1
|
Talwar S, Mazade R, Bentley-Ford M, Yu J, Pilli N, Kane MA, Ethier CR, Pardue MT. Modulation of all- trans retinoic acid by light and dopamine in the murine eye. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627245. [PMID: 39713473 PMCID: PMC11661107 DOI: 10.1101/2024.12.06.627245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Purpose Ambient light exposure is linked to myopia development in children and affects myopia susceptibility in animal models. Currently, it is unclear which signals mediate the effects of light on myopia. All- trans retinoic acid (atRA) and dopamine (DA) oppositely influence experimental myopia and may be involved in the retino-scleral signaling cascade underlying myopic eye growth. However, how ocular atRA responds to different lighting and whether atRA and DA interact remains unknown. Methods Dark-adapted C57BL/6J mice (29-31 days old) were exposed to Dim (1 lux), Mid (59 lux), or Bright (12,000 lux) ambient lighting for 5-60 minutes. Some mice were also systemically administered the DA precursor, LDOPA, or atRA prior to light exposure. After exposure, the retina and the back-of-the-eye (BOE) were collected and analyzed for levels of atRA, DA, and the DA metabolite, DOPAC. Results DA turnover (DOPAC/DA ratio) in the retina increased in magnitude after only five minutes of exposure to higher ambient luminance but was minimal in the BOE. In contrast, atRA levels in the retina and BOE significantly decreased with higher ambient luminance and longer duration exposure. Intriguingly, LDOPA-treated mice had a transient reduction in retinal atRA compared to saline-treated mice, whereas atRA treatment had no effect on ocular DA. Conclusions Ocular atRA was affected by the duration of exposure to different ambient lighting and retinal atRA levels decreased with increased DA. Overall, these data suggest specific interactions between ambient lighting, atRA, and DA that could have implications for the retino-scleral signaling cascade underlying myopic eye growth.
Collapse
|
2
|
Gibaldi A, Harb EN, Wildsoet CF, Banks MS. A Child-Friendly Wearable Device for Quantifying Environmental Risk Factors for Myopia. Transl Vis Sci Technol 2024; 13:28. [PMID: 39422897 PMCID: PMC11498637 DOI: 10.1167/tvst.13.10.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose In the past few decades, the prevalence of myopia, where the eye grows too long, has increased dramatically. The visual environment appears to be critical to regulating the eye growth. Thus, it is very important to determine the properties of the environment that put children at risk for myopia. Researchers have suggested that the intensity of illumination and range of distances to which a child's eyes are exposed are important, but this has not been confirmed. Methods We designed, built, and tested an inexpensive, child-friendly, head-mounted device that can measure the intensity and spectral content of illumination approaching the eyes and can also measure the distances to which the central visual field of the eyes are exposed. The device is mounted on a child's bicycle helmet. It includes a camera that measures distances over a substantial range and a six-channel spectral sensor. The sensors are hosted by a light-weight, battery-powered microcomputer. We acquired pilot data from children while they were engaged in various indoor and outdoor activities. Results The device proved to be comfortable, easy, and safe to wear, and able to collect very useful data on the statistics of illumination and distances. Conclusions The designed device is an ideal tool to be used in a population of young children, some of whom will later develop myopia and some of whom will not. Translational Relevance Such data would be critical for determining the properties of the visual environment that put children at risk for becoming myopic.
Collapse
Affiliation(s)
- Agostino Gibaldi
- Herbert Wertheim School of Optometry and Vision Science, University of California at Berkeley, Berkeley, CA, USA
- Department of Engineering “Enzo Ferrari,” University of Modena and Reggio Emilia, Modena, Italy
| | - Elise N. Harb
- Herbert Wertheim School of Optometry and Vision Science, University of California at Berkeley, Berkeley, CA, USA
| | - Christine F. Wildsoet
- Herbert Wertheim School of Optometry and Vision Science, University of California at Berkeley, Berkeley, CA, USA
| | - Martin S. Banks
- Herbert Wertheim School of Optometry and Vision Science, University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|
3
|
Zong Z, Zhang Y, Qiao J, Tian Y, Xu S. The association between screen time exposure and myopia in children and adolescents: a meta-analysis. BMC Public Health 2024; 24:1625. [PMID: 38890613 PMCID: PMC11186094 DOI: 10.1186/s12889-024-19113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE This study aimed to systematically review epidemiological evidence on associations between screen time exposure and myopia in children and adolescents, and to quantitatively evaluate summary effect estimates from existing literature. METHOD There were three online databases including PubMed, Embase, and Web of Science, for epidemiological studies on screen time exposure and myopia published before June 1, 2023. The risk of bias was assessed by the Newcastle Ottawa Scale (NOS) checklist. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate the correlation between screen time exposure and myopia using random or fixed-effect models by exposure type (categorical/continuous). We also performed subgroup analysis by screen device type, study quality, geographic region, and research period. RESULTS We searched 7,571 records from three databases and identified 19 eligible studies, including 14 high-quality studies and 5 moderate-quality studies. Meta-analyses suggested that there was a statistically significant correlation between screen time (high vs. low) and myopia. The pooled ORs with 95%CIs were respectively 2.24 (1.47-3.42) for cross-sectional studies, and 2.39 (2.07-2.76) for cohort studies. We also found a significant association between continuous exposure to screen time (per 1 h/d increase) and myopia in cohort studies. The pooled ORs with 95%CIs were 1.07 (1.01-1.13). In subgroup analysis stratified by screen device type in cross-sectional studies, screen time exposures from computers (categorical: OR = 8.19, 95%CI: 4.78-14.04; continuous: OR = 1.22, 95%CI: 1.10-1.35) and televisions (categorical: OR = 1.46, 95%CI: 1.02-2.10) were associated with myopia, while smartphones were not. Although publication bias was detected, the pooled results did not show significant changes after adjustment using the trim and fill method. CONCLUSION Our findings support that screen time exposure was significantly associated with myopia in children and adolescents. Notably, screen time exposure from computers may have the most significant impact on myopia.
Collapse
Affiliation(s)
- Zhiqiang Zong
- The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yaxin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Jianchao Qiao
- The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yuan Tian
- The First School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Shaojun Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
- MOE Key Laboratory of Population Health Across Life Cycle, 81 Meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
4
|
Biswas S, El Kareh A, Qureshi M, Lee DMX, Sun CH, Lam JSH, Saw SM, Najjar RP. The influence of the environment and lifestyle on myopia. J Physiol Anthropol 2024; 43:7. [PMID: 38297353 PMCID: PMC10829372 DOI: 10.1186/s40101-024-00354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Myopia, commonly known as near-sightedness, has emerged as a global epidemic, impacting almost one in three individuals across the world. The increasing prevalence of myopia during early childhood has heightened the risk of developing high myopia and related sight-threatening eye conditions in adulthood. This surge in myopia rates, occurring within a relatively stable genetic framework, underscores the profound influence of environmental and lifestyle factors on this condition. In this comprehensive narrative review, we shed light on both established and potential environmental and lifestyle contributors that affect the development and progression of myopia. MAIN BODY Epidemiological and interventional research has consistently revealed a compelling connection between increased outdoor time and a decreased risk of myopia in children. This protective effect may primarily be attributed to exposure to the characteristics of natural light (i.e., sunlight) and the release of retinal dopamine. Conversely, irrespective of outdoor time, excessive engagement in near work can further worsen the onset of myopia. While the exact mechanisms behind this exacerbation are not fully comprehended, it appears to involve shifts in relative peripheral refraction, the overstimulation of accommodation, or a complex interplay of these factors, leading to issues like retinal image defocus, blur, and chromatic aberration. Other potential factors like the spatial frequency of the visual environment, circadian rhythm, sleep, nutrition, smoking, socio-economic status, and education have debatable independent influences on myopia development. CONCLUSION The environment exerts a significant influence on the development and progression of myopia. Improving the modifiable key environmental predictors like time spent outdoors and engagement in near work can prevent or slow the progression of myopia. The intricate connections between lifestyle and environmental factors often obscure research findings, making it challenging to disentangle their individual effects. This complexity underscores the necessity for prospective studies that employ objective assessments, such as quantifying light exposure and near work, among others. These studies are crucial for gaining a more comprehensive understanding of how various environmental factors can be modified to prevent or slow the progression of myopia.
