1
|
Qi WH, Hu LF, Gu YJ, Zhang XY, Jiang XM, Li WJ, Qi JS, Xiao GS, Jie H. Integrated mRNA-miRNA transcriptome profiling of blood immune responses potentially related to pulmonary fibrosis in forest musk deer. Front Immunol 2024; 15:1404108. [PMID: 38873601 PMCID: PMC11169664 DOI: 10.3389/fimmu.2024.1404108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 06/15/2024] Open
Abstract
Background Forest musk deer (FMD, Moschus Berezovskii) is a critically endangered species world-widely, the death of which can be caused by pulmonary disease in the farm. Pulmonary fibrosis (PF) was a huge threat to the health and survival of captive FMD. MicroRNAs (miRNAs) and messenger RNAs (mRNAs) have been involved in the regulation of immune genes and disease development. However, the regulatory profiles of mRNAs and miRNAs involved in immune regulation of FMD are unclear. Methods In this study, mRNA-seq and miRNA-seq in blood were performed to constructed coexpression regulatory networks between PF and healthy groups of FMD. The hub immune- and apoptosis-related genes in the PF blood of FMD were explored through Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Further, protein-protein interaction (PPI) network of immune-associated and apoptosis-associated key signaling pathways were constructed based on mRNA-miRNA in the PF blood of the FMD. Immune hub DEGs and immune hub DEmiRNAs were selected for experimental verification using RT-qPCR. Results A total of 2744 differentially expressed genes (DEGs) and 356 differentially expressed miRNAs (DEmiRNAs) were identified in the PF blood group compared to the healthy blood group. Among them, 42 DEmiRNAs were negatively correlated with 20 immune DEGs from a total of 57 correlations. The DEGs were significantly associated with pathways related to CD molecules, immune disease, immune system, cytokine receptors, T cell receptor signaling pathway, Th1 and Th2 cell differentiation, cytokine-cytokine receptor interaction, intestinal immune network for IgA production, and NOD-like receptor signaling pathway. There were 240 immune-related DEGs, in which 186 immune-related DEGs were up-regulated and 54 immune-related DEGs were down-regulated. In the protein-protein interaction (PPI) analysis of immune-related signaling pathway, TYK2, TLR2, TLR4, IL18, CSF1, CXCL13, LCK, ITGB2, PIK3CB, HCK, CD40, CD86, CCL3, CCR7, IL2RA, TLR3, and IL4R were identified as the hub immune genes. The mRNA-miRNA coregulation analysis showed that let-7d, miR-324-3p, miR-760, miR-185, miR-149, miR-149-5p, and miR-1842-5p are key miRNAs that target DEGs involved in immune disease, immune system and immunoregulation. Conclusion The development and occurrence of PF were significantly influenced by the immune-related and apoptosis-related genes present in PF blood. mRNAs and miRNAs associated with the development and occurrence of PF in the FMD.
Collapse
Affiliation(s)
- Wen-Hua Qi
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Li-Fan Hu
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yu-Jiawei Gu
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | | | - Xue-Mei Jiang
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Wu-Jiao Li
- Department of Laboratory Medicine, Shenzhen Children’s Hospital, Shenzhen, China
| | - Jun-Sheng Qi
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Guo-Sheng Xiao
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Hang Jie
- Jinfo Mountain Forest Ecosystem Field Scientific Observation and Research Station of Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Chongqing, China
| |
Collapse
|
2
|
Jesenak M, Diamant Z, Simon D, Tufvesson E, Seys SF, Mukherjee M, Lacy P, Vijverberg S, Slisz T, Sediva A, Simon HU, Striz I, Plevkova J, Schwarze J, Kosturiak R, Alexis NE, Untersmayr E, Vasakova MK, Knol E, Koenderman L. Eosinophils-from cradle to grave: An EAACI task force paper on new molecular insights and clinical functions of eosinophils and the clinical effects of targeted eosinophil depletion. Allergy 2023; 78:3077-3102. [PMID: 37702095 DOI: 10.1111/all.15884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023]
Abstract
Over the past years, eosinophils have become a focus of scientific interest, especially in the context of their recently uncovered functions (e.g. antiviral, anti-inflammatory, regulatory). These versatile cells display both beneficial and detrimental activities under various physiological and pathological conditions. Eosinophils are involved in the pathogenesis of many diseases which can be classified into primary (clonal) and secondary (reactive) disorders and idiopathic (hyper)eosinophilic syndromes. Depending on the biological specimen, the eosinophil count in different body compartments may serve as a biomarker reflecting the underlying pathophysiology and/or activity of distinct diseases and as a therapy-driving (predictive) and monitoring tool. Personalized selection of an appropriate therapeutic strategy directly or indirectly targeting the increased number and/or activity of eosinophils should be based on the understanding of eosinophil homeostasis including their interactions with other immune and non-immune cells within different body compartments. Hence, restoring as well as maintaining homeostasis within an individual's eosinophil pool is a goal of both specific and non-specific eosinophil-targeting therapies. Despite the overall favourable safety profile of the currently available anti-eosinophil biologics, the effect of eosinophil depletion should be monitored from the perspective of possible unwanted consequences.
Collapse
Affiliation(s)
- Milos Jesenak
- Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovak Republic
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
| | - Zuzana Diamant
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
- Department Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ellen Tufvesson
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
| | - Sven F Seys
- Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Manali Mukherjee
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- The Firestone Institute for Respiratory Health, Research Institute of St. Joe's Hamilton, Hamilton, Ontario, Canada
| | - Paige Lacy
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Susanne Vijverberg
- Amsterdam UMC Location University of Amsterdam, Pulmonary Diseases, Amsterdam, The Netherlands
| | - Tomas Slisz
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jana Plevkova
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Jurgen Schwarze
- Child Life and Health and Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Radovan Kosturiak
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
- Outpatient Clinic for Clinical Immunology and Allergology, Nitra, Slovak Republic
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, Department of Paediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martina Koziar Vasakova
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Edward Knol
- Department Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leo Koenderman
- Department Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department Pulmonary Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Čelakovská J, Čermáková E, Boudková P, Andrýs C, Krejsek J. The association between eosinophils (CD16 + eosinophils), basophils (CD203 + basophils), and CD23 B lymphocytes in patients with atopic dermatitis on dupilumab therapy: pilot study. Dermatol Ther (Heidelb) 2023; 13:1193-1210. [PMID: 37071375 PMCID: PMC10149537 DOI: 10.1007/s13555-023-00922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/28/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Eosinophils, basophils, and the molecule CD23 on B cells are involved in the pathophysiology of atopic dermatitis (AD). The molecule CD23 is involved in the regulation of IgE synthesis and is expressed by activated B cells. The molecule CD16 is used to assess the activation of eosinophils and CD203 of basophils. The association between the count of eosinophils, basophils, CD16+ eosinophils, CD203+ basophils and the expression of the activation marker CD23 on B cells in patients with AD (with and without dupilumab therapy) is not described. OBJECTIVE The aim of this pilot study is to evaluate the association between the blood count of eosinophils, basophils, relative CD16+ eosinophils, relative CD203+ basophils, and the expression of molecule CD23 on B cells and on their subsets (total, memory, naive, switched, non-switched) in patients suffering from AD (with and without dupilumab therapy) and in control group. METHODS A total of 45 patients suffering from AD were examined; 32 patients without dupilumab treatment (10 men, 22 women, average age 35 years), 13 patients with dupilumab treatment (7 men, 6 women, average age 43.4 years), and 30 subjects as a control group (10 men, 20 women, average age 44.7 years). Immunophenotype was examined by flow cytometry in which monoclonal antibodies with fluorescent molecules were used. For statistical analysis we used non-parametric Kruskal-Wallis one-factor analysis of variance with post hoc by Dunn's test with Bonferroni modification and the Spearman's rank correlation coefficient; for coefficients higher than 0.41, we report R2 (percent of variation explained). RESULTS The absolute count of eosinophils was significantly higher in patients with AD (with and without dupilumab) in comparison to healthy subjects. The difference in the relative count of CD16+ eosinophils in patients with AD (with and without dupilumab therapy) compared with control is not statistically significant. In patients with dupilumab therapy the significantly lower count of relative CD203+ basophils was confirmed compared with control. The higher association between the count of eosinophils (absolute and relative) and the expression of CD23 marker on B cells was confirmed in patients with dupilumab therapy; in contrast, this association was low in patients with AD without dupilumab therapy and in healthy subjects. CONCLUSION The higher association between the count of eosinophils (absolute and relative) and the expression of CD23 marker on B cells was confirmed in patients with AD under dupilumab therapy. It suggests that IL-4 production by eosinophils may play a role in B lymphocyte activation. The significantly lower count of CD203+ basophils has been demonstrated in patients with dupilumab therapy. This reduction of CD203+ basophil count may contribute to the therapeutic effects of dupilumab by reducing the inflammatory response and allergic reactions in patients with AD.
