1
|
Capstick T, Hurst R, Keane J, Musaddaq B. Supporting Patients with Nontuberculous Mycobacterial Pulmonary Disease: Ensuring Best Practice in UK Healthcare Settings. PHARMACY 2024; 12:126. [PMID: 39195855 PMCID: PMC11359432 DOI: 10.3390/pharmacy12040126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Nontuberculous mycobacterial pulmonary disease (NTM-PD) results from opportunistic lung infections by mycobacteria other than Mycobacterium tuberculosis or Mycobacterium leprae species. Similar to many other countries, the incidence of NTM-PD in the United Kingdom (UK) is on the rise for reasons that are yet to be determined. Despite guidelines established by the American Thoracic Society (ATS), the Infectious Diseases Society of America, and the British Thoracic Society, NTM-PD diagnosis and management remain a significant clinical challenge. In this review article, we comprehensively discuss key challenges in NTM-PD diagnosis and management, focusing on the UK healthcare setting. We also propose countermeasures to overcome these challenges and improve the detection and treatment of patients with NTM-PD.
Collapse
Affiliation(s)
| | - Rhys Hurst
- Royal Papworth Hospital NHS Foundation Trust, Cambridge CB2 0AY, UK;
| | - Jennie Keane
- Essex Partnership University NHS Foundation Trust (EPUT), Rochford SS4 1DD, UK;
| | - Besma Musaddaq
- Department of Radiology, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, UK;
| |
Collapse
|
2
|
Van Braeckel E, Bosteels C. Growing from common ground: nontuberculous mycobacteria and bronchiectasis. Eur Respir Rev 2024; 33:240058. [PMID: 38960614 PMCID: PMC11220627 DOI: 10.1183/16000617.0058-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis and nontuberculous mycobacteria (NTM) are intricately intertwined, with NTM capable of being both a cause and consequence of bronchiectatic disease. This narrative review focuses on the common ground of bronchiectasis and NTM pulmonary disease (NTM-PD) in terms of diagnostic approach, underlying risk factors and treatment strategies. NTM-PD diagnosis relies on a combination of clinical, radiological and microbiological criteria. Although their epidemiology is complicated by detection and reporting biases, the prevalence and pathogenicity of NTM species vary geographically, with Mycobacterium avium complex and Mycobacterium abscessus subspecies most frequently isolated in bronchiectasis-associated NTM-PD. Diagnosis of nodular bronchiectatic NTM-PD should prompt investigation of host factors, including disorders of mucociliary clearance, connective tissue diseases and immunodeficiencies, either genetic or acquired. Treatment of NTM-PD in bronchiectasis involves a multidisciplinary approach and considers the (sub)species involved, disease severity and comorbidities. Current guideline-based antimicrobial treatment of NTM-PD is considered long, cumbersome and unsatisfying in terms of outcomes. Novel treatment regimens and strategies are being explored, including rifampicin-free regimens and inclusion of clofazimine and inhaled antibiotics. Host-directed therapies, such as immunomodulators and cytokine-based therapies, might enhance antimycobacterial immune responses. Optimising supportive care, as well as pathogen- and host-directed strategies, is crucial, highlighting the need for personalised approaches tailored to individual patient needs. Further research is warranted to elucidate the complex interplay between host and mycobacterial factors, informing more effective management strategies.
Collapse
Affiliation(s)
- Eva Van Braeckel
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- European Reference Network on rare respiratory diseases (ERN-LUNG)
| | - Cédric Bosteels
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- European Reference Network on rare respiratory diseases (ERN-LUNG)
| |
Collapse
|
3
|
Anidi IU, Olivier KN. Host-Directed Therapy in Nontuberculous Mycobacterial Pulmonary Disease: Preclinical and Clinical Data Review. Clin Chest Med 2023; 44:839-845. [PMID: 37890920 PMCID: PMC10614072 DOI: 10.1016/j.ccm.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Standard treatment of nontuberculous mycobacterial pulmonary disease (NTM-PD) infection involves a multi-drug antimicrobial regimen for at least 12 months. The length, complexity, and side effect profile of antibiotic therapy for NTM-PD pose significant difficulties for maintaining patient adherence. Furthermore, physician adherence to NTM guidelines suffers for similar reasons to the extent that a study evaluating treatment approaches across multiple specialties found that only 13% of antibiotic regimens met ATS/IDSA guidelines. For this reason, a great need exists for therapy that augments the current armamentarium of antimicrobial chemotherapeutics or provides an alternative approach for decreasing host mycobacterial burden. As our knowledge of the mechanisms driving protective responses to NTM-PD infections by mammalian hosts expand, these processes provide novel therapeutic targets. These agents, which are commonly referred to as host-directed therapies (HDTs) have the potential of providing the much-needed boost to the nontuberculous mycobacterial therapeutic pipeline. In this review, we will focus on translational research and clinical trial data that detail the creation of therapeutic modalities developed to improve host mechanical protection and immunologic responses to PNTM infection.
Collapse
Affiliation(s)
- Ifeanyichukwu U Anidi
- Pulmonary Division, National Heart, Lung and Blood Institute, National Institutes of Health, 33 North Drive, Room 1W10A, Bethesda, MD 20892, USA.
| | - Kenneth N Olivier
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina School of Medicine, 125 Mason Farm Road, CB#7248, 7214 Marsico Hall, Chapel Hill, NC 27599-7248, USA
| |
Collapse
|
4
|
Ochoa AE, Congel JH, Corley JM, Janssen WJ, Nick JA, Malcolm KC, Hisert KB. Dectin-1-Independent Macrophage Phagocytosis of Mycobacterium abscessus. Int J Mol Sci 2023; 24:11062. [PMID: 37446240 PMCID: PMC10341562 DOI: 10.3390/ijms241311062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Mycobacterium abscessus, a species of nontuberculous mycobacteria (NTM), is an opportunistic pathogen that is readily cleared by healthy lungs but can cause pulmonary infections in people with chronic airway diseases. Although knowledge pertaining to molecular mechanisms of host defense against NTM is increasing, macrophage receptors that recognize M. abscessus remain poorly defined. Dectin-1, a C-type lectin receptor identified as a fungal receptor, has been shown to be a pathogen recognition receptor (PRR) for both M. tuberculosis and NTM. To better understand the role of Dectin-1 in host defense against M. abscessus, we tested whether blocking Dectin-1 impaired the uptake of M. abscessus by human macrophages, and we compared M. abscessus pulmonary infection in Dectin-1-deficient and wild-type mice. Blocking antibody for Dectin-1 did not reduce macrophage phagocytosis of M. abscessus, but did reduce the ingestion of the fungal antigen zymosan. Laminarin, a glucan that blocks Dectin-1 and other PRRs, caused decreased phagocytosis of both M. abscessus and zymosan. Dectin-1-/- mice exhibited no defects in the control of M. abscessus infection, and no differences were detected in immune cell populations between wild type and Dectin-1-/- mice. These data demonstrate that murine defense against M. abscessus pulmonary infection, as well as ingestion of M. abscessus by human macrophages, can occur independent of Dectin-1. Thus, additional PRR(s) recognized by laminarin participate in macrophage phagocytosis of M. abscessus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Katherine B. Hisert
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A550, Denver, CO 80206, USA
| |
Collapse
|
5
|
Nonaka M, Matsuyama M, Sakai C, Matsumura S, Arai N, Nakajima M, Saito T, Hizawa N. Risk factors for clinical progression in patients with pulmonary Mycobacterium avium complex disease without culture-positive sputum: a single-center, retrospective study. Eur J Med Res 2023; 28:186. [PMID: 37291649 DOI: 10.1186/s40001-023-01152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
OBJECTIVES Limited data are available on the progression of pulmonary Mycobacterium avium complex (MAC) disease without culture-positive sputum. The aim of this study was to identify the risk factors associated with clinical progression of pulmonary MAC disease diagnosed by bronchoscopy. METHODS A single-center, retrospective, observational study was conducted. Pulmonary MAC patients diagnosed by bronchoscopy without culture-positive sputum from January 1, 2013, to December 31, 2017 were analyzed. Clinical progression after diagnosis was defined as having culture-positive sputum at least once or initiation of guideline-based therapy. Then, clinical characteristics were compared between clinically progressed patients and stable patients. RESULTS Ninety-three pulmonary MAC patients diagnosed by bronchoscopy were included in the analysis. During the 4-year period after diagnosis, 38 patients (40.9%) started treatment, and 35 patients (37.6%) had new culture-positive sputum. Consequently, 52 patients (55.9%) were classified into the progressed group, and 41 patients (44.1%) were classified into the stable group. There were no significant differences between the progressed and the stable groups in age, body mass index, smoking status, comorbidities, symptoms, or species isolated from bronchoscopy. On multivariate analysis, male sex, monocyte to lymphocyte ratio (MLR) ≥ 0.17, and the presence of combined lesions in the middle (lingula) and lower lobes were risk factors for clinical progression. CONCLUSIONS Some patients with pulmonary MAC disease without culture-positive sputum progress within 4 years. Therefore, pulmonary MAC patients, especially male patients, having higher MLR or lesions in the middle (lingula) and lower lobes might need careful follow-up for a longer time.
Collapse
Affiliation(s)
- Mizu Nonaka
- Department of Respiratory Medicine, National Hospital Organization Ibarakihigashi National Hospital, Ibaraki, Japan
- Department of Respiratory Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masashi Matsuyama
- Department of Respiratory Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Ibaraki, Tsukuba, 305-8575, Japan.
| | - Chio Sakai
- Department of Respiratory Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Sosuke Matsumura
- Department of Respiratory Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naoki Arai
- Department of Respiratory Medicine, National Hospital Organization Ibarakihigashi National Hospital, Ibaraki, Japan
- Department of Respiratory Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masayuki Nakajima
- Department of Respiratory Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takefumi Saito
- Department of Respiratory Medicine, National Hospital Organization Ibarakihigashi National Hospital, Ibaraki, Japan
| | - Nobuyuki Hizawa
- Department of Respiratory Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
6
|
Matsuyama M, Matsumura S, Nonaka M, Nakajima M, Sakai C, Arai N, Ueda K, Hizawa N. Pathophysiology of pulmonary nontuberculous mycobacterial (NTM) disease. Respir Investig 2023; 61:135-148. [PMID: 36640546 DOI: 10.1016/j.resinv.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 12/08/2022] [Indexed: 01/15/2023]
Abstract
In recent years, the incidence and prevalence of pulmonary nontuberculous mycobacterial (NTM) disease have increased worldwide. Although the reasons for this increase are unclear, dealing with this disease is essential. Pulmonary NTM disease is a chronic pulmonary infection caused by NTM bacteria, which are ubiquitous in various environments. In Japan, Mycobacterium avium-intracellulare complex (MAC) accounts for approximately 90% of the causative organisms of pulmonary NTM disease, which is also called pulmonary MAC disease or pulmonary MAI disease. It is important to elucidate the pathophysiology of this disease, which occurs frequently in postmenopausal women despite the absence of obvious immunodeficiency. The pathophysiology of this disease has not been fully elucidated; however, it can largely be divided into bacterial (environmental) and host-side problems. The host factors can be further divided into immune and airway problems. The authors suggest that the triangular relationship between bacteria, immunity, and the airway is important in the pathophysiology of this disease. The latest findings on the pathophysiology of pulmonary NTM disease are reviewed.
