evidence on the anti-fibrotic actions of the newly recognized RAAS components (the ACE2/Ang-(1-7)/Mas axis and AT2 receptor), discuss potential strategies and translational efforts to convert this new knowledge into effective therapeutics for PF.
Collapse
Affiliation(s)
- Dipankar Gupta
- Congenital Heart Center, Department of Pediatrics, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Ashok Kumar
- Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS, USA
| | - Avinash Mandloi
- College of Pharmacy, VNS Group of Institutions, Bhopal, India
| | - Vinayak Shenoy
- College of Pharmacy, California Health Sciences University, Clovis, CA, USA.
| |
Collapse
|
34
|
Arthur JM, Forrest JC, Boehme KW, Kennedy JL, Owens S, Herzog C, Liu J, Harville TO. Development of ACE2 autoantibodies after SARS-CoV-2 infection. PLoS One 2021; 16:e0257016. [PMID: 34478478 PMCID: PMC8415618 DOI: 10.1371/journal.pone.0257016] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/20/2021] [Indexed: 12/31/2022] Open
Abstract
Background Activation of the immune system is implicated in the Post-Acute Sequelae after SARS-CoV-2 infection (PASC) but the mechanisms remain unknown. Angiotensin-converting enzyme 2 (ACE2) cleaves angiotensin II (Ang II) resulting in decreased activation of the AT1 receptor and decreased immune system activation. We hypothesized that autoantibodies against ACE2 may develop after SARS-CoV-2 infection, as anti-idiotypic antibodies to anti-spike protein antibodies. Methods and findings We tested plasma or serum for ACE2 antibodies in 67 patients with known SARS-CoV-2 infection and 13 with no history of infection. None of the 13 patients without history of SARS-CoV-2 infection and 1 of the 20 outpatients that had a positive PCR test for SARS-CoV-2 had levels of ACE2 antibodies above the cutoff threshold. In contrast, 26/32 (81%) in the convalescent group and 14/15 (93%) of patients acutely hospitalized had detectable ACE2 antibodies. Plasma from patients with antibodies against ACE2 had less soluble ACE2 activity in plasma but similar amounts of ACE2 protein compared to patients without ACE2 antibodies. We measured the capacity of the samples to inhibit ACE2 enzyme activity. Addition of plasma from patients with ACE2 antibodies led to decreased activity of an exogenous preparation of ACE2 compared to patients that did not have antibodies. Conclusions Many patients with a history of SARS-CoV-2 infection have antibodies specific for ACE2. Patients with ACE2 antibodies have lower activity of soluble ACE2 in plasma. Plasma from these patients also inhibits exogenous ACE2 activity. These findings are consistent with the hypothesis that ACE2 antibodies develop after SARS-CoV-2 infection and decrease ACE2 activity. This could lead to an increase in the abundance of Ang II, which causes a proinflammatory state that triggers symptoms of PASC.
Collapse
Affiliation(s)
- John M. Arthur
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Central Arkansas Veterans Healthcare System, Little Rock, AR, United States of America
- * E-mail:
| | - J. Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Karl W. Boehme
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Joshua L. Kennedy
- Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Shana Owens
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Christian Herzog
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Juan Liu
- Department of Pathology and Laboratory Services, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Terry O. Harville
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Department of Pathology and Laboratory Services, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| |
Collapse
|
35
|
Which ones, when and why should renin-angiotensin system inhibitors work against COVID-19? Adv Biol Regul 2021; 81:100820. [PMID: 34419773 PMCID: PMC8359569 DOI: 10.1016/j.jbior.2021.100820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022]
Abstract
The article describes the possible pathophysiological origin of COVID-19 and the crucial role of renin-angiotensin system (RAS), providing several “converging” evidence in support of this hypothesis. SARS-CoV-2 has been shown to initially upregulate ACE2 systemic activity (early phase), which can subsequently induce compensatory responses leading to upregulation of both arms of the RAS (late phase) and consequently to critical, advanced and untreatable stages of COVID-19 disease. The main and initial actors of the process are ACE2 and ADAM17 zinc-metalloproteases, which, initially triggered by SARS-CoV-2 spike proteins, work together in increasing circulating Ang 1–7 and Ang 1–9 peptides and downstream (Mas and Angiotensin type 2 receptors) pathways with anti-inflammatory, hypotensive and antithrombotic activities. During the late phase of severe COVID-19, compensatory secretion of renin and ACE enzymes are subsequently upregulated, leading to inflammation, hypertension and thrombosis, which further sustain ACE2 and ADAM17 upregulation. Based on this hypothesis, COVID-19-phase-specific inhibition of different RAS enzymes is proposed as a pharmacological strategy against COVID-19 and vaccine-induced adverse effects. The aim is to prevent the establishment of positive feedback-loops, which can sustain hyperactivity of both arms of the RAS independently of viral trigger and, in some cases, may lead to Long-COVID syndrome.