Collapse
Affiliation(s)
- Jarmila Čelakovská
- Department of Dermatology and Venereology, Faculty Hospital and Medical Faculty, Charles University, Hradec Králové, Czech Republic.
| | - Eva Čermáková
- Department of Medical Biophysics, Medical Faculty, Charles University, 50002, Hradec Králové, Czech Republic
| | - Petra Boudková
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty, Charles University, 50002, Hradec Králové, Czech Republic
| | - Ctirad Andrýs
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty, Charles University, 50002, Hradec Králové, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty, Charles University, 50002, Hradec Králové, Czech Republic
| |
Collapse
|
4
|
Zhang X, Xu Z, Wen X, Huang G, Nian S, Li L, Guo X, Ye Y, Yuan Q. The onset, development and pathogenesis of severe neutrophilic asthma. Immunol Cell Biol 2022; 100:144-159. [PMID: 35080788 DOI: 10.1111/imcb.12522] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/02/2021] [Accepted: 01/23/2022] [Indexed: 12/12/2022]
Abstract
Bronchial asthma is divided into Th2 high, Th2 low and mixed types. The Th2 high type is dominated by eosinophils while the Th2 low type is divided into neutrophilic and paucigranulocytic types. Eosinophilic asthma has gained increased attention recently, and its pathogenesis and treatment are well understood. However, severe neutrophilic asthma requires more in-depth research because its pathogenesis is not well understood, and no effective treatment exists. This review looks at the advances made in asthma research, the pathogenesis of neutrophilic asthma, the mechanisms of progression to severe asthma, risk factors for asthma exacerbations, and biomarkers and treatment of neutrophilic asthma. The pathogenesis of neutrophilic asthma is further discussed from four aspects: Th17-type inflammatory response, inflammasomes, exosomes and microRNAs. This review provides direction for the mechanistic study, diagnosis and treatment of neutrophilic asthma. The treatment of neutrophilic asthma remains a significant challenge for clinical therapists and is an important area of future clinical research.
Collapse
Affiliation(s)
- Xingli Zhang
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Zixi Xu
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Xue Wen
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Guoping Huang
- Zigong Hospital of Woman and Children Healthcare, Sichuan, China
| | - Siji Nian
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Li
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiyuan Guo
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Ye
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Qing Yuan
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
The Impact of Monoclonal Antibodies on Airway Smooth Muscle Contractility in Asthma: A Systematic Review. Biomedicines 2021; 9:biomedicines9091281. [PMID: 34572466 PMCID: PMC8468486 DOI: 10.3390/biomedicines9091281] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
Airway hyperresponsiveness (AHR) represents a central pathophysiological hallmark of asthma, with airway smooth muscle (ASM) being the effector tissue implicated in the onset of AHR. ASM also exerts pro-inflammatory and immunomodulatory actions, by secreting a wide range of cytokines and chemokines. In asthma pathogenesis, the overexpression of several type 2 inflammatory mediators including IgE, IL-4, IL-5, IL-13, and TSLP has been associated with ASM hyperreactivity, all of which can be targeted by humanized monoclonal antibodies (mAbs). Therefore, the aim of this review was to systematically assess evidence across the literature on mAbs for the treatment of asthma with respect to their impact on the ASM contractile tone. Omalizumab, mepolizumab, benralizumab, dupilumab, and tezepelumab were found to be effective in modulating the contractility of the ASM and preventing the AHR, but no available studies concerning the impact of reslizumab on the ASM were identified from the literature search. Omalizumab, dupilumab, and tezepelumab can directly modulate the ASM in asthma, by specifically blocking the interaction between IgE, IL-4, and TSLP, and their receptors are located on the surface of ASM cells. Conversely, mepolizumab and benralizumab have prevalently indirect impacts against AHR by targeting eosinophils and other immunomodulatory effector cells promoting inflammatory processes. AHR has been suggested as the main treatable trait towards precision medicine in patients suffering from eosinophilic asthma, therefore, well-designed head-to-head trials are needed to compare the efficacy of those mAbs that directly target ASM contractility specifically against the AHR in severe asthma, namely omalizumab, dupilumab, and tezepelumab.
Collapse
|
6
|
Didehdar M, Khoshbayan A, Vesal S, Darban-Sarokhalil D, Razavi S, Chegini Z, Shariati A. An overview of possible pathogenesis mechanisms of Alternaria alternata in chronic rhinosinusitis and nasal polyposis. Microb Pathog 2021; 155:104905. [PMID: 33930423 DOI: 10.1016/j.micpath.2021.104905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 01/23/2023]
Abstract
Chronic Rhinosinusitis (CRS) is a multifactorial disease, and different etiologies like metabolism and immunity disorders, bacterial superantigens, biofilms, and fungal allergens are known to develop this disease, especially the CRS with nasal polyps. Alternaria alternata (Alternaria) is one of the most prevalent airborne fungal species in the nasal discharge, which might have vigorous immunologic activities in nasal epithelial cells and play an essential role in the pathogenesis of CRS. Moreover, the interaction between this fungus and the innate and adaptive immune systems leads to the development of chronic inflammation. This inflammation may consequently instigate the CRS and nasal polyposis. The attenuation of surfactant protein synthesis or intracellular reserves and mucus hypersecretion could prevent the clearance of Alternaria from sinuses and may be correlated with colonization and re-infection of airborne fungi. Furthermore, higher expression of cathelicidin, thymic stromal lymphopoietin, toll-like receptors, and T helper 2-dominant immune responses can result in an IgE-mediated pathway activation and eosinophils degranulation. Moreover, higher local Alternaria-specific IgE was shown to be correlated with eosinophilic cationic proteins and might relate to nasal polyps. However, the role of genetic and environmental factors affecting CRS and nasal polyposis is not well studied. Likewise, further animal and clinical studies are required to better understand the role of Alternaria in CRS disease. The current article reviews the recent findings around the Alternaria-induced CRS and nasal polyposis.
Collapse
Affiliation(s)
- Mojtaba Didehdar
- Department of Medical Parasitology and Mycology, Arak University of Medical Sciences, Arak, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheil Vesal
- Department of Molecular Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
León B, Ballesteros-Tato A. Modulating Th2 Cell Immunity for the Treatment of Asthma. Front Immunol 2021; 12:637948. [PMID: 33643321 PMCID: PMC7902894 DOI: 10.3389/fimmu.2021.637948] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
It is estimated that more than 339 million people worldwide suffer from asthma. The leading cause of asthma development is the breakdown of immune tolerance to inhaled allergens, prompting the immune system's aberrant activation. During the early phase, also known as the sensitization phase, allergen-specific T cells are activated and become central players in orchestrating the subsequent development of allergic asthma following secondary exposure to the same allergens. It is well-established that allergen-specific T helper 2 (Th2) cells play central roles in developing allergic asthma. As such, 80% of children and 60% of adult asthma cases are linked to an unwarranted Th2 cell response against respiratory allergens. Thus, targeting essential components of Th2-type inflammation using neutralizing antibodies against key Th2 modulators has recently become an attractive option for asthmatic patients with moderate to severe symptoms. In addition to directly targeting Th2 mediators, allergen immunotherapy, also known as desensitization, is focused on redirecting the allergen-specific T cells response from a Th2-type profile to a tolerogenic one. This review highlights the current understanding of the heterogeneity of the Th2 cell compartment, their contribution to allergen-induced airway inflammation, and the therapies targeting the Th2 cell pathway in asthma. Further, we discuss available new leads for successful targeting pulmonary Th2 cell responses for future therapeutics.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andre Ballesteros-Tato
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
8
|
Kariyawasam HH. Chronic rhinosinusitis with nasal polyps: mechanistic insights from targeting IL-4 and IL-13 via IL-4Rα inhibition with dupilumab. Expert Rev Clin Immunol 2020; 16:1115-1125. [PMID: 33148074 DOI: 10.1080/1744666x.2021.1847083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a complex immunological upper airway disease . CRSwNP, particularly in Caucasians, often has a more distinct T2 inflammatory endotype. IL-4 and IL-13 are key upstream cytokines that help establish and sustain T2 inflammation as well as strongly influencing tissue remodeling. They have a shared signaling receptor IL-4Rα. An attractive and novel therapeutic approach is by way of blocking IL-4 and IL-13 simultaneously via inhibiting IL-4Rα. Dupilumab is a murine derived fully human monoclonal inhibitory antibody directed against IL-4Rα which thereby prevents IL-4/IL-13 cell signaling. Following successful Phase 3 studies dupilumab has become the first licensed biologic for treating CRSwNP. Areas covered: This review covers the essential immunology of CRSwNP in the context of IL-4 and IL-13 signaling via IL-4Rα. The potential mechanisms by which therapeutic improvements occur with dupilumab are evaluated. IL-4, IL-13, dupilumab and rhinosinusitis were used as the search terms in PubMed and Google Scholar through to August 2020. Expert commentary: Dupilumab has the potential to transform the care for patients with CRSwNP. It is essential that further studies are conducted promptly to identify disease-specific biomarkers and clinical traits to guide clinicians on best patient selection thereby ensuring optimal dupilumab outcomes.