Collapse
Affiliation(s)
- Masashi Matsuyama
- Department of Respiratory Medicine, Institute of Medicine, University of Tsukuba, Japan.
| | - Sosuke Matsumura
- Department of Respiratory Medicine, Institute of Medicine, University of Tsukuba, Japan
| | - Mizu Nonaka
- Department of Respiratory Medicine, Institute of Medicine, University of Tsukuba, Japan
| | - Masayuki Nakajima
- Department of Respiratory Medicine, Institute of Medicine, University of Tsukuba, Japan
| | - Chio Sakai
- Department of Respiratory Medicine, Institute of Medicine, University of Tsukuba, Japan
| | - Naoki Arai
- Department of Respiratory Medicine, Institute of Medicine, University of Tsukuba, Japan
| | - Kodai Ueda
- Department of Respiratory Medicine, Institute of Medicine, University of Tsukuba, Japan
| | - Nobuyuki Hizawa
- Department of Respiratory Medicine, Institute of Medicine, University of Tsukuba, Japan
| |
Collapse
|
7
|
Wolf A, Tabasi M, Zacharek M, Martin G, Hershenson MB, Meyerhoff ME, Sajjan U. S-Nitrosoglutathione Reduces the Density of Staphylococcus aureus Biofilms Established on Human Airway Epithelial Cells. ACS OMEGA 2023; 8:846-856. [PMID: 36643497 PMCID: PMC9835527 DOI: 10.1021/acsomega.2c06212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/20/2022] [Indexed: 05/03/2023]
Abstract
Patients with chronic rhinosinusitis (CRS) often show persistent colonization by bacteria in the form of biofilms which are resistant to antibiotic treatment. One of the most commonly isolated bacteria in CRS is Staphylococcus aureus (S. aureus). Nitric oxide (NO) is a potent antimicrobial agent and disperses biofilms efficiently. We hypothesized that S-nitrosoglutathione (GSNO), an endogenous NO carrier/donor, synergizes with gentamicin to disperse and reduce the bacterial biofilm density. We prepared GSNO formulations which are stable up to 12 months at room temperature and show the maximum amount of NO release within 1 h. We examined the effects of this GSNO formulation on the S. aureus biofilm established on the apical surface of the mucociliary-differentiated airway epithelial cell cultures regenerated from airway basal (stem) cells from cystic fibrosis (CF) and CRS patients. We demonstrate that for CF cells, which are defective in producing NO, treatment with GSNO at 100 μM increased the NO levels on the apical surface and reduced the biofilm bacterial density by 2 log units without stimulating pro-inflammatory effects or inducing epithelial cell death. In combination with gentamicin, GSNO further enhanced the killing of biofilm bacteria. Compared to placebo, GSNO significantly increased the ciliary beat frequency (CBF) in both infected and uninfected CF cell cultures. The combination of GSNO and gentamicin also reduced the bacterial density of biofilms grown on sinonasal epithelial cells from CRS patients and improved the CBF. These findings demonstrate that GSNO in combination with gentamicin may effectively reduce the density of biofilm bacteria in CRS patients. GSNO treatment may also enhance the mucociliary clearance by improving the CBF.
Collapse
Affiliation(s)
- Alex Wolf
- NOTA
Laboratories LLC, Ann Arbor, Michigan 48109, United States
| | - Mohsen Tabasi
- Department
of Microbiology Immunology and Inflammation, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Mark Zacharek
- Deparment
of Otolaryngology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Glenn Martin
- NOTA
Laboratories LLC, Ann Arbor, Michigan 48109, United States
| | - Marc B. Hershenson
- Department
of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mark E. Meyerhoff
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Umadevi Sajjan
- Department
of Microbiology Immunology and Inflammation, Temple University, Philadelphia, Pennsylvania 19140, United States
- Center
of
Inflammation and Lung Research, Lewis Katz Medical School, Temple University, Philadelphia, Pennsylvania 19140, United States
- . Phone: (215) 707-7139
| |
Collapse
|
8
|
Antibiotic Maintenance and Redevelopment of Nontuberculous Mycobacteria Pulmonary Disease after Treatment of Mycobacterium avium Complex Pulmonary Disease. Microbiol Spectr 2022; 10:e0108822. [PMID: 35950873 PMCID: PMC9431257 DOI: 10.1128/spectrum.01088-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Limited data are available regarding the impact of the antibiotic maintenance period on the redevelopment of nontuberculous mycobacteria-pulmonary disease (NTM-PD) after microbiological cure of Mycobacterium avium complex (MAC)-PD. This retrospective study included 631 MAC-PD patients who achieved microbiological cure between 1994 and 2021. Data on the antibiotic maintenance period, defined as the time between culture conversion and treatment completion, were collected. Redevelopment, the subsequent diagnosis of NTM-PD regardless of causative organism after microbiological cure, was investigated. Factors associated with redevelopment were analyzed after adjusting for disease severity using the body mass index, age, cavity, erythrocyte sedimentation rate, and sex (BACES) scoring system. In total, 205 (33%) patients experienced redevelopment, with a median maintenance period after culture conversion of 15.0 months (interquartile range, 13.0 to 22.0 months). A greater proportion of patients with the nodular bronchiectatic form of MAC-PD (87% versus 80%, P = 0.033) and a longer maintenance period (median 15.0 versus 14.0 months, P < 0.001) were noted in the redevelopment group compared with the nonredevelopment group. The cumulative rate of redevelopment according to the maintenance period did not differ between the >12-month and ≤12-month groups in the total patient population or the subgroups sorted according to BACES severity. No association between a maintenance period >12 months and redevelopment was identified in multivariate models. Extending the antibiotic maintenance period more than 12 months did not reduce the redevelopment rate even with adjustment for disease severity, suggesting the need to further optimize the duration of the antibiotic maintenance period. IMPORTANCE Limited data are available regarding the impact of the antibiotic maintenance period on the redevelopment of Mycobacterium avium complex-pulmonary (MAC-PD) disease after microbiological cure. To improve treatment outcomes and reduce the recurrence rate, current guidelines recommend maintenance of antibiotics for a minimum of 12 months after achievement of negative culture conversion. However, the optimal duration of antibiotic therapy for MAC-PD is not currently known. Moreover, in real-world clinical practice, total antibiotic duration is mainly impacted by the length of the maintenance period; however, it is unknown whether extending the maintenance period is beneficial for preventing redevelopment of NTM-PD. Our study may help to address concerns regarding the antibiotic maintenance period after achievement of negative culture conversion in patients with MAC-PD.
Collapse
|
9
|
Liew MF, Lim HF, Liang MC, Lim I, Tan Z, Ying Min Tan R, Sam QH, Soe WM, Tay SH, Xu S, Chang MW, Foo R, Soong TW, Ravikumar S, Chai LYA. Dominant negative TRAF3 variant with recurrent Mycobacterium abscessus infection and bronchiectasis. Open Forum Infect Dis 2022; 9:ofac379. [PMID: 36004314 PMCID: PMC9397382 DOI: 10.1093/ofid/ofac379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Host factors leading to pulmonary NTM (PNTM) disease is poorly understood compared to disseminated NTM disease which is linked to IL12-IFNγ signaling pathway. We elucidated TNF receptor–associated factor 3 (TRAF3) R338W variant in patient with recurrent PNTM infection: demonstrating TRAF3-and TNF-α deficient phenotype, via ex-vivo immune and cloning-transfection cellular studies.
Collapse
Affiliation(s)
- Mei Fong Liew
- Division of Respiratory and Critical Care Medicine, Department of Medicine, National University Health System , Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
| | - Hui Fang Lim
- Division of Respiratory and Critical Care Medicine, Department of Medicine, National University Health System , Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
| | - Mui Cheng Liang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore
| | - Ives Lim
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR) , Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR) , Singapore
| | - Zhaohong Tan
- Division of Infectious Diseases, Department of Medicine, National University Health System , Singapore
| | - Rachel Ying Min Tan
- Division of Infectious Diseases, Department of Medicine, National University Health System , Singapore
| | - Qi Hui Sam
- Division of Infectious Diseases, Department of Medicine, National University Health System , Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore
| | - Win Mar Soe
- Division of Infectious Diseases, Department of Medicine, National University Health System , Singapore
| | - Sen Hee Tay
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
- Division of Rheumatology, Department of Medicine, National University Health System , Singapore
| | - Shengli Xu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research (A*Star) , Singapore
| | - Matthew Wook Chang
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore
| | - Roger Foo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR) , Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore
| | - Sharada Ravikumar
- Division of Infectious Diseases, Department of Medicine, National University Health System , Singapore
| | - Louis Yi Ann Chai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
- Division of Infectious Diseases, Department of Medicine, National University Health System , Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore
| |
Collapse
|
10
|
Abdelaal HFM, Chan ED, Young L, Baldwin SL, Coler RN. Mycobacterium abscessus: It's Complex. Microorganisms 2022; 10:1454. [PMID: 35889173 PMCID: PMC9316637 DOI: 10.3390/microorganisms10071454] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium abscessus (M. abscessus) is an opportunistic pathogen usually colonizing abnormal lung airways and is often seen in patients with cystic fibrosis. Currently, there is no vaccine available for M. abscessus in clinical development. The treatment of M. abscessus-related pulmonary diseases is peculiar due to intrinsic resistance to several commonly used antibiotics. The development of either prophylactic or therapeutic interventions for M. abscessus pulmonary infections is hindered by the absence of an adequate experimental animal model. In this review, we outline the critical elements related to M. abscessus virulence mechanisms, host-pathogen interactions, and treatment challenges associated with M. abscessus pulmonary infections. The challenges of effectively combating this pathogen include developing appropriate preclinical animal models of infection, developing proper diagnostics, and designing novel strategies for treating drug-resistant M. abscessus.
Collapse
Affiliation(s)
- Hazem F. M. Abdelaal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98145, USA; (H.F.M.A.); (S.L.B.)
| | - Edward D. Chan
- Department of Academic Affairs and Medicine, National Jewish Health, Denver, CO 80206, USA;
- Pulmonary Section, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
| | - Lisa Young
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98145, USA; (H.F.M.A.); (S.L.B.)
