1
|
Buj R, Cole AR, Danielson J, Xu J, Hurd D, Kishore A, Kedziora KM, Chen J, Yang B, Barras D, Uboveja A, Amalric A, Apiz Saab JJ, Wickramasinghe J, Tangudu NK, Levasseur E, Wang H, Minasyan A, Dadey RE, Sharrow AC, Kunning S, Vendetti FP, Rivadeneira DB, Bakkenist CJ, Bruno TC, Delgoffe GM, Hempel N, Snyder NW, Bao R, Soloff AC, Kirk-Wood JM, Dangaj Laniti D, Kossenkov AV, Muir A, Das J, Davar D, Mesaros C, Aird KM. CDKN2A Low cancer cells outcompete macrophages for microenvironmental zinc to drive immunotherapy resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.08.637227. [PMID: 39975044 PMCID: PMC11839072 DOI: 10.1101/2025.02.08.637227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Approximately 50% of cancers exhibit decreased CDKN2A expression ( CDKN2A Low ), which is linked to immune checkpoint blockade (ICB) resistance. While CDKN2A is traditionally recognized as a tumor suppressor and cell cycle regulator, we have previously put forth a new paradigm demonstrating its role in intracellular metabolic reprogramming. Whether the metabolic derangement due to CDKN2A loss alters metabolites within the tumor microenvironment (TME) and how that affects the immune compartment and ICB response has never been investigated. Here we found that CDKN2A Low cancer cells reorganize zinc compartmentalization by upregulating the zinc importer SLC39A9 in the plasma membrane, leading to intracellular zinc accumulation in cancer cells and concurrent zinc depletion in the TME. This competition for zinc results in zinc-starved tumor-associated macrophages (TAMs), leading to reduced phagocytic activity. Increasing zinc in TAMs through multiple approaches, including a dietary intervention that increases availability of TME zinc, re-educates these TAMs to a pro-phagocytic phenotype. Remarkably, both knockdown of Slc39a9 in cancer cells or providing a high zinc diet sensitizes Cdkn2a Low tumors to ICB. TAMs, not T cells, are indispensable for ICB response. Clinically, TAMs from CDKN2A Low cancer patients have decreased zinc signatures, corresponding to reduced phagocytosis signatures. Moreover, patients with low circulating zinc levels have reduced time-to-event outcomes compared to those with higher zinc levels. Our work reveals a previously unrecognized mechanism through which CDKN2A Low cancer cells outcompete TAMs for zinc, directly disrupting their function and ICB efficacy.
Collapse
|
2
|
Pommerolle L, Arif M, Behee M, Appolonia CN, Basu A, Wolf KM, Zawatsky CN, Johnson N, Rivellini O, Park JK, Cinar R. Chronic Alcohol Intake Compromises Lung Immunity by Altering Immunometabolism in Humans and Mouse Models. Am J Respir Cell Mol Biol 2024; 71:559-576. [PMID: 39024537 PMCID: PMC11568473 DOI: 10.1165/rcmb.2024-0086oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Chronic alcohol consumption disrupts lung immunity and host defense mechanisms, rendering individuals with alcohol use disorder more susceptible to developing inflammatory lung conditions with poor prognoses. Here, we focused on investigating the molecular and cellular effects of alcohol ingestion on lung immunity in male and female subjects using population-based human lung transcriptomics analysis and an experimental mouse model of chronic alcohol drinking using the National Institute on Alcohol Abuse and Alcoholism alcohol feeding model. Flow cytometry and transcriptomics analyses in lungs revealed a sexually dimorphic effect of chronic alcohol drinking on lung immunity in both human and mouse. Male lungs were more sensitive to chronic alcohol drinking-induced dysregulation of lung immunity compared with female lungs. Furthermore, comparative transcriptomics analysis using lungs and liver samples from matched human and mouse subjects demonstrated that lungs were more sensitive than liver to the effects of alcohol in downregulating immune-related genes and pathways. Furthermore, the transcriptomics analysis provided evidence that immunometabolic change is a central driver in lung alteration by downregulating the immune pathways and upregulating metabolic pathways. Chronic alcohol consumption resulted in reduced mTOR signaling and decreased immune cell populations. The mTOR signaling axis may serve as an upstream regulator of alcohol-induced dysregulation in lung immunity.
Collapse
Affiliation(s)
| | - Muhammad Arif
- Section on Fibrotic Disorders
- Laboratory of Cardiovascular Physiology and Tissue Injury, and
| | | | | | | | | | | | | | - Olivia Rivellini
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Joshua K. Park
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | | |
Collapse
|
3
|
Brahadeeswaran S, Tamizhselvi R. Consequence of alcohol intoxication-mediated efferocytosis impairment. Front Immunol 2024; 15:1386658. [PMID: 39104537 PMCID: PMC11298354 DOI: 10.3389/fimmu.2024.1386658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Alcohol ingestion is a widespread habituation that evolved along with a growing population, altering physiological conditions through immunomodulatory function. There is much research that has reported that consumption of alcohol at low and heavy levels causes different biological impacts, including cellular injury, leading to systemic dysfunction and increased inflammatory markers. In the fate of professional phagocytic cells, efferocytosis is an inevitable mechanism activated by the apoptotic cells, thus eliminating them and preventing the accumulation of cell corpses/debris in the microenvironment. Subsequently, it promotes the tissue repair mechanism and maintains cellular homeostasis. Unfortunately, defective efferocytosis is widely found in several inflammatory and age-related diseases such as atherosclerosis, autoimmune diseases, lung injury, fatty liver disease, and neurodegenerative diseases. Alcohol abuse is one of the factors that provoke an immune response that increases the rate of morbidity and mortality in parallel in systemic disease patients. Information regarding the emergence of immunomodulation during alcoholic pathogenesis and its association with efferocytosis impairment remain elusive. Hence, here in this review, we discussed the mechanism of efferocytosis, the role of defective efferocytosis in inflammatory diseases, and the role of alcohol on efferocytosis impairment.
Collapse
Affiliation(s)
| | - Ramasamy Tamizhselvi
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
4
|
Bauer CD, Mosley DD, Samuelson DR, Poole JA, Smith DR, Knoell DL, Wyatt TA. Zinc Protects against Swine Barn Dust-Induced Cilia Slowing. Biomolecules 2024; 14:843. [PMID: 39062557 PMCID: PMC11274422 DOI: 10.3390/biom14070843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Agricultural workers exposed to organic dust from swine concentrated animal feeding operations (CAFOs) have increased chances of contracting chronic lung disease. Mucociliary clearance represents a first line of defense against inhaled dusts, but organic dust extracts (ODEs) from swine barns cause cilia slowing, leading to decreased bacterial clearance and increased lung inflammation. Because nutritional zinc deficiency is associated with chronic lung disease, we examined the role of zinc supplementation in ODE-mediated cilia slowing. Ciliated mouse tracheal epithelial cells were pretreated with 0-10 µg/mL ZinProTM for 1 h, followed by treatment with 5% ODE for 24 h. Cilia beat frequency (CBF) and protein kinase C epsilon (PKCε) activity were assayed. ODE treatment resulted in cilia slowing after 24 h, which was reversed with 0.5 and 1.0 µg/mL ZinPro pre-treatment. No zinc protection was observed at 50 ng/mL, and ciliated cells detached at high concentrations (100 µg/mL). ZinPro alone produced no changes in the baseline CBF and showed no toxicity to the cells at concentrations of up to 10 µg/mL. Pre-treatment with ZinPro inhibited ODE-stimulated PKCε activation in a dose-dependent manner. Based on ZinPro's superior cell permeability compared to zinc salts, it may be therapeutically more effective at reversing ODE-mediated cilia slowing through a PKCε pathway. These data demonstrate that zinc supplementation may support the mucociliary transport apparatus in the protection of CAFO workers against dust-mediated chronic lung disease.
Collapse
Affiliation(s)
- Christopher D. Bauer
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of Nebraska Medical Center, 985910 Nebraska Medical Center, Omaha, NE 68198, USA; (C.D.B.); (D.D.M.); (D.R.S.)
| | - Deanna D. Mosley
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of Nebraska Medical Center, 985910 Nebraska Medical Center, Omaha, NE 68198, USA; (C.D.B.); (D.D.M.); (D.R.S.)
| | - Derrick R. Samuelson
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of Nebraska Medical Center, 985910 Nebraska Medical Center, Omaha, NE 68198, USA; (C.D.B.); (D.D.M.); (D.R.S.)
| | - Jill A. Poole
- Department of Internal Medicine, Division of Allergy & Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Deandra R. Smith
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.R.S.); (D.L.K.)
| | - Daren L. Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.R.S.); (D.L.K.)
| | - Todd A. Wyatt
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of Nebraska Medical Center, 985910 Nebraska Medical Center, Omaha, NE 68198, USA; (C.D.B.); (D.D.M.); (D.R.S.)
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
5
|
Rients E, Franco C, Diaz F, McGill J, Hansen S. Effects of zinc supplementation and implant abscess on the immune system and growth performance of growing beef steers. Transl Anim Sci 2024; 8:txae075. [PMID: 38764468 PMCID: PMC11100429 DOI: 10.1093/tas/txae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024] Open
Abstract
Seventy-two Angus-cross steers (261 ± 14 kg) were utilized to determine the effects of supplemental Zn sulfate on growth, trace mineral status, circulating immune cells, and functional innate immune responses. Steers were stratified by weight and implanted with a Component E-S with Tylan implant (Elanco Animal Health, Greenfield, IN) on day 0. Dietary treatments included: control (CON; no supplemental Zn), Zn100 (100 mg supplemental Zn/kg DM), and Zn150 (150 mg supplemental Zn/kg DM). Analyzed dietary concentrations of Zn were 58, 160, and 207 mg Zn/kg DM, respectively. On days 13 and 57, blood from nine steers per treatment was collected for immune analyses (cell phenotyping and response to stimulus). On day 16, implant abscesses were evaluated by palpation and visual appraisal. Sixty percent of steers had abscesses; however, there were no differences in abscess prevalence due to treatment (P = 0.67). Data were analyzed as a split-plot design using the Mixed procedure of SAS 9.4 (Cary, NC) with effects of dietary treatment, abscess, and their interaction. There was a tendency (treatment × abscess; P ≤ 0.09) for steers without abscesses to have greater average daily gain (ADG; treatment × abscess P = 0.06) and gain:feed (G:F; treatment × abscess P = 0.09) from d 14 to 27 in CON and Zn100 while within Zn150 steers without abscesses tended to have lesser ADG and G:F than abscessed steers. There were no other treatment × abscess effects for growth performance, but steers with abscesses tended to have decreased final body weight (P = 0.10) and overall G:F (days 0 to 57; P = 0.08). There was no interaction of treatment and abscess on immune cell populations on days 13 or 58 (treatment × abscess P ≥ 0.11). On day 13, Zn150 steers had increased CD45RO + gamma delta (P = 0.04) T cells. Abscessed steers had increased CD21 + B cells (P = 0.03) and tended to have increased CD21 + (P = 0.07) and CD21 + MHCIIhi (P = 0.07) B cells in circulation. This study shows zinc supplementation and implant abscesses can alter the immune system and growth performance of growing beef steers.
