1
|
Michikawa T, Nishiwaki Y, Asakura K, Okamura T, Takebayashi T, Hasegawa S, Milojevic A, Minami M, Taguri M, Takeuchi A, Ueda K, Sairenchi T, Yamagishi K, Iso H, Irie F, Nitta H. All-Cause and Cause-Specific Mortality Associated with Long-Term Exposure to Fine Particulate Matter in Japan: The Ibaraki Prefectural Health Study. J Atheroscler Thromb 2025:65424. [PMID: 39864858 DOI: 10.5551/jat.65424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
AIMS Long-term exposure to fine particulate matter (PM2.5) is causally associated with mortality and cardiovascular disease. However, in terms of cardiovascular cause-specific outcomes, there are fewer studies about stroke than about coronary heart disease, particularly in Asia. Furthermore, there remains uncertainty regarding the PM2.5-respiratory disease association. We examined whether long-term exposure to PM2.5 is associated with all-cause, cardiovascular and respiratory disease mortality in Japan. METHODS We used data of 46,974 participants (19,707 men; 27,267 women), who were enrolled in 2009 and followed up until 2019, in a community-based prospective cohort study (the second cohort of the Ibaraki Prefectural Health Study). We estimated PM2.5 concentrations using the inverse distance weighing methods based on ambient air monitoring data, and assigned each participant to administrative area level concentrations. A Cox proportional hazard model was applied to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) of mortality. RESULTS During the average follow-up of 10 years, we confirmed 2,789 all-cause deaths. All outcomes including stroke mortality did not significantly increase as the PM2.5 concentration increased. For non-malignant respiratory disease mortality, the multivariable adjusted HR per 1 µg/m3 increase in the PM2.5 concentration was 1.09 (95% CI = 0.97-1.23). CONCLUSIONS In this population exposed to PM2.5 at concentrations of 8.3-13.1 µg/m3, there was no evidence that long-term exposure to PM2.5 had adverse effects on mortality. Weak evidence of positive association observed for non-malignant respiratory disease mortality needs further studies in other populations.
Collapse
Affiliation(s)
- Takehiro Michikawa
- Department of Environmental and Occupational Health, School of Medicine, Toho University
- Department of Public Health Medicine, Institute of Medicine, and Health Services Research and Development Centre, University of Tsukuba
| | - Yuji Nishiwaki
- Department of Environmental and Occupational Health, School of Medicine, Toho University
| | - Keiko Asakura
- Department of Preventive Medicine, School of Medicine, Toho University
| | - Tomonori Okamura
- Department of Preventive Medicine and Public Health, Keio University School of Medicine
| | - Toru Takebayashi
- Department of Preventive Medicine and Public Health, Keio University School of Medicine
| | - Shuichi Hasegawa
- Atmospheric Environment Group, Centre for Environmental Science in Saitama
| | - Ai Milojevic
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine
| | - Mihoko Minami
- Department of Mathematics, Faculty of Science and Technology, Keio University
| | | | | | - Kayo Ueda
- Department of Hygiene, Graduate School of Medicine, Hokkaido University
| | - Toshimi Sairenchi
- Department of Public Health Medicine, Institute of Medicine, and Health Services Research and Development Centre, University of Tsukuba
- Medical Science of Nursing, Dokkyo Medical University School of Nursing
| | - Kazumasa Yamagishi
- Department of Public Health Medicine, Institute of Medicine, and Health Services Research and Development Centre, University of Tsukuba
- Department of Public Health, Graduate School of Medicine, Juntendo University
| | - Hiroyasu Iso
- Institute for Global Health Policy Research, Bureau of International Health Cooperation, National Centre for Global Health and Medicine
| | - Fujiko Irie
- Tsuchiura Public Health Centre of Ibaraki Prefectural Government
| | | |
Collapse
|
2
|
Alari A, Ranzani O, Milà C, Olmos S, Basagaña X, Dadvand P, Duarte-Salles T, Nieuwenhuijsen M, Tonne C. Long-term exposure to air pollution and lower respiratory infections in a large population-based adult cohort in Catalonia. ENVIRONMENT INTERNATIONAL 2025; 195:109230. [PMID: 39732111 DOI: 10.1016/j.envint.2024.109230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/22/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND Evidence is limited regarding the role of air pollution in acute lower respiratory infections among adults. We assessed the influence of long-term air pollution exposure on hospital admission for lower respiratory infections and whether there are vulnerable subgroups. METHODS We used a populational cohort in Catalonia, Spain, comprising 3,817,820 adults residing in Catalonia as of January 1, 2015. Air pollution exposure was assigned to individuaĺs residential address using locally-developed models. We characterized the concentration-response functions between long-term air pollution exposure and hospital admission for lower respiratory infections between 2015 and 2019. We assessed interaction between exposure and clinical and socio-economic factors on multiplicative and additive scales. RESULTS An interquartile range exposure increase was associated with an 8 % (95 % Confidence Interval: 5 %-11 %) for Nitrogen Dioxide, 10 % (95 % Confidence Interval: 8 %-13 %) for Particulate Matter with diameter equal to or smaller than 2.5 µm, 5 % (95 % Confidence Interval: 3 %-7%) for Particulate Matter with diameter equal to or smaller than 10 µm and 18 % (95 % Confidence Interval: 14 %-22%) for ozone (adjusted by Nitrogen Dioxide) increase in hospital admissions for respiratory infections. Concentration-response functions were non-linear, with steeper slopes at exposures below the median or at most extreme high values. Associations were consistently greater for individuals over 65 years or with hypertension diagnosis and males. CONCLUSIONS Long-term exposure to air pollution was positively associated with hospital admission for lower respiratory infections. Individuals who were older than 65 years, hypertensive or male were most vulnerable.
Collapse
Affiliation(s)
- Anna Alari
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Otavio Ranzani
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carles Milà
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sergio Olmos
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Xavier Basagaña
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Payam Dadvand
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Talita Duarte-Salles
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Cathryn Tonne
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
3
|
Li W, Wang X, Wu Y, Huang W, Yu W, Yu P, Guo Y, Zhao Q, Geng M, Wang H, Ma W. Temperature variability and influenza incidence in China: Effect modification by ambient fine particulate matter. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136114. [PMID: 39405669 DOI: 10.1016/j.jhazmat.2024.136114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 12/01/2024]
Abstract
This study aims to examine the association between temperature variabilit (TV) exposure and influenza incidence in China, and the modification effect of PM2.5 levels. Data on daily influenza cases, weather conditions, and PM2.5 concentrations were collected from 339 cities across mainland China from 2014 to 2019. TV was computed as the standard deviation of daily maximum and minimum temperatures for the current day and the previous several days (i.e., TV0-1 to TV0-7). A space-time-stratified case-crossover design with conditional Poisson regression was employed. Overall, each 1 °C increase in TV0-6 was linked to 3.3 % (95 % CI: 3.1 %, 3.5 %) rise in influenza incidence, potentially attributing 14.73 % (95 % CI: 14.08 %, 15.37 %) of cases to this exposure. PM2.5 concentration showed substantial modification effect on the association, such that the relative risk (RR) of influenza incidence grew from 1.027 (95 % CI: 1.025, 1.029) to 1.040 (95 % CI: 1.038, 1.042) as PM2.5 levels increased from 15 to 75 μg/m³ . Females and individuals over 65 years old were more susceptible to TV exposure and the PM2.5 modification. Stronger effects were observed during cold season and in North region. The findings highlight the integrating considerations of TV and PM2.5 exposures into public health measures for influenza prevention and control.
Collapse
Affiliation(s)
- Wen Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong University Climate Change and Health Center, Jinan, Shandong, China
| | - Xin Wang
- Dezhou Center for Disease Control and Prevention, Dezhou, China
| | - Yao Wu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Wenzhong Huang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Wenhao Yu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong University Climate Change and Health Center, Jinan, Shandong, China
| | - Pei Yu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Qi Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong University Climate Change and Health Center, Jinan, Shandong, China
| | - Mengjie Geng
- Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Haitao Wang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong University Climate Change and Health Center, Jinan, Shandong, China.
| | - Wei Ma
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong University Climate Change and Health Center, Jinan, Shandong, China.
| |
Collapse
|
4
|
Ding Q, Kou C, Feng Y, Sun Z, Geng X, Sun X, Jia T, Wang Q, Huang Q, Han W, Bai W. Effects of air pollutants exposure on frailty risk: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124793. [PMID: 39181300 DOI: 10.1016/j.envpol.2024.124793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/03/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Air pollutants have been investigated to be associated with many health issues. Recently, increasing epidemiological studies have suggested the association between air pollution exposure and risk of frailty with inconsistent findings. This systematic review and meta-analysis was to summarize and evaluate effects of exposure to various air pollutants on risk of frailty. PubMed, Embase, Scopus and Web of Science were systematically searched for relevant studies published before May 11, 2024. Studies that explored the potential relationship between exposure to air pollutants (PM2.5, PM10, O3, NOx, solid fuel, secondhand tobacco, and air quality) and risk of frailty were included. The quality of cross-sectional and cohort studies was evaluated using an eight-item assessment instrument for epidemiological studies and Newcastle-Ottawa Scale, respectively. A total of 9,929 papers were retrieved, of which 20 met the inclusion criteria. Meta-analysis indicated that PM2.5 exposure was significantly associated with frailty assessed by the frailty index [OR (95% CI): 1.24 (1,11-1.38) per 10 μg/m3 increment]. Moreover, solid fuel exposures were significantly associated with an increased risk of frailty assessed by the frailty phenotype [OR (95% CI): 1.91 (1.09-3.34)] or the frailty index [OR (95% CI): 1.25 (1.11-1.41)]. Exposure to PM2.5 and solid fuel increases the risk of frailty. Environmental protection policies and public health measures should be developed to reduce PM2.5 concentrations. Effective measures, such as improving stoves and using clean fuels, should be taken to reduce indoor air pollution levels.