Collapse
Affiliation(s)
- Sayantan Biswas
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Antonio El Kareh
- Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon
| | - Mariyem Qureshi
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK
| | | | - Chen-Hsin Sun
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Janice S H Lam
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Seang-Mei Saw
- Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Science Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Raymond P Najjar
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Singapore Eye Research Institute, Singapore, Singapore.
- Ophthalmology and Visual Science Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Harb EN, Sawai ES, Wildsoet CF. Indoor and outdoor human behavior and myopia: an objective and dynamic study. Front Med (Lausanne) 2023; 10:1270454. [PMID: 38020131 PMCID: PMC10643732 DOI: 10.3389/fmed.2023.1270454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Significance Myopia holds significant public health concern given its social, ocular disease and economic burdens. Although environmental factors are primarily to blame for the rapid rise in prevalence, key risk factors remain unresolved. Purpose The aim of this study was to objectively characterize, using a wearable technology, the temporal indoor and outdoor behavioral patterns and associated environmental lighting characteristics of young myopic and nonmyopic University students. Methods Participants were recruited to continuously wear an Actiwatch for 3 weeks, during either or both academic and non-academic periods. The device allows continuous recording of activity and incident light. Recorded illuminance levels were used as a proxy for outdoors (>1,000 lux), with the dynamics (interval frequency and duration) of indoor and outdoor activities, as well as lighting characteristics derived. In addition, participant input regarding near work was obtained daily. Participants were classified by both myopia and axial length status (based on collected refractive error and biometry data) for the purpose of data analysis. Result A total of 55 students, aged 18 to 25 years of age, participated. Overall, the dosing of indoor and outdoor activities was similar across participants, regardless of myopia status, during the academic period. Nonetheless, an apparent difference in the timing of outdoor activities was noted with myopes going outdoors later in the day, particularly during the weekend (p = 0.03). While a trend was observed between increased lighting levels experienced outdoors and shorter axial lengths, there was no significant relationship with myopia status. Noteworthy, participants generally significantly overestimated time spent outdoors, compared to Actiwatch-derived estimates of the same. Conclusion While the findings from this cohort of young adult students did not reveal substantial myopia-related differences in behavior, the power of a more objective and dynamic approach to quantifying behavior cannot be understated, providing argument for general adoption of wearable technologies in future clinical myopia studies.
Collapse
Affiliation(s)
- Elise N. Harb
- Herbert Wertheim School of Optometry and Vision Science, University of California at Berkeley, Berkeley, CA, United States
| | | | | |
Collapse
|
6
|
Zhu Q, Cao X, Zhang Y, Zhou Y, Zhang J, Zhang X, Zhu Y, Xue L. Repeated Low-Level Red-Light Therapy for Controlling Onset and Progression of Myopia-a Review. Int J Med Sci 2023; 20:1363-1376. [PMID: 37786442 PMCID: PMC10542022 DOI: 10.7150/ijms.85746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/10/2023] [Indexed: 10/04/2023] Open
Abstract
Repeated low-level red-light (RLRL), characterized by increased energy supply and cellular metabolism, thus enhancing metabolic repair processes, has gained persistent worldwide attention in recent years as a new novel scientific approach for therapeutic application in myopia. This therapeutic revolution led by RLRL therapy is due to significant advances in bioenergetics and photobiology, for instance, enormous progresses in photobiomodulation regulated by cytochrome c oxidase, the primary photoreceptor of the light in the red to near infrared regions of the electromagnetic spectrum, as the primary mechanism of action in RLRL therapy. This oxidase is also a key mitochondrial enzyme for cellular bioenergetics, especially for the nerve cells in the retina and brain. In addition, dopamine (DA)-enhanced release of nitric oxide may also be involved in controlling myopia by activation of nitric oxide synthase, enhancing cGMP signaling. Recent evidence has also suggested that RLRL may inhibit myopia progression by inhibiting spherical equivalent refraction (SER) progression and axial elongation without adverse effects. In this review, we provide scientific evidence for RLRL therapy as a unique paradigm to control myopia and support the theory that targeting neuronal energy metabolism may constitute a major target for the neurotherapeutics of myopia, with emphasis on its molecular, cellular, and nervous tissue levels, and the potential benefits of RLRL therapy for myopia.
Collapse
Affiliation(s)
- Qin Zhu
- Department of Pediatric Ophthalmology, Affiliated Hospital of Yunnan University, Kunming 650021, China
| | - Xuejun Cao
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650031, China
| | - Yuan Zhang
- BioTissue (Tissue Tech, Inc.), Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33126 USA
| | - Yuan Zhou
- Department of Pediatric Ophthalmology, Affiliated Hospital of Yunnan University, Kunming 650021, China
| | - Jieying Zhang
- Department of Pediatric Ophthalmology, Affiliated Hospital of Yunnan University, Kunming 650021, China
| | - Xiaofan Zhang
- Department of Pediatric Ophthalmology, Affiliated Hospital of Yunnan University, Kunming 650021, China
| | - Yingting Zhu
- BioTissue (Tissue Tech, Inc.), Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33126 USA
| | - Liping Xue
- Department of Pediatric Ophthalmology, Affiliated Hospital of Yunnan University, Kunming 650021, China
| |
Collapse
|
7
|
Pan XB, He YS, Lu Z, Pan HR, Wei ZY, Jin YY, Wang J, Chen JH. Epitranscriptomic investigation of myopia-associated RNA editing in the retina. Front Neurosci 2023; 17:1220114. [PMID: 37449273 PMCID: PMC10336353 DOI: 10.3389/fnins.2023.1220114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Myopia is one of the most common causes of vision loss globally and is significantly affected by epigenetics. Adenosine-to-inosine (A-to-I RNA) editing is an epigenetic process involved in neurological disorders, yet its role in myopia remains undetermined. We performed a transcriptome-wide analysis of A-to-I RNA editing in the retina of form-deprivation myopia mice. Our study identified 91 A-to-I RNA editing sites in 84 genes associated with myopia. Notably, at least 27 (32.1%) of these genes with myopia-associated RNA editing showed existing evidence to be associated with myopia or related ocular phenotypes in humans or animal models, such as very low-density lipoprotein receptor (Vldlr) in retinal neovascularization and hypoxia-induced factor 1 alpha (Hif1a). Moreover, functional enrichment showed that RNA editing enriched in FDM was primarily involved in response to fungicides, a potentially druggable process for myopia prevention, and epigenetic regulation. In contrast, RNA editing enriched in controls was mostly involved in post-embryonic eye morphogenesis. Our results demonstrate altered A-to-I RNA editing associated with myopia in an experimental mouse model and warrant further study on its role in myopia development.
Collapse
Affiliation(s)
- Xu-Bin Pan
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Yu-Shan He
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Zijing Lu
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Hao-Ran Pan
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Jihong Wang
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
Brown DM, Mazade R, Clarkson-Townsend D, Hogan K, Datta Roy PM, Pardue MT. Candidate pathways for retina to scleral signaling in refractive eye growth. Exp Eye Res 2022; 219:109071. [PMID: 35447101 PMCID: PMC9701099 DOI: 10.1016/j.exer.2022.109071] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
Abstract
The global prevalence of myopia, or nearsightedness, has increased at an alarming rate over the last few decades. An eye is myopic if incoming light focuses prior to reaching the retinal photoreceptors, which indicates a mismatch in its shape and optical power. This mismatch commonly results from excessive axial elongation. Important drivers of the myopia epidemic include environmental factors, genetic factors, and their interactions, e.g., genetic factors influencing the effects of environmental factors. One factor often hypothesized to be a driver of the myopia epidemic is environmental light, which has changed drastically and rapidly on a global scale. In support of this, it is well established that eye size is regulated by a homeostatic process that incorporates visual cues (emmetropization). This process allows the eye to detect and minimize refractive errors quite accurately and locally over time by modulating the rate of elongation of the eye via remodeling its outermost coat, the sclera. Critically, emmetropization is not dependent on post-retinal processing. Thus, visual cues appear to influence axial elongation through a retina-to-sclera, or retinoscleral, signaling cascade, capable of transmitting information from the innermost layer of the eye to the outermost layer. Despite significant global research interest, the specifics of retinoscleral signaling pathways remain elusive. While a few pharmacological treatments have proven to be effective in slowing axial elongation (most notably topical atropine), the mechanisms behind these treatments are still not fully understood. Additionally, several retinal neuromodulators, neurotransmitters, and other small molecules have been found to influence axial length and/or refractive error or be influenced by myopigenic cues, yet little progress has been made explaining how the signal that originates in the retina crosses the highly vascular choroid to affect the sclera. Here, we compile and synthesize the evidence surrounding three of the major candidate pathways receiving significant research attention - dopamine, retinoic acid, and adenosine. All three candidates have both correlational and causal evidence backing their involvement in axial elongation and have been implicated by multiple independent research groups across diverse species. Two hypothesized mechanisms are presented for how a retina-originating signal crosses the choroid - via 1) all-trans retinoic acid or 2) choroidal blood flow influencing scleral oxygenation. Evidence of crosstalk between the pathways is discussed in the context of these two mechanisms.