Collapse
|
36
|
Welcome MO, Mastorakis NE. Neuropathophysiology of coronavirus disease 2019: neuroinflammation and blood brain barrier disruption are critical pathophysiological processes that contribute to the clinical symptoms of SARS-CoV-2 infection. Inflammopharmacology 2021; 29:939-963. [PMID: 33822324 PMCID: PMC8021940 DOI: 10.1007/s10787-021-00806-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by the novel SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) first discovered in Wuhan, Hubei province, China in December 2019. SARS-CoV-2 has infected several millions of people, resulting in a huge socioeconomic cost and over 2.5 million deaths worldwide. Though the pathogenesis of COVID-19 is not fully understood, data have consistently shown that SARS-CoV-2 mainly affects the respiratory and gastrointestinal tracts. Nevertheless, accumulating evidence has implicated the central nervous system in the pathogenesis of SARS-CoV-2 infection. Unfortunately, however, the mechanisms of SARS-CoV-2 induced impairment of the central nervous system are not completely known. Here, we review the literature on possible neuropathogenic mechanisms of SARS-CoV-2 induced cerebral damage. The results suggest that downregulation of angiotensin converting enzyme 2 (ACE2) with increased activity of the transmembrane protease serine 2 (TMPRSS2) and cathepsin L in SARS-CoV-2 neuroinvasion may result in upregulation of proinflammatory mediators and reactive species that trigger neuroinflammatory response and blood brain barrier disruption. Furthermore, dysregulation of hormone and neurotransmitter signalling may constitute a fundamental mechanism involved in the neuropathogenic sequelae of SARS-CoV-2 infection. The viral RNA or antigenic peptides also activate or interact with molecular signalling pathways mediated by pattern recognition receptors (e.g., toll-like receptors), nuclear factor kappa B, Janus kinase/signal transducer and activator of transcription, complement cascades, and cell suicide molecules. Potential molecular targets and therapeutics of SARS-CoV-2 induced neurologic damage are also discussed.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Plot 681 Cadastral Zone, C-00 Research and Institution Area, Jabi Airport Road Bypass, FCT, Abuja, Nigeria.
| | - Nikos E Mastorakis
- Technical University of Sofia, Klement Ohridksi 8, 1000, Sofia, Bulgaria
| |
Collapse
|
37
|
Taher I, Almaeen A, Ghazy A, Abu-Farha M, Mohamed Channanath A, Elsa John S, Hebbar P, Arefanian H, Abubaker J, Al-Mulla F, Alphonse Thanaraj T. Relevance Between COVID-19 and Host Genetics of Immune Response. Saudi J Biol Sci 2021; 28:6645-6652. [PMID: 34305429 PMCID: PMC8285220 DOI: 10.1016/j.sjbs.2021.07.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 12/09/2022] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) was caused by the newly emerged corona virus (2019-nCoV alias SARS-CoV-2) that resembles the severe acute respiratory syndrome virus (SARS-CoV). SARS-CoV-2, which was first identified in Wuhan (China) has spread globally, resulting in a high mortality worldwide reaching ~4 million deaths to date. As of first week of July 2021, ~181 million cases of COVID-19 have been reported. SARS-CoV-2 infection is mediated by the binding of virus spike protein to Angiotensin Converting Enzyme 2 (ACE2). ACE2 is expressed on many human tissues; however, the major entry point is probably pneumocytes, which are responsible for synthesis of alveolar surfactant in lungs. Viral infection of pneumocytes impairs immune responses and leads to, apart from severe hypoxia resulting from gas exchange, diseases with serious complications. During viral infection, gene products (e.g. ACE2) that mediate viral entry, antigen presentation, and cellular immunity are of crucial importance. Human leukocyte antigens (HLA) I and II present antigens to the CD8+ and CD4+ T lymphocytes, which are crucial for immune defence against pathogens including viruses. HLA gene variants affect the recognition and presentation of viral antigenic peptides to T-cells, and cytokine secretion. Additionally, endoplasmic reticulum aminopeptidases (ERAP) trim antigenic precursor peptides to fit into the binding groove of MHC class I molecules. Polymorphisms in ERAP genes leading to aberrations in ERAP’s can alter antigen presentation by HLA class I molecules resulting in aberrant T-cell responses, which may affect susceptibility to infection and/or activation of immune response. Polymorphisms from these genes are associated, in global genetic association studies, with various phenotype traits/disorders many of which are related to the pathogenesis and progression of COVID-19; polymorphisms from various genes are annotated in genotype-tissue expression data as regulating the expression of ACE2, HLA’s and ERAP’s. We review such polymorphisms and illustrate variations in their allele frequencies in global populations. These reported findings highlight the roles of genetic modulators (e.g. genotype changes in ACE2, HLA’s and ERAP’s leading to aberrations in the expressed gene products or genotype changes at other genes regulating the expression levels of these genes) in the pathogenesis of viral infection.
