1
|
Zhao LM, Lancaster AC, Patel R, Zhang H, Duong TQ, Jiao Z, Lin CT, Healey T, Wright T, Wu J, Bai HX. Association of clinical and imaging characteristics with pulmonary function testing in patients with Long-COVID. Heliyon 2024; 10:e31751. [PMID: 38845871 PMCID: PMC11153179 DOI: 10.1016/j.heliyon.2024.e31751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Purpose The purpose of this study is to identify clinical and imaging characteristics associated with post-COVID pulmonary function decline. Methods This study included 22 patients recovering from COVID-19 who underwent serial spirometry pulmonary function testing (PFT) before and after diagnosis. Patients were divided into two cohorts by difference between baseline and post-COVID follow-up PFT: Decline group (>10 % decrease in FEV1), and Stable group (≤10 % decrease or improvement in FEV1). Demographic, clinical, and laboratory data were collected, as well as PFT and chest computed tomography (CT) at the time of COVID diagnosis and follow-up. CTs were semi-quantitatively scored on a five-point severity scale for disease extent in each lobe by two radiologists. Mann-Whitney U-tests, T-tests, and Chi-Squared tests were used for comparison. P-values <0.05 were considered statistically significant. Results The Decline group had a higher proportion of neutrophils (79.47 ± 4.83 % vs. 65.45 ± 10.22 %; p = 0.003), a higher absolute neutrophil count (5.73 ± 2.68 × 109/L vs. 3.43 ± 1.74 × 109/L; p = 0.031), and a lower proportion of lymphocytes (9.90 ± 4.20 % vs. 21.21 ± 10.97 %; p = 0.018) compared to the Stable group. The Decline group also had significantly higher involvement of ground-glass opacities (GGO) on follow-up chest CT [8.50 (4.50, 14.50) vs. 3.0 (1.50, 9.50); p = 0.032] and significantly higher extent of reticulations on chest CT at time of COVID diagnosis [6.50 (4.00, 9.00) vs. 2.00 (0.00, 6.00); p = 0.039] and follow-up [5.00 (3.00, 13.00) vs. 2.00 (0.00, 5.00); p = 0.041]. ICU admission was higher in the Decline group than in the Stable group (71.4 % vs. 13.3 %; p = 0.014). Conclusions This study provides novel insight into factors influencing post-COVID lung function, irrespective of pre-existing pulmonary conditions. Our findings underscore the significance of neutrophil counts, reduced lymphocyte counts, pulmonary reticulation on chest CT at diagnosis, and extent of GGOs on follow-up chest CT as potential indicators of decreased post-COVID lung function. This knowledge may guide prediction and further understanding of long-term sequelae of COVID-19 infection.
Collapse
Affiliation(s)
- Lin-Mei Zhao
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Andrew C. Lancaster
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ritesh Patel
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Helen Zhang
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, USA
| | - Tim Q. Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Zhicheng Jiao
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, USA
| | - Cheng Ting Lin
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Terrance Healey
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, USA
| | - Thaddeus Wright
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, USA
| | - Jing Wu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Harrison X. Bai
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Hoekstra ME, Slagter M, Urbanus J, Toebes M, Slingerland N, de Rink I, Kluin RJC, Nieuwland M, Kerkhoven R, Wessels LFA, Schumacher TN. Distinct spatiotemporal dynamics of CD8 + T cell-derived cytokines in the tumor microenvironment. Cancer Cell 2024; 42:157-167.e9. [PMID: 38194914 PMCID: PMC10783802 DOI: 10.1016/j.ccell.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 10/13/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Cells in the tumor microenvironment (TME) influence each other through secretion and sensing of soluble mediators, such as cytokines and chemokines. While signaling of interferon γ (IFNγ) and tumor necrosis factor α (TNFα) is integral to anti-tumor immune responses, our understanding of the spatiotemporal behavior of these cytokines is limited. Here, we describe a single cell transcriptome-based approach to infer which signal(s) an individual cell has received. We demonstrate that, contrary to expectations, CD8+ T cell-derived IFNγ is the dominant modifier of the TME relative to TNFα. Furthermore, we demonstrate that cell pools that show abundant IFNγ sensing are characterized by decreased expression of transforming growth factor β (TGFβ)-induced genes, consistent with IFNγ-mediated TME remodeling. Collectively, these data provide evidence that CD8+ T cell-secreted cytokines should be categorized into local and global tissue modifiers, and describe a broadly applicable approach to dissect cytokine and chemokine modulation of the TME.
Collapse
Affiliation(s)
- Mirjam E Hoekstra
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maarten Slagter
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos Urbanus
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mireille Toebes
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nadine Slingerland
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Iris de Rink
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roelof J C Kluin
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marja Nieuwland
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ron Kerkhoven
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of EEMCS, Delft University of Technology, Delft, the Netherlands
| | - Ton N Schumacher
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
3
|
Qin Z, Chen Y, Wang Y, Xu Y, Liu T, Mu Q, Huang C. Immunometabolism in the pathogenesis of asthma. Immunology 2024; 171:1-17. [PMID: 37652466 DOI: 10.1111/imm.13688] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
Bronchial asthma is a heterogeneous disease characterised by chronic airway inflammation. A variety of immune cells such as eosinophils, mast cells, T lymphocytes, neutrophils and airway epithelial cells are involved in the airway inflammation and airway hyperresponsiveness in asthma pathogenesis, resulting in extensive and variable reversible expiratory airflow limitation. However, the precise molecular mechanisms underlying the allergic immune responses, particularly immunometabolism, remains unclear. Studies have detected enhanced oxidative stress, and abnormal metabolic progresses of glycolysis, fatty acid and amino acid in various immune cells, inducing dysregulation of innate and adaptive immune responses in asthma pathogenesis. Immunometabolism mechanisms contain multiple signalling pathways, providing novel therapy targets for asthma. This review summarises the current knowledge on immunometabolism reprogramming in asthma pathogenesis, as well as potential therapy strategies.
Collapse
Affiliation(s)
- Ziwen Qin
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yujuan Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yue Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yeyang Xu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Tingting Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qian Mu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chuanjun Huang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
4
|
Wang MY, Liu WJ, Wu LY, Wang G, Zhang CL, Liu J. The Research Progress in Transforming Growth Factor-β2. Cells 2023; 12:2739. [PMID: 38067167 PMCID: PMC10706148 DOI: 10.3390/cells12232739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Transforming growth factor-beta 2 (TGF-β2), an important member of the TGF-β family, is a secreted protein that is involved in many biological processes, such as cell growth, proliferation, migration, and differentiation. TGF-β2 had been thought to be functionally identical to TGF-β1; however, an increasing number of recent studies uncovered the distinctive features of TGF-β2 in terms of its expression, activation, and biological functions. Mice deficient in TGF-β2 showed remarkable developmental abnormalities in multiple organs, especially the cardiovascular system. Dysregulation of TGF-β2 signalling was associated with tumorigenesis, eye diseases, cardiovascular diseases, immune disorders, as well as motor system diseases. Here, we provide a comprehensive review of the research progress in TGF-β2 to support further research on TGF-β2.
Collapse
Affiliation(s)
- Meng-Yan Wang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
| | - Wen-Juan Liu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
| | - Le-Yi Wu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
| | - Gang Wang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
| | - Cheng-Lin Zhang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Jie Liu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
| |
Collapse
|
5
|
The role of transforming growth factor-β2 in cigarette smoke-induced lung inflammation and injury. Life Sci 2023; 320:121539. [PMID: 36870385 DOI: 10.1016/j.lfs.2023.121539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
AIMS Transforming growth factor-β2 (TGF-β2) plays an important role in pleiotropic functions and has been reported to be involved in the pathogenesis of chronic obstructive lung disease. The role of TGF-β2 in regulating cigarette smoke (CS)-induced lung inflammation and injury has not been investigated, and its underlying mechanism remains unclear. MAIN METHODS Primary bronchial epithelial cells (PBECs) were treated with cigarette smoke extract (CSE), and the signaling pathway of TGF-β2 regulating lung inflammation was investigated. Mice were exposed to CS and treated with TGF-β2 i.p. or bovine whey protein extract containing TGF-β2 p.o., and the role of TGF-β2 in alleviating lung inflammation/injury was studied. KEY FINDINGS In vitro, we demonstrated that TGF-β2 attenuated CSE-induced IL-8 production from PBECs through the TGF-β receptor I (TGF-βRI), Smad3, and mitogen-activated protein kinase signaling pathways. Selective TGF-βRI inhibitor (LY364947) and antagonist of Smad3 (SIS3) abolished the effect of TGF-β2 on alleviating CSE-induced IL-8 production. In vivo, CS exposure for 4 weeks in mice increased the levels of total protein, inflammatory cell counts, and monocyte chemoattractant protein-1 in bronchoalveolar fluid and induced lung inflammation/injury, as revealed by immunohistochemistry. Administration of TGF-β2 through intraperitoneal injection or oral feeding with bovine whey protein extract containing TGF-β2 significantly reduced CS-induced lung inflammation and injury. SIGNIFICANCE We concluded that TGF-β2 reduced CSE-induced IL-8 production through the Smad3 signaling pathway in PBECs and alleviated lung inflammation/injury in CS-exposed mice. The anti-inflammatory effect of TGF-β2 on CS-induced lung inflammation in humans deserves further clinical study.
Collapse
|
6
|
Heterogeneity of Phenotypic and Functional Changes to Porcine Monocyte-Derived Macrophages Triggered by Diverse Polarizing Factors In Vitro. Int J Mol Sci 2023; 24:ijms24054671. [PMID: 36902099 PMCID: PMC10003195 DOI: 10.3390/ijms24054671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Swine are attracting increasing attention as a biomedical model, due to many immunological similarities with humans. However, porcine macrophage polarization has not been extensively analyzed. Therefore, we investigated porcine monocyte-derived macrophages (moMΦ) triggered by either IFN-γ + LPS (classical activation) or by diverse "M2-related" polarizing factors: IL-4, IL-10, TGF-β, and dexamethasone. IFN-γ and LPS polarized moMΦ toward a proinflammatory phenotype, although a significant IL-1Ra response was observed. Exposure to IL-4, IL-10, TGF-β, and dexamethasone gave rise to four distinct phenotypes, all antithetic to IFN-γ and LPS. Some peculiarities were observed: IL-4 and IL-10 both enhanced expression of IL-18, and none of the "M2-related" stimuli induced IL-10 expression. Exposures to TGF-β and dexamethasone were characterized by enhanced levels of TGF-β2, whereas stimulation with dexamethasone, but not TGF-β2, triggered CD163 upregulation and induction of CCL23. Macrophages stimulated with IL-10, TGF-β, or dexamethasone presented decreased abilities to release proinflammatory cytokines in response to TLR2 or TLR3 ligands: IL-10 showed a powerful inhibitory activity for CXCL8 and TNF release, whereas TGF-β provided a strong inhibitory signal for IL-6 production. While our results emphasized porcine macrophage plasticity broadly comparable to human and murine macrophages, they also highlighted some peculiarities in this species.