Collapse
Affiliation(s)
- Dillon M Brown
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Reece Mazade
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Danielle Clarkson-Townsend
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA; Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA; Gangarosa Department of Environmental Health, Emory University, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - Kelleigh Hogan
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Pooja M Datta Roy
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Machelle T Pardue
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA.
| |
Collapse
|
9
|
Chakraborty R, Baranton K, Spiegel D, Lacan P, Guillon M, Barrau C, Villette T. Effects of mild‐ and moderate‐intensity illumination on short‐term axial length and choroidal thickness changes in young adults. Ophthalmic Physiol Opt 2022; 42:762-772. [DOI: 10.1111/opo.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Ranjay Chakraborty
- College of Nursing and Health Sciences, Optometry and Vision Science Flinders University Adelaide South Australia Australia
- Caring Futures Institute Flinders University Adelaide South Australia Australia
| | - Konogan Baranton
- Center Innovation & Technologies Europe Essilor International SAS Charenton‐le‐Pont France
| | | | - Pascale Lacan
- Center Innovation & Technologies Europe Essilor International SAS Charenton‐le‐Pont France
| | - Matthias Guillon
- Center Innovation & Technologies Europe Essilor International SAS Charenton‐le‐Pont France
| | - Coralie Barrau
- Center Innovation & Technologies Europe Essilor International SAS Charenton‐le‐Pont France
| | - Thierry Villette
- Center Innovation & Technologies Europe Essilor International SAS Charenton‐le‐Pont France
| |
Collapse
|
10
|
Impact of cone abundancy ratios and light spectra on emmetropization in chickens. Exp Eye Res 2022; 219:109086. [DOI: 10.1016/j.exer.2022.109086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022]
|
11
|
Abstract
INTRODUCTION The aim of this article was to comprehensively review the relationship between light exposure and myopia with a focus on the effects of the light wavelength, illuminance, and contrast on the occurrence and progression of myopia. METHODS This review was performed by searching PubMed data sets including research articles and reviews utilizing the terms "light", "myopia", "refractive error", and "illuminance", and the review was concluded in November 2021. Myopia onset and progression were closely linked with emmetropization and hyperopia. To better elucidate the mechanism of myopia, some of the articles that focused on this topic were included. This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors. RESULTS The pathogenesis and prevention of myopia are not completely clear. Studies have provided evidence supporting the idea that light could affect eye growth in three ways. Changing the corresponding conditions will cause changes in the growth rate and mode of the eyes, and preliminary results have shown that FR/NIR (far red/near-infrared) light is effective for myopia in juveniles. CONCLUSION This review discusses the results of studies on the effects of light exposure on myopia with the aims of providing clues and a theoretical basis for the use of light to control the development of myopia and offering new ideas for subsequent studies.
Collapse
|
12
|
朱 秋, 刘 陇. [Relationship between Myopia and Light Exposure]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:901-906. [PMID: 34841751 PMCID: PMC10408837 DOI: 10.12182/20211160205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Indexed: 02/05/2023]
Abstract
Epidemiological studies found that the incidence of myopia was increasing year by year and the age of onset of myopia was showing a trend of affecting increasingly younger children. Reducing the occurrence of myopia and controlling the increase of myopia diopter have always been the focus of research on the prevention and control of myopia. Large randomized controlled clinical trials have found that outdoor activities can effectively reduce the incidence of myopia and delay the progression of myopia. Basic experiments also revealed that there were certain connections between light exposure and myopia. We herein review the research progress, limitations and future directions of research on light exposure and myopia. From the perspective of light properties, increasing the intensity of light can slow the progression of myopia and reduce the occurrence of experimentally induced myopia. However, the actual mechanism of action is still unclear. The rhythmic changes of light exposure caused by the light/dark cycle may cause abnormalities in the secretion of melatonin and dopamine, and changes in the circadian rhythm of intraocular pressure and choroidal thickness, thus affecting myopia. The red light, with relatively longer wavelength and forming images behind the retina, tends to induce myopia more easily, while the blue light, with medium and short wavelength and forming images before the retina, tends to delay myopia progression. However, different species respond differently to lights of different wavelengths, and the relationship between light wavelength and myopia needs further investigation. Future research can be done to further explore the mechanism of action of how light exposure changes the progression of myopia, including the following aspects: how light changes dopamine levels, causing changes in downstream signal pathways, and thus controlling the growth of the axial length of the eye; how retinal photoreceptor cells receive light signals of different wavelengths in order to adjust the refractive power of the eyes; and how to design artificial lighting of reasonable intensity, composition and properties, and apply the design in myopia prevention and control.
Collapse
Affiliation(s)
- 秋蓉 朱
- 四川大学华西临床医学院 眼视光学系 (成都 610041)Department of Optometry and Visual Science, West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - 陇黔 刘
- 四川大学华西临床医学院 眼视光学系 (成都 610041)Department of Optometry and Visual Science, West China School of Medicine, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 眼视光学与视觉科学研究室 (成都 610041)Laboratory of Optometry and Vision Science, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 眼科 (成都 610041)Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Rozema JJ, Boulet C, Cohen Y, Stell WK, Iribarren L, van Rens GHMB, Iribarren R. Reappraisal of the historical myopia epidemic in native Arctic communities. Ophthalmic Physiol Opt 2021; 41:1332-1345. [PMID: 34533229 DOI: 10.1111/opo.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE This study was developed to explain the extraordinary rise in myopia prevalence beginning after 1950 in Indigenous Arctic communities considering recent findings about the risk factors for school myopia development. Myopia prevalence changed drastically from a historical low of less than 3% to more than 50% in new generations of young adults following the Second World War. At that time, this increase was attributed to concurrent alterations in the environment and way of life which occurred in an aggressive programme of de-culturalization and re-acculturation through residential school programmes that introduced mental, emotional and physical stressors. However, the predominant idea that myopia was genetic in nature won the discussion of the day, and research in the area of environmental changes was dismissed. There may have also been an association between myopia progression and the introduction of extreme mental, emotional and physical stressors at the time. RECENT FINDINGS Since 1978, animal models of myopia have demonstrated that myopiagenesis has a strong environmental component. Furthermore, multiple studies in human populations have shown since 2005 how myopia could be produced by a combination of limited exposure to the outdoors and heavy emphasis on academic subjects associated with intense reading habits. This new knowledge was applied in the present study to unravel the causes of the historical myopia epidemics in Inuit communities. SUMMARY After reviewing the available published data on myopia prevalence in circumpolar Inuit populations in the 20th century, the most likely causes for the Inuit myopia epidemic were the combination of increased near work (from almost none to daily reading) and the move from a mostly outdoor to a much more indoor way of life, exacerbated by fewer hours of sunshine during waking hours, the lower illuminance in the Arctic and the extreme psychophysical stress due to the conditions in the Residential Schools.