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98145, USA; (H.F.M.A.); (S.L.B.)
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Park DW, Kim YJ, Sung YK, Chung SJ, Yeo Y, Park TS, Lee H, Moon JY, Kim SH, Kim TH, Yoon HJ, Sohn JW. TNF inhibitors increase the risk of nontuberculous mycobacteria in patients with seropositive rheumatoid arthritis in a mycobacterium tuberculosis endemic area. Sci Rep 2022; 12:4003. [PMID: 35256729 PMCID: PMC8901670 DOI: 10.1038/s41598-022-07968-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/01/2022] [Indexed: 11/09/2022] Open
Abstract
The aim of this study is to examine the impact of tumor necrosis factor inhibitors (TNFI) on nontuberculous mycobacterium (NTM) infection in rheumatoid arthritis (RA) patients in a mycobacterium tuberculosis (MTB) endemic area. We selected 1089 TNFI-treated RA patients and 4356 untreated RA patients using propensity-matching analysis according to age, gender, and Charlson comorbidity index using the Korean National Health Insurance Service database from July 2009 to December 2010. Both groups were followed-up until the end of 2016 to measure the incidence of mycobacterial diseases. The incidence rate of NTM in TNFI-treated RA group was similar to those of MTB (328.1 and 340.9 per 100,000 person-years, respectively). The adjusted hazard ratio (aHR) of NTM for TNFI-treated RA compared to untreated RA was 1.751(95% CI 1.105-2.774). The risk of TNFI-associated NTM in RA was 2.108-fold higher among women than men. The age-stratified effects of TNFI on NTM development were significantly high in RA patients aged 50-65 years (aHR 2.018). RA patients without comorbidities had a higher incidence of NTM following TNFI treatment (aHR 1.742). This real-world, observational study highlights the need to increase awareness of NTM in TNFI-treated RA patients in an MTB endemic area.
Collapse
Affiliation(s)
- Dong Won Park
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea. .,Department of Internal Medicine, Hanyang University College of Medicine, 222-1 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Yun Jin Kim
- Biostatistical Consulting and Research Lab, Medical Research Collaborating Center, Hanyang University, Seoul, Republic of Korea
| | - Yoon-Kyoung Sung
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Sung Jun Chung
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yoomi Yeo
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Tai Sun Park
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hyun Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Ji-Yong Moon
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sang-Heon Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Tae-Hyung Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Ho Joo Yoon
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jang Won Sohn
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Fowler C, Wu UI, Shaffer R, Smith C, Barnhart L, Bryant C, Olivier K, Holland SM. The effects of sildenafil on ciliary beat frequency in patients with pulmonary non-tuberculous mycobacteria disease: phase I/II trial. BMJ Open Respir Res 2021; 7:7/1/e000574. [PMID: 32169832 PMCID: PMC7069259 DOI: 10.1136/bmjresp-2020-000574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 11/14/2022] Open
Abstract
Rationale Pulmonary non-tuberculous mycobacterial (PNTM) disease has increased over the past several decades, especially in older women. Abnormal mucociliary clearance and abnormal nasal nitric oxide (nNO) have been associated with PNTM disease in other patient cohorts. Mucociliary clearance can be affected by NO-cyclic guanosine monophosphate signalling and, therefore, modulation of the pathway may be possible with phosphodiesterase inhibitors such as sildenafil as a novel therapeutic approach. Objective To define ex vivo characteristics of PNTM disease affected by sildenafil. Methods Subjects with PNTM infections were recruited into an open-label dose-escalation trial of sildenafil. Laboratory measurements and mucociliary measurements—ciliary beat frequency, nNO and 24-hour sputum production—were collected throughout the study period. Patients received sildenafil daily during the study period, with escalation from 20 to 40 mg three times per day. Measurements and main results Increased ciliary beat frequency occurred after a single dose of 40 mg sildenafil and after extended dosing of 40 mg sildenafil. The increase ciliary beat frequency was not seen with 20 mg sildenafil dosing. There were no changes in sputum production, nNO production, Quality of Life-Bronchiectasis-NTM module (QOL-B-NTM) questionnaire or the St George’s Respiratory Questionnaire during the study period. Conclusion Sildenafil, 40 mg, increased ciliary beat frequency acutely as well as with extended administration.
Collapse
Affiliation(s)
- Cedar Fowler
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA .,Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Un-In Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Robyn Shaffer
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Caroline Smith
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Lisa Barnhart
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Clare Bryant
- Department of Veterinary Medicine, Cambridge University, Cambridge, UK
| | - Kenneth Olivier
- Laboratory of Chronic Airway Infection, Cardiovascular & Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven M Holland
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
13
|
Cruz-Aguilar M, Castillo-Rodal AI, Arredondo-Hernández R, López-Vidal Y. Non-tuberculous mycobacteria immunopathogenesis: Closer than they appear. a prime of innate immunity trade-off and NTM ways into virulence. Scand J Immunol 2021; 94:e13035. [PMID: 33655533 PMCID: PMC9285547 DOI: 10.1111/sji.13035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/16/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022]
Abstract
Introduction The growing incidence of non‐tuberculous mycobacteria (NTM) and changes in epidemiological factors have indicated that immune dysregulation may be associated with the emergence of NTM. Minireview entails to acknowledge complex interaction and new ways NTM are evolving around diverse immune status. Methods In order to perform this review, we selected peer reviewed, NLM database articles under the terms NTM, mycobacterium complex ‘AND’ ‐Host‐ immune response, immunity regulation, Disease, Single Nucleotide Polymorphism (SNP´s), and ‐pathogen‐ followed by a snow ball rolling basis search on immune components and NTM related with diseases distribution. Results The universal exposure and diversity of NTM are well‐documented; however, hospitals seldom establish vigilant control of water quality or immunodeficiencies for patients with NTM infections. Depending on the chemical structures and immune mechanisms presented by various NTM varieties, they can trigger different effects in dendritic and natural killer cells, which release interleukin (IL)‐17, tumour necrosis factor‐α (TNF‐α), interferon‐γ (IFN‐γ) and rIL‐1B. The T helper (Th)2‐acquired immune response is responsible for autoimmune responses in patients with NTM infections, and, quite disturbingly, immunocompetent patients have been reported to suffer from NTM infections. Conclusion New technologies and a comprehensive view has taught us; to acknowledge metabolic/immune determinants and trade‐offs along transit through mutualism‐parasite continuous.
Collapse
Affiliation(s)
- Marisa Cruz-Aguilar
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Antonia I Castillo-Rodal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - René Arredondo-Hernández
- Laboratorio de Microbioma, Division de Investigación, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Mexico City, Mexico
| |
Collapse
|
14
|
Cho EH, Ki CS, Yun SA, Kim SY, Jhun BW, Koh WJ, Huh HJ, Lee NY. Genetic Analysis of Korean Adult Patients with Nontuberculous Mycobacteria Suspected of Primary Ciliary Dyskinesia Using Whole Exome Sequencing. Yonsei Med J 2021; 62:224-230. [PMID: 33635012 PMCID: PMC7934102 DOI: 10.3349/ymj.2021.62.3.224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Nontuberculous mycobacteria (NTM) is ubiquitous in the environment, but NTM lung disease (NTM-LD) is uncommon. Since exposure to NTM is inevitable, patients who develop NTM-LD are likely to have specific susceptibility factors, such as primary ciliary dyskinesia (PCD). PCD is a genetically heterogeneous disorder of motile cilia and is characterized by chronic respiratory tract infection, organ laterality defect, and infertility. In this study, we performed whole exome sequencing (WES) and investigated the genetic characteristics of adult NTM patients with suspected PCD. MATERIALS AND METHODS WES was performed in 13 NTM-LD patients who were suspected of having PCD by clinical symptoms and/or ultrastructural ciliary defect observed by transmission electron microscopy. A total of 45 PCD-causing genes, 23 PCD-candidate genes, and 990 ciliome genes were analyzed. RESULTS Four patients were found to have biallelic loss-of-function (LoF) variants in the following PCD-causing genes: CCDC114, DNAH5, HYDIN, and NME5. In four other patients, only one LoF variant was identified, while the remaining five patients did not have any LoF variants. CONCLUSION At least 30.8% of NTM-LD patients who were suspected of having PCD had biallelic LoF variants, and an additional 30.8% of patients had one LoF variant. Therefore, PCD should be considered in patients with NTM-LD with symptoms or signs suspicious of PCD.
Collapse
Affiliation(s)
- Eun Hye Cho
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Sun Ae Yun
- Center for Clinical Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Su Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Nam Yong Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
15
|
Shiozawa A, Kajiwara C, Ishii Y, Tateda K. N-acetyl-cysteine mediates protection against Mycobacterium avium through induction of human β-defensin-2 in a mouse lung infection model. Microbes Infect 2020; 22:567-575. [PMID: 32882411 DOI: 10.1016/j.micinf.2020.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023]
Abstract
Mycobacterium avium complex is a causative organism for refractory diseases. In this study, we examined the effects of N-acetyl-cysteine on M. avium infection in vitro and in vivo. N-acetyl-cysteine treatment suppressed the growth of M. avium in A549 cells in a concentration-dependent manner. This effect was related to the induction of the antibacterial peptide human β-defensin-2. In a mouse model, N-acetyl-cysteine treatment significantly reduced the number of bacteria in the lungs and induced murine β-defensin-3. In interleukin-17-deficient mice, the effects of N-acetyl-cysteine disappeared, indicating that these mechanisms may be mediated by interleukin-17. Moreover, an additional reduction in bacterial load was observed in mice administered N-acetyl-cysteine in combination with clarithromycin. Our findings demonstrate the potent antimycobacterial effects of N-acetyl-cysteine against M. avium by inducing antimicrobial peptide, suggesting that N-acetyl-cysteine may have applications as an alternative to classical treatment regimens.
Collapse
Affiliation(s)
- Ayako Shiozawa
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Chiaki Kajiwara
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan.
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Prasla Z, Sutliff RL, Sadikot RT. Macrophage Signaling Pathways in Pulmonary Nontuberculous Mycobacteria Infections. Am J Respir Cell Mol Biol 2020; 63:144-151. [PMID: 32160017 DOI: 10.1165/rcmb.2019-0241tr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The incidence and prevalence of nontuberculous mycobacteria (NTM) lung disease is rising worldwide and accounts for most clinical cases of NTM disease. NTM infections occur in both immunocompetent and immunocompromised hosts. Macrophages are the primary host cells that initiate an immune response to NTM. Defining the molecular events that govern the control of infection within macrophages is fundamental to understanding the pathogenesis of NTM disease. Here, we review key macrophage host signaling pathways that contribute to the host immune response to pulmonary NTM infections. In this review, we focus primarily on NTM that are known to cause lung disease, including Mycobacterium avium intracellulare, M. abscessus, and M. kansasii.