Collapse
|
7
|
Huang J, Puente H, Wareing NE, Wu M, Mayes MD, Karmouty-Quintana H, Assassi S, Mills TW. STAT6 suppression prevents bleomycin-induced dermal fibrosis. FASEB J 2023; 37:e22761. [PMID: 36629780 PMCID: PMC10226134 DOI: 10.1096/fj.202200994r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023]
Abstract
Fibrosis of the skin and internal organs is a hallmark of systemic sclerosis (SSc). Although the pathogenesis of SSc is poorly understood, increasing evidence suggests that interleukins (IL)-4 and - 13 contribute to the pathogenesis of skin fibrosis by promoting collagen production and myofibroblast differentiation. Signal transducers and activators of transcription 6 (STAT6) is one of the most important downstream transcription factors activated by both IL-4 and IL-13. However, it is not completely understood whether STAT6 plays a role during the pathogenesis of skin fibrosis in SSc. In this study, we observed increased STAT6 phosphorylation in fibrotic skin samples collected from SSc patients as well as bleomycin-injected murine mice. Knockout of Stat6 in mice significantly (1) suppressed the expression of fibrotic cytokines including Il13, Il17, Il22, Ccl2, and the alternatively activated macrophage marker Cd206; (2) reduced the production of collagen and fibronectin, and (3) attenuated late-stage skin fibrosis and inflammation induced by bleomycin. Consistently, mice treated with STAT6 inhibitor AS1517499 also attenuated skin fibrosis on day 28. In addition, a co-culture experiment demonstrated that skin epithelial cells with STAT6 knockdown had reduced cytokine expression in response to IL-4/IL-13, and subsequently attenuated fibrotic protein expression in skin fibroblasts. On the other side, STAT6 depletion in skin fibroblasts attenuated IL-4/IL-13-induced cytokine and fibrotic marker expression, and reduced CXCL2 expression in co-cultured keratinocytes. In summary, our study highlighted an important yet not fully understood role of STAT6 in skin fibrosis by driving innate inflammation and differentiation of alternatively activated macrophages in response to injury.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of Geriatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hydia Puente
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nancy E. Wareing
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Minghua Wu
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Maureen D. Mayes
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shervin Assassi
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Tingting W. Mills
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
8
|
Esnault S, Jarjour NN. Development of Adaptive Immunity and Its Role in Lung Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:287-351. [PMID: 37464127 DOI: 10.1007/978-3-031-32259-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Asthma is characterized by airflow limitations resulting from bronchial closure, which can be either reversible or fixed due to changes in airway tissue composition and structure, also known as remodeling. Airway remodeling is defined as increased presence of mucins-producing epithelial cells, increased thickness of airway smooth muscle cells, angiogenesis, increased number and activation state of fibroblasts, and extracellular matrix (ECM) deposition. Airway inflammation is believed to be the main cause of the development of airway remodeling in asthma. In this chapter, we will review the development of the adaptive immune response and the impact of its mediators and cells on the elements defining airway remodeling in asthma.
Collapse
|
9
|
Malkova A, Zinchenko Y, Starshinova A, Kudlay D, Kudryavtsev I, Glushkova A, Yablonskiy P, Shoenfeld Y. Sarcoidosis: Progression to the chronic stage and pathogenic based treatment (narrative review). Front Med (Lausanne) 2022; 9:963435. [PMID: 36148463 PMCID: PMC9486475 DOI: 10.3389/fmed.2022.963435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Many factors confirm the autoimmune nature of sarcoidosis and help in determining the strategy of patient management and treatment initiation. However, the causes and the mechanisms of disease progression that result in fibrosis and insufficiency of the affected organ remain unclear. This narrative review aims to analyse the mechanisms and biomarkers of sarcoidosis progression, as well as the pathogenetic basis of sarcoidosis therapy. The following characteristics of progressive chronic sarcoidosis were revealed: the disease develops in patients with a genetic predisposition (SNP in genes GREM1, CARD15, TGF-β3, HLA-DQB1*06:02, HLA-DRB1*07/14/15), which contributes either the decreased ability of antigen elimination or autoimmune inflammation. Various prognostic biomarkers of disease progression (decreased levels of neopterin, elastase, sIL-2R, chitotriosidase, glycoprotein Krebs von den Lungen, Th17 cell count, reduced quantity of TNF-α in peripheral blood or bronchoalveolar lavage fluid) have been described and can potentially be used to determine the group of patients who will benefit from the use of corticosteroids/cytostatic drugs/biologics.
Collapse
Affiliation(s)
- Anna Malkova
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, Saint Petersburg, Russia
| | - Yulia Zinchenko
- Phthisiopulmonology Department, St. Petersburg Research Institute of Phthisiopulmonology, Saint Petersburg, Russia
| | - Anna Starshinova
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- *Correspondence: Anna Starshinova ;
| | - Dmitriy Kudlay
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Personalized Medicine and Molecular Immunology, NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Igor Kudryavtsev
- Department of Immunology, Institution of Experimental Medicine, Saint Petersburg, Russia
| | - Anzhela Glushkova
- V.M. Bekhterev National Research Medical Center for Psychiatry and Neurology, Saint Petersburg, Russia
| | - Piotr Yablonskiy
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, Saint Petersburg, Russia
- Phthisiopulmonology Department, St. Petersburg Research Institute of Phthisiopulmonology, Saint Petersburg, Russia
| | - Yehuda Shoenfeld
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, Saint Petersburg, Russia
- Sackler Faculty of Medicine, Ariel University, Ariel, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
10
|
Clottu AS, Humbel M, Fluder N, Karampetsou MP, Comte D. Innate Lymphoid Cells in Autoimmune Diseases. Front Immunol 2022; 12:789788. [PMID: 35069567 PMCID: PMC8777080 DOI: 10.3389/fimmu.2021.789788] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022] Open
Abstract
Innate lymphoid cells (ILC) are a heterogeneous group of immune cells characterized by lymphoid morphology and cytokine profile similar to T cells but which do not express clonally distributed diverse antigen receptors. These particular cells express transcription factors and cytokines reflecting their similarities to T helper (Th)1, Th2, and Th17 cells and are therefore referred to as ILC1, ILC2, and ILC3. Other members of the ILC subsets include lymphoid tissue inducer (LTi) and regulatory ILC (ILCreg). Natural killer (NK) cells share a common progenitor with ILC and also exhibit a lymphoid phenotype without antigen specificity. ILC are found in low numbers in peripheral blood but are much more abundant at barrier sites such as the skin, liver, airways, lymph nodes, and the gastrointestinal tract. They play an important role in innate immunity due to their capacity to respond rapidly to pathogens through the production of cytokines. Recent evidence has shown that ILC also play a key role in autoimmunity, as alterations in their number or function have been identified in systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Here, we review recent advances in the understanding of the role of ILC in the pathogenesis of autoimmune diseases, with particular emphasis on their role as a potential diagnostic biomarker and as therapeutic targets.
Collapse
Affiliation(s)
- Aurelie S Clottu
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Morgane Humbel
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Natalia Fluder
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Denis Comte
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Jiménez-Uribe AP, Gómez-Sierra T, Aparicio-Trejo OE, Orozco-Ibarra M, Pedraza-Chaverri J. Backstage players of fibrosis: NOX4, mTOR, HDAC, and S1P; companions of TGF-β. Cell Signal 2021; 87:110123. [PMID: 34438016 DOI: 10.1016/j.cellsig.2021.110123] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022]
Abstract
The fibrotic process could be easily defined as a pathological excess of extracellular matrix deposition, leading to disruption of tissue architecture and eventually loss of function; however, this process involves a complex network of several signal transduction pathways. Virtually almost all organs could be affected by fibrosis, the most affected are the liver, lung, skin, kidney, heart, and eyes; in all of them, the transforming growth factor-beta (TGF-β) has a central role. The canonical and non-canonical signal pathways of TGF-β impact the fibrotic process at the cellular and molecular levels, inducing the epithelial-mesenchymal transition (EMT) and the induction of profibrotic gene expression with the consequent increase in proteins such as alpha-smooth actin (α-SMA), fibronectin, collagen, and other extracellular matrix proteins. Recently, it has been reported that some molecules that have not been typically associated with the fibrotic process, such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4), mammalian target of rapamycin (mTOR), histone deacetylases (HDAC), and sphingosine-1 phosphate (S1P); are critical in its development. In this review, we describe and discuss the role of these new players of fibrosis and the convergence with TGF-β signaling pathways, unveiling new insights into the panorama of fibrosis that could be useful for future therapeutic targets.
Collapse
Affiliation(s)
| | - Tania Gómez-Sierra
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico
| | - Marisol Orozco-Ibarra
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, La Fama, Alcaldía Tlalpan, CP 14269 Ciudad de México, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico.
| |
Collapse
|
12
|
Chang CJ, Lin CF, Lee CH, Chuang HC, Shih FC, Wan SW, Tai C, Chen CL. Overcoming interferon (IFN)-γ resistance ameliorates transforming growth factor (TGF)-β-mediated lung fibroblast-to-myofibroblast transition and bleomycin-induced pulmonary fibrosis. Biochem Pharmacol 2020; 183:114356. [PMID: 33285108 DOI: 10.1016/j.bcp.2020.114356] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/01/2020] [Indexed: 01/27/2023]
Abstract
Abnormal activation of transforming growth factor (TGF)-β is a common cause of fibroblast activation and fibrosis. In bleomycin (BLM)-induced lung fibrosis, the marked expression of phospho-Src homology-2 domain-containing phosphatase (SHP) 2, phospho-signal transducer and activator of transcription (STAT) 3, and suppressor of cytokine signaling (SOCS) 3 was highly associated with pulmonary parenchymal lesions and collagen deposition. Human pulmonary fibroblasts differentiated into myofibroblasts exhibited activation of SHP2, SOCS3, protein inhibitor of activated STAT1, STAT3, interleukin (IL)-6, and IL-10. The significant retardation of interferon (IFN)-γ signaling in myofibroblasts was revealed by the decreased expression of phospho-STAT1, IFN-γ-associated genes, and IFN-γ-inducible protein (IP) 10. Microarray analysis showed an induction of fibrotic genes in TGF-β1-differentiated myofibroblasts, whereas IFN-γ-regulated anti-fibrotic genes were suppressed. Interestingly, BIBF 1120 treatment effectively inhibited both STAT3 and SHP2 phosphorylation in TGF-β1-differentiated myofibroblasts and BLM fibrotic lung tissues, which was accompanied by suppression of fibroblast-myofibroblast transition. Moreover, the combined treatment of BIBF 1120 plus IFN-γ or SHP2 inhibitor PHPS1 plus IFN-γ markedly reduced TGF-β1-induced α-smooth muscle actin and further ameliorated BLM lung fibrosis. Accordingly, myofibroblasts were hyporesponsiveness to IFN-γ, while blockade of SHP2 contributed to the anti-fibrotic efficacy of IFN-γ.
Collapse
Affiliation(s)
- Chun-Jung Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hsin Lee
- Divisions of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Fu-Chia Shih
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shu-Wen Wan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chi Tai
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
13
|
Pereira ABM, de Oliveira JR, Teixeira MM, da Silva PR, Rodrigues Junior V, Rogerio ADP. IL-27 regulates IL-4-induced chemokine production in human bronchial epithelial cells. Immunobiology 2020; 226:152029. [PMID: 33278712 DOI: 10.1016/j.imbio.2020.152029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 11/25/2022]
Abstract
IL-4 coordinates the Th2-type immune response in inflammatory diseases such as asthma. IL-27 can inhibit the development of both Th2 and Th1 cells. However, IL-27 can also drive naïve T cells to differentiate toward the Th1 phenotype. In this study, we investigated the effects of IL-27 on the activation of IL-4-induced human bronchial epithelial cells (BEAS-2B). Compared to controls, both IL-4 and IL-27 (25-100 ng/mL) increased the concentrations of CCL2 and IL-8 in a dose-dependent manner. However, compared to cells stimulated individually with IL-4 or IL-27, treatment with a combination of both cytokines reduced CCL2 and IL-8 concentrations in a dose- and time-dependent manner. IL-4 increased the activation of p38 MAPK, ERK1/2, STAT6 and NF-κB, while IL-27 increased the activation of p38 MAPK and ERK1/2 but not STAT6 and NF-κB. Compared to IL-4-stimulated cells, cells treated with both IL-27 and IL-4 displayed decreased activation of STAT6 and NF-κB but not ERK1/2 and p38 MAPK. Taken together, these results suggest that IL-27 plays a pro-inflammatory role when administered alone but downregulates bronchial epithelial cell activation when combined with IL-4. Therefore, IL-27 may be an interesting target for the treatment of Th2 inflammatory diseases.