Collapse
Affiliation(s)
- Jos J Rozema
- Visual Optics Lab Antwerp (VOLANTIS), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Charles Boulet
- Diamond Valley Vision Care, Black Diamond, Alberta, Canada
| | - Yuval Cohen
- Ziv Medical Centre, Safed, Israel.,Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - William K Stell
- Department of Cell Biology and Anatomy, Department of Surgery, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luciano Iribarren
- Science Teaching Group, Institute of Physics of Liquids and Biological Systems, The National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Ger H M B van Rens
- Department of Ophthalmology, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | | |
Collapse
|
14
|
Karouta C, Kucharski R, Hardy K, Thomson K, Maleszka R, Morgan I, Ashby R. Transcriptome-based insights into gene networks controlling myopia prevention. FASEB J 2021; 35:e21846. [PMID: 34405458 DOI: 10.1096/fj.202100350rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/11/2022]
Abstract
Myopia (short-sightedness), usually caused by excessive elongation of the eye during development, has reached epidemic proportions worldwide. In animal systems including the chicken model, several treatments have been shown to inhibit ocular elongation and experimental myopia. Although diverse in their apparent mechanism of action, each one leads to a reduction in the rate of ocular growth. We hypothesize that a defined set of retinal molecular changes may underlie growth inhibition, irrespective of the treatment agent used. Accordingly, across five well-established but diverse methods of inhibiting myopia, significant overlap is seen in the retinal transcriptome profile (transcript levels and alternative splicing events) in chicks when analyzed by RNA-seq. Within the two major pathway networks enriched during growth inhibition, that of cell signaling and circadian entrainment, transcription factors form the largest functional grouping. Importantly, a large percentage of those genes forming the defined retinal response are downstream targets of the transcription factor EGR1 which itself shows a universal response to all five growth-inhibitory treatments. This supports EGR1's previously implicated role in ocular growth regulation. Finally, by contrasting our data with human linkage and GWAS studies on refractive error, we confirm the applicability of our study to the human condition. Together, these findings suggest that a universal set of transcriptome changes, which sit within a well-defined retinal network that cannot be bypassed, is fundamental to growth regulation, thus paving a way for designing novel targets for myopia therapies.
Collapse
Affiliation(s)
- Cindy Karouta
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Robert Kucharski
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia.,Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Kristine Hardy
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Kate Thomson
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Ryszard Maleszka
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Ian Morgan
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Regan Ashby
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia.,Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
15
|
Harb EN, Wildsoet CF. Nutritional Factors and Myopia: An Analysis of National Health and Nutrition Examination Survey Data. Optom Vis Sci 2021; 98:458-468. [PMID: 33973916 PMCID: PMC8137665 DOI: 10.1097/opx.0000000000001694] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SIGNIFICANCE The rise in the prevalence of myopia, a significant worldwide public health concern, has been too rapid to be explained by genetic factors alone and thus suggests environmental influences. PURPOSE Relatively little attention has been paid to the possible role of nutrition in myopia. The availability of the large National Health and Nutrition Examination Survey data set, which includes results from vision examinations, offers the opportunity to investigate the relationship between several nutrition-related factors, including body metrics, and the presence and magnitude of myopia. METHODS Cross-sectional survey data sets with vision examination, demographic, body metrics, and nutritional data, collected as part of the National Health and Nutrition Examination Survey over the years of 2003 to 2008, were extracted for analysis. Based on already published basic and epidemiological studies, the following parameters were selected for study: body height and body mass index, demographics, serum vitamin D and glucose/insulin levels, and caffeine intake, using multivariable models and objectively measured refractive errors as the main outcome measure. RESULTS Data from a total of 6855 ethnically diverse Americans aged 12 to 25 years were analyzed. In final multivariate models, female sex and age were the most significant factors related to myopia status and refractive error. In general, body metrics (body mass index) or nutritional factors (serum vitamin D, glucose levels, and caffeine intake) were found to be associated with refractive error or myopia status; however, increased insulin levels were related to increased odds of having myopia. CONCLUSIONS These largely negative findings suggest that other environmental factors, such as those related to the visual environment, may contribute more to the development and/or progression of myopia and would argue for continued research in these areas in support of more evidence-based myopia clinical management.
Collapse
|
16
|
Yang X, Yang Y, Wang Y, Wei Q, Ding H, Zhong X. Protective effects of sunlight exposure against PRK-induced myopia in infant rhesus monkeys. Ophthalmic Physiol Opt 2021; 41:911-921. [PMID: 33878199 DOI: 10.1111/opo.12826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/01/2021] [Indexed: 12/01/2022]
Abstract
PURPOSE Extensive clinical evidence suggests that time spent outdoors might reduce the risk of myopia. This study aimed to determine whether increasing sunlight exposure has a protective effect on hyperopic-defocus induced myopia in a non-human primate. METHODS Twelve 2-month-old rhesus monkeys were treated monocularly with photorefractive keratectomy (PRK) (4.0 D) and divided randomly into two groups: artificial light (AL; n = 6) and natural light (NL; n = 6). Monkeys in the AL group were reared under artificial (indoor) lighting (08:00-20:00 h). Monkeys in the NL group were exposed to natural (outdoor) lighting for 4 h (09:00-11:00 and 15:00-17:00 h). Ocular refraction, corneal power and axial dimensions were measured before sunlight exposure and every 10 days after PRK. At day 180, retinal histology and apoptosis activity were evaluated by hematoxylin and eosin (H&E) staining and terminal deoxynucleotidyl transferase biotin (dUTP) nick end labelling (TUNEL) assay. RESULTS Mean (±SD) PRK induced anisometropia was +3.11 (0.33) D. At the end of the experiment, both eyes of the NL monkeys exhibited significantly more hyperopia and shorter vitreous chamber depths (VCD), compared with AL monkeys (p < 0.05). The NL group exhibited a significantly slower rate of compensation to the induced anisometropia than the AL group (p < 0.05). The retinas of both groups exhibited normal histology and levels of apoptosis. CONCLUSIONS Moderate sunlight exposure exerts protective effects against the myopic shift resulting from PRK-induced defocus in monkeys. These results are consistent with current clinical findings that increased outdoor exposure protects against myopia development. Sunlight exposure should serve as an independent positive factor in human myopia control.
Collapse
Affiliation(s)
- Xiaowei Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yifang Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qi Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hui Ding
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, China
| | - Xingwu Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, China
| |
Collapse
|
17
|
Influence of Circadian Rhythm in the Eye: Significance of Melatonin in Glaucoma. Biomolecules 2021; 11:biom11030340. [PMID: 33668357 PMCID: PMC7996162 DOI: 10.3390/biom11030340] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Circadian rhythm and the molecules involved in it, such as melanopsin and melatonin, play an important role in the eye to regulate the homeostasis and even to treat some ocular conditions. As a result, many ocular pathologies like dry eye, corneal wound healing, cataracts, myopia, retinal diseases, and glaucoma are affected by this cycle. This review will summarize the current scientific literature about the influence of circadian patterns on the eye, focusing on its relationship with increased intraocular pressure (IOP) fluctuations and glaucoma. Regarding treatments, two ways should be studied: the first one, to analyze if some treatments could improve their effect on the ocular disease when their posology is established in function of circadian patterns, and the second one, to evaluate new drugs to treat eye pathologies related to the circadian rhythm, as it has been stated with melatonin or its analogs, that not only could be used as the main treatment but as coadjutant, improving the circadian pattern or its antioxidant and antiangiogenic properties.
Collapse
|
18
|
Landis EG, Park HN, Chrenek M, He L, Sidhu C, Chakraborty R, Strickland R, Iuvone PM, Pardue MT. Ambient Light Regulates Retinal Dopamine Signaling and Myopia Susceptibility. Invest Ophthalmol Vis Sci 2021; 62:28. [PMID: 33502461 PMCID: PMC7846952 DOI: 10.1167/iovs.62.1.28] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Exposure to high-intensity or outdoor lighting has been shown to decrease the severity of myopia in both human epidemiological studies and animal models. Currently, it is not fully understood how light interacts with visual signaling to impact myopia. Previous work performed in the mouse retina has demonstrated that functional rod photoreceptors are needed to develop experimentally-induced myopia, alluding to an essential role for rod signaling in refractive development. Methods To determine whether dim rod-dominated illuminance levels influence myopia susceptibility, we housed male C57BL/6J mice under 12:12 light/dark cycles with scotopic (1.6 × 10−3 candela/m2), mesopic (1.6 × 101 cd/m2), or photopic (4.7 × 103 cd/m2) lighting from post-natal day 23 (P23) to P38. Half the mice received monocular exposure to −10 diopter (D) lens defocus from P28–38. Molecular assays to measure expression and content of DA-related genes and protein were conducted to determine how illuminance and lens defocus alter dopamine (DA) synthesis, storage, uptake, and degradation and affect myopia susceptibility in mice. Results We found that mice exposed to either scotopic or photopic lighting developed significantly less severe myopic refractive shifts (lens treated eye minus contralateral eye; –1.62 ± 0.37D and −1.74 ± 0.44D, respectively) than mice exposed to mesopic lighting (–3.61 ± 0.50D; P < 0.005). The 3,4-dihydroxyphenylacetic acid /DA ratio, indicating DA activity, was highest under photopic light regardless of lens defocus treatment (controls: 0.09 ± 0.011 pg/mg, lens defocus: 0.08 ± 0.008 pg/mg). Conclusions Lens defocus interacted with ambient conditions to differentially alter myopia susceptibility and DA-related genes and proteins. Collectively, these results show that scotopic and photopic lighting protect against lens-induced myopia, potentially indicating that a broad range of light levels are important in refractive development.