Collapse
Affiliation(s)
- Emma Rients
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Carlos Franco
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, USA
| | - Fabian Diaz
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, USA
| | - Jodi McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, USA
| | - Stephanie Hansen
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
6
|
Kijima K, Ono G, Kobayakawa K, Saiwai H, Hara M, Yoshizaki S, Yokota K, Saito T, Tamaru T, Iura H, Haruta Y, Kitade K, Utsunomiya T, Konno D, Edgerton VR, Liu CY, Sakai H, Maeda T, Kawaguchi K, Matsumoto Y, Okada S, Nakashima Y. Zinc deficiency impairs axonal regeneration and functional recovery after spinal cord injury by modulating macrophage polarization via NF-κB pathway. Front Immunol 2023; 14:1290100. [PMID: 38022538 PMCID: PMC10666775 DOI: 10.3389/fimmu.2023.1290100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Background Spinal cord injury (SCI) is a devastating disease that results in permanent paralysis. Currently, there is no effective treatment for SCI, and it is important to identify factors that can provide therapeutic intervention during the course of the disease. Zinc, an essential trace element, has attracted attention as a regulator of inflammatory responses. In this study, we investigated the effect of zinc status on the SCI pathology and whether or not zinc could be a potential therapeutic target. Methods We created experimental mouse models with three different serum zinc concentration by changing the zinc content of the diet. After inducing contusion injury to the spinal cord of three mouse models, we assessed inflammation, apoptosis, demyelination, axonal regeneration, and the number of nuclear translocations of NF-κB in macrophages by using qPCR and immunostaining. In addition, macrophages in the injured spinal cord of these mouse models were isolated by flow cytometry, and their intracellular zinc concentration level and gene expression were examined. Functional recovery was assessed using the open field motor score, a foot print analysis, and a grid walk test. Statistical analysis was performed using Wilcoxon rank-sum test and ANOVA with the Tukey-Kramer test. Results In macrophages after SCI, zinc deficiency promoted nuclear translocation of NF-κB, polarization to pro-inflammatory like phenotype and expression of pro-inflammatory cytokines. The inflammatory response exacerbated by zinc deficiency led to worsening motor function by inducing more apoptosis of oligodendrocytes and demyelination and inhibiting axonal regeneration in the lesion site compared to the normal zinc condition. Furthermore, zinc supplementation after SCI attenuated these zinc-deficiency-induced series of responses and improved motor function. Conclusion We demonstrated that zinc affected axonal regeneration and motor functional recovery after SCI by negatively regulating NF-κB activity and the subsequent inflammatory response in macrophages. Our findings suggest that zinc supplementation after SCI may be a novel therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Ken Kijima
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Gentaro Ono
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazu Kobayakawa
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirokazu Saiwai
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masamitsu Hara
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shingo Yoshizaki
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuya Yokota
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeyuki Saito
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Tamaru
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirotaka Iura
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yohei Haruta
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuki Kitade
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Utsunomiya
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daijiro Konno
- Department of Energy and Materials, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - V. Reggie Edgerton
- Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
- Rancho Research Institute, Los Amigos National Rehabilitation Center, Downey, CA, United States
- Institut Guttmann. Hospital de Neurorehabilitació, Institut Universitari adscrit a la Universitat Autònoma de Barcelona, Barcelona, Badalona, Spain
| | - Charles Y. Liu
- Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Rancho Research Institute, Los Amigos National Rehabilitation Center, Downey, CA, United States
| | - Hiroaki Sakai
- Department of Orthopaedic Surgery, Spinal Injuries Center, Iizuka, Japan
| | - Takeshi Maeda
- Department of Orthopaedic Surgery, Spinal Injuries Center, Iizuka, Japan
| | - Kenichi Kawaguchi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Matsumoto
- Department of Orthopaedic Surgery, Fukushima Medical University, Fukushima, Japan
| | - Seiji Okada
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuharu Nakashima
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Easley KF, Edenfield RC, Lott MEJ, Reed RC, Das Sarma J, Mehta AJ, Staitieh BS, Lipp EK, Cho IK, Johnson SK, Jones CA, Bebin-Blackwell AG, Levy JM, Tompkins SM, Easley CA, Koval M. Chronic alcohol use primes bronchial cells for altered inflammatory response and barrier dysfunction during SARS-CoV-2 infection. Am J Physiol Lung Cell Mol Physiol 2023; 325:L647-L661. [PMID: 37786945 PMCID: PMC11498272 DOI: 10.1152/ajplung.00381.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/26/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023] Open
Abstract
Alcohol use disorder (AUD) is a significant public health concern and people with AUD are more likely to develop severe acute respiratory distress syndrome (ARDS) in response to respiratory infections. To examine whether AUD was a risk factor for more severe outcome in response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we examined early responses to infection using cultured differentiated bronchial epithelial cells derived from brushings obtained from people with AUD or without AUD. RNA-seq analysis of uninfected cells determined that AUD cells were enriched for expression of epidermal genes as compared with non-AUD cells. Bronchial epithelial cells from patients with AUD showed a significant decrease in barrier function 72 h postinfection, as determined by transepithelial electrical resistance. In contrast, barrier function of non-AUD cells was enhanced 72 h after SARS-CoV-2 infection. AUD cells showed claudin-7 that did not colocalize with zonula occludens-1 (ZO-1), indicative of disorganized tight junctions. However, both AUD and non-AUD cells showed decreased β-catenin expression following SARS-CoV-2 infection. To determine the impact of AUD on the inflammatory response to SARS-CoV-2 infection, cytokine secretion was measured by multiplex analysis. SARS-CoV-2-infected AUD bronchial cells had enhanced secretion of multiple proinflammatory cytokines including TNFα, IL-1β, and IFNγ as opposed to non-AUD cells. In contrast, secretion of the barrier-protective cytokines epidermal growth factor (EGF) and granulocyte macrophage-colony stimulating factor (GM-CSF) was enhanced for non-AUD bronchial cells. Taken together, these data support the hypothesis that AUD is a risk factor for COVID-19, where alcohol primes airway epithelial cells for increased inflammation and increased barrier dysfunction and increased inflammation in response to infection by SARS-CoV-2.NEW & NOTEWORTHY Alcohol use disorder (AUD) is a significant risk factor for severe acute respiratory distress syndrome. We found that AUD causes a phenotypic shift in gene expression in human bronchial epithelial cells, enhancing expression of epidermal genes. AUD cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had higher levels of proinflammatory cytokine secretion and barrier dysfunction not present in infected non-AUD cells, consistent with increased early COVID-19 severity due to AUD.
Collapse
Affiliation(s)
- Kristen F Easley
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - R Clayton Edenfield
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, United States
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, United States
| | - Megan E J Lott
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, United States
| | - Ryan C Reed
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Ashish J Mehta
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, United States
| | - Bashar S Staitieh
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Erin K Lipp
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, United States
| | - In Ki Cho
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, United States
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, United States
| | - Scott K Johnson
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States
| | - Cheryl A Jones
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States
| | | | - Joshua M Levy
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, United States
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - S Mark Tompkins
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States
| | - Charles A Easley
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, United States
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, United States
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
8
|
Lewis SA, Cinco IR, Doratt BM, Blanton MB, Hoagland C, Newman N, Davies M, Grant KA, Messaoudi I. Chronic alcohol consumption dysregulates innate immune response to SARS-CoV-2 in the lung. EBioMedicine 2023; 97:104812. [PMID: 37793211 PMCID: PMC10562860 DOI: 10.1016/j.ebiom.2023.104812] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Alcohol consumption is widespread with over half of the individuals over 18 years of age in the U.S. reporting alcohol use in the last 30 days. Moreover, 9 million Americans engaged in binge or chronic heavy drinking (CHD) in 2019. CHD negatively impacts pathogen clearance and tissue repair, including in the respiratory tract, thereby increasing susceptibility to infection. Although, it has been hypothesized that chronic alcohol consumption negatively impacts COVID-19 outcomes; the interplay between chronic alcohol use and SARS-CoV-2 infection outcomes has yet to be elucidated. METHODS In this study we employed luminex, scRNA sequencing, and flow cytometry to investigate the impact of chronic alcohol consumption on SARS-CoV-2 anti-viral responses in bronchoalveolar lavage cell samples from humans with alcohol use disorder and rhesus macaques that engaged in chronic drinking. FINDINGS Our data show that in both humans (n = 6) and macaques (n = 11), the induction of key antiviral cytokines and growth factors was decreased with chronic ethanol consumption. Moreover, in macaques fewer differentially expressed genes mapped to Gene Ontology terms associated with antiviral immunity following 6 month of ethanol consumption while TLR signaling pathways were upregulated. INTERPRETATION These data are indicative of aberrant inflammation and reduced antiviral responses in the lung with chronic alcohol drinking. FUNDING This study was supported by NIH 1R01AA028735-04 (Messaoudi), U01AA013510-20 (Grant), R24AA019431-14 (Grant), R24AA019661 (Burnham), P-51OD011092 (ONPRC core grant support). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Collapse
Affiliation(s)
- Sloan A Lewis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, USA
| | - Isaac R Cinco
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, USA
| | - Brianna M Doratt
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, USA
| | - Madison B Blanton
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, USA; Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, USA
| | - Cherise Hoagland
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, USA
| | - Natali Newman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, USA
| | - Michael Davies
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, USA
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, USA
| | - Ilhem Messaoudi
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, USA.
| |
Collapse
|
9
|
Lewis SA, Cinco IR, Doratt BM, Blanton MB, Hoagland C, Davies M, Grant KA, Messaoudi I. Chronic alcohol consumption dysregulates innate immune response to SARS-CoV-2 in the lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539139. [PMID: 37205543 PMCID: PMC10187161 DOI: 10.1101/2023.05.02.539139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alcohol consumption is widespread with over half of the individuals over 18 years of age in the U.S. reporting alcohol use in the last 30 days. Moreover, 9 million Americans engaged in binge or chronic heavy drinking (CHD) in 2019. CHD negatively impacts pathogen clearance and tissue repair, including in the respiratory tract, thereby increasing susceptibility to infection. Although, it has been hypothesized that chronic alcohol consumption negatively impacts COVID-19 outcomes; the interplay between chronic alcohol use and SARS-CoV-2 infection outcomes has yet to be elucidated. Therefore, in this study we investigated the impact of chronic alcohol consumption on SARS-CoV-2 anti-viral responses in bronchoalveolar lavage cell samples from humans with alcohol use disorder and rhesus macaques that engaged in chronic drinking. Our data show that in both humans and macaques, the induction of key antiviral cytokines and growth factors was decreased with chronic ethanol consumption. Moreover, in macaques fewer differentially expressed genes mapped to Gene Ontology terms associated with antiviral immunity following 6 month of ethanol consumption while TLR signaling pathways were upregulated. These data are indicative of aberrant inflammation and reduced antiviral responses in the lung with chronic alcohol drinking.
Collapse
Affiliation(s)
- Sloan A. Lewis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine
| | - Isaac R. Cinco
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky
| | - Brianna M. Doratt
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky
| | - Madison B. Blanton
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky
| | - Cherise Hoagland
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University
| | - Michael Davies
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University
| | - Kathleen A. Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University
| | - Ilhem Messaoudi
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky
| |
Collapse
|
10
|
Chen Y, Li F, Hua M, Liang M, Song C. Role of GM-CSF in lung balance and disease. Front Immunol 2023; 14:1158859. [PMID: 37081870 PMCID: PMC10111008 DOI: 10.3389/fimmu.2023.1158859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor originally identified as a stimulus that induces the differentiation of bone marrow progenitor cells into granulocytes and macrophages. GM-CSF is now considered to be a multi-origin and pleiotropic cytokine. GM-CSF receptor signals activate JAK2 and induce nuclear signals through the JAK-STAT, MAPK, PI3K, and other pathways. In addition to promoting the metabolism of pulmonary surfactant and the maturation and differentiation of alveolar macrophages, GM-CSF plays a key role in interstitial lung disease, allergic lung disease, alcoholic lung disease, and pulmonary bacterial, fungal, and viral infections. This article reviews the latest knowledge on the relationship between GM-CSF and lung balance and lung disease, and indicates that there is much more to GM-CSF than its name suggests.
Collapse
Affiliation(s)
- Yingzi Chen
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
| | - Fan Li
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
| | - Mengqing Hua
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
| | - Meng Liang
- Department of Biotechnology, School of Life Science, Bengbu Medical College, Anhui, China
- *Correspondence: Chuanwang Song, ; Meng Liang,
| | - Chuanwang Song
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
- *Correspondence: Chuanwang Song, ; Meng Liang,
| |
Collapse
|
11
|
Vrieling F, Stienstra R. Obesity and dysregulated innate immune responses: impact of micronutrient deficiencies. Trends Immunol 2023; 44:217-230. [PMID: 36709082 DOI: 10.1016/j.it.2023.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/28/2023]
Abstract
Obesity is associated with the development of various complications, including diabetes, atherosclerosis, and an increased risk for infections, driven by dysfunctional innate immune responses. Recent insights have revealed that the availability of nutrients is a key determinant of innate immune cell function. Although the presence of obesity is associated with overnutrition of macronutrients, several micronutrient deficiencies, including Vitamin D and zinc, are often present. Micronutrients have been attributed important immunomodulatory roles. In this review, we summarize current knowledge of the immunomodulatory effects of Vitamin D and zinc. We also suggest future lines of research to further improve our understanding of these micronutrients; this may serve as a stepping-stone to explore micronutrient supplementation to improve innate immune cell function during obesity.
Collapse
Affiliation(s)
- Frank Vrieling
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Rinke Stienstra
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands; Department of Internal Medicine, RadboudUMC, Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Yeligar SM, Harris FL, Brown LAS, Hart CM. Pharmacological reversal of post-transcriptional alterations implicated in alcohol-induced alveolar macrophage dysfunction. Alcohol 2023; 106:30-43. [PMID: 36328183 PMCID: PMC10080543 DOI: 10.1016/j.alcohol.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Alcohol use disorders (AUD) cause alveolar macrophage (AM) immune dysfunction and increase risk of lung infections. Excessive alcohol use causes AM oxidative stress, which impairs AM phagocytosis and pathogen clearance from the alveolar space. Alcohol induces expression of NADPH oxidases (Noxes), primary sources of oxidative stress in AM. In contrast, alcohol decreases AM peroxisome proliferator-activated receptor gamma (PPARγ), a critical regulator of AM immune function. To explore the underlying molecular mechanisms for these effects of alcohol, we hypothesized that ethanol promotes CCAAT/enhancer-binding protein beta (C/EBPβ)-mediated suppression of Nox-related microRNAs (miRs), in turn enhancing AM Nox expression, oxidative stress, and phagocytic dysfunction. We also hypothesized that PPARγ activation with pioglitazone (PIO) would reverse alcohol-induced C/EBPβ expression and attenuate AM oxidative stress and phagocytic dysfunction. Cells from the mouse AM cell line (MH-S) were exposed to ethanol in vitro or primary AM were isolated from mice fed ethanol in vivo. Ethanol enhanced C/EBPβ expression, decreased Nox 1-related miR-1264 and Nox 2-related miR-107 levels, and increased Nox1, Nox2, and Nox 4 expression in MH-S cells in vitro and mouse AM in vivo. These alcohol-induced AM derangements were abrogated by loss of C/EBPβ, overexpression of miRs-1264 or -107, or PIO treatment. These findings identify C/EBPβ and Nox-related miRs as novel therapeutic targets for PPARγ ligands, which could provide a translatable strategy to mitigate susceptibility to lung infections in people with a history of AUD. These studies further clarify the molecular underpinnings for a previous clinical trial using short-term PIO treatment to improve AM immunity in AUD individuals.