Collapse
Affiliation(s)
- Zohra Prasla
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and.,Atlanta Veterans Affairs Health Care System, Decatur, Georgia
| | - Roy L Sutliff
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and.,Atlanta Veterans Affairs Health Care System, Decatur, Georgia
| | - Ruxana T Sadikot
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and.,Atlanta Veterans Affairs Health Care System, Decatur, Georgia
| |
Collapse
|
17
|
Evidence of early increased sialylation of airway mucins and defective mucociliary clearance in CFTR-deficient piglets. J Cyst Fibros 2020; 20:173-182. [PMID: 32978064 DOI: 10.1016/j.jcf.2020.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/29/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Bacterial colonization in cystic fibrosis (CF) lungs has been directly associated to the loss of CFTR function, and/or secondarily linked to repetitive cycles of chronic inflammation/infection. We hypothesized that altered molecular properties of mucins could contribute to this process. METHODS Newborn CFTR+/+ and CFTR-/- were sacrificed before and 6 h after inoculation with luminescent Pseudomonas aeruginosa into the tracheal carina. Tracheal mucosa and the bronchoalveolar lavage (BAL) fluid were collected to determine the level of mucin O-glycosylation, bacteria binding to mucins and the airways transcriptome. Disturbances in mucociliary transport were determined by ex-vivo imaging of luminescent Pseudomonas aeruginosa. RESULTS We provide evidence of an increased sialylation of CF airway mucins and impaired mucociliary transport that occur before the onset of inflammation. Hypersialylation of mucins was reproduced on tracheal explants from non CF animals treated with GlyH101, an inhibitor of CFTR channel activity, indicating a causal relationship between the absence of CFTR expression and the sialylation of mucins. This increased sialylation was correlated to an increased adherence of P. aeruginosa to mucins. In vivo infection of newborn CF piglets by live luminescent P. aeruginosa demonstrated an impairment of mucociliary transport of this bacterium, with no evidence of pre-existing inflammation. CONCLUSIONS Our results document for the first time in a well-defined CF animal model modifications that affect the O-glycan chains of mucins. These alterations precede infection and inflammation of airway tissues, and provide a favorable context for microbial development in CF lung that hallmarks this disease.
Collapse
|
18
|
Sharma SK, Upadhyay V. Epidemiology, diagnosis & treatment of non-tuberculous mycobacterial diseases. Indian J Med Res 2020; 152:185-226. [PMID: 33107481 PMCID: PMC7881820 DOI: 10.4103/ijmr.ijmr_902_20] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are ubiquitously present in the environment, but NTM diseases occur infrequently. NTM are generally considered to be less virulent than Mycobacterium tuberculosis, however, these organisms can cause diseases in both immunocompromised and immunocompetent hosts. As compared to tuberculosis, person-to-person transmission does not occur except with M. abscessus NTM species among cystic fibrosis patients. Lung is the most commonly involved organ, and the NTM-pulmonary disease (NTM-PD) occurs frequently in patients with pre-existing lung disease. NTM may also present as localized disease involving extrapulmonary sites such as lymph nodes, skin and soft tissues and rarely bones. Disseminated NTM disease is rare and occurs in individuals with congenital or acquired immune defects such as HIV/AIDS. Rapid molecular tests are now available for confirmation of NTM diagnosis at species and subspecies level. Drug susceptibility testing (DST) is not routinely done except in non-responsive disease due to slowly growing mycobacteria ( M. avium complex, M. kansasii) or infection due to rapidly growing mycobacteria, especially M. abscessus. While the decision to treat the patients with NTM-PD is made carefully, the treatment is given for 12 months after sputum culture conversion. Additional measures include pulmonary rehabilitation and correction of malnutrition. Treatment response in NTM-PD is variable and depends on isolated NTM species and severity of the underlying PD. Surgery is reserved for patients with localized disease with good pulmonary functions. Future research should focus on the development and validation of non-culture-based rapid diagnostic tests for early diagnosis and discovery of newer drugs with greater efficacy and lesser toxicity than the available ones.
Collapse
Affiliation(s)
- Surendra K. Sharma
- Department of Molecular Medicine, Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard (Deemed-to-be-University), New Delhi, India
| | - Vishwanath Upadhyay
- Department of Molecular Medicine, Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard (Deemed-to-be-University), New Delhi, India
| |
Collapse
|
19
|
Moon P, Guillaumin E, Chan ED. Non-tuberculous mycobacterial lung disease due to multiple "minor" risk factors: an illustrative case and a review of these "lesser elements". J Thorac Dis 2020; 12:4960-4972. [PMID: 33145070 PMCID: PMC7578471 DOI: 10.21037/jtd-20-986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | - Edward D Chan
- Department of Academic Affairs, National Jewish Health, Denver, CO, USA.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA
| |
Collapse
|
20
|
Shu CC, Wu MF, Pan SW, Wu TS, Lai HC, Lin MC. Host immune response against environmental nontuberculous mycobacteria and the risk populations of nontuberculous mycobacterial lung disease. J Formos Med Assoc 2020; 119 Suppl 1:S13-S22. [PMID: 32451216 DOI: 10.1016/j.jfma.2020.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Nontuberculous mycobacterial lung disease (NTM-LD) prevalence has been increasing over the recent decades. Numerous host factors are associated with NTM-LD development, including susceptible phenotypes such as ciliary defect and lung structural change, pulmonary clearance defect with poor clearance of secretions, and immune suppression. Specifically, regarding the susceptible host phenotypes without clear pathogenesis, a slender body, pectus excavatum, and postmenopausal female status are common. Also, decreased host immunity to NTM, especially T helper 1 cell responses is frequently observed. Even so, the underlying mechanisms remain unclear and relevant large-scale studies are lacking. Infections due to host genetics associated defects are mostly untreatable but rare in Asia, particularly Taiwan. Nevertheless, some risks for NTM-LD are controllable over disease progression. We suggest that clinicians first manage host factors and deal with the controllable characteristics of NTM-LD, followed by optimizing anti-NTM treatment. Further researches focusing on NTM-LD pathogenesis, especially the host-NTM interaction may advance understanding the nature of the disease and develop efficient therapeutic regimens.
Collapse
Affiliation(s)
- Chin-Chung Shu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Fang Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sheng-Wei Pan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ting-Shu Wu
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fuxing St., Guishan Dist., Taoyuan 33305, Taiwan.
| | - Hsin-Chih Lai
- Central Research Laboratory, Xiamen Chang Gung Hospital, Xiamen, Fujian, China; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| |
Collapse
|
21
|
Chin KL, Sarmiento ME, Alvarez-Cabrera N, Norazmi MN, Acosta A. Pulmonary non-tuberculous mycobacterial infections: current state and future management. Eur J Clin Microbiol Infect Dis 2020; 39:799-826. [PMID: 31853742 PMCID: PMC7222044 DOI: 10.1007/s10096-019-03771-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Abstract
Currently, there is a trend of increasing incidence in pulmonary non-tuberculous mycobacterial infections (PNTM) together with a decrease in tuberculosis (TB) incidence, particularly in developed countries. The prevalence of PNTM in underdeveloped and developing countries remains unclear as there is still a lack of detection methods that could clearly diagnose PNTM applicable in these low-resource settings. Since non-tuberculous mycobacteria (NTM) are environmental pathogens, the vicinity favouring host-pathogen interactions is known as important predisposing factor for PNTM. The ongoing changes in world population, as well as socio-political and economic factors, are linked to the rise in the incidence of PNTM. Development is an important factor for the improvement of population well-being, but it has also been linked, in general, to detrimental environmental consequences, including the rise of emergent (usually neglected) infectious diseases, such as PNTM. The rise of neglected PNTM infections requires the expansion of the current efforts on the development of diagnostics, therapies and vaccines for mycobacterial diseases, which at present, are mainly focused on TB. This review discuss the current situation of PNTM and its predisposing factors, as well as the efforts and challenges for their control.
Collapse
Affiliation(s)
- Kai Ling Chin
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah (UMS), Kota Kinabalu, Sabah, Malaysia.
| | - Maria E Sarmiento
- School of Health Sciences, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan, Malaysia
| | - Nadine Alvarez-Cabrera
- Center for Discovery and Innovation (CDI), Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ, USA
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
22
|
Epperson LE, Strong M. A scalable, efficient, and safe method to prepare high quality DNA from mycobacteria and other challenging cells. J Clin Tuberc Other Mycobact Dis 2020; 19:100150. [PMID: 32154387 PMCID: PMC7052505 DOI: 10.1016/j.jctube.2020.100150] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The rapid development in sequencing technology is creating an increase in demand for largely intact DNA as starting material as very long strands of DNA are sequenced directly to generate reads that are thousands of bases long. Organisms with thick cell walls are difficult to lyse, often impacting both DNA recovery and quality. Consequently, most mycobacterial DNA extraction methods require bead-beating steps or toxic chemicals. Here we present an updated method that yields abundant, high quality genomic DNA from M. tuberculosis and diverse nontuberculous mycobacterial (NTM) species, in addition to complex biological communities from a variety of sources. This method eliminates the time-consuming phenol and chloroform extraction and ethanol precipitation steps, and high quality DNA from up to 96 samples can be extracted in about 2-3 h of hands-on time. This DNA is suitable for long and short read sequencing technologies as well as PCR and qPCR amplification.