Collapse
Affiliation(s)
- Erica G Landis
- Department of Neuroscience, Emory University, Atlanta, Georgia, United States.,Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, Georgia, United States
| | - Han Na Park
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Micah Chrenek
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Li He
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Curran Sidhu
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Ranjay Chakraborty
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States.,Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, Georgia, United States
| | - Ryan Strickland
- Department of Neuroscience, Emory University, Atlanta, Georgia, United States
| | - P Michael Iuvone
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States.,Department of Pharmacology, Emory University, Atlanta, Georgia, United States
| | - Machelle T Pardue
- Department of Neuroscience, Emory University, Atlanta, Georgia, United States.,Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, Georgia, United States.,Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| |
Collapse
|
19
|
She Z, Hung LF, Arumugam B, Beach KM, Smith EL. Effects of low intensity ambient lighting on refractive development in infant rhesus monkeys (Macaca mulatta). Vision Res 2020; 176:48-59. [PMID: 32777589 PMCID: PMC7487012 DOI: 10.1016/j.visres.2020.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
Studies in chickens suggest low intensity ambient lighting causes myopia. The purpose of this experiment was to examine the effects of low intensity ambient lighting (dim light) on normal refractive development in macaque monkeys. Seven infant rhesus monkeys were reared under dim light (room illumination level: ~55 lx) from 24 to ~310 days of age with otherwise unrestricted vision. Refractive error, corneal power, ocular axial dimensions, and choroidal thickness were measured in anesthetized animals at the onset of the experiment and periodically throughout the dim-light-rearing period, and were compared with those of normal-light-reared monkeys. We found that dim light did not produce myopia; instead, dim-light monkeys were hyperopic relative to normal-light monkeys (median refractive errors at ~155 days, OD: +3.13 D vs. +2.31 D; OS: +3.31D vs. +2.44 D; at ~310 days, OD: +2.75D vs. +1.78D, OS: +3.00D vs. +1.75D). In addition, dim-light rearing caused sustained thickening in the choroid, but it did not alter corneal power development, nor did it change the axial nature of the refractive errors. These results showed that, for rhesus monkeys and possibly other primates, low ambient lighting by itself is not necessarily myopiagenic, but might compromise the efficiency of emmetropization.
Collapse
Affiliation(s)
- Zhihui She
- College of Optometry, University of Houston, Houston, TX, United States
| | - Li-Fang Hung
- College of Optometry, University of Houston, Houston, TX, United States; Brien Holden Vision Institute, Sydney, NSW, Australia
| | - Baskar Arumugam
- College of Optometry, University of Houston, Houston, TX, United States
| | - Krista M Beach
- College of Optometry, University of Houston, Houston, TX, United States
| | - Earl L Smith
- College of Optometry, University of Houston, Houston, TX, United States; Brien Holden Vision Institute, Sydney, NSW, Australia.
| |
Collapse
|
20
|
Nickla DL, Sarfare S, McGeehan B, Wei W, Elin-Calcador J, He L, Dhakal S, Dixon J, Maguire MG, Stone RA, Iuvone PM. Visual conditions affecting eye growth alter diurnal levels of vitreous DOPAC. Exp Eye Res 2020; 200:108226. [PMID: 32905843 DOI: 10.1016/j.exer.2020.108226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/26/2020] [Accepted: 09/03/2020] [Indexed: 11/27/2022]
Abstract
In chicks, the diurnal patterns of retinal dopamine synthesis and release are associated with refractive development. To assess the within-day patterns of dopamine release, we assayed vitreal levels of DOPAC (3,4-dihydroxyphenylacetic acid) using high performance liquid chromatography with electrochemical detection, at 4-h intervals over 24 h in eyes with experimental manipulations that change ocular growth rates. Chicks were reared under a 12 h light/12 h dark cycle; experiments began at 12 days of age. Output was assessed by modelling using the robust variance structure of Generalized Estimating Equations. Continuous spectacle lensdefocus or form deprivation: One group experienced non-restricted visual input to both eyes and served as untreated "normal" controls. Three experimental cohorts underwent monocular visual alterations known to alter eye growth and refraction: wearing a diffuser, a negative lens or a positive lens. After one full day of device-wear, chicks were euthanized at 4-h intervals over 24 h (8 birds per time/condition). Brief hyperopic defocus: Chicks wore negative lenses for only 2 daily hours either in the morning (starting at ZT 0; n = 16) or mid-day (starting at ZT 4; n = 8) for 3 days. Vitreal DOPAC was assayed. In chicks with bilateral non-restricted vision, or with continuous defocus or form-deprivation, there was a diurnal variation in vitreal DOPAC levels for all eyes (p < 0.001 for each). In normal controls, DOPAC was highest during the daytime, lowest at night, and equivalent for both eyes. In experimental groups, regardless of whether experiencing a growth stimulatory input (diffuser; negative lens) or growth inhibitory input (positive lens), DOPAC levels were reduced compared both to fellow eyes and to those of normal controls (p < 0.001 for each). These diurnal variations in vitreous DOPAC levels under different visual conditions indicate a complexity for dopaminergic mechanisms in refractive development that requires further study.
Collapse
Affiliation(s)
- D L Nickla
- Department of Biosciences, The New England College of Optometry, Boston, MA, USA.
| | - S Sarfare
- Department of Biosciences, The New England College of Optometry, Boston, MA, USA
| | - B McGeehan
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - W Wei
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - J Elin-Calcador
- Department of Biosciences, The New England College of Optometry, Boston, MA, USA
| | - L He
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
| | - S Dhakal
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
| | - J Dixon
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
| | - M G Maguire
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - R A Stone
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - P M Iuvone
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA; Department of Pharmacology & Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
21
|
Stone RA, Wei W, Sarfare S, McGeehan B, Engelhart KC, Khurana TS, Maguire MG, Iuvone PM, Nickla DL. Visual Image Quality Impacts Circadian Rhythm-Related Gene Expression in Retina and in Choroid: A Potential Mechanism for Ametropias. Invest Ophthalmol Vis Sci 2020; 61:13. [PMID: 32396635 PMCID: PMC7405616 DOI: 10.1167/iovs.61.5.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Stimulated by evidence implicating diurnal/circadian rhythms and light in refractive development, we studied the expression over 24 hours of selected clock and circadian rhythm-related genes in retina/retinal pigment epithelium (RPE) and choroid of experimental ametropias in chicks. Methods Newly hatched chicks, entrained to a 12-hour light/dark cycle for 12 to 14 days, either experienced nonrestricted vision OU (i.e., in both eyes) or received an image-blurring diffuser or a minus 10-diopter (D) or a plus 10-D defocusing lens over one eye. Starting 1 day later and at 4-hour intervals for 24 hours, the retina/RPE and choroid were separately dissected. Without pooling, total RNA was extracted, converted to cDNA, and assayed by quantitative PCR for the expression of the following genes: Opn4m, Clock, Npas2, Per3, Cry1, Arntl, and Mtnr1a. Results The expression of each gene in retina/RPE and in choroid of eyes with nonrestricted vision OU varied over 24 hours, with equal levels OU for most genes and times. Altered visual input influenced gene expression in complex patterns that varied by gene, visual input, time, and eye, affecting experimental eyes with altered vision and also contralateral eyes with nonrestricted vision. Discussion Altering visual input in ways known to induce ametropias alters the retinal/RPE and choroidal expression of circadian rhythm-related genes, further linking circadian biology with eye growth regulation. While further investigations are needed, studying circadian processes may help understand refractive mechanisms and the increasing myopia prevalence in contemporary societies where lighting patterns can desynchronize endogenous rhythms from the natural environmental light/dark cycle.