Collapse
Affiliation(s)
- Samantha M Yeligar
- Emory University, Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Atlanta, Georgia, United States; Atlanta Veterans Affairs Health Care System, Decatur, Georgia, United States.
| | - Frank L Harris
- Emory University, Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Emory + Children's Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, Georgia, United States
| | - Lou Ann S Brown
- Emory University, Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Emory + Children's Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, Georgia, United States
| | - C Michael Hart
- Emory University, Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Atlanta, Georgia, United States; Atlanta Veterans Affairs Health Care System, Decatur, Georgia, United States
| |
Collapse
|
13
|
Gandhirajan A, Roychowdhury S, Kibler C, Cross E, Abraham S, Bellar A, Nagy LE, Scheraga RG, Vachharajani V. SIRT2-PFKP interaction dysregulates phagocytosis in macrophages with acute ethanol-exposure. Front Immunol 2023; 13:1079962. [PMID: 36865524 PMCID: PMC9972587 DOI: 10.3389/fimmu.2022.1079962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/27/2022] [Indexed: 01/28/2023] Open
Abstract
Alcohol abuse, reported by 1/8th critically ill patients, is an independent risk factor for death in sepsis. Sepsis kills over 270,000 patients/year in the US. We reported that the ethanol-exposure suppresses innate-immune response, pathogen clearance, and decreases survival in sepsis-mice via sirtuin 2 (SIRT2). SIRT2 is an NAD+-dependent histone-deacetylase with anti-inflammatory properties. We hypothesized that in ethanol-exposed macrophages, SIRT2 suppresses phagocytosis and pathogen clearance by regulating glycolysis. Immune cells use glycolysis to fuel increased metabolic and energy demand of phagocytosis. Using ethanol-exposed mouse bone marrow- and human blood monocyte-derived macrophages, we found that SIRT2 mutes glycolysis via deacetylating key glycolysis regulating enzyme phosphofructokinase-platelet isoform (PFKP), at mouse lysine 394 (mK394, human: hK395). Acetylation of PFKP at mK394 (hK395) is crucial for PFKP function as a glycolysis regulating enzyme. The PFKP also facilitates phosphorylation and activation of autophagy related protein 4B (Atg4B). Atg4B activates microtubule associated protein 1 light chain-3B (LC3). LC3 is a driver of a subset of phagocytosis, the LC3-associated phagocytosis (LAP), which is crucial for segregation and enhanced clearance of pathogens, in sepsis. We found that in ethanol-exposed cells, the SIRT2-PFKP interaction leads to decreased Atg4B-phosphorylation, decreased LC3 activation, repressed phagocytosis and LAP. Genetic deficiency or pharmacological inhibition of SIRT2 reverse PFKP-deacetylation, suppressed LC3-activation and phagocytosis including LAP, in ethanol-exposed macrophages to improve bacterial clearance and survival in ethanol with sepsis mice.
Collapse
Affiliation(s)
- Anugraha Gandhirajan
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Sanjoy Roychowdhury
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Christopher Kibler
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Emily Cross
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Susamma Abraham
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Annett Bellar
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Laura E. Nagy
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Rachel Greenberg Scheraga
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Vidula Vachharajani
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
14
|
Li Z, Liu Y, Wei R, Yong VW, Xue M. The Important Role of Zinc in Neurological Diseases. Biomolecules 2022; 13:28. [PMID: 36671413 PMCID: PMC9855948 DOI: 10.3390/biom13010028] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Zinc is one of the most abundant metal ions in the central nervous system (CNS), where it plays a crucial role in both physiological and pathological brain functions. Zinc promotes antioxidant effects, neurogenesis, and immune system responses. From neonatal brain development to the preservation and control of adult brain function, zinc is a vital homeostatic component of the CNS. Molecularly, zinc regulates gene expression with transcription factors and activates dozens of enzymes involved in neuronal metabolism. During development and in adulthood, zinc acts as a regulator of synaptic activity and neuronal plasticity at the cellular level. There are several neurological diseases that may be affected by changes in zinc status, and these include stroke, neurodegenerative diseases, traumatic brain injuries, and depression. Accordingly, zinc deficiency may result in declines in cognition and learning and an increase in oxidative stress, while zinc accumulation may lead to neurotoxicity and neuronal cell death. In this review, we explore the mechanisms of brain zinc balance, the role of zinc in neurological diseases, and strategies affecting zinc for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou 450001, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou 450001, China
| | - Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou 450001, China
| | - V. Wee Yong
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou 450001, China
| |
Collapse
|
15
|
Wigger GW, Khani D, Ahmed M, Sayegh L, Auld SC, Fan X, Guidot DM, Staitieh BS. Alcohol impairs recognition and uptake of Mycobacterium tuberculosis by suppressing toll-like receptor 2 expression. Alcohol Clin Exp Res 2022; 46:2214-2224. [PMID: 36281822 PMCID: PMC9772112 DOI: 10.1111/acer.14960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/12/2022] [Accepted: 10/17/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Alcohol impairs pulmonary innate immune function and is associated with an increased risk of tuberculosis (TB). Toll-like receptor 2 (TLR2) is a pattern recognition receptor on alveolar macrophages that recognizes Mycobacterium tuberculosis (Mtb). The expression of TLR2 depends, in part, on granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling. Given our prior work demonstrating the suppression of GM-CSF signaling following chronic alcohol ingestion, we hypothesized that alcohol impairs TLR2 expression via the suppression of GM-CSF and thereby reduces the ability of the macrophage to recognize and phagocytose Mtb. METHODS Primary alveolar macrophages were isolated from control-fed and alcohol-fed rats. Prior to cell isolation, some alcohol-fed rats were treated with intranasal GM-CSF and then endotracheally inoculated with an attenuated strain of Mtb. Primary macrophages were then isolated and immunofluorescence was used to determine phagocytic efficiency and TLR2 expression in the presence and absence of GM-CSF treatment and phagocytic efficiency in the presence and absence of TLR2 neutralization. RESULTS TLR2 expression and phagocytosis of Mtb were significantly lower in the alveolar macrophages of alcohol-fed rats than control-fed rats. In parallel, blocking TLR2 signaling recapitulated this decreased phagocytosis of Mtb. In contrast, intranasal GM-CSF treatment restored TLR2 expression and Mtb phagocytosis in the alveolar macrophages of alcohol-fed rats to levels comparable to those of control-fed rats. CONCLUSIONS Chronic alcohol ingestion reduces TLR2 protein expression and phagocytosis of Mtb, likely due to impaired GM-CSF signaling. GM-CSF restores membrane-bound TLR2 expression and phagocytic function.
Collapse
Affiliation(s)
- Gregory W Wigger
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Darya Khani
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mariam Ahmed
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Layal Sayegh
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sara C Auld
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Xian Fan
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David M Guidot
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bashar S Staitieh
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Forsyth CB, Voigt RM, Swanson GR, Bishehsari F, Shaikh M, Zhang L, Engen P, Keshavarzian A. Alcohol use disorder as a potential risk factor for COVID-19 severity: A narrative review. Alcohol Clin Exp Res 2022; 46:1930-1943. [PMID: 36394508 PMCID: PMC9722573 DOI: 10.1111/acer.14936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022]
Abstract
In Dec. 2019-January 2020, a pneumonia illness originating in Wuhan, China, designated as coronavirus disease 2019 (COVID-19) was shown to be caused by a novel RNA coronavirus designated as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). People with advanced age, male sex, and/or underlying health conditions (obesity, type 2 diabetes, cardiovascular disease, hypertension, chronic kidney disease, and chronic lung disease) are especially vulnerable to severe COVID-19 symptoms and death. These risk factors impact the immune system and are also associated with poor health, chronic illness, and shortened longevity. However, a large percent of patients without these known risk factors also develops severe COVID-19 disease that can result in death. Thus, there must exist risk factors that promote exaggerated inflammatory and immune response to the SARS-CoV-2 virus leading to death. One such risk factor may be alcohol misuse and alcohol use disorder because these can exacerbate viral lung infections like SARS, influenza, and pneumonia. Thus, it is highly plausible that alcohol misuse is a risk factor for either increased infection rate when individuals are exposed to SARS-CoV-2 virus and/or more severe COVID-19 in infected patients. Alcohol use is a well-known risk factor for lung diseases and ARDS in SARS patients. We propose that alcohol has three key pathogenic elements in common with other COVID-19 severity risk factors: namely, inflammatory microbiota dysbiosis, leaky gut, and systemic activation of the NLRP3 inflammasome. We also propose that these three elements represent targets for therapy for severe COVID-19.
Collapse
Affiliation(s)
- Christopher B. Forsyth
- Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, IL 60612
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612
- Rush University Graduate College, Rush University Medical Center, Chicago, IL 60612
| | - Robin M. Voigt
- Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, IL 60612
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612
- Rush University Graduate College, Rush University Medical Center, Chicago, IL 60612
| | - Garth R. Swanson
- Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, IL 60612
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612
- Rush University Graduate College, Rush University Medical Center, Chicago, IL 60612
| | - Faraz Bishehsari
- Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, IL 60612
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612
- Rush University Graduate College, Rush University Medical Center, Chicago, IL 60612
| | - Maliha Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612
| | - Lijuan Zhang
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612
| | - Phillip Engen
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612
| | - Ali Keshavarzian
- Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, IL 60612
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612
- Rush University Graduate College, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|
17
|
Morris NL, Michael DN, Crotty KM, Chang SS, Yeligar SM. Alcohol-Induced Glycolytic Shift in Alveolar Macrophages Is Mediated by Hypoxia-Inducible Factor-1 Alpha. Front Immunol 2022; 13:865492. [PMID: 35634337 PMCID: PMC9130492 DOI: 10.3389/fimmu.2022.865492] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/15/2022] [Indexed: 12/20/2022] Open
Abstract
Excessive alcohol use increases the risk of developing respiratory infections partially due to impaired alveolar macrophage (AM) phagocytic capacity. Previously, we showed that chronic ethanol (EtOH) exposure led to mitochondrial derangements and diminished oxidative phosphorylation in AM. Since oxidative phosphorylation is needed to meet the energy demands of phagocytosis, EtOH mediated decreases in oxidative phosphorylation likely contribute to impaired AM phagocytosis. Treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) ligand, pioglitazone (PIO), improved EtOH-mediated decreases in oxidative phosphorylation. In other models, hypoxia-inducible factor-1 alpha (HIF-1α) has been shown to mediate the switch from oxidative phosphorylation to glycolysis; however, the role of HIF-1α in chronic EtOH mediated derangements in AM has not been explored. We hypothesize that AM undergo a metabolic shift from oxidative phosphorylation to a glycolytic phenotype in response to chronic EtOH exposure. Further, we speculate that HIF-1α is a critical mediator of this metabolic switch. To test these hypotheses, primary mouse AM (mAM) were isolated from a mouse model of chronic EtOH consumption and a mouse AM cell line (MH-S) were exposed to EtOH in vitro. Expression of HIF-1α, glucose transporters (Glut1 and 4), and components of the glycolytic pathway (Pfkfb3 and PKM2), were measured by qRT-PCR and western blot. Lactate levels (lactate assay), cell energy phenotype (extracellular flux analyzer), glycolysis stress tests (extracellular flux analyzer), and phagocytic function (fluorescent microscopy) were conducted. EtOH exposure increased expression of HIF-1α, Glut1, Glut4, Pfkfb3, and PKM2 and shifted AM to a glycolytic phenotype. Pharmacological stabilization of HIF-1α via cobalt chloride treatment in vitro mimicked EtOH-induced AM derangements (increased glycolysis and diminished phagocytic capacity). Further, PIO treatment diminished HIF-1α levels and reversed glycolytic shift following EtOH exposure. These studies support a critical role for HIF-1α in mediating the glycolytic shift in energy metabolism of AM during excessive alcohol use.