Collapse
Affiliation(s)
- Qianlu Ding
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Changgui Kou
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Yuan Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Zhouyang Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Xiaohan Geng
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Xiaopeng Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Tingyi Jia
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Qianyi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Qianlong Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Wei Han
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Wei Bai
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China.
| |
Collapse
|
5
|
Duan J, Ding R, Li M, Qi J, Yin P, Wang L, Sun Z, Hu Y, Zhou M. Subnational Evidence for the Attributable Burden of Respiratory Infections in China’s Population under 20: Challenges from Particulate Matter Pollution. ENVIRONMENT & HEALTH 2024. [DOI: 10.1021/envhealth.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Menglong Li
- Department of Child and Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jinlei Qi
- National Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Peng Yin
- National Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lijun Wang
- National Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yifei Hu
- Department of Child and Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Maigeng Zhou
- National Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
6
|
Wei C, Wu Z, Mao X, Wang Z, Zhang Q, Kong W, Xu J, Sun J, Wang J. Influence of air pollution on the nonaccidental death before and after the outbreak of COVID-19. BMC Public Health 2024; 24:3069. [PMID: 39506693 PMCID: PMC11539445 DOI: 10.1186/s12889-024-20542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND During the COVID-19 pandemic, non-therapeutic interventions (NPIs), such as traffic restrictions, work stoppages, and school suspensions, have led to a sharp decline in the concentration of air pollutants in the epidemic sites. However, few studies focused on the impact of air pollutant changes on the risk of nonaccidental death. METHOD We selected Yancheng City, China, as the study site and applied a Generalized Additive Model (GAM) based on the quasi-Poisson distribution to evaluate the impact of atmospheric pollutants exposure on the nonaccidental death of local residents. The time span of this study was set from January 1, 2013, to December 21, 2022, that is, before and after the outbreak of COVID-19. RESULTS The concentration of some air pollutants has greatly varied after the outbreak of COVID-19, with a significant decline for PM2.5 (- 43.4%), PM10 (- 38.5%), SO2 (- 62.9%), and NO2 (- 22.6%), but an increase for O3 (+ 4.3%). Comparative analysis showed that PM2.5 contributed to an increased risk of nonaccidental death after the outbreak of COVID-19. With an increase in PM2.5 by 10 µg/m³, the excess relative risks (ER) of nonaccidental death of residents increased by 1.01% (95%CI: 0.19%,1.84%). The stratified analysis revealed that air pollutants impacted nonaccidental deaths in both men and women before the outbreak of COVID-19. After the outbreak of COVID-19, PM10 had a significant effect on male nonaccidental deaths. The concentrations of PM2.5, PM10, and SO2 increased by 10 µg/m³, the ER of PM2.5, PM10, and SO2 on female nonaccidental death increased by 1.52% (0.38%,2.67%), 0.58% (0.02%,1.13%), and 15.09% (5.73%,25.28%), respectively. Before the outbreak of COVID-19, five air pollutants had an impact on the death of residents from cardiovascular disease (CVD). After the outbreak of COVID-19, only PM10 significantly affected the death risk of CVD. In addition, we discovered that PM2.5, PM10, and SO2 significantly impacted the risk of death due to respiratory diseases before and after the outbreak of COVID-19. CONCLUSIONS Air pollutants have different effects on nonaccidental deaths before and after the COVID-19 outbreak. A decrease in air pollutant concentration due to the NPIs for COVID-19 had a significant effect on the reduction of the risk of nonaccidental death.
Collapse
Affiliation(s)
- Chaohua Wei
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Ave. Nanjing, Nanjing, 211166, China
| | - Zhuchao Wu
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Ave. Nanjing, Nanjing, 211166, China
| | - Xinlan Mao
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Ave. Nanjing, Nanjing, 211166, China
| | - Zheyue Wang
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Ave. Nanjing, Nanjing, 211166, China
| | - Qiang Zhang
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Ave. Nanjing, Nanjing, 211166, China
| | - Weimin Kong
- Department of Endocrinology, The First People's Hospital of Yancheng and Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224001, China
| | - Jianning Xu
- Department of Thoracic Surgery, The First People's Hospital of Yancheng and Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224001, China
| | - Jian Sun
- Department of Thoracic Surgery, The First People's Hospital of Yancheng and Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224001, China.
| | - Jianming Wang
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Ave. Nanjing, Nanjing, 211166, China.
| |
Collapse
|
7
|
Kasdagli MI, Orellano P, Pérez Velasco R, Samoli E. Long-Term Exposure to Nitrogen Dioxide and Ozone and Mortality: Update of the WHO Air Quality Guidelines Systematic Review and Meta-Analysis. Int J Public Health 2024; 69:1607676. [PMID: 39494092 PMCID: PMC11527649 DOI: 10.3389/ijph.2024.1607676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Objectives We performed a systematic review and meta-analysis on long-term exposure to nitrogen dioxide (NO2) and ozone (O3) with mortality, to expand evidence that informed 2021 the WHO Air Quality Guidelines and guide the Health Risks of Air Pollution in Europe project. Methods We included cohorts investigating NO2 and O3 mortality from all-causes, respiratory diseases, chronic obstructive pulmonary disease (COPD), acute lower respiratory infections (ALRI); and NO2 mortality from circulatory, ischemic heart, cerebrovascular diseases and lung cancer. We pooled estimates by random-effects models and investigated heterogeneity. We assessed the certainty of the evidence using the Grading of Recommendations Assessment Development approach and Evaluation (GRADE). Results We selected 83 studies for NO2 and 26 for O3 for the meta-analysis. NO2 was associated with all outcomes, except for cerebrovascular mortality. O3 was associated with respiratory mortality following annual exposure. There was high heterogeneity, partly explained by region and pollutant levels. Certainty was high for NO2 with COPD and ALRI, and annual O3 with respiratory mortality. Conclusion An increasing body of evidence, with new results from countrywide areas and the Western Pacific, supports certainty, including new outcomes.
Collapse
Affiliation(s)
- Maria-Iosifina Kasdagli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Pablo Orellano
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Universidad Tecnologica Nacional, Facultad Regional San Nicolas, San Nicolas, Argentina
| | - Román Pérez Velasco
- World Health Organization (WHO) Regional Office for Europe, European Centre for Environment and Health, Bonn, Germany
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Agarwal S, Tomar N, Makwana M, Patra S, Chopade BA, Gupta V. Air pollution, dysbiosis and diseases: pneumonia, asthma, COPD, lung cancer and irritable bowel syndrome. Future Microbiol 2024; 19:1497-1513. [PMID: 39345043 PMCID: PMC11492635 DOI: 10.1080/17460913.2024.2401263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
With substantial effects on human health, air pollution has become a major global concern. Air pollution has been linked to numerous gastrointestinal and respiratory diseases with increasing mortalities. The gut and respiratory dysbiosis brought about by air pollution has recently received much attention. This review attempts to provide an overview of the types of air pollutants, their sources, their impact on the respiratory and gut dysbiotic patterns and their correlation with five major diseases including pneumonia, asthma, COPD, lung cancer and irritable bowel syndrome. Deeper insights into the links between pollutants, dysbiosis and disease may pave the way for novel diagnostic biomarkers for prognosis and early detection of these diseases, as well as ways to ease the disease burden.
Collapse
Affiliation(s)
- Shelja Agarwal
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Nandini Tomar
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Meet Makwana
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Sandeep Patra
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Balu A Chopade
- AKS University, Satna, Madhya Pradesh, India
- Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Vandana Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| |
Collapse
|
9
|
Chen G, Qian Z(M, Zhang J, Wang X, Zhang Z, Cai M, Arnold LD, Abresch C, Wang C, Liu Y, Fan Q, Lin H. Associations between Changes in Exposure to Air Pollutants due to Relocation and the Incidence of 14 Major Disease Categories and All-Cause Mortality: A Natural Experiment Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:97012. [PMID: 39348288 PMCID: PMC11441638 DOI: 10.1289/ehp14367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/15/2024] [Accepted: 09/06/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Though observational studies have widely linked air pollution exposure to various chronic diseases, evidence comparing different exposures in the same people is limited. This study examined associations between changes in air pollution exposure due to relocation and the incidence and mortality of 14 major diseases. METHODS We included 50,522 participants enrolled in the UK Biobank from 2006 to 2010. Exposures to particulate matter with a diameter ≤ 2.5 μ m (PM 2.5 ), particulate matter with a diameter ≤ 10 μ m (PM 10 ), nitrogen oxides (NO x ), nitrogen dioxide (NO 2 ), and sulfur dioxide (SO 2 ) were estimated for each participant based on their residential address and relocation experience during the follow-up. Nine exposure groups were classified based on changes in long-term exposures due to residential mobility. Incidence and mortality of 14 major diseases were identified through linkages to hospital inpatient records and death registries. Cox proportional hazard models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for incidence and mortality of the 14 diseases of interest. RESULTS During a median follow-up of 12.6 years, 29,869 participants were diagnosed with any disease of interest, and 3,144 died. Significantly increased risk of disease and all-cause mortality was observed among individuals who moved from a lower to higher air polluted area. Compared with constantly low exposure, moving from low to moderate PM 2.5 exposure was associated with increased risk of all 14 diseases but not for all-cause mortality, with adjusted HRs (95% CIs) ranging from 1.18 (1.05, 1.33) to 1.48 (1.30, 1.69); moving from low to high PM 2.5 areas increased risk of all 14 diseases: infections [1.37 (1.19, 1.58)], blood diseases [1.57 (1.34, 1.84)], endocrine diseases [1.77 (1.50, 2.09)], mental and behavioral disorders [1.93 (1.68, 2.21)], nervous system diseases [1.51 (1.32, 1.74)], ocular diseases [1.76 (1.56, 1.98)], ear disorders [1.58 (1.35, 1.86)], circulatory diseases [1.59 (1.42, 1.78)], respiratory diseases [1.51 (1.33, 1.72)], digestive diseases [1.74 (1.58, 1.92)], skin diseases [1.39 (1.22, 1.58)], musculoskeletal diseases [1.62 (1.45, 1.81)], genitourinary diseases [1.54 (1.36, 1.74)] and cancer [1.42 (1.24, 1.63)]. We observed similar associations for PM 10 and SO 2 with 14 diseases (but not with all-cause mortality); increases in NO 2 and NO x were positively associated with 14 diseases and all-cause mortality. CONCLUSIONS This study supports potential associations between ambient air pollution exposure and morbidity as well as mortality. Findings also emphasize the importance of maintaining consistently low levels of air pollution to protect the public's health. https://doi.org/10.1289/EHP14367.