Collapse
Affiliation(s)
- Richard A. Stone
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Wenjie Wei
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Shanta Sarfare
- Department of Bioscience, New England College of Optometry, Boston, Massachusetts, United States
| | - Brendan McGeehan
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - K. Cameron Engelhart
- Department of Bioscience, New England College of Optometry, Boston, Massachusetts, United States
| | - Tejvir S. Khurana
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Maureen G. Maguire
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - P. Michael Iuvone
- Departments of Ophthalmology and Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Debora L. Nickla
- Department of Bioscience, New England College of Optometry, Boston, Massachusetts, United States
| |
Collapse
|
22
|
Hendrick A, Smith J, Stelton C, Barb S, Yan J, Cribbs B, Jain N, Yeh S, Hubbard GB, He L, Dhakal S, Iuvone PM. Dopamine metabolite levels in the vitreous of diabetic and non-diabetic humans. Exp Eye Res 2020; 195:108040. [PMID: 32360553 DOI: 10.1016/j.exer.2020.108040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/03/2020] [Accepted: 04/21/2020] [Indexed: 01/12/2023]
Abstract
Animal studies suggest that the retinal dysfunction in diabetic subjects that precedes overt clinical vasculopathy may be due to a retinal dopamine deficit. We analyzed levels of dopamine (DA) and its primary metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), in the vitreous of diabetic and non-diabetic human subjects. Adult patients undergoing pars plana vitrectomy for non-hemorrhagic indications were prospectively recruited from the Emory Eye Center in Atlanta, GA. Vitreous samples were analyzed using high performance liquid chromatography (HPLC) to measure levels of DOPAC and DA in the vitreous specimens. Vitreous samples from 9 diabetic patients and 20 from non-diabetic patients were analyzed. No eyes had apparent diabetic retinopathy. Mean normalized DA concentration in vitreous of diabetic subjects was 0.76 ± 0.12 pg/μL vs. 0.73 ± 0.08 pg/μL in non-diabetic vitreous (p = 0.849). DOPAC concentration was 8.84 ± 0.74 pg/μL in vitreous of diabetic subjects vs. 9.22 ± 0.56 pg/μL in vitreous of non-diabetic subjects (p = 0.691). No difference was observed in the concentrations of DA and DOPAC in the vitreous of people without diabetes compared to those with diabetes without retinopathy.
Collapse
Affiliation(s)
- Andrew Hendrick
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, GA, USA.
| | - Jesse Smith
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Chris Stelton
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Scott Barb
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Jiong Yan
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Blaine Cribbs
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Nieraj Jain
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Steve Yeh
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, GA, USA
| | - G Baker Hubbard
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Li He
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Susov Dhakal
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, GA, USA
| | - P Michael Iuvone
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, GA, USA; Department Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
23
|
Sarfare S, Yang J, Nickla DL. The effects of brief high intensity light on ocular growth in chicks developing myopia vary with time of day. Exp Eye Res 2020; 195:108039. [PMID: 32339518 DOI: 10.1016/j.exer.2020.108039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/04/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022]
Abstract
Evidence suggests that the relevant variable in the anti-myopigenic effect of increased time spent outdoors is the increase in light intensity. Because light is the strongest Zeitgeber, it is plausible that the effects of bright light exposure depend on time of day, and may impact circadian rhythms. In these studies, we asked whether the effects on eye growth rates and ocular rhythms of brief daily exposures to bright light differed depending on time of day in eyes developing myopia in response to form deprivation (FD) or negative lens-induced hyperopic defocus (LENS). We also studied the effects of concurrent exposures to brief hyperopic defocus and bright light. Exp. 1: Starting at 12d, chicks wearing monocular diffusers or -10 D lenses were exposed to 3 daily hours (h) of bright light (30K lux) in the morning (FD: n = 12; LENS: n = 7) or evening (FD: n = 21; LENS: n = 7) for a total of 6 exposures. Controls wore diffusers or lenses but weren't exposed to bright light ("not bright" FD: n = 14; LENS: n = 9). Exp. 2: Untreated chicks were exposed to 3 h bright light in the morning (n = 12) or evening (n = 14) for a total of 6 exposures. Controls were not exposed to bright light (n = 11). Exp. 3: Chicks were exposed to 2 h simultaneous monocular hyperopic defocus and bright light in the morning (n = 11), mid-day (n = 7) or evening (n = 8) for 5 exposures. "Not bright" lens-wearing controls were data from published work (Nickla et al., 2017). High frequency A-scan ultrasonography was done at the start and end to measure growth rates. The FD group in Exp. 1 and the morning and evening groups in Exp. 3 were measured at 6-h intervals over the final 24 h to determine parameters for the rhythms in axial length and choroidal thickness. 1. Brief bright light in the evening inhibited eye growth in eyes wearing diffusers or lenses relative to "not bright" controls(interocular differences: FD: 316 vs 468 μm, p = 0.026; LENS: 233 vs 438 μm, p = 0.03); morning bright light had no effect. There was no differential effect of time of day of exposure on the rhythm in axial length; for choroid thickness, "time" accounted for the variance between groups (2-way ANOVA interaction p = 0.027). 2. In binocularly untreated chicks, bright light in the morning had a small but significant growth stimulatory effect relative to evening exposures (803 vs 679 μm/7d; post-hoc p = 0.048). 3. Eyes exposed to simultaneous hyperopic defocus and bright light were significantly more inhibited relative to "not bright" controls for morning exposures (interocular differences: -207 vs 69 μm; p < 0.01). In conclusion, the effects of brief periods of bright light on the growth controller depended on the time of day of exposure and on the contemporaneous state ofocular growth .
Collapse
Affiliation(s)
- Shanta Sarfare
- The New England College of Optometry, 424 Beacon St, Boston, MA, USA
| | - Jane Yang
- The New England College of Optometry, 424 Beacon St, Boston, MA, USA
| | - Debora L Nickla
- The New England College of Optometry, 424 Beacon St, Boston, MA, USA.
| |
Collapse
|
24
|
Lingham G, Mackey DA, Lucas R, Yazar S. How does spending time outdoors protect against myopia? A review. Br J Ophthalmol 2019; 104:593-599. [PMID: 31722876 DOI: 10.1136/bjophthalmol-2019-314675] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/07/2019] [Accepted: 10/30/2019] [Indexed: 01/12/2023]
Abstract
Myopia is an increasingly common condition that is associated with significant costs to individuals and society. Moreover, myopia is associated with increased risk of glaucoma, retinal detachment and myopic maculopathy, which in turn can lead to blindness. It is now well established that spending more time outdoors during childhood lowers the risk of developing myopia and may delay progression of myopia. There has been great interest in further exploring this relationship and exploiting it as a public health intervention aimed at preventing myopia in children. However, spending more time outdoors can have detrimental effects, such as increased risk of melanoma, cataract and pterygium. Understanding how spending more time outdoors prevents myopia could advance development of more targeted interventions for myopia. We reviewed the evidence for and against eight facets of spending time outdoors that may protect against myopia: brighter light, reduced peripheral defocus, higher vitamin D levels, differing chromatic spectrum of light, higher physical activity, entrained circadian rhythms, less near work and greater high spatial frequency (SF) energies. There is solid evidence that exposure to brighter light can reduce risk of myopia. Peripheral defocus is able to regulate eye growth but whether spending time outdoors substantially changes peripheral defocus patterns and how this could affect myopia risk is unclear. Spectrum of light, circadian rhythms and SF characteristics are plausible factors, but there is a lack of solid evidence from human studies. Vitamin D, physical activity and near work appear unlikely to mediate the relationship between time spent outdoors and myopia.
Collapse
Affiliation(s)
- Gareth Lingham
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Robyn Lucas
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia.,National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Seyhan Yazar
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia .,Single Cell and Computational Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Abstract
Refractive errors are the product of a mismatch between the axial length of the eye and its optical power, creating blurred vision. Uncorrected refractive errors are the second leading cause of worldwide blindness. One refractive error currently attracting significant scientific interest is myopia, mostly owing to the recent rise in its prevalence worldwide and associated ocular disease burden. This increase in myopia prevalence has also been rapid, suggesting environmental influences in addition to any genetic influences on eye growth. This review defines refractive errors, describes their prevalence, and presents evidence for the influence of genetic and environmental factors related to refractive error development.