Collapse
Affiliation(s)
- Niya L Morris
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - David N Michael
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Kathryn M Crotty
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Sarah S Chang
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Samantha M Yeligar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| |
Collapse
|
18
|
Hulsebus HJ, Najarro KM, McMahan RH, Boe DM, Orlicky DJ, Kovacs EJ. Ethanol Intoxication Impairs Respiratory Function and Bacterial Clearance and Is Associated With Neutrophil Accumulation in the Lung After Streptococcus pneumoniae Infection. Front Immunol 2022; 13:884719. [PMID: 35603143 PMCID: PMC9116899 DOI: 10.3389/fimmu.2022.884719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
Alcohol consumption is commonplace in the United States and its prevalence has increased in recent years. Excessive alcohol use is linked to an increased risk of infections including pneumococcal pneumonia, mostly commonly caused by Streptococcus pneumoniae. In addition, pneumonia patients with prior alcohol use often require more intensive treatment and longer hospital stays due to complications of infection. The initial respiratory tract immune response to S. pneumoniae includes the production of pro-inflammatory cytokines and chemokines by resident cells in the upper and lower airways which activate and recruit leukocytes to the site of infection. However, this inflammation must be tightly regulated to avoid accumulation of toxic by-products and subsequent tissue damage. A majority of previous work on alcohol and pneumonia involve animal models utilizing high concentrations of ethanol or chronic exposure and offer conflicting results about how ethanol alters immunity to pathogens. Further, animal models often employ a high bacterial inoculum which may overwhelm the immune system and obscure results, limiting their applicability to the course of human infection. Here, we sought to determine how a more moderate ethanol exposure paradigm affects respiratory function and innate immunity in mice after intranasal infection with 104 colony forming units of S. pneumoniae. Ethanol-exposed mice displayed respiratory dysfunction and impaired bacterial clearance after infection compared to their vehicle-exposed counterparts. This altered response was associated with increased gene expression of neutrophil chemokines Cxcl1 and Cxcl2 in whole lung homogenates, elevated concentrations of circulating granulocyte-colony stimulating factor (G-CSF), and higher neutrophil numbers in the lung 24 hours after infection. Taken together, these findings suggest that even a more moderate ethanol consumption pattern can dramatically modulate the innate immune response to S. pneumoniae after only 3 days of ethanol exposure and provide insight into possible mechanisms related to the compromised respiratory immunity seen in alcohol consumers with pneumonia.
Collapse
Affiliation(s)
- Holly J Hulsebus
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Immunology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kevin M Najarro
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rachel H McMahan
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Devin M Boe
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Immunology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Immunology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
19
|
Liu X, Ali MK, Dua K, Xu R. The Role of Zinc in the Pathogenesis of Lung Disease. Nutrients 2022; 14:nu14102115. [PMID: 35631256 PMCID: PMC9143957 DOI: 10.3390/nu14102115] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 12/26/2022] Open
Abstract
Lung diseases, such as asthma, chronic obstructive pulmonary diseases (COPD), and cystic fibrosis (CF), are among the leading causes of mortality and morbidity globally. They contribute to substantial economic burdens on society and individuals. Currently, only a few treatments are available to slow the development and progression of these diseases. Thus, there is an urgent unmet need to develop effective therapies to improve quality of life and limit healthcare costs. An increasing body of clinical and experimental evidence suggests that altered zinc and its regulatory protein levels in the systemic circulation and in the lungs are associated with these disease’s development and progression. Zinc plays a crucial role in human enzyme activity, making it an essential trace element. As a cofactor in metalloenzymes and metalloproteins, zinc involves a wide range of biological processes, such as gene transcription, translation, phagocytosis, and immunoglobulin and cytokine production in both health and disease. Zinc has gained considerable interest in these lung diseases because of its anti-inflammatory, antioxidant, immune, and metabolic modulatory properties. Here we highlight the role and mechanisms of zinc in the pathogenesis of asthma, COPD, CF, acute respiratory distress syndrome, idiopathic pulmonary fibrosis, and pulmonary hypertension.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China;
| | - Md Khadem Ali
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA;
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia;
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Ran Xu
- Department of Thoracic Surgery, Shengjing Hospital, China Medical University, Shenyang 110022, China
- Correspondence: ; Tel.: +86-189-4025-8514
| |
Collapse
|
20
|
Deng Z, Jin J, Li M, Wang S, Ma Y, Zheng Q. Alcohol Withdrawal Is Associated With Worse Outcomes in Patients Undergoing Primary Total Knee or Total Hip Arthroplasty. J Arthroplasty 2021; 36:3870-3877.e5. [PMID: 34419317 DOI: 10.1016/j.arth.2021.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Alcohol withdrawal (AW) syndrome is an independent risk factor for postoperative complications. This study aims to evaluate the influence of AW on perioperative outcomes in patients who underwent primary total knee (TKA) or total hip arthroplasty (THA). METHODS We used the National Inpatient Sample database to identify patients undergoing TKA/THA from 2003 to 2014. The primary exposure of interest was AW. Multivariable adjusted models were used to evaluate the association of AW with in-hospital medical complications, surgical complications, mortality, cost, and length of stay (LOS) in patients undergoing TKA/THA. RESULTS There were 2,971,539 adult hospitalizations for THAs and 6,367,713 hospitalizations for TKAs included in the present study, among which 0.14% of AW for THA patients and 0.10% of AW for TKA patients. Multivariable adjustment analysis suggested that AW was associated with an increased risk of medical complications (odds ratio [OR] 2.08, 95% confidence interval [CI] 1.79-2.42, P < .0001), surgical complications (OR 1.75, 95% CI 1.51-2.03, P < .0001), and had 4.79 times increase of in-hospital mortality, 26% increase of total cost, and 53% increase of LOS in THA procedures. For TKA procedures, AW was also associated with increased risk of medical complications (OR 3.14, 95% CI 2.78-3.56, P < .0001), surgical complications (OR 2.07, 95% CI 1.82-2.34, P < .0001) and 4.24 times increase of in-hospital mortality, 29% increase of total cost, and 58% increase of LOS after multivariable adjustment. CONCLUSION AW is associated with increased risk of in-hospital mortality, medical and surgical complications. Proactive surveillance and management of AW may be important in improving outcomes in patients who underwent THA and TKA procedure.
Collapse
Affiliation(s)
- Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiewen Jin
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mengyuan Li
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shuai Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
21
|
Chen L, Li L, Song Y, Lv T. Blocking SphK1/S1P/S1PR1 Signaling Pathway Alleviates Lung Injury Caused by Sepsis in Acute Ethanol Intoxication Mice. Inflammation 2021; 44:2170-2179. [PMID: 34109517 PMCID: PMC8189277 DOI: 10.1007/s10753-021-01490-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
Acute ethanol intoxication increases the risk of sepsis and aggravates the symptoms of sepsis and lung injury. Therefore, this study aimed to explore whether sphingosine kinase 1 (SphK1)/sphingosine-1-phosphate (S1P)/S1P receptor 1 (S1PR1) signaling pathway functions in lung injury caused by acute ethanol intoxication-enhanced sepsis, as well as its underlying mechanism. The acute ethanol intoxication model was simulated by intraperitoneally administering mice with 32% ethanol solution, and cecal ligation and puncture (CLP) was used to construct the sepsis model. The lung tissue damage was observed by hematoxylin-eosin (H&E) staining, and the wet-to-dry (W/D) ratio was used to evaluate the degree of pulmonary edema. Inflammatory cell counting and protein concentration in bronchoalveolar lavage fluid (BALF) were, respectively, detected by hemocytometer and bicinchoninic acid (BCA) method. The levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and IL-18 in BALF were detected by their commercial enzyme-linked immunosorbent assay (ELISA) kits. The myeloperoxidase (MPO) activity and expression of apoptosis-related proteins and SphK1/S1P/S1PR1 pathway-related proteins were, respectively, analyzed by MPO ELISA kit and Western blot analysis. The cell apoptosis in lung tissues was observed by TUNEL assay. Acute ethanol intoxication (EtOH) decreased the survival rate of mice and exacerbated the lung injury caused by sepsis through increasing pulmonary vascular permeability, neutrophil infiltration, release of inflammatory factors, and cell apoptosis. In addition, EtOH could activate the SphK1/S1P/S1PR1 pathway in CLP mice. However, PF-543, as a specific inhibitor of SphK1, could partially reverse the deleterious effects on lung injury of CLP mice. PF-543 alleviated lung injury caused by sepsis in acute ethanol intoxication rats by suppressing the SphK1/S1P/S1PR1 signaling pathway.
Collapse
Affiliation(s)
- Liang Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu, China
| | - Lingling Li
- Department of Respiratory and Critical Care Medicine, The Affiliated No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu, China
| | - Yong Song
- Jinling Clinical Medical College, Nanjing Medical University, 305 Zhongshan East Road, Xuanwu District, Nanjing City, 210002, Jiangsu Province, China.
| | - Tangfeng Lv
- Jinling Clinical Medical College, Nanjing Medical University, 305 Zhongshan East Road, Xuanwu District, Nanjing City, 210002, Jiangsu Province, China.
| |
Collapse
|
22
|
Alleyne J, Dopico AM. Alcohol Use Disorders and Their Harmful Effects on the Contractility of Skeletal, Cardiac and Smooth Muscles. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2021; 1:10011. [PMID: 35169771 PMCID: PMC8843239 DOI: 10.3389/adar.2021.10011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/21/2021] [Indexed: 06/14/2023]
Abstract
Alcohol misuse has deleterious effects on personal health, family, societal units, and global economies. Moreover, alcohol misuse usually leads to several diseases and conditions, including alcoholism, which is a chronic condition and a form of addiction. Alcohol misuse, whether as acute intoxication or alcoholism, adversely affects skeletal, cardiac and/or smooth muscle contraction. Ethanol (ethyl alcohol) is the main effector of alcohol-induced dysregulation of muscle contractility, regardless of alcoholic beverage type or the ethanol metabolite (with acetaldehyde being a notable exception). Ethanol, however, is a simple and "promiscuous" ligand that affects many targets to mediate a single biological effect. In this review, we firstly summarize the processes of excitation-contraction coupling and calcium homeostasis which are critical for the regulation of contractility in all muscle types. Secondly, we present the effects of acute and chronic alcohol exposure on the contractility of skeletal, cardiac, and vascular/ nonvascular smooth muscles. Distinctions are made between in vivo and in vitro experiments, intoxicating vs. sub-intoxicating ethanol levels, and human subjects vs. animal models. The differential effects of alcohol on biological sexes are also examined. Lastly, we show that alcohol-mediated disruption of muscle contractility, involves a wide variety of molecular players, including contractile proteins, their regulatory factors, membrane ion channels and pumps, and several signaling molecules. Clear identification of these molecular players constitutes a first step for a rationale design of pharmacotherapeutics to prevent, ameliorate and/or reverse the negative effects of alcohol on muscle contractility.
Collapse
Affiliation(s)
| | - Alex M. Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
23
|
Blanc F, Waechter C, Vogel T, Schorr B, Demuynck C, Hunyadi CM, Meyer M, Mutelica D, Bougaa N, Fafi-Kremer S, Calabrese L, Schmitt E, Imperiale D, Jehl C, Boussuge A, Suna C, Weill F, Matzinger A, Muller C, Karcher P, Kaltenbach G, Sauleau E. Therapeutic prevention of COVID-19 in elderly: a case-control study. GeroScience 2021; 43:2333-2343. [PMID: 34273049 PMCID: PMC8285285 DOI: 10.1007/s11357-021-00397-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
COVID-19 is a particularly aggressive disease for the elderly as 86% of deaths related to COVID-19 occur in people over 65 years of age. Despite the urgent need for a preventive treatment, there are currently no serious leads, other than the vaccination. The aim of this retrospective case-control study is to find a pharmacological preventive treatment of COVID-19 in elderly patients. One-hundred-seventy-nine patients had been in contact with other COVID-19 patients at home or in hospital, of whom 89 had tested RT-PCR-positive (COVID-pos) for the virus and 90 had tested RT-PCR-negative (COVID-neg). Treatments within 15 days prior to RT-PCR (including antihypertensive drugs, antipsychotics, antibiotics, nonsteroidal anti-inflammatory drugs, proton pump inhibitors (PPIs), oral antidiabetics (OADs), corticosteroids, immunosuppressants), comorbidities, symptoms, laboratory values, and clinical outcome were all collected. COVID-pos patients more frequently had a history of diabetes (P = .016) and alcoholism (P = .023), a lower leukocyte count (P = .014) and a higher mortality rate - 29.2% versus 14.4% - (P = .014) when compared to COVID-neg patients. Patients on PPIs were 2.3 times less likely (odds ratio [OR] = 0.4381, 95% confidence interval [CI] [0.2331, 0.8175], P = .0053) to develop COVID-19 infection, compared to those not on PPIs. No other treatment decreased or increased this risk. COVID-pos patients on antipsychotics (P = .0013) and OADs (P = .0153), particularly metformin (P = .0237), were less likely to die. Thus, patients on treatment with PPI were less likely to develop COVID-19 infection, and those on antipsychotics or metformin had a lower risk of mortality. However, prospective studies, including clinical trials, are needed to confirm or not these findings.