Collapse
Affiliation(s)
- Aline Beatriz Mahler Pereira
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Jhony Robison de Oliveira
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Maxelle Martins Teixeira
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Paulo Roberto da Silva
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Virmondes Rodrigues Junior
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Alexandre de Paula Rogerio
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG 38025-350, Brazil.
| |
Collapse
|
14
|
Liu Y, Huo SG, Xu L, Che YY, Jiang SY, Zhu L, Zhao M, Teng YC. MiR-135b Alleviates Airway Inflammation in Asthmatic Children and Experimental Mice with Asthma via Regulating CXCL12. Immunol Invest 2020; 51:496-510. [PMID: 33203292 DOI: 10.1080/08820139.2020.1841221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To clarify the possible influence of miR-135b on CXCL12 and airway inflammation in children and experimental mice with asthma. METHODS The expressions of miR-135b and CXCL12 were detected using quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) in the serum of asthmatic children. Besides, the experimental asthmatic mice were established by aerosol inhalation of ovalbumin (OVA) followed by the treatment with agomiR-135b and antagomir-135b. Pathological changes of lung tissues were observed via HE staining and PAS staining. Besides, the airway hyperresponsiveness of mice was elevated and bronchoalveolar lavage fluid (BALF) was isolated for cell categorization and counting. The inflammatory cytokines in BALF were determined by enzyme-linked immunosorbent assay (ELISA), and the infiltration of Th17 cells in lung tissues was measured using flow cytometry. RESULTS MiR-135b was downregulated and CXCL12 was upregulated in asthmatic children and mice. Overexpression of miR-135b may down-regulate CXCL12 expression in the lung of OVA mice, resulting in significant decreases in inflammatory infiltration, hyperplasia of goblet cell, airway hyperresponsiveness, cell quantity, as well as the quantity of eosinophilic granulocytes, neutrophils and lymphocytes in BALF. Also, the levels of inflammatory cytokines (IL-4, IL-5, IL-13 and IL-17) and the ratio of Th17 cells and IL-17 levels in lung tissues were decreased. However, miR-135b downregulation reversed these changes in OVA mice. CONCLUSION MiR-135b may inhibit immune responses of Th17 cells to alleviate airway inflammation and hyperresponsiveness in asthma possibly by targeting CXCL12, showing the potential value in asthma treatment.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pediatrics, Caoxian people's Hospital, Heze City, Shandong Province, China
| | - Shi-Guang Huo
- Department of Pediatric, Liaocheng Second People's Hospital, Linqing, China
| | - Ling Xu
- Shandong Rizhao Port Hospital
| | - Yuan-Yuan Che
- Department of Pediatrics, Caoxian people's Hospital, Heze City, Shandong Province, China
| | | | - Li Zhu
- Department of Pediatrics, Caoxian people's Hospital, Heze City, Shandong Province, China
| | - Min Zhao
- Department of Pediatrics, Shanxian Central Hospital, Heze City, Shandong Province, China
| | - Yue-Chun Teng
- Department of Pediatrics, Liaocheng People's Hospital
| |
Collapse
|
15
|
Kariyawasam HH. Chronic rhinosinusitis with nasal polyps: mechanistic insights from targeting IL-4 and IL-13 via IL-4Rα inhibition with dupilumab. Expert Rev Clin Immunol 2020; 16:1115-1125. [PMID: 33148074 DOI: 10.1080/1744666x.2021.1847083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a complex immunological upper airway disease . CRSwNP, particularly in Caucasians, often has a more distinct T2 inflammatory endotype. IL-4 and IL-13 are key upstream cytokines that help establish and sustain T2 inflammation as well as strongly influencing tissue remodeling. They have a shared signaling receptor IL-4Rα. An attractive and novel therapeutic approach is by way of blocking IL-4 and IL-13 simultaneously via inhibiting IL-4Rα. Dupilumab is a murine derived fully human monoclonal inhibitory antibody directed against IL-4Rα which thereby prevents IL-4/IL-13 cell signaling. Following successful Phase 3 studies dupilumab has become the first licensed biologic for treating CRSwNP. Areas covered: This review covers the essential immunology of CRSwNP in the context of IL-4 and IL-13 signaling via IL-4Rα. The potential mechanisms by which therapeutic improvements occur with dupilumab are evaluated. IL-4, IL-13, dupilumab and rhinosinusitis were used as the search terms in PubMed and Google Scholar through to August 2020. Expert commentary: Dupilumab has the potential to transform the care for patients with CRSwNP. It is essential that further studies are conducted promptly to identify disease-specific biomarkers and clinical traits to guide clinicians on best patient selection thereby ensuring optimal dupilumab outcomes.
Collapse
Affiliation(s)
- Harsha H Kariyawasam
- Rhinology Section, Specialist Allergy and Clinical Immunology, Royal National ENT Hospital, London University College London Hospital NHS Foundation Trust, University College London , London, UK
| |
Collapse
|
16
|
Athari SS. Targeting cell signaling in allergic asthma. Signal Transduct Target Ther 2019; 4:45. [PMID: 31637021 PMCID: PMC6799822 DOI: 10.1038/s41392-019-0079-0] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023] Open
Abstract
Asthma is chronic inflammation of the airways characterized by airway hyper-responsiveness, wheezing, cough, and dyspnea. Asthma affects >350 million people worldwide. The Th2 immune response is a major contributor to the pathophysiology of asthma. Targeted therapy modulating cell signaling pathways can be a powerful strategy to design new drugs to treat asthma. The potential molecular pathways that can be targeted include IL-4-IL-13-JAK-STAT-MAP kinases, adiponectin-iNOS-NF-κB, PGD2-CRTH2, IFNs-RIG, Wnt/β-catenin-FAM13A, FOXC1-miR-PI3K/AKT, JNK-Gal-7, Nrf2-ROS, Foxp3-RORγt, CysLTR, AMP, Fas-FasL, PTHrP/PPARγ, PAI-1, FcɛRI-LAT-SLP-76, Tim-3-Gal-9, TLRs-MyD88, PAR2, and Keap1/Nrf2/ARE. Therapeutic drugs can be designed to target one or more of these pathways to treat asthma.
Collapse
Affiliation(s)
- Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
17
|
Ethanol Induction of Innate Immune Signals Across BV2 Microglia and SH-SY5Y Neuroblastoma Involves Induction of IL-4 and IL-13. Brain Sci 2019; 9:brainsci9090228. [PMID: 31510019 PMCID: PMC6770440 DOI: 10.3390/brainsci9090228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/03/2019] [Accepted: 09/08/2019] [Indexed: 02/07/2023] Open
Abstract
Innate immune signaling molecules, such as Toll-like receptors (TLRs), cytokines and transcription factor NFκB, are increased in post-mortem human alcoholic brain and may play roles in alcohol dependence and neurodegeneration. Innate immune signaling involves microglia -neuronal signaling which while poorly understood, may impact learning and memory. To investigate mechanisms of ethanol induction of innate immune signaling within and between brain cells, we studied immortalized BV2 microglia and SH-SY5Y human neuroblastoma to model microglial and neuronal signaling. Cells were treated alone or in co-culture using a Transwell system, which allows transfer of soluble mediators. We determined immune signaling mRNA using real-time polymerase chain reaction. Ethanol induced innate immune genes in both BV2 and SH-SY5Y cultured alone, with co-culture altering gene expression at baseline and following ethanol exposure. Co-culture blunted ethanol-induced high mobility group box protein 1 (HMGB1)-TLR responses, corresponding with reduced ethanol induction of several proinflammatory NFκB target genes. In contrast, co-culture resulted in ethanol upregulation of cytokines IL-4 and IL-13 in BV2 and corresponding receptors, that is, IL-4 and IL-13 receptors, in SH-SY5Y, suggesting induction of a novel signaling pathway. Co-culture reduction in HMGB1-TLR levels occurs in parallel with reduced proinflammatory gene induction and increased IL-4 and IL-13 ligands and receptors. Findings from these immortalized and tumor-derived cell lines could provide insight into microglial-neuronal interactions via release of soluble mediators in vivo.
Collapse
|
18
|
Ladjemi MZ, Gras D, Dupasquier S, Detry B, Lecocq M, Garulli C, Fregimilicka C, Bouzin C, Gohy S, Chanez P, Pilette C. Bronchial Epithelial IgA Secretion Is Impaired in Asthma. Role of IL-4/IL-13. Am J Respir Crit Care Med 2019; 197:1396-1409. [PMID: 29652177 DOI: 10.1164/rccm.201703-0561oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
RATIONALE Asthma is associated with increased lung IgE production, but whether the secretory IgA system is affected in this disease remains unknown. OBJECTIVES We explored mucosal IgA transport in human asthma and its potential regulation by T-helper cell type 2 inflammation. METHODS Bronchial biopsies from asthma and control subjects were assayed for bronchial epithelial polymeric immunoglobulin receptor (pIgR) expression and correlated to T-helper cell type 2 biomarkers. Bronchial epithelium reconstituted in vitro from these subjects, on culture in air-liquid interface, was assayed for pIgR expression and regulation by IL-4/IL-13. MEASUREMENTS AND MAIN RESULTS Downregulation of pIgR protein was observed in the bronchial epithelium from patients with asthma (P = 0.0002 vs. control subjects). This epithelial defect was not observed ex vivo in the cultured epithelium from patients with asthma. Exogenous IL-13 and IL-4 could inhibit pIgR expression and IgA transcytosis. Mechanistic experiments showed that autocrine transforming growth factor-β mediates the IL-4/IL-13 effect on the pIgR, with a partial contribution of upregulated transforming growth factor-α/epidermal growth factor receptor. CONCLUSIONS This study shows impaired bronchial epithelial pIgR expression in asthma, presumably affecting secretory IgA-mediated frontline defense as a result of type 2 immune activation of the transforming growth factor pathway.