Collapse
Affiliation(s)
- Ge Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhengmin (Min) Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, Missouri, USA
| | - Junguo Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xiaojie Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Lauren D. Arnold
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, Missouri, USA
| | - Chad Abresch
- Department of Health Promotion, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Chuangshi Wang
- Medical Research and Biometrics Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yiming Liu
- School of Atmospheric Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangzhou, China
- Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-Sen University, Zhuhai, China
| | - Qi Fan
- School of Atmospheric Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangzhou, China
- Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-Sen University, Zhuhai, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
10
|
Zheng L, Wang J, Tang L, Ma Y, Tian Y. Association of residential greenness with incident pneumonia: A prospective cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173731. [PMID: 38838996 DOI: 10.1016/j.scitotenv.2024.173731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/11/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Residential greenness is considered beneficial to human health, and its association with respiratory function has been found in previous studies. However, its link with pneumonia remains unclear. To explore the association of residential greenness with incident pneumonia, we conducted a prospective cohort study based on participants of the UK Biobank, followed from 2006 to 2010 to the end of 2019. Residential greenness was measured by Normalized Difference Vegetation Index (NDVI) within 500 m and 1000 m buffer. Cox proportional hazard models were conducted to assess the association, and restricted cubic spline models were also constructed to estimate their exposure-response relationship. Results demonstrate that residential greenness was negatively related to the risk of incident pneumonia. An interquartile (IQR) increase in NDVI 500-m buffer was associated with 4 % [HR (95 % CI) =0.96 (0.94, 0.97), P < 0.001] lower risk of incident pneumonia. Compared to the lowest greenness quartile (Q1), the highest quartile (Q4) had a lower risk of incident pneumonia, with the HR (95 % CI) estimated to be 0.91 (0.87, 0.95) (P values <0.001). Analyses based on NDVI 1000-m buffer obtained similar results. Furthermore, a significant effect of modifications by age and income on the linkage between residential greenness and incident pneumonia was found. These findings propose a potential effective prevention of incident pneumonia and provide the scientific basis for promoting the construction of residential greenness.
Collapse
Affiliation(s)
- Lei Zheng
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China
| | - Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China
| | - Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China
| | - Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China.
| |
Collapse
|
11
|
Chen S, Liu D, Huang L, Guo C, Gao X, Xu Z, Yang Z, Chen Y, Li M, Yang J. Global associations between long-term exposure to PM 2.5 constituents and health: A systematic review and meta-analysis of cohort studies. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134715. [PMID: 38838524 DOI: 10.1016/j.jhazmat.2024.134715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Existing studies on the most impactful component remain controversial, hindering the optimization of future air quality standards that concerns particle composition. We aimed to summarize the health risk associated with PM2.5 components and identify those components with the greatest health risk. We performed a meta-analysis to quantify the combined health effects of PM2.5 components, and used the meta-smoothing to produce the pooled concentration-response (C-R) curves. Out of 8954 initial articles, 80 cohort studies met the inclusion criteria, including a total of 198.08 million population. The pooled C-R curves demonstrated approximately J-shaped association between total mortality and exposure to BC, and NO3-, but U-shaped and inverted U-shaped relationship withSO42- and OC, respectively. In addition, this study found that exposure to various elements, including BC,SO42-NO3-, NH4+, Zn, Ni, and Si, were significantly associated with an increased risk of total mortality, with Ni presenting the largest estimate. And exposure to NO3-, Zn, and Si was positively associated with an increased risk of respiratory mortality, while exposure to BC, SO42-, and NO3- showed a positive association with risk of cardiovascular mortality. For health outcome of morbidity, BC was notably associated with a higher incidence of asthma, type 2 diabetes and stroke. Subgroup analysis revealed a higher susceptibility to PM2.5 components in Asia compared to Europe and North America, and females showed a higher vulnerability. Given the significant health effects of PM2.5 components, governments are advised to introduce them in regional monitoring and air quality control guidelines. ENVIRONMENTAL IMPLICATION: PM2.5 is a complex mixture of chemical components from various sources, and each component has unique physicochemical properties and uncertain toxicity, posing significant threat to public health. This study systematically reviewed cohort studies on the association between long-term exposure to 13 PM2.5 components and the risk of morbidity and mortality. And we applied the meta-smoothing approach to establish the pooled concentration-response associations between PM2.5 components and mortality globally. Our findings will provide strong support for PM2.5 components monitoring and the improvement of air quality-related regulations. This will aid in helping to enhance health intervention strategies and mitigating public exposure to detrimental particulate matter.
Collapse
Affiliation(s)
- Sujuan Chen
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, China; School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Di Liu
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Lin Huang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Cui Guo
- Department of Urban Planning and Design, Faculty of Architecture, the University of Hong Kong, Hong Kong SAR
| | - Xiaoke Gao
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhiwei Xu
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia
| | - Zhou Yang
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yu Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengmeng Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Yang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, China; School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
12
|
Wang Y, Peng M, Hu C, Zhan Y, Yao Y, Zeng Y, Zhang Y. Excess deaths and loss of life expectancy attributed to long-term NO 2 exposure in the Chinese elderly. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116627. [PMID: 38925032 DOI: 10.1016/j.ecoenv.2024.116627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Evidence linking nitrogen dioxide (NO2) air pollution to life span of high-vulnerability older adults is extensively scarce in low- and middle-income countries. This study seeks to quantify mortality risk, excess deaths, and loss of life expectancy (LLE) associated with long-term exposure to NO2 among elderly individuals in China. METHODS A nationwide dynamic cohort of 20352 respondents ≥65 years old were enrolled from the China Longitudinal Health and Longevity Survey during 2005-2018. Residential exposures to NO2 and co-pollutants were assessed by well-validated spatiotemporal prediction models. A Cox regression model with time-dependent covariates was utilized to quantify the association of all-cause mortality with NO2 exposure, controlling for confounders such as demographics, lifestyle, health status, and ambient temperature. NO2-attributable deaths and LLE were evaluated for the years 2010 and 2020 based on the pooled NO2-mortality relation derived from multi-national cohort investigations. Decomposition analyses were conducted to dissociate net shift in NO2-related deaths between 2010 and 2020 into four primary contributing factors. RESULTS A total of 14313 deaths were recorded during follow-up of approximately 100 hundred person-years (median 3.6 years). We observed an approximately linear relationship (nonlinear P = 0.882) of NO2 exposure with all-cause death across a broad range from 6.6 to 95.7 μg/m3. Every 10-μg/m3 rise in yearly average NO2 concentration was linked to a hazard ratio (HR) of 1.045 (95% confidence interval [CI]: 1.031-1.059). In the updated meta-analysis of this study and 9 existing cohorts, we estimated a pooled HR of 1.043 (95% CI: 1.023-1.063) for each 10-μg/m3 growth in NO2. Reaching a 10-μg/m3 counterfactual target of NO2 concentration in China could avoid 0.33 (95% empirical CI: 0.19-0.49) million premature deaths and an LLE of 0.40 (95% empirical CI: 0.23-0.59) years in 2010, which greatly dropped to 0.24 (95% empirical CI: 0.14-0.36) million deaths and 0.21 (95% empirical CI: 0.12-0.31) years of LLE in 2020. The net fall in NO2-attributable deaths (-26.8%) between 2010 and 2020 was primarily driven by the declines in both NO2 concentration (-41.6%) and mortality rate (-27.1%) under population growth (+41.0%) and age structure transition (+0.9%). CONCLUSIONS Our findings provide national evidence for increased risk of premature death and loss of life expectancy attributed to later-life NO2 exposure among the elderly in China. In an accelerated aging society, strengthened clean air actions should be formulated to minimize the health burden and regional inequality in NO2-attributable mortality.
Collapse
Affiliation(s)
- Yaqi Wang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Minjin Peng
- Department of Outpatient, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Chengyang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yao Yao
- China Center for Health Development Studies, Peking University, Beijing 100191, China; Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing 100871, China.
| | - Yi Zeng
- Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing 100871, China.
| | - Yunquan Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
13
|
Zhang J, Lim YH, So R, Mortensen LH, Napolitano GM, Cole-Hunter T, Tuffier S, Bergmann M, Maric M, Taghavi Shahri SM, Brandt J, Ketzel M, Loft S, Andersen ZJ. Long-Term Exposure to Air Pollution and Risk of Acute Lower Respiratory Infections in the Danish Nurse Cohort. Ann Am Thorac Soc 2024; 21:1129-1138. [PMID: 38513223 DOI: 10.1513/annalsats.202401-074oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024] Open
Abstract
Rationale: Air pollution is a major risk factor for chronic cardiorespiratory diseases, affecting the immune and respiratory systems' functionality, but epidemiological evidence in respiratory infections remains sparse. Objectives: We aimed to assess the association of long-term exposure to ambient air pollution with the risk of developing new and recurrent acute lower respiratory infections (ALRIs), characterized by persistently severe symptoms necessitating hospital contact, and identify the potential susceptible populations by socioeconomic status, smoking, physical activity status, overweight, and comorbidity with chronic lung disease. Methods: We followed 23,912 female nurses from the Danish Nurse Cohort (age >44 yr) from baseline (1993 or 1999) until 2018 for incident and recurrent ALRIs defined by hospital contact (inpatient, outpatient, and emergency room) data from the National Patient Register. Residential annual mean concentrations of fine particulate matter, nitrogen dioxide (NO2), and black carbon were modeled using the Danish Eulerian Hemispheric Model/Urban Background Model/Air Geographic Information System. We used marginal Cox models with time-varying exposures to assess the association of 3-year running mean air pollution level with incident and recurrent ALRIs and examined effect modification by age, socioeconomic status, smoking, physical activity, body mass index, and comorbidity with asthma or chronic obstructive pulmonary disease (COPD). Results: During a 21.3-year mean follow-up, 4,746 ALRIs were observed, of which 2,553 were incident. We observed strong positive associations of all three pollutants with incident ALRIs, with hazard ratios and 95% confidence intervals of 1.19 (1.08-1.31) per 2.5 μg/m3 for fine particulate matter, 1.17 (1.11-1.24) per 8.0 μg/m3 for NO2, and 1.09 (1.05-1.12) per 0.3 μg/m3 for black carbon, and slightly stronger associations with recurrent ALRIs. Associations were strongest in patients with COPD and nurses with low physical activity. Conclusions: Long-term exposure to air pollution at low levels was associated with risks of new and recurrent ALRIs, with patients with COPD and physically inactive subjects most vulnerable.
