1
|
Matsumoto S, Shimizu T, Uda A, Watanabe K, Watarai M. Role of the JAK2/STAT3 pathway on infection of Francisella novicida. PLoS One 2024; 19:e0310120. [PMID: 39255287 PMCID: PMC11386456 DOI: 10.1371/journal.pone.0310120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
Francisella tularensis is a causative agent of the zoonotic disease tularemia, and is highly pathogenic to humans. The pathogenicity of this bacterium is largely attributed to intracellular growth in host cells. Although several bacterial factors important for the intracellular growth have been elucidated, including the type VI secretion system, the host factors involved in the intracellular growth of F. tularensis are largely unknown. To identify the host factors important for F. tularensis infection, 368 compounds were screened for the negative regulation of F. tularensis subsp. novicida (F. novicida) infection. Consequently, 56 inhibitors were isolated that decreased F. novicida infection. Among those inhibitors, we focused on cucurbitacin I, an inhibitor of the JAK2/ STAT3 pathway. Cucurbitacin I and another JAK2/STAT3 inhibitor, Stattic, decreased the intracellular bacterial number of F. novicida. However, these inhibitors failed to affect the cell attachment or the intrasaccular proliferation of F. novicida. In addition, treatment with these inhibitors destabilized actin filaments. These results suggest that the JAK2/STAT3 pathway plays an important role in internalization of F. novicida into host cells through mechanisms involving actin dynamics, such as phagocytosis.
Collapse
Affiliation(s)
- Sonoko Matsumoto
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takashi Shimizu
- One Welfare Education and Research Center, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Kenta Watanabe
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masahisa Watarai
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
2
|
Enomoto T, Shirai Y, Takeda Y, Edahiro R, Shichino S, Nakayama M, Takahashi-Itoh M, Noda Y, Adachi Y, Kawasaki T, Koba T, Futami Y, Yaga M, Hosono Y, Yoshimura H, Amiya S, Hara R, Yamamoto M, Nakatsubo D, Suga Y, Naito M, Masuhiro K, Hirata H, Iwahori K, Nagatomo I, Miyake K, Koyama S, Fukushima K, Shiroyama T, Naito Y, Futami S, Natsume-Kitatani Y, Nojima S, Yanagawa M, Shintani Y, Nogami-Itoh M, Mizuguchi K, Adachi J, Tomonaga T, Inoue Y, Kumanogoh A. SFTPB in serum extracellular vesicles as a biomarker of progressive pulmonary fibrosis. JCI Insight 2024; 9:e177937. [PMID: 38855869 PMCID: PMC11382876 DOI: 10.1172/jci.insight.177937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/23/2024] [Indexed: 06/11/2024] Open
Abstract
Progressive pulmonary fibrosis (PPF), defined as the worsening of various interstitial lung diseases (ILDs), currently lacks useful biomarkers. To identify novel biomarkers for early detection of patients at risk of PPF, we performed a proteomic analysis of serum extracellular vesicles (EVs). Notably, the identified candidate biomarkers were enriched for lung-derived proteins participating in fibrosis-related pathways. Among them, pulmonary surfactant-associated protein B (SFTPB) in serum EVs could predict ILD progression better than the known biomarkers, serum KL-6 and SP-D, and it was identified as an independent prognostic factor from ILD-gender-age-physiology index. Subsequently, the utility of SFTPB for predicting ILD progression was evaluated further in 2 cohorts using serum EVs and serum, respectively, suggesting that SFTPB in serum EVs but not in serum was helpful. Among SFTPB forms, pro-SFTPB levels were increased in both serum EVs and lungs of patients with PPF compared with those of the control. Consistently, in a mouse model, the levels of pro-SFTPB, primarily originating from alveolar epithelial type 2 cells, were increased similarly in serum EVs and lungs, reflecting pro-fibrotic changes in the lungs, as supported by single-cell RNA sequencing. SFTPB, especially its pro-form, in serum EVs could serve as a biomarker for predicting ILD progression.
Collapse
Affiliation(s)
| | - Yuya Shirai
- Department of Respiratory Medicine and Clinical Immunology and
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology and
| | - Ryuya Edahiro
- Department of Respiratory Medicine and Clinical Immunology and
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Mana Nakayama
- Department of Respiratory Medicine and Clinical Immunology and
| | | | - Yoshimi Noda
- Department of Respiratory Medicine and Clinical Immunology and
| | - Yuichi Adachi
- Department of Respiratory Medicine and Clinical Immunology and
| | | | - Taro Koba
- Department of Respiratory Medicine and Clinical Immunology and
| | - Yu Futami
- Department of Respiratory Medicine and Clinical Immunology and
- Department of Respiratory Medicine, Kinki Central Hospital of the Mutual Aid Association of Public School Teachers, Itami, Hyogo, Japan
| | - Moto Yaga
- Department of Respiratory Medicine and Clinical Immunology and
| | - Yuki Hosono
- Department of Respiratory Medicine and Clinical Immunology and
| | | | - Saori Amiya
- Department of Respiratory Medicine and Clinical Immunology and
| | - Reina Hara
- Department of Respiratory Medicine and Clinical Immunology and
| | - Makoto Yamamoto
- Department of Respiratory Medicine and Clinical Immunology and
| | | | - Yasuhiko Suga
- Department of Respiratory Medicine and Clinical Immunology and
| | - Maiko Naito
- Department of Respiratory Medicine and Clinical Immunology and
| | | | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology and
| | - Kota Iwahori
- Department of Respiratory Medicine and Clinical Immunology and
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology and
| | - Kotaro Miyake
- Department of Respiratory Medicine and Clinical Immunology and
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology and
| | | | | | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology and
| | - Shinji Futami
- Department of Respiratory Medicine and Clinical Immunology and
| | - Yayoi Natsume-Kitatani
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Settsu, Osaka, Japan
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | | | | | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mari Nogami-Itoh
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Settsu, Osaka, Japan
| | - Kenji Mizuguchi
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Settsu, Osaka, Japan
- Laboratory for Computational Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- Proteobiologics Co., Ltd., Minoh, Osaka, Japan
| | - Yoshikazu Inoue
- Clinical Research Center, NHO Kinki Chuo Chest Medical Center, Sakai, Osaka, Japan
- Osaka Anti-tuberculosis Association, Osaka Fukujuji Hospital, Neyagawa, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology and
- Center for Infectious Diseases for Education and Research (CiDER)
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI)
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC); and
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
3
|
Li J, Shi S, Yan W, Shen Y, Liu C, Xu J, Xu G, Lu L, Song H. Preliminary Mechanism of Glial Maturation Factor β on Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. Adv Biol (Weinh) 2024; 8:e2300623. [PMID: 38640923 DOI: 10.1002/adbi.202300623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/22/2024] [Indexed: 04/21/2024]
Abstract
Recent evidence suggests that glia maturation factor β (GMFβ) is important in the pathogenesis of pulmonary arterial hpertension (PAH), but the underlying mechanism is unknown. To clarify whether GMFβ can be involved in pulmonary vascular remodeling and to explore the role of the IL-6-STAT3 pathway in this process, the expression of GMFβ in PAH rats is examined and the expression of downstream molecules including periostin (POSTN) and interleukin-6 (IL-6) is measured using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The location and expression of POSTN is also tested in PAH rats using immunofluorescence. It is proved that GMFβ is upregulated in the lungs of PAH rats. Knockout GMFβ alleviated the MCT-PAH by reducing right ventricular systolic pressure (RVSP), mean pulmonary arterial pressure (mPAP), and pulmonary vascular remodeling. Moreover, the inflammation of the pulmonary vasculature is ameliorated in PAH rats with GMFβ absent. In addition, the IL-6-STAT3 signaling pathway is activated in PAH; knockout GMFβ reduced POSTN and IL-6 production by inhibiting the IL-6-STAT3 signaling pathway. Taken together, these findings suggest that knockout GMFβ ameliorates PAH in rats by inhibiting the IL-6-STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jie Li
- Department of Rehabilitation Medicine, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Street, Muping District, Yantai, 264199, China
| | - Si Shi
- Department of Ophthalmology, Shanghai Tongji Hospital affiliated to Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xincun Rd, Putuo District, Shanghai, 200072, China
| | - Wenwen Yan
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University 389 Xincun Rd, Putuo District, Shanghai, 200065, China
| | - Yuqin Shen
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University 389 Xincun Rd, Putuo District, Shanghai, 200065, China
| | - Caiying Liu
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 1239 Siping Rd, Shanghai, 200092, China
| | - Jinyuan Xu
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 1239 Siping Rd, Shanghai, 200092, China
| | - Guotong Xu
- Department of Pharmacology, Tongji University School of Medicine, 1239 Siping Rd, Shanghai, 200092, China
| | - Lixia Lu
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 1239 Siping Rd, Shanghai, 200092, China
| | - Haoming Song
- Department of General Practice, Tongji Hospital, School of Medicine, Tongji University 389 Xincun Rd, Putuo District, Shanghai, 200065, China
| |
Collapse
|
4
|
Pinezich MR, Mir M, Graney PL, Tavakol DN, Chen J, Hudock M, Gavaudan O, Chen P, Kaslow SR, Reimer JA, Van Hassel J, Guenthart BA, O’Neill JD, Bacchetta M, Kim J, Vunjak-Novakovic G. Lung-Mimetic Hydrofoam Sealant to Treat Pulmonary Air Leak. Adv Healthc Mater 2024; 13:e2303026. [PMID: 38279961 PMCID: PMC11102335 DOI: 10.1002/adhm.202303026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/22/2023] [Indexed: 01/29/2024]
Abstract
Pulmonary air leak is the most common complication of lung surgery, contributing to post-operative morbidity in up to 60% of patients; yet, there is no reliable treatment. Available surgical sealants do not match the demanding deformation mechanics of lung tissue; and therefore, fail to seal air leak. To address this therapeutic gap, a sealant with structural and mechanical similarity to subpleural lung is designed, developed, and systematically evaluated. This "lung-mimetic" sealant is a hydrofoam material that has alveolar-like porous ultrastructure, lung-like viscoelastic properties (adhesive, compressive, tensile), and lung extracellular matrix-derived signals (matrikines) to support tissue repair. In biocompatibility testing, the lung-mimetic sealant shows minimal cytotoxicity and immunogenicity in vitro. Human primary monocytes exposed to sealant matrikines in vitro upregulate key genes (MARCO, PDGFB, VEGF) known to correlate with pleural wound healing and tissue repair in vivo. In rat and swine models of pulmonary air leak, this lung-mimetic sealant rapidly seals air leak and restores baseline lung mechanics. Altogether, these data indicate that the lung-mimetic sealant can effectively seal pulmonary air leak and promote a favorable cellular response in vitro.
Collapse
Affiliation(s)
| | - Mohammad Mir
- Stevens Institute of Technology, Department of Biomedical Engineering
| | | | | | - Jiawen Chen
- Stevens Institute of Technology, Department of Biomedical Engineering
| | - Maria Hudock
- Columbia University, Department of Biomedical Engineering
| | | | - Panpan Chen
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Surgery
| | - Sarah R. Kaslow
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Surgery
| | - Jonathan A. Reimer
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Surgery
| | - Julie Van Hassel
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Surgery
| | | | - John D. O’Neill
- State University of New York Downstate Medical Center, Department of Cell Biology
| | - Matthew Bacchetta
- Vanderbilt University Medical Center, Department of Thoracic Surgery
- Vanderbilt University, Department of Biomedical Engineering
| | - Jinho Kim
- Stevens Institute of Technology, Department of Biomedical Engineering
| | - Gordana Vunjak-Novakovic
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Medicine
| |
Collapse
|
5
|
Suzaki I, Maruyama Y, Kamimura S, Hirano K, Nunomura S, Izuhara K, Kobayashi H. Residual nasal polyp tissue following dupilumab therapy is associated with periostin-associated fibrosis. Eur Arch Otorhinolaryngol 2024; 281:1807-1817. [PMID: 37979011 DOI: 10.1007/s00405-023-08336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE Dupilumab, an anti-interleukin-4 receptor alpha monoclonal antibody, is a new treatment for severe uncontrolled chronic rhinosinusitis with nasal polyps. However, data on the effect of dupilumab on histological changes in nasal polyp tissue are lacking. We aimed to investigate the effect of dupilumab on real-life clinical conditions and nasal polyp tissues from patients with eosinophilic chronic rhinosinusitis (ECRS), which is a refractory subtype. METHODS We conducted an open-label, prospective, observational, single-centre study on 63 patients with refractory ECRS on the basis of the criteria of the Japanese Epidemiological Survey of Refractory Eosinophilic Chronic Rhinosinusitis Study. These patients had a history of surgery and received dupilumab for 24 weeks. Patient-reported sinonasal symptoms, T&T olfactometry and nasal polyp scores were prospectively evaluated. In 23 patients with residual nasal polyps following dupilumab treatment, changes in systemic and local periostin expression, and total collagen deposition in nasal polyp tissues were investigated before and after dupilumab administration. RESULTS Dupilumab rapidly improved sinonasal symptoms and reduced the nasal polyp score 24 weeks after initiation. 40 (63.5%) patients had resolution of nasal polyps, but the reduction was limited in the remaining 23 (36.5%) patients. Periostin expression in serum and nasal lavage fluid was decreased, whereas periostin and the total collagen deposition area in subepithelial tissues in residual nasal polyps were enhanced after dupilumab administration. CONCLUSION Dupilumab improves sinonasal symptoms and reduces the nasal polyp score in refractory ECRS. Periostin-associated tissue fibrosis may be involved in the differential effect of dupilumab on nasal polyp reduction.