Collapse
Affiliation(s)
- Ibrahim Taher
- Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Abdulrahman Almaeen
- Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Amany Ghazy
- Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia.,Departments of Microbiology & Medical Immunology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | | | - Sumi Elsa John
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Prashantha Hebbar
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Hossein Arefanian
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | | |
Collapse
|
38
|
Zanza C, Tassi MF, Romenskaya T, Piccolella F, Abenavoli L, Franceschi F, Piccioni A, Ojetti V, Saviano A, Canonico B, Montanari M, Zamai L, Artico M, Robba C, Racca F, Longhitano Y. Lock, Stock and Barrel: Role of Renin-Angiotensin-Aldosterone System in Coronavirus Disease 2019. Cells 2021; 10:1752. [PMID: 34359922 PMCID: PMC8306543 DOI: 10.3390/cells10071752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/21/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Since the end of 2019, the medical-scientific community has been facing a terrible pandemic caused by a new airborne viral agent known as SARS-CoV2. Already in the early stages of the pandemic, following the discovery that the virus uses the ACE2 cell receptor as a molecular target to infect the cells of our body, it was hypothesized that the renin-angiotensin-aldosterone system was involved in the pathogenesis of the disease. Since then, numerous studies have been published on the subject, but the exact role of the renin-angiotensin-aldosterone system in the pathogenesis of COVID-19 is still a matter of debate. RAAS represents an important protagonist in the pathogenesis of COVID-19, providing the virus with the receptor of entry into host cells and determining its organotropism. Furthermore, following infection, the virus is able to cause an increase in plasma ACE2 activity, compromising the normal function of the RAAS. This dysfunction could contribute to the establishment of the thrombo-inflammatory state characteristic of severe forms of COVID-19. Drugs targeting RAAS represent promising therapeutic options for COVID-19 sufferers.
Collapse
Affiliation(s)
- Christian Zanza
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
- Foundation Ospedale Alba-Bra and Department of Anesthesia, Critical Care and Emergency Medicine, Pietro and Michele Ferrero Hospital, 12051 Verduno, Italy
| | - Michele Fidel Tassi
- Department of Emergency Medicine, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy;
| | - Tatsiana Romenskaya
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
| | - Fabio Piccolella
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy;
| | - Francesco Franceschi
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Andrea Piccioni
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Veronica Ojetti
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Angela Saviano
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (B.C.); (M.M.); (L.Z.)
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (B.C.); (M.M.); (L.Z.)
| | - Loris Zamai
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (B.C.); (M.M.); (L.Z.)
- National Institute for Nuclear Physics (INFN)-Gran Sasso National Laboratory (LNGS), 67100 Assergi L’Aquila, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy;
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy;
| | - Fabrizio Racca
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
| | - Yaroslava Longhitano
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
- Foundation Ospedale Alba-Bra and Department of Anesthesia, Critical Care and Emergency Medicine, Pietro and Michele Ferrero Hospital, 12051 Verduno, Italy
| |
Collapse
|
39
|
Pantazi I, Al-Qahtani AA, Alhamlan FS, Alothaid H, Matou-Nasri S, Sourvinos G, Vergadi E, Tsatsanis C. SARS-CoV-2/ACE2 Interaction Suppresses IRAK-M Expression and Promotes Pro-Inflammatory Cytokine Production in Macrophages. Front Immunol 2021; 12:683800. [PMID: 34248968 PMCID: PMC8261299 DOI: 10.3389/fimmu.2021.683800] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
The major cause of death in SARS-CoV-2 infected patients is due to de-regulation of the innate immune system and development of cytokine storm. SARS-CoV-2 infects multiple cell types in the lung, including macrophages, by engagement of its spike (S) protein on angiotensin converting enzyme 2 (ACE2) receptor. ACE2 receptor initiates signals in macrophages that modulate their activation, including production of cytokines and chemokines. IL-1R-associated kinase (IRAK)-M is a central regulator of inflammatory responses regulating the magnitude of TLR responsiveness. Aim of the work was to investigate whether SARS-CoV-2 S protein-initiated signals modulate pro-inflammatory cytokine production in macrophages. For this purpose, we treated PMA-differentiated THP-1 human macrophages with SARS-CoV-2 S protein and measured the induction of inflammatory mediators including IL6, TNFα, IL8, CXCL5, and MIP1a. The results showed that SARS-CoV-2 S protein induced IL6, MIP1a and TNFα mRNA expression, while it had no effect on IL8 and CXCL5 mRNA levels. We further examined whether SARS-CoV-2 S protein altered the responsiveness of macrophages to TLR signals. Treatment of LPS-activated macrophages with SARS-CoV-2 S protein augmented IL6 and MIP1a mRNA, an effect that was evident at the protein level only for IL6. Similarly, treatment of PAM3csk4 stimulated macrophages with SARS-CoV-2 S protein resulted in increased mRNA of IL6, while TNFα and MIP1a were unaffected. The results were confirmed in primary human peripheral monocytic cells (PBMCs) and isolated CD14+ monocytes. Macrophage responsiveness to TLR ligands is regulated by IRAK-M, an inactive IRAK kinase isoform. Indeed, we found that SARS-CoV-2 S protein suppressed IRAK-M mRNA and protein expression both in THP1 macrophages and primary human PBMCs and CD14+ monocytes. Engagement of SARS-CoV-2 S protein with ACE2 results in internalization of ACE2 and suppression of its activity. Activation of ACE2 has been previously shown to induce anti-inflammatory responses in macrophages. Treatment of macrophages with the ACE2 activator DIZE suppressed the pro-inflammatory action of SARS-CoV-2. Our results demonstrated that SARS-CoV-2/ACE2 interaction rendered macrophages hyper-responsive to TLR signals, suppressed IRAK-M and promoted pro-inflammatory cytokine expression. Thus, activation of ACE2 may be a potential anti-inflammatory therapeutic strategy to eliminate the development of cytokine storm observed in COVID-19 patients.