Collapse
Affiliation(s)
| | | | - Rina So
- Section of Environmental Health and
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Laust H Mortensen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Denmark Statistic, Copenhagen, Denmark
| | | | | | | | | | | | | | - Jørgen Brandt
- Department of Environmental Science and
- iClimate, Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark; and
| | - Matthias Ketzel
- Department of Environmental Science and
- Global Centre for Clean Air Research, University of Surrey, Guildford, United Kingdom
| | | | | |
Collapse
|
14
|
Zhang J, Lim YH, Napolitano GM, Backalarz C, Mortensen LH, Cole-Hunter T, Tuffier S, Bergmann M, So R, Brandt J, Ketzel M, Loft S, Andersen ZJ. Long-term exposure to road traffic noise and acute lower respiratory infections in the Danish Nurse Cohort. ENVIRONMENT INTERNATIONAL 2024; 190:108842. [PMID: 38970980 DOI: 10.1016/j.envint.2024.108842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/21/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Long-term exposure to road traffic noise is associated with cardiovascular disease, but the evidence on respiratory diseases is just emerging. We aimed to examine the association between long-term exposure to road traffic noise and the incidence of acute lower respiratory infections (ALRIs) in adults. METHODS We followed 23,141 female nurses (age ≥ 44 years) from the Danish Nurse Cohort from baseline (1993 or 1999) to their first hospital contact (inpatient, outpatient, or emergency room) for ALRI, death, emigration or the end of 2015. The residential annual mean levels of road traffic noise (Lden) during the follow-up were estimated using the Nord2000 model. We applied time-varying Cox models to estimate the association of 3-year mean exposure to Lden with ALRIs incidence and piecewise analysis to estimate the threshold of Lden. We examined the robustness of the results by adjusting for residential exposure to air pollution, and the effect modification by attained age, socioeconomic status (SES), comorbidity, and lifestyle. RESULTS During 18.5 years of follow-up, 2,004 nurses developed ALRIs. In a linear model, we detected a statistically significant positive association between Lden and ALRI, with a hazard ratio (HR) of 1.11 (95 % confidence interval (CI): 1.04, 1.17) per 9.2 dB (interquartile range, IQR). We observed non-linear association with a threshold at 57 dB, above which the HR was 1.25 (95 % CI: 1.09, 1.43) per IQR. Further adjustment for PM2.5 reduced the HRs slightly to 1.21 (95 % CI: 1.04, 1.40). The associations were stronger for nurses with asthma, and in those with lowest SES. CONCLUSION We present novel findings in support of the association between long-term exposure to road traffic noise and ALRIs, independent of air pollution, suggesting noise as a risk factor for infectious respiratory diseases.
Collapse
Affiliation(s)
- Jiawei Zhang
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - George Maria Napolitano
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Laust H Mortensen
- Denmark Statistic, Copenhagen, Denmark; Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Cole-Hunter
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Stéphane Tuffier
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Marie Bergmann
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Rina So
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; iClimate, interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, United Kingdom
| | - Steffen Loft
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Zorana Jovanovic Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Forastiere F. Revisiting Decades of Research on Air Pollution and Acute Lower Respiratory Infections. Ann Am Thorac Soc 2024; 21:1124-1126. [PMID: 39087894 PMCID: PMC11298985 DOI: 10.1513/annalsats.202405-547ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Affiliation(s)
- Francesco Forastiere
- National Research Council, Institute of Translational Pharmacology, Palermo, Italy and Environmental Research Group, Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Hamroun A, Génin M, Glowacki F, Sautenet B, Leffondré K, De Courrèges A, Dauchet L, Gauthier V, Bayer F, Lassalle M, Couchoud C, Amouyel P, Occelli F. Multiple air pollutant exposure is associated with higher risk of all-cause mortality in dialysis patients: a French registry-based nationwide study. Front Public Health 2024; 12:1390999. [PMID: 39139668 PMCID: PMC11319261 DOI: 10.3389/fpubh.2024.1390999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Background Little is known about the effect of combined exposure to different air pollutants on mortality in dialysis patients. This study aimed to investigate the association of multiple exposures to air pollutants with all-cause and cause-specific death in dialysis patients. Materials and methods This registry-based nationwide cohort study included 90,373 adult kidney failure patients initiating maintenance dialysis between 2012 and 2020 identified from the French REIN registry. Estimated mean annual municipality levels of PM2.5, PM10, and NO2 between 2009 and 2020 were combined in different composite air pollution scores to estimate each participant's exposure at the residential place one to 3 years before dialysis initiation. Adjusted cause-specific Cox proportional hazard models were used to estimate hazard ratios (HRs) per interquartile range (IQR) greater air pollution score. Effect measure modification was assessed for age, sex, dialysis care model, and baseline comorbidities. Results Higher levels of the main air pollution score were associated with a greater rate of all-cause deaths (HR, 1.082 [95% confidence interval (CI), 1.057-1.104] per IQR increase), regardless of the exposure lag. This association was also confirmed in cause-specific analyses, most markedly for infectious mortality (HR, 1.686 [95% CI, 1.470-1.933]). Sensitivity analyses with alternative composite air pollution scores showed consistent findings. Subgroup analyses revealed a significantly stronger association among women and fewer comorbid patients. Discussion Long-term multiple air pollutant exposure is associated with all-cause and cause-specific mortality among patients receiving maintenance dialysis, suggesting that air pollution may be a significant contributor to the increasing trend of CKD-attributable mortality worldwide.
Collapse
Affiliation(s)
- Aghiles Hamroun
- Service de Santé Publique, Epidémiologie, Economie de la Santé et Prévention, CHU de Lille, Lille, France
- UMR1167 RID-AGE, Institut Pasteur de Lille, INSERM, Université de Lille, CHU Lille, Lille, France
| | - Michaël Génin
- ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, Université de Lille, CHU Lille, Lille, France
| | | | - Bénédicte Sautenet
- Service de Néphrologie-Hypertension Artérielle, Dialyses, Transplantation Rénale, CHRU de Tours, Tours, France
- Department of Nephrology, Université de Tours, Tours, France
- INI-CRCT, Vandœuvre-lès-Nancy, France
- INSERM U1246 SPHERE, Université de Tours-Université de Nantes, Tours, France
| | - Karen Leffondré
- INSERM, Bordeaux Population Health Research Center, Université de Bordeaux, Bordeaux, France
| | - Antoine De Courrèges
- Service de Santé Publique, Epidémiologie, Economie de la Santé et Prévention, CHU de Lille, Lille, France
| | - Luc Dauchet
- Service de Santé Publique, Epidémiologie, Economie de la Santé et Prévention, CHU de Lille, Lille, France
- UMR1167 RID-AGE, Institut Pasteur de Lille, INSERM, Université de Lille, CHU Lille, Lille, France
| | - Victoria Gauthier
- Service de Santé Publique, Epidémiologie, Economie de la Santé et Prévention, CHU de Lille, Lille, France
- UMR1167 RID-AGE, Institut Pasteur de Lille, INSERM, Université de Lille, CHU Lille, Lille, France
| | - Florian Bayer
- Coordination Nationale Registre REIN, Agence de la Biomédecine, Saint-Denis, France
| | - Mathilde Lassalle
- Coordination Nationale Registre REIN, Agence de la Biomédecine, Saint-Denis, France
| | - Cécile Couchoud
- Coordination Nationale Registre REIN, Agence de la Biomédecine, Saint-Denis, France
| | - Philippe Amouyel
- Service de Santé Publique, Epidémiologie, Economie de la Santé et Prévention, CHU de Lille, Lille, France
- UMR1167 RID-AGE, Institut Pasteur de Lille, INSERM, Université de Lille, CHU Lille, Lille, France
| | - Florent Occelli
- IMT Lille Douai, JUNIA, ULR LGCgE, Laboratoire de Génie Civil et Géo-Environnement, Université de Lille, Université de Artois, Lille, France
| |
Collapse
|
17
|
Zhong J, Li W, Yang S, Shen Y, Li X. Causal association between air pollution and allergic rhinitis, asthma: a Mendelian randomization study. Front Public Health 2024; 12:1386341. [PMID: 39076418 PMCID: PMC11284075 DOI: 10.3389/fpubh.2024.1386341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Backgrounds Observational studies suggest that air pollutants, including particulate matter and nitrogen compounds, could elevate asthma and allergic rhinitis health risks. Nevertheless, the exact nature of the causal relationship between air pollution and asthma and allergic rhinitis remains unknown. This study utilizes the Mendelian randomization (MR) technique to explore the potential causal links between air pollution components (PM2.5, PM2.5-10, PM10, NO₂, and nitrogen dioxide) and the incidence of allergic rhinitis and asthma. Methods A MR study utilized summary statistics from GWAS that are publicly accessible. The inverse variance weighting (IVW) approach served as the foundational analysis technique. To ensure robustness, supplementary methodologies such as the weighted median, MR-Egger regression, simple mode, and weighted model were also applied. Heterogeneity was evaluated using Cochran's Q test, and the presence of pleiotropy was determined through MR-Egger regression. The MR-PRESSO test was employed for outlier detection, and the analysis's sensitivity was scrutinized via a leave-one-out strategy. Results The IVW technique showed a strong correlation between PM10 and asthma (OR = 0.625, 95% CI = 0.396-0.988, p = 0.044). No significant associations were found between asthma and other air pollutants such as PM2.5, PM2.5-10, NO₂, or nitrogen dioxide. Similarly, allergic rhinitis showed no causal relationships with any studied air pollution metrics. Pleiotropy was absent in the findings. Sensitivity analyses, employing the leave-one-out method, confirmed the stability of these results, unaffected by individual single nucleotide polymorphisms (SNPs). Conclusion This Mendelian randomization study establishes a causal link between PM10 exposure and asthma, suggesting that interventions to reduce air pollution may decelerate the adverse progression of asthma.
Collapse
Affiliation(s)
- Juan Zhong
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weiye Li
- Chengdu Integrated TCM and Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
| | - Shasha Yang
- Otolaryngology Department, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yifeng Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinrong Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
O'Donnell L, Green JJ, Hill EC, O'Donnell MJ. Biocultural and social determinants of ill health and early mortality in a New Mexican paediatric autopsy sample. J Biosoc Sci 2024; 56:693-714. [PMID: 38618934 DOI: 10.1017/s0021932024000129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
RESULTS Hispanic children have higher odds of growth stunting than non-Hispanic White children. Native American children die younger and have higher odds of respiratory diseases and porous lesions than Hispanic and non-Hispanic Whites. Rural/urban location does not significantly impact age at death, but housing type does. Individuals who lived in trailers/mobile homes had earlier ages at death. When intersections between housing type and housing location are considered, children who were poor and from impoverished areas lived longer than those who were poor from relatively well-off areas. CONCLUSIONS Children's health is shaped by factors outside their control. The children included in this study embodied experiences of social and ELS and did not survive to adulthood. They provide the most sobering example of the harm that social factors (structural racism/discrimination, socioeconomic, and political structures) can inflict.