Collapse
Affiliation(s)
- Isao Suzaki
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai Shinagawa-Ku, Tokyo, 142-8666, Japan.
| | - Yuki Maruyama
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Sawa Kamimura
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Kojiro Hirano
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Hitome Kobayashi
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai Shinagawa-Ku, Tokyo, 142-8666, Japan
| |
Collapse
|
6
|
Wu S, Liu M, Zhang M, Ye X, Gu H, Jiang C, Zhu H, Ye X, Li Q, Huang X, Cao M. The gene expression of CALD1, CDH2, and POSTN in fibroblast are related to idiopathic pulmonary fibrosis. Front Immunol 2024; 15:1275064. [PMID: 38370408 PMCID: PMC10869495 DOI: 10.3389/fimmu.2024.1275064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Idiopathic pulmonary fibrosis (IPF) is characterized by progressive lung dysfunction due to excessive collagen production and tissue scarring. Despite recent advancements, the molecular mechanisms remain unclear. Methods RNA sequencing identified 475 differentially expressed genes (DEGs) in the TGF-β1-induced primary lung fibrosis model. Gene expression chips GSE101286 and GSE110147 from NCBI gene expression omnibus (GEO) database were analyzed using GEO2R, revealing 94 DEGs in IPF lung tissue samples. The gene ontology (GO) and pathway enrichment, Protein-protein interaction (PPI) network construction, and Maximal Clique Centrality (MCC) scoring were performed. Experimental validation included RT-qPCR, Immunohistochemistry (IHC), and Western Blot, with siRNA used for gene knockdown. A co-expression network was constructed by GeneMANIA. Results GO enrichment highlighted significant enrichment of DEGs in TGF-β cellular response, connective tissue development, extracellular matrix components, and signaling pathways such as the AGE-RAGE signaling pathway and ECM-receptor interaction. PPI network analysis identified hub genes, including FN1, COL1A1, POSTN, KIF11, and ECT2. CALD1 (Caldesmon 1), CDH2 (Cadherin 2), and POSTN (Periostin) were identified as dysregulated hub genes in both the RNA sequencing and GEO datasets. Validation experiments confirmed the upregulation of CALD1, CDH2, and POSTN in TGF-β1-treated fibroblasts and IPF lung tissue samples. IHC experiments probed tissue-level expression patterns of these three molecules. Knockdown of CALD1, CDH2, and POSTN attenuated the expression of fibrotic markers (collagen I and α-SMA) in response to TGF-β1 stimulation in primary fibroblasts. Co-expression analysis revealed interactions between hub genes and predicted genes involved in actin cytoskeleton regulation and cell-cell junction organization. Conclusions CALD1, CDH2, and POSTN, identified as potential contributors to pulmonary fibrosis, present promising therapeutic targets for IPF patients.
Collapse
Affiliation(s)
- Shufei Wu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengying Liu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mingrui Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xu Ye
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Huimin Gu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Cheng Jiang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Huihui Zhu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoling Ye
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Qi Li
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinmei Huang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Nanjing Institute of Respiratory Diseases, Nanjing, China
| | - Mengshu Cao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Nanjing Institute of Respiratory Diseases, Nanjing, China
| |
Collapse
|
7
|
Takada K, Suzukawa M, Tashimo H, Ohshima N, Fukutomi Y, Kobayashi N, Taniguchi M, Ishii M, Akishita M, Ohta K. Serum MMP3 and IL1-RA levels may be useful biomarkers for detecting asthma and chronic obstructive pulmonary disease overlap in patients with asthma. World Allergy Organ J 2023; 16:100840. [PMID: 38020287 PMCID: PMC10663683 DOI: 10.1016/j.waojou.2023.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/16/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Background Asthma and chronic obstructive pulmonary disease (COPD) overlap (ACO) is characterized by concurrent features of asthma and COPD. Since disease pathogenesis, severities, and treatments differ between asthma and ACO, it is important to differentiate them. Objective To clarify and compare the characteristics of ACO and asthma and identify the serum biomarkers for differentiating them, especially in older patients. Methods This study used the data of 639 participants from the nationwide cohort study, the NHOM-Asthma study, an asthma registry in Japan, with complete information on smoking history, respiratory function, and serum biomarkers. ACO was defined as the self-reported comorbidity of COPD or emphysema, or with obstructive pulmonary function and smoking history (pack-years≥10). The clinical characteristics of patients with ACO and asthma without COPD were compared. The serum biomarkers for differentiation were examined using receiver operating characteristic curves and multivariable analysis. The associations between the biomarkers and age were also analyzed. Results Of the 639 asthma patients, 125 (19.6%) were diagnosed with ACO; these patients were older and male-dominant and had a higher prevalence of comorbidities such as hypertension, diabetes, and stroke. Among the serum biomarkers that were significantly different between ACO and asthma without COPD, the YKL-40/CHI3L1, MMP3, and IL-1RA levels showed a high area under the curve for discriminating ACO. Only the MMP3 and IL-1RA levels were significantly higher among ACO patients, regardless of age and sex; the YKL-40/CHI3L1 levels were not different due to the effect of age. Conclusion MMP3 and IL-1RA may be useful serum biomarkers for distinguishing ACO from asthma.
Collapse
Affiliation(s)
- Kazufumi Takada
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
- Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Maho Suzukawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Hiroyuki Tashimo
- Asthma, Allergy and Rheumatology Center, National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Nobuharu Ohshima
- Department of Respiratory Medicine, National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Yuma Fukutomi
- Clinical Research Center, National Hospital Organization Sagamihara National Hospital, Kanagawa, 252-0392, Japan
| | | | - Masami Taniguchi
- Clinical Research Center, National Hospital Organization Sagamihara National Hospital, Kanagawa, 252-0392, Japan
- Shonan Kamakura General Hospital, Kanagawa, 247-8533, Japan
| | - Masaki Ishii
- Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Masahiro Akishita
- Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Ken Ohta
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
- Japan Anti-Tuberculosis Association, JATA Fukujuji Hospital, Tokyo, 204-8522, Japan
| |
Collapse
|
8
|
Mallick I, Panchal P, Kadam S, Mohite P, Scheele J, Seiz W, Agarwal A, Sharma OP. In-silico identification and prioritization of therapeutic targets of asthma. Sci Rep 2023; 13:15706. [PMID: 37735578 PMCID: PMC10514284 DOI: 10.1038/s41598-023-42803-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Asthma is a "common chronic disorder that affects the lungs causing variable and recurring symptoms like repeated episodes of wheezing, breathlessness, chest tightness and underlying inflammation. The interaction of these features of asthma determines the clinical manifestations and severity of asthma and the response to treatment" [cited from: National Heart, Lung, and Blood Institute. Expert Panel 3 Report. Guidelines for the Diagnosis and Management of Asthma 2007 (EPR-3). Available at: https://www.ncbi.nlm.nih.gov/books/NBK7232/ (accessed on January 3, 2023)]. As per the WHO, 262 million people were affected by asthma in 2019 that leads to 455,000 deaths ( https://www.who.int/news-room/fact-sheets/detail/asthma ). In this current study, our aim was to evaluate thousands of scientific documents and asthma associated omics datasets to identify the most crucial therapeutic target for experimental validation. We leveraged the proprietary tool Ontosight® Discover to annotate asthma associated genes and proteins. Additionally, we also collected and evaluated asthma related patient datasets through bioinformatics and machine learning based approaches to identify most suitable targets. Identified targets were further evaluated based on the various biological parameters to scrutinize their candidature for the ideal therapeutic target. We identified 7237 molecular targets from published scientific documents, 2932 targets from genomic structured databases and 7690 dysregulated genes from the transcriptomics and 560 targets from genomics mutational analysis. In total, 18,419 targets from all the desperate sources were analyzed and evaluated though our approach to identify most promising targets in asthma. Our study revealed IL-13 as one of the most important targets for asthma with approved drugs on the market currently. TNF, VEGFA and IL-18 were the other top targets identified to be explored for therapeutic benefit in asthma but need further clinical testing. HMOX1, ITGAM, DDX58, SFTPD and ADAM17 were the top novel targets identified for asthma which needs to be validated experimentally.
Collapse
Affiliation(s)
- Ishita Mallick
- Innoplexus Consulting Pvt. Ltd, 7th Floor, Midas Tower, Next to STPI Building, Phase 1, Hinjewadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Pradnya Panchal
- Innoplexus Consulting Pvt. Ltd, 7th Floor, Midas Tower, Next to STPI Building, Phase 1, Hinjewadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Smita Kadam
- Innoplexus Consulting Pvt. Ltd, 7th Floor, Midas Tower, Next to STPI Building, Phase 1, Hinjewadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Priyanka Mohite
- Innoplexus Consulting Pvt. Ltd, 7th Floor, Midas Tower, Next to STPI Building, Phase 1, Hinjewadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Jürgen Scheele
- Innoplexus AG, Frankfurter Str. 27, 65760, Eschborn, Germany
| | - Werner Seiz
- Innoplexus AG, Frankfurter Str. 27, 65760, Eschborn, Germany
| | - Amit Agarwal
- Innoplexus Consulting Pvt. Ltd, 7th Floor, Midas Tower, Next to STPI Building, Phase 1, Hinjewadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | | |
Collapse
|
9
|
Boboltz A, Kumar S, Duncan GA. Inhaled drug delivery for the targeted treatment of asthma. Adv Drug Deliv Rev 2023; 198:114858. [PMID: 37178928 PMCID: PMC10330872 DOI: 10.1016/j.addr.2023.114858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
Asthma is a chronic lung disease affecting millions worldwide. While classically acknowledged to result from allergen-driven type 2 inflammatory responses leading to IgE and cytokine production and the influx of immune cells such as mast cells and eosinophils, the wide range in asthmatic pathobiological subtypes lead to highly variable responses to anti-inflammatory therapies. Thus, there is a need to develop patient-specific therapies capable of addressing the full spectrum of asthmatic lung disease. Moreover, delivery of targeted treatments for asthma directly to the lung may help to maximize therapeutic benefit, but challenges remain in design of effective formulations for the inhaled route. In this review, we discuss the current understanding of asthmatic disease progression as well as genetic and epigenetic disease modifiers associated with asthma severity and exacerbation of disease. We also overview the limitations of clinically available treatments for asthma and discuss pre-clinical models of asthma used to evaluate new therapies. Based on the shortcomings of existing treatments, we highlight recent advances and new approaches to treat asthma via inhalation for monoclonal antibody delivery, mucolytic therapy to target airway mucus hypersecretion and gene therapies to address underlying drivers of disease. Finally, we conclude with discussion on the prospects for an inhaled vaccine to prevent asthma.
Collapse
Affiliation(s)
- Allison Boboltz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States
| | - Sahana Kumar
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, United States
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States; Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
10
|
Zhao Z, Li T, Yuan Y, Zhu Y. What is new in cancer-associated fibroblast biomarkers? Cell Commun Signal 2023; 21:96. [PMID: 37143134 PMCID: PMC10158035 DOI: 10.1186/s12964-023-01125-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
The tumor microenvironment is one of the important drivers of tumor development. Cancer-associated fibroblasts (CAFs) are a major component of the tumor stroma and actively participate in tumor development, invasion, metastasis, drug resistance, and other biological behaviors. CAFs are a highly heterogeneous group of cells, a reflection of the diversity of their origin, biomarkers, and functions. The diversity of CAF origin determines the complexity of CAF biomarkers, and CAF subpopulations expressing different biomarkers may play contrasting roles in tumor progression. In this review, we provide an overview of these emerging CAF biomarkers and the biological functions that they suggest, which may give a better understanding of the relationship between CAFs and tumor cells and be of great significance for breakthroughs in precision targeted therapy for tumors. Video Abstract.