Collapse
Affiliation(s)
- Maha Zohra Ladjemi
- 1 Pôle de Pneumologie, ORL, et Dermatologie and.,2 Institute for Walloon Excellence in Lifesciences and Biotechnology, Brussels, Belgium
| | - Delphine Gras
- 3 INSERM U 1067, CNRS UMR 7333, Université Aix-Marseille, Marseille, France
| | | | - Bruno Detry
- 1 Pôle de Pneumologie, ORL, et Dermatologie and.,2 Institute for Walloon Excellence in Lifesciences and Biotechnology, Brussels, Belgium
| | - Marylène Lecocq
- 1 Pôle de Pneumologie, ORL, et Dermatologie and.,4 Service de Pneumologie, Cliniques universitaires Saint-Luc, Brussels, Belgium; and
| | - Céline Garulli
- 3 INSERM U 1067, CNRS UMR 7333, Université Aix-Marseille, Marseille, France
| | - Chantal Fregimilicka
- 5 Imaging Platform, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Caroline Bouzin
- 5 Imaging Platform, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Sophie Gohy
- 1 Pôle de Pneumologie, ORL, et Dermatologie and.,4 Service de Pneumologie, Cliniques universitaires Saint-Luc, Brussels, Belgium; and
| | - Pascal Chanez
- 3 INSERM U 1067, CNRS UMR 7333, Université Aix-Marseille, Marseille, France.,6 Clinique des bronches, de l'allergie et du sommeil, Hôpital Nord, Assistance Publique Hôpitaux de Marseille (APHM), Marseille, France
| | - Charles Pilette
- 1 Pôle de Pneumologie, ORL, et Dermatologie and.,2 Institute for Walloon Excellence in Lifesciences and Biotechnology, Brussels, Belgium.,4 Service de Pneumologie, Cliniques universitaires Saint-Luc, Brussels, Belgium; and
| |
Collapse
|
19
|
Berman R, Downey GP, Dakhama A, Day BJ, Chu HW. Afghanistan Particulate Matter Enhances Pro-Inflammatory Responses in IL-13-Exposed Human Airway Epithelium via TLR2 Signaling. Toxicol Sci 2018; 166:345-353. [PMID: 30169750 PMCID: PMC11502954 DOI: 10.1093/toxsci/kfy217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Since the start of Afghanistan combat operations in 2001, there has been an increase in complaints of respiratory illnesses in deployed soldiers with no previous history of lung disorders. It is postulated that deployment-related respiratory illnesses are the result of inhalation of desert particulate matter (PM) potentially acting in combination with exposure to other pro-inflammatory compounds. Why some, but not all, soldiers develop respiratory diseases remains unclear. Our goal was to investigate if human airway epithelial cells primed with IL-13, a type 2 inflammatory cytokine, demonstrate stronger pro-inflammatory responses to Afghanistan desert PM (APM). Primary human brushed bronchial epithelial cells from non-deployed, healthy subjects were exposed to APM, both with and without IL-13 pretreatment. APM exposure in conjunction with IL-13 resulted in significantly increased expression of IL-8, a pro-inflammatory cytokine involved in neutrophil recruitment and activation. Furthermore, expression of TLR2 mRNA was increased after combined IL-13 and APM exposure. siRNA-mediated TLR2 knockdown dampened IL-8 production after exposure to APM with IL-13. APM with IL-13 treatment increased IRAK-1 (a downstream signaling molecule of TLR2 signaling) activation, while IRAK-1 knockdown effectively eliminated the IL-8 response to APM and IL-13. Our data suggest that APM exposure may promote neutrophilic inflammation in airways with a type 2 cytokine milieu.
Collapse
Affiliation(s)
- Reena Berman
- Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Gregory P Downey
- Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Azzeddine Dakhama
- Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Brian J Day
- Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, Colorado 80206
| |
Collapse
|
20
|
Michalik M, Wójcik-Pszczoła K, Paw M, Wnuk D, Koczurkiewicz P, Sanak M, Pękala E, Madeja Z. Fibroblast-to-myofibroblast transition in bronchial asthma. Cell Mol Life Sci 2018; 75:3943-3961. [PMID: 30101406 PMCID: PMC6182337 DOI: 10.1007/s00018-018-2899-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022]
Abstract
Bronchial asthma is a chronic inflammatory disease in which bronchial wall remodelling plays a significant role. This phenomenon is related to enhanced proliferation of airway smooth muscle cells, elevated extracellular matrix protein secretion and an increased number of myofibroblasts. Phenotypic fibroblast-to-myofibroblast transition represents one of the primary mechanisms by which myofibroblasts arise in fibrotic lung tissue. Fibroblast-to-myofibroblast transition requires a combination of several types of factors, the most important of which are divided into humoural and mechanical factors, as well as certain extracellular matrix proteins. Despite intensive research on the nature of this process, its underlying mechanisms during bronchial airway wall remodelling in asthma are not yet fully clarified. This review focuses on what is known about the nature of fibroblast-to-myofibroblast transition in asthma. We aim to consider possible mechanisms and conditions that may play an important role in fibroblast-to-myofibroblast transition but have not yet been discussed in this context. Recent studies have shown that some inherent and previously undescribed features of fibroblasts can also play a significant role in fibroblast-to-myofibroblast transition. Differences observed between asthmatic and non-asthmatic bronchial fibroblasts (e.g., response to transforming growth factor β, cell shape, elasticity, and protein expression profile) may have a crucial influence on this phenomenon. An accurate understanding and recognition of all factors affecting fibroblast-to-myofibroblast transition might provide an opportunity to discover efficient methods of counteracting this phenomenon.
Collapse
Affiliation(s)
- Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Katarzyna Wójcik-Pszczoła
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Milena Paw
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Paulina Koczurkiewicz
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Marek Sanak
- Division of Molecular Biology and Clinical Genetics, Department of Medicine, Jagiellonian University Medical College, Skawińska 8, 31-066, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
21
|
Rudolph AK, Walter T, Erkel G. The fungal metabolite cyclonerodiol inhibits IL-4/IL-13 induced Stat6-signaling through blocking the association of Stat6 with p38, ERK1/2 and p300. Int Immunopharmacol 2018; 65:392-401. [PMID: 30380514 DOI: 10.1016/j.intimp.2018.10.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/31/2022]
Abstract
The IL-4/IL-13/Stat6 pathway is the key driver of asthma pathophysiology. Therefore the development of inhibitors that specifically modulate IL-13/IL-4 or the downstream signaling molecules like Stat6 may be useful as a therapeutic strategy for the treatment of asthma and multiple allergic diseases. We have previously identified the fungal 2,6-cyclofarnesane cyclonerodiol as an inhibitor of IL-4 induced Stat6-dependent signaling in the alveolar epithelial cell line A549 using a transcriptional reporter. In this study we investigated the underlying mode of action of cyclonerodiol on the IL-4/IL-13/Stat6 pathway. Cyclonerodiol failed to interfere with activation, nuclear transport or binding of Stat6 to the corresponding consensus sequence on the DNA. Our results showed that cyclonerodiol blocked serine phosphorylation of Stat6 by affecting its association with p38 and Erk1/2. Cyclonerodiol also prevented the recruitment of the transcriptional coactivator p300 and Stat6 acetylation. These findings suggest that cyclonerodiol affects IL-4/IL-13 induced expression of asthma related marker genes by blocking transcriptional activation.
Collapse
Affiliation(s)
- Anna-Kristina Rudolph
- Department of Molecular Biotechnology and Systems Biology, University of Kaiserslautern, Erwin-Schrödinger-Str. 70, D-67663 Kaiserslautern, Germany
| | - Thorsten Walter
- Department of Molecular Biotechnology and Systems Biology, University of Kaiserslautern, Erwin-Schrödinger-Str. 70, D-67663 Kaiserslautern, Germany
| | - Gerhard Erkel
- Department of Molecular Biotechnology and Systems Biology, University of Kaiserslautern, Erwin-Schrödinger-Str. 70, D-67663 Kaiserslautern, Germany.
| |
Collapse
|
22
|
Mattyasovszky SG, Mausbach S, Ritz U, Langendorf E, Wollstädter J, Baranowski A, Drees P, Rommens PM, Hofmann A. Influence of the anti-inflammatory cytokine interleukin-4 on human joint capsule myofibroblasts. J Orthop Res 2017; 35:1290-1298. [PMID: 27504740 DOI: 10.1002/jor.23386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 08/05/2016] [Indexed: 02/04/2023]
Abstract
Post-traumatic joint contracture was reported to be associated with elevated numbers of contractile myofibroblasts (MFs) in the healing capsule. During the physiological healing process, the number of MFs declines; however, in fibroconnective disorders, MFs persist. The manifold interaction of the cytokines regulating the appearance and persistence of MFs in the pathogenesis of joint contracture remains to be elucidated. The objective of our current study was to analyze the impact of the anti-inflammatory cytokine interleukin (IL)-4 on functional behavior of MFs. Cells were isolated from human joint capsule specimens and challenged with three different concentrations of IL-4 with or without its neutralizing antibody. MF viability, contractile properties, and the gene expression of both alpha-smooth muscle actin (α-SMA) and collagen type I were examined. Immunofluorescence staining revealed the presence of IL-4 receptor (R)-alpha (α) on the membrane of cultured MFs. The cytokine IL-4 promoted MF viability and enhanced MF modulated contraction of collagen gels. Moreover, IL-4 intervened in gene expression by up-regulation of α-SMA and collagen type I mRNA. These effects could be specifically lowered by the neutralizing IL-4 antibody. On the basis of our findings we conclude that the anti-inflammatory cytokine IL-4 specifically regulates viability and the contractile properties of MFs via up-regulating the gene expression of α-SMA and collagen type I. IL-4 may be a helpful target in developing anti-fibrotic therapeutics for post-traumatic joint contracture in human. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1290-1298, 2017.
Collapse
Affiliation(s)
- Stefan G Mattyasovszky
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Stefan Mausbach
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Eva Langendorf
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Jochen Wollstädter
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Andreas Baranowski
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Phillipp Drees
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Pol Maria Rommens
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Alexander Hofmann
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| |
Collapse
|
23
|
Active transforming growth factor-β2 in the aqueous humor of posterior polymorphous corneal dystrophy patients. PLoS One 2017; 12:e0175509. [PMID: 28414732 PMCID: PMC5393593 DOI: 10.1371/journal.pone.0175509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/27/2017] [Indexed: 12/02/2022] Open
Abstract
Purpose Posterior polymorphous corneal dystrophy (PPCD) is characterized by abnormal proliferation of corneal endothelial cells. It was shown that TGF-β2 present in aqueous humor (AH) could help maintaining the corneal endothelium in a G1-phase-arrest state. We wanted to determine whether the levels of this protein are changed in AH of PPCD patients. Methods We determined the concentrations of active TGF-β2 in the AH of 29 PPCD patients (42 samples) and 40 cadaver controls (44 samples) by ELISA. For data analysis the PPCD patients were divided based on either the molecular genetic cause of their disease as PPCD1 (37 samples), PPCD3 (1 sample) and PPCDx (not linked to a known PPCD loci, 4 samples) or on the presence (17 samples) or absence (25 samples) of secondary glaucoma or on whether they had undergone penetrating keratoplasty (PK, 32 samples) or repeated PK (rePK, 7 samples). Results The level of active TGF-β2 in the AH of all PPCD patients (mean ± SD; 386.98 ± 114.88 pg/ml) in comparison to the control group (260.95 ± 112.43 pg/ml) was significantly higher (P = 0.0001). Compared to the control group, a significantly higher level of active TGF-β2 was found in the PPCD1 (P = 0.0005) and PPCDx (P = 0.0022) groups. Among patients the levels of active TGF-β2 were not significantly affected by gender, age, secondary glaucoma or by the progression of dystrophy when one or repeated PK were performed. Conclusion The levels of active TGF-β2 in the AH of PPCD patients are significantly higher than control values, and thus the increased levels of TGF-β2 could be a consequence of the PPCD phenotype and can be considered as another feature characterizing this disease.
Collapse
|
24
|
Matsunaga K, Hirano T, Oka A, Ito K, Edakuni N. Persistently high exhaled nitric oxide and loss of lung function in controlled asthma. Allergol Int 2016; 65:266-71. [PMID: 26822895 DOI: 10.1016/j.alit.2015.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/04/2015] [Accepted: 12/20/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUNDS It remains unclear whether a persistently high exhaled nitric oxide fraction (FeNO) in patients with controlled asthma is associated with the progressive loss of lung function. METHODS This was a 3-year prospective study. We examined the changes in pre- and post-bronchodilator forced expiratory volume in 1 s (FEV1) and FeNO in 140 patients with controlled asthma. We initially determined the FeNO cut-off point for identifying patients with a rapid decline in FEV1 (>40 mL/yr). Next, a total of 122 patients who maintained high or non-high FeNO were selected, and the associations between the FeNO trend and changes in FEV1 and bronchodilator response (BDR) were investigated. RESULTS A FeNO level >40.3 ppb yielded 43% sensitivity and 86% specificity for identifying patients with a rapid decline in FEV1. Patients with persistently high FeNO had higher rates of decline in FEV1 (42.7 ± 37.5 mL/yr) than patients with non-high FeNO (16.7 ± 31.5 mL/yr) (p < 0.0005). The changes in BDR from baseline to the end of the study, in patients who had high or non-high levels of FeNO were -0.8% and 0.1%, respectively (p < 0.01). In a multivariate analysis adjusted by age, body mass index, asthma control, blood eosinophil numbers, and FEV1% of predicted, a FeNO level of ≥40 ppb was independently associated with an accelerated decline in FEV1 (p < 0.05). CONCLUSIONS This study suggests that FeNO is potentially valuable tool for identifying individuals who are at risk of a progressive loss of lung function among patients with controlled asthma.