Collapse
Affiliation(s)
- Frederic Blanc
- ICube Laboratory, UMR 7357 and CNRS, University of Strasbourg, Strasbourg, France.
| | - Cedric Waechter
- Pôle de Gériatrie, La Robertsau Geriatric Hospital, University Hospital of Strasbourg, Strasbourg, France
| | - Thomas Vogel
- Pôle de Gériatrie, La Robertsau Geriatric Hospital, University Hospital of Strasbourg, Strasbourg, France
| | - Benoit Schorr
- Pôle de Gériatrie, La Robertsau Geriatric Hospital, University Hospital of Strasbourg, Strasbourg, France
| | - Catherine Demuynck
- Pôle de Gériatrie, La Robertsau Geriatric Hospital, University Hospital of Strasbourg, Strasbourg, France
| | - Catherine Martin Hunyadi
- Pôle de Gériatrie, La Robertsau Geriatric Hospital, University Hospital of Strasbourg, Strasbourg, France
| | - Maxence Meyer
- Pôle de Gériatrie, La Robertsau Geriatric Hospital, University Hospital of Strasbourg, Strasbourg, France
| | - Denata Mutelica
- Pôle de Gériatrie, La Robertsau Geriatric Hospital, University Hospital of Strasbourg, Strasbourg, France
| | - Nadjiba Bougaa
- Pôle de Gériatrie, La Robertsau Geriatric Hospital, University Hospital of Strasbourg, Strasbourg, France
| | - Samira Fafi-Kremer
- Virology Department, University Hospital of Strasbourg, Strasbourg, France
| | - Lidia Calabrese
- Pôle de Gériatrie, La Robertsau Geriatric Hospital, University Hospital of Strasbourg, Strasbourg, France
| | - Elise Schmitt
- Pôle de Gériatrie, La Robertsau Geriatric Hospital, University Hospital of Strasbourg, Strasbourg, France
| | - Delphine Imperiale
- Pôle de Gériatrie, La Robertsau Geriatric Hospital, University Hospital of Strasbourg, Strasbourg, France
| | - Catherine Jehl
- Pôle de Gériatrie, La Robertsau Geriatric Hospital, University Hospital of Strasbourg, Strasbourg, France
| | - Alexandre Boussuge
- Pôle de Gériatrie, La Robertsau Geriatric Hospital, University Hospital of Strasbourg, Strasbourg, France
| | - Carmen Suna
- Pôle de Gériatrie, La Robertsau Geriatric Hospital, University Hospital of Strasbourg, Strasbourg, France
| | - François Weill
- Pôle de Gériatrie, La Robertsau Geriatric Hospital, University Hospital of Strasbourg, Strasbourg, France
| | - Alexia Matzinger
- Pôle de Gériatrie, La Robertsau Geriatric Hospital, University Hospital of Strasbourg, Strasbourg, France
| | - Candice Muller
- Pôle de Gériatrie, La Robertsau Geriatric Hospital, University Hospital of Strasbourg, Strasbourg, France
| | - Patrick Karcher
- Pôle de Gériatrie, La Robertsau Geriatric Hospital, University Hospital of Strasbourg, Strasbourg, France
| | - Georges Kaltenbach
- Pôle de Gériatrie, La Robertsau Geriatric Hospital, University Hospital of Strasbourg, Strasbourg, France
| | - Erik Sauleau
- ICube Laboratory, UMR 7357 and CNRS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
24
|
Venkata-Subramani M, Nunley DR, Roman J. Donor factors and risk of primary graft dysfunction and mortality post lung transplantation: A proposed conceptual framework. Clin Transplant 2021; 35:e14480. [PMID: 34516007 DOI: 10.1111/ctr.14480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
Lung transplantation remains a therapeutic option in end-stage lung disease. However, despite advances in the field, early allograft function can be compromised by the development of primary graft dysfunction (PGD); this being the leading cause of morbidity and mortality immediately following the lung transplant procedure. Several recipient factors have been associated with increased risk of PGD, but less is known about donor factors. Aging, tobacco, and chronic alcohol use are donor factors implicated, but how these factors promote PGD remains unclear. Herein, we discuss the available clinical data that link these donor factors with outcomes after lung transplantation, and how they might render the recipient susceptible to PGD through a two-hit process.
Collapse
Affiliation(s)
- Mrinalini Venkata-Subramani
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Sidney Kimmel College of Medicine, and Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - David R Nunley
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Lung Transplantation Program, The Ohio State University, Columbus, Ohio, USA
| | - Jesse Roman
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Sidney Kimmel College of Medicine, and Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
25
|
Hall SC, Smith DR, Dyavar SR, Wyatt TA, Samuelson DR, Bailey KL, Knoell DL. Critical Role of Zinc Transporter (ZIP8) in Myeloid Innate Immune Cell Function and the Host Response against Bacterial Pneumonia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1357-1370. [PMID: 34380651 PMCID: PMC10575710 DOI: 10.4049/jimmunol.2001395] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/29/2021] [Indexed: 11/19/2022]
Abstract
Zinc (Zn) is required for proper immune function and host defense. Zn homeostasis is tightly regulated by Zn transporters that coordinate biological processes through Zn mobilization. Zn deficiency is associated with increased susceptibility to bacterial infections, including Streptococcus pneumoniae, the most commonly identified cause of community-acquired pneumonia. Myeloid cells, including macrophages and dendritic cells (DCs), are at the front line of host defense against invading bacterial pathogens in the lung and play a critical role early on in shaping the immune response. Expression of the Zn transporter ZIP8 is rapidly induced following bacterial infection and regulates myeloid cell function in a Zn-dependent manner. To what extent ZIP8 is instrumental in myeloid cell function requires further study. Using a novel, myeloid-specific, Zip8 knockout model, we identified vital roles of ZIP8 in macrophage and DC function upon pneumococcal infection. Administration of S. pneumoniae into the lung resulted in increased inflammation, morbidity, and mortality in Zip8 knockout mice compared with wild-type counterparts. This was associated with increased numbers of myeloid cells, cytokine production, and cell death. In vitro analysis of macrophage and DC function revealed deficits in phagocytosis and increased cytokine production upon bacterial stimulation that was, in part, due to increased NF-κB signaling. Strikingly, alteration of myeloid cell function resulted in an imbalance of Th17/Th2 responses, which is potentially detrimental to host defense. These results (for the first time, to our knowledge) reveal a vital ZIP8- and Zn-mediated axis that alters the lung myeloid cell landscape and the host response against pneumococcus.
Collapse
Affiliation(s)
- Sannette C Hall
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Deandra R Smith
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Shetty Ravi Dyavar
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Todd A Wyatt
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE
- Pulmonary Division, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE; and
- Department of Veterans Affairs Nebraska, University of Nebraska Medical Center, Western Iowa Health Care System, Omaha, NE
| | - Derrick R Samuelson
- Pulmonary Division, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE; and
| | - Kristina L Bailey
- Pulmonary Division, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE; and
- Department of Veterans Affairs Nebraska, University of Nebraska Medical Center, Western Iowa Health Care System, Omaha, NE
| | - Daren L Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE;
| |
Collapse
|
26
|
Kostoff RN, Briggs MB, Kanduc D, Shores DR, Kovatsi L, Vardavas AI, Porter AL. Common contributing factors to COVID-19 and inflammatory bowel disease. Toxicol Rep 2021; 8:1616-1637. [PMID: 34485092 PMCID: PMC8406546 DOI: 10.1016/j.toxrep.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/17/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022] Open
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from an individual's dysfunctional immune response following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events ultimately leading to COVID-19. We have previously identified many contributing factors (CFs) (representing toxic exposure, lifestyle factors and psychosocial stressors) common to myriad chronic diseases. We hypothesized significant overlap between CFs associated with COVID-19 and inflammatory bowel disease (IBD), because of the strong role immune dysfunction plays in each disease. A streamlined dot-product approach was used to identify potential CFs to COVID-19 and IBD. Of the fifty CFs to COVID-19 that were validated for demonstration purposes, approximately half had direct impact on COVID-19 (the CF and COVID-19 were mentioned in the same record; i.e., CF---→COVID-19), and the other half had indirect impact. The nascent character of the COVID-19 core literature (∼ one year old) did not allow sufficient time for the direct impacts of many CFs on COVID-19 to be identified. Therefore, an immune system dysfunction (ID) literature directly related to the COVID-19 core literature was used to augment the COVID-19 core literature and provide the remaining CFs that impacted COVID-19 indirectly (i.e., CF---→immune system dysfunction---→COVID-19). Approximately 13000 potential CFs for myriad diseases (obtained from government and university toxic substance lists) served as the starting point for the dot-product identification process. These phrases were intersected (dot-product) with phrases extracted from a PubMed-derived IBD core literature, a nascent COVID-19 core literature, and the COVID-19-related immune system dysfunction (ID) core literature to identify common ID/COVID-19 and IBD CFs. Approximately 3000 potential CFs common to both ID and IBD, almost 2300 potential CFs common to ID and COVID-19, and over 1900 potential CFs common to IBD and COVID-19 were identified. As proof of concept, we validated fifty of these ∼3000 overlapping ID/IBD candidate CFs with biologic plausibility. We further validated 24 of the fifty as common CFs in the IBD and nascent COVID-19 core literatures. This significant finding demonstrated that the CFs indirectly related to COVID-19 -- identified with use of the immune system dysfunction literature -- are strong candidates to emerge eventually as CFs directly related to COVID-19. As discussed in the main text, many more CFs common to all these core literatures could be identified and validated. ID and IBD share many common risk/contributing factors, including behaviors and toxic exposures that impair immune function. A key component to immune system health is removal of those factors that contribute to immune system dysfunction in the first place. This requires a paradigm shift from traditional Western medicine, which often focuses on treatment, rather than prevention.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA, 20155, United States
| | | | - Darja Kanduc
- Dept. of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Via Orabona 4, Bari, 70125, Italy
| | - Darla Roye Shores
- Department of Pediatrics, Division of Gastroenterology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Greece
| | - Alexander I. Vardavas
- Laboratory of Toxicology & Forensic Sciences, Faculty of Medicine, University of Crete, Greece
| | - Alan L. Porter
- R&D, Search Technology, Inc., Peachtree Corners, GA, 30092, United States
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| |
Collapse
|
27
|
Yeligar SM, Mehta AJ, Harris FL, Brown LAS, Hart CM. Pioglitazone Reverses Alcohol-Induced Alveolar Macrophage Phagocytic Dysfunction. THE JOURNAL OF IMMUNOLOGY 2021; 207:483-492. [PMID: 34193599 DOI: 10.4049/jimmunol.2000565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/09/2021] [Indexed: 01/02/2023]
Abstract
Alcohol use disorders (AUD) increase susceptibility to respiratory infections by 2- to 4-fold in part because of impaired alveolar macrophage (AM) immune function. Alcohol causes AM oxidative stress, diminishing AM phagocytic capacity and clearance of microbes from the alveolar space. Alcohol increases AM NADPH oxidases (Noxes), primary sources of AM oxidative stress, and reduces peroxisome proliferator-activated receptor γ (PPARγ) expression, a critical regulator of AM immune function. To investigate the underlying mechanisms of these alcohol-induced AM derangements, we hypothesized that alcohol stimulates CCAAT/enhancer-binding protein β (C/EBPβ) to suppress Nox-related microRNAs (miRs), thereby enhancing AM Nox expression, oxidative stress, and phagocytic dysfunction. Furthermore, we postulated that pharmacologic PPARγ activation with pioglitazone would inhibit C/EBPβ and attenuate alcohol-induced AM dysfunction. AM isolated from human AUD subjects or otherwise healthy control subjects were examined. Compared with control AM, alcohol activated AM C/EBPβ, decreased Nox1-related miR-1264 and Nox2-related miR-107, and increased Nox1, Nox2, and Nox4 expression and activity. These alcohol-induced AM derangements were abrogated by inhibition of C/EBPβ, overexpression of miR-1264 or miR-107, or pioglitazone treatment. These findings define novel molecular mechanisms of alcohol-induced AM dysfunction mediated by C/EBPβ and Nox-related miRs that are amenable to therapeutic targeting with PPARγ ligands. These results demonstrate that PPARγ ligands provide a novel and rapidly translatable strategy to mitigate susceptibility to respiratory infections and related morbidity in individuals with AUD.
Collapse
Affiliation(s)
- Samantha M Yeligar
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA; .,Atlanta Veterans Affairs Health Care System, Decatur, GA; and
| | - Ashish J Mehta
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA.,Atlanta Veterans Affairs Health Care System, Decatur, GA; and
| | - Frank L Harris
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University and Children's Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, GA
| | - Lou Ann S Brown
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University and Children's Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, GA
| | - C Michael Hart
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA.,Atlanta Veterans Affairs Health Care System, Decatur, GA; and
| |
Collapse
|
28
|
Chu S, McCormick TS, Lazarus HM, Leal LO, Ghannoum MA. Invasive fungal disease and the immunocompromised host including allogeneic hematopoietic cell transplant recipients: Improved understanding and new strategic approach with sargramostim. Clin Immunol 2021; 228:108731. [PMID: 33892201 DOI: 10.1016/j.clim.2021.108731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 12/17/2022]
Abstract
In hosts with damaged or impaired immune systems such as those undergoing hematopoietic cell transplant (HCT) or intensive chemotherapy, breakthrough fungal infections can be fatal. Risk factors for breakthrough infections include severe neutropenia, use of corticosteroids, extended use of broad-spectrum antibiotics, and intensive care unit admission. An individual's cumulative state of immunosuppression directly contributes to the likelihood of experiencing increased infection risk. Incidence of invasive fungal infection (IFI) after HCT may be up to 5-8%. Early intervention may improve IFI outcomes, although many infections are resistant to standard therapies (voriconazole, caspofungin, micafungin, amphotericin B, posaconazole or itraconazole, as single agents or in combination). We review herein several contributing factors that may contribute to the net state of immunosuppression in recipients of HCT. We also review a new approach for IFI utilizing adjunctive therapy with sargramostim, a yeast-derived recombinant human granulocyte-macrophage colony-stimulating factor (rhu GM-CSF).