Collapse
Affiliation(s)
- L Elaine Epperson
- Center for Genes, Environment, and Health, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, USA
| | - Michael Strong
- Center for Genes, Environment, and Health, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, USA
| |
Collapse
|
23
|
Daniel-Wayman S, Abate G, Barber DL, Bermudez LE, Coler RN, Cynamon MH, Daley CL, Davidson RM, Dick T, Floto RA, Henkle E, Holland SM, Jackson M, Lee RE, Nuermberger EL, Olivier KN, Ordway DJ, Prevots DR, Sacchettini JC, Salfinger M, Sassetti CM, Sizemore CF, Winthrop KL, Zelazny AM. Advancing Translational Science for Pulmonary Nontuberculous Mycobacterial Infections. A Road Map for Research. Am J Respir Crit Care Med 2020; 199:947-951. [PMID: 30428263 DOI: 10.1164/rccm.201807-1273pp] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Shelby Daniel-Wayman
- 1 Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases
| | - Getahun Abate
- 2 Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri
| | - Daniel L Barber
- 3 T Lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases
| | - Luiz E Bermudez
- 4 Department of Biomedical Sciences and.,5 Department of Microbiology, Oregon State University, Corvallis, Oregon
| | - Rhea N Coler
- 6 Infectious Disease Research Institute, Seattle, Washington.,7 Department of Global Health, University of Washington, Seattle, Washington
| | - Michael H Cynamon
- 8 Veterans Administration Medical Center, Syracuse, New York.,9 State University of New York Upstate Medical Center, Syracuse, New York
| | - Charles L Daley
- 10 Division of Mycobacterial and Respiratory Infections, Department of Medicine
| | | | - Thomas Dick
- 12 Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,13 Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - R Andres Floto
- 14 Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Steven M Holland
- 16 Division of Intramural Research, National Institute of Allergy and Infectious Diseases
| | - Mary Jackson
- 17 Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Richard E Lee
- 18 Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Eric L Nuermberger
- 19 Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,20 Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Kenneth N Olivier
- 21 Laboratory of Chronic Airway Infection, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, and
| | - Diane J Ordway
- 17 Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - D Rebecca Prevots
- 1 Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases
| | - James C Sacchettini
- 22 Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Max Salfinger
- 23 Mycobacteriology and Pharmacokinetics Laboratories, National Jewish Health, Denver, Colorado.,24 College of Public Health, University of South Florida, Tampa, Florida
| | - Christopher M Sassetti
- 25 Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts; and
| | - Christine F Sizemore
- 26 Tuberculosis, Leprosy, and other Mycobacterial Diseases Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Kevin L Winthrop
- 15 OHSU-PSU School of Public Health and.,27 Division of Infectious Disease, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Adrian M Zelazny
- 28 Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
24
|
Wu UI, Olivier KN, Kuhns DB, Fink DL, Sampaio EP, Zelazny AM, Shallom SJ, Marciano BE, Lionakis MS, Holland SM. Patients with Idiopathic Pulmonary Nontuberculous Mycobacterial Disease Have Normal Th1/Th2 Cytokine Responses but Diminished Th17 Cytokine and Enhanced Granulocyte-Macrophage Colony-Stimulating Factor Production. Open Forum Infect Dis 2019; 6:ofz484. [PMID: 31807607 DOI: 10.1093/ofid/ofz484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/08/2019] [Indexed: 11/13/2022] Open
Abstract
Objective Although disseminated nontuberculous mycobacterial infection is attributed to defects in the interleukin (IL)-12/interferon-γ circuit, the immunophenotype of idiopathic pulmonary nontuberculous mycobacterial (PNTM) disease is not well defined. Method We phenotyped Th1, Th2, Th17, and Treg cytokines and colony-stimulating factor production from patients with idiopathic PNTM disease. Data were compared with healthy donors, cystic fibrosis (CF), and primary ciliary dyskinesia (PCD) patients with PNTM disease. Both supernatant cytokine production and intracellular cytokines expressed by various leukocyte subpopulations following mitogen and antigen stimulation were assayed by electrochemiluminescence-based multiplex immunoassay and flow cytometry, respectively. Results Regardless of antigen or mitogen stimulation, neither intracellular nor extracellular Th1, Th2, and Treg cytokine levels differed between patients and controls. Th17 cells and IL-17A levels were lower in idiopathic PNTM patients, whereas monocyte granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in response to NTM stimulation was higher compared with healthy donors. Besides, distinct cytokine responses following stimulation by Mycobacterium abscessus and Mycobacterium avium were observed consistently within each group. Conclusions The IL-12/IFN-γ circuit appeared intact in patients with idiopathic PNTM disease. However, idiopathic PNTM patients had reduced Th17 response and higher mycobacteria-induced monocyte GM-CSF expression.
Collapse
Affiliation(s)
- Un-In Wu
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kenneth N Olivier
- Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, the National Institutes of Health, Bethesda, Maryland, USA
| | - Douglas B Kuhns
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Danielle L Fink
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Elizabeth P Sampaio
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, Maryland, USA
| | - Adrian M Zelazny
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, the National Institutes of Health, Bethesda, Maryland, USA
| | - Shamira J Shallom
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, the National Institutes of Health, Bethesda, Maryland, USA
| | - Beatriz E Marciano
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, Maryland, USA
| | - Michail S Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, Maryland, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Revisiting John Snow to Meet the Challenge of Nontuberculous Mycobacterial Lung Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16214250. [PMID: 31683836 PMCID: PMC6862550 DOI: 10.3390/ijerph16214250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/09/2023]
Abstract
Nontuberculous mycobacteria (NTM) are ubiquitous components of the soil and surface water microbiome. Disparities by sex, age, and geography demonstrate that both host and environmental factors are key determinants of NTM disease in populations, which predominates in the form of chronic pulmonary disease. As the incidence of NTM pulmonary disease rises across the United States, it becomes increasingly evident that addressing this emerging human health issue requires a bold, multi-disciplinary research framework that incorporates host risk factors for NTM pulmonary disease alongside the determinants of NTM residence in the environment. Such a framework should include the assessment of environmental characteristics promoting NTM growth in soil and surface water, detailed evaluations of water distribution systems, direct sampling of water sources for NTM contamination and species diversity, and studies of host and bacterial factors involved in NTM pathogenesis. This comprehensive approach can identify intervention points to interrupt the transmission of pathogenic NTM species from the environment to the susceptible host and to reduce NTM pulmonary disease incidence.
Collapse
|
26
|
Choi S, Richards JC, Chan ED. Can physics principles help explain why non-tuberculous mycobacterial lung disease is more severe in the right middle lobe and lingula? J Thorac Dis 2019; 11:4847-4854. [PMID: 31903275 DOI: 10.21037/jtd.2019.10.70] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sangbong Choi
- Department of Medicine and Academic Affairs, National Jewish Health, Denver, CO, USA.,Division of Pulmonology and Critical Care Medicine, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - John C Richards
- Department of Radiology, National Jewish Health, Denver, CO, USA
| | - Edward D Chan
- Department of Medicine and Academic Affairs, National Jewish Health, Denver, CO, USA.,Pulmonary Section, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
27
|
Cowman S, van Ingen J, Griffith DE, Loebinger MR. Non-tuberculous mycobacterial pulmonary disease. Eur Respir J 2019; 54:13993003.00250-2019. [PMID: 31221809 DOI: 10.1183/13993003.00250-2019] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/31/2019] [Indexed: 02/03/2023]
Abstract
Nontuberculous mycobacterial pulmonary disease (NTM-PD) is a challenging infection which is becoming increasingly prevalent, particularly in the elderly, for reasons which are unknown. While underlying lung disease is a well-established risk factor for NTM-PD, it may also occur in apparently healthy individuals. No single common genetic or immunological defect has been identified in this group, and it is likely that multiple pathways contribute towards host susceptibility to NTM-PD which further interact with environmental and microbiological factors leading to the development of disease.The diagnosis of NTM-PD relies on the integration of clinical, radiological and microbiological results. The clinical course of NTM-PD is heterogeneous, with some patients remaining stable without the need for treatment and others developing refractory disease associated with considerable mortality and morbidity. Treatment regimens are based on the identity of the isolated species, drug sensitivity testing (for some agents) and the severity of disease. Multiple antibiotics are typically required for prolonged periods of time and treatment is frequently poorly tolerated. Surgery may be beneficial in selected cases. In some circumstances cure may not be attainable and there is a pressing need for better regimens to treat refractory and drug-resistant NTM-PD.This review summarises current knowledge on the epidemiology, aetiology and diagnosis of NTM-PD and discusses the treatment of two of the most clinically significant species, the M. avium and M. abscessus complexes, with a focus on refractory disease and novel therapies.
Collapse
Affiliation(s)
- Steven Cowman
- Host Defence Unit, Royal Brompton Hospital, London, UK.,Imperial College, London, UK
| | - Jakko van Ingen
- Dept of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - David E Griffith
- Dept of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Michael R Loebinger
- Host Defence Unit, Royal Brompton Hospital, London, UK .,Imperial College, London, UK
| |
Collapse
|
28
|
Holt MR, Kasperbauer SH, Koelsch TL, Daley CL. Similar characteristics of nontuberculous mycobacterial pulmonary disease in men and women. Eur Respir J 2019; 54:13993003.00252-2019. [PMID: 30956208 DOI: 10.1183/13993003.00252-2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/24/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Michael R Holt
- Division of Mycobacterial and Respiratory Infections, Dept of Medicine, National Jewish Health, Denver, CO, USA .,Dept of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Shannon H Kasperbauer
- Division of Mycobacterial and Respiratory Infections, Dept of Medicine, National Jewish Health, Denver, CO, USA.,Dept of Medicine, University of Colorado Denver, Aurora, CO, USA
| | | | - Charles L Daley
- Division of Mycobacterial and Respiratory Infections, Dept of Medicine, National Jewish Health, Denver, CO, USA.,Dept of Medicine, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
29
|
Chan ED, Wooten WI, Hsieh EW, Johnston KL, Shaffer M, Sandhaus RA, van de Veerdonk F. Diagnostic evaluation of bronchiectasis. RESPIRATORY MEDICINE: X 2019. [DOI: 10.1016/j.yrmex.2019.100006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
30
|
Nontuberculous Mycobacterial Lung Diseases Caused by Mixed Infection with Mycobacterium avium Complex and Mycobacterium abscessus Complex. Antimicrob Agents Chemother 2018; 62:AAC.01105-18. [PMID: 30104265 DOI: 10.1128/aac.01105-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/03/2018] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium avium complex (MAC) and M. abscessus complex (MABC) comprise the two most important human pathogen groups causing nontuberculous mycobacterial lung disease (NTM-LD). However, there are limited data regarding NTM-LD caused by mixed NTM infections. This study aimed to evaluate the clinical characteristics and treatment outcomes in patients with NTM-LD caused by mixed infection with these two major NTM pathogen groups. Seventy-one consecutive patients who had been diagnosed with NTM-LD caused by mixed infection with MAC (M. avium or M. intracellulare) and MABC (M. abscessus or M. massiliense) between January 2010 and December 2015 were identified. Nearly all patients (96%) had the nodular bronchiectatic form of NTM-LD. Mixed infection with MAC and M. massiliense (n = 47, 66%) was more common than mixed infection with MAC and M. abscessus (n = 24, 34%), and among the 43 (61%) patients who were treated for NTM-LD for more than 12 months, sputum culture conversion rates were significantly lower in patients infected with MAC and M. abscessus (25% [3/12]) than in patients infected with MAC and M. massiliense (61% [19/31, P = 0.033]). Additionally, M. massiliense and M. abscessus showed marked differences in clarithromycin susceptibility (90% versus 6%, P < 0.001). Of the 23 patients who successfully completed treatment, 11 (48%) redeveloped NTM lung disease, with mycobacterial genotyping results indicating that the majority of cases were due to reinfection. Precise identification of etiologic NTM organisms could help predict treatment outcomes in patients with NTM-LD due to mixed infections.