Collapse
Affiliation(s)
- Harsha H Kariyawasam
- Rhinology Section, Specialist Allergy and Clinical Immunology, Royal National ENT Hospital, London University College London Hospital NHS Foundation Trust, University College London , London, UK
| |
Collapse
|
9
|
Keegan AD, Zamorano J, Keselman A, Heller NM. IL-4 and IL-13 Receptor Signaling From 4PS to Insulin Receptor Substrate 2: There and Back Again, a Historical View. Front Immunol 2018; 9:1037. [PMID: 29868002 PMCID: PMC5962649 DOI: 10.3389/fimmu.2018.01037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
In this historical perspective, written in honor of Dr. William E. Paul, we describe the initial discovery of one of the dominant substrates for tyrosine phosphorylation stimulated by IL-4. We further describe how this “IL-4-induced phosphorylated substrate” (4PS) was characterized as a member of the insulin receptor substrate (IRS) family of large adaptor proteins that link IL-4 and insulin receptors to activation of the phosphatidyl-inositol 3′ kinase pathway as well as other downstream signaling pathways. The relative contribution of the 4PS/IRS pathway to the early models of IL-4-induced proliferation and suppression of apoptosis are compared to our more recent understanding of the complex interplay between positive and negative regulatory pathways emanating from members of the IRS family that impact allergic responses.
Collapse
Affiliation(s)
- Achsah D Keegan
- Department of Microbiology and Immunology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States.,Baltimore VA Medical Center, Baltimore, MD, United States
| | - Jose Zamorano
- Unidad Investigacion, Complejo Hospitalario Universitario, Caceres, Spain
| | - Aleksander Keselman
- Department of Anesthesiology and Critical Care Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
de Seabra Rodrigues Dias IR, Mok SWF, Gordillo-Martínez F, Khan I, Hsiao WWL, Law BYK, Wong VKW, Liu L. The Calcium-Induced Regulation in the Molecular and Transcriptional Circuitry of Human Inflammatory Response and Autoimmunity. Front Pharmacol 2018; 8:962. [PMID: 29358919 PMCID: PMC5766673 DOI: 10.3389/fphar.2017.00962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
Rheumatoid arthritis synovial fibroblasts (RASFs) are fundamental effector cells in RA driving the joint inflammation and deformities. Celastrol is a natural compound that exhibits a potent anti-arthritic effect promoting endoplasmic reticulum (ER) stress mediated by intracellular calcium (Ca2+) mobilization. Ca2+ is a second messenger regulating a variety of cellular processes. We hypothesized that the compound, celastrol, affecting cytosolic Ca2+ mobilization could serve as a novel strategy to combat RA. To address this issue, celastrol was used as a molecular tool to assay the inflammatory gene expression profile regulated by Ca2+. We confirmed that celastrol treatment mobilized cytosolic Ca2+ in patient-derived RASFs. It was found that 23 genes out of 370 were manipulated by Ca2+ mobilization using an inflammatory and autoimmunity PCR array following independent quantitative PCR validation. Most of the identified genes were downregulated and categorized into five groups corresponding to their cellular responses participating in RA pathogenesis. Accordingly, a signaling network map demonstrating the possible molecular circuitry connecting the functions of the products of these genes was generated based on literature review. In addition, a bioinformatics analysis revealed that celastrol-induced Ca2+ mobilization gene expression profile showed a novel mode of action compared with three FDA-approved rheumatic drugs (methotrexate, rituximab and tocilizumab). To the best of our knowledge, this is a pioneer work charting the Ca2+ signaling network on the regulation of RA-associated inflammatory gene expression.
Collapse
Affiliation(s)
| | - Simon W F Mok
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Flora Gordillo-Martínez
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wendy W L Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Y K Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Vincent K W Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
11
|
Soman KV, Stafford SJ, Pazdrak K, Wu Z, Luo X, White WI, Wiktorowicz JE, Calhoun WJ, Kurosky A. Activation of Human Peripheral Blood Eosinophils by Cytokines in a Comparative Time-Course Proteomic/Phosphoproteomic Study. J Proteome Res 2017; 16:2663-2679. [PMID: 28679203 DOI: 10.1021/acs.jproteome.6b00367] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Activated eosinophils contribute to airway dysfunction and tissue remodeling in asthma and thus are considered to be important factors in asthma pathology. We report here comparative proteomic and phosphoproteomic changes upon activation of eosinophils using eight cytokines individually and in selected cytokine combinations in time-course reactions. Differential protein and phosphoprotein expressions were determined by mass spectrometry after 2-dimensional gel electrophoresis (2DGE) and by LC-MS/MS. We found that each cytokine-stimulation produced significantly different changes in the eosinophil proteome and phosphoproteome, with phosphoproteomic changes being more pronounced and having an earlier onset. Furthermore, we observed that IL-5, GM-CSF, and IL-3 showed the greatest change in protein expression and phosphorylation, and this expression differed markedly from those of the other five cytokines evaluated. Comprehensive univariate and multivariate statistical analyses were employed to evaluate the comparative results. We also monitored eosinophil activation using flow cytometry (FC) analysis of CD69. In agreement with our proteomic studies, FC indicated that IL-5, GM-CSF, and IL-3 were more effective than the other five cytokines studied in stimulating a cell surface CD69 increase indicative of eosinophil activation. Moreover, selected combinations of cytokines revealed proteomic patterns with many proteins in common with single cytokine expression patterns but also showed a greater effect of the two cytokines employed, indicating a more complex signaling pathway that was reflective of a more typical inflammatory pathology.
Collapse
Affiliation(s)
- Kizhake V Soman
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Susan J Stafford
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Konrad Pazdrak
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Institute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Zheng Wu
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Xuemei Luo
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Wendy I White
- MedImmune LLC , One MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - John E Wiktorowicz
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Institute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Institute for Human Immunity & Infection, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - William J Calhoun
- Department of Internal Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Alexander Kurosky
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States
| |
Collapse
|
12
|
Gangwar RS, Landolina N, Arpinati L, Levi-Schaffer F. Mast cell and eosinophil surface receptors as targets for anti-allergic therapy. Pharmacol Ther 2016; 170:37-63. [PMID: 27773785 DOI: 10.1016/j.pharmthera.2016.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Roopesh Singh Gangwar
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Nadine Landolina
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Ludovica Arpinati
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
13
|
May RD, Fung M. Strategies targeting the IL-4/IL-13 axes in disease. Cytokine 2016; 75:89-116. [PMID: 26255210 DOI: 10.1016/j.cyto.2015.05.018] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/15/2015] [Indexed: 02/07/2023]
Abstract
IL-4 and IL-13 are pleiotropic Th2 cytokines produced by a wide variety of different cell types and responsible for a broad range of biology and functions. Physiologically, Th2 cytokines are known to mediate host defense against parasites but they can also trigger disease if their activities are dysregulated. In this review we discuss the rationale for targeting the IL-4/IL-13 axes in asthma, atopic dermatitis, allergic rhinitis, COPD, cancer, inflammatory bowel disease, autoimmune disease and fibrotic disease as well as evaluating the associated clinical data derived from blocking IL-4, IL-13 or IL-4 and IL-13 together.
Collapse
|
14
|
Targeting IL4/IL4R for the treatment of epithelial cancer metastasis. Clin Exp Metastasis 2015; 32:847-56. [PMID: 26385103 DOI: 10.1007/s10585-015-9747-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/10/2015] [Indexed: 12/31/2022]
Abstract
While progress has been made in treating primary epithelial tumors, metastatic tumors remain largely incurable and still account for 85-90 % of all cancer-related deaths. Interleukin-4 (IL4), a Th2 cytokine, and the IL4/IL4 receptor (IL4R) interaction have well defined roles in the immune system. Yet, IL4 receptors are over-expressed by many epithelial cancers and could be a promising target for metastatic tumor therapy. The IL4/IL4R signaling axis is a strong promoter of pro-metastatic phenotypes in epithelial cancer cells including enhanced migration, invasion, survival, and proliferation. The promotion of breast cancer growth specifically is also supported in part by IL4-induced glutamine metabolism, and we have shown that IL4 is also capable of inducing glucose metabolism in breast cancer cells. Importantly, there are several types of FDA approved medications for use in asthma patients that inhibit the IL4/IL4R signaling axis. However, these approved medications inhibit both the type I IL4 receptor found on immune cells, and the type II IL4 receptor that is predominantly expressed by some non-hematopoietic cells including epithelial cancer cells. This article reviews existing therapies targeting IL4, IL4R, or IL4/IL4R signaling, and recent findings guiding the creation of novel therapies that specifically inhibit the type II IL4R, while taking into consideration effects on immune cells within the tumor microenvironment. Some of these therapies are currently in clinical trials for cancer patients, and may be exploitable for the treatment of metastatic disease.