Collapse
Affiliation(s)
- Lexi O'Donnell
- College of Population Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | - John J Green
- Southern Rural Development Center and Department of Agricultural Economics, Mississippi State University, Starkville, USA
| | - Ethan C Hill
- Division of Physical Therapy, Department of Orthopaedics and Rehabilitation, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Michael J O'Donnell
- Bureau of Business and Economic Research, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
19
|
Liu Q, Deng J, Yan W, Qin C, Du M, Wang Y, Zhang S, Liu M, Liu J. Burden and trends of infectious disease mortality attributed to air pollution, unsafe water, sanitation, and hygiene, and non-optimal temperature globally and in different socio-demographic index regions. Glob Health Res Policy 2024; 9:23. [PMID: 38937833 PMCID: PMC11212388 DOI: 10.1186/s41256-024-00366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Environmental factors greatly impact infectious disease-related mortality, yet there's a lack of comprehensive global studies on the contemporary burden and trends. This study aims to evaluate the global burden and trends of infectious disease mortality caused by air pollution, unsafe water, poor sanitation, and non-optimal temperature across Socio-Demographic Index (SDI) regions from 1990 to 2019. METHODS This observational study utilized data from the Global Burden of Diseases Study to examine mortality rates from infectious diseases attributed to environmental risk factors between 1990 and 2019, including air pollution, unsafe water, sanitation, handwashing facilities (UWSH), and non-optimal temperatures. Age-standardized mortality rates (ASMRs) and estimated annual percentage change (EAPC) were utilized to present infectious disease mortality, and its trajectory influenced by environmental risk factors over the years. Nonlinear regression was conducted to explore the association between the SDI and ASMRs across regions from 1990 to 2019. RESULTS In 2019, global infectious disease deaths linked to air pollution, UWSH, and non-optimal temperature reached a startling 2,556,992. Disease mortality varied widely across SDI regions, with the highest number of deaths due to air pollution and UWSH in Low SDI regions, and deaths from non-optimal temperature primarily in High SDI regions. Age disparities emerged, with children under five and the elderly most affected. However, an increasing mortality trend was observed among seniors (65-69, 75-79, and over 80) in High SDI regions due to enteric infections linked to UWSH. Globally, a consistent decrease in ASMR was seen from 1990 to 2019 for all diseases connected to these factors, except for respiratory infections linked to non-optimal temperature. CONCLUSIONS Our study underscores the significant impact of air pollution, UWSH, and non-optimal temperatures on global infectious disease mortality, particularly among vulnerable groups such as children and the elderly. It's important to tackle these challenges with targeted interventions aiming to enhance environmental quality, improve water and sanitation systems, and control extreme temperatures. In addition, international cooperation is essential for bridging regional disparities and driving global public health initiatives forward, thereby helping achieve Sustainable Development Goals more effectively.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Jie Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Wenxin Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Chenyuan Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Min Du
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yaping Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Shimo Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Min Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Haidian District, Beijing, China
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China.
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Haidian District, Beijing, China.
- Institute for Global Health and Development, Peking University, Haidian District, Beijing, China.
- Global Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China.
- Institute of Environmental Medicine, Peking University, Beijing, China.
| |
Collapse
|
20
|
Domingo KN, Gabaldon KL, Hussari MN, Yap JM, Valmadrid LC, Robinson K, Leibel S. Impact of climate change on paediatric respiratory health: pollutants and aeroallergens. Eur Respir Rev 2024; 33:230249. [PMID: 39009406 PMCID: PMC11262702 DOI: 10.1183/16000617.0249-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/07/2024] [Indexed: 07/17/2024] Open
Abstract
Paediatric populations are particularly vulnerable to respiratory diseases caused and exacerbated by aeroallergens, pollutants and infectious agents. Worsening climate change is expected to increase the prevalence of pollutants and aeroallergens while amplifying disease severity and causing disproportionate effects in under-resourced areas. The purpose of this narrative review is to summarise the role of anthropogenic climate change in the literature examining the future impact of aeroallergens, pollutants and infectious agents on paediatric respiratory diseases with a focus on equitable disease mitigation. The aeroallergens selected for discussion include pollen, dust mites and mould as these are prevalent triggers of paediatric asthma worldwide. Human rhinovirus and respiratory syncytial virus are key viruses interacting with climate change and pollution and are primary causal agents of viral respiratory disease. Within this review, we present the propensity for aeroallergens, climate change and pollution to synergistically exacerbate paediatric respiratory disease and outline measures that can ameliorate the expected increase in morbidity and severity of disease through a health equity lens. We support shifting from fossil fuels to renewable energy worldwide, across sectors, as a primary means of reducing increases in morbidity.
Collapse
Affiliation(s)
- Karyssa N Domingo
- School of Medicine, University of California San Diego, La Jolla, CA, USA
- K.N. Domingo and K.L. Gabaldon contributed equally
| | - Kiersten L Gabaldon
- School of Medicine, University of California San Diego, La Jolla, CA, USA
- K.N. Domingo and K.L. Gabaldon contributed equally
| | | | - Jazmyn M Yap
- School of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Kelly Robinson
- Department of Pediatrics, Division of Allergy and Immunology, University of California San Diego, La Jolla, CA, USA
| | - Sydney Leibel
- Department of Pediatrics, Division of Allergy and Immunology, University of California San Diego, La Jolla, CA, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
21
|
Wang L, Xu H, Yang Y, Guan H, He X, Wu R, Wu J, Yuan N, Guo T, Zhang Y, Zhang H, He Y, Peng Z, Wang Y, Shen H, Wang Q, Zhang Y, Yan D, Song X, Zhang Q, Wang Z, Ma X, Huang W. Association between short-term air pollution exposure and perturbation in thyrotropin levels in 1.38 million Chinese women: A national longitudinal analysis, 2014-2019. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133094. [PMID: 38029589 DOI: 10.1016/j.jhazmat.2023.133094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Prevalence of subclinical hypothyroidism substantially increased during the last decade in China, which has been commonly/clinically diagnosed as elevation in thyrotropin (thyroid-stimulating hormone [TSH]). Tobacco smoke containing toxic substances has been linked to thyroid dysfunction; however, data on perturbation of TSH following air pollution exposure in human has not been assessed at nationwide population level. We investigated the longitudinal impact of daily ambient air pollution estimated at residential level on serum TSH in 1.38 million women from China's 29 mainland provinces between 2014 and 2019. We observed that particulate matter with aerodynamic diameter ≤ 10 and ≤ 2.5 µm (PM10, PM2.5) and nitrogen dioxide (NO2) at cumulative lag 0-7 days of exposure were associated with percent elevations in TSH (0.88% [95% CI: 0.71, 1.05] per [interquartile range, IQR: 54.8 μg/m3] of PM10; 0.89% [95% CI, 0.71, 1.07] per IQR [40.3 μg/m3] of PM2.5; 2.01% [95% CI: 1.81, 2.22] per IQR [27.4 μg/m3] of NO2). Greater associations were observed in participants living in areas with ≥adequate iodine intake and those with low BMI levels and high inflammation status. Our results suggest that increased concentrations of recent ambient air pollutants at exposure ranges commonly encountered in Asia were associated with increases in TSH, supporting disturbing role of short-term air pollution exposure on the regulation of thyroid hormone homeostasis.
Collapse
Affiliation(s)
- Long Wang
- National Research Institute for Family Planning, Beijing, China; Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, China
| | - Hongbing Xu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Ying Yang
- National Research Institute for Family Planning, Beijing, China; National Human Genetic Resources Centre, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Haixia Guan
- Department of Endocrinology and Metabolism, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinghou He
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Rongshan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jianbin Wu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Ningman Yuan
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Tonglei Guo
- National Research Institute for Family Planning, Beijing, China
| | - Ya Zhang
- National Research Institute for Family Planning, Beijing, China; National Human Genetic Resources Centre, Beijing, China
| | - Hongguang Zhang
- National Research Institute for Family Planning, Beijing, China; National Human Genetic Resources Centre, Beijing, China
| | - Yuan He
- National Research Institute for Family Planning, Beijing, China; National Human Genetic Resources Centre, Beijing, China
| | - Zuoqi Peng
- National Research Institute for Family Planning, Beijing, China; National Human Genetic Resources Centre, Beijing, China
| | - Yuanyuan Wang
- National Research Institute for Family Planning, Beijing, China; National Human Genetic Resources Centre, Beijing, China
| | - Haiping Shen
- Department of Maternal and Child Health, National Health Commission, Beijing, China
| | - Qiaomei Wang
- Department of Maternal and Child Health, National Health Commission, Beijing, China
| | - Yiping Zhang
- Department of Maternal and Child Health, National Health Commission, Beijing, China
| | - Donghai Yan
- Department of Maternal and Child Health, National Health Commission, Beijing, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; National Human Genetic Resources Centre, Beijing, China
| | - Qinghong Zhang
- Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China.