Collapse
Affiliation(s)
- Zehua Zhao
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Tianming Li
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, No. 155 of Nanjing Road, Heping District, Shenyang, 110001, China.
| | - Yanmei Zhu
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
11
|
Ono J, Takai M, Kamei A, Ohta S, Nair P, Izuhara K, Dahlén SE, James A. A novel assay for improved detection of sputum periostin in patients with asthma. PLoS One 2023; 18:e0281356. [PMID: 36763690 PMCID: PMC9916630 DOI: 10.1371/journal.pone.0281356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Serum periostin associates with type-2 inflammation in asthmatic airways, but also reflects whole body periostin levels originating from multiple sources. Less is known about sputum periostin as a biomarker in asthma as detection levels are low using currently available periostin assays. We aimed to investigate detection of sputum periostin using ELISA assays targeting different periostin epitopes and relate levels to clinical characteristics. METHODS Two ELISA systems were developed using antibodies detecting whole periostin or cleavage products, the molecular weight and amino acid sequences of which were confirmed. The ELISA assays were applied to sputum from 80 patients with mild-to-moderate and severe asthma enrolled in the European, multi-center study BIOAIR. Results were related to clinical characteristics. RESULTS Sputum was found to contain smaller periostin fragments, possibly due to proteolytic cleavage at a C-terminal site. Comparing ELISA methodology using antibodies against cleaved versus whole periostin revealed detectable levels in 90% versus 44% of sputum samples respectively. Sputum periostin showed associations with blood and sputum eosinophils. Furthermore, sputum, but not serum, periostin correlated with reduced lung function and sputum IL-13 and was reduced by oral corticosteroid treatment. CONCLUSIONS We present an ELISA method for improved analysis of sputum periostin by detecting cleavage products of the periostin protein. Using this assay, sputum periostin was detectable and associated with more disease-relevant parameters in asthma than serum periostin. Sputum periostin is worth considering as a phenotype-specific biomarker in asthma as its proximity to the airways may eliminate some of the confounding factors known to affect serum periostin.
Collapse
Affiliation(s)
- Junya Ono
- Shino-Test Corporation Ltd., Sagamihara, Japan
| | | | - Ayami Kamei
- Shino-Test Corporation Ltd., Sagamihara, Japan
| | - Shoichiro Ohta
- Department of Laboratory Medicine, Saga Medical School, Saga, Japan
| | - Parameswaran Nair
- Department of Medicine, Division of Respirology, McMaster University and Firestone Institute for Respiratory Health, St Joseph’s Healthcare, Hamilton, Ontario, Canada
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Sven-Erik Dahlén
- Experimental Asthma and Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna James
- Experimental Asthma and Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | | |
Collapse
|
12
|
Association of serum CC16 levels with eosinophilic inflammation and respiratory dysfunction in severe asthma. Respir Med 2023; 206:107089. [PMID: 36542961 DOI: 10.1016/j.rmed.2022.107089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND There are knowledge gaps in the potential role of Club cell 16-kDa secretory protein (CC16) in severe asthma phenotypes and type 2 inflammation, as well as the longitudinal effect of CC16 on pulmonary function tests and exacerbation risk in epidemiological studies. OBJECTIVE AND METHODS To assess whether serum CC16 is associated with eosinophilic inflammation in patients with severe asthma. We also examined the effect of this protein on the annual decline in forced expiratory volume in the first second (FEV1) and the risk of exacerbation using a longitudinal approach. We recruited 127 patients with severe asthma from 30 hospitals/pulmonary clinics in Hokkaido, Japan. The least square means and standard error were calculated for T-helper 2 (Th2) biomarkers and pulmonary function test across CC16 tertiles at baseline. We did the same for asthma exacerbation and annual decline in FEV1 with 3 and 5 years' follow-up, respectively. RESULTS We found that serum CC16 was inversely associated with sputum eosinophils and blood periostin in a dose-response manner. Baseline CC16 and FEV1/forced vital capacity ratio were positively associated in adjusted models (p for trend = 0.008). Patients with the lowest tertile of serum CC16 levels at baseline had a -14.3 mL decline in FEV1 than those with the highest tertile over 5 years of follow-up (p for trend = 0.031, fully adjusted model). We did not find any association of CC16 with exacerbation risk. CONCLUSION Patients with severe asthma with lower circulatory CC16 had enhanced eosinophilic inflammation with rapid FEV1 decline over time.
Collapse
|
13
|
Hou Y, Xu Y, Fu D, Ren Z, Tao Y, Zhao H. Quantitative proteomic analysis of nonsyndromic orofacial cleft patient serum. Oral Dis 2023; 29:206-210. [PMID: 34170602 DOI: 10.1111/odi.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Yuxia Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yizhu Xu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Danrong Fu
- Department of Stomatology, Xi'an Children's Hospital, Xi'an, China
| | - Zhanping Ren
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Oral Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yongwei Tao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Oral Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Huaxiang Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Wang Z, An J, Zhu D, Chen H, Lin A, Kang J, Liu W, Kang X. Periostin: an emerging activator of multiple signaling pathways. J Cell Commun Signal 2022; 16:515-530. [PMID: 35412260 PMCID: PMC9733775 DOI: 10.1007/s12079-022-00674-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Matricellular proteins are responsible for regulating the microenvironment, the behaviors of surrounding cells, and the homeostasis of tissues. Periostin (POSTN), a non-structural matricellular protein, can bind to many extracellular matrix proteins through its different domains. POSTN usually presents at low levels in most adult tissues but is highly expressed in pathological sites such as in tumors and inflamed organs. POSTN can bind to diverse integrins to interact with multiple signaling pathways within cells, which is one of its core biological functions. Increasing evidence shows that POSTN can activate the TGF-β, the PI3K/Akt, the Wnt, the RhoA/ROCK, the NF-κB, the MAPK and the JAK pathways to promote the occurrence and development of many diseases, especially cancer and inflammatory diseases. Furthermore, POSTN can interact with some pathways in an upstream and downstream relationship, forming complicated crosstalk. This article focuses on the interactions between POSTN and different signaling pathways in diverse diseases, attempting to explain the mechanisms of interaction and provide novel guidelines for the development of targeted therapies.
Collapse
Affiliation(s)
- Zhaoheng Wang
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Jiangdong An
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China
| | - Daxue Zhu
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Haiwei Chen
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Aixin Lin
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Jihe Kang
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Wenzhao Liu
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Xuewen Kang
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| |
Collapse
|
15
|
Enomoto N. Pathological Roles of Pulmonary Cells in Acute Lung Injury: Lessons from Clinical Practice. Int J Mol Sci 2022; 23:ijms232315027. [PMID: 36499351 PMCID: PMC9736972 DOI: 10.3390/ijms232315027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Interstitial lung diseases (ILD) are relatively rare and sometimes become life threatening. In particular, rapidly progressive ILD, which frequently presents as acute lung injury (ALI) on lung histopathology, shows poor prognosis if proper and immediate treatments are not initiated. These devastating conditions include acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF), clinically amyopathic dermatomyositis (CADM), epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-induced lung injury, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection named coronavirus disease 2019 (COVID-19). In this review, clinical information, physical findings, laboratory examinations, and findings on lung high-resolution computed tomography and lung histopathology are presented, focusing on majorly damaged cells in each disease. Furthermore, treatments that should be immediately initiated in clinical practice for each disease are illustrated to save patients with these diseases.
Collapse
Affiliation(s)
- Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; ; Tel.: +81-53-435-2263; Fax: +81-53-435-2354
- Health Administration Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| |
Collapse
|
16
|
Serum Periostin May Help to Identify Patients with Poor Collaterals in the Hyperacute Phase of Ischemic Stroke. Diagnostics (Basel) 2022; 12:diagnostics12081942. [PMID: 36010292 PMCID: PMC9406779 DOI: 10.3390/diagnostics12081942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Periostin is a glycoprotein that mediates cell functions in the extracellular matrix and appears to be a promising biomarker in neurological damage, such as ischemic stroke (IS). We aimed to measure serum periostin levels in the hyperacute phase of ischemic stroke to explore its predictive power in identification of patients with poor collaterals (ASPECT < 6). Methods: We prospectively enrolled 122 patients with acute ischemic stroke within the first 6 h after onset. The early ischemic changes were evaluated by calculating ASPECT score on admission using a native CT scan. An unfavorable outcome was defined as the modified Rankin Scale (mRS) > 2 at 90 days follow-up. Blood samples were collected on admission immediately after CT scan and periostin serum concentrations were determined by ELISA. Results: The admission concentration of serum periostin was significantly higher in patients with unfavorable outcome than in patients with favorable outcome (615 ng/L, IQR: 443−1070 vs. 390 ng/L, 260−563, p < 0.001). In a binary logistic regression model, serum periostin level was a significant predictor for ASPECT < 6 status on admission, within 6 h after stroke onset (OR, 5.911; CI, 0.990−0.999; p = 0.015). Conclusion: Admission periostin levels can help to identify patients who are not suitable for neurointervention, especially if advanced neuroimaging is not available.
Collapse
|
17
|
Allergic Asthma in the Era of Personalized Medicine. J Pers Med 2022; 12:jpm12071162. [PMID: 35887659 PMCID: PMC9321181 DOI: 10.3390/jpm12071162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/17/2023] Open
Abstract
Allergic asthma is the most common asthma phenotype and is characterized by IgE sensitization to airborne allergens and subsequent typical asthmatic symptoms after exposure. A form of type 2 (T2) airway inflammation underlies allergic asthma. It usually arises in childhood and is accompanied by multimorbidity presenting with the occurrence of other atopic diseases, such as atopic dermatitis and allergic rhinitis. Diagnosis of the allergic endotype is based on in vivo (skin prick tests) and/or in vitro (allergen-specific IgE levels, component-resolved diagnosis (CRD)) documentation of allergic sensitization. Biomarkers identifying patients with allergic asthma include total immunoglobulin E (IgE) levels, fractional exhaled nitric oxide (FeNO) and serum eosinophil counts. The treatment of allergic asthma is a complex procedure and requires a patient-tailored approach. Besides environmental control involving allergen avoidance measurements and cornerstone pharmacological interventions based on inhaled drugs, allergen-specific immunotherapy (AIT) and biologics are now at the forefront when it comes to personalized management of asthma. The current review aims to shed light on the distinct phenotype of allergic asthma, ranging over its current definition, clinical characteristics, pathophysiology and biomarkers, as well as its treatment options in the era of precision medicine.
Collapse
|
18
|
Hafez RA, Hassan ME, Haggag MG, Atef N, Abdallah AL, Gerges MA. Association of Interleukin 13 rs20541 Gene Polymorphism and Serum Periostin with Asthma and Allergic Conjunctivitis Among Egyptian Patients. J Asthma Allergy 2022; 15:971-982. [PMID: 35923761 PMCID: PMC9342469 DOI: 10.2147/jaa.s373098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Raghda Abdellatif Hafez
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Manar E Hassan
- Microbiology, Immunology and Parasitology Department, Research Institute of Ophthalmology, Giza, Egypt
| | - Maha G Haggag
- Microbiology, Immunology and Parasitology Department, Research Institute of Ophthalmology, Giza, Egypt
| | - Nora Atef
- Cancer Epidemiology and Biostatistics Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Alshimaa L Abdallah
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marian A Gerges
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Correspondence: Marian A Gerges, Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt, Tel +2 01003819530, Email
| |
Collapse
|
19
|
Yoshida T, Nagaoka T, Nagata Y, Suzuki Y, Tsutsumi T, Kuriyama S, Watanabe J, Togo S, Takahashi F, Matsushita M, Joki Y, Konishi H, Nunomura S, Izuhara K, Conway SJ, Takahashi K. Periostin-related progression of different types of experimental pulmonary hypertension: A role for M2 macrophage and FGF-2 signalling. Respirology 2022; 27:529-538. [PMID: 35318760 PMCID: PMC9313806 DOI: 10.1111/resp.14249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/29/2022] [Accepted: 03/08/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVE Remodelling of pulmonary arteries (PA) contributes to the progression of pulmonary hypertension (PH). Periostin, a matricellular protein, has been reported to be involved in the development of PH. We examined the role of periostin in the pathogenesis of PH using different types of experimental PH. METHODS PH was induced by vascular endothelial growth factor receptor antagonist (Sugen5416) plus hypoxic exposure (SuHx) and venous injection of monocrotaline-pyrrole (MCT-P) in wild-type (WT) and periostin-/- mice. Pulmonary haemodynamics, PA remodelling, expression of chemokines and fibroblast growth factor (FGF)-2, accumulation of macrophages to small PA and the right ventricle (RV) were examined in PH-induced WT and periostin-/- mice. Additionally, the role of periostin in the migration of macrophages, human PA smooth muscle (HPASMCs) and endothelial cells (HPMVECs) was investigated. RESULTS In PH induced by SuHx and MCT-P, PH and accumulation of M2 macrophage to small PA were attenuated in periostin-/- mice. PA remodelling post-SuHx treatment was also mild in periostin-/- mice compared to WT mice. Expression of macrophage-associated chemokines and FGF-2 in lung tissue, and accumulation of CD68-positive cells in the RV were less in SuHx periostin-/- than in SuHx WT mice. Periostin secretion in HPASMCs and HPMVECs was enhanced by transforming growth factor-β. Periostin also augmented macrophage, HPASMCs and HPMVECs migration. Separately, serum periostin levels were significantly elevated in patients with PH compared to healthy controls. CONCLUSION Periostin is involved in the development of different types of experimental PH, and may also contribute to the pathogenesis of human PH.