Collapse
|
31
|
Flume PA, Chalmers JD, Olivier KN. Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity. Lancet 2018; 392:880-890. [PMID: 30215383 PMCID: PMC6173801 DOI: 10.1016/s0140-6736(18)31767-7] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 12/29/2022]
Abstract
Bronchiectasis is characterised by pathological dilation of the airways. More specifically, the radiographic demonstration of airway enlargement is the common feature of a heterogeneous set of conditions and clinical presentations. No approved therapies exist for the condition other than for bronchiectasis caused by cystic fibrosis. The heterogeneity of bronchiectasis is a major challenge in clinical practice and the main reason for difficulty in achieving endpoints in clinical trials. Recent observations of the past 2 years have improved the understanding of physicians regarding bronchiectasis, and have indicated that it might be more effective to classify patients in a different way. Patients could be categorised according to a heterogeneous group of endotypes (defined by a distinct functional or pathobiological mechanism) or by clinical phenotypes (defined by relevant and common features of the disease). In doing so, more specific therapies needed to effectively treat patients might finally be developed. Here, we describe some of the recent advances in endotyping, genetics, and disease heterogeneity of bronchiectasis including observations related to the microbiome.
Collapse
Affiliation(s)
- Patrick A. Flume
- Departments of Medicine and Pediatrics, Medical University
of South Carolina, Charleston, SC, USA.
| | | | | |
Collapse
|
32
|
|
33
|
Honda JR, Alper S, Bai X, Chan ED. Acquired and genetic host susceptibility factors and microbial pathogenic factors that predispose to nontuberculous mycobacterial infections. Curr Opin Immunol 2018; 54:66-73. [PMID: 29936307 DOI: 10.1016/j.coi.2018.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/30/2018] [Accepted: 06/02/2018] [Indexed: 12/16/2022]
Abstract
Nontuberculous mycobacteria (NTM) are ubiquitous in the environment and human exposure is likely to be pervasive; yet, the occurrence of NTM-related diseases is relatively infrequent. This discrepancy suggests that host risk factors play an integral role in vulnerability to NTM infections. Isolated NTM lung disease (NTM-LD) is often due to underlying anatomical pulmonary or immune disorders, either of which may be acquired or genetic. However, many cases of NTM-LD have no known underlying risk factors and may be multigenic and/or multicausative. In contrast, extrapulmonary visceral or disseminated NTM diseases almost always have an underlying severe immunodeficiency, which may also be acquired or genetic. NTM cell wall components play a key role in pathogenesis and as inducers of the host immune response.
Collapse
Affiliation(s)
- Jennifer R Honda
- Department of Biomedical Research, United States; Center for Genes, Environment, and Health, United States
| | - Scott Alper
- Department of Biomedical Research, United States; Center for Genes, Environment, and Health, United States; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Xiyuan Bai
- Medicine and Academic Affairs, National Jewish Health, Denver, CO, United States; Division of Pulmonary Sciences and Critical Care Medicine, United States
| | - Edward D Chan
- Medicine and Academic Affairs, National Jewish Health, Denver, CO, United States; Department of Medicine, Denver Veterans Affairs Medical Center, Denver, CO, United States; Division of Pulmonary Sciences and Critical Care Medicine, United States.
| |
Collapse
|
34
|
Brode SK, Marchand-Austin A, Jamieson FB, Marras TK. Pulmonary versus Nonpulmonary Nontuberculous Mycobacteria, Ontario, Canada. Emerg Infect Dis 2018; 23:1898-1901. [PMID: 29048292 PMCID: PMC5652412 DOI: 10.3201/eid2311.170959] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In Ontario, Canada, during 1998–2010, nontuberculous mycobacteria (NTM) from pulmonary sites comprised 96% of species/patient combinations isolated; annual rates of isolation and cases increased steadily. NTM isolates from nonpulmonary sites comprised 4% of species/patient combinations; annual rates and cases were temporally stable. NTM increases were driven exclusively by pulmonary isolates and disease.
Collapse
|
35
|
Adjemian J, Daniel-Wayman S, Ricotta E, Prevots DR. Epidemiology of Nontuberculous Mycobacteriosis. Semin Respir Crit Care Med 2018; 39:325-335. [PMID: 30071547 PMCID: PMC11037020 DOI: 10.1055/s-0038-1651491] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Annual prevalence estimates for pulmonary nontuberculous mycobacterial (PNTM) disease in the contiguous United States range from 1.4 to 13.9 per 100,000 persons, while one study found an annual prevalence of up to 44 per 100,000 persons in Hawaii. PNTM prevalence varies by region, sex, and race/ethnicity, with higher prevalence among women and persons of Asian ancestry, as well as in the Southern United States and Hawaii. Studies consistently indicate that PNTM prevalence is increasing, with estimates ranging from 2.5 to 8% per year. Most PNTM disease is associated with Mycobacterium avium complex (MAC), although the proportion of disease attributed to MAC varies by region. Host factors identified as influencing disease risk include structural lung disease, immunomodulatory medication, as well as variants in connective tissue, mucociliary clearance, and immune genes. Environmental variables including measures of atmospheric moisture and concentrations of certain soil factors have also been shown to correlate with higher PNTM prevalence. Prevalence of extrapulmonary NTM disease is lower, stable, and associated with different risk factors, including primary immune deficiencies or HIV infection.
Collapse
Affiliation(s)
- Jennifer Adjemian
- Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
- Commissioned Corps, United States Public Health Service, Rockville, Maryland
| | - Shelby Daniel-Wayman
- Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Emily Ricotta
- Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - D. Rebecca Prevots
- Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
36
|
Matsuyama M, Martins AJ, Shallom S, Kamenyeva O, Kashyap A, Sampaio EP, Kabat J, Olivier KN, Zelazny AM, Tsang JS, Holland SM. Transcriptional Response of Respiratory Epithelium to Nontuberculous Mycobacteria. Am J Respir Cell Mol Biol 2018; 58:241-252. [PMID: 28915071 DOI: 10.1165/rcmb.2017-0218oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The incidence of pulmonary nontuberculous mycobacteria (NTM) disease is increasing, but host responses in respiratory epithelium infected with NTM are not fully understood. In this work, we aimed to identify infection-relevant gene expression signatures of NTM infection of the respiratory epithelium. We infected air-liquid interface (ALI) primary respiratory epithelial cell cultures with Mycobacterium avium subsp. avium (MAC) or Mycobacterium abscessus subsp. abscessus (MAB). We used cells from four different donors to obtain generalizable data. Differentiated respiratory epithelial cells at the ALI were infected with MAC or MAB at a multiplicity of infection of 100:1 or 1,000:1, and RNA sequencing was performed at Days 1 and 3 after infection. In response to infection, we found down-regulation of ciliary genes but upregulation of genes associated with cytokines/chemokines, such as IL-32, and cholesterol biosynthesis. Inflammatory response genes tended to be more upregulated by MAB than by MAC infection. Primary respiratory epithelial cell infection with NTM at the ALI identified ciliary function, cholesterol biosynthesis, and cytokine/chemokine production as major host responses to infection. Some of these pathways may be amenable to therapeutic manipulation.
Collapse
Affiliation(s)
| | - Andrew J Martins
- 2 Systems Genomics and Bioinformatics Unit, Laboratory of Systems Biology, and
| | - Shamira Shallom
- 3 Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| | - Olena Kamenyeva
- 4 Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | | | - Juraj Kabat
- 4 Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kenneth N Olivier
- 5 Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Adrian M Zelazny
- 3 Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| | - John S Tsang
- 2 Systems Genomics and Bioinformatics Unit, Laboratory of Systems Biology, and
| | | |
Collapse
|
37
|
Honda JR, Bai X, Chan ED. Elucidating the Pathogenesis of Nontuberculous Mycobacterial Lung Disease: Lesson from the Six Blind Men and the Elephant. Am J Respir Cell Mol Biol 2018; 58:142-143. [DOI: 10.1165/rcmb.2017-0317ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Xiyuan Bai
- University of Colorado Anschutz Medical CampusAurora, Colorado
| | | |
Collapse
|
38
|
Patient-Centered Research Priorities for Pulmonary Nontuberculous Mycobacteria (NTM) Infection. An NTM Research Consortium Workshop Report. Ann Am Thorac Soc 2018; 13:S379-84. [PMID: 27627485 DOI: 10.1513/annalsats.201605-387ws] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) cause an increasingly important chronic and debilitating lung disease in older adults. Diagnosis is often delayed, although awareness among clinicians and patients is increasing. When necessary, treatment often lasts 18-24 months and consists of three or four antibiotics that can have serious side effects. Relapses are common and commonly require resumption of prolonged therapy. Given the need for improved diagnostic techniques and clinical trials to identify new therapies or to improve existing therapies, a group of North American clinicians and researchers formed the NTM Research Consortium (NTMRC) in 2014. The NTMRC recognized the importance of including the patient voice in determining research priorities for NTM. In November 2015, patients, caregivers, patient advocates, clinical experts, and researchers gathered for a 1-day meeting in Portland, Oregon funded by the Patient-Centered Outcomes Research Institute. The meeting goal was to define patient-centered research priorities for NTM lung infections. Patients expressed frustration with the number of people who have endured years of missed diagnoses or inadequate treatment of NTM. Participants identified as top research priorities the prevention of NTM infection; approval of more effective treatments with fewer side effects and easier administration; understanding the best chest physiotherapy methods; validating and using tools to measure quality of life; and developing a disease-specific activity and severity assessment tool. Workshop participants agreed that two complementary objectives are critical to ensure the best achievable outcomes for patients: (1) additional clinician education to improve screening and diagnosis of NTM infections; and (2) development of a geographically distributed network of experts in NTM disease to offer consultation or direct therapy after a diagnosis is made.