Collapse
Affiliation(s)
- Ioanna Pantazi
- Laboratory of Clinical Chemistry, Medical School, University of Crete, Heraklion, Greece.,Department of Pediatrics, Medical School, University of Crete, Heraklion, Greece
| | - Ahmed A Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Fatimah S Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Hani Alothaid
- Department of Basic Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - George Sourvinos
- Laboratory of Virology, Medical School, University of Crete, Heraklion, Greece
| | - Eleni Vergadi
- Department of Pediatrics, Medical School, University of Crete, Heraklion, Greece
| | - Christos Tsatsanis
- Laboratory of Clinical Chemistry, Medical School, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| |
Collapse
|
40
|
Poznyak AV, Bharadwaj D, Prasad G, Grechko AV, Sazonova MA, Orekhov AN. Renin-Angiotensin System in Pathogenesis of Atherosclerosis and Treatment of CVD. Int J Mol Sci 2021; 22:ijms22136702. [PMID: 34206708 PMCID: PMC8269397 DOI: 10.3390/ijms22136702] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis has complex pathogenesis, which involves at least three serious aspects: inflammation, lipid metabolism alterations, and endothelial injury. There are no effective treatment options, as well as preventive measures for atherosclerosis. However, this disease has various severe complications, the most severe of which is cardiovascular disease (CVD). It is important to note, that CVD is among the leading causes of death worldwide. The renin–angiotensin–aldosterone system (RAAS) is an important part of inflammatory response regulation. This system contributes to the recruitment of inflammatory cells to the injured site and stimulates the production of various cytokines, such as IL-6, TNF-a, and COX-2. There is also an association between RAAS and oxidative stress, which is also an important player in atherogenesis. Angiotensin-II induces plaque formation at early stages, and this is one of the most crucial impacts on atherogenesis from the RAAS. Importantly, while stimulating the production of ROS, Angiotensin-II at the same time decreases the generation of NO. The endothelium is known as a major contributor to vascular function. Oxidative stress is the main trigger of endothelial dysfunction, and, once again, links RAAS to the pathogenesis of atherosclerosis. All these implications of RAAS in atherogenesis lead to an explicable conclusion that elements of RAAS can be promising targets for atherosclerosis treatment. In this review, we also summarize the data on treatment approaches involving cytokine targeting in CVD, which can contribute to a better understanding of atherogenesis and even its prevention.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| | - Dwaipayan Bharadwaj
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology Campus, New Delhi 110067, India;
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Gauri Prasad
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 14-3 Solyanka Street, 109240 Moscow, Russia;
| | - Margarita A. Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia;
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia;
- Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| |
Collapse
|
41
|
Stachowicz A, Wiśniewska A, Kuś K, Białas M, Łomnicka M, Totoń-Żurańska J, Kiepura A, Stachyra K, Suski M, Bujak-Giżycka B, Jawień J, Olszanecki R. Diminazene Aceturate Stabilizes Atherosclerotic Plaque and Attenuates Hepatic Steatosis in apoE-Knockout Mice by Influencing Macrophages Polarization and Taurine Biosynthesis. Int J Mol Sci 2021; 22:5861. [PMID: 34070749 PMCID: PMC8199145 DOI: 10.3390/ijms22115861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Atherosclerosis and nonalcoholic fatty liver disease are leading causes of morbidity and mortality in the Western countries. The renin-angiotensin system (RAS) with its two main opposing effectors, i.e., angiotensin II (Ang II) and Ang-(1-7), is widely recognized as a major regulator of cardiovascular function and body metabolic processes. Angiotensin-converting enzyme 2 (ACE2) by breaking-down Ang II forms Ang-(1-7) and thus favors Ang-(1-7) actions. Therefore, the aim of our study was to comprehensively evaluate the influence of prolonged treatment with ACE2 activator, diminazene aceturate (DIZE) on the development of atherosclerotic lesions and hepatic steatosis in apoE-/- mice fed a high-fat diet (HFD). We have shown that DIZE stabilized atherosclerotic lesions and attenuated hepatic steatosis in apoE-/- mice fed an HFD. Such effects were associated with decreased total macrophages content and increased α-smooth muscle actin levels in atherosclerotic plaques. Moreover, DIZE changed polarization of macrophages towards increased amount of anti-inflammatory M2 macrophages in the atherosclerotic lesions. Interestingly, the anti-steatotic action of DIZE in the liver was related to the elevated levels of HDL in the plasma, decreased levels of triglycerides, and increased biosynthesis and concentration of taurine in the liver of apoE-/- mice. However, exact molecular mechanisms of both anti-atherosclerotic and anti-steatotic actions of DIZE require further investigations.