Collapse
Affiliation(s)
- Takashi Yoshida
- Department of Respiratory MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Tetsutaro Nagaoka
- Department of Respiratory MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Yuichi Nagata
- Department of Respiratory MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Yoshifumi Suzuki
- Department of Respiratory MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Takeo Tsutsumi
- Department of Respiratory MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Sachiko Kuriyama
- Department of Respiratory MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Junko Watanabe
- Department of Respiratory MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Shinsaku Togo
- Department of Respiratory MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Fumiyuki Takahashi
- Department of Respiratory MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Masakazu Matsushita
- Department of Internal Medicine and RheumatologyJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Yusuke Joki
- Department of Cardiovascular MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Hakuoh Konishi
- Department of Cardiovascular MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular SciencesSaga Medical SchoolSagaJapan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular SciencesSaga Medical SchoolSagaJapan
| | - Simon J. Conway
- Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisIndianaUSA
| | - Kazuhisa Takahashi
- Department of Respiratory MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| |
Collapse
|
20
|
Lepucki A, Orlińska K, Mielczarek-Palacz A, Kabut J, Olczyk P, Komosińska-Vassev K. The Role of Extracellular Matrix Proteins in Breast Cancer. J Clin Med 2022; 11:jcm11051250. [PMID: 35268340 PMCID: PMC8911242 DOI: 10.3390/jcm11051250] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix is a structure composed of many molecules, including fibrillar (types I, II, III, V, XI, XXIV, XXVII) and non-fibrillar collagens (mainly basement membrane collagens: types IV, VIII, X), non-collagenous glycoproteins (elastin, laminin, fibronectin, thrombospondin, tenascin, osteopontin, osteonectin, entactin, periostin) embedded in a gel of negatively charged water-retaining glycosaminoglycans (GAGs) such as non-sulfated hyaluronic acid (HA) and sulfated GAGs which are linked to a core protein to form proteoglycans (PGs). This highly dynamic molecular network provides critical biochemical and biomechanical cues that mediate the cell–cell and cell–matrix interactions, influence cell growth, migration and differentiation and serve as a reservoir of cytokines and growth factors’ action. The breakdown of normal ECM and its replacement with tumor ECM modulate the tumor microenvironment (TME) composition and is an essential part of tumorigenesis and metastasis, acting as key driver for malignant progression. Abnormal ECM also deregulate behavior of stromal cells as well as facilitating tumor-associated angiogenesis and inflammation. Thus, the tumor matrix modulates each of the classically defined hallmarks of cancer promoting the growth, survival and invasion of the cancer. Moreover, various ECM-derived components modulate the immune response affecting T cells, tumor-associated macrophages (TAM), dendritic cells and cancer-associated fibroblasts (CAF). This review article considers the role that extracellular matrix play in breast cancer. Determining the detailed connections between the ECM and cellular processes has helped to identify novel disease markers and therapeutic targets.
Collapse
Affiliation(s)
- Arkadiusz Lepucki
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Kinga Orlińska
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Jacek Kabut
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Pawel Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
- Correspondence:
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland;
| |
Collapse
|
21
|
Nanishi M, Fujiogi M, Freishtat RJ, Hoptay CE, Bauer CS, Stevenson MD, Camargo CA, Hasegawa K. Serum periostin among infants with severe bronchiolitis and risk of developing asthma: A prospective multicenter cohort study. Allergy 2022; 77:2121-2130. [PMID: 35000210 DOI: 10.1111/all.15216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Infants hospitalized for bronchiolitis (severe bronchiolitis) are at high risk for developing childhood asthma. However, the pathobiological link between these conditions remains unclear. We examined the longitudinal relationship of periostin (an extracellular matrix protein upregulated in response to type 2 inflammation) during bronchiolitis with the subsequent development of asthma. METHODS In a 17-center prospective cohort study of infants (aged <1 year) with severe bronchiolitis, we measured the serum periostin level at hospitalization and grouped infants into 3 groups: low, intermediate, and high levels. We examined their association with asthma development by age 6 years and investigated effect modification by allergic predisposition (eg, infant's IgE sensitization). RESULTS The analytic cohort consists of 847 infants with severe bronchiolitis (median age, 3 months). Overall, 28% developed asthma by age 6 years. In the multivariable model adjusting for nine patient-level factors, compared to the low periostin group, the asthma risk was significantly higher among infants in the intermediate group (23% vs. 32%, OR 1.68, 95%CI 1.12-2.51, p = .01) and non-significantly higher in the high-level group (28%, OR 1.29, 95%CI 0.86-1.95, p = .22). In the stratified analysis, infants with IgE sensitization had a significantly higher risk for developing asthma (intermediate group, OR 4.76, 95%CI 1.70-13.3, p = .002; high group, OR 3.19, 95%CI 1.08-9.36, p = .04). By contrast, infants without IgE sensitization did not have a significantly higher risk (p > .15). CONCLUSIONS In infants with severe bronchiolitis, serum periostin level at bronchiolitis hospitalization was associated with asthma risk by age 6 years, particularly among infants with an allergic predisposition.
Collapse
Affiliation(s)
- Makiko Nanishi
- Department of Emergency Medicine Harvard Medical School Massachusetts General Hospital Boston Massachusetts USA
| | - Michimasa Fujiogi
- Department of Emergency Medicine Harvard Medical School Massachusetts General Hospital Boston Massachusetts USA
| | - Robert J. Freishtat
- Department of Genomics and Precision Medicine George Washington University Washington District of Columbia USA
- Division of Emergency Medicine Children’s National Hospital Washington District of Columbia USA
| | - Claire E. Hoptay
- Children's Research Institute Children's National Hospital Washington District of Columbia USA
| | - Cindy S. Bauer
- Division of Allergy and Immunology Phoenix Children’s Hospital Phoenix Arizona USA
| | - Michelle D. Stevenson
- Department of Pediatrics, Emergency Medicine Norton Children’s HospitalUniversity of Louisville School of Medicine Louisville Kentucky USA
| | - Carlos A. Camargo
- Department of Emergency Medicine Harvard Medical School Massachusetts General Hospital Boston Massachusetts USA
| | - Kohei Hasegawa
- Department of Emergency Medicine Harvard Medical School Massachusetts General Hospital Boston Massachusetts USA
| |
Collapse
|
22
|
Yilmaz GO, Cetinkaya EA, Eyigor H, Ellidag HY, Balaban K, Selcuk OT, Yilmaz G, Gur OE. The diagnostic importance of periostin as a biomarker in chronic rhinosinusitis with nasal polyp. Eur Arch Otorhinolaryngol 2022; 279:5707-5714. [PMID: 35723731 PMCID: PMC9207425 DOI: 10.1007/s00405-022-07492-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023]
Abstract
PURPOSE The current studies in the literature report that periostin contributes to the formation of nasal polyps and may be a molecular biomarker for chronic rhinosinusitis with nasal polyps (CRSwNP). This study aims to investigate the effect of periostin in determining polyp burden in CRSwNP patients and evaluate its impact on postoperative surgical results and its functionality as a biomarker. METHODS The study included 26 patients who underwent endoscopic sinus surgery due to CRSwNP and 30 patients who were scheduled to undergo septoplasty due to isolated nasal septum deviation. We performed preoperative Lund-Mackay scoring and preoperative and postoperative SNOT-22 and Modified Lund-Kennedy scoring for the patients. Tissue and serum samples were collected from all patients in surgery and another serum sample was taken from CRSwNP patients at postoperative month 6. RESULTS Tissue eosinophil (p < 0.001), preoperative serum (p < 0.001), and tissue (p = 0.002) periostin were significantly higher in the CRSwNP group. We observed a statistically significant positive correlation between tissue eosinophil values and tissue periostin values in CRSwNP patients (p = 0.004). We found a statistically significant positive correlation between the tissue periostin values and postoperative SNOT-22 scores of the CRSwNP group patients (p = 0.005). CONCLUSION According to the results of our study, we think that periostin can be used as a biomarker in the prediction, determination of disease severity, and prognosis of CRSwNP. Comprehensive cohort studies with larger patient series are needed to provide more information on the role and effects of periostin in cases of CRSwNP undergoing surgical treatment.
Collapse
Affiliation(s)
- Gamze Ozturk Yilmaz
- Department of Otorhinolaryngology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Erdem Atalay Cetinkaya
- Department of Otorhinolaryngology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Hulya Eyigor
- Department of Otorhinolaryngology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Hamit Yasar Ellidag
- Department of Biochemistry, Antalya Training and Research Hospital, Antalya, Turkey
| | - Kadir Balaban
- Department of Pathology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Omer Tarik Selcuk
- Department of Otorhinolaryngology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Gokhan Yilmaz
- Department of Otorhinolaryngology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Ozer Erdem Gur
- Department of Otorhinolaryngology, Antalya Training and Research Hospital, Antalya, Turkey
| |
Collapse
|
23
|
Berman R, Rose CS, Downey GP, Day BJ, Chu HW. Role of Particulate Matter from Afghanistan and Iraq in Deployment-Related Lung Disease. Chem Res Toxicol 2021; 34:2408-2423. [PMID: 34808040 DOI: 10.1021/acs.chemrestox.1c00090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Approximately 3 million United States military personnel and contractors were deployed to Southwest Asia and Afghanistan over the past two decades. After returning to the United States, many developed persistent respiratory symptoms, including those due to asthma, rhinosinusitis, bronchiolitis, and others, which we collectively refer to as deployment-related lung diseases (DRLD). The mechanisms of different DRLD have not been well defined. Limited studies from us and others suggest that multiple factors and biological signaling pathways contribute to the onset of DRLD. These include, but are not limited to, exposures to high levels of particulate matter (PM) from sandstorms, burn pit combustion products, improvised explosive devices, and diesel exhaust particles. Once inhaled, these hazardous substances can activate lung immune and structural cells to initiate numerous cell-signaling pathways such as oxidative stress, Toll-like receptors, and cytokine-driven cell injury (e.g., interleukin-33). These biological events may lead to a pro-inflammatory response and airway hyperresponsiveness. Additionally, exposures to PM and other environmental hazards may predispose military personnel and contractors to more severe disease due to the interactions of those hazardous materials with subsequent exposures to allergens and cigarette smoke. Understanding how airborne exposures during deployment contribute to DRLD may identify effective targets to alleviate respiratory diseases and improve quality of life in veterans and active duty military personnel.
Collapse
Affiliation(s)
- Reena Berman
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| | - Cecile S Rose
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| | - Gregory P Downey
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| | - Brian J Day
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| |
Collapse
|
24
|
Mehrabi S, Torkan J, Hosseinzadeh M. Effect of atorvastatin on serum periostin and blood eosinophils in asthma - a placebo-controlled randomized clinical trial. J Int Med Res 2021; 49:3000605211063721. [PMID: 34904467 PMCID: PMC8689629 DOI: 10.1177/03000605211063721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Objective To investigate the effect of atorvastatin on serum periostin level and blood eosinophil count in patients with asthma. Methods Patients diagnosed with asthma were enrolled and randomised into an intervention or placebo group, to receive 40 mg atorvastatin or similar placebo, daily, for 8 weeks. Spirometry was performed at baseline, and at the end of weeks 4 and 8; patients also provided blood samples and completed an asthma control test (ACT) at baseline and at the end of week 8. Primary study outcomes were blood eosinophil count and serum periostin levels. Results Eighty patients completed the study (40 per group). Mean ACT scores were similar between the intervention and placebo groups at baseline (17.95 ± 3.75 versus 17.98 ± 3.77, respectively), and improved in the intervention group (19.88 ± 3.28), but remained unchanged in the placebo group (18.6 ± 3.26) during the treatment period. No statistically significant differences in spirometric changes, blood eosinophil count or serum periostin levels were observed between the groups during the treatment period. Conclusion Spirometric parameters and inflammatory markers did not change significantly in response to atorvastatin treatment, and did not differ between the placebo and intervention groups.