Collapse
|
15
|
Al-Muhsen S, Letuve S, Vazquez-Tello A, Pureza MA, Al-Jahdali H, Bahammam AS, Hamid Q, Halwani R. Th17 cytokines induce pro-fibrotic cytokines release from human eosinophils. Respir Res 2013; 14:34. [PMID: 23496774 PMCID: PMC3602055 DOI: 10.1186/1465-9921-14-34] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/07/2013] [Indexed: 01/08/2023] Open
Abstract
Background Subepithelial fibrosis is one of the most critical structural changes affecting bronchial airway function during asthma. Eosinophils have been shown to contribute to the production of pro-fibrotic cytokines, TGF-β and IL-11, however, the mechanism regulating this process is not fully understood. Objective In this report, we investigated whether cytokines associated with inflammation during asthma may induce eosinophils to produce pro-fibrotic cytokines. Methods Eosinophils were isolated from peripheral blood of 10 asthmatics and 10 normal control subjects. Eosinophils were stimulated with Th1, Th2 and Th17 cytokines and the production of TGF-β and IL-11 was determined using real time PCR and ELISA assays. Results The basal expression levels of eosinophil derived TGF-β and IL-11 cytokines were comparable between asthmatic and healthy individuals. Stimulating eosinophils with Th1 and Th2 cytokines did not induce expression of pro-fibrotic cytokines. However, stimulating eosinophils with Th17 cytokines resulted in the enhancement of TGF-β and IL-11 expression in asthmatic but not healthy individuals. This effect of IL-17 on eosinophils was dependent on p38 MAPK activation as inhibiting the phosphorylation of p38 MAPK, but not other kinases, inhibited IL-17 induced pro-fibrotic cytokine release. Conclusions Th17 cytokines might contribute to airway fibrosis during asthma by enhancing production of eosinophil derived pro-fibrotic cytokines. Preventing the release of pro-fibrotic cytokines by blocking the effect of Th17 cytokines on eosinophils may prove to be beneficial in controlling fibrosis for disorders with IL-17 driven inflammation such as allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Saleh Al-Muhsen
- Asthma Research Chair and Prince Naif Center for Immunology Research, Department of Paediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Heller NM, Gwinn WM, Donnelly RP, Constant SL, Keegan AD. IL-4 engagement of the type I IL-4 receptor complex enhances mouse eosinophil migration to eotaxin-1 in vitro. PLoS One 2012; 7:e39673. [PMID: 22761864 PMCID: PMC3386270 DOI: 10.1371/journal.pone.0039673] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 05/27/2012] [Indexed: 01/21/2023] Open
Abstract
Background Previous work from our laboratory demonstrated that IL-4Rα expression on a myeloid cell type was responsible for enhancement of Th2-driven eosinophilic inflammation in a mouse model of allergic lung inflammation. Subsequently, we have shown that IL-4 signaling through type I IL-4 receptors on monocytes/macrophages strongly induced activation of the IRS-2 pathway and a subset of genes characteristic of alternatively activated macrophages. The direct effect(s) of IL-4 and IL-13 on mouse eosinophils are not clear. The goal of this study was determine the effect of IL-4 and IL-13 on mouse eosinophil function. Methods Standard Transwell chemotaxis assay was used to assay migration of mouse eosinophils and signal transduction was assessed by Western blotting. Results Here we determined that (i) mouse eosinophils express both type I and type II IL-4 receptors, (ii) in contrast to human eosinophils, mouse eosinophils do not chemotax to IL-4 or IL-13 although (iii) pre-treatment with IL-4 but not IL-13 enhanced migration to eotaxin-1. This IL-4-mediated enhancement was dependent on type I IL-4 receptor expression: γC-deficient eosinophils did not show enhancement of migratory capacity when pre-treated with IL-4. In addition, mouse eosinophils responded to IL-4 with the robust tyrosine phosphorylation of STAT6 and IRS-2, while IL-13-induced responses were considerably weaker. Conclusions The presence of IL-4 in combination with eotaxin-1 in the allergic inflammatory milieu could potentiate infiltration of eosinophils into the lungs. Therapies that block IL-4 and chemokine receptors on eosinophils might be more effective clinically in reducing eosinophilic lung inflammation.
Collapse
Affiliation(s)
- Nicola M. Heller
- Department of Microbiology and Immunology and the Center for Vascular and Inflammatory Diseases, The University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - William M. Gwinn
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, Washington, District of Columbia, United States of America
| | - Raymond P. Donnelly
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Stephanie L. Constant
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, Washington, District of Columbia, United States of America
| | - Achsah D. Keegan
- Department of Microbiology and Immunology and the Center for Vascular and Inflammatory Diseases, The University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Maes T, Joos GF, Brusselle GG. Targeting interleukin-4 in asthma: lost in translation? Am J Respir Cell Mol Biol 2012; 47:261-70. [PMID: 22538865 DOI: 10.1165/rcmb.2012-0080tr] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The first discovery that interleukin-4 (IL-4) is crucial in the development of allergic airway inflammation originates from the early 1990s. Whereas initial studies in experimental animal models provided the community with the optimistic view that targeting IL-4 would be the ultimate solution for treating asthma, the translation of these findings to the clinic has not been evident and has not yet fulfilled the expectations. Many technical challenges have been encountered in the attempts to modulate IL-4 expression or activity and in transferring knowledge of preclinical studies to clinical trials. Moreover, biological redundancies between IL-4 and IL-13 have compelled a simultaneous blockade of both cytokines. A number of phase I/II studies are now providing us with clinical evidence that targeting IL-4/IL-13 may provide some clinical benefit. However, the initial view that asthma is a purely Th2-mediated disease had to be revised. Currently, different asthma phenotypes have been described, implying that blocking specifically Th2 cytokines, such as IL-4, IL-5, and IL-13, should be targeted to only a specific subset of patients. Taking this into consideration, IL-4 (together with IL-13) deserves attention as subject of further investigations to treat asthma. In this review, we will address the role of IL-4 in asthma, describe IL-4 signaling, and give an overview of preclinical and clinical studies targeting the IL-4 Receptor pathway.
Collapse
Affiliation(s)
- Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | | | | |
Collapse
|
18
|
Shamri R, Xenakis JJ, Spencer LA. Eosinophils in innate immunity: an evolving story. Cell Tissue Res 2010; 343:57-83. [PMID: 21042920 DOI: 10.1007/s00441-010-1049-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 09/01/2010] [Indexed: 12/27/2022]
Abstract
Eosinophils are innate immune leukocytes found in relatively low numbers within the blood. Terminal effector functions of eosinophils, deriving from their capacity to release their content of tissue-destructive cationic proteins, have historically been considered primary effector mechanisms against specific parasites, and are likewise implicated in tissue damage accompanying allergic responses such as asthma. However, the past decade has seen dramatic advancements in the field of eosinophil immunobiology, revealing eosinophils to also be key participants in many other facets of innate immunity, from bridging innate and adaptive immune responses to orchestrating tissue remodeling events. Here, we review the multifaceted functions of eosinophils in innate immunity that are currently known, and discuss new avenues in this evolving story.
Collapse
Affiliation(s)
- Revital Shamri
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
19
|
Luong A, Davis LS, Marple BF. Peripheral Blood Mononuclear Cells from Allergic Fungal Rhinosinusitis Adults Express a Th2 Cytokine Response to Fungal Antigens. Am J Rhinol Allergy 2009; 23:281-7. [DOI: 10.2500/ajra.2009.23.3311] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background The etiology of allergic fungal rhinosinusitis (AFRS) remains controversial. Initially thought to represent an immunoglobulin E (IgE)–mediated hypersensitivity to fungal antigens, additional data have implicated other non-IgE and cellular-mediated pathways. The aim of this study was to characterize T-helper type 1 (Th1) and Th2 immune responses of blood lymphocytes from AFRS patients by fungal antigen stimulation to help differentiate these possible pathways. Methods Peripheral blood mononuclear cells (PBMCs) isolated from AFRS patients (n = 10) and healthy controls (HCs; n = 11) were exposed to four different fungal extracts (Alternaria, Aspergillus, Cladosporium, and Penicillium) in duplicate. After a 72-hour incubation, the supernatants were analyzed for cytokine levels of three Th1 (interferon [IFN] gamma, interleukin [IL]-2, and tumor necrosis factor alpha) and three Th2 (IL-10, IL-5, and IL-4) cytokines by cytometric bead array flow cytometry. Serum fungal-specific IgE levels were measured by ImmunoCAP (Pharmacia Diagnostics, Kalamazoo, MI). Results Fungal extracts of Alternaria and Cladosporium stimulated higher levels of IL-5 from PBMCs in AFRS when compared with HCs (p < 0.05). IL-4 was also elevated for Alternaria in AFRS versus HCs (p < 0.05). A skewed Th2 response to fungal antigen exposure was confirmed by an elevated IL-5/IFN-gamma ratio in AFRS subjects (p < 0.05). Initial studies suggest a correlation between percent T-cell activation and IL-5 expression to IgE levels. Fungal antigens stimulated a notable but not statistically significant increase in IL-10 response in HCs. Conclusion In AFRS patients, fungal antigens stimulated T-cell activation, inducing a predominately Th2 immune response. Healthy controls expressed an inhibitory cytokine IL-10 when exposed to these fungal antigens, possibly serving as a protective response.