Collapse
|
39
|
Haworth CS, Banks J, Capstick T, Fisher AJ, Gorsuch T, Laurenson IF, Leitch A, Loebinger MR, Milburn HJ, Nightingale M, Ormerod P, Shingadia D, Smith D, Whitehead N, Wilson R, Floto RA. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax 2017; 72:ii1-ii64. [DOI: 10.1136/thoraxjnl-2017-210927] [Citation(s) in RCA: 351] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 01/18/2023]
|
40
|
Larsson LO, Polverino E, Hoefsloot W, Codecasa LR, Diel R, Jenkins SG, Loebinger MR. Pulmonary disease by non-tuberculous mycobacteria - clinical management, unmet needs and future perspectives. Expert Rev Respir Med 2017; 11:977-989. [PMID: 28967797 DOI: 10.1080/17476348.2017.1386563] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The number of patients with pulmonary disease caused by non-tuberculous mycobacteria (NTM) is increasing globally. Poor resistance against infections, for example, due to pre-existing lung diseases, immune deficiency and immune-modulating treatment, predisposes the population to developing pulmonary NTM disease. The incidence of pre-existing lung diseases such as chronic obstructive pulmonary disease and bronchiectasis has also increased. NTM disease diagnosis is often delayed due to non-specific symptoms. The therapeutic arsenal is limited and adherence to treatment guidelines is often low since the treatment regimens are complex, lengthy and side effects are common. Thus, current disease management is far from satisfactory and needs to be improved. Areas covered: This review provides an overview of the current knowledge of NTM infections and includes pathogenesis, disease patterns, epidemiology, disease management, unmet needs and future perspectives. Expert commentary: NTM disease is becoming more prevalent, in part with our increased awareness and improved diagnostic methods. However, our understanding of the disease pathogenesis is limited and treatment decisions are challenging, with difficult to employ drug regimens. Optimal management requires collaboration between healthcare providers, patients and expert centers.
Collapse
Affiliation(s)
- Lars-Olof Larsson
- a Division of Respiratory Medicine, Department of Medicine , Karolinska University Hospital , Stockholm , Sweden
| | - Eva Polverino
- b Vall d'Hebron Institute of Research (VHIR), Respiratory Disease Department , Hospital Universitari Vall d'Hebron (HUVH) , Barcelona , Spain
| | - Wouter Hoefsloot
- c Department of Pulmonary Diseases , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Luigi R Codecasa
- d Lombardia Region TB Reference Clinic , Villa Marelli Institute/Niguarda, Ca' Granda Hospital , Milan , Italy
| | - Roland Diel
- e Institute for Epidemiology , University Hospital Schleswig-Holstein, Campus Kiel , Kiel , Germany
| | | | | |
Collapse
|
41
|
Baek H, Shin HJ, Kim JJ, Shin N, Kim S, Yi MH, Zhang E, Hong J, Kang JW, Kim Y, Kim CS, Kim DW. Primary cilia modulate TLR4-mediated inflammatory responses in hippocampal neurons. J Neuroinflammation 2017; 14:189. [PMID: 28927423 PMCID: PMC5606072 DOI: 10.1186/s12974-017-0958-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 09/03/2017] [Indexed: 12/15/2022] Open
Abstract
Background The primary cilium is an organelle that can act as a master regulator of cellular signaling. Despite the presence of primary cilia in hippocampal neurons, their function is not fully understood. Recent studies have demonstrated that the primary cilium influences interleukin (IL)-1β-induced NF-κB signaling, ultimately mediating the inflammatory response. We, therefore, investigated ciliary function and NF-κB signaling in lipopolysaccharide (LPS)-induced neuroinflammation in conjunction with ciliary length analysis. Methods Since TLR4/NF-κB signaling is a well-known inflammatory pathway, we measured ciliary length and inflammatory mediators in wild type (WT) and TLR4−/− mice injected with LPS. Next, to exclude the effects of microglial TLR4, we examined the ciliary length, ciliary components, inflammatory cytokine, and mediators in HT22 hippocampal neuronal cells. Results Primary ciliary length decreased in hippocampal pyramidal neurons after intracerebroventricular injection of LPS in WT mice, whereas it increased in TLR4−/− mice. LPS treatment decreased primary ciliary length, activated NF-κB signaling, and increased Cox2 and iNOS levels in HT22 hippocampal neurons. In contrast, silencing Kif3a, a key protein component of cilia, increased ARL13B ciliary protein levels and suppressed NF-κB signaling and expression of inflammatory mediators. Conclusions These data suggest that LPS-induced NF-κB signaling and inflammatory mediator expression are modulated by cilia and that the blockade of primary cilium formation by Kif3a siRNA regulates TLR4-induced NF-κB signaling. We propose that primary cilia are critical for regulating NF-κB signaling events in neuroinflammation and in the innate immune response. Electronic supplementary material The online version of this article (10.1186/s12974-017-0958-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hyunjung Baek
- Department of Anatomy, Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Pediatrics, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyo Jung Shin
- Department of Anatomy, Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Jwa-Jin Kim
- Department of Anatomy, Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,LES Corporation Inc., Gung-Dong 465-16, Yuseong-Gu, Daejeon, 305-335, Republic of Korea
| | - Nara Shin
- Department of Anatomy, Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anesthesia and Pain Medicine, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea
| | - Sena Kim
- Department of Anatomy, Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Plastic Surgery, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea
| | - Min-Hee Yi
- Department of Anatomy, Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Neuroscience and Cell Biology, The University of Texas Medical Branch School of Medicine, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Enji Zhang
- Department of Anatomy, Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anesthesia Medicine, Yanbian University Hospital, Yanbian, 133000, China
| | - Jinpyo Hong
- Department of Anatomy, Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Joon Won Kang
- Department of Pediatrics, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Cuk-Seong Kim
- Department of Physiology, Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| | - Dong Woon Kim
- Department of Anatomy, Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
42
|
Abstract
Nontuberculous mycobacteria (NTM) are emerging pathogens that affect both immunocompromised and immunocompetent patients. The development of molecular methods has allowed the characterization of new species and the identification of NTM to the precise species and subspecies levels. The incidence and prevalence of NTM lung disease are increasing worldwide, and this syndrome accounts for the majority of clinical cases of NTM disease. Common causative organisms of pulmonary infection are the slowly growing mycobacteria Mycobacterium avium complex and Mycobacterium kansasii and the rapidly growing mycobacteria, including Mycobacterium abscessus complex. NTM lung disease often affects elderly people with chronic lung disease and may be a manifestation of a complex genetic disorder determined by interactions among multiple genes, as well as environmental exposures. To be diagnosed with NTM lung disease, patients should meet all clinical and microbiologic criteria, but the decision to start treatment is complex, requiring careful individualized analysis of risks and benefits. Clinicians should be alert to the unique aspects of NTM lung disease, including the need for proper diagnosis, the availability of advanced molecular methods for species and subspecies identification, and the benefits and limitations of recommended treatments.
Collapse
|
43
|
Abstract
Despite the ubiqitous nature of Mycobacterium avium complex (MAC) organisms in the environment, relatively few of those who are infected develop disease. Thus, some degree of susceptibility due to either underlying lung disease or immunosuppression is required. The frequency of pulmonary MAC disease is increasing in many areas, and the exact reasons are unknown. Isolation of MAC from a respiratory specimen does not necessarily mean that treatment is required, as the decision to treatment requires the synthesis of clinical, radiographic, and microbiologic information as well as a weighing of the risks and benefits for the individual patient. Successful treatment requires a multipronged approach that includes antibiotics, aggressive pulmonary hygiene, and sometimes resection of the diseased lung. A combination of azithromycin, rifampin, and ethambutol administered three times weekly is recommend for nodular bronchiectatic disease, whereas the same regimen may be used for cavitary disease but administered daily and often with inclusion of a parenteral aminoglycoside. Disseminated MAC (DMAC) is almost exclusively seen in patients with late-stage AIDS and can be treated with a macrolide in combination with ethambutol, with or without rifabutin: the most important intervention in this setting is to gain HIV control with the use of potent antiretroviral therapy. Treatment outcomes for many patients with MAC disease remain suboptimal, so new drugs and treatment regimens are greatly needed. Given the high rate of reinfection after cure, one of the greatest needs is a better understanding of where infection occurs and how this can be prevented.
Collapse
|
44
|
Becker KL, Arts P, Jaeger M, Plantinga TS, Gilissen C, van Laarhoven A, van Ingen J, Veltman JA, Joosten LAB, Hoischen A, Netea MG, Iseman MD, Chan ED, van de Veerdonk FL. MST1R mutation as a genetic cause of Lady Windermere syndrome. Eur Respir J 2017; 49:13993003.01478-2016. [PMID: 28100548 DOI: 10.1183/13993003.01478-2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/19/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Katharina L Becker
- Dept of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Both authors contributed equally
| | - Peer Arts
- Dept of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.,Both authors contributed equally
| | - Martin Jaeger
- Dept of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Theodorus S Plantinga
- Dept of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Dept of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjan van Laarhoven
- Dept of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jakko van Ingen
- Dept of Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joris A Veltman
- Dept of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.,Dept of Clinical Genetics, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Leo A B Joosten
- Dept of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Dept of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Dept of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michael D Iseman
- Dept of Medicine and Academic Affairs, National Jewish Health, Denver, CO, USA
| | - Edward D Chan
- Dept of Medicine and Academic Affairs, National Jewish Health, Denver, CO, USA.,Dept of Medicine, Denver Veterans Affairs Medical Center, Denver, CO, USA.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Frank L van de Veerdonk
- Dept of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
45
|
McShane PJ, Glassroth J. Pulmonary Disease Due to Nontuberculous Mycobacteria: Current State and New Insights. Chest 2016. [PMID: 26225805 DOI: 10.1378/chest.15-0458] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Since pulmonary nontuberculous mycobacteria (PNTM) lung disease was last reviewed in CHEST in 2008, new information has emerged spanning multiple domains, including epidemiology, transmission and pathogenesis, clinical presentation, diagnosis, and treatment. The overall prevalence of PNTM is increasing, and in the United States, areas of highest prevalence are clustered in distinct geographic locations with common environmental and socioeconomic factors. Although the accepted paradigm for transmission continues to be inhalation from the environment, provocative reports suggest that person-to-person transmission may occur. A panoply of host factors have been investigated in an effort to elucidate why infection from this bacteria develops in ostensibly immunocompetent patients, and there has been clarification that immunocompetent patients exhibit different histopathology from immunocompromised patients with nontuberculous mycobacteria infection. It is now evident that Mycobacterium abscessus, an increasingly prevalent cause of PNTM lung disease, can be classified into three separate subspecies with differing genetic susceptibility or resistance to macrolides. Recent publications also raise the possibility of improved control of PNTM through enhanced adherence to current treatment guidelines as well as new approaches to treatment and even prevention. These and other recent developments and insights that may inform our approach to PNTM lung disease are reviewed and discussed.