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, China; National Human Genetic Resources Centre, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China.
| | - Wei Huang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| |
Collapse
|
22
|
Hegelund ER, Mehta AJ, Andersen ZJ, Lim YH, Loft S, Brunekreef B, Hoek G, de Hoogh K, Mortensen LH. Air pollution and human health: a phenome-wide association study. BMJ Open 2024; 14:e081351. [PMID: 38423777 PMCID: PMC10910582 DOI: 10.1136/bmjopen-2023-081351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVES To explore the associations of long-term exposure to air pollution with onset of all human health conditions. DESIGN Prospective phenome-wide association study. SETTING Denmark. PARTICIPANTS All Danish residents aged ≥30 years on 1 January 2000 were included (N=3 323 612). After exclusion of individuals with missing geocoded residential addresses, 3 111 988 participants were available for the statistical analyses. MAIN OUTCOME MEASURE First registered diagnosis of every health condition according to the International Classification of Diseases, 10th revision, from 2000 to 2017. RESULTS Long-term exposure to fine particulate matter (PM2.5) and nitrogen dioxide (NO2) were both positively associated with the onset of more than 700 health conditions (ie, >80% of the registered health conditions) after correction for multiple testing, while the remaining associations were inverse or insignificant. As regards the most common health conditions, PM2.5 and NO2 were strongest positively associated with chronic obstructive pulmonary disease (PM2.5: HR 1.06 (95% CI 1.05 to 1.07) per 1 IQR increase in exposure level; NO2: 1.14 (95% CI 1.12 to 1.15)), type 2 diabetes (PM2.5: 1.06 (95% CI 1.05 to 1.06); NO2: 1.12 (95% CI 1.10 to 1.13)) and ischaemic heart disease (PM2.5: 1.05 (95% CI 1.04 to 1.05); NO2: 1.11 (95% CI 1.09 to 1.12)). Furthermore, PM2.5 and NO2 were both positively associated with so far unexplored, but highly prevalent outcomes relevant to public health, including senile cataract, hearing loss and urinary tract infection. CONCLUSIONS The findings of this study suggest that air pollution has a more extensive impact on human health than previously known. However, as this study is the first of its kind to investigate the associations of long-term exposure to air pollution with onset of all human health conditions, further research is needed to replicate the study findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gerard Hoek
- Utrecht University, Utrecht, the Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | | |
Collapse
|
23
|
Hu X, Liu J, Shao Y, Li G, Song H, Liu Q, Chen C, Zhu L. Smoking Exposure and the Risk of Latent Tuberculosis Infection: Results from NHANES 2011-2012. TOXICS 2024; 12:94. [PMID: 38276728 PMCID: PMC10819775 DOI: 10.3390/toxics12010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
The association between smoking exposure and latent tuberculosis infection (LTBI) has been investigated in a few studies; however, further investigation is needed. In this study, the 2011-2012 NHANES population was used to evaluate smoking exposure and LTBI risk. A total of 7042 participants with available LTBI results and without active tuberculosis were included for analysis. Smoking was defined as participants who smoked at least 100 cigarettes in their life. Both univariable and multivariable analysis were adopted to evaluate smoking exposure, as well as related factors on the risk of LTBI. LTBI rates among current smokers (12.1%) and former smokers (9.9%) were higher than non-smokers (5.9%). However, current smokers and former smokers were not significantly associated with LTBI risk when compared to non-smokers after adjusting by age and sex in the multivariable analysis. Meanwhile, we found that passive smoking was not associated with LTBI (adjusted odds ratio (AOR), 0.85; 95%CI, 0.66-1.09). In multivariable analysis, current smoking was associated with LTBI (OR, 1.67; 95%CI, 1.28-2.19), while former smokers had an increased OR of LTBI, but the OR did not reach statistical significance (OR, 1.15; 95%CI, 0.90-1.48). Household tuberculosis (TB) contact was also related to LTBI (OR, 1.93; 95%CI, 1.25-2.99). However, BMI and diabetes were not found to be associated with LTBI. Smoking, especially current smoking, was significantly associated with LTBI. LTBI screening should be recommended for active smokers. Former smoking and passive smoking exposure were not found to have a significant relationship with LTBI risk. However, the high LTBI rate among quitters indicated we should pay more attention to former smokers with LTBI.
Collapse
Affiliation(s)
- Xinsong Hu
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.H.); (J.L.)
| | - Jiongya Liu
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.H.); (J.L.)
| | - Yan Shao
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing 210009, China; (Y.S.); (G.L.); (H.S.); (Q.L.)
| | - Guoli Li
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing 210009, China; (Y.S.); (G.L.); (H.S.); (Q.L.)
| | - Honghuan Song
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing 210009, China; (Y.S.); (G.L.); (H.S.); (Q.L.)
| | - Qiao Liu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing 210009, China; (Y.S.); (G.L.); (H.S.); (Q.L.)
| | - Cheng Chen
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing 210009, China; (Y.S.); (G.L.); (H.S.); (Q.L.)
| | - Limei Zhu
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.H.); (J.L.)
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing 210009, China; (Y.S.); (G.L.); (H.S.); (Q.L.)
| |
Collapse
|
24
|
Kaspersen KA, Antonsen S, Horsdal HT, Kjerulff B, Brandt J, Geels C, Christensen JH, Frohn LM, Sabel CE, Dinh KM, Hertel O, Sigsgaard T, Pedersen CB, Erikstrup C. Exposure to air pollution and risk of respiratory tract infections in the adult Danish population-a nationwide study. Clin Microbiol Infect 2024; 30:122-129. [PMID: 37858866 DOI: 10.1016/j.cmi.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVES The association between air pollution and risk of respiratory tract infection (RTI) in adults needs to be clarified in settings with low to moderate levels of air pollution. We investigated this in the Danish population between 2004 and 2016. METHODS We included 3 653 490 persons aged 18-64 years in a nested case-control study. Exposure was defined as the average daily concentration at the individual's residential address of CO, NOX, NO2, O3, SO2, NH3, PPM2.5, black carbon, organic carbon, mineral dust, sea salt, secondary inorganic aerosols, SO42-, NO3-, NH4+, secondary organic aerosols, PM2.5, and PM10 during a 3-month exposure window. RTIs were defined by hospitalization for RTIs. Incidence rate ratios (IRRs) and 95% CIs were estimated comparing highest with lowest decile of exposure using conditional logistic regression models. RESULTS In total, 188 439 incident cases of RTI were identified. Exposure to most air pollutants was positively associated with risk of RTI. For example, NO2 showed an IRR of 1.52 (CI: 1.48-1.55), and PM2.5 showed an IRR of 1.45 (CI: 1.40-1.50). In contrast, exposure to sea salt, PM10, NH3, and O3 was negatively associated with a risk of RTIs. DISCUSSION In this nationwide study comprising adults, exposure to air pollution was associated with risk of RTIs and subgroups hereof. Sea salt, PM10, NH3, and O3 may be proxies for rural areas, as the levels of these species in Denmark are higher near the western coastlines and/or in rural areas with fewer combustion sources.
Collapse
Affiliation(s)
- Kathrine A Kaspersen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus N, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus C, Denmark.
| | - Sussie Antonsen
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus C, Denmark; National Centre for Register-based Research, Aarhus BSS, Aarhus University, Aarhus V, Denmark; Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Henriette T Horsdal
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus C, Denmark; National Centre for Register-based Research, Aarhus BSS, Aarhus University, Aarhus V, Denmark
| | - Bertram Kjerulff
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus N, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus C, Denmark
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; iClimate - Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Camilla Geels
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; iClimate - Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | | | - Lise M Frohn
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Clive E Sabel
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus C, Denmark; Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark; Department of Public Health, Aarhus University, Aarhus, Denmark; Health Research Institute, University of Canberra, Canberra, ACT, Australia
| | - Khoa M Dinh
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus N, Denmark
| | - Ole Hertel
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus C, Denmark; Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Torben Sigsgaard
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus C, Denmark; Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark; Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Carsten B Pedersen
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus C, Denmark; National Centre for Register-based Research, Aarhus BSS, Aarhus University, Aarhus V, Denmark; Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus N, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus C, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
25
|
Xiao H, Huang S, Yang W, Zhang W, Xiao H, Cai S. Causal association between air pollution and frailty: a Mendelian randomization study. Front Public Health 2023; 11:1288293. [PMID: 38026367 PMCID: PMC10662305 DOI: 10.3389/fpubh.2023.1288293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Backgrounds Frailty is a significant problem for older persons since it is linked to a number of unfavorable consequences. According to observational researches, air pollution may raise the risk of frailty. We investigated the causal association between frailty and air pollution (including PM2.5, PM2.5-10, PM10, nitrogen dioxide, and nitrogen oxides) using Mendelian randomization approach. Methods We conducted MR analysis using extensive publically accessible GWAS (genome-wide association studies) summary data. The inverse variance weighted (IVW) method was employed as the primary analysis method. The weighted median model, MR-Egger, simple model, and weighted model approaches were chosen for quality control. The Cochran's Q test was utilized to evaluate heterogeneity. Pleiotropy is found using the MR-Egger regression test. The MR-PRESSO method was used to recognize outliers. The leave-one-out strategy was used to conduct the sensitivity analysis. Results MR results suggested that PM2.5 was statistically significantly associated with frailty [odds ratio (OR) = 1.33; 95%confidence interval (CI) = 1.12-1.58, p = 0.001] in IVW method. We observed no statistical association between PM2.5-10(OR = 1.00, 95% CI = 0.79-1.28, p = 0.979), PM10(OR = 0.91, 95% CI = 0.75-1.11, p = 0.364), nitrogen dioxide (OR = 0.98, 95% CI = 0.85-1.12, p = 0.730), nitrogen oxides (OR = 1.15, 95% CI = 0.98-1.36, p = 0.086) and frailty. There was no pleiotropy in the results. The sensitivity analysis based on the leave-one-out method showed that the individual single nucleotide polymorphisms (SNPs) did not affect the robustness of the results. Conclusion The current MR investigation shows a causal association between PM2.5 and frailty. Frailty's detrimental progression may be slowed down with the help of air pollution prevention and control.
Collapse
Affiliation(s)
- Haixia Xiao
- Department of Obstetrics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shan Huang
- Department of MICU, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wei Yang
- Department of Internal Medicine, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wenni Zhang
- Department of MICU, Guangdong Women and Children Hospital, Guangzhou, China
| | - Huanshun Xiao
- Department of MICU, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shuangming Cai
- Department of MICU, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
26
|
Liu R, Li D, Xie J, Wang L, Hu Y, Tian Y. Air pollution, alcohol consumption, and the risk of elevated liver enzyme levels: a cross-sectional study in the UK Biobank. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87527-87534. [PMID: 37428318 DOI: 10.1007/s11356-023-28659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Evidences on the association between exposure to air pollution and liver enzymes was scarce in low pollution area. We aimed to investigate the association between air pollution and liver enzyme levels and further explore whether alcohol intake influence this association. This cross-sectional study included 425,773 participants aged 37 to 73 years from the UK Biobank. Land Use Regression was applied to assess levels of PM2.5, PM10, NO2, and NOx. Levels of liver enzymes including AST, ALT, GGT, and ALP were determined by enzymatic rate method. Long-term low-level exposure to PM2.5 (per 5-μg/m3 increase) was significantly associated with AST (0.596% increase, 95% CI, 0.414 to 0.778%), ALT (0.311% increase, 0.031 to 0.593%), and GGT (1.552% increase, 1.172 to 1.933%); The results were similar for PM10; NOX and NO2 were only significantly correlated with AST and GGT Significant modification effects by alcohol consumption were found (P-interaction < 0.05). The effects of pollutants on AST, ALT, and GGT levels gradually increased along with the weekly alcohol drinking frequency. In conclusion, long-term low-level air pollutants exposure was associated with elevated liver enzyme levels. And alcohol intake may exacerbate the effect of air pollution on liver enzymes.