Collapse
Affiliation(s)
- Sherman Chu
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA; College of Osteopathic Medicine of the Pacific, Northwest (COMP), Lebanon, OR, USA.
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA.
| | - Hillard M Lazarus
- Department of Medicine, Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, USA.
| | - Luis O Leal
- Partner Therapeutics, Inc., 19 Muzzey St, Lexington, MA, USA.
| | - Mahmoud A Ghannoum
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA; Center for Medical Mycology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
29
|
Hoonpongsimanont W, Ghanem G, Saadat S, Nguyen M, Louis C, Sahota PK, Danishgar L, Carroll C, Barrios C, Lotfipour S. Correlation between Alcohol Use Disorders, Blood Alcohol Content, and Length of Stay in Trauma Patients. J Emerg Trauma Shock 2021; 14:42-47. [PMID: 33911436 PMCID: PMC8054814 DOI: 10.4103/jets.jets_10_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/08/2020] [Accepted: 08/22/2020] [Indexed: 01/12/2023] Open
Abstract
Background: Patients with an alcohol use disorder (AUD) have an increased risk of developing complications during their hospital stays; however, how AUD impacts the length of stay (LOS) and the utilization of hospital resources remains inconclusive. Aim: This study aimed to identify the associations between AUD, defined by self-reported alcohol consumption, blood alcohol content (BAC), and hospital LOS (HLOS) including intensive care unit (ICU) LOS in the trauma patient population. Study Design: We conducted a retrospective study analyzing data obtained from 2010 to 2018 at a university-based, level-one trauma emergency department. We identified 1689 adult trauma patients who completed the AUDs identification test (AUDIT) and were admitted to the hospital. We retrieved BAC, age, gender, LOS, and injury severity score (ISS) from the patient charts. The independent samples' median test was used to assess the association of HLOS and ICULOS with ISS, BAC levels, or AUDIT scores. Results: ISS was directly associated with higher HLOS (P < 0.001) and ICULOS (P < 0.001); however there was no statistically significant association between AUDIT scores and ICULOS (P = 0.21) or HLOS (P = 0.86). There was also no statistically significant association between BAC and HLOS (P = 0.09) or ICULOS (P = 0.07). Conclusions: Our study found no associations between AUDIT, BAC, and both hospital and ICU LOS in trauma patients even though the literature supported an increased risk of medical complications in the AUD patients.
Collapse
Affiliation(s)
| | - Ghadi Ghanem
- Department of Emergency Medicine, University of California Irvine, California, USA
| | - Soheil Saadat
- Department of Emergency Medicine, University of California Irvine, California, USA
| | - Maria Nguyen
- Department of Emergency Medicine, University of California Irvine, California, USA
| | - Christine Louis
- Department of Emergency Medicine, University of California Irvine, California, USA
| | - Preet K Sahota
- Department of Emergency Medicine, University of California Irvine, California, USA
| | - Leila Danishgar
- Department of Emergency Medicine, University of California Irvine, California, USA
| | - Christy Carroll
- Center for Trauma and Injury Prevention Research, University of California Irvine, California, USA
| | - Cristobal Barrios
- Department of Surgery, University of California Irvine, California, USA
| | - Shahram Lotfipour
- Department of Emergency Medicine, University of California Irvine, California, USA
| |
Collapse
|
30
|
Morris NL, Harris FL, Brown LAS, Yeligar SM. Alcohol induces mitochondrial derangements in alveolar macrophages by upregulating NADPH oxidase 4. Alcohol 2021; 90:27-38. [PMID: 33278514 DOI: 10.1016/j.alcohol.2020.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/11/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Excessive alcohol users have increased risk of developing respiratory infections in part due to oxidative stress-induced alveolar macrophage (AM) phagocytic dysfunction. Chronic ethanol exposure increases cellular oxidative stress in AMs via upregulation of NADPH oxidase (Nox) 4, and treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) ligand, rosiglitazone, decreases ethanol-induced Nox4. However, the mechanism by which ethanol induces Nox4 expression and the PPARγ ligand reverses this defect has not been elucidated. Since microRNA (miR)-92a has been predicted to target Nox4 for destabilization, we hypothesized that ethanol exposure decreases miR-92a expression and leads to Nox4 upregulation. Previous studies have implicated mitochondrial-derived oxidative stress in AM dysfunction. We further hypothesized that ethanol increases mitochondrial-derived AM oxidative stress and dysfunction via miR-92a, and that treatment with the PPARγ ligand, pioglitazone, could reverse these derangements. To test these hypotheses, a mouse AM cell line, MH-S cells, was exposed to ethanol in vitro, and primary AMs were isolated from a mouse model of chronic ethanol consumption to measure Nox4, mitochondrial target mRNA (qRT-PCR) and protein levels (confocal microscopy), mitochondria-derived reactive oxygen species (confocal immunofluorescence), mitochondrial fission (electron microscopy), and mitochondrial bioenergetics (extracellular flux analyzer). Ethanol exposure increased Nox4, enhanced mitochondria-derived oxidative stress, augmented mitochondrial fission, and impaired mitochondrial bioenergetics. Transfection with a miR-92a mimic in vitro or pioglitazone treatment in vivo diminished Nox4 levels, resulting in improvements in these ethanol-mediated derangements. These findings demonstrate that pioglitazone may provide a novel therapeutic approach to mitigate ethanol-induced AM mitochondrial derangements.
Collapse
|
31
|
Arentz S, Hunter J, Yang G, Goldenberg J, Beardsley J, Myers SP, Mertz D, Leeder S. Zinc for the prevention and treatment of SARS-CoV-2 and other acute viral respiratory infections: a rapid review. ADVANCES IN INTEGRATIVE MEDICINE 2020; 7:252-260. [PMID: 32837895 PMCID: PMC7395818 DOI: 10.1016/j.aimed.2020.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The global COVID-19 pandemic has prompted an urgent search for interventions to prevent and treat SARS-CoV-2. Higher risk of infection and adverse outcomes coincide with populations with chronic diseases and elderly who are at risk of zinc deficiency. Through several mechanisms zinc may prevent, reduce severity and duration of symptoms. METHOD An a priori protocol was registered with PROSPERO on 27th April 2020 (CRD42020182044). Eight databases (one Chinese) and four clinical trial registries (one Chinese) were searched for randomised and quasi-randomised controlled trials (RCTs), evaluating single or adjunct zinc against placebo or active controls, for prevention and/or treatment of SARS-CoV-2, other coronaviruses or related infections. RR constraints included not searching bibliographies or contacting authors, single reviewers with calibration and second reviewer checking, meta-analyses and quality appraisal of critical and study primary outcomes only and reporting results as they became available. RESULTS 118 publications of 1,627 records met the inclusion criteria (35 Chinese and 83 English publications), 32 for prevention, 78 for treatment and 8 for both. Four RCTs specific to SARS-CoV-2 are ongoing; two are investigating zinc for prevention and two for treatment. As of 7 July 2020, no results were available. A wide range of zinc forms, including nasal spray/gel, lozenges, liquid, tablets and intramuscular were investigated. CONCLUSION Currently, indirect evidence suggests zinc may potentially reduce the risk, duration and severity of SARS-CoV-2 infections, particularly for populations at risk of zinc deficiency including people with chronic disease co-morbidities and older adults. Direct evidence to determine if zinc is effective for either prevention or treatment of SARS-CoV-2 is pending. In the interim, assessing zinc status of people with chronic diseases and older adults, as part of a SARS-CoV-2 clinical work-up, is reasonable as both groups have a higher risk of zinc deficiency/insufficiency and poorer outcomes from SARS-CoV-2.
Collapse
Affiliation(s)
- Susan Arentz
- NICM Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
| | - Jennifer Hunter
- NICM Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
| | - Guoyan Yang
- NICM Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
| | - Joshua Goldenberg
- Helfgott Research Institute, National University of Natural Medicine, Portland, Oregon, United States
| | - Jennifer Beardsley
- NICM Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
- Helfgott Research Institute, National University of Natural Medicine, Portland, Oregon, United States
| | - Stephen P Myers
- NICM Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
- NatMed Research Unit, Division of Research, Southern Cross University, Lismore, New South Wales, Australia
| | - Dominik Mertz
- Division of Infectious Diseases, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Stephen Leeder
- Menzies Centre for Health Policy, Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
32
|
Hunter J, Arentz S, Goldenberg J, Yang G, Beardsley J, Mertz D, Leeder S. Rapid review protocol: Zinc for the prevention or treatment of COVID-19 and other coronavirus-related respiratory tract infections. Integr Med Res 2020; 9:100457. [PMID: 32690999 PMCID: PMC7308745 DOI: 10.1016/j.imr.2020.100457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/14/2023] Open
Abstract
Background The global COVID-19 pandemic has prompted an urgent search for effective interventions. SARS-CoV-2 mortality/morbidity risk increases with age and for those chronic disease co-morbidities, both of which are associated with lower zinc status, as is the risk of infection. Methods Rapid review methods will be applied to a systematic review of zinc for the prevention or treatment of SARS-CoV-2 and viral respiratory tract infections in humans. Included are published studies reporting randomised and quasi-randomised controlled trials that compare zinc intervention to placebo and/or other comparator interventions. English and Chinese language databases will be searched for primary studies of viral respiratory tract infections and clinical trial registries for SARS-CoV-2 infections. Due to concerns about indirectness, studies evaluating non-SARS-CoV-2 coronavirus infections will be rated down by one level, and non-specific or confirmed non-coronavirus viral infections will be rated down by two levels. Review constraints include (1) using Google translate when screening articles published in languages other than English or Chinese and limited translation (2) following calibration, only one reviewer will screen articles, extract data, appraise quality and conduct the analysis, (3) prioritising data extraction and meta-analyses of SARS-CoV-2 studies and critical outcomes of other viral infections, followed by high risk groups and (4) reporting important preliminary findings prior to peer review if necessary. Discussion The application of these rapid review methods and broadening the inclusion criteria to include other coronavirus-related viral respiratory tract infections aims to enable a timely evidence appraisal of priority research questions and dissemination of results. Study registration PROSPERO CRD42020182044.
Collapse
Affiliation(s)
- Jennifer Hunter
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Susan Arentz
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Joshua Goldenberg
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR, USA
| | - Guoyan Yang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Jennifer Beardsley
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia.,Helfgott Research Institute, National University of Natural Medicine, Portland, OR, USA.,Division of Infectious Diseases, Department of Medicine, McMaster University, Hamilton, ON, Canada.,Menzies Centre for Health Policy, Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Dominik Mertz
- Division of Infectious Diseases, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Stephen Leeder
- Menzies Centre for Health Policy, Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
33
|
Magnesium, Calcium, Potassium, Sodium, Phosphorus, Selenium, Zinc, and Chromium Levels in Alcohol Use Disorder: A Review. J Clin Med 2020; 9:jcm9061901. [PMID: 32570709 PMCID: PMC7357092 DOI: 10.3390/jcm9061901] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Macronutrients and trace elements are important components of living tissues that have different metabolic properties and functions. Trace elements participate in the regulation of immunity through humoral and cellular mechanisms, nerve conduction, muscle spasms, membrane potential regulation as well as mitochondrial activity and enzymatic reactions. Excessive alcohol consumption disrupts the concentrations of crucial trace elements, also increasing the risk of enhanced oxidative stress and alcohol-related liver diseases. In this review, we present the status of selected macroelements and trace elements in the serum and plasma of people chronically consuming alcohol. Such knowledge helps to understand the mechanisms of chronic alcohol-use disorder and to progress and prevent withdrawal effects, also improving treatment strategies.