Collapse
Affiliation(s)
- Aneta Stachowicz
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland; (A.W.); (K.K.); (M.Ł.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (B.B.-G.); (J.J.); (R.O.)
| | - Anna Wiśniewska
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland; (A.W.); (K.K.); (M.Ł.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (B.B.-G.); (J.J.); (R.O.)
| | - Katarzyna Kuś
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland; (A.W.); (K.K.); (M.Ł.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (B.B.-G.); (J.J.); (R.O.)
| | - Magdalena Białas
- Chair of Pathomorphology, Jagiellonian University Medical College, 31-531 Krakow, Poland;
| | - Magdalena Łomnicka
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland; (A.W.); (K.K.); (M.Ł.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (B.B.-G.); (J.J.); (R.O.)
| | - Justyna Totoń-Żurańska
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland; (A.W.); (K.K.); (M.Ł.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (B.B.-G.); (J.J.); (R.O.)
| | - Anna Kiepura
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland; (A.W.); (K.K.); (M.Ł.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (B.B.-G.); (J.J.); (R.O.)
| | - Kamila Stachyra
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland; (A.W.); (K.K.); (M.Ł.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (B.B.-G.); (J.J.); (R.O.)
| | - Maciej Suski
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland; (A.W.); (K.K.); (M.Ł.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (B.B.-G.); (J.J.); (R.O.)
| | - Beata Bujak-Giżycka
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland; (A.W.); (K.K.); (M.Ł.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (B.B.-G.); (J.J.); (R.O.)
| | - Jacek Jawień
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland; (A.W.); (K.K.); (M.Ł.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (B.B.-G.); (J.J.); (R.O.)
| | - Rafał Olszanecki
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland; (A.W.); (K.K.); (M.Ł.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (B.B.-G.); (J.J.); (R.O.)
| |
Collapse
|
42
|
Poznyak AV, Bezsonov EE, Eid AH, Popkova TV, Nedosugova LV, Starodubova AV, Orekhov AN. ACE2 Is an Adjacent Element of Atherosclerosis and COVID-19 Pathogenesis. Int J Mol Sci 2021; 22:ijms22094691. [PMID: 33946649 PMCID: PMC8124184 DOI: 10.3390/ijms22094691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/17/2021] [Accepted: 04/27/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is a highly contagious new infection caused by the single-stranded RNA Sars-CoV-2 virus. For the first time, this infection was recorded in December 2019 in the Chinese province of Wuhan. The virus presumably crossed the interspecies barrier and passed to humans from a bat. Initially, the disease was considered exclusively in the context of damage to the respiratory system, but it quickly became clear that the disease also entails serious consequences from various systems, including the cardiovascular system. Among these consequences are myocarditis, myocardial damage, subsequent heart failure, myocardial infarction, and Takotsubo syndrome. On the other hand, clinical data indicate that the presence of chronic diseases in a patient aggravates the course and outcome of coronavirus infection. In this context, the relationship between COVID-19 and atherosclerosis, a condition preceding cardiovascular disease and other disorders of the heart and blood vessels, is particularly interesting. The renin-angiotensin system is essential for the pathogenesis of both coronavirus disease and atherosclerosis. In particular, it has been shown that ACE2, an angiotensin-converting enzyme 2, plays a key role in Sars-CoV-2 infection due to its receptor activity. It is noteworthy that this enzyme is important for the normal functioning of the cardiovascular system. Disruptions in its production and functioning can lead to various disorders, including atherosclerosis.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| | - Evgeny E. Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Tatyana V. Popkova
- V.A. Nasonova Institute of Rheumatology, 34A Kashirskoye Shosse, 115522 Moscow, Russia;
| | - Ludmila V. Nedosugova
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation 8/2 Trubenskaya Street, 119991 Moscow, Russia;
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| |
Collapse
|
43
|