Collapse
Affiliation(s)
- Samrad Mehrabi
- Division of Pulmonology, Department of Internal Medicine, 48435Shiraz University of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jalal Torkan
- Department of Internal Medicine, 48435Shiraz University of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massood Hosseinzadeh
- Department of Pathology, 48435Shiraz University of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Krasilnikova SV, Tush EV, Frolov PA, Ovsyannikov DY, Terentyeva AB, Kubysheva NI, Eliseeva TI. Periostin as a Biomarker of Allergic Inflammation in Atopic Bronchial Asthma and Allergic Rhinitis (a Pilot Study). Sovrem Tekhnologii Med 2021; 12:37-45. [PMID: 34796003 PMCID: PMC8596267 DOI: 10.17691/stm2020.12.5.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
The involvement of periostin in Th2-dependent allergic inflammation has been documented. However, the significance of periostin as a biomarker of local allergic inflammation in the nasal mucosa (NM) of patients with atopic bronchial asthma (BA) and allergic rhinitis (AR) is yet to be determined. The aim of the study was to determine the presence of periostin and evaluate its role as a non-invasive marker of allergic inflammation in the nasal secretions of children with atopic BA and AR. Materials and Methods In 43 patients aged 4-17 years with atopic BA and AR, the NM was examined using nasal video-endoscopy and (if indicated) computed tomography; the amount of periostin in the nasal secretion was determined by the enzyme immunoassay. Results Exacerbation of AR was accompanied by a statistically significant increase in the level of periostin in the nasal secretion: up to 0.84 [0.06; 48.79] ng/mg, whereas in remission, that was 0.13 [0.00; 0.36] ng/mg; p=0.04. This value increased progressively as the severity of AR increased from 0.16 [0.00; 0.36] ng/mg in the mild course to 0.20 [0.00; 9.03] ng/mg in AR of moderate severity, and to 10.70 [0.56; 769.20] ng/mg in most severe cases; p=0.048. Hypertrophy or polyposis of the nasal and/or paranasal mucosa was detected in 34.9% (15/43) of the examined patients. The concentration of periostin in the nasal secretion was lower in children without NM hypertrophy: 0.18 [0.001; 4.30] ng/mg vs 0.78 [0.13; 162.10] ng/mg in patients with NM hypertrophy; the differences were close to statistically significant: p=0.051. The level of nasal periostin depended on the clinical form of hypertrophy in the sinonasal mucosa, reaching 0.17 [0.00; 0.32] ng/mg in children with polyposis hyperplasia of NM and 21.6 [10.70; 1516.80] ng/mg - with hypertrophy of the NM in the medial surface of the concha; p=0.02. Conclusion Exacerbation and increased severity of AR in patients with atopic BA are accompanied by an increased level of periostin in the nasal secretion. This allows us to consider the level of nasal periostin as a biomarker of local allergic inflammation in the NM of patients with atopic BA combined with AR. Hypertrophic changes in the sinonasal mucosa are generally accompanied by an increased level of nasal periostin; specifically, this level significantly depends on the clinical form of mucous membrane hypertrophy and requires additional studies.
Collapse
Affiliation(s)
- S V Krasilnikova
- Assistant, Department of Ear, Nose, and Throat; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - E V Tush
- Associate Professor, Department of Hospital Pediatrics; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - P A Frolov
- Assistant, Department of Pediatrics; Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow, 117198, Russia
| | - D Yu Ovsyannikov
- Head of the Department of Pediatrics; Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow, 117198, Russia
| | - A B Terentyeva
- Associate Professor, Department of Ear, Nose, and Throat; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - N I Kubysheva
- Senior Researcher, Research Laboratory "Clinical Linguistics"; Kazan Federal University, 18 Kremlyovskaya St., Kazan, Republic of Tatarstan, 420008, Russia
| | - T I Eliseeva
- Associate Professor, Professor, Department of Hospital Pediatrics Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
26
|
Zhang J, Wang Z, Zhang D, Pan Y, Liu X, Qiao X, Cui W, Dong L. Integrative Analysis Reveals a miRNA-mRNA Regulatory Network and Potential Causative Agents in the Asthmatic Airway Epithelium. J Asthma Allergy 2021; 14:1307-1321. [PMID: 34744440 PMCID: PMC8566008 DOI: 10.2147/jaa.s331090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background During asthma progression, the intricate molecular networks, including microRNA (miRNA) transcriptional regulation in airway epithelium, remain largely undefined. The abnormal expression of miRNAs in asthmatic airway epithelium is a recent and fast-growing area in developing diagnostic and therapeutic targets for asthma. Material and Methods Analyses were conducted to compare airway epithelial miRNAs and gene expression between patients with asthma and healthy subjects from three datasets (two for miRNAs expression profiles and one for gene expression profile). The interactions network between differentially expressed (DE)-miRNAs and mRNAs was further identified for functional analysis. To verify the involvement and functions of all the identified miRNAs in asthma, we constructed two cellular models of asthma. The most promising causal miRNA candidate, miR-1246, was examined in an in vitro system to explore its targets and roles in asthma pathophysiology. Results Through integrative analysis, we obtained six miRNAs with 31 validated target genes in airway epithelium associated with asthma. Next, we confirmed that these miRNAs were all associated with asthma progression by in vitro functional experiments. They may participate in eosinophilic inflammation (miR-92b-3p, miR-1246, miR-197-3p, and miR-124-5p) or remodeling (miR-197-3p, miR-193a-5p, miR-1246, and miR-92b-3p). Additionally, some other non-screened valuable miRNAs were also examined and identified (miR-21-5p and miR-19b-3p), and some detected in blood correlated with the disease status. Furthermore, we found that miR-1246 could directly target POSTN and influence epithelial-to-mesenchymal transition and fibrosis in airway epithelial cells. Conclusion We constructed a preliminary epithelial regulatory network in asthma based on six identified miRNAs and their valuable target genes. Candidate factors in the biological miRNA-mRNA network in airway epithelium may provide further information on the pathogenesis of asthma. Strikingly, among all screened miRNAs, miR-1246, which could interact with POSTN may have multifunctional effects in the course of asthma and be a promising agent for asthma treatment and molecular subtyping.
Collapse
Affiliation(s)
- Jintao Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Zihan Wang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Dong Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yun Pan
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xiaofei Liu
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xinrui Qiao
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Wenjing Cui
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Liang Dong
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, People's Republic of China
| |
Collapse
|
27
|
Biomarkers in systemic sclerosis: mechanistic insights into pathogenesis and treatment. Curr Opin Rheumatol 2021; 33:480-485. [PMID: 34420004 DOI: 10.1097/bor.0000000000000827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE OF REVIEW Systemic sclerosis (SSc) is heterogenous on molecular, cellular, tissue, and clinical levels. Although many biomarkers have been described in clinical studies, few have been rigorously mapped to specific molecular pathways, tissue pathologies, and clinical manifestations. A focused assessment of peripheral blood levels of C-C Motif Chemokine Ligand-18 (CCL18) and periostin illustrates how biomarkers can link molecular mediators to clinical outcomes. RECENT FINDINGS CCL18 is produced by pulmonary macrophages in response to type 2 cytokines and IL6. Elevated serum CCL18 is associated with interstitial lung disease (ILD) in SSc patients and is prognostic for ILD progression. It is pharmacologically modulated by IL6 inhibition, and associated with stabilization of lung function decline but not with improvements in skin fibrosis. Periostin is produced by dermal fibroblasts in SSc in response to type 2 cytokines and transforming growth factor-beta. Elevated serum periostin is associated with cutaneous disease in SSc patients but not ILD. Other cell- and tissue-specific biomarkers detectable in peripheral blood and informative with respect to SSc pathogenesis include KL-6 and SP-D in lung epithelium, osteopontin in lung macrophages, and cartilage oligomeric matrix protein in dermal fibroblasts. SUMMARY Blood biomarkers related to specific molecular mediators, cell types, and tissues of origin can help to link therapeutic targets to treatable traits in SSc.
Collapse
|
28
|
Rodrigo-Muñoz JM, Cañas JA, Sastre B, Gil-Martínez M, García Latorre R, Sastre J, Del Pozo V. Role of miR-185-5p as modulator of periostin synthesis and smooth muscle contraction in asthma. J Cell Physiol 2021; 237:1498-1508. [PMID: 34698372 PMCID: PMC9298424 DOI: 10.1002/jcp.30620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 11/11/2022]
Abstract
Asthma is a chronic respiratory disease produced by an aberrant immune response that originates with breathing difficulties and cough, through airway remodeling. The above pathophysiological events of asthma emerge the regulators of effectors, like epigenetics, which include microRNAs (miRNAs) who perform post‐transcriptional regulation, controlling diverse pathways in respiratory diseases. The objective of the study was to determine how miR‐185‐5p regulates the secretion of periostin by airway structural cells, and smooth muscle cells contraction, both related to airway remodeling in asthma. We used miR‐185‐5p mimic and inhibitors in bronchial smooth muscle cells (BSMCs) and small airway epithelial cells (SAECs) from healthy subjects. Gene expression and protein levels of periostin (POSTN), CDC42, and RHOA were analyzed by RT‐PCR and ELISA/Western blot, respectively. BSMC contractility was analyzed using cell‐embedded collagen gels and measurement of intracellular calcium was performed using Fura‐2. Additionally, miR‐185‐5p and periostin expression were evaluated in sputum from healthy and asthmatics. From these experiments, we observed that miR‐185‐5p modulation regulates periostin mRNA and protein in BSMCs and SAECs. A tendency for diminished miR‐185‐5p expression and higher periostin levels was seen in sputum cells from asthmatics compared to healthy, with an inverse correlation observed between POSTN and miR‐185‐5p. Inhibition of miR‐185‐5p produced higher BSMCs contraction induced by histamine. Calcium mobilization was not modified by miR‐185‐5p, showing that miR‐185‐5p role in BSMC contractility is performed by regulating CDC42 and RhoA pro‐contractile factors instead. In conclusion, miR‐185‐5p is a modulator of periostin secretion by airway structural cells and of smooth muscle contraction, which can be related to asthma pathophysiology, and thus, might be a promising therapeutic target.
Collapse
Affiliation(s)
- José M Rodrigo-Muñoz
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - José A Cañas
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Beatriz Sastre
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | | | - Joaquín Sastre
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Allergy, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Victoria Del Pozo
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
29
|
Puzzovio PG, Levi-Schaffer F. Latest Progresses in Allergic Diseases Biomarkers: Asthma and Atopic Dermatitis. Front Pharmacol 2021; 12:747364. [PMID: 34658882 PMCID: PMC8514744 DOI: 10.3389/fphar.2021.747364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
In the last years, the understanding of the pathologic mechanisms of asthma and atopic dermatitis, both characterized by allergic inflammation, has greatly improved. However, it is evident that both diseases present with high heterogeneity, which complicates the diagnosis and the therapeutic approach of the patients. Moreover, some of the currently available strategies to treat asthma and atopic dermatitis are still mostly controlling the symptoms, but not to lead towards full healing, thus having these two diseases labelled as unmet clinical needs by WHO. Therefore, the "one-size-fits-all" strategy is outdated for asthma and atopic dermatitis, and there is the need of better methods to clearly diagnose the disease and tailor the therapy according to the specific symptomatology. In this regard, the use of biomarkers has been advanced in order to characterize both diseases according to their clinical signs and to facilitate the subsequent treatment. Despite the advancements made in this regard, there is still need for better and more sensitive biomarkers and for less invasive sampling methodologies, with the aim to diagnose specifically each manifestation of asthma and atopic dermatitis and to provide the best treatment with the least suffering for the patients.
Collapse
Affiliation(s)
- Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
30
|
Sonnenberg-Riethmacher E, Miehe M, Riethmacher D. Periostin in Allergy and Inflammation. Front Immunol 2021; 12:722170. [PMID: 34512647 PMCID: PMC8429843 DOI: 10.3389/fimmu.2021.722170] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Matricellular proteins are involved in the crosstalk between cells and their environment and thus play an important role in allergic and inflammatory reactions. Periostin, a matricellular protein, has several documented and multi-faceted roles in health and disease. It is differentially expressed, usually upregulated, in allergic conditions, a variety of inflammatory diseases as well as in cancer and contributes to the development and progression of these diseases. Periostin has also been shown to influence tissue remodelling, fibrosis, regeneration and repair. In allergic reactions periostin is involved in type 2 immunity and can be induced by IL-4 and IL-13 in bronchial cells. A variety of different allergic diseases, among them bronchial asthma and atopic dermatitis (AD), have been shown to be connected to periostin expression. Periostin is commonly expressed in fibroblasts and acts on epithelial cells as well as fibroblasts involving integrin and NF-κB signalling. Also direct signalling between periostin and immune cells has been reported. The deposition of periostin in inflamed, often fibrotic, tissues is further fuelling the inflammatory process. There is increasing evidence that periostin is also expressed by epithelial cells in several of the above-mentioned conditions as well as in cancer. Augmented periostin expression has also been associated with chronic inflammation such as in inflammatory bowel disease (IBD). Periostin can be expressed in a variety of different isoforms, whose functions have not been elucidated yet. This review will discuss potential functions of periostin and its different isoforms in allergy and inflammation.