Collapse
|
25
|
May RD, Fung M. Strategies targeting the IL-4/IL-13 axes in disease. Cytokine 2016; 75:89-116. [PMID: 26255210 DOI: 10.1016/j.cyto.2015.05.018] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/15/2015] [Indexed: 02/07/2023]
Abstract
IL-4 and IL-13 are pleiotropic Th2 cytokines produced by a wide variety of different cell types and responsible for a broad range of biology and functions. Physiologically, Th2 cytokines are known to mediate host defense against parasites but they can also trigger disease if their activities are dysregulated. In this review we discuss the rationale for targeting the IL-4/IL-13 axes in asthma, atopic dermatitis, allergic rhinitis, COPD, cancer, inflammatory bowel disease, autoimmune disease and fibrotic disease as well as evaluating the associated clinical data derived from blocking IL-4, IL-13 or IL-4 and IL-13 together.
Collapse
|
26
|
Progression of Irreversible Airflow Limitation in Asthma: Correlation with Severe Exacerbations. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2015; 3:759-64.e1. [PMID: 26054551 DOI: 10.1016/j.jaip.2015.05.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/21/2015] [Accepted: 05/04/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Severe exacerbations of asthma are periods of excess functional and pathological changes in the airways that have been proposed to induce airway remodeling. OBJECTIVE The objective of this study was to explore whether severe exacerbations are correlated with the decline in post-bronchodilator forced expiratory volume in 1 second (FEV1) and loss of bronchodilator reversibility (BDR). METHODS We examined the changes in FEV1 and BDR in 140 nonsmoking patients with well-controlled asthma at baseline and correlated these changes with the frequency of severe asthma exacerbations. RESULTS A 3-year follow-up assessment was completed in 128 patients. A total of 28 (21.9%) patients experienced at least 1 severe exacerbation with a mean rate of 0.16 year(-1). The exacerbation rate was significantly correlated with an annual rate of decline in FEV1 (ρ = 0.49, P < .0001). Both patients with 1 exacerbation and those with 2 or more exacerbations had greater declines in FEV1 than patients with no exacerbations (no exacerbation, 13.6 mL/year; 1 exacerbation, 41.3 mL/year; 2 or more exacerbations, 58.3 mL/year; P < .01 and P < .0001, respectively). The changes in BDR from baseline to the end of the study in patients who did or did not experience an exacerbation were -1.2% and 0.1%, respectively (P < .0005). The changes in BDR were significantly correlated with the annual rates of change in FEV1 (r = 0.40, P < .0001). CONCLUSION The occurrence of severe exacerbations of asthma is correlated with the progression of irreversible airflow limitation over time. This suggests that asthma exacerbations could have the long-term adverse consequences of structural and functional changes in the airways.
Collapse
|
27
|
Collison AM, Sokulsky LA, Sherrill JD, Nightingale S, Hatchwell L, Talley NJ, Walker MM, Rothenberg ME, Mattes J. TNF-related apoptosis-inducing ligand (TRAIL) regulates midline-1, thymic stromal lymphopoietin, inflammation, and remodeling in experimental eosinophilic esophagitis. J Allergy Clin Immunol 2015; 136:971-82. [PMID: 25981737 DOI: 10.1016/j.jaci.2015.03.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 02/06/2015] [Accepted: 03/10/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is an inflammatory disorder of the esophagus defined by eosinophil infiltration and tissue remodeling with resulting symptoms of esophageal dysfunction. TNF-related apoptosis-inducing ligand (TRAIL) promotes inflammation through upregulation of the E3 ubiquitin-ligase midline-1 (MID1), which binds to and deactivates the catalytic subunit of protein phosphatase 2Ac, resulting in increased nuclear factor κB activation. OBJECTIVE We sought to elucidate the role of TRAIL in EoE. METHODS We used Aspergillus fumigatus to induce EoE in TRAIL-sufficient (wild-type) and TRAIL-deficient (TRAIL(-/-)) mice and targeted MID1 in the esophagus with small interfering RNA. We also treated mice with recombinant thymic stromal lymphopoietin (TSLP) and TRAIL. RESULTS TRAIL deficiency and MID1 silencing with small interfering RNA reduced esophageal eosinophil and mast cell numbers and protected against esophageal circumference enlargement, muscularis externa thickening, and collagen deposition. MID1 expression and nuclear factor κB activation were reduced in TRAIL(-/-) mice, whereas protein phosphatase 2Ac levels were increased compared with those seen in wild-type control mice. This was associated with reduced expression of CCL24, CCL11, CCL20, IL-5, IL-13, IL-25, TGFB, and TSLP. Treatment with TSLP reconstituted hallmark features of EoE in TRAIL(-/-) mice and recombinant TRAIL induced esophageal TSLP expression in vivo in the absence of allergen. Post hoc analysis of gene array data demonstrated significant upregulation of TRAIL and MID1 in a cohort of children with EoE compared with that seen in controls. CONCLUSION TRAIL regulates MID1 and TSLP, inflammation, fibrosis, smooth muscle hypertrophy, and expression of inflammatory effector chemokines and cytokines in experimental EoE.
Collapse
Affiliation(s)
- Adam M Collison
- Experimental and Translational Respiratory Medicine, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia; Priority Research Centre for Asthma and Respiratory Diseases, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.
| | - Leon A Sokulsky
- Experimental and Translational Respiratory Medicine, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia; Priority Research Centre for Asthma and Respiratory Diseases, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Joseph D Sherrill
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Division of Allergy and Immunology, University of Cincinnati, Cincinnati, Ohio
| | - Scott Nightingale
- Department of Gastroenterology, Newcastle Children's Hospital, Newcastle, Australia; Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
| | - Luke Hatchwell
- Experimental and Translational Respiratory Medicine, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia; Priority Research Centre for Asthma and Respiratory Diseases, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Nicholas J Talley
- Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
| | - Marjorie M Walker
- Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
| | - Marc E Rothenberg
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Division of Allergy and Immunology, University of Cincinnati, Cincinnati, Ohio
| | - Joerg Mattes
- Experimental and Translational Respiratory Medicine, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia; Priority Research Centre for Asthma and Respiratory Diseases, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia; Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia; Paediatric Respiratory and Sleep Medicine Department, Newcastle Children's Hospital, Kaleidoscope, Newcastle, Australia
| |
Collapse
|
28
|
AT-RvD1 modulates CCL-2 and CXCL-8 production and NF-κB, STAT-6, SOCS1, and SOCS3 expression on bronchial epithelial cells stimulated with IL-4. BIOMED RESEARCH INTERNATIONAL 2015; 2015:178369. [PMID: 26075216 PMCID: PMC4436447 DOI: 10.1155/2015/178369] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 01/22/2023]
Abstract
Bronchial epithelial cells represent the first line of defense against microorganisms and allergens in the airways and play an important role in chronic inflammatory processes such as asthma. In an experimental model, both RvD1 and AT-RvD1, lipid mediators of inflammation resolution, ameliorated some of the most important phenotypes of experimental asthma. Here, we extend these results and demonstrate the effect of AT-RvD1 on bronchial epithelial cells (BEAS-2B) stimulated with IL-4. AT-RvD1 (100 nM) decreased both CCL2 and CXCL-8 production, in part by decreasing STAT6 and NF-κB pathways. Furthermore, the effects of AT-RvD1 were ALX/FRP2 receptor dependent, as the antagonist of this receptor (BOC1) reversed the inhibition of these chemokines by AT-RvD1. In addition, AT-RvD1 decreased SOCS1 and increased SOCS3 expression, which play important roles in Th1 and Th17 modulation, respectively. In conclusion, AT-RvD1 demonstrated significant effects on the IL-4-induced activation of bronchial epithelial cells and consequently the potential to modulate neutrophilic and eosinophilic airway inflammation in asthma. Taken together, these findings identify AT-RvD1 as a potential proresolving therapeutic agent for allergic responses in the airways.
Collapse
|
29
|
Contreras-Ruiz L, Masli S. Immunomodulatory cross-talk between conjunctival goblet cells and dendritic cells. PLoS One 2015; 10:e0120284. [PMID: 25793763 PMCID: PMC4368435 DOI: 10.1371/journal.pone.0120284] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/27/2015] [Indexed: 12/03/2022] Open
Abstract
Goblet cells are secretory epithelial cells of mucosal tissues that confer protection from environmental agents or pathogens via expression and secretion of soluble mucins. Loss of these cells is associated with several chronic inflammatory disorders of the mucosa. Although demonstrated to transfer antigens from the luminal surface to stromal cells in the intestinal mucosa, it is not known if goblet cells contribute to the regulation of an immune response. In this study we report that similar to intestinal and respiratory mucosal epithelia, mouse ocular surface epithelia predominantly express the TGF-ß2 isoform. Specifically, we demonstrate the ability of goblet cells to express TGF-ß2 and increase it in response to Toll-Like Receptor 4 mediated stimulus in cultures. Goblet cells not only express TGF-ß2, but are also able to activate it in a thrombospondin-1 (TSP-1) dependent manner via their cell surface receptor CD36. Furthermore, goblet cell derived soluble factors that possibly include TGF-ß2, alter dendritic cell (DC) phenotype to a tolerogenic type by downregulating DC expression of MHC class II and co-stimulatory molecules CD80, CD86 and CD40. Thus our study demonstrates goblet cells as a cellular source of active TGF-ß2 in ocular mucosa and implicates their immunomodulatory function in maintaining mucosal immune homeostasis.
Collapse
Affiliation(s)
- Laura Contreras-Ruiz
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sharmila Masli
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
30
|
Ho YY, Lagares D, Tager AM, Kapoor M. Fibrosis--a lethal component of systemic sclerosis. Nat Rev Rheumatol 2014; 10:390-402. [PMID: 24752182 DOI: 10.1038/nrrheum.2014.53] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fibrosis is a pathological process characterized by excessive accumulation of connective tissue components in an organ or tissue. Fibrosis is produced by deregulated wound healing in response to chronic tissue injury or chronic inflammation, the hallmarks of rheumatic diseases. Progressive fibrosis, which distorts tissue architecture and results in progressive loss of organ function, is now recognized to be one of the major causes of morbidity and mortality in individuals with one of the most lethal rheumatic disease, systemic sclerosis (SSc). In this Review, we discuss the pathological role of fibrosis in SSc. We discuss the involvement of endothelium and pericyte activation, aberrant immune responses, endoplasmic reticulum stress and chronic tissue injury in the initiation of fibrosis in SSc. We then discuss fibroblast activation and myofibroblast differentiation that occurs in response to these initiating processes and is responsible for excessive accumulation of extracellular matrix. Finally, we discuss the chemical and mechanical signals that drive fibroblast activation and myofibroblast differentiation, which could serve as targets for new therapies for fibrosis in SSc.