Cytotoxicity and anti-inflammatory effect of a novel diminazene aceturate derivative in bovine mammary epithelial cells. Res Vet Sci 2021; 137:102-110. [PMID: 33964615 DOI: 10.1016/j.rvsc.2021.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
Diminazene aceturate (DA) has been used in the treatment of infections of trypanosomes in animals. Interestingly, its anti-inflammatory effect has recently gained increased interests. However, DA has been reported to have toxic side effects that limit its application. Therefore, we synthesized and screened a novel low-toxic DA derivative, namely the DA derivative 3 (DAD3). In the present study, anti-inflammatory effect of DAD3 was evaluated bovine mammary epithelial cells (BMECs) in vitro model. The results demonstrated that DAD3 had less cytotoxicity, and had a stronger effect in inhibiting secretion of inflammatory factors in BMECs, compared to DA. Mechanistically, DAD3 was able to inhibit the production of pro-inflammatory factors in part by suppressing the generation of mitochondrial reactive oxygen species (ROS) in BMECs upon LPS stimulation. Molecular analysis further indicated that DAD3 was capable of resolving inflammation in BMECs through a mechanism by preventing nuclear translocation of NF-p65, subsequently inhibiting transcription of inflammatory factors. In this context, DAD3 inhibited the phosphorylation of IκB, ERK, JNK and P-38 proteins of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. These results suggested the DAD3 was a novel DA derivative with low toxicity and strong anti-inflammatory effects in BMECs exposed to LPS, through a mechanism by blocking the NF-κB and MAPK signaling pathways. This study also provides an evidence that the DAD3 may be a novel anti-inflammatory agents warranted for further investigation in treatment of mastitis in cows.
Collapse
|
44
|
McSweeney KR, Gadanec LK, Qaradakhi T, Ali BA, Zulli A, Apostolopoulos V. Mechanisms of Cisplatin-Induced Acute Kidney Injury: Pathological Mechanisms, Pharmacological Interventions, and Genetic Mitigations. Cancers (Basel) 2021; 13:1572. [PMID: 33805488 PMCID: PMC8036620 DOI: 10.3390/cancers13071572] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Administration of the chemotherapeutic agent cisplatin leads to acute kidney injury (AKI). Cisplatin-induced AKI (CIAKI) has a complex pathophysiological map, which has been linked to cellular uptake and efflux, apoptosis, vascular injury, oxidative and endoplasmic reticulum stress, and inflammation. Despite research efforts, pharmaceutical interventions, and clinical trials spanning over several decades, a consistent and stable pharmacological treatment option to reduce AKI in patients receiving cisplatin remains unavailable. This has been predominately linked to the incomplete understanding of CIAKI pathophysiology and molecular mechanisms involved. Herein, we detail the extensively known pathophysiology of cisplatin-induced nephrotoxicity that manifests and the variety of pharmacological and genetic alteration studies that target them.
Collapse
|
45
|
Peters EL, Bogaard HJ, Vonk Noordegraaf A, de Man FS. Neurohormonal modulation in pulmonary arterial hypertension. Eur Respir J 2021; 58:13993003.04633-2020. [PMID: 33766951 PMCID: PMC8551560 DOI: 10.1183/13993003.04633-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/13/2021] [Indexed: 12/15/2022]
Abstract
Pulmonary hypertension is a fatal condition of elevated pulmonary pressures, complicated by right heart failure. Pulmonary hypertension appears in various forms; one of those is pulmonary arterial hypertension (PAH) and is particularly characterised by progressive remodelling and obstruction of the smaller pulmonary vessels. Neurohormonal imbalance in PAH patients is associated with worse prognosis and survival. In this back-to-basics article on neurohormonal modulation in PAH, we provide an overview of the pharmacological and nonpharmacological strategies that have been tested pre-clinically and clinically. The benefit of neurohormonal modulation strategies in PAH patients has been limited by lack of insight into how the neurohormonal system is changed throughout the disease and difficulties in translation from animal models to human trials. We propose that longitudinal and individual assessments of neurohormonal status are required to improve the timing and specificity of neurohormonal modulation strategies. Ongoing developments in imaging techniques such as positron emission tomography may become helpful to determine neurohormonal status in PAH patients in different disease stages and optimise individual treatment responses.