Collapse
Affiliation(s)
- Amber Luong
- Department of Otorhinolaryngology–Head and Neck Surgery, University of Texas Medical School at Houston, and Texas Sinus Institute, Houston, Texas
| | - Laurie S. Davis
- Departments of Internal/Medicine Otolaryngology–Head and Neck Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Bradley F. Marple
- Otolaryngology–Head and Neck Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
20
|
Hogan SP, Rosenberg HF, Moqbel R, Phipps S, Foster PS, Lacy P, Kay AB, Rothenberg ME. Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 2008; 38:709-50. [PMID: 18384431 DOI: 10.1111/j.1365-2222.2008.02958.x] [Citation(s) in RCA: 566] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Eosinophils are pleiotropic multifunctional leukocytes involved in initiation and propagation of diverse inflammatory responses, as well as modulators of innate and adaptive immunity. In this review, the biology of eosinophils is summarized, focusing on transcriptional regulation of eosinophil differentiation, characterization of the growing properties of eosinophil granule proteins, surface proteins and pleiotropic mediators, and molecular mechanisms of eosinophil degranulation. New views on the role of eosinophils in homeostatic function are examined, including developmental biology and innate and adaptive immunity (as well as their interaction with mast cells and T cells) and their proposed role in disease processes including infections, asthma, and gastrointestinal disorders. Finally, strategies for targeted therapeutic intervention in eosinophil-mediated mucosal diseases are conceptualized.
Collapse
|
21
|
Abstract
Atopic dermatitis (AD) is a highly pruritic, chronic, and relapsing inflammatory skin disease. Recent interest in AD has been sparked by reports of its increasing prevalence and its contribution to increasing health care costs. A precise understanding of immunologic mechanisms is crucial for the development of effective treatment strategies for AD. Various studies reveal that AD has a multifactorial cause with the activation of complex immunologic and inflammatory pathways. This review will discuss cellular-mediated immunological pathomechanisms of AD. Emphasis will be given to the role played by T cells, antigen-presenting cells, eosinophils, and keratinocytes. We also examine the immunological effect of superantigens on various inflammatory cells including T regulatory cells.
Collapse
Affiliation(s)
- Liang-Shiou Ou
- Division of Allergy, Asthma and Rheumatology Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University, 5, Fu-Hsin Street, Kueishan, Taoyuan, Taiwan, Republic of China.
| | | |
Collapse
|
22
|
Rosenberg HF, Phipps S, Foster PS. Eosinophil trafficking in allergy and asthma. J Allergy Clin Immunol 2007; 119:1303-10; quiz 1311-2. [PMID: 17481712 DOI: 10.1016/j.jaci.2007.03.048] [Citation(s) in RCA: 300] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 03/27/2007] [Accepted: 03/28/2007] [Indexed: 02/08/2023]
Abstract
Blood eosinophilia and tissue eosinophilia are characteristic features of allergic inflammation and asthma, conditions associated with prominent production of T(H)2 cytokines IL-4, IL-5, and IL-13. In this review, we will consider recent advances in our understanding of the molecular mechanisms that promote expansion and differentiation of eosinophil progenitors in bone marrow, eosinophil recruitment in response to chemokine receptor 3 agonists eosinophil transit mediated by specific ligand-receptor interactions, and prolonged survival of eosinophils in peripheral tissues. Novel rational therapies including antiselectin and antichemokine receptor modalities designed to block eosinophil development and trafficking are discussed, together with the implications of recent clinical studies that have evaluated the efficacy of humanized anti-IL-5 mAb therapy.
Collapse
Affiliation(s)
- Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
23
|
Lafreniere JF, Mills P, Bouchentouf M, Tremblay JP. Interleukin-4 improves the migration of human myogenic precursor cells in vitro and in vivo. Exp Cell Res 2006; 312:1127-41. [PMID: 16466711 DOI: 10.1016/j.yexcr.2006.01.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 12/09/2005] [Accepted: 01/02/2006] [Indexed: 01/07/2023]
Abstract
Different molecules are available to recruit new neighboring myogenic cells to the site of regeneration. Formerly called B cell stimulatory factor-1, IL-4 can now be included in the list of motogenic factors. The present report demonstrates that human IL-4 is not required for fusion between mononucleated myoblasts but is required for myotube maturation. In identifying IL-4 as a pro-migratory agent for myogenic cells, these results provide a mechanism which partly explains IL-4 demonstrated activity during differentiation. Among the different mechanisms by which IL-4 might enhance myoblast migration processes, our results indicate that there are implications of some integrins and of three major components of the fibrinolytic system. Indeed, increases in the amount of active urokinase plasminogen activator and its receptor were observed following an IL-4 treatment, while the plasminogen activator inhibitor-1 decreased. Finally, IL-4 did not modify the amount of cell surface alpha5 integrin but increased the presence of beta3 and beta1 integrins. This integrin modulation might favor myogenic cell migration and its interaction with newly formed myotubes. Therefore, IL-4 co-injection with transplanted myoblasts might be an approach to enhance the migration of transplanted cells for the treatment of a damaged myocardium or of a Duchenne Muscular Dystrophy patient.
Collapse
Affiliation(s)
- J F Lafreniere
- Unité de recherche en Génétique humaine, Centre Hospitalier de l'Université Laval, 2705, boul. Laurier, RC-9300, Sainte-Foy (Québec), Canada G1V 4G2
| | | | | | | |
Collapse
|
24
|
Balic A, Cunningham CP, Meeusen ENT. Eosinophil interactions with Haemonchus contortus larvae in the ovine gastrointestinal tract. Parasite Immunol 2006; 28:107-15. [PMID: 16441509 DOI: 10.1111/j.1365-3024.2006.00816.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sheep were immunized by weekly oral infections with Haemonchus contortus for 9 weeks followed by anthelmintic treatment. They were challenged either 9 or 22 weeks later with PBS (sham controls) or one million exsheathed L3 surgically injected in the abomasum, and killed 24 h or 48 h later. Sheep challenged 9 weeks after immunization displayed varying degrees of tissue eosinophilia that showed a significant inverse relationship with the number of intra-epithelial mast cells (globule leucocytes). Close association of eosinophils with tissue larvae was observed mainly in the gastric pits (24 h) or on the mucosal surface (48 h). All L3-challenged sheep in this group had detectable globule leucocytes and tissue IL-4 mRNA, as measured by Southern blot RT-PCR. In contrast, sheep challenged 22 weeks after immunization had no detectable globule leucocytes or IL-4 mRNA and although they exhibited consistent tissue eosinophilia, eosinophils were not closely associated with tissue larvae. Scanning and transmission electron microscopy of sheep sensitized and rested for 9 weeks before challenge showed that L3 surrounded by eosinophils were at varying stages of damage and structural collapse. These studies strongly indicate that eosinophils can damage and probably kill gastrointestinal nematode larvae in vivo. In addition, they also suggest that effective killing by tissue eosinophils may depend on other microenvironmental factors such as intra-epithelial mast cells and IL-4.
Collapse
Affiliation(s)
- A Balic
- Centre for Animal Biotechnology, School of Veterinary Science, The University of Melbourne, Victoria 3010, Australia.
| | | | | |
Collapse
|
25
|
Spencer LA, Melo RCN, Perez SAC, Bafford SP, Dvorak AM, Weller PF. Cytokine receptor-mediated trafficking of preformed IL-4 in eosinophils identifies an innate immune mechanism of cytokine secretion. Proc Natl Acad Sci U S A 2006; 103:3333-8. [PMID: 16492782 PMCID: PMC1413889 DOI: 10.1073/pnas.0508946103] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Indexed: 12/21/2022] Open
Abstract
Although leukocytes of the innate immune system, including eosinophils, contain within their granules preformed stores of cytokines available for selective and rapid release, little is known about the mechanisms governing the mobilization and secretion of these cytokines. Here we show that a cytokine receptor, the IL-4 receptor alpha chain, mediates eotaxin-stimulated mobilization of preformed IL-4 from eosinophil granules into secretory vesicles. Eosinophils contain substantial intracellular quantities of several granule- and vesicle-associated cytokine receptors, including IL-4, IL-6, and IL-13 receptors as well as CCR3. Both IL-4 and IL-4 receptor alpha chain colocalized in eosinophil granules; and after eotaxin-stimulation, IL-4 receptor alpha chain, bearing bound IL-4, was mobilized into secretory vesicles. These findings indicate that intracellular cytokine receptors within secretory vesicles transport their cognate cytokines requisite for the secretion of cytokines preformed in innate immune leukocytes.