Collapse
Affiliation(s)
- Elise N. Harb
- School of Optometry, University of California, Berkeley, California 94720, USA;,
| | | |
Collapse
|
26
|
Altered ocular parameters from circadian clock gene disruptions. PLoS One 2019; 14:e0217111. [PMID: 31211778 PMCID: PMC6581257 DOI: 10.1371/journal.pone.0217111] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022] Open
Abstract
The pathophysiology of refractive errors is poorly understood. Myopia (nearsightedness) in particular both blurs vision and predisposes the eye to many blinding diseases during adulthood. Based on past findings of diurnal variations in the dimensions of the eyes of humans and other vertebrates, altered diurnal rhythms of these ocular dimensions with experimentally induced myopia, and evolving evidence that ambient light exposures influence refractive development, we assessed whether disturbances in circadian signals might alter the refractive development of the eye. In mice, retinal-specific knockout of the clock gene Bmal1 induces myopia and elongates the vitreous chamber, the optical compartment separating the lens and the retina. These alterations simulate common ocular findings in clinical myopia. In Drosophila melanogaster, knockouts of the clock genes cycle or period lengthen the pseudocone, the optical component of the ommatidium that separates the facet lens from the photoreceptors. Disrupting circadian signaling thus alters optical development of the eye in widely separated species. We propose that mechanisms of myopia include circadian dysregulation, a frequent occurrence in modern societies where myopia also is both highly prevalent and increasing at alarming rates. Addressing circadian dysregulation may improve understanding of the pathogenesis of refractive errors and introduce novel therapeutic approaches to ameliorate myopia development in children.
Collapse
|
27
|
Novel Method of Remotely Monitoring the Face-Device Distance and Face Illuminance Using Mobile Devices: A Pilot Study. J Ophthalmol 2019; 2019:1946073. [PMID: 31281665 PMCID: PMC6594255 DOI: 10.1155/2019/1946073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/21/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
Specially developed software (app) was written for handheld electronic devices that uses the device camera and light detector for real-time monitoring of near-work distance and environmental lighting. A pilot study of this novel app employed children using tablet computers in a classroom. Measurements of face-device distance and face illuminance were obtained from two schools where tablets were used regularly. Children were divided randomly into a control group (CG) and intervention group (IG). The app was calibrated in a lab and configured to store average values every 20 seconds in a remote database. In both groups, the app recorded data only when a child's face was present in the camera image. The app darkened the screen for the IG when the face-device distance was shorter than 40 cm. The total mean face-device distance was 36.8 ± 5.7 cm in CG and 47.2 ± 6.5 cm in IG. Children in IG had to accommodate approximately 0.6 D less when using their devices. The mean classroom face illuminance was 980 ± 350 lux in School #1 and 750 ± 400 lux in School #2. The novel method of remotely monitoring and controlling the face-device distance and illuminance can potentially open new paths for myopia prevention and myopia control.
Collapse
|
28
|
Landis EG, Yang V, Brown DM, Pardue MT, Read SA. Dim Light Exposure and Myopia in Children. Invest Ophthalmol Vis Sci 2019; 59:4804-4811. [PMID: 30347074 PMCID: PMC6181186 DOI: 10.1167/iovs.18-24415] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Experimental myopia in animal models suggests that bright light can influence refractive error and prevent myopia. Additionally, animal research indicates activation of rod pathways and circadian rhythms may influence eye growth. In children, objective measures of personal light exposure, recorded by wearable light sensors, have been used to examine the effects of bright light exposure on myopia. The effect of time spent in a broad range of light intensities on childhood refractive development is not known. This study aims to evaluate dim light exposure in myopia. Methods We reanalyzed previously published data to investigate differences in dim light exposure across myopic and nonmyopic children from the Role of Outdoor Activity in Myopia (ROAM) study in Queensland, Australia. The amount of time children spent in scotopic (<1-1 lux), mesopic (1-30 lux), indoor photopic (>30-1000 lux), and outdoor photopic (>1000 lux) light over both weekdays and weekends was measured with wearable light sensors. Results We found significant differences in average daily light exposure between myopic and nonmyopic children. On weekends, myopic children received significantly less scotopic light (P = 0.024) and less outdoor photopic light than nonmyopic children (P < 0.001). In myopic children, more myopic refractive errors were correlated with increased time in mesopic light (R = -0.46, P = 0.002). Conclusions These findings suggest that in addition to bright light exposure, rod pathways stimulated by dim light exposure could be important to human myopia development. Optimal strategies for preventing myopia with environmental light may include both dim and bright light exposure.
Collapse
Affiliation(s)
- Erica G Landis
- Neuroscience, Emory University, Atlanta, Georgia, United States.,Department of Ophthalmology, Emory University, Atlanta, Georgia, United States.,Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, United States
| | - Victoria Yang
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, United States.,Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Dillon M Brown
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, United States.,Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Machelle T Pardue
- Neuroscience, Emory University, Atlanta, Georgia, United States.,Department of Ophthalmology, Emory University, Atlanta, Georgia, United States.,Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, United States.,Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Scott A Read
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
29
|
Troilo D, Smith EL, Nickla DL, Ashby R, Tkatchenko AV, Ostrin LA, Gawne TJ, Pardue MT, Summers JA, Kee CS, Schroedl F, Wahl S, Jones L. IMI - Report on Experimental Models of Emmetropization and Myopia. Invest Ophthalmol Vis Sci 2019; 60:M31-M88. [PMID: 30817827 PMCID: PMC6738517 DOI: 10.1167/iovs.18-25967] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 11/24/2022] Open
Abstract
The results of many studies in a variety of species have significantly advanced our understanding of the role of visual experience and the mechanisms of postnatal eye growth, and the development of myopia. This paper surveys and reviews the major contributions that experimental studies using animal models have made to our thinking about emmetropization and development of myopia. These studies established important concepts informing our knowledge of the visual regulation of eye growth and refractive development and have transformed treatment strategies for myopia. Several major findings have come from studies of experimental animal models. These include the eye's ability to detect the sign of retinal defocus and undergo compensatory growth, the local retinal control of eye growth, regulatory changes in choroidal thickness, and the identification of components in the biochemistry of eye growth leading to the characterization of signal cascades regulating eye growth and refractive state. Several of these findings provided the proofs of concepts that form the scientific basis of new and effective clinical treatments for controlling myopia progression in humans. Experimental animal models continue to provide new insights into the cellular and molecular mechanisms of eye growth control, including the identification of potential new targets for drug development and future treatments needed to stem the increasing prevalence of myopia and the vision-threatening conditions associated with this disease.
Collapse
Affiliation(s)
- David Troilo
- SUNY College of Optometry, State University of New York, New York, New York, United States
| | - Earl L. Smith
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Debora L. Nickla
- Biomedical Sciences and Disease, New England College of Optometry, Boston, Massachusetts, United States
| | - Regan Ashby
- Health Research Institute, University of Canberra, Canberra, Australia
| | - Andrei V. Tkatchenko
- Department of Ophthalmology, Department of Pathology and Cell Biology, Columbia University, New York, New York, United States
| | - Lisa A. Ostrin
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Timothy J. Gawne
- School of Optometry, University of Alabama Birmingham, Birmingham, Alabama, United States
| | - Machelle T. Pardue
- Biomedical Engineering, Georgia Tech College of Engineering, Atlanta, Georgia, United States31
| | - Jody A. Summers
- College of Medicine, University of Oklahoma, Oklahoma City, Oklahoma, United States
| | - Chea-su Kee
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Falk Schroedl
- Departments of Ophthalmology and Anatomy, Paracelsus Medical University, Salzburg, Austria
| | - Siegfried Wahl
- Institute for Ophthalmic Research, University of Tuebingen, Zeiss Vision Science Laboratory, Tuebingen, Germany
| | - Lyndon Jones
- CORE, School of Optometry and Vision Science, University of Waterloo, Ontario, Canada
| |
Collapse
|
30
|
Galvis V, Tello A, Gómez LM, Camacho PA, Ortiz RG. Re: Wu et al.: Myopia prevention and outdoor light intensity in a school-based cluster randomized trial (Ophthalmology. 2018;125:1239-1250). Ophthalmology 2018; 125:e77. [PMID: 30318042 DOI: 10.1016/j.ophtha.2018.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Virgilio Galvis
- Centro Oftalmologico Virgilio Galvis, Floridablanca, Colombia; Fundación Oftalmológica de Santander FOSCAL, Floridablanca, Colombia; Universidad Autónoma de Bucaramanga UNAB, Bucaramanga, Colombia
| | - Alejandro Tello
- Centro Oftalmologico Virgilio Galvis, Floridablanca, Colombia; Fundación Oftalmológica de Santander FOSCAL, Floridablanca, Colombia; Universidad Autónoma de Bucaramanga UNAB, Bucaramanga, Colombia.