Collapse
Affiliation(s)
- Eva L Peters
- Dept of Pulmonology, Amsterdam UMC, Amsterdam, The Netherlands.,Dept of Physiology, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
46
|
ACE2 as therapeutic agent. Clin Sci (Lond) 2021; 134:2581-2595. [PMID: 33063820 DOI: 10.1042/cs20200570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
The angiotensin-converting enzyme 2 (ACE2) has emerged as a critical regulator of the renin-angiotensin system (RAS), which plays important roles in cardiovascular homeostasis by regulating vascular tone, fluid and electrolyte balance. ACE2 functions as a carboxymonopeptidase hydrolyzing the cleavage of a single C-terminal residue from Angiotensin-II (Ang-II), the key peptide hormone of RAS, to form Angiotensin-(1-7) (Ang-(1-7)), which binds to the G-protein-coupled Mas receptor and activates signaling pathways that counteract the pathways activated by Ang-II. ACE2 is expressed in a variety of tissues and overwhelming evidence substantiates the beneficial effects of enhancing ACE2/Ang-(1-7)/Mas axis under many pathological conditions in these tissues in experimental models. This review will provide a succinct overview on current strategies to enhance ACE2 as therapeutic agent, and discuss limitations and future challenges. ACE2 also has other functions, such as acting as a co-factor for amino acid transport and being exploited by the severe acute respiratory syndrome coronaviruses (SARS-CoVs) as cellular entry receptor, the implications of these functions in development of ACE2-based therapeutics will also be discussed.
Collapse
|
47
|
Brain angiotensin converting enzyme-2 in central cardiovascular regulation. Clin Sci (Lond) 2021; 134:2535-2547. [PMID: 33016313 DOI: 10.1042/cs20200483] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022]
Abstract
The brain renin-angiotensin system (RAS) plays an important role in the regulation of autonomic and neuroendocrine functions, and maintains cardiovascular homeostasis. Ang-II is the major effector molecule of RAS and exerts most of its physiological functions, including blood pressure (BP) regulation, via activation of AT1 receptors. Dysregulation of brain RAS in the central nervous system results in increased Ang-II synthesis that leads to sympathetic outflow and hypertension. Brain angiotensin (Ang) converting enzyme-2 (ACE2) was discovered two decades ago as an RAS component, exhibiting a counter-regulatory role and opposing the adverse cardiovascular effects produced by Ang-II. Studies using synthetic compounds that can sustain the elevation of ACE2 activity or genetically overexpressed ACE2 in specific brain regions found various beneficial effects on cardiovascular function. More recently, ACE2 has been shown to play critical roles in neuro-inflammation, gut dysbiosis and the regulation of stress and anxiety-like behaviors. In the present review, we aim to highlight the anatomical locations and functional implication of brain ACE2 related to its BP regulation via modulation of the sympathetic nervous system and discuss the recent developments and future directions in the ACE2-mediated central cardiovascular regulation.
Collapse
|
48
|
Chen IC, Lin JY, Liu YC, Chai CY, Yeh JL, Hsu JH, Wu BN, Dai ZK. Angiotensin-Converting Enzyme 2 Activator Ameliorates Severe Pulmonary Hypertension in a Rat Model of Left Pneumonectomy Combined With VEGF Inhibition. Front Med (Lausanne) 2021; 8:619133. [PMID: 33681251 PMCID: PMC7933511 DOI: 10.3389/fmed.2021.619133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/25/2021] [Indexed: 11/28/2022] Open
Abstract
Background: Pulmonary arterial hypertension (PAH) is a life-threatening and deteriorating disease with no promising therapy available currently due to its diversity and complexity. An imbalance between vasoconstriction and vasodilation has been proposed as the mechanism of PAH. Angiotensin-converting enzyme 2 (ACE2), which catalyzes the hydrolysis of the vasoconstrictor angiotensin (Ang) II into the vasodilator Ang-(1-7), has been shown to be an important regulator of blood pressure and cardiovascular diseases. Herein we hypothesized diminazene aceturate (DIZE), an ACE2 activator, could ameliorate the development of PAH and pulmonary vascular remodeling. Methods: A murine model of PAH was established using left pneumonectomy (PNx) on day 0 followed by injection of a single dose of the VEGF receptor-2 inhibitor SU5416 (25 mg/kg) subcutaneously on day 1. All hemodynamic and biochemical measurements were done at the end of the study on day 42. Animals were divided into 4 groups (n = 6–8/group): (1) sham-operated group, (2) vehicle-treatment group (SuPNx42), (3) early treatment group (SuPNx42/DIZE1−42) with DIZE at 15 mg/kg/day, subcutaneously from day 1 to day 42, and (4) late treatment group (SuPNx42/DIZE29−42) with DIZE from days 29–42. Results: In both the early and late treatment groups, DIZE significantly attenuated the mean pulmonary artery pressure, pulmonary arteriolar remodeling, and right ventricle brain natriuretic peptide (BNP), as well as reversed the overexpression of ACE while up-regulating the expression of Ang-(1-7) when compared with the vehicle-treatment group. In addition, the early treatment group also significantly decreased plasma BNP and increased the expression of eNOS. Conclusions: ACE2 activator has therapeutic potentials for preventing and attenuating the development of PAH in an animal model of left pneumonectomy combined with VEGF inhibition. Activation of ACE2 may thus be a useful therapeutic strategy for the treatment of human PAH.