Collapse
Affiliation(s)
| | - Rossana C. N. Melo
- Departments of *Medicine and
- Department of Biology, Federal University of Juiz de Fora, CEP 36036-330, Juiz de Fora, MG, Brazil; and
| | - Sandra A. C. Perez
- Departments of *Medicine and
- Laboratory of Inflammation and Department of Physiology and Pharmacodynamics, Oswaldo Cruz Institute, Fiocruz, CEP 21045-900, Rio de Janeiro, Brazil
| | | | - Ann M. Dvorak
- Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | | |
Collapse
|
26
|
Abstract
Long considered to be secondary cells characterized mainly by their ability to be recruited to inflammation sites, these cells are now known to release a wide array of cytotoxic mediators. Moreover they participate in immune response regulation by producing Th1 and Th2 cytokines as well as regulatory cytokines and chemokines. This review describes recent findings about their expression of surface molecules, eosinophil mediators, and the role of both in these novel eosinophil functions.
Collapse
Affiliation(s)
- Véronique Decot
- Unité de thérapie cellulaire et banque de tissus, CHU de Nancy, Vandoeuvre-les-Nancy
| | | |
Collapse
|
27
|
Wong CK, Ip WK, Lam CWK. Biochemical assessment of intracellular signal transduction pathways in eosinophils: implications for pharmacotherapy. Crit Rev Clin Lab Sci 2004; 41:79-113. [PMID: 15077724 DOI: 10.1080/10408360490427624] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Allergic asthma and allergic rhinitis are inflammatory diseases of the airway. Cytokines and chemokines produced by T helper (Th) type 2 cells (GM-CSF, IL-4, IL-5, IL-6, IL-9, IL-10 and IL-13), eotaxin, transforming growth factor-beta, and IL-11 orchestrate most pathophysiological processes of the late-phase allergic reaction, including the recruitment, activation, and delayed apoptosis of eosinophils, as well as eosinophilic degranulation to release eosinophilic cationic protein, major basic protein, and eosinophil-derived neurotoxin. These processes are regulated through an extensive network of interactive intracellular signal transduction pathways that have been intensively investigated recently. Our present review updates the cytokine and chemokine-mediated signal transduction mechanisms including the RAS-RAF-mitogen-activated protein kinases, Janus kinases (signal transducers and activators of transcription), phosphatidylinositol 3-kinase, nuclear factor-kappa B, activator protein-1, GATA, and cyclic AMP-dependent pathways, and describes the roles of different signaling pathways in the regulation of eosinophil differentiation, recruitment, degranulation, and expression of adhesion molecules. We shall also discuss different biochemical methods for the assessment of various intracellular signal transduction molecules, and various antagonists of receptors, modulators, and inhibitors of intracellular signaling molecules, many of which are potential therapeutic agents for treating allergic diseases.
Collapse
Affiliation(s)
- Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong
| | | | | |
Collapse
|
28
|
Kelly-Welch AE, Melo MEF, Smith E, Ford AQ, Haudenschild C, Noben-Trauth N, Keegan AD. Complex role of the IL-4 receptor alpha in a murine model of airway inflammation: expression of the IL-4 receptor alpha on nonlymphoid cells of bone marrow origin contributes to severity of inflammation. THE JOURNAL OF IMMUNOLOGY 2004; 172:4545-55. [PMID: 15034072 DOI: 10.4049/jimmunol.172.7.4545] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent studies have suggested the IL-4Ralpha expressed on lung epithelium is necessary for TH2-mediated goblet cell differentiation and mucus hypersecretion in a murine model of allergic lung disease. However, the IL-4Ralpha is expressed on numerous cell types that could contribute to the overall pathology and severity of asthma. The relative role of the receptor on these cells has not yet been conclusively delineated. To dissect the contribution of IL-4Ralpha in the development of pulmonary allergic responses, we generated murine radiation bone marrow (BM) chimeras. BM from IL-4Ralpha(+) or IL-4Ralpha(-) mice was transferred into recipient mice that expressed or lacked IL-4Ralpha. In the absence of IL-4Ralpha in recipient mice, there was no goblet cell metaplasia or mucus hypersecretion in response to OVA, even in the presence of TH2 cells and substantial eosinophilic infiltration. More importantly, we found that expression of the IL-4Ralpha on a nonlymphoid, MHC class II(+), BM-derived cell type contributes to the severity of inflammation and mucus production. These results suggest that IL-4 and IL-13 contribute to the development of allergic inflammation by stimulating a complex interaction between IL-4Ralpha(+) cell types of both bone marrow and non-bone marrow origin.
Collapse
Affiliation(s)
- Ann E Kelly-Welch
- Departments of Immunology, Holland Laboratory, American Red Cross, Rockville, MD 20855, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Wierzbicki T, Iqbal SM, Cuvelier SL, Awong G, Tibbles LA, Patel KD. IL-4 primes human endothelial cells for secondary responses to histamine. J Leukoc Biol 2003; 74:420-7. [PMID: 12949246 DOI: 10.1189/jlb.1102571] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Interleukin-4 (IL-4) is a multifunctional cytokine, which is involved in numerous disease states, including atopic asthma. IL-4 not only induces direct responses in cells but can also prime for secondary responses to stimuli. Little is known about the priming effects of IL-4 on endothelial cells; therefore, we chose to examine the ability of IL-4 to prime endothelial cells for platelet-activating factor (PAF) synthesis and prostaglandin E(2) (PGE(2)) release. IL-4 alone did not enhance PAF synthesis or PGE(2) release; however, pretreatment with IL-4 primed for PAF synthesis and PGE(2) release in response to subsequent stimulation with histamine. In contrast, tumor necrosis factor alpha (TNF-alpha), oncostatin M (OSM), and IL-1beta did not prime endothelial cells for PAF synthesis in response to histamine. The priming effects of IL-4 occurred without any detectable changes in the requirement for signaling pathways upstream of PGE(2) release. IL-4 treatment increased the expression of mRNA for histamine receptor 1 (HR1) and shifted the inhibition curve for pyrilamine, a specific HR1 antagonist. In addition, the dose-response curve for histamine-induced elevations in intracellular calcium was shifted following IL-4 stimulation. Together, these data indicate that HR1 is up-regulated in IL-4-stimulated human umbilical vein endothelial cells (HUVEC) and suggest that this up-regulation may contribute to the enhanced responsiveness of IL-4-stimulated HUVEC to histamine.
Collapse
Affiliation(s)
- Tom Wierzbicki
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Spencer L, Shultz L, Rajan TV. T cells are required for host protection against Brugia malayi but need not produce or respond to interleukin-4. Infect Immun 2003; 71:3097-106. [PMID: 12761087 PMCID: PMC155764 DOI: 10.1128/iai.71.6.3097-3106.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T cells are known to be required for host protection in mouse models of Brugia malayi infection. Several independent studies in murine models have also highlighted the rapid induction of Th2-like responses after infection with B. malayi or B. pahangi. Previous data from our laboratory have described a significant increase in permissiveness in the absence of interleukin-4 (IL-4), the "prototypical" Th2 cytokine, involved in both the induction and maintenance of Th2 responses. These observations led to our hypothesis that T cells involved in murine host protection would respond to IL-4 signaling and differentiate into cells of the "type 2" phenotype. As such, these cells would presumably also act as major sources of IL-4. To investigate these hypotheses, we performed several adoptive transfers in which we controlled the cell population(s) able to produce or respond to IL-4. We show here that, in contrast to our original hypotheses, IL-4 production and IL-4 receptor expression by T cells are both dispensable for T-cell-mediated host protection. Instead, our data imply that T cells may be required for eosinophil accumulation at the site of infection.
Collapse
Affiliation(s)
- L Spencer
- Department of Pathology, University of Connecticut Health Center, Farmington 06030, USA
| | | | | |
Collapse
|
31
|
Heinemann A, Schuligoi R, Sabroe I, Hartnell A, Peskar BA. Delta 12-prostaglandin J2, a plasma metabolite of prostaglandin D2, causes eosinophil mobilization from the bone marrow and primes eosinophils for chemotaxis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4752-8. [PMID: 12707356 DOI: 10.4049/jimmunol.170.9.4752] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PGD(2), a major mast cell mediator, is a potent eosinophil chemoattractant and is thought to be involved in eosinophil recruitment to sites of allergic inflammation. In plasma, PGD(2) is rapidly transformed into its major metabolite delta(12)-PGJ(2), the effect of which on eosinophil migration has not yet been characterized. In this study we found that delta(12)-PGJ(2) was a highly effective chemoattractant and inducer of respiratory burst in human eosinophils, with the same efficacy as PGD(2), PGJ(2), or 15-deoxy-delta(12,14)-PGJ(2). Moreover, pretreatment of eosinophils with delta(12)-PGJ(2) markedly enhanced the chemotactic response to eotaxin, and in this respect delta(12)-PGJ(2) was more effective than PGD(2). delta(12)-PGJ(2)-induced facilitation of eosinophil migration toward eotaxin was not altered by specific inhibitors of intracellular signaling pathways relevant to the chemotactic response, phosphatidylinositol 3-kinase (LY-294002), mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (U-0126), or p38 mitogen-activated protein kinase (SB-202190). Desensitization studies using calcium flux suggested that delta(12)-PGJ(2) signaled through the same receptor, CRTH2, as PGD(2). Finally, delta(12)-PGJ(2) was able to mobilize mature eosinophils from the bone marrow of the guinea pig isolated perfused hind limb. Given that delta(12)-PGJ(2) is present in the systemic circulation at relevant levels, a role for this PGD(2) metabolite in eosinophil release from the bone marrow and in driving eosinophil recruitment to sites of inflammation appears conceivable.