Collapse
Affiliation(s)
- Eva Sonnenberg-Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- Department of Human Development and Health, School of Medicine, University of Southampton, Southampton, United Kingdom
| | - Michaela Miehe
- Department of Biological and Chemical Engineering – Immunological Biotechnology, Aarhus University, Aarhus, Denmark
| | - Dieter Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- Department of Human Development and Health, School of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
31
|
Li Z, Yu S, Hu X, Li Y, You X, Tian D, Cheng L, Zheng M, Jing J. Fibrotic Scar After Spinal Cord Injury: Crosstalk With Other Cells, Cellular Origin, Function, and Mechanism. Front Cell Neurosci 2021; 15:720938. [PMID: 34539350 PMCID: PMC8441597 DOI: 10.3389/fncel.2021.720938] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/28/2021] [Indexed: 01/18/2023] Open
Abstract
The failure of axonal regeneration after spinal cord injury (SCI) results in permanent loss of sensorimotor function. The persistent presence of scar tissue, mainly fibrotic scar and astrocytic scar, is a critical cause of axonal regeneration failure and is widely accepted as a treatment target for SCI. Astrocytic scar has been widely investigated, while fibrotic scar has received less attention. Here, we review recent advances in fibrotic scar formation and its crosstalk with other main cellular components in the injured core after SCI, as well as its cellular origin, function, and mechanism. This study is expected to provide an important basis and novel insights into fibrotic scar as a treatment target for SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Cheng
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Meige Zheng
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Juehua Jing
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
32
|
Abstract
Periostin, an extracelluar matrix protein belonging to the fasciclin family, has been reported to play a key role in the process of Th2-inflammation disease. As eoshinophilic chronic rhinosinusitis has a higher incident rate, studies show that periostin has participated in the process of inflammation and remodeling. This review mainly to summarize researches of periostin in ECRS and to investigate the clinical significance and expression of periostin.
Collapse
Affiliation(s)
- Lei Yu
- Weihai Municipal Hospital, Weihai, China
| | | | - Kai Liu
- Weihai Municipal Hospital, Weihai, China
| |
Collapse
|
33
|
Ono J, Takai M, Kamei A, Azuma Y, Izuhara K. Pathological Roles and Clinical Usefulness of Periostin in Type 2 Inflammation and Pulmonary Fibrosis. Biomolecules 2021; 11:1084. [PMID: 34439751 PMCID: PMC8391913 DOI: 10.3390/biom11081084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Periostin is known to be a useful biomarker for various diseases. In this article, we focus on allergic diseases and pulmonary fibrosis, for which we and others are now developing detection systems for periostin as a biomarker. Biomarker-based precision medicine in the management of type 2 inflammation and fibrotic diseases since heterogeneity is of utmost importance. Periostin expression is induced by type 2 cytokines (interleukin-4/-13) or transforming growth factor-β, and plays a vital role in the pathogenesis of allergic inflammation or interstitial lung disease, respectively, andits serum levels are correlated disease severity, prognosis and responsiveness to the treatment. We first summarise the importance of type 2 biomarker and then describe the pathological role of periostin in the development and progression of type 2 allergic inflammation and pulmonary fibrosis. In addition, then, we summarise the recent development of assay methods for periostin detection, and analyse the diseases in which periostin concentration is elevated in serum and local biological fluids and its usefulness as a biomarker. Furthermore, we describe recent findings of periostin as a biomarker in the use of biologics or anti-fibrotic therapy. Finally, we describe the factors that influence the change in periostin concentration under the healthy conditions.
Collapse
Affiliation(s)
- Junya Ono
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Masayuki Takai
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
- Division of Medical Biochemistry, Department of Biomolecular Science, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan;
| | - Ayami Kamei
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Yoshinori Azuma
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Science, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan;
| |
Collapse
|
34
|
Perkins TN, Oury TD. The perplexing role of RAGE in pulmonary fibrosis: causality or casualty? Ther Adv Respir Dis 2021; 15:17534666211016071. [PMID: 34275342 PMCID: PMC8293846 DOI: 10.1177/17534666211016071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease in which most patients die within 3 years of diagnosis. With an unknown etiology, IPF results in progressive fibrosis of the lung parenchyma, diminishing normal lung function, which results in respiratory failure, and eventually, death. While few therapies are available to reduce disease progression, patients continue to advance toward respiratory failure, leaving lung transplantation the only viable option for survival. As incidence and mortality rates steadily increase, the need for novel therapeutics is imperative. The receptor for advanced glycation endproducts (RAGE) is most highly expressed in the lungs and plays a significant role in a number of chronic lung diseases. RAGE has long been linked to IPF; however, confounding data from both human and experimental studies have left an incomplete and perplexing story. This review examines the present understanding of the role of RAGE in human and experimental models of IPF, drawing parallels to recent advances in RAGE biology. Moreover, this review discusses the role of RAGE in lung injury response, type 2 immunity, and cellular senescence, and how such mechanisms may relate to RAGE as both a biomarker of disease progression and potential therapeutic target in IPF.The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Timothy N Perkins
- Department of Pathology, University of Pittsburgh School of Medicine, 3550 Terrace Street, S-784 Scaife Hall, Pittsburgh, PA 15261, USA
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
35
|
Jamal Jameel K, Gallert WJ, Yanik SD, Panek S, Kronsbein J, Jungck D, Koch A, Knobloch J. Biomarkers for Comorbidities Modulate the Activity of T-Cells in COPD. Int J Mol Sci 2021; 22:ijms22137187. [PMID: 34281240 PMCID: PMC8269158 DOI: 10.3390/ijms22137187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/17/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
In smoking-induced chronic obstructive pulmonary disease (COPD), various comorbidities are linked to systemic inflammation and infection-induced exacerbations. The underlying mechanisms are unclear but might provide therapeutic targets. T-cell activity is central in systemic inflammation and for infection-defense mechanisms and might be influenced by comorbidities. Hypothesis: Circulating biomarkers of comorbidities modulate the activity of T-cells of the T-helper type 1 (Th1) and/or T-cytotoxic type 1 (Tc1). T-cells in peripheral blood mononuclear cells (PBMCs) from non-smokers (NS), current smokers without COPD (S), and COPD subjects (total n = 34) were ex vivo activated towards Th1/Tc1 and were then stimulated with biomarkers for metabolic and/or cardiovascular comorbidities (Brain Natriuretic Peptide, BNP; chemokine (C-C motif) ligand 18, CCL18; C-X3-C motif chemokine ligand 1, CX3CL1; interleukin-18, IL-18) or for asthma- and/or cancer-related comorbidities (CCL22; epidermal growth factor, EGF; IL-17; periostin) each at 10 or 50 ng/mL. The Th1/Tc1 activation markers interferon-γ (IFNγ), tumor necrosis factor-α (TNFα), and granulocyte-macrophage colony-stimulating factor (GM-CSF) were analyzed in culture supernatants by Enzyme-Linked Immunosorbent Assay (ELISA). Ex-vivo activation induced IFNγ and TNFα without differences between the groups but GM-CSF more in S vs. NS. At 10 ng/mL, the different biomarkers increased or reduced the T-cell activation markers without a clear trend for one direction in the different categories of comorbidities or for the different T-cell activation markers. At 50 ng/mL, there was a clear shift towards suppressive effects, particularly for the asthma— and cancer-related biomarkers and in cells of S and COPD. Comorbidities might suppress T-cell immunity in COPD. This could explain the association of comorbidities with frequent exacerbations.
Collapse
Affiliation(s)
- Kaschin Jamal Jameel
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany; (K.J.J.); (W.-J.G.); (S.D.Y.); (S.P.); (J.K.)
| | - Willem-Jakob Gallert
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany; (K.J.J.); (W.-J.G.); (S.D.Y.); (S.P.); (J.K.)
| | - Sarah D. Yanik
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany; (K.J.J.); (W.-J.G.); (S.D.Y.); (S.P.); (J.K.)
| | - Susanne Panek
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany; (K.J.J.); (W.-J.G.); (S.D.Y.); (S.P.); (J.K.)
| | - Juliane Kronsbein
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany; (K.J.J.); (W.-J.G.); (S.D.Y.); (S.P.); (J.K.)
| | - David Jungck
- Department of Internal Medicine II, Pneumology, Allergology and Respiratory Medicine, Bethel Teaching Hospital, 12207 Berlin, Germany;
| | - Andrea Koch
- Pyhrn-Eisenwurzen-Klinikum Steyr, Klinik für Pneumologie, Lehrkrankenhaus der Uniklinik Linz, Sierninger Str. 170, 4400 Steyr, Austria;
- Ludwig-Maximilians-University of Munich (LMU) and DZL (German Center of Lung Science), 81377 Munich, Germany
| | - Jürgen Knobloch
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany; (K.J.J.); (W.-J.G.); (S.D.Y.); (S.P.); (J.K.)
- Correspondence: ; Tel.: +49-234-302-3404; Fax: +49-234-302-6420
| |
Collapse
|
36
|
Tanrıverdi Z, Meteroglu F, Yüce H, Şenyiğit A, Işcan M, Unüvar S. The usefulness of biomarkers in diagnosis of asbestos-induced malignant pleural mesothelioma. Hum Exp Toxicol 2021; 40:1817-1824. [PMID: 33998299 DOI: 10.1177/09603271211017324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Malignant pleural mesothelioma (MPM) is a malignant tumor that is associated mostly with asbestos exposure. The present study was to evaluates the diagnostic value of neopterin, periostin, YKL-40, Tenascin-C (TNC), and Indolamine 2,3-dioxygenase (IDO) as noninvasive markers of malign pleural mesothelioma. METHODS Included in the study were 30 patients diagnosed with malign pleural mesothelioma, and 25 people as a control group. Biomarker levels were determined using an enzyme immunoassay . A Mann-Whitney U test and Spearman correlation methods were used for the statistical analysis. RESULTS All evaluated biomarkers were found to be significantly higher in the MPM group than in the control group (p < 0.05). There was no effect of such variables as gender, age or MPMsubtype on the parameters (p > 0.05) in the patient group. All biomarkers were positively correlated with each other (p < 0.001). CONCLUSIONS The current non-invasive biomarkers that can be used in the diagnosis of MPM yielded significant results and can make important contributions to the early diagnosis of MPM.
Collapse
Affiliation(s)
- Zübeyde Tanrıverdi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 37520İnönü University, Malatya, Turkey
| | - Fatih Meteroglu
- Department of Thoracic Surgery, Faculty of Medicine, 37507Dicle University, Diyarbakır, Turkey
| | - Hande Yüce
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 37520İnönü University, Malatya, Turkey
| | - Abdurrahman Şenyiğit
- Department of Chest Diseases, Faculty of Medicine, 37507Dicle University, Diyarbakır, Turkey
| | - Mümtaz Işcan
- Faculty of Pharmacy, 64188Cyprus International University, Nicosia, Cyprus
| | - Songül Unüvar
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 37520İnönü University, Malatya, Turkey
| |
Collapse
|
37
|
O'Reilly E, Zeinabad HA, Szegezdi E. Hematopoietic versus leukemic stem cell quiescence: Challenges and therapeutic opportunities. Blood Rev 2021; 50:100850. [PMID: 34049731 DOI: 10.1016/j.blre.2021.100850] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/22/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem cells (HSC) are responsible for the production of mature blood cells. To ensure that the HSC pool does not get exhausted over the lifetime of an individual, most HSCs are in a state of quiescence with only a small proportion of HSCs dividing at any one time. HSC quiescence is carefully controlled by both intrinsic and extrinsic, niche-driven mechanisms. In acute myeloid leukemia (AML), the leukemic cells overtake the hematopoietic bone marrow niche where they acquire a quiescent state. These dormant AML cells are resistant to chemotherapeutics. Because they can re-establish the disease after therapy, they are often termed as quiescent leukemic stem cells (LSC) or leukemia-initiating cells. While advancements are being made to target particular driver mutations in AML, there is less focus on how to tackle the drug resistance of quiescent LSCs. This review summarises the current knowledge on the biochemical characteristics of quiescent HSCs and LSCs, the intracellular signaling pathways and the niche-driven mechanisms that control quiescence and the key differences between HSC- and LSC-quiescence that may be exploited for therapy.