Collapse
|
34
|
Alcohol-dependent pulmonary inflammation: A role for HMGB-1. Alcohol 2019; 80:45-52. [PMID: 30287211 DOI: 10.1016/j.alcohol.2018.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/05/2018] [Accepted: 09/21/2018] [Indexed: 01/29/2023]
Abstract
Previous studies have demonstrated that acute alcohol intoxication significantly impairs lung immune responses, which can lead to the tissue being undefended from microbial infection and resulting disease. Data suggest that acute intoxication presents an axis where simultaneously suppressing early pro-inflammatory cytokines while inducing anti-inflammatory signals contributes to alcohol-dependent immune suppression in the lung, and thus undeterred microbial replication. Interestingly, alcoholics and those with alcohol use disorder present with increased pneumonia and acute respiratory diseases (ARDs), suggesting a more active priming of inflammatory responses in the lungs. There is current research evaluating the acute effects of binge ethanol consumption on adolescents, which is of grave concern, though long-term effects of adolescent ethanol binge exposure are less studied. We hypothesize that adolescent binge drinking may prime the individual to severe pulmonary distress, when later challenged by a microbial pathogen. Herein, we evaluate a model of adolescent intermittent ethanol (AIE) exposure to investigate pulmonary pathology after microbial challenge. Ethanol was administered to adolescent mice using a binge exposure schedule, and mice were then rested to early adulthood. These mice were then challenged with a sub-lethal intranasal inoculation of Klebsiella pneumoniae and evaluated for severity of disease. We find that AIE exposure initially activates inflammatory mediators within the lung, which resolves over time. However, when challenged with a microbial pathogen after this resolution period, these animals present with more severity of inflammation, pulmonary tissue damage, and mortality when challenged with a pulmonary microbial infection. Interestingly, our data suggest a role for alcohol-dependent release of the protein HMGB-1 from host cells, for both morbidity and mortality in our model of microbial-dependent pulmonary inflammation.
Collapse
|
35
|
Johnson JK, Harris FL, Ping XD, Gauthier TW, Brown LAS. Role of zinc insufficiency in fetal alveolar macrophage dysfunction and RSV exacerbation associated with fetal ethanol exposure. Alcohol 2019; 80:5-16. [PMID: 30580016 DOI: 10.1016/j.alcohol.2018.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND We previously reported that maternal alcohol use significantly increases the risk of sepsis in premature and term newborns. In the mouse, fetal ethanol exposure results in an immunosuppressed phenotype for the alveolar macrophage (AM) and decreases bacterial phagocytosis. In pregnant mice, ethanol decreased AM zinc homeostasis, which contributed to immunosuppression and impaired AM phagocytosis. In this study, we explored whether ethanol-induced zinc insufficiency extended to the pup AMs and contributed to immunosuppression and exacerbated viral lung infections. METHODS C57BL/6 female mice were fed a liquid diet with 25% ethanol-derived calories or pair-fed a control diet with 25% of calories as maltose-dextrin. Some pup AMs were treated in vitro with zinc acetate before measuring zinc pools or transporter expression and bacteria phagocytosis. Some dams were fed additional zinc supplements in the ethanol or control diets, and then we assessed pup AM zinc pools, zinc transporters, and the immunosuppressant TGFβ1. On postnatal day 10, some pups were given intranasal saline or respiratory syncytial virus (RSV), and then AM RSV phagocytosis and the RSV burden in the airway lining fluid were assessed. RESULTS Fetal ethanol exposure decreased pup AM zinc pools, zinc transporter expression, and bacterial clearance, but in vitro zinc treatments reversed these alterations. In addition, the expected ethanol-induced increase in TGFβ1 and immunosuppression were associated with decreased RSV phagocytosis and exacerbated RSV infections. However, additional maternal zinc supplements blocked the ethanol-induced perturbations in the pup AM zinc homeostasis and TGFβ1 immunosuppression, thereby improving RSV phagocytosis and attenuating the RSV burden in the lung. CONCLUSION These studies suggest that, despite normal maternal dietary zinc intake, in utero alcohol exposure results in zinc insufficiency, which contributes to compromised neonatal AM immune functions, thereby increasing the risk of bacterial and viral infections.
Collapse
|
36
|
Slovinsky WS, Romero F, Sales D, Shaghaghi H, Summer R. The involvement of GM-CSF deficiencies in parallel pathways of pulmonary alveolar proteinosis and the alcoholic lung. Alcohol 2019; 80:73-79. [PMID: 31229291 PMCID: PMC6592783 DOI: 10.1016/j.alcohol.2018.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 12/24/2022]
Abstract
Chronic alcohol consumption renders the lung more susceptible to infections by disrupting essential alveolar macrophage functions. Emerging evidence suggests that these functional deficits are due, in part, to a suppression of GM-CSF signaling, which is believed to compromise monocyte growth and maturation in the lung. However, in addition to controlling monocyte behaviors, GM-CSF also regulates surfactant homeostasis. For example, mice with targeted deletion of the gene for GM-CSF accumulate large amounts of surfactant phospholipids in their lungs. Moreover, decreased GM-CSF signaling in humans has been linked to the development of pulmonary alveolar proteinosis (PAP), a rare disorder in which surfactant lipids and proteins accumulate in alveolar macrophages and the lung exhibits enhanced susceptibility to infection. Consistent with parallel mechanisms in the PAP and alcoholic lung, we have recently reported that levels of intrapulmonary lipids, specifically triglycerides and free fatty acids, are increased in BAL fluid, whole lung digests and alveolar macrophages of chronically alcohol exposed rats. Additionally, we showed that uptake of saturated fatty acids alone could induce phenotypic and functional changes in alveolar macrophages that mimicked those in the alcohol-exposed rat and human lung. Herein, we discuss the role of GM-CSF in surfactant homeostasis and highlight the evidence that links decreased GM-CSF signaling to alveolar macrophage dysfunction in both the PAP and alcohol-exposed lung. Moreover, we discuss how lipid accumulation itself might contribute to altering alveolar macrophage function and propose how targeting these mechanisms could be employed for reducing the susceptibility to pulmonary infections in alcoholics.
Collapse
Affiliation(s)
- William S Slovinsky
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Freddy Romero
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Dominic Sales
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hoora Shaghaghi
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ross Summer
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
37
|
Smith P, Jeffers LA, Koval M. Effects of different routes of endotoxin injury on barrier function in alcoholic lung syndrome. Alcohol 2019; 80:81-89. [PMID: 31278041 DOI: 10.1016/j.alcohol.2018.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 12/14/2022]
Abstract
In the lung, chronic alcohol consumption is a risk factor for acute respiratory distress syndrome (ARDS), a disorder that can be fatal due to airspace flooding. The severity of pulmonary edema is controlled by multiple barriers, and in particular the alveolar epithelial barrier and pulmonary microvasculature. However, to date, the effects of chronic alcohol ingestion on both of these barriers in the lung has not been directly and simultaneously measured. In addition the effects of alcohol on systemic, indirect lung injury versus direct injury have not been compared. In this study, we used tissue morphometry and Evans Blue permeability assays to assess the effects of alcohol and endotoxemia injury on pulmonary barrier function comparing intraperitoneal (IP) administration of lipopolysaccharide (LPS) to intratracheal (IT) administration. Consistent with previous reports, we found that in alcohol-fed mice, the alveolar barrier was impaired, allowing Evans Blue to permeate into the airspaces. Moreover, IT administered LPS caused a significant breach of both the alveolar epithelial and vascular barriers in alcohol-fed mice, whereas the endothelial barrier was less affected in response to IP administered LPS. The alveolar barrier of control mice remained intact for both IP and IT administered LPS. However, both injuries caused significant interstitial edema, independently of whether the mice were fed alcohol or not. These data suggest that in order to properly target pulmonary edema due to alcoholic lung syndrome, both the alveolar and endothelial barriers need to be considered as well as the nature of the "second hit" that initiates ARDS.
Collapse
|
38
|
Chronic heavy drinking drives distinct transcriptional and epigenetic changes in splenic macrophages. EBioMedicine 2019; 43:594-606. [PMID: 31005514 PMCID: PMC6557917 DOI: 10.1016/j.ebiom.2019.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023] Open
Abstract
Background Chronic heavy alcohol drinking (CHD) leads to significant organ damage, increased susceptibility to infections, and delayed wound healing. These adverse outcomes are believed to be mediated by alterations in the function of myeloid cells; however, the mechanisms underlying these changes are poorly understood. Methods We determined the impact of CHD on the phenotype of splenic macrophages using flow cytometry. Changes in functional responses to LPS were measured using luminex and RNA-Seq. Finally, alterations in chromatin accessibility were uncovered using ATAC-Seq. Findings A history of CHD led to increased frequency of splenic macrophages that exhibited a heightened activation state at resting. Additionally, splenic macrophages from CHD animals generated a larger inflammatory response to LPS, both at protein and gene expression levels. Finally, CHD resulted in increased levels of H3K4me3, a histone mark of active promoters, as well as chromatin accessibility at promoters and intergenic regions that regulate inflammatory responses. Interpretation These findings suggest that a history of CHD alters the immune fitness of tissue-resident macrophages via epigenetic mechanisms. Fund National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) - R24AA019431, U01 AA13641, U01 AA13510, R21AA021947, and R21AA025839.
Collapse
|
39
|
Abstract
Pneumonia is a type of acute lower respiratory infection that is common and severe. The outcome of lower respiratory infection is determined by the degrees to which immunity is protective and inflammation is damaging. Intercellular and interorgan signaling networks coordinate these actions to fight infection and protect the tissue. Cells residing in the lung initiate and steer these responses, with additional immunity effectors recruited from the bloodstream. Responses of extrapulmonary tissues, including the liver, bone marrow, and others, are essential to resistance and resilience. Responses in the lung and extrapulmonary organs can also be counterproductive and drive acute and chronic comorbidities after respiratory infection. This review discusses cell-specific and organ-specific roles in the integrated physiological response to acute lung infection, and the mechanisms by which intercellular and interorgan signaling contribute to host defense and healthy respiratory physiology or to acute lung injury, chronic pulmonary disease, and adverse extrapulmonary sequelae. Pneumonia should no longer be perceived as simply an acute infection of the lung. Pneumonia susceptibility reflects ongoing and poorly understood chronic conditions, and pneumonia results in diverse and often persistent deleterious consequences for multiple physiological systems.
Collapse
Affiliation(s)
- Lee J Quinton
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Allan J Walkey
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
40
|
Role of HIF-1α in Alcohol-Mediated Multiple Organ Dysfunction. Biomolecules 2018; 8:biom8040170. [PMID: 30544759 PMCID: PMC6316086 DOI: 10.3390/biom8040170] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
Excess alcohol consumption is a global crisis contributing to over 3 million alcohol-related deaths per year worldwide and economic costs exceeding $200 billion dollars, which include productivity losses, healthcare, and other effects (e.g., property damages). Both clinical and experimental models have shown that excessive alcohol consumption results in multiple organ injury. Although alcohol metabolism occurs primarily in the liver, alcohol exposure can lead to pathophysiological conditions in multiple organs and tissues, including the brain, lungs, adipose, liver, and intestines. Understanding the mechanisms by which alcohol-mediated organ dysfunction occurs could help to identify new therapeutic approaches to mitigate the detrimental effects of alcohol misuse. Hypoxia-inducible factor (HIF)-1 is a transcription factor comprised of HIF-1α and HIF-1β subunits that play a critical role in alcohol-mediated organ dysfunction. This review provides a comprehensive analysis of recent studies examining the relationship between HIF-1α and alcohol consumption as it relates to multiple organ injury and potential therapies to mitigate alcohol’s effects.
Collapse
|
41
|
The Role of Zinc and Zinc Homeostasis in Macrophage Function. J Immunol Res 2018; 2018:6872621. [PMID: 30622979 PMCID: PMC6304900 DOI: 10.1155/2018/6872621] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/31/2018] [Accepted: 11/06/2018] [Indexed: 01/12/2023] Open
Abstract
Zinc has long been recognized as an essential trace element, playing roles in the growth and development of all living organisms. In recent decades, zinc homeostasis was also found to be important for the innate immune system, especially for maintaining the function of macrophages. It is now generally accepted that dysregulated zinc homeostasis in macrophages causes impaired phagocytosis and an abnormal inflammatory response. However, many questions remain with respect to the mechanisms that underlie these processes, particularly at the cellular and molecular levels. Here, we review our current understanding of the roles that zinc and zinc transporters play in regulating macrophage function.
Collapse
|
42
|
Chronic Alcohol Ingestion Impairs Rat Alveolar Macrophage Phagocytosis via Disruption of RAGE Signaling. Am J Med Sci 2018; 355:497-505. [PMID: 29753380 DOI: 10.1016/j.amjms.2017.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 12/19/2017] [Accepted: 12/23/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Alcohol significantly impairs antioxidant defenses and innate immune function in the lung and increases matrix metalloproteinase 9 (MMP-9) activity. The receptor for advanced glycation end products (RAGE) is a well-characterized marker of lung injury that is cleaved by MMP-9 into soluble RAGE and has not yet been examined in the alcoholic lung. We hypothesized that chronic alcohol ingestion would impair RAGE signaling via MMP-9 in the alveolar macrophage and thereby impair innate immune function. MATERIALS AND METHODS Primary alveolar macrophages were isolated from control-fed or alcohol-fed rats. Real-time polymerase chain reaction (qRT-PCR), Western blotting, and enzyme-linked immunosorbent assays were performed to evaluate RAGE expression. Silencing of MMP-9 ribonucleic acid (RNA) in a rat alveolar macrophage cell line was confirmed by qRT-PCR, and immunofluorescence (IF) was used to assess the association between alcohol, MMP-9, and RAGE. Phagocytosis was assessed using flow cytometry. Sulforaphane and glutathione were used to assess the relationship between oxidative stress and RAGE. RESULTS RAGE messenger RNA expression was significantly increased in the alveolar macrophages of alcohol-fed rats, but IF showed that membrane-bound RAGE protein expression was decreased. Lavage fluid demonstrated increased levels of soluble RAGE (sRAGE). Decreasing MMP-9 expression using si-MMP-9 abrogated the effects of alcohol on RAGE protein. Phagocytic function was suppressed by direct RAGE inhibition, and the impairment was reversed by antioxidant treatment. CONCLUSIONS Chronic alcohol ingestion reduces RAGE protein expression and increases the amount of sRAGE in alveolar lavage fluid, likely via cleavage by MMP-9. In addition, it impairs phagocytic function. Antioxidants restore membrane-bound RAGE and phagocytic function.