Collapse
Affiliation(s)
- Akos Heinemann
- Department of Experimental and Clinical Pharmacology, Karl Franzens University, Graz, Austria.
| | | | | | | | | |
Collapse
|
32
|
Chauhan S, Leach CH, Kunz S, Bloom JW, Miesfeld RL. Glucocorticoid regulation of human eosinophil gene expression. J Steroid Biochem Mol Biol 2003; 84:441-52. [PMID: 12732289 DOI: 10.1016/s0960-0760(03)00065-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Molecular analysis of steroid-regulated gene expression in freshly isolated human eosinophils is difficult due to the inherent high rate of spontaneous apoptosis and elevated levels of endogenous ribonucleases. To circumvent these limitations, we determined if the human eosinophilic cell line EoL-1 could serve as an in vitro model of glucocorticoid signaling. We found by optimizing growth conditions in low serum-containing media that dexamethasone (Dex) treatment of EoL-1 cells induced an apoptotic pathway that was inhibited by interleukin-5 (IL-5). Moreover, gene expression profiling using RNA from untreated EoL-1 cells and from freshly isolated human eosinophils identified 380 commonly expressed genes, including the eosinophil markers granule major basic protein, prostaglandin-endoperoxide synthase 1 and arachidonate 15-lipoxygenase. Expression profiling was performed using EoL-1 cells that had been treated with dexamethasone for 0, 4, 12, 24 and 48h identifying 162 genes as differentially expressed. Two of the most highly upregulated genes based on expression profiling were the transcription factor Ets-2 and the MHC Class II genes (Q, R, and P). Expression of these genes in EoL-1 cells was shown to be dexamethasone-induced at the RNA and protein levels which is consistent with the known function of Ets-2 in controlling cell cycle progression and the role of MHC Class II antigens in mediating eosinophil functions.
Collapse
Affiliation(s)
- Sanjay Chauhan
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | |
Collapse
|
33
|
Justice JP, Borchers MT, Crosby JR, Hines EM, Shen HH, Ochkur SI, McGarry MP, Lee NA, Lee JJ. Ablation of eosinophils leads to a reduction of allergen-induced pulmonary pathology. Am J Physiol Lung Cell Mol Physiol 2003; 284:L169-78. [PMID: 12388345 DOI: 10.1152/ajplung.00260.2002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A strategy to deplete eosinophils from the lungs of ovalbumin (OVA)-sensitized/challenged mice was developed using antibody-mediated depletion. Concurrent administration [viz. the peritoneal cavity (systemic) and as an aerosol to the lung (local)] of a rat anti-mouse CCR3 monoclonal antibody resulted in the abolition of eosinophils from the lung such that the airway lumen was essentially devoid of eosinophils. Moreover, perivascular/peribronchial eosinophil numbers were reduced to levels indistinguishable from saline-challenged animals. This antibody-mediated depletion was not accompanied by effects on any other leukocyte population, including, but not limited to, T cells and mast cells/basophils. In addition, no effects were observed on other underlying allergic inflammatory responses in OVA-treated mice, including OVA-specific immunoglobulin production as well as T cell-dependent elaboration of Th2 cytokines. The ablation of virtually all pulmonary eosinophils in OVA-treated mice (i.e., without concurrent effects on T cell activities) resulted in a significant decrease in mucus accumulation and abolished allergen-induced airway hyperresponsiveness. These data demonstrate a direct causative relationship between allergen-mediated pulmonary pathologies and eosinophils.
Collapse
Affiliation(s)
- J Paul Justice
- Division of Hematology/Oncology and Pulmonary Medicine, Department of Biochemistry and Molecular Biology, S. C. Johnson Medical Research Building, Mayo Clinic Scottsdale, 13400 E. Shea Boulevard, Scottsdale, AZ 85259, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wenzel SE, Trudeau JB, Barnes S, Zhou X, Cundall M, Westcott JY, McCord K, Chu HW. TGF-beta and IL-13 synergistically increase eotaxin-1 production in human airway fibroblasts. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4613-9. [PMID: 12370400 DOI: 10.4049/jimmunol.169.8.4613] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic diseases may involve an "innate" response followed by an adaptive immune response, of a Th1 or Th2 variety. Little is known regarding the interactions of these responses. We hypothesized that TGF-beta1 (innate response factor associated with wound repair) in combination with IL-13 (Th2 factor) might augment inflammatory processes associated with asthma. Airway fibroblasts were cultured from asthmatic subjects and normal controls. These fibroblasts were exposed to TGF-beta1 and IL-13 alone or in combination, and eotaxin-1 expression and production were evaluated. At 48 h, eotaxin-1 production was markedly increased with the combination of TGF-beta1 and IL-13 (p < 0.0001) compared with either stimulus alone. mRNA increased slightly at 1 h with IL-13 or TGF-beta1 plus IL13, peaked, and became significantly increased over IL-13 alone at 24 h. Protein was measurable from 6 h with IL-13 and TGF-beta1 plus IL-13, but greater levels were measured over time with the combination. Actinomycin ablated the increase in mRNA and protein seen with IL-13 alone and with TGF-beta1 plus IL-13. Cycloheximide blocked the increase in mRNA at 6 h in both conditions, but also blocked the increase at 24 h with TGF-beta1 plus IL-13. STAT-6 was rapidly activated with both IL-13 and the combination, without difference. Finally, eotaxin-1-positive fibroblasts were identified in severe asthma biopsies in greater numbers than in normals. These results support the concept that interactions of innate and adaptive immune systems may be important in promoting the tissue eosinophilia of asthma, particularly in those with more severe disease.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Asthma/immunology
- Asthma/metabolism
- Asthma/pathology
- Blotting, Northern
- Bronchi/immunology
- Bronchi/metabolism
- Cells, Cultured
- Chemokine CCL11
- Chemokines, CC/antagonists & inhibitors
- Chemokines, CC/biosynthesis
- Chemokines, CC/genetics
- Chemotactic Factors, Eosinophil/antagonists & inhibitors
- Chemotactic Factors, Eosinophil/biosynthesis
- Chemotactic Factors, Eosinophil/genetics
- Cycloheximide/pharmacology
- Dactinomycin/pharmacology
- Dose-Response Relationship, Immunologic
- Drug Synergism
- Fibroblasts/drug effects
- Fibroblasts/immunology
- Fibroblasts/metabolism
- Humans
- Interleukin-13/pharmacology
- Interleukin-8/biosynthesis
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Polymerase Chain Reaction
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/biosynthesis
- STAT6 Transcription Factor
- Signal Transduction/genetics
- Signal Transduction/immunology
- Trans-Activators/metabolism
- Transforming Growth Factor beta/pharmacology
- Transforming Growth Factor beta1
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Sally E Wenzel
- National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hoontrakoon R, Chu HW, Gardai SJ, Wenzel SE, McDonald P, Fadok VA, Henson PM, Bratton DL. Interleukin-15 inhibits spontaneous apoptosis in human eosinophils via autocrine production of granulocyte macrophage-colony stimulating factor and nuclear factor-kappaB activation. Am J Respir Cell Mol Biol 2002; 26:404-12. [PMID: 11919076 DOI: 10.1165/ajrcmb.26.4.4517] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Prolonged eosinophil survival, i.e., reduced apoptosis, is implicated in the pathogenesis of chronic allergic inflammation. Here we demonstrate that interleukin (IL)-15, in the presence or absence of tumor necrosis factor (TNF)-alpha, reduces spontaneous apoptosis in freshly isolated human eosinophils. The prosurvival effect of IL-15 was abrogated by neutralizing antibody to granulocyte macrophage-colony stimulating factor (GM-CSF), although GM-CSF was not detected in conditioned media by ELISA. Additionally, the effect of IL-15 on spontaneous eosinophil apoptosis appeared to require nuclear factor-kappaB (NF-kappaB) activation based on evidence for NF-kappaB nuclear translocation and abrogation of the effect by the NF-kappaB inhibitor, Bay 11- 7082. Finally, the data demonstrate that IL-15 expression is higher in the submucosa of endobronchial tissues from subjects with moderate to severe asthma when compared with control subjects. Thus, our results suggest that IL-15, either alone or in combination with TNF-alpha, may perpetuate allergic inflammation by reduction of spontaneous eosinophil apoptosis through autocrine production of GM-CSF and NF-kappaB activation.