Collapse
Affiliation(s)
- Eimear O'Reilly
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Hojjat Alizadeh Zeinabad
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Eva Szegezdi
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
38
|
Shimizu H, Sakamoto S, Okamoto M, Isshiki T, Ono J, Shimizu S, Hoshino T, Izuhara K, Homma S. Association of serum monomeric periostin level with outcomes of acute exacerbation of idiopathic pulmonary fibrosis and fibrosing nonspecific interstitial pneumonia. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:739. [PMID: 34268352 PMCID: PMC8246219 DOI: 10.21037/atm-21-414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/21/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND The associations of serum monomeric periostin (M-PN) level and serial change in M-PN with acute exacerbation of chronic fibrosing interstitial pneumonia (AE-FIP) are unclear. METHODS We prospectively measured serum M-PN level from onset of AE to day 14 in 37 patients with AE-FIP and evaluated its association with outcome. To determine localization of periostin expression, immunohistochemical staining of pathological lung tissue from autopsy cases of AE-IPF was evaluated. RESULTS Data from 37 AE-FIP patients (28 men; age 73.9±7.8 years) were analyzed. With healthy controls as reference, serum M-PN level was significantly higher in patients with AE-FIP (P=0.02) but not in those with stable idiopathic pulmonary fibrosis (P=1.00). M-PN was significantly lower on day 7 than at AE-FIP onset in survivors [14.6±5.8 vs. 9.3±2.8 ng/mL (onset to day 7: P<0.001)] but not in non-survivors [14.6±5.1 vs. 13.2±5.1 ng/mL (onset to day 7: P=0.07)]. In analysis using a cut-off value for serial change in M-PN (ΔM-PN), 3-month survival was 92.3% in the ΔM-PN decrease group and 36% in the ΔM-PN increase group (P=0.002). In multivariate analysis, 3-month survival tended to be associated with high ΔM-PN (OR: 12.4, 95% CI: 0.82-187.9, P=0.069). CONCLUSIONS Serial change in serum M-PN level may be a prognostic indicator of AE-FIP.
Collapse
Affiliation(s)
- Hiroshige Shimizu
- Department of Respiratory Medicine, Toho University Omori Medical Center, Tokyo, Japan
| | - Susumu Sakamoto
- Department of Respiratory Medicine, Toho University Omori Medical Center, Tokyo, Japan
| | - Masaki Okamoto
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Takuma Isshiki
- Department of Respiratory Medicine, Toho University Omori Medical Center, Tokyo, Japan
| | - Junya Ono
- Shino-Test Corporation, Sagamihara, Japan
| | - Shigeki Shimizu
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Sakae Homma
- Department of Respiratory Medicine, Toho University Omori Medical Center, Tokyo, Japan
- Department of Advanced and Integrated Interstitial Lung Diseases Research, School of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
39
|
Sunadome H, Matsumoto H, Tohda Y, Horiguchi T, Kita H, Kuwabara K, Tomii K, Otsuka K, Fujimura M, Ohkura N, Iwanaga T, Hozawa S, Niimi A, Kanemitsu Y, Nagasaki T, Tashima N, Ishiyama Y, Morimoto C, Oguma T, Tajiri T, Ito I, Ono J, Ohta S, Izuhara K, Hirai T. Assessment of serum periostin level as a predictor of requirement for intensive treatment for type-2 inflammation in asthmatics in future: A follow-up study of the KiHAC cohort. Allergol Int 2021; 70:252-254. [PMID: 33218953 DOI: 10.1016/j.alit.2020.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/08/2020] [Accepted: 10/20/2020] [Indexed: 10/22/2022] Open
|
40
|
Peng J, Yu Q, Fan S, Chen X, Tang R, Wang D, Qi D. High Blood Eosinophil and YKL-40 Levels, as Well as Low CXCL9 Levels, are Associated with Increased Readmission in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2021; 16:795-806. [PMID: 33814903 PMCID: PMC8009765 DOI: 10.2147/copd.s294968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Background Readmission after hospital discharge is common among patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Predictive biomarkers of readmission would facilitate stratification strategies and individualized prognosis. Therefore, this study aimed to investigate the utility of type 2 biomarkers (eosinophils, periostin, and YKL-40) and a type 1 biomarker (CXCL9) in predicting readmission events in patients with AECOPD. Methods This is a prospective observational study design. Blood levels of eosinophils, periostin, YKL-40, and CXCL9 were measured at admission. The clinical outcomes were 12-month COPD-related readmission, time to COPD-related readmission, and number of 12-month COPD-related readmissions. These outcomes were analyzed using logistic and Cox regression models and Spearman's rank test. Results A total of 123 patients were included, of whom 51 had experienced at least one readmission for AECOPD. High levels of eosinophils (≥200 cells/μL or 2% of the total white blood cell count, adjusted odds ratio [aOR] =3.138, P=0.009) and YKL-40 (≥14.5 ng/mL, aOR =2.840, P=0.015), as well as low CXCL9 levels (≤30.1 ng/mL, aOR =2.551, P=0.028), were associated with an increased COPD-related readmission. The highest relative readmission rate was observed in patients with both high eosinophil and YKL-40 levels. Moreover, high eosinophil and YKL-40 levels were associated with a shorter time to first COPD-related readmission and an increased number of 12-month COPD-related readmissions. Conclusion High blood eosinophil and YKL-40 levels, as well as low CXCL9 levels, have predictive utility for the 12-month COPD-related readmission rate. Using eosinophils and YKL-40 together allows more precise identification of patients at high risk of COPD-related readmission.
Collapse
Affiliation(s)
- Junnan Peng
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qian Yu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Shulei Fan
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xingru Chen
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Rui Tang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Daoxin Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Di Qi
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
41
|
You YN, Xing QQ, Zhao X, Ji JJ, Yan H, Zhou T, Dong YM, Ren LS, Hou ST, Ding YY. Gu-Ben-Fang-Xiao decoction modulates lipid metabolism by activating the AMPK pathway in asthma remission. Biomed Pharmacother 2021; 138:111403. [PMID: 33714782 DOI: 10.1016/j.biopha.2021.111403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Gu-Ben-Fang-Xiao decoction (GBFXD), derived from the traditional Chinese medicine Yu-Ping-Feng-San, is widely used in clinical settings and has obvious curative effects in respiratory diseases. GBFXD regulates cholesterol transport and lipid metabolism in chronic persistent asthma. There is evidence for its beneficial effects in the remission stage of asthma; however, its metabolic regulatory effects and underlying mechanisms during asthma remission are unclear. In the present study, we used liquid chromatography-mass spectrometry (LC-MS) to analyse the metabolic profile of mouse serum during asthma remission. The acquired LC-MS data were subjected to a multivariate analysis for identification of significantly altered metabolites. In total, 42 metabolites were significantly differentially expressed among the control, model, and GBFXD groups. In particular, levels of fatty acids, acylcarnitines, phosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, triglycerides, and diacylglycerols were altered during asthma remission. GBFXD may maintain lipid homeostasis on the lung surface by modulating lipid metabolism and may thereby alleviate asthma. We further quantified hypogeic acid (FA 16:1) based on targeted metabolomics and found that GBFXD may regulate fatty acid metabolism by activating the AMP-activated protein kinase (AMPK) pathway. These results support the use of GBFXD in patients with asthma remission.
Collapse
Affiliation(s)
- Yan-Nan You
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiong-Qiong Xing
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xia Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jian-Jian Ji
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hua Yan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tao Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Ying-Mei Dong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li-Shun Ren
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shu-Ting Hou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuan-Yuan Ding
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
42
|
Pandey R, Parkash V, Kant S, Verma AK, Sankhwar SN, Agrawal A, Parmar D, Verma S, Ahmad MK. An update on the diagnostic biomarkers for asthma. J Family Med Prim Care 2021; 10:1139-1148. [PMID: 34041141 PMCID: PMC8140254 DOI: 10.4103/jfmpc.jfmpc_2037_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/02/2020] [Accepted: 01/01/2021] [Indexed: 01/13/2023] Open
Abstract
Asthma is a respiratory disorder accounts for ~339 million cases per annum. The initial diagnosis of asthma relies on the symptomatic identification of characters, such as wheeze, shortness of breath, chest tightness, and cough. The presence of two or more of these symptoms may be considered as indicative of asthma. The asthma-diagnostic also involves spirometry test before and after inhaling a bronchodilator like albuterol. Because asthma pathophysiology involves participation of immune system, the cytokines play an important role. The review discusses various molecules that are or may be used as biomarkers for the asthma diagnosis.
Collapse
Affiliation(s)
- Rashmi Pandey
- Department of Pulmonary and Critical Care Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Ved Parkash
- Department of Pulmonary and Critical Care Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Surya Kant
- Department of Respiratory Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Ajay K. Verma
- Department of Respiratory Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - S. N. Sankhwar
- Department of Urology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Avinash Agrawal
- Department of Critical Care Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Devendra Parmar
- Department of Development Toxicology, CSIR IITR, Lucknow, Uttar Pradesh, India
| | - Sheetal Verma
- Department of Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Md. Kaleem Ahmad
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
43
|
Xiao H, Chen J, Duan L, Li S. Role of emerging vitamin K‑dependent proteins: Growth arrest‑specific protein 6, Gla‑rich protein and periostin (Review). Int J Mol Med 2021; 47:2. [PMID: 33448308 PMCID: PMC7834955 DOI: 10.3892/ijmm.2020.4835] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/21/2020] [Indexed: 01/27/2023] Open
Abstract
Vitamin K‑dependent proteins (VKDPs) are a group of proteins that need vitamin K to conduct carboxylation. Thus far, scholars have identified a total of 17 VKDPs in the human body. In this review, we summarize three important emerging VKDPs: Growth arrest‑specific protein 6 (Gas 6), Gla‑rich protein (GRP) and periostin in terms of their functions in physiological and pathological conditions. As examples, carboxylated Gas 6 and GRP effectively protect blood vessels from calcification, Gas 6 protects from acute kidney injury and is involved in chronic kidney disease, GRP contributes to bone homeostasis and delays the progression of osteoarthritis, and periostin is involved in all phases of fracture healing and assists myocardial regeneration in the early stages of myocardial infarction. However, periostin participates in the progression of cardiac fibrosis, idiopathic pulmonary fibrosis and airway remodeling of asthma. In addition, we discuss the relationship between vitamin K, VKDPs and cancer, and particularly the carboxylation state of VKDPs in cancer.
Collapse
Affiliation(s)
- Huiyu Xiao
- Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044
| | - Jiepeng Chen
- Sungen Bioscience Co., Ltd., Shantou, Guangdong 515071, P.R. China
| | - Lili Duan
- Sungen Bioscience Co., Ltd., Shantou, Guangdong 515071, P.R. China
| | - Shuzhuang Li
- Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044
| |
Collapse
|
44
|
Jang JH, Woo SD, Lee Y, Kim CK, Shin YS, Ye YM, Park HS. Changes in Type 2 Biomarkers After Anti-IL5 Treatment in Patients With Severe Eosinophilic Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:330-338. [PMID: 33474865 PMCID: PMC7840863 DOI: 10.4168/aair.2021.13.2.330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/26/2022]
Abstract
Patients with severe eosinophilic asthma (SEA) suffer from frequent asthma exacerbations, where eosinophils are major effector cells in airway inflammation, and anti-interleukin (IL)-5 becomes an effective treatment modality to control eosinophilic inflammation of SEA. Fifteen patients with SEA who had been treated with anti-IL5 (reslizumab, 100 mg monthly intravenously) for 6 months at Ajou University Hospital (Suwon, Korea) were enrolled in this study. Clinical parameters, including total blood eosinophil count (TEC), FEV1%, fractional exhaled nitric oxide (FeNO) levels, and serum biomarkers such as eosinophil-derived neurotoxin (EDN), periostin (PON), and transforming growth factor-β1 (TGF-β1), were analyzed. EDN levels and TEC decreased significantly after 1 month of treatment (P < 0.05 for both), while no changes were noted in FeNO/PON/TGF-β1 levels. FEV1% increased after 2 months of treatment (P < 0.05). A positive correlation was observed between TEC and EDN levels (r = 0.60, P = 0.02). Significant negative correlations were noted between age and TEC/EDN levels (r = -0.57, P = 0.02 and r = -0.56, P = 0.03, respectively). Baseline TEC was higher in the EDN-responder group (≥75% decrease) than in the non-responder group (P = 0.06) with a positive correlation between %reduction in EDN and TEC (r = 0.67, P = 0.01). The onset age was younger and asthma duration was longer in the FEV1%-non-responder group (<12% increase) than in the FEV1%-responder group (P = 0.07 and P = 0.007, respectively). In conclusion, changes in the serum EDN level may be a potential biomarker for monitoring eosinophilic inflammation after anti-IL5 treatment in SEA, which is affected by onset age and asthma duration.
Collapse
Affiliation(s)
- Jae Hyuk Jang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Seong Dae Woo
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Youngsoo Lee
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Chang Keun Kim
- Asthma and Allergy Center, Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Young Min Ye
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
45
|
Isshiki T, Matsuyama H, Yamaguchi T, Morita T, Ono J, Nunomura S, Izuhara K, Sakamoto S, Homma S, Kishi K. Plasma matrix metalloproteinase 7, CC-chemokine ligand 18, and periostin as markers for pulmonary sarcoidosis. Respir Investig 2020; 58:479-487. [PMID: 32868264 DOI: 10.1016/j.resinv.2020.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/03/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Some patients with sarcoidosis experience worsening of pulmonary lesions. However, no biomarker has been identified that reflects pulmonary disease status in sarcoidosis. We investigated the usefulness of potential markers of pulmonary fibrosis in patients with sarcoidosis. METHODS Plasma matrix metalloproteinase 7 (MMP-7), CC-chemokine ligand 18 (CCL-18), and periostin levels were evaluated in 60 patients with sarcoidosis and 30 healthy controls; bronchoalveolar lavage fluid levels were analyzed in 22 patients with sarcoidosis. To determine the usefulness of these markers, we explored potential correlations between these markers and sarcoidosis clinical characteristics. RESULTS Plasma MMP-7, CCL-18, and periostin concentrations were significantly higher in patients with sarcoidosis than those in healthy controls. MMP-7 concentrations in plasma and bronchoalveolar lavage fluid were higher in patients with sarcoidosis with parenchymal infiltration than in those without lung lesions. Moreover, MMP-7 concentration was negatively correlated with pulmonary function. CONCLUSION Among these novel biomarkers, MMP-7 most precisely reflected pulmonary sarcoidosis disease status and thus, might be useful for diagnosing and evaluating sarcoidosis, particularly in patients with pulmonary parenchymal lesions.