Collapse
|
43
|
Zinc deficiency as a mediator of toxic effects of alcohol abuse. Eur J Nutr 2017; 57:2313-2322. [PMID: 29177978 DOI: 10.1007/s00394-017-1584-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To review data on the role of ethanol-induced alteration of Zn homeostasis in mediation of adverse effects of alcohol abuse. METHODS The scholarly published articles on the association between Zn metabolism and alcohol-associated disorders (liver, brain, lung, gut dysfunction, and fetal alcohol syndrome) have been reviewed. RESULTS It is demonstrated that alcohol-induced modulation of zinc transporters results in decreased Zn levels in lungs, liver, gut, and brain. Zn deficiency in the gut results in increased gut permeability, ultimately leading to endotoxemia and systemic inflammation. Similarly, Zn deficiency in lung epithelia and alveolar macrophages decreases lung barrier function resulting in respiratory distress syndrome. In turn, increased endotoxemia significantly contributes to proinflammatory state in alcoholic liver disease. Finally, impaired gut and liver functions may play a significant role in alcoholic brain damage, being associated with both increased proinflammatory signaling and accumulation of neurotoxic metabolites. It is also hypothesized that ethanol-induced Zn deficiency may interfere with neurotransmission. Similar changes may take place in the fetus as a result of impaired placental zinc transfer, maternal zinc deficiency, or maternal Zn sequestration, resulting in fetal alcoholic syndrome. Therefore, alcoholic Zn deficiency not only mediates the adverse effects of ethanol exposure, but also provides an additional link between different alcohol-induced disorders. CONCLUSIONS Generally, current findings suggest that assessment of Zn status could be used as a diagnostic marker of metabolic disturbances in alcohol abuse, whereas modulation of Zn metabolism may be a potential tool in the treatment of alcohol-associated disorders.
Collapse
|
44
|
Gauthier TW, Brown LAS. In utero alcohol effects on foetal, neonatal and childhood lung disease. Paediatr Respir Rev 2017; 21:34-37. [PMID: 27613232 PMCID: PMC5303127 DOI: 10.1016/j.prrv.2016.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023]
Abstract
Maternal alcohol use during pregnancy exposes both premature and term newborns to the toxicity of alcohol and its metabolites. Foetal alcohol exposure adversely effects the lung. In contrast to the adult "alcoholic lung" phenotype, an inability to identify the newborn exposed to alcohol in utero has limited our understanding of its effect on adverse pulmonary outcomes. This paper will review advances in biomarker development of in utero alcohol exposure. We will highlight the current understanding of in utero alcohol's toxicity to the developing lung and immune defense. Finally, we will present recent clinical evidence describing foetal alcohol's association with adverse pulmonary outcomes including bronchopulmonary dysplasia, viral infections such as respiratory syncytial virus and allergic asthma/atopy. With research to define alcohol's effect on the lung and translational studies accurately identifying the exposed offspring, the full extent of alcohol's effects on clinical respiratory outcomes of the newborn or child can be determined.
Collapse
|
45
|
The Lesbian, Gay, Bisexual, and Transgender Community and Respiratory Health. Respir Med 2017. [DOI: 10.1007/978-3-319-43447-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Mehta AJ, Guidot DM. Alcohol and the Lung. Alcohol Res 2017; 38:243-254. [PMID: 28988576 PMCID: PMC5513688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Among the many organ systems affected by harmful alcohol use, the lungs are particularly susceptible to infections and injury. The mechanisms responsible for rendering people with alcohol use disorder (AUD) vulnerable to lung damage include alterations in host defenses of the upper and lower airways, disruption of alveolar epithelial barrier integrity, and alveolar macrophage immune dysfunction. Collectively, these derangements encompass what has been termed the "alcoholic lung" phenotype. Alcohol-related reductions in antioxidant levels also may contribute to lung disease in people with underlying AUD. In addition, researchers have identified several regulatory molecules that may play crucial roles in the alcohol-induced disease processes. Although there currently are no approved therapies to combat the detrimental effects of chronic alcohol consumption on the respiratory system, these molecules may be potential therapeutic targets to guide future investigation.
Collapse
Affiliation(s)
- Ashish J Mehta
- Ashish J. Mehta, M.D., is an Assistant Professor of Medicine in the Department of Medicine, Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, Georgia, and a Staff Physician at the Atlanta VA Medical Center, Decatur, Georgia. David M. Guidot, M.D., is a Professor of Medicine in the Department of Medicine, Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, Georgia, and a Staff Physician at the Atlanta VA Medical Center, Decatur, Georgia
| | - David M Guidot
- Ashish J. Mehta, M.D., is an Assistant Professor of Medicine in the Department of Medicine, Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, Georgia, and a Staff Physician at the Atlanta VA Medical Center, Decatur, Georgia. David M. Guidot, M.D., is a Professor of Medicine in the Department of Medicine, Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, Georgia, and a Staff Physician at the Atlanta VA Medical Center, Decatur, Georgia
| |
Collapse
|
47
|
Yeligar SM, Chen MM, Kovacs EJ, Sisson JH, Burnham EL, Brown LAS. Alcohol and lung injury and immunity. Alcohol 2016; 55:51-59. [PMID: 27788778 DOI: 10.1016/j.alcohol.2016.08.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/07/2016] [Accepted: 08/24/2016] [Indexed: 02/06/2023]
Abstract
Annually, excessive alcohol use accounts for more than $220 billion in economic costs and 80,000 deaths, making excessive alcohol use the third leading lifestyle-related cause of death in the US. Patients with an alcohol-use disorder (AUD) also have an increased susceptibility to respiratory pathogens and lung injury, including a 2-4-fold increased risk of acute respiratory distress syndrome (ARDS). This review investigates some of the potential mechanisms by which alcohol causes lung injury and impairs lung immunity. In intoxicated individuals with burn injuries, activation of the gut-liver axis drives pulmonary inflammation, thereby negatively impacting morbidity and mortality. In the lung, the upper airway is the first checkpoint to fail in microbe clearance during alcohol-induced lung immune dysfunction. Brief and prolonged alcohol exposure drive different post-translational modifications of novel proteins that control cilia function. Proteomic approaches are needed to identify novel alcohol targets and post-translational modifications in airway cilia that are involved in alcohol-dependent signal transduction pathways. When the upper airway fails to clear inhaled pathogens, they enter the alveolar space where they are primarily cleared by alveolar macrophages (AM). With chronic alcohol ingestion, oxidative stress pathways in the AMs are stimulated, thereby impairing AM immune capacity and pathogen clearance. The epidemiology of pneumococcal pneumonia and AUDs is well established, as both increased predisposition and illness severity have been reported. AUD subjects have increased susceptibility to pneumococcal pneumonia infections, which may be due to the pro-inflammatory response of AMs, leading to increased oxidative stress.
Collapse
Affiliation(s)
- Samantha M Yeligar
- Department of Medicine, Emory University and Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Michael M Chen
- Burn and Shock Trauma Research Institute, Alcohol Research Program, Integrative Cell Biology Program, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
| | - Elizabeth J Kovacs
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joseph H Sisson
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ellen L Burnham
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Lou Ann S Brown
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
48
|
Cannon AR, Morris NL, Hammer AM, Curtis B, Remick DG, Yeligar SM, Poole L, Burnham EL, Wyatt TA, Molina PE, So-Armah K, Cisneros T, Wang G, Lang CH, Mandrekar P, Kovacs EJ, Choudhry MA. Alcohol and inflammatory responses: Highlights of the 2015 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol 2016; 54:73-7. [PMID: 27522326 DOI: 10.1016/j.alcohol.2016.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/24/2016] [Indexed: 01/04/2023]
Abstract
On September 27, 2015 the 20th annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held as a satellite symposium at the annual meeting of the Society for Leukocyte Biology in Raleigh, NC. The 2015 meeting focused broadly on adverse effects of alcohol and alcohol-use disorders in multiple organ systems. Divided into two plenary sessions, AIRIG opened with the topic of pulmonary inflammation as a result of alcohol consumption, which was followed by alcohol's effect on multiple organs, including the brain and liver. With presentations showing the diverse range of underlying pathology and mechanisms associated with multiple organs as a result of alcohol consumption, AIRIG emphasized the importance of continued alcohol research, as its detrimental consequences are not limited to one or even two organs, but rather extend to the entire host as a whole.
Collapse
|
49
|
Yeligar SM, Mehta AJ, Harris FL, Brown LAS, Hart CM. Peroxisome Proliferator-Activated Receptor γ Regulates Chronic Alcohol-Induced Alveolar Macrophage Dysfunction. Am J Respir Cell Mol Biol 2016; 55:35-46. [PMID: 26677910 PMCID: PMC4942203 DOI: 10.1165/rcmb.2015-0077oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) γ is critical for alveolar macrophage (AM) function. Chronic alcohol abuse causes AM phagocytic dysfunction and susceptibility to respiratory infections by stimulating nicotinamide adenine dinucleotide oxidases (Nox), transforming growth factor-β1, and oxidative stress in the AM. Because PPARγ inhibits Nox expression, we hypothesized that alcohol reduces PPARγ, stimulating AM dysfunction. AMs were examined from: (1) patients with alcoholism or control patients; (2) a mouse model of chronic ethanol consumption; (3) PPARγ knockout mice; or (4) MH-S cells exposed to ethanol in vitro. Alcohol reduced AM PPARγ levels and increased Nox1, -2, and -4, transforming growth factor-β1, oxidative stress, and phagocytic dysfunction. Genetic loss of PPARγ recapitulated, whereas stimulating PPARγ activity attenuated alcohol-mediated alterations in gene expression and phagocytic function, supporting the importance of PPARγ in alcohol-induced AM derangements. Similarly, PPARγ activation in vivo reduced alcohol-mediated impairments in lung bacterial clearance. Alcohol increased levels of microRNA-130a/-301a, which bind to the PPARγ 3' untranslated region to reduce PPARγ expression. MicroRNA-130a/-301a inhibition attenuated alcohol-mediated PPARγ reductions and derangements in AM gene expression and function. Alcohol-induced Toll-like receptor 4 endocytosis was reversed by PPARγ activation. These findings demonstrate that targeting PPARγ provides a novel therapeutic approach for mitigating alcohol-induced AM derangements and susceptibility to lung infection.
Collapse
Affiliation(s)
- Samantha M. Yeligar
- Emory University, Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Emory and Children’s Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, Georgia
- Emory University, Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Decatur, Georgia
| | - Ashish J. Mehta
- Emory University, Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Decatur, Georgia
| | - Frank L. Harris
- Emory University, Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Emory and Children’s Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, Georgia
| | - Lou Ann S. Brown
- Emory University, Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Emory and Children’s Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, Georgia
| | - C. Michael Hart
- Emory University, Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Decatur, Georgia
| |
Collapse
|
50
|
Mehta AJ. Alcoholism and critical illness: A review. World J Crit Care Med 2016; 5:27-35. [PMID: 26855891 PMCID: PMC4733453 DOI: 10.5492/wjccm.v5.i1.27] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/07/2015] [Accepted: 12/04/2015] [Indexed: 02/06/2023] Open
Abstract
Alcohol is the most commonly used and abused drug in the world, and alcohol use disorders pose a tremendous burden to healthcare systems around the world. The lifetime prevalence of alcohol abuse in the United States is estimated to be around 18%, and the economic consequences of these disorders are staggering. Studies on hospitalized patients demonstrate that about one in four patients admitted to critical care units will have alcohol-related issues, and unhealthy alcohol consumption is responsible for numerous clinical problems encountered in intensive care unit (ICU) settings. Patients with alcohol use disorders are not only predisposed to developing withdrawal syndromes and other conditions that often require intensive care, they also experience a considerably higher rate of complications, longer ICU and hospital length of stay, greater resource utilization, and significantly increased mortality compared to similar critically ill patients who do not abuse alcohol. Specific disorders seen in the critical care setting that are impacted by alcohol abuse include delirium, pneumonia, acute respiratory distress syndrome, sepsis, gastrointestinal hemorrhage, trauma, and burn injuries. Despite the substantial burden of alcohol-induced disease in these settings, critical care providers often fail to identify individuals with alcohol use disorders, which can have significant implications for this vulnerable population and delay important clinical interventions.
Collapse
|