Collapse
Affiliation(s)
- Raweewan Hoontrakoon
- Department of Pediatrics, Division of Allergy and Immunology, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Temple R, Allen E, Fordham J, Phipps S, Schneider HC, Lindauer K, Hayes I, Lockey J, Pollock K, Jupp R. Microarray analysis of eosinophils reveals a number of candidate survival and apoptosis genes. Am J Respir Cell Mol Biol 2001; 25:425-33. [PMID: 11694447 DOI: 10.1165/ajrcmb.25.4.4456] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The increase in eosinophils at the site of antigen challenge has been used as evidence to suggest that this cell type plays a role in the pathophysiology of asthma. Aberrant production of several different cytokines, particularly interleukin (IL)-5, has been shown to result in eosinophilia. IL-5 influences the development and maturation of eosinophils in a number of different ways. Of note is the ability of IL-5 to act as a survival factor for eosinophils specifically inhibiting apoptosis. The precise mechanism by which IL-5 exerts its effect remains obscure. We used microarray technologies to investigate the changes in the messenger RNA expression profile of eosinophils after treatment with IL-5. Using the Affymetrix Hu6800 chip, a total of 80 genes were observed to be regulated by 2-fold or greater. Many of the genes previously identified as regulated by IL-5 were regulated in our microarray experiments. Of the 73 genes found to be upregulated, many were shown to play a role in adhesion, migration, activation, or survival of eosinophils or hematopoietic cells, whereas the function of others was unknown. To facilitate the identification of genes that govern the apoptosis and survivability of eosinophils, we used an alternative cellular model, TF1.8 cells, whose survival was also dependent on IL-5. Comparison of these models identified four genes, Pim-1, DSP-5 (hVH3, B23), CD24, and SLP-76, whose regulation was similarly coordinated in both systems. Identification of Pim-1 and SLP-76 as regulated by IL-5 led us to suggest a direct role for these proteins in the IL-5 signaling pathway in eosinophils. The tissue distribution of these genes demonstrated that Pim-1 and SLP-76 were relatively restricted to the eosinophil compared with their expression in brain, bone marrow, kidney, liver, and lung. By contrast, DSP-5 and CD24 were confirmed as ubiquitous in their expression by microarray.
Collapse
Affiliation(s)
- R Temple
- Aventis Pharmaceuticals, Inc., Route 202-206, Bridgewater, NJ 08807, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Brenner V, Lindauer K, Parkar A, Fordham J, Hayes I, Stow M, Gama R, Pollock K, Jupp R. Analysis of cellular adhesion by microarray expression profiling. J Immunol Methods 2001; 250:15-28. [PMID: 11251219 DOI: 10.1016/s0022-1759(01)00303-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Microarrays of oligonucleotides or cDNAs can be used to establish the expression profiles of numerous genes in a single experiment. We have established a microarray platform to identify genes in a number of different pathological conditions, particularly those with an inflammation component. This platform utilised the output of an eosinophil sequencing project in which 1069 sequences were identified that were not represented in the public domain. An eosinophil model cell line, AML14.3D10, was used to investigate cell adhesion. The transcription profile of adhered and non-adhered AML 14.3D10 cells was shown to be both technically and biologically reproducible. A number of genes were found differentially expressed in the adhered vs. non-adhered populations. In the adhered population, the expression of these genes was restricted compared to brain, lung, kidney and especially bone marrow. However, the differentially regulated genes were not among those genes most restricted to eosinophils. We discuss the implications of transcription profiling on gene annotation and its potential utility for the identification of targets for drug intervention.
Collapse
Affiliation(s)
- V Brenner
- Aventis Pharmaceuticals, Rainham Road South, Dagenham, Essex RM10 7XS, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- L Koenderman
- Department of Pulmonary Diseases, University Medical Center, Utrecht, The Netherlands
| | | |
Collapse
|
39
|
VCAM-1 has a tissue-specific role in mediating interleukin-4–induced eosinophil accumulation in rat models: evidence for a dissociation between endothelial-cell VCAM-1 expression and a functional role in eosinophil migration. Blood 2000. [DOI: 10.1182/blood.v96.10.3601.h8003601_3601_3609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Eosinophil accumulation has been associated with the pathogenesis of numerous allergic inflammatory disorders. Despite the great interest in this response, many aspects of eosinophil accumulation remain unknown. This is particularly true with respect to tissue-specific mechanisms that may regulate the accumulation of eosinophils in different organs. This study addressed this issue by investigating and comparing the roles of α4-integrins and vascular cell adhesion molecule 1 (VCAM-1) adhesion pathways in interleukin 4 (IL-4)–induced eosinophil accumulation in 2 different rat models of inflammation, namely pleural and cutaneous inflammation. Similar to our previous findings in studies in rat skin, locally administered IL-4 induced a time- and dose-dependent accumulation of eosinophils in rat pleural cavities, a response that was associated with generation of the chemokine eotaxin. The IL-4–induced eosinophil accumulation in skin and pleural cavities was totally inhibited by an antirat α4-integrins monoclonal antibody (mAb) (TA-2). In contrast, whereas an antirat VCAM-1 mAb (5F10) totally blocked the response in skin, IL-4–induced eosinophil accumulation in rat pleural cavities was not affected by VCAM-1 blockade. A radiolabeled mAb technique demonstrated that endothelial-cell VCAM-1 expression was induced in response to IL-4 in both skin and pleural membrane. The results indicate that although endothelial-cell VCAM-1 is present in skin and pleura, a functional role for it in IL-4–induced eosinophil accumulation was evident only in skin. These findings suggest the existence of tissue-specific adhesive mechanisms in regulating leukocyte migration in vivo and demonstrate a dissociation between VCAM-1 expression and eosinophil accumulation.
Collapse
|
40
|
VCAM-1 has a tissue-specific role in mediating interleukin-4–induced eosinophil accumulation in rat models: evidence for a dissociation between endothelial-cell VCAM-1 expression and a functional role in eosinophil migration. Blood 2000. [DOI: 10.1182/blood.v96.10.3601] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Abstract
Eosinophil accumulation has been associated with the pathogenesis of numerous allergic inflammatory disorders. Despite the great interest in this response, many aspects of eosinophil accumulation remain unknown. This is particularly true with respect to tissue-specific mechanisms that may regulate the accumulation of eosinophils in different organs. This study addressed this issue by investigating and comparing the roles of α4-integrins and vascular cell adhesion molecule 1 (VCAM-1) adhesion pathways in interleukin 4 (IL-4)–induced eosinophil accumulation in 2 different rat models of inflammation, namely pleural and cutaneous inflammation. Similar to our previous findings in studies in rat skin, locally administered IL-4 induced a time- and dose-dependent accumulation of eosinophils in rat pleural cavities, a response that was associated with generation of the chemokine eotaxin. The IL-4–induced eosinophil accumulation in skin and pleural cavities was totally inhibited by an antirat α4-integrins monoclonal antibody (mAb) (TA-2). In contrast, whereas an antirat VCAM-1 mAb (5F10) totally blocked the response in skin, IL-4–induced eosinophil accumulation in rat pleural cavities was not affected by VCAM-1 blockade. A radiolabeled mAb technique demonstrated that endothelial-cell VCAM-1 expression was induced in response to IL-4 in both skin and pleural membrane. The results indicate that although endothelial-cell VCAM-1 is present in skin and pleura, a functional role for it in IL-4–induced eosinophil accumulation was evident only in skin. These findings suggest the existence of tissue-specific adhesive mechanisms in regulating leukocyte migration in vivo and demonstrate a dissociation between VCAM-1 expression and eosinophil accumulation.
Collapse
|
41
|
Finkelman FD, Wynn TA, Donaldson DD, Urban JF. The role of IL-13 in helminth-induced inflammation and protective immunity against nematode infections. Curr Opin Immunol 1999; 11:420-6. [PMID: 10448138 DOI: 10.1016/s0952-7915(99)80070-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Helminth infections induce the production of type 2 cytokines, which contribute both to expulsion of the worms and inflammatory responses that can either protect or damage the host. Although IL-4 has been considered the most critical cytokine for both inflammation and protective immunity, recent observations indicate that IL-13 - a related cytokine - can have equal or even greater importance than IL-4 in inflammatory responses and host protection against infection.
Collapse
Affiliation(s)
- F D Finkelman
- Division of Immunology, University of Cincinnati College of Medicine, PO Box 670563, OH 45267-0563, USA.
| | | | | | | |
Collapse
|