Collapse
Affiliation(s)
- Takuma Isshiki
- Department of Respiratory Medicine, Toho University School of Medicine, Tokyo, Japan.
| | - Hisayo Matsuyama
- Department of Respiratory Medicine, Toho University School of Medicine, Tokyo, Japan.
| | | | - Toshisuke Morita
- Department of Laboratory Medicine, Toho University School of Medicine, Tokyo, Japan.
| | | | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan.
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan.
| | - Susumu Sakamoto
- Department of Respiratory Medicine, Toho University School of Medicine, Tokyo, Japan.
| | - Sakae Homma
- Department of Advanced and Integrated Interstitial Lung Disease Research, School of Medicine, Toho University, Tokyo, Japan.
| | - Kazuma Kishi
- Department of Respiratory Medicine, Toho University School of Medicine, Tokyo, Japan.
| |
Collapse
|
46
|
Nie X, Shen C, Tan J, Wu Z, Wang W, Chen Y, Dai Y, Yang X, Ye S, Chen J, Bian JS. Periostin. Circ Res 2020; 127:1138-1152. [PMID: 32752980 DOI: 10.1161/circresaha.120.316943] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale:
POSTN (Periostin) is an ECM (extracellular matrix) protein involved in tissue remodeling in response to injury and a contributing factor in tumorigenesis, suggesting that POSTN plays a role in the pathogenesis of pulmonary hypertension (PH).
Objective:
We aimed to gain insight into the mechanistic contribution of POSTN in experimental mouse models of PH and correlate these findings with PH in humans.
Methods and Results:
We used genetic epistasis approaches in human pulmonary artery endothelial cells (hPAECs), human pulmonary artery smooth muscle cells, and experimental mouse models of PH (Sugen 5416/hypoxia or chronic hypoxia) to discern the role of POSTN and its relationship to HIF (hypoxia-inducible factor)-1α signaling. We found that POSTN expression was correlated with the extent of PH in mouse models and in humans. Decreasing POSTN improved hemodynamic and cardiac responses in PH mice, blunted the release of growth factors and HIF-1α, and reversed the downregulated BMPR (bone morphogenetic protein receptor)-2 expression in hPAECs from patients with PH, whereas increasing POSTIN had the opposite effects and induced a hyperproliferative and promigratory phenotype in both hPAECs and human pulmonary artery smooth muscle cells. Overexpression of POSTN-induced activation of HIFs and increased the production of ET (endothelin)-1 and VEGF (vascular endothelial growth factor) in hPAECs. SiRNA-mediated knockdown of HIF-1α abolished the proangiogenic effect of POSTN. Blockade of TrkB (tyrosine kinase receptor B) attenuated the effect of POSTN on HIF-1α expression, while inhibition of HIF-1α reduced the expression of POSTN and TrkB. These results suggest that hPAECs produce POSTN via a HIF-1α-dependent mechanism.
Conclusions:
Our study reveals that POSTN expression is increased in human and animal models of PH and fosters PH development via a positive feedback loop between HIF-1α and POSTN during hypoxia. We propose that manipulating POSTIN expression may be an efficacious therapeutic target in the treatment of PH. Our results also suggest that POSTN may serve as a biomarker to estimate the severity of PH.
Collapse
Affiliation(s)
- Xiaowei Nie
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital (X.N.), Southern University of Science and Technology, Guangdong Province, PR China
| | - Chenyou Shen
- Center of Clinical Research, Wuxi People’s Hospital of Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.D., X.Y.)
- Lung Transplant Group, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.C., Y.D., X.Y., S.Y., J.C.)
| | - Jianxin Tan
- Center of Clinical Research, Wuxi People’s Hospital of Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.D., X.Y.)
- Lung Transplant Group, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.C., Y.D., X.Y., S.Y., J.C.)
| | - Zhiyuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore (Z.W., J.-S.B.)
| | - Wei Wang
- Center of Clinical Research, Wuxi People’s Hospital of Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.D., X.Y.)
- Lung Transplant Group, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.C., Y.D., X.Y., S.Y., J.C.)
| | - Yuan Chen
- Lung Transplant Group, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.C., Y.D., X.Y., S.Y., J.C.)
| | - Youai Dai
- Center of Clinical Research, Wuxi People’s Hospital of Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.D., X.Y.)
- Lung Transplant Group, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.C., Y.D., X.Y., S.Y., J.C.)
| | - Xusheng Yang
- Center of Clinical Research, Wuxi People’s Hospital of Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.D., X.Y.)
- Lung Transplant Group, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.C., Y.D., X.Y., S.Y., J.C.)
| | - Shugao Ye
- Lung Transplant Group, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.C., Y.D., X.Y., S.Y., J.C.)
| | - Jingyu Chen
- Lung Transplant Group, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.C., Y.D., X.Y., S.Y., J.C.)
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine (J.-S.B.), Southern University of Science and Technology, Guangdong Province, PR China
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore (Z.W., J.-S.B.)
| |
Collapse
|
47
|
Cameli P, Bergantini L, D'alessandro M, Vietri L, Refini RM, Pieroni M, Sestini P, Bargagli E. Alveolar nitric oxide is related to periostin levels in idiopathic pulmonary fibrosis. Minerva Med 2020; 111:324-329. [DOI: 10.23736/s0026-4806.19.06321-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Mandlik DS, Mandlik SK. New perspectives in bronchial asthma: pathological, immunological alterations, biological targets, and pharmacotherapy. Immunopharmacol Immunotoxicol 2020; 42:521-544. [PMID: 32938247 DOI: 10.1080/08923973.2020.1824238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Asthma is the most common, long-lasting inflammatory airway disease that affects more than 10% of the world population. It is characterized by bronchial narrowing, airway hyperresponsiveness, vasodilatation, airway edema, and stimulation of sensory nerve endings that lead to recurring events of breathlessness, wheezing, chest tightness, and coughing. It is the main reason for global morbidity and occurs as a result of the weakening of the immune system in response to exposure to allergens or environmental exposure. In asthma condition, it results in the activation of numerous inflammatory cells like the mast and dendritic cells along with the accumulation of activated eosinophils and lymphocytes at the inflammation site. The structural cells such as airway epithelial cells and smooth muscle cells release inflammatory mediators that promote the bronchial inflammation. Long-lasting bronchial inflammation can cause pathological alterations, viz. the improved thickness of the bronchial epithelium and friability of airway epithelial cells, epithelium fibrosis, hyperplasia, and hypertrophy of airway smooth muscle, angiogenesis, and mucus gland hyperplasia. The stimulation of bronchial epithelial cell would result in the release of inflammatory cytokines and chemokines that attract inflammatory cells into bronchial airways and plays an important role in asthma. Asthma patients who do not respond to marketed antiasthmatic drugs needed novel biological medications to regulate the asthmatic situation. The present review enumerates various types of asthma, etiological factors, and in vivo animal models for the induction of asthma. The underlying pathological, immunological mechanism of action, the role of inflammatory mediators, the effect of inflammation on the bronchial airways, newer treatment approaches, and novel biological targets of asthma have been discussed in this review.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Department of Pharmacology, Bharat Vidyapeeth Deemed University, Poona College of Pharmacy, Erandawane, India
| | - Satish K Mandlik
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Vadgaon, Maharashtra, India
| |
Collapse
|
49
|
Hayashi H, Fukutomi Y, Mitsui C, Kajiwara K, Watai K, Kamide Y, Nakamura Y, Hamada Y, Tomita Y, Sekiya K, Tsuburai T, Izuhara K, Wakahara K, Hashimoto N, Hasegawa Y, Taniguchi M. Omalizumab for Aspirin Hypersensitivity and Leukotriene Overproduction in Aspirin-exacerbated Respiratory Disease. A Randomized Controlled Trial. Am J Respir Crit Care Med 2020; 201:1488-1498. [PMID: 32142372 PMCID: PMC7301746 DOI: 10.1164/rccm.201906-1215oc] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rationale: Aspirin-exacerbated respiratory disease is characterized by severe asthma, nonsteroidal antiinflammatory drug hypersensitivity, nasal polyposis, and leukotriene overproduction. Systemic corticosteroid therapy does not completely suppress lifelong aspirin hypersensitivity. Omalizumab efficacy against aspirin-exacerbated respiratory disease has not been investigated in a randomized manner. Objectives: To evaluate omalizumab efficacy against aspirin hypersensitivity, leukotriene E4 overproduction, and symptoms during an oral aspirin challenge in patients with aspirin-exacerbated respiratory disease using a randomized design. Methods: We performed a double-blind, randomized, crossover, placebo-controlled, single-center study at Sagamihara National Hospital between August 2015 and December 2016. Atopic patients (20–79 yr old) with aspirin-exacerbated respiratory disease diagnosed by systemic aspirin challenge were randomized (1:1) to a 3-month treatment with omalizumab or placebo, followed by a >18-week washout period (crossover design). The primary endpoint was the difference in area under logarithm level of urinary leukotriene E4 concentration versus time curve in the intent-to-treat population during an oral aspirin challenge. Measurements and Main Results: Sixteen patients completed the study and were included in the analysis. The area under the logarithm level of urinary leukotriene E4 concentration versus time curve during an oral aspirin challenge was significantly lower in the omalizumab phase (median [interquartile range], 51.1 [44.5–59.8]) than in the placebo phase (80.8 [interquartile range, 65.4–87.8]) (P < 0.001). Ten of 16 patients (62.5%) developed oral aspirin tolerance up to cumulative doses of 930 mg in the omalizumab phase (P < 0.001). Conclusions: Omalizumab treatment inhibited urinary leukotriene E4 overproduction and upper/lower respiratory tract symptoms during an oral aspirin challenge, resulting in aspirin tolerance in 62.5% of the patients with aspirin-exacerbated respiratory disease.
Collapse
Affiliation(s)
- Hiroaki Hayashi
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan.,Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuma Fukutomi
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Chihiro Mitsui
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Keiichi Kajiwara
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Kentaro Watai
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Yosuke Kamide
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Yuto Nakamura
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan.,Department of Allergy and Clinical Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuto Hamada
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan.,Department of Allergy and Clinical Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuhiro Tomita
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan.,Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyoshi Sekiya
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Takahiro Tsuburai
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan.,Department of Respiratory Medicine, St. Marianna University School of Medicine, Yokohama City Seibu Hospital, Yokohama, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan; and
| | - Keiko Wakahara
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masami Taniguchi
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan.,Center for Immunology and Allergology, Shonan Kamakura General Hospital, Kamakura, Japan
| |
Collapse
|
50
|
Hassan Z, Luvsannyam E, Patel D, Nukala S, Puvvada SR, Hamid P. Review of Prominent Cytokines as Superior Therapeutic Targets for Moderate-to-Severe Atopic Dermatitis. Cureus 2020; 12:e9901. [PMID: 32968566 PMCID: PMC7505528 DOI: 10.7759/cureus.9901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
Cytokines predominate the inflammatory pathways in diseases like rhinitis, asthma, and atopic dermatitis. Corticosteroids and immunosuppressants are presently the mainstays of treatment for patients with moderate-to-severe disease, but often accompany a poor side effect profile. In this review, we attempt to consolidate current data on various interleukins (IL) that participate in the pathogenesis of atopic dermatitis (AD) to further improve therapeutic strategies. For now, dupilumab is the most accepted biologic to be registered for treatment for moderate-to-severe disease. Recently, IL-37, IL-13, IL-26, IL-17 & IL-31/33 axis as well as proteins like thymic stromal lymphopoietin (TSLP) show promising results as future therapeutic targets because of their important role in the pathogenesis of AD. However, further studies are required to clarify the safety and efficacy of these interventions compared to current treatment modalities but it is worthwhile to pursue research into biologics as a more successful treatment option for moderate-to-severe AD.
Collapse
Affiliation(s)
- Zaira Hassan
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Enkhmaa Luvsannyam
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Dhara Patel
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Swetha Nukala
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Suvarna Rekha Puvvada
- Department of Research, California Instititute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Pousette Hamid
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|