Collapse
Affiliation(s)
- Run Liu
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Junqing Xie
- Center for Statistics in Medicine, NDORMS, University of Oxford, The Botnar Research Centre, Oxford, UK
| | - Lulin Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No.38 Xueyuan Road, Beijing, 100191, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China.
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
27
|
Sack C, Attia EF. What Can Big Data Teach Us About Air Pollution and Pneumonia? Chest 2023; 164:6-7. [PMID: 37423698 DOI: 10.1016/j.chest.2023.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Coralynn Sack
- Department of Medicine, University of Washington, Seattle, WA; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA.
| | - Engi F Attia
- Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
28
|
Zhang J, Lim YH, So R, Jørgensen JT, Mortensen LH, Napolitano GM, Cole-Hunter T, Loft S, Bhatt S, Hoek G, Brunekreef B, Westendorp R, Ketzel M, Brandt J, Lange T, Kølsen-Fisher T, Andersen ZJ. Long-term exposure to air pollution and risk of SARS-CoV-2 infection and COVID-19 hospitalisation or death: Danish nationwide cohort study. Eur Respir J 2023; 62:2300280. [PMID: 37343976 PMCID: PMC10288813 DOI: 10.1183/13993003.00280-2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Early ecological studies have suggested links between air pollution and risk of coronavirus disease 2019 (COVID-19), but evidence from individual-level cohort studies is still sparse. We examined whether long-term exposure to air pollution is associated with risk of COVID-19 and who is most susceptible. METHODS We followed 3 721 810 Danish residents aged ≥30 years on 1 March 2020 in the National COVID-19 Surveillance System until the date of first positive test (incidence), COVID-19 hospitalisation or death until 26 April 2021. We estimated residential annual mean particulate matter with diameter ≤2.5 μm (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone (O3) in 2019 by the Danish DEHM/UBM model, and used Cox proportional hazards regression models to estimate the associations of air pollutants with COVID-19 outcomes, adjusting for age, sex, individual- and area-level socioeconomic status, and population density. RESULTS 138 742 individuals were infected, 11 270 were hospitalised and 2557 died from COVID-19 during 14 months. We detected associations of PM2.5 (per 0.53 μg·m-3) and NO2 (per 3.59 μg·m-3) with COVID-19 incidence (hazard ratio (HR) 1.10 (95% CI 1.05-1.14) and HR 1.18 (95% CI 1.14-1.23), respectively), hospitalisations (HR 1.09 (95% CI 1.01-1.17) and HR 1.19 (95% CI 1.12-1.27), respectively) and death (HR 1.23 (95% CI 1.04-1.44) and HR 1.18 (95% CI 1.03-1.34), respectively), which were strongest in the lowest socioeconomic groups and among patients with chronic respiratory, cardiometabolic and neurodegenerative diseases. We found positive associations with BC and negative associations with O3. CONCLUSION Long-term exposure to air pollution may contribute to increased risk of contracting severe acute respiratory syndrome coronavirus 2 infection as well as developing severe COVID-19 disease requiring hospitalisation or resulting in death.
Collapse
Affiliation(s)
- Jiawei Zhang
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Rina So
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jeanette T Jørgensen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Laust H Mortensen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Statistics Denmark, Copenhagen, Denmark
| | - George M Napolitano
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Cole-Hunter
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Loft
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Samir Bhatt
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Rudi Westendorp
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, UK
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- iCLIMATE, Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Theis Lange
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Thea Kølsen-Fisher
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Research, Nordsjaellands Hospital, Hilleroed, Denmark
| | - Zorana Jovanovic Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Ranzani O, Alari A, Olmos S, Milà C, Rico A, Ballester J, Basagaña X, Chaccour C, Dadvand P, Duarte-Salles T, Foraster M, Nieuwenhuijsen M, Sunyer J, Valentín A, Kogevinas M, Lazcano U, Avellaneda-Gómez C, Vivanco R, Tonne C. Long-term exposure to air pollution and severe COVID-19 in Catalonia: a population-based cohort study. Nat Commun 2023; 14:2916. [PMID: 37225741 DOI: 10.1038/s41467-023-38469-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/02/2023] [Indexed: 05/26/2023] Open
Abstract
The association between long-term exposure to ambient air pollutants and severe COVID-19 is uncertain. We followed 4,660,502 adults from the general population in 2020 in Catalonia, Spain. Cox proportional models were fit to evaluate the association between annual averages of PM2.5, NO2, BC, and O3 at each participant's residential address and severe COVID-19. Higher exposure to PM2.5, NO2, and BC was associated with an increased risk of COVID-19 hospitalization, ICU admission, death, and hospital length of stay. An increase of 3.2 µg/m3 of PM2.5 was associated with a 19% (95% CI, 16-21) increase in hospitalizations. An increase of 16.1 µg/m3 of NO2 was associated with a 42% (95% CI, 30-55) increase in ICU admissions. An increase of 0.7 µg/m3 of BC was associated with a 6% (95% CI, 0-13) increase in deaths. O3 was positively associated with severe outcomes when adjusted by NO2. Our study contributes robust evidence that long-term exposure to air pollutants is associated with severe COVID-19.
Collapse
Affiliation(s)
- Otavio Ranzani
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Anna Alari
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sergio Olmos
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carles Milà
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Alex Rico
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Joan Ballester
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
| | - Xavier Basagaña
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carlos Chaccour
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universidad de Navarra, Pamplona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Payam Dadvand
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Talita Duarte-Salles
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Maria Foraster
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- PHAGEX Research Group, Blanquerna School of Health Science, Universitat Ramon Llull (URL), Barcelona, Spain
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Sunyer
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Antònia Valentín
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Manolis Kogevinas
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Uxue Lazcano
- Instituto Biodonostia, Grupo Atención Primaria, San Sebastian, Spain
- Agency for Health Quality and Assessment of Catalonia (AQuAS), Barcelona, Spain
| | | | - Rosa Vivanco
- Agency for Health Quality and Assessment of Catalonia (AQuAS), Barcelona, Spain
| | - Cathryn Tonne
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
30
|
Zhao H, Zhang X, Wang W, Shi J, Lai W, Li Y, Zhang C, Guo L, Gong J, Li L, Lu C. Global, regional, and national burden of ambient and household PM 2.5-related neonatal disorders, 1990-2019. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114560. [PMID: 36696729 DOI: 10.1016/j.ecoenv.2023.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/31/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Previous studies have shown a relationship between fine particulate matter (PM2.5) exposure and an increased risk of neonatal disorders. Considering the huge burden of neonatal disorders, we assessed spatiotemporal trends of neonatal disorders burden caused by ambient and household PM2.5 at the global, regional, and national levels from 1990 to 2019. The number, rate, and population attributable fraction (PAF) of ambient and household PM2.5-related neonatal disorders disability-adjusted life years (DALYs) in 204 countries and territories from 1990 to 2019 were obtained from the Global Burden of Disease Study 2019 to measure the related neonatal disorders burden by age, sex, subtype, and region. Estimated annual percentage change (EAPC) was estimated to quantify temporal trends. In 2019, approximately a fifth of the global neonatal disorders burden was attributable to PM2.5 exposure, with 7.54% for ambient PM2.5 and 13.23% for household PM2.5. Although the global neonatal disorders burden attributable to household PM2.5 has decreased substantially in the past 30 years, that attributable to ambient PM2.5 has increased, especially in lower sociodemographic index (SDI) regions. The highest rate and PAF of ambient PM2.5-related neonatal disorders DALYs in 2019 were in South Asia and East Asia, respectively, and the fastest increases were in Eastern Sub-Saharan Africa (for rate: EAPC = 2.55, 95% CI: 2.37-2.73) and South Asia (for PAF: EAPC = 3.88, 95% CI: 3.68-4.08). In addition, we found an inverted V-shaped between rates and PAFs of ambient PM2.5-related neonatal disorders DALYs in 2019, as well as corresponding EAPCs, and SDI, while rates and PAFs of household PM2.5-related neonatal disorders DALYs in 2019 were highly negatively correlated with SDI. In the past three decades, the global ambient PM2.5-related neonatal disorders burden largely increased, especially in lower SDI regions. Comparatively, the household PM2.5-related neonatal disorders burden decreased but still accounted for about two-thirds of the PM2.5-related neonatal disease burden.
Collapse
Affiliation(s)
- Hao Zhao
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xuening Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Shandong University, Jinan 250102, China
| | - Wanxin Wang
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingman Shi
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenjian Lai
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanzhi Li
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Caiyun Zhang
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lan Guo
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jianhua Gong
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen 518019, China
| | - Li Li
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen 518019, China.
| | - Ciyong Lu
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
31
|
Li D, Xie J, Wang L, Sun Y, Hu Y, Tian Y. Genetic susceptibility and lifestyle modify the association of long-term air pollution exposure on major depressive disorder: a prospective study in UK Biobank. BMC Med 2023; 21:67. [PMID: 36810050 PMCID: PMC9945634 DOI: 10.1186/s12916-023-02783-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Evidence linking air pollution to major depressive disorder (MDD) remains sparse and results are heterogeneous. In addition, the evidence about the interaction and joint associations of genetic risk and lifestyle with air pollution on incident MDD risk remains unclear. We aimed to examine the association of various air pollutants with the risk of incident MDD and assessed whether genetic susceptibility and lifestyle influence the associations. METHODS This population-based prospective cohort study analyzed data collected between March 2006 and October 2010 from 354,897 participants aged 37 to 73 years from the UK Biobank. Annual average concentrations of PM2.5, PM10, NO2, and NOx were estimated using a Land Use Regression model. A lifestyle score was determined based on a combination of smoking, alcohol drinking, physical activity, television viewing time, sleep duration, and diet. A polygenic risk score (PRS) was defined using 17 MDD-associated genetic loci. RESULTS During a median follow-up of 9.7 years (3,427,084 person-years), 14,710 incident MDD events were ascertained. PM2.5 (HR: 1.16, 95% CI: 1.07-1.26; per 5 μg/m3) and NOx (HR: 1.02, 95% CI: 1.01-1.05; per 20 μg/m3) were associated with increased risk of MDD. There was a significant interaction between the genetic susceptibility and air pollution for MDD (P-interaction < 0.05). Compared with participants with low genetic risk and low air pollution, those with high genetic risk and high PM2.5 exposure had the highest risk of incident MDD (PM2.5: HR: 1.34, 95% CI: 1.23-1.46). We also observed an interaction between PM2.5 exposure and unhealthy lifestyle (P-interaction < 0.05). Participants with the least healthy lifestyle and high air pollution exposures had the highest MDD risk when compared to those with the most healthy lifestyle and low air pollution (PM2.5: HR: 2.22, 95% CI: 1.92-2.58; PM10: HR: 2.09, 95% CI: 1.78-2.45; NO2: HR: 2.11, 95% CI: 1.82-2.46; NOx: HR: 2.28, 95% CI: 1.97-2.64). CONCLUSIONS Long-term exposure to air pollution is associated with MDD risk. Identifying individuals with high genetic risk and developing healthy lifestyle for reducing the harm of air pollution to public mental health.