Collapse
Affiliation(s)
- Yuen Yee Ho
- Shriners Hospital for Children, Division of Surgical Research, McGill University, 1529 Cedar Avenue, Montreal, QC H3G1A6, Canada
| | - David Lagares
- Pulmonary and Critical Care Unit and Centre for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Andrew M Tager
- Pulmonary and Critical Care Unit and Centre for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Mohit Kapoor
- The Toronto Western Research Institute, Division of Orthopaedics, Toronto Western Hospital, The University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
31
|
Cho MH, McDonald MLN, Zhou X, Mattheisen M, Castaldi PJ, Hersh CP, Demeo DL, Sylvia JS, Ziniti J, Laird NM, Lange C, Litonjua AA, Sparrow D, Casaburi R, Barr RG, Regan EA, Make BJ, Hokanson JE, Lutz S, Dudenkov TM, Farzadegan H, Hetmanski JB, Tal-Singer R, Lomas DA, Bakke P, Gulsvik A, Crapo JD, Silverman EK, Beaty TH. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. THE LANCET. RESPIRATORY MEDICINE 2014; 2:214-25. [PMID: 24621683 PMCID: PMC4176924 DOI: 10.1016/s2213-2600(14)70002-5] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND The genetic risk factors for susceptibility to chronic obstructive pulmonary disease (COPD) are still largely unknown. Additional genetic variants are likely to be identified by genome-wide association studies in larger cohorts or specific subgroups. We sought to identify risk loci for moderate to severe and severe COPD with data from several cohort studies. METHODS We combined genome-wide association analysis data from participants in the COPDGene study (non-Hispanic white and African-American ethnic origin) and the ECLIPSE, NETT/NAS, and Norway GenKOLS studies (self-described white ethnic origin). We did analyses comparing control individuals with individuals with moderate to severe COPD and with a subset of individuals with severe COPD. Single nucleotide polymorphisms yielding a p value of less than 5 × 10(-7) in the meta-analysis at loci not previously described were genotyped in individuals from the family-based ICGN study. We combined results in a joint meta-analysis (threshold for significance p<5 × 10(-8)). FINDINGS Analysis of 6633 individuals with moderate to severe COPD and 5704 control individuals confirmed association at three known loci: CHRNA3 (p=6·38 × 10(-14)), FAM13A (p=1·12 × 10(-14)), and HHIP (p=1·57 × 10(-12)). We also showed significant evidence of association at a novel locus near RIN3 (p=5·25 × 10(-9)). In the overall meta-analysis (ie, including data from 2859 ICGN participants), the association with RIN3 remained significant (p=5·4 × 10(-9)). 3497 individuals were included in our analysis of severe COPD. The effect estimates for the loci near HHIP and CHRNA3 were significantly stronger in severe disease than in moderate to severe disease (p<0·01). We also identified associations at two additional loci: MMP12 (overall joint meta-analysis p=2·6 × 10(-9)) and TGFB2 (overall joint meta-analysis p=8·3 × 10(-9)). INTERPRETATION We have confirmed associations with COPD at three known loci and identified three new genome-wide significant associations. Genetic variants other than in α-1 antitrypsin increase the risk of COPD. FUNDING US National Heart, Lung, and Blood Institute; the Alpha-1 Foundation; the COPD Foundation through contributions from AstraZeneca, Boehringer Ingelheim, Novartis, and Sepracor; GlaxoSmithKline; Centers for Medicare and Medicaid Services; Agency for Healthcare Research and Quality; and US Department of Veterans Affairs.
Collapse
Affiliation(s)
- Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Merry-Lynn N McDonald
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Manuel Mattheisen
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard School of Public Health, Boston, MA, USA
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dawn L Demeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jody S Sylvia
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - John Ziniti
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Nan M Laird
- Harvard School of Public Health, Boston, MA, USA
| | | | - Augusto A Litonjua
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - David Sparrow
- School of Public Health and School of Medicine, Boston University, Boston, MA, USA; Veterans Administration Boston Healthcare System, Boston, MA, USA
| | - Richard Casaburi
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, USA
| | - R Graham Barr
- Department of Medicine, College of Physicians and Surgeons, Mailman School of Public Health, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Elizabeth A Regan
- National Jewish Health, Denver, CO, USA; Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | | | - John E Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Sharon Lutz
- Department of Bioinformatics and Statistics, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Tanda Murray Dudenkov
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Homayoon Farzadegan
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jacqueline B Hetmanski
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ruth Tal-Singer
- GlaxoSmithKline Research and Development, King Of Prussia, PA, USA
| | | | - Per Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Amund Gulsvik
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | | | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Terri H Beaty
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
32
|
Matsunaga K, Akamatsu K, Miyatake A, Ichinose M. Natural history and risk factors of obstructive changes over a 10-year period in severe asthma. Respir Med 2012; 107:355-60. [PMID: 23228369 DOI: 10.1016/j.rmed.2012.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/02/2012] [Accepted: 11/22/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND The clinical features, physiology, and pathology of severe asthma are poorly understood. Recently, the forced vital capacity (FVC) has been shown to be reduced in severe asthma compared to mild asthma, possibly due to air trapping. However, the natural history and risk factors of obstructive change for such asthmatic patients have not been fully elucidated. METHODS We examined the data of a retrospective analysis of lung function changes over a 10-year period in 54 severe asthma patients. RESULTS The faster obstructive changes detected by FEV(1) (forced expiratory volume in one second) were accompanied by excessive loss of FVC (r = 0.85, p < 0.0001) and the reduction in FVC was 1.2 times larger than the FEV(1) change. Age, baseline FVC, exacerbation rate and oral corticosteroids use showed significantly negative correlations with the rate of annual change in FVC. CONCLUSIONS These data indicate that the decline in FVC is more evident than FEV(1) in severe asthma, suggesting that small airway susceptibility may be the cause of rapid disease progression. Aging, exacerbations of asthma, and use of systemic corticosteroids are related to excess FVC decline, particularly if FVC is still normal.
Collapse
Affiliation(s)
- Kazuto Matsunaga
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, 811-1 Kimiidera, Wakayama 641-8509, Japan.
| | | | | | | |
Collapse
|
33
|
|
34
|
Patterson KC, Hogarth K, Husain AN, Sperling AI, Niewold TB. The clinical and immunologic features of pulmonary fibrosis in sarcoidosis. Transl Res 2012; 160:321-31. [PMID: 22683422 PMCID: PMC3910531 DOI: 10.1016/j.trsl.2012.03.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 03/14/2012] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
Abstract
Sarcoidosis is a multisystem, granulomatous disease that most often affects the lungs. The clinical course is highly variable; many patients undergo spontaneous remission, but up to a third of patients progresses to a chronic disease course. The development of pulmonary fibrosis (PF) in a subset of patients with chronic disease has a negative impact on morbidity and mortality. While sarcoidosis-associated PF can be progressive, it is often referred to as "burnt out" disease, a designation reflecting inactive granulomatous inflammation. The immune mechanisms of sarcoidosis-associated PF are not well understood. It is not clear if fibrotic processes are active from the onset of sarcoidosis in predisposed individuals, or whether a profibrotic state develops as a response to ongoing inflammation. Transforming growth factor β (TGF-β) is an important profibrotic cytokine, and in sarcoidosis, distinct genotypes of TGF-β have been identified in those with PF. The overall cytokine profile in sarcoidosis-associated PF has not been well characterized, although a transition from a T helper 1 to a T helper 2 signature has been proposed. Macrophages have important regulatory interactions with fibroblasts, and the role of alveolar macrophages in sarcoidosis-associated PF is a compelling target for further study. Elucidating the natural history of sarcoidosis-associated PF will inform our understanding of the fundamental derangements, and will enhance prognostication and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Karen C Patterson
- Section of Pulmonary and Critical Care, University of Chicago, Chicago, Ill.
| | | | | | | | | |
Collapse
|
35
|
Tomicić S, Johansson G, Voor T, Björkstén B, Böttcher MF, Jenmalm MC. Breast milk cytokine and IgA composition differ in Estonian and Swedish mothers-relationship to microbial pressure and infant allergy. Pediatr Res 2010; 68:330-4. [PMID: 20581738 DOI: 10.1203/pdr.0b013e3181ee049d] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The immune system of the neonate is influenced by maternal immunity during pregnancy and lactation. An altered microbial exposure, possibly underlying the increase of allergic diseases in affluent societies, may affect maternal breast milk immune composition. Secretory IgA (SIgA), IL-4, IL-10, IL-13, IFN-[gamma], TGF-[beta]1, and TGF-[beta]2 were analyzed with ELISA in colostrum and 1-mo mature milk from mothers from Estonia (n = 39) and Sweden (n = 60), the two geographically adjacent countries with different living conditions and allergy incidence. The IL-10 and IFN-[gamma] levels were higher in colostrum from Estonian than Swedish mothers, whereas the opposite was true for TGF-[beta]2. In mature milk, higher SIgA and IFN-[gamma] levels but lower TGF-[beta]1 and TGF-[beta]2 levels were observed in Estonian than Swedish mothers. Interestingly, in Sweden but not Estonia, the TGF-[beta]1 and TGF-[beta]2 levels correlated inversely with environmental endotoxin concentrations, whereas positive correlations to microbial load were observed for IL-4, IL-10, and IFN-[gamma]. High colostral IL-13 levels were associated with allergic sensitization during infancy in Sweden. In conclusion, Estonian mothers have lower breast milk levels of TGF-[beta], particularly TGF-[beta]2, but higher levels of SIgA, IL-10, and IFN-[gamma] than Swedish mothers, possibly because of differences in microbial load.
Collapse
Affiliation(s)
- Sara Tomicić
- Division of Paediatrics, Linköping University, SE-581 85 Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
36
|
Xu Y, Luchsinger L, Lucey EC, Smith BD. The effect of class II transactivator mutations on bleomycin-induced lung inflammation and fibrosis. Am J Respir Cell Mol Biol 2010; 44:898-905. [PMID: 20705943 DOI: 10.1165/rcmb.2009-0416oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
IFN-γ expression increases during the inflammatory response after bleomycin injury in mice. IFN-γ deficiency attenuates lung inflammation and fibrosis. Because IFN-γ stimulates class II transactivator (CIITA) expression, which activates major histocompatibility class (MHC) II and represses collagen expression, it was hypothesized that CIITA mediates IFN-γ action after bleomycin injury. To test this hypothesis, two CIITA mouse lines, one carrying a mutation of the leucine-rich region of CIITA (CIITA C-/-) and one with a deletion extending into the GTP-binding domain (CIITA G-/-), were used. IFN-γ treatment of lung cells isolated from both strains of mice induced mutant CIITA expression, which did not activate MHC II transcription. Collagen expression was similar in both mutant mouse strains and comparable to C57BL/6 (wild-type) mice. When mice were exposed to intratracheal bleomycin, both strains of CIITA mutant mice retained body weight and altered inflammation at 14 days after bleomycin injury compared with bleomycin-treated wild-type mice. However, there was no difference in fibrosis as judged by histology, mRNA, and protein expression of lungs. Bronchoalveolar lavage cells from CIITA C-/- and C57BL/6 lungs were examined at 3, 7, and 14 days after bleomycin injury. CD4 mRNA expression in bronchoalveolar lavage cells was down-regulated, whereas IL-4 and IL-10 expression was up-regulated, in CIITA C-/- mice, indicating a diminished, skewed Th2 response. The expression of IFN-γ was the same in all mice tested. Combined, our data suggest that CIITA mutations altered the immune response without affecting fibrosis.