Collapse
Affiliation(s)
- Pamela J McShane
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.
| | - Jeffrey Glassroth
- Biological Sciences Division, The University of Chicago, Chicago, IL
| |
Collapse
|
46
|
Kim JS, Cha SH, Kim WS, Han SJ, Cha SB, Kim HM, Kwon KW, Kim SJ, Choi HH, Lee J, Cho SN, Koh WJ, Park YM, Shin SJ. A Novel Therapeutic Approach Using Mesenchymal Stem Cells to Protect Against Mycobacterium abscessus. Stem Cells 2016; 34:1957-70. [PMID: 26946350 DOI: 10.1002/stem.2353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 01/22/2016] [Accepted: 02/12/2016] [Indexed: 12/12/2022]
Abstract
Recent studies have demonstrated the therapeutic potential of mesenchymal stem cells (MSCs) for the treatment of acute inflammatory injury and bacterial pneumonia, but their therapeutic applications in mycobacterial infections have not been investigated. In this study, we demonstrated the use of MSCs as a novel therapeutic strategy against Mycobacterium abscessus (M. abscessus), which is the most drug-resistant and difficult-to-treat mycobacterial pathogen. The systemic intravenous injection of MSCs not only improved mouse survival but also enhanced bacterial clearance in the lungs and spleen. Additionally, MSCs enhanced IFN-γ, TNF-α, IL-6, MCP-1, nitric oxide (NO) and PGE2 production and facilitated CD4(+) /CD8(+) T cell, CD11b(high) macrophage, and monocyte recruitment in the lungs of M. abscessus-infected mice. To precisely elucidate the functions of MSCs in M. abscessus infection, an in vitro macrophage infection system was used. MSCs caused markedly increased NO production via NF-κB activation in M. abscessus-infected macrophages cultured in the presence of IFN-γ. Inhibiting NO or NF-κB signaling using specific inhibitors reduced the antimycobacterial activity of MSCs. Furthermore, the cellular crosstalk between TNF-α released from IFN-γ-stimulated M. abscessus-infected macrophages and PGE2 produced by MSCs was necessary for the mycobacterial-killing activity of the macrophages. Finally, the importance of increased NO production in response to MSC administration was confirmed in the mouse M. abscessus infection model. Our results suggest that MSCs may offer a novel therapeutic strategy for treating this drug-resistant mycobacterial infection by enhancing the bacterial-killing power of macrophages. Stem Cells 2016;34:1957-1970.
Collapse
Affiliation(s)
- Jong-Seok Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Ho Cha
- Animal Stem Cells Research Lab, Animal and Plant Quarantine Agency, Anyang-si, Gyeonggi-do, South Korea
| | - Woo Sik Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Jung Han
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Bin Cha
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong Min Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - So Jeong Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong-Hee Choi
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Jienny Lee
- Animal Stem Cells Research Lab, Animal and Plant Quarantine Agency, Anyang-si, Gyeonggi-do, South Korea
| | - Sang-Nae Cho
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yeong-Min Park
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, School of Medicine, Konkuk University, Chungju, South Korea
| | - Sung Jae Shin
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
47
|
Lake MA, Ambrose LR, Lipman MCI, Lowe DM. '"Why me, why now?" Using clinical immunology and epidemiology to explain who gets nontuberculous mycobacterial infection. BMC Med 2016; 14:54. [PMID: 27007918 PMCID: PMC4806462 DOI: 10.1186/s12916-016-0606-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/18/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The prevalence of nontuberculous mycobacterial (NTM) disease is rising. An understanding of known risk factors for disease sheds light on the immunological and physical barriers to infection, and how and why they may be overcome. This review focuses on human NTM infection, supported by experimental and in vitro data of relevance to the practising clinician who seeks to understand why their patient has NTM infection and how to further investigate. DISCUSSION First, the underlying immune response to NTM disease is examined. Important insights regarding NTM disease susceptibility come from nature's own knockouts, the primary immune deficiency disorders. We summarise the current knowledge surrounding interferon-gamma (IFNγ)-interleukin-12 (IL-12) axis abnormalities, followed by a review of phagocytic defects, T cell lymphopenia and rarer genetic conditions known to predispose to NTM disease. We discuss how these define key immune pathways involved in the host response to NTM. Iatrogenic immunosuppression is also important, and we evaluate the impact of novel biological therapies, as well as bone marrow transplant and chemotherapy for solid organ malignancy, on the epidemiology and presentation of NTM disease, and discuss the host defence dynamics thus revealed. NTM infection and disease in the context of other chronic illnesses including HIV and malnutrition is reviewed. The role of physical barriers to infection is explored. We describe how their compromise through different mechanisms including cystic fibrosis, bronchiectasis and smoking-related lung disease can result in pulmonary NTM colonisation or infection. We also summarise further associations with host factors including body habitus and age. We use the presented data to develop an over-arching model that describes human host defences against NTM infection, where they may fail, and how this framework can be applied to investigation in routine clinical practice.
Collapse
Affiliation(s)
- M Alexandra Lake
- Royal Free London NHS Foundation Trust, London, UK.,Division of Infection and Immunity, University College London, London, UK
| | - Lyn R Ambrose
- Institute of Immunity and Transplantation, University College London, Royal Free Campus, Pond Street, London, NW3 2QG, UK
| | - Marc C I Lipman
- Royal Free London NHS Foundation Trust, London, UK.,UCL Respiratory, Division of Medicine, Faculty of Medical Sciences, University College London, Royal Free Campus, London, UK
| | - David M Lowe
- Royal Free London NHS Foundation Trust, London, UK. .,Institute of Immunity and Transplantation, University College London, Royal Free Campus, Pond Street, London, NW3 2QG, UK.
| |
Collapse
|
48
|
A genetic perspective on granulomatous diseases with an emphasis on mycobacterial infections. Semin Immunopathol 2016; 38:199-212. [PMID: 26733044 DOI: 10.1007/s00281-015-0552-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022]
Abstract
Identification of the genetic factors predisposing to mycobacterial infections has been a subject of intense research activities. Current knowledge of the genetic and immunological basis of susceptibility to mycobacteria largely comes from natural human and experimental models of Bacille Calmette Guérin (BCG) and nontuberculous mycobacterial infections. These observations support the central role of the IL-12/IFN-γ pathway in controlling mycobacterial infection. In this review, we discuss the knowledge that associates both simple and complex inheritance with susceptibility to mycobacterial diseases. We place a special emphasis on monogenic disorders, since these clearly pinpoint pathways and can adduce mechanism. We also describe the clinical, immunological, and pathological features that may steer clinical investigation in the appropriate directions.
Collapse
|
49
|
Szymanski EP, Leung JM, Fowler CJ, Haney C, Hsu AP, Chen F, Duggal P, Oler AJ, McCormack R, Podack E, Drummond RA, Lionakis MS, Browne SK, Prevots DR, Knowles M, Cutting G, Liu X, Devine SE, Fraser CM, Tettelin H, Olivier KN, Holland SM. Pulmonary Nontuberculous Mycobacterial Infection. A Multisystem, Multigenic Disease. Am J Respir Crit Care Med 2015; 192:618-28. [PMID: 26038974 DOI: 10.1164/rccm.201502-0387oc] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The clinical features of patients infected with pulmonary nontuberculous mycobacteria (PNTM) are well described, but the genetic components of infection susceptibility are not. OBJECTIVES To examine genetic variants in patients with PNTM, their unaffected family members, and a control group. METHODS Whole-exome sequencing was done on 69 white patients with PNTM and 18 of their white unaffected family members. We performed a candidate gene analysis using immune, cystic fibrosis transmembrance conductance regulator (CFTR), cilia, and connective tissue gene sets. The numbers of patients, family members, and control subjects with variants in each category were compared, as was the average number of variants per person. MEASUREMENTS AND MAIN RESULTS A significantly higher number of patients with PNTM than the other subjects had low-frequency, protein-affecting variants in immune, CFTR, cilia, and connective tissue categories (35, 26, 90, and 90%, respectively). Patients with PNTM also had significantly more cilia and connective tissue variants per person than did control subjects (2.47 and 2.55 compared with 1.38 and 1.40, respectively; P = 1.4 × 10(-6) and P = 2.7 × 10(-8), respectively). Patients with PNTM had an average of 5.26 variants across all categories (1.98 in control subjects; P = 2.8 × 10(-17)), and they were more likely than control subjects to have variants in multiple categories. We observed similar results for family members without PNTM infection, with the exception of the immune category. CONCLUSIONS Patients with PNTM have more low-frequency, protein-affecting variants in immune, CFTR, cilia, and connective tissue genes than their unaffected family members and control subjects. We propose that PNTM infection is a multigenic disease in which combinations of variants across gene categories, plus environmental exposures, increase susceptibility to the infection.
Collapse
Affiliation(s)
| | | | | | | | - Amy P Hsu
- 1 Laboratory of Clinical Infectious Diseases
| | - Fei Chen
- 2 Department of Epidemiology, Bloomberg School of Public Health, and
| | - Priya Duggal
- 2 Department of Epidemiology, Bloomberg School of Public Health, and
| | - Andrew J Oler
- 3 Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, and
| | - Ryan McCormack
- 4 Department of Microbiology and Immunology, School of Medicine, University of Miami, Miami, Florida
| | - Eckhard Podack
- 4 Department of Microbiology and Immunology, School of Medicine, University of Miami, Miami, Florida
| | | | | | | | | | - Michael Knowles
- 5 Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - Gary Cutting
- 6 McKusick-Nathans Institute of Genetic Medicine, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | | | - Scott E Devine
- 7 Institute for Genome Sciences.,8 Department of Medicine, and
| | - Claire M Fraser
- 7 Institute for Genome Sciences.,8 Department of Medicine, and
| | - Hervé Tettelin
- 7 Institute for Genome Sciences.,9 Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Kenneth N Olivier
- 10 Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
50
|
Host susceptibility to non-tuberculous mycobacterial infections. THE LANCET. INFECTIOUS DISEASES 2015; 15:968-80. [PMID: 26049967 DOI: 10.1016/s1473-3099(15)00089-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/29/2014] [Accepted: 11/11/2014] [Indexed: 11/22/2022]
Abstract
Non-tuberculous mycobacteria cause a broad range of clinical disorders, from cutaneous infections, such as cervical or intrathoracic lymphadenitis in children, to disseminated infections at all ages. Recognition of the underlying immune defect is crucial for rational treatment, preventive care, family screening, and, in some cases, transplantation. So far, at least seven autosomal mutations (in IL12B, IL12RB1, ISG15, IFNGR1, IFNGR2, STAT1, and IRF8) and two X-linked mutations (in IKBKG and CYBB), mostly presenting in childhood, have been reported to confer susceptibility to disseminated non-tuberculous mycobacterial infection. GATA2 deficiency and anti-interferon γ autoantibodies also give rise to disseminated infection, typically in late childhood or adulthood. Furthermore, isolated pulmonary non-tuberculous mycobacterial infection has been increasing in prevalence in people without recognised immune dysfunction. In this Review, we discuss how to detect and differentiate host susceptibility factors underlying localised and systemic non-tuberculous mycobacterial infections.
Collapse
|