Collapse
Affiliation(s)
- Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China.,Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Junqing Xie
- Center for Statistics in Medicine, NDORMS, University of Oxford, The Botnar Research Centre, Oxford, UK
| | - Lulin Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China.,Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No.38 Xueyuan Road, Beijing, 100191, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China. .,Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
32
|
Wang J, Li D, Ma Y, Tang L, Xie J, Hu Y, Tian Y. Long-term Exposure to Ambient Air Pollutants and Increased Risk of Pneumonia in the UK Biobank. Chest 2023:S0012-3692(23)00263-5. [PMID: 36801467 DOI: 10.1016/j.chest.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Short-term exposure to air pollution has been linked to pneumonia risk. However, evidence on the long-term effects of air pollution on pneumonia morbidity is scarce and inconsistent. We investigated the associations of long-term air pollutants exposure with pneumonia and explored the potential interactions with smoking. RESEARCH QUESTION Is long-term exposure to ambient air pollution associated with the risk of pneumonia, and does smoking modify the associations? STUDY DESIGN AND METHODS We analyzed data in 445,473 participants without pneumonia within 1 year before baseline from the UK Biobank. Annual average concentrations of particulate matter (particulate matter with a diameter < 2.5 μm [PM2.5] and particulate matter with a diameter < 10 μm [PM10]), nitrogen dioxide (NO2), and nitrogen oxides (NOx) were estimated using land-use regression models. Cox proportional hazards models were used to assess the associations between air pollutants and pneumonia incidence. Potential interactions between air pollution and smoking were examined on both additive and multiplicative scales. RESULTS The hazard ratios of pneumonia for each interquartile range increase in PM2.5, PM10, NO2, and NOx concentrations were 1.06 (95% CI, 1.04-1.08), 1.10 (95% CI, 1.08-1.12), 1.12 (95% CI, 1.10-1.15), and 1.06 (95% CI, 1.04-1.07), respectively. There were significant additive and multiplicative interactions between air pollution and smoking. Compared with never smokers with low air pollution exposure, ever smokers with high air pollution exposure had the highest pneumonia risk (PM2.5: HR, 1.78; 95% CI, 1.67-1.90; PM10: HR, 1.94; 95% CI, 1.82-2.06; NO2: HR, 2.06; 95% CI, 1.93-2.21; NOx: HR, 1.88; 95% CI, 1.76-2.00). The associations between air pollutants and pneumonia risk persisted in participants exposed to air pollutants concentrations meeting the European Union limits. INTERPRETATION Long-term exposure to air pollutants was associated with an increased risk of pneumonia, especially in smokers.
Collapse
Affiliation(s)
- Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junqing Xie
- Center for Statistics in Medicine, NDORMS, University of Oxford, The Botnar Research Centre, Oxford, England
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
33
|
Lin C, Jiang W, Gao X, He Y, Li J, Zhou C, Yang L. Attributable risk and economic burden of pneumonia among older adults admitted to hospital due to short-term exposure to airborne particulate matter: a time-stratified case-crossover study from China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45342-45352. [PMID: 36705825 DOI: 10.1007/s11356-023-25530-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023]
Abstract
Many studies have proven the relationship between air pollutants and respiratory diseases, but few studies have assessed the impacts of air particulate matter exposure on older patients with pneumonia. This study aimed to reveal the impacts of short-term exposure to air particulate matter on the daily number of older adult patients hospitalized due to pneumonia and calculate the economic costs attributable to this exposure. We collected inpatient data from 9 city hospitals in Sichuan Province, China, from January 1, 2018, to December 31, 2019, and calculated odds ratios and 95% confidence intervals using a time-stratified case-crossover study design and an attributable risk model to calculate the economic burden due to particulate matter pollution. It was found that for every 10 μg/m3 increase in PM2.5 and PM10 concentrations, the daily number of older adult pneumonia inpatients increased by 1.5% (95% CI: 1.010-1.021) and 1.0% (95% CI: 1.006-1.014), respectively. Those 65 ~ 79 years old were more susceptible to air particulate pollutants (P < 0.05). During the study period, the total hospitalization costs and out-of-pocket expenses attributable to PM2.5 and PM10 exposure were 44.60 million CNY (6.22%) and 16.03 million CNY (6.21%), respectively, with PM2.5 being the primary influencing factor. This study revealed the relationship between particulate matter pollution and pneumonia among older adults. The role of policies to limit particulate matter concentrations in reducing disease burden among older adults can be further explored.
Collapse
Affiliation(s)
- Chengwei Lin
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Wanyanhan Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Xi Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Yi He
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Jia Li
- School of Management, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Chengchao Zhou
- School of Public Health, Shandong University, Jinan, 250100, Shandong, China
| | - Lian Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China.
| |
Collapse
|
34
|
Li S, Wang G, Geng Y, Wu W, Duan X. Lung function decline associated with individual short-term exposure to PM 1, PM 2.5 and PM 10 in patients with allergic rhinoconjunctivitis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158151. [PMID: 35988632 DOI: 10.1016/j.scitotenv.2022.158151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The susceptibility of allergic rhinoconjunctivitis (ARC) patients to air pollution has yet to be clarified. OBJECTIVES Based on a repeated measurement panel study, we explored the association of short-term PM exposure with lung function in ARC patients and to further identify the susceptible populations. METHODS Personal PM exposure, including PM1, PM2.5 and PM10, was monitored consecutively for three days before outcomes measurements. Lung function indices including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), peak expiratory flow (PEF), and forced expiratory flow at 25-75 % of the vital capacity (FEF25-75) were measured. Serum total immunoglobulin E (IgE), specific-allergen IgE, blood eosinophil and basophils, and the symptoms severe scores were tested in each visit. Linear mixed effect models were applied to estimate the association between PM exposure and lung function. Furthermore, stratified and overlapping grouped populations based on IgE levels were implemented to characterize the modification role and the modulating threshold of IgE at which the association turned significantly negative. RESULTS Short-term PM personal exposure was associated with a significant decrease in lung function in ARC patients, especially for small airway respiratory indexes. The highest estimates occurred in PM1, specifically a 10 μg/m3 increase reduced FEV1/FVC, PEF and FEF25-75 by 1.36 % (95 %CI: -2.29 to -0.43), 0.23 L/s (95 %CI: -0.42 to -0.03) and 0.18 L/s (95 %CI: -0.30 to -0.06), respectively. Notably, PM-induced decreases in lung function were stronger in patients with higher IgE levels (IgE ≥ 100 IU/mL), which were related to higher inflammatory cytokines and symptoms scores. Further, PM-associated lung function declines enhanced robustly and monotonically with increasing IgE concentration. Potential modulating thresholds of IgE occurred at 46.8-59.6 IU/mL for significant PM-lung function associations. CONCLUSION These novel findings estimated the short-term effects of PM on lung function in ARC patients, and the threshold values of IgE for the significant and robust associations.
Collapse
Affiliation(s)
- Sai Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Gang Wang
- Department of Otolaryngology-Head and Neck Surgery, PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Yishuo Geng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wei Wu
- Department of Otolaryngology-Head and Neck Surgery, PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
35
|
Wang Y, Hu J, Huang L, Li T, Yue X, Xie X, Liao H, Chen K, Wang M. Projecting future health burden associated with exposure to ambient PM 2.5 and ozone in China under different climate scenarios. ENVIRONMENT INTERNATIONAL 2022; 169:107542. [PMID: 36194980 DOI: 10.1016/j.envint.2022.107542] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Projecting future air pollution and related health burdens remains challenging because of the complex interactions among future emissions, population, and climate change. In this study, we estimated the premature deaths attributed to ambient fine particulate matter (PM2.5) and ozone (O3) from 2015 to 2100 under four socioeconomic climate scenarios based on an age-stratified assessment method. We found that PM2.5 will decrease in all shared socioeconomic pathway (SSP) scenarios and O3 will decrease in the SSP1-2.6 and SSP2-4.5 scenarios, contributing to a decrease in premature mortality together with the declining total population in China. However, the benefits of a decline in population size and PM2.5 and O3 concentrations over time will be largely offset by population aging, and premature death caused by PM2.5 and O3 will continue to rise till 2060-2080. This impact was greater for the O3-related deaths than those for PM2.5. Our study highlights the importance of future prevention strategies that must jointly improve air quality and susceptibility to aging.
Collapse
Affiliation(s)
- Yiyi Wang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jianlin Hu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China.
| | - Lei Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tiantian Li
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xu Yue
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Xiaodong Xie
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Hong Liao
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Kai Chen
- Yale Center on Climate Change and Health, Yale School of Public Health, 60 College Street, New Haven, CT 06520-8034, USA
| | - Meng Wang
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA; RENEW Institute, University at Buffalo, Buffalo, NY, USA; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
36
|
Jerrett M. Air Pollution as a Risk for Death from Infectious Respiratory Disease. Am J Respir Crit Care Med 2022; 205:1374-1375. [PMID: 35353654 PMCID: PMC9875893 DOI: 10.1164/rccm.202202-0351ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Michael Jerrett
- Fielding School of Public HealthUniversity of California, Los AngelesLos Angeles, California
| |
Collapse
|