Collapse
Affiliation(s)
- Yong Xu
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
37
|
Laresgoiti-Servitje E, Gomez-Lopez N, Olson DM. An immunological insight into the origins of pre-eclampsia. Hum Reprod Update 2010; 16:510-24. [DOI: 10.1093/humupd/dmq007] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
38
|
Kavanagh H, Noone C, Cahill E, English K, Locht C, Mahon BP. Attenuated Bordetella pertussis vaccine strain BPZE1 modulates allergen-induced immunity and prevents allergic pulmonary pathology in a murine model. Clin Exp Allergy 2010; 40:933-41. [PMID: 20184606 DOI: 10.1111/j.1365-2222.2010.03459.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Virulent Bordetella pertussis, the causative agent of whooping cough, exacerbates allergic airway inflammation in a murine model of ovalbumin (OVA) sensitization. A live genetically attenuated B. pertussis mucosal vaccine, BPZE1, has been developed that evokes full protection against virulent challenge in mice but the effect of this attenuated strain on the development of allergic responses is unknown. OBJECTIVE To assess the influence of attenuated B. pertussis BPZE1 on OVA priming in a murine model of allergic airway inflammation. METHODS Mice were challenged with virulent or attenuated strains of B. pertussis, and sensitized to allergen (OVA) at the peak of bacterial carriage. Subsequently, airway pathology, local inflammation and OVA-specific immunity were examined. RESULTS In contrast to virulent B. pertussis, live BPZE1 did not exacerbate but reduced the airway pathology associated with allergen sensitization. BPZE1 immunization before allergen sensitization did not have an adjuvant effect on allergen specific IgE but resulted in a statistically significant decrease in airway inflammation in tissue and bronchoalveolar lavage fluid. BPZE1 significantly reduced the levels of OVA-driven IL-4, IL-5 and IL-13 but induced a significant increase in IFN-gamma in response to OVA re-stimulation. CONCLUSIONS These data demonstrate that, unlike virulent strains, the candidate attenuated B. pertussis vaccine BPZE1 does not exacerbate allergen-driven airway pathology. BPZE1 may represent an attractive T-helper type 1 promoting vaccine candidate for eradication of whooping cough that is unlikely to promote atopic disease.
Collapse
Affiliation(s)
- H Kavanagh
- Cellular Immunology Laboratory, Institute of Immunology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | | | | | | | | | | |
Collapse
|
39
|
Hardy CL, Lemasurier JS, Olsson F, Dang T, Yao J, Yang M, Plebanski M, Phillips DJ, Mollard R, Rolland JM, O'Hehir RE. Interleukin-13 regulates secretion of the tumor growth factor-{beta} superfamily cytokine activin A in allergic airway inflammation. Am J Respir Cell Mol Biol 2009; 42:667-75. [PMID: 19635933 DOI: 10.1165/rcmb.2008-0429oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Activin A is a member of the TGF-beta superfamily and plays a role in allergic inflammation and asthma pathogenesis. Recent evidence suggests that activin A regulates proinflammatory cytokine production and is regulated by inflammatory mediators. In a murine model of acute allergic airway inflammation, we observed previously that increased activin A concentrations in bronchoalveolar lavage (BAL) fluid coincide with Th2 cytokine production in lung-draining lymph nodes and pronounced mucus metaplasia in bronchial epithelium. We therefore hypothesized that IL-13, the key cytokine for mucus production, regulates activin A secretion into BAL fluid in experimental asthma. IL-13 increased BAL fluid activin A concentrations in naive mice and dose dependently induced activin A secretion from cultured human airway epithelium. A key role for IL-13 in the secretion of activin A into the BAL fluid during allergic airway inflammation was confirmed in IL-13-deficient mice. Eosinophils were not involved in this response because there was no difference in BAL fluid activin A concentrations between wild-type and eosinophil-deficient mice. Our data highlight an important role for IL-13 in the regulation of activin A intraepithelially and in BAL fluid in naive mice and during allergic airway inflammation. Given the immunomodulatory and fibrogenic effects of activin A, our findings suggest an important role for IL-13 regulation of activin A in asthma pathogenesis.
Collapse
Affiliation(s)
- Charles L Hardy
- Department of Immunology, Monash University, Commercial Road, Melbourne, VIC 3004 Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Curran DR, Cohn L. Advances in mucous cell metaplasia: a plug for mucus as a therapeutic focus in chronic airway disease. Am J Respir Cell Mol Biol 2009; 42:268-75. [PMID: 19520914 DOI: 10.1165/rcmb.2009-0151tr] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mucous cell metaplasia is induced in response to harmful insults and provides front-line protection to clear the airway of toxic substances and cellular debris. In chronic airway diseases mucous metaplasia persists and results in airway obstruction and contributes significantly to morbidity and mortality. Mucus hypersecretion involves increased expression of mucin genes, and increased mucin production and release. The past decade has seen significant advances in our understanding of the molecular mechanisms by which these events occur. Inflammation stimulates epidermal growth factor receptor activation and IL-13 to induce both Clara and ciliated cells to transition into goblet cells through the coordinated actions of FoxA2, TTF-1, SPDEF, and GABA(A)R. Ultimately, these steps lead to up-regulation of MUC5AC expression, and increased mucin in goblet cell granules that fuse to the plasma membrane through actions of MARCKS, SNAREs, and Munc proteins. Blockade of mucus in exacerbations of asthma and chronic obstructive pulmonary disease may affect morbidity. Development of new therapies to target mucus production and secretion are now possible given the advances in our understanding of molecular mechanisms of mucous metaplasia. We now have a greater incentive to focus on inhibition of mucus as a therapy for chronic airway diseases.
Collapse
Affiliation(s)
- David R Curran
- Section of Pulmonary and Critical Care, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
41
|
Abstract
Pulmonary fibrosis and architectural remodeling of tissues can severely disrupt lung function, often with fatal consequences. The etiology of pulmonary fibrotic diseases is varied, with an array of triggers including allergens, chemicals, radiation and environmental particles. However, the cause of one of the most common pulmonary fibrotic conditions, idiopathic pulmonary fibrosis (IPF), is still unclear. This review examines common mechanisms of pulmonary wound-healing responses following lung injury, and highlights the pathogenesis of some of the most widespread pulmonary fibrotic diseases. A three phase model of wound repair is reviewed that includes; (1) injury; (2) inflammation; and (3) repair. In most pulmonary fibrotic conditions dysregulation at one or more of these phases has been reported. Chronic inflammation can lead to an imbalance in the production of chemokines, cytokines, growth factors, and disrupt cellular recruitment. These changes coupled with excessive pro-fibrotic IL-13 and/or TGFbeta1 production can turn a well-controlled healing response into a pathogenic fibrotic response. Endogenous regulatory mechanisms are discussed including novel areas of therapeutic intervention. Restoring homeostasis to these dysregulated healing responses, or simply neutralizing the key pro-fibrotic mediators may prevent or slow the progression of pulmonary fibrosis.
Collapse
|
42
|
Evans CM, Koo JS. Airway mucus: the good, the bad, the sticky. Pharmacol Ther 2008; 121:332-48. [PMID: 19059283 PMCID: PMC10079267 DOI: 10.1016/j.pharmthera.2008.11.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Indexed: 01/21/2023]
Abstract
Mucus production is a primary defense mechanism for maintaining lung health. However, the overproduction of mucin (the chief glycoprotein component of mucus) is a common pathological feature in asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), and lung cancer. Although it is associated with disease progression, effective therapies that directly target mucin overproduction and hypersecretion are lacking. Recent advances in our understanding of the control of mucin gene expression in the lungs, the cells that produce airway mucins, and the mechanisms used for releasing them into the airways have provided new potentials for the development of efficacious interventions that will be discussed in this review.
Collapse
Affiliation(s)
- Christopher M Evans
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.
| | | |
Collapse
|
43
|
Yamagata S, Tomita K, Sato R, Niwa A, Higashino H, Tohda Y. Interleukin-18-deficient mice exhibit diminished chronic inflammation and airway remodelling in ovalbumin-induced asthma model. Clin Exp Immunol 2008; 154:295-304. [PMID: 18826499 DOI: 10.1111/j.1365-2249.2008.03772.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Interleukin (IL)-18, which is produced by activated monocytes/macrophages and airway epithelial cells, is suggested to contribute to the pathophysiology of asthma by modulating airway inflammation. However, the involvement of IL-18 on modulating chronic airway inflammation and airway remodelling, which are characterized in a refractory asthma model exposed to long-term antigen, has not been investigated sufficiently. We examined the role of IL-18 in chronic airway inflammation and airway remodelling by long-term antigen exposure. IL-18-deficient and C57BL/6-wild-type mice were sensitized by ovalbumin (OVA) and were then exposed to aerosolized OVA twice a week for 12 weeks. We assessed airway inflammation by assessing the infiltration of cells into the airspace and lung tissues, and airway remodelling by airway mucus expression, peribronchial fibrosis and smooth muscle thickness. In IL-18-deficient mice, when exposed to OVA, the total cells and neutrophils of the bronchoalveolar lavage fluid (BALF) were diminished, as were the number of infiltrated cells in the lung tissues. IL-18-deficient mice exposed to OVA after 12 weeks showed significantly decreased levels of interferon (IFN)-gamma, IL-13 and transforming growth factor (TGF)-beta1 in the BALF. The airway hyperresponsiveness to acetyl-beta-methacholine chloride was inhibited in IL-18-deficient mice in comparison with wild-type mice. In addition, IL-18-deficient mice exposed to OVA had fewer significant features of airway remodelling. These findings suggest that IL-18 may enhance chronic airway inflammation and airway remodelling through the production of IFN-gamma, IL-13 and TGF-beta1 in the OVA-induced asthma mouse model.
Collapse
Affiliation(s)
- S Yamagata
- Department of Respiratory Medicine, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Fujisawa T, Ide K, Holtzman MJ, Suda T, Suzuki K, Kuroishi S, Chida K, Nakamura H. Involvement of the p38 MAPK pathway in IL-13-induced mucous cell metaplasia in mouse tracheal epithelial cells. Respirology 2008; 13:191-202. [PMID: 18339016 DOI: 10.1111/j.1440-1843.2008.01237.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVE IL-13 has been shown to play a pivotal role in mucous cell metaplasia, which is an important feature of the pathogenesis of asthma. However, the signalling pathways evoked by IL-13 in airway epithelial cells remain unclear. This study investigated the signalling mechanism of IL-13-induced mucous cell metaplasia in primary cultures of mouse tracheal epithelial cells (mTEC). METHODS mTEC were cultured in an air-liquid interface system in the presence or absence of IL-13. Goblet cell hyperplasia was evaluated quantitatively by immunofluorescent staining for MUC5AC, which is a major component of airway mucins. Western blotting was used to assess activation of the signalling molecules, signal transducer and activator of transcription 6 (STAT6), p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) 1/2. MUC5AC gene expression was measured by RT-PCR. RESULTS IL-13 induced mucous cell metaplasia for 7-14 days in mTEC. IL-13 phosphorylated STAT6 within 20 min, whereas it induced delayed phosphorylation of p38 MAPK 36-48 h after stimulation. In contrast, ERK1/2 was constantly activated and was not enhanced by IL-13. An inhibitor of p38 MAPK (SB202190) suppressed mucous cell differentiation in a concentration-dependent manner. In STAT6 knockout mice, IL-13 failed to induce mucous cell metaplasia and activate p38 MAPK. Cycloheximide also diminished activation of p38 MAPK and induction of MUC5AC mRNA expression by IL-13. CONCLUSIONS The p38 MAPK pathway is involved in IL-13-induced mucous cell metaplasia and MUC5AC mRNA regulation in mTEC. In addition, p38 MAPK phosphorylation may require STAT6-dependent de novo protein synthesis induced by IL-13.