| | - Luz María Gómez
- Fundación Oftalmológica de Santander FOSCAL, Floridablanca, Colombia; Universidad Autónoma de Bucaramanga UNAB, Bucaramanga, Colombia
| | - Paul A Camacho
- Fundación Oftalmológica de Santander FOSCAL, Floridablanca, Colombia; Universidad Autónoma de Bucaramanga UNAB, Bucaramanga, Colombia
| | - Rafael G Ortiz
- Fundación Oftalmológica de Santander FOSCAL, Floridablanca, Colombia
| |
Collapse
|
31
|
|
32
|
Conserved characteristics of ocular refractive development - Did the eye evolve once? Exp Eye Res 2018; 183:84-87. [PMID: 29758190 DOI: 10.1016/j.exer.2018.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/08/2023]
Abstract
It has been speculated that the unitary eyes of vertebrates and molluscs, and the compound eyes of insects and crustaceans, evolved separately. On the other hand, the common use of rhodopsin as a photoreceptor molecule, and the conservation of Pax6 as a master control gene for eye development, suggest instead that the eye evolved once. Yet, recently the molecular genetics that had seemed to suggest a definitive answer to this evolutionary point has once again become cloudy. Here we propose an alternative approach to addressing the question of eye evolution through comparative analyses of physiological optics. Serendipitous discoveries involving form deprivation and defocusing with young monkeys and chicks demonstrated the conserved importance of visual experience on eye development. Similar results have been demonstrated in teleosts, although differences exist in eye anatomy, physiology and optics. In particular, since fish grow throughout life, these effects can also be demonstrated in adults. In comparison, the cephalopod eye is an often-cited example of convergent evolution with the vertebrate eye, although considerable developmental differences exist. Nevertheless, squid eyes from animals raised under alternative lighting exhibit anatomical and refractive changes that agree with those found in vertebrates. Together, these observations provide functional and structural support for the view that the eye evolved once. Because of their very compressed lifespans (only one to two years) cephalopods may be ideal animal models for the study of ocular refractive development.
Collapse
|
33
|
Chakraborty R, Ostrin LA, Nickla DL, Iuvone PM, Pardue MT, Stone RA. Circadian rhythms, refractive development, and myopia. Ophthalmic Physiol Opt 2018; 38:217-245. [PMID: 29691928 PMCID: PMC6038122 DOI: 10.1111/opo.12453] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/11/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE Despite extensive research, mechanisms regulating postnatal eye growth and those responsible for ametropias are poorly understood. With the marked recent increases in myopia prevalence, robust and biologically-based clinical therapies to normalize refractive development in childhood are needed. Here, we review classic and contemporary literature about how circadian biology might provide clues to develop a framework to improve the understanding of myopia etiology, and possibly lead to rational approaches to ameliorate refractive errors developing in children. RECENT FINDINGS Increasing evidence implicates diurnal and circadian rhythms in eye growth and refractive error development. In both humans and animals, ocular length and other anatomical and physiological features of the eye undergo diurnal oscillations. Systemically, such rhythms are primarily generated by the 'master clock' in the surpachiasmatic nucleus, which receives input from the intrinsically photosensitive retinal ganglion cells (ipRGCs) through the activation of the photopigment melanopsin. The retina also has an endogenous circadian clock. In laboratory animals developing experimental myopia, oscillations of ocular parameters are perturbed. Retinal signaling is now believed to influence refractive development; dopamine, an important neurotransmitter found in the retina, not only entrains intrinsic retinal rhythms to the light:dark cycle, but it also modulates refractive development. Circadian clocks comprise a transcription/translation feedback control mechanism utilizing so-called clock genes that have now been associated with experimental ametropias. Contemporary clinical research is also reviving ideas first proposed in the nineteenth century that light exposures might impact refraction in children. As a result, properties of ambient lighting are being investigated in refractive development. In other areas of medical science, circadian dysregulation is now thought to impact many non-ocular disorders, likely because the patterns of modern artificial lighting exert adverse physiological effects on circadian pacemakers. How, or if, such modern light exposures and circadian dysregulation contribute to refractive development is not known. SUMMARY The premise of this review is that circadian biology could be a productive area worthy of increased investigation, which might lead to the improved understanding of refractive development and improved therapeutic interventions.
Collapse
Affiliation(s)
- Ranjay Chakraborty
- College of Nursing and Health Sciences, Flinders University, Adelaide, Australia
| | | | | | | | - Machelle T. Pardue
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur
| | - Richard A. Stone
- University of Pennsylvania School of Medicine, Philadelphia, USA
| |
Collapse
|
34
|
Abstract
Despite the global pandemic of myopia, the precise molecular mechanism of the onset of myopia remains largely unknown. This is partially because of the lack of efficient murine myopic models that allow genetic manipulation at low cost. Here we report a highly practical and reproducible lens-induced myopia model by specially designed frames and lenses for mice. A lens power dependent myopic induction in mice was shown until minus 30 diopter lenses. The phenotype was significantly stronger than form-deprivation myopia. We presented the protocol for precise evaluations of the state of myopia, including refraction, corneal curvature and axial length using up-to-date devices. We also found that myopic mouse eyes showed decreased visual acuity on optokinetic response examination. Finally, we confirmed the anti-myopic effect of 1% atropine using this model, which showed its potential in drug screening. The strong phenotype, stable evaluation and the potential for gene manipulation utilizing the presented method in mice will accelerate the translational research of myopia.
Collapse
|
35
|
Zhou X, Pardue MT, Iuvone PM, Qu J. Dopamine signaling and myopia development: What are the key challenges. Prog Retin Eye Res 2017; 61:60-71. [PMID: 28602573 DOI: 10.1016/j.preteyeres.2017.06.003] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/23/2017] [Accepted: 06/05/2017] [Indexed: 01/11/2023]
Abstract
In the face of an "epidemic" increase in myopia over the last decades and myopia prevalence predicted to reach 2.5 billion people by the end of this decade, there is an urgent need to develop effective and safe therapeutic interventions to slow down this "myopia booming" and prevent myopia-related complications and vision loss. Dopamine (DA) is an important neurotransmitter in the retina and mediates diverse functions including retina development, visual signaling, and refractive development. Inspired by the convergence of epidemiological and animal studies in support of the inverse relationship between outdoor activity and risk of developing myopia and by the close biological relationship between light exposure and dopamine release/signaling, we felt it is timely and important to critically review the role of DA in myopia development. This review will revisit several key points of evidence for and against DA mediating light control of myopia: 1) the causal role of extracellular retinal DA levels, 2) the mechanism and action of dopamine D1 and D2 receptors and 3) the roles of cellular/circuit retinal pathways. We examine the experiments that show causation by altering DA, DA receptors and visual pathways using pharmacological, transgenic, or visual environment approaches. Furthermore, we critically evaluate the safety issues of a DA-based treatment strategy and some approaches to address these issues. The review identifies the key questions and challenges in translating basic knowledge on DA signaling and myopia from animal studies into effective pharmacological treatments for myopia in children.
Collapse
Affiliation(s)
- Xiangtian Zhou
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science. 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, China
| | - Machelle T Pardue
- Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr, Atlanta, GA 30332, United States; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, United States
| | - P Michael Iuvone
- Department of Ophthalmology, Emory University School of Medicine, 1365B Clifton Rd NE, Atlanta, GA 30322, United States; Department of Pharmacology, Emory University School of Medicine, 1365B Clifton Rd NE, Atlanta, GA 30322, United States
| | - Jia Qu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science. 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, China.
| |
Collapse
|
36
|
|