Collapse
Affiliation(s)
- I-Chen Chen
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jao-Yu Lin
- Department of Surgery, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Liu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zen-Kong Dai
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
49
|
Update on New Aspects of the Renin-Angiotensin System in Hepatic Fibrosis and Portal Hypertension: Implications for Novel Therapeutic Options. J Clin Med 2021; 10:jcm10040702. [PMID: 33670126 PMCID: PMC7916881 DOI: 10.3390/jcm10040702] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/29/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
There is considerable experimental evidence that the renin angiotensin system (RAS) plays a central role in both hepatic fibrogenesis and portal hypertension. Angiotensin converting enzyme (ACE), a key enzyme of the classical RAS, converts angiotensin I (Ang I) to angiotensin II (Ang II), which acts via the Ang II type 1 receptor (AT1R) to stimulate hepatic fibrosis and increase intrahepatic vascular tone and portal pressure. Inhibitors of the classical RAS, drugs which are widely used in clinical practice in patients with hypertension, have been shown to inhibit liver fibrosis in animal models but their efficacy in human liver disease is yet to be tested in adequately powered clinical trials. Small trials in cirrhotic patients have demonstrated that these drugs may lower portal pressure but produce off-target complications such as systemic hypotension and renal failure. More recently, the alternate RAS, comprising its key enzyme, ACE2, the effector peptide angiotensin-(1–7) (Ang-(1–7)) which mediates its effects via the putative receptor Mas (MasR), has also been implicated in the pathogenesis of liver fibrosis and portal hypertension. This system is activated in both preclinical animal models and human chronic liver disease and it is now well established that the alternate RAS counter-regulates many of the deleterious effects of the ACE-dependent classical RAS. Work from our laboratory has demonstrated that liver-specific ACE2 overexpression reduces hepatic fibrosis and liver perfusion pressure without producing off-target effects. In addition, recent studies suggest that the blockers of the receptors of alternate RAS, such as the MasR and Mas related G protein-coupled receptor type-D (MrgD), increase splanchnic vascular resistance in cirrhotic animals, and thus drugs targeting the alternate RAS may be useful in the treatment of portal hypertension. This review outlines the role of the RAS in liver fibrosis and portal hypertension with a special emphasis on the possible new therapeutic approaches targeting the ACE2-driven alternate RAS.
Collapse
|
50
|
Zhu H, Zhang L, Ma Y, Zhai M, Xia L, Liu J, Yu S, Duan W. The role of SARS-CoV-2 target ACE2 in cardiovascular diseases. J Cell Mol Med 2021; 25:1342-1349. [PMID: 33443816 PMCID: PMC7875924 DOI: 10.1111/jcmm.16239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2, the virus responsible for the global coronavirus disease (COVID-19) pandemic, attacks multiple organs of the human body by binding to angiotensin-converting enzyme 2 (ACE2) to enter cells. More than 20 million people have already been infected by the virus. ACE2 is not only a functional receptor of COVID-19 but also an important endogenous antagonist of the renin-angiotensin system (RAS). A large number of studies have shown that ACE2 can reverse myocardial injury in various cardiovascular diseases (CVDs) as well as is exert anti-inflammatory, antioxidant, anti-apoptotic and anticardiomyocyte fibrosis effects by regulating transforming growth factor beta, mitogen-activated protein kinases, calcium ions in cells and other major pathways. The ACE2/angiotensin-(1-7)/Mas receptor axis plays a decisive role in the cardiovascular system to combat the negative effects of the ACE/angiotensin II/angiotensin II type 1 receptor axis. However, the underlying mechanism of ACE2 in cardiac protection remains unclear. Some approaches for enhancing ACE2 expression in CVDs have been suggested, which may provide targets for the development of novel clinical therapies. In this review, we aimed to identify and summarize the role of ACE2 in CVDs.
Collapse
Affiliation(s)
- Hanzhao Zhu
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Liyun Zhang
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Yubo Ma
- Department of Dermatology and VenereologyPeking University First HospitaBeijingChina
| | - Mengen Zhai
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Lin Xia
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Jincheng Liu
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Shiqiang Yu
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Weixun Duan
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| |
Collapse
|