Collapse
Affiliation(s)
- Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Gaide Chevronnay HP, Cornet PB, Delvaux D, Lemoine P, Courtoy PJ, Henriet P, Marbaix E. Opposite regulation of transforming growth factors-beta2 and -beta3 expression in the human endometrium. Endocrinology 2008; 149:1015-25. [PMID: 18039789 DOI: 10.1210/en.2007-0849] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TGF-betas have been reported to mediate the repression by progesterone of several matrix metalloproteinases in the human endometrium, thereby preventing menstrual breakdown. Because of conflicting reports on the expression profiles, source, and regulation of the TGF-beta system in this tissue, we investigated by real-time RT-PCR and ELISA the expression of the three TGF-betas (total and mature forms) and their two receptors throughout the menstrual cycle, and their regulation by ovarian steroids in cultured explants including their microdissected epithelial and stromal compartments. Regulation by cAMP and MAPK was further investigated. This comprehensive study on a large collection of endometrial samples evidenced a differential regulation of TGF-beta isoforms expression, both in vivo and in explant culture. In vivo, TGF-beta2 increased by about 5-fold at the mid-late secretory phase then declined after menstruation; TGF-beta3 increased at menstruation and remained high during the proliferative phase; TGF-beta1 was maximal at menstruation. In explants cultured without ovarian steroids both TGF-beta2 and -beta3 were preferentially expressed in the stroma. Ovarian steroids strongly repressed both TGF-beta2 and -beta3 in stroma but only TGF-beta2 in glands. cAMP prevented inhibition by ovarian steroids of TGF-beta2 but not -beta3. In presence of ovarian steroids, MAPK inhibitors (p38 and ERK pathways) stimulated TGF-beta3 but inhibited TGF-beta2 expression. In conclusion, TGF-beta2 and -beta3 are differentially expressed during the menstrual cycle and regulated by progesterone in epithelial vs stromal cells. The opposite regulation of TGF-beta2 and -beta3 by cAMP and MAPK could account for their distinct expression in vivo.
Collapse
|
46
|
Borowski A, Kuepper M, Horn U, Knüpfer U, Zissel G, Höhne K, Luttmann W, Krause S, Virchow JC, Friedrich K. Interleukin-13 acts as an apoptotic effector on lung epithelial cells and induces pro-fibrotic gene expression in lung fibroblasts. Clin Exp Allergy 2008; 38:619-28. [PMID: 18266877 DOI: 10.1111/j.1365-2222.2008.02944.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND IL-13 promotes acute allergic asthma and is discussed to play a role in late asthmatic features such as fibrotic processes and airway remodelling. The contributions of IL-13-mediated mechanisms to subepithelial events related to fibrosis are not yet settled. OBJECTIVE We investigated the impact of IL-13 on lung epithelial cells as apoptotic effector and on lung fibroblasts as inducer of pro-fibrotic gene expression. METHODS Using the two lung epithelial cell lines A549 and BEAS-2B as well as primary lung epithelial cells, we investigated the capability of IL-13 to induce apoptosis by both flow-cytometry and ELISA. The ability of IL-13 to increase the expression of pro-fibrotic genes and to exert influence on the expression of its own receptor was investigated by real-time quantitative PCR measurement of mRNAs encoding collagen I, collagen III, basic fibroblast growth factor (bFGF), alpha-smooth muscle actin (alpha-SMA) and the IL-13 receptor alpha1 (IL-13Ralpha1) chain in human primary lung fibroblasts. The specificity of IL-13-mediated cellular responses was confirmed by means of an inhibitory monoclonal antibody directed to the IL-13 receptor. RESULTS IL-13 induces apoptosis in lung epithelial cell lines as well as in primary lung epithelial cells. Furthermore, IL-13 increases the expression of mRNA for alpha-SMA and collagen III, but not for bFGF in human primary lung fibroblasts. The susceptibility of lung fibroblasts to IL-13-induced up-regulation of pro-fibrotic genes is associated with the regulation of IL-13 receptor expression. IL-13-dependent fibrosis-associated effects could be inhibited by antibody-mediated blockade of the IL-13Ralpha1 subunit. CONCLUSION Our findings indicate a function of IL-13 as a mediator in fibrotic processes leading to loss of functional airway tissue in asthma. They also highlight the therapeutic potential of specifically targeting the interaction between IL-13 and its receptor.
Collapse
Affiliation(s)
- A Borowski
- Department of Biochemistry, University of Jena Medical School, Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nam SY, Kim YH, Do JS, Choi YH, Seo HJ, Yi HK, Hwang PH, Song CH, Lee HK, Kim JS, Podack ER. CD30 supports lung inflammation. Int Immunol 2007; 20:177-84. [PMID: 18089617 DOI: 10.1093/intimm/dxm130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The physiological functions of CD30 have not been fully elucidated. Here we show that in CD30-deficient mice (CD30(-/-)), lung inflammation is significantly diminished in the ovalbumin (OVA) model of airway hyperreactivity. In CD30(-/-) mice, the recruitment of eosinophils into the airways after OVA-aerosol challenge of OVA-primed mice was significantly diminished when compared with wild-type (w.t.) mice. IL-13 levels were also significantly reduced in CD30(-/-) mice while levels of IFN-gamma, IL-4, IL-5 and IgE in bronchoalveolar lavage fluid, lung tissue and serum were comparable to w.t. mice. Peribronchial lymph node cells from CD30(-/-) mice, re-stimulated in vitro with OVA, secreted significantly lower levels of IL-13 than those from w.t. mice, but showed normal proliferative response and other cytokine production. Exogenous IL-13 reconstituted airway recruitment of leukocytes in OVA-challenged CD3O(-/-) mice. Adoptive transfer to naive w.t. mice of in vitro OVA-re-stimulated spleen cells from CD30(-/-) mice failed to induce eosinophilic pulmonary inflammation in contrast to transfer of primed cells from w.t. mice. These results indicate that CD30 is a regulator of T(h)2 responses in the effector-memory phase and a regulator of IL-13 production in memory cells in the lung.
Collapse
Affiliation(s)
- Sang-Yun Nam
- Department of Biological Science, School of Science and Technology, Jeonju University, Jeonju 560-759, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hatsushika K, Hirota T, Harada M, Sakashita M, Kanzaki M, Takano S, Doi S, Fujita K, Enomoto T, Ebisawa M, Yoshihara S, Sagara H, Fukuda T, Masuyama K, Katoh R, Matsumoto K, Saito H, Ogawa H, Tamari M, Nakao A. Transforming growth factor-beta(2) polymorphisms are associated with childhood atopic asthma. Clin Exp Allergy 2007; 37:1165-74. [PMID: 17651146 DOI: 10.1111/j.1365-2222.2007.02768.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Transforming growth factor (TGF)-beta plays an important role in the regulation of airway inflammation and remodelling in asthma. Recent studies suggest that TGF-beta(2) is a predominant isoform expressed in severe asthma and it is also associated with airway remodelling. OBJECTIVE To determine whether the polymorphisms in TGF-beta(2) are associated with childhood atopic bronchial asthma in a Japanese population. METHODS We identified a total of eight polymorphisms and characterized the linkage disequilibrium (LD) mapping of the gene. Three variants in the promoter and 3'UTR were genotyped, and we conducted an association study of TGF-beta(2) (childhood atopic asthma n=297, normal controls n=555). An association analysis of these variants and an expression and functional analysis were performed. RESULTS 3'UTR 94862T >A was found to be significantly associated with the risk of childhood atopic asthma (P=0.00041). The -109-->ACAA ins promoter variant was also associated with the risk of childhood atopic asthma (P=0.0037). TGF-beta(2) expression was observed in both the normal and asthmatic bronchial epithelium, and both real-time PCR and an ELISA showed a significant basal and TGF-beta(1)-induced TGF-beta(2) expression in the bronchial epithelial cell line BEAS2B. Furthermore, the promoter variant -109-->ACAA ins increased the TGF-beta(2) promoter-reporter activity in BEAS2B cells. CONCLUSIONS Our data suggest that TGF-beta(2) may therefore be involved in the development of childhood atopic asthma by means of functional genetic polymorphism. The polymorphisms in TGF-beta(2) may become important information for asthma susceptibility in children.
Collapse
Affiliation(s)
- K Hatsushika
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bossé Y, Rola-Pleszczynski M. Controversy surrounding the increased expression of TGF beta 1 in asthma. Respir Res 2007; 8:66. [PMID: 17892594 PMCID: PMC2078588 DOI: 10.1186/1465-9921-8-66] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 09/24/2007] [Indexed: 01/18/2023] Open
Abstract
Asthma is a waxing and waning disease that leads to structural changes in the airways, such as subepithelial fibrosis, increased mass of airway smooth muscle and epithelial metaplasia. Such a remodeling of the airways futher amplifies asthma symptoms, but its etiology is unknown. Transforming growth factor β1 is a pleiotropic cytokine involved in many fibrotic, oncologic and immunologic diseases and is believed to play an essential role in airway remodeling that occurs in asthmatic patients. Since it is secreted in an inactive form, the overall activity of this cytokine is not exclusively determined by its level of expression, but also by extensive and complex post-translational mechanisms, which are all importanin modulating the magnitude of the TGFβ1 response. Even if TGFβ1 upregulation in asthma is considered as a dogma by certain investigators in the field, the overall picture of the published litterature is not that clear and the cellular origin of this cytokine in the airways of asthmatics is still a contemporaneous debate. On the other hand, it is becoming clear that TGFβ1 signaling is increased in the lungs of asthmatics, which testifies the increased activity of this cytokine in asthma pathogenesis. The current work is an impartial and exhaustive compilation of the reported papers regarding the expression of TGFβ1 in human asthmatics. For the sake of comparison, several studies performed in animal models of the disease are also included. Inconsistencies observed in human studies are discussed and conclusions as well as trends from the current state of the litterature on the matter are proposed. Finally, the different points of regulation that can affect the amplitude of the TGFβ1 response are briefly revised and the possibility that TGFβ1 is disregulated at another level in asthma, rather than simply in its expression, is highlighted.
Collapse
Affiliation(s)
- Ynuk Bossé
- Immunology Division, Department of Pediatrics, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marek Rola-Pleszczynski
- Immunology Division, Department of Pediatrics, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
50
|
Bloemen K, Verstraelen S, Van Den Heuvel R, Witters H, Nelissen I, Schoeters G. The allergic cascade: review of the most important molecules in the asthmatic lung. Immunol Lett 2007; 113:6-18. [PMID: 17765979 DOI: 10.1016/j.imlet.2007.07.010] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 07/17/2007] [Accepted: 07/22/2007] [Indexed: 12/17/2022]
Abstract
Asthma is the most common chronic inflammatory disorder of the airways among children. It is a complex clinical disease characterized by airway obstruction, airway inflammation and airway hyperresponsiveness to a variety of stimuli. The development of allergic asthma exists of three phases, namely the induction phase, the early-phase asthmatic reaction (EAR) and the late-phase asthmatic reaction (LAR). Each phase is characterized by the production and interplay of various cell-derived mediators. In the induction phase, T helper cytokines are important in the development of asthma. Most important mediators in the EAR are preformed mediators, newly synthesized lipid mediators and cytokines that are produced by mast cells. During the LAR, inflammatory molecules are produced by various cell types, such as eosinophils, neutrophils, T cells, macrophages, dendritic cells, and structural cells. Chronical inflammation leads to structural changes of the airway architecture. In this review, the most important mediators involved in the induction phase, the early-phase and late-phase asthmatic reaction are discussed.
Collapse
Affiliation(s)
- Karolien Bloemen
- Centre of Expertise in Environmental Toxicology, Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400 Mol, Belgium.
| | | | | | | | | | | |
Collapse
|