1
|
Jeon KI, Kumar A, Brookes PS, Nehrke K, Huxlin KR. Manipulating mitochondrial pyruvate carrier function causes metabolic remodeling in corneal myofibroblasts that ameliorates fibrosis. Redox Biol 2024; 75:103235. [PMID: 38889622 PMCID: PMC11231598 DOI: 10.1016/j.redox.2024.103235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Myofibroblasts are key cellular effectors of corneal wound healing from trauma, surgery, or infection. However, their persistent deposition of disorganized extracellular matrix can also cause corneal fibrosis and visual impairment. Recent work showed that the PPARγ agonist Troglitazone can mitigate established corneal fibrosis, and parallel in vitro data suggested this occurred through inhibition of the mitochondrial pyruvate carrier (MPC) rather than PPARγ. In addition to oxidative phosphorylation (Ox-Phos), pyruvate and other mitochondrial metabolites provide carbon for the synthesis of biological macromolecules. However, it is currently unclear how these roles selectively impact fibrosis. Here, we performed bioenergetic, metabolomic, and epigenetic analyses of corneal fibroblasts treated with TGF-β1 to stimulate myofibroblast trans-differentiation, with further addition of Troglitazone or the MPC inhibitor UK5099, to identify MPC-dependencies that may facilitate remodeling and loss of the myofibroblast phenotype. Our results show that a shift in energy metabolism is associated with, but not sufficient to drive cellular remodeling. Metabolites whose abundances were sensitive to MPC inhibition suggest that sustained carbon influx into the Krebs' cycle is prioritized over proline synthesis to fuel collagen deposition. Furthermore, increased abundance of acetyl-CoA and increased histone H3 acetylation suggest that epigenetic mechanisms downstream of metabolic remodeling may reinforce cellular phenotypes. Overall, our results highlight a novel molecular target and metabolic vulnerability that affects myofibroblast persistence in the context of corneal wounding.
Collapse
Affiliation(s)
- Kye-Im Jeon
- Dept. Ophthalmology, Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Ankita Kumar
- Dept. Ophthalmology, Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Paul S Brookes
- Dept. Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Keith Nehrke
- Dept. Medicine-Nephrology Division, University of Rochester, Rochester, NY, USA
| | - Krystel R Huxlin
- Dept. Ophthalmology, Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
2
|
Trujillo Cubillo L, Gurdal M, Zeugolis DI. Corneal fibrosis: From in vitro models to current and upcoming drug and gene medicines. Adv Drug Deliv Rev 2024; 209:115317. [PMID: 38642593 DOI: 10.1016/j.addr.2024.115317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Fibrotic diseases are characterised by myofibroblast differentiation, uncontrolled pathological extracellular matrix accumulation, tissue contraction, scar formation and, ultimately tissue / organ dysfunction. The cornea, the transparent tissue located on the anterior chamber of the eye, is extremely susceptible to fibrotic diseases, which cause loss of corneal transparency and are often associated with blindness. Although topical corticosteroids and antimetabolites are extensively used in the management of corneal fibrosis, they are associated with glaucoma, cataract formation, corneoscleral melting and infection, imposing the need of far more effective therapies. Herein, we summarise and discuss shortfalls and recent advances in in vitro models (e.g. transforming growth factor-β (TGF-β) / ascorbic acid / interleukin (IL) induced) and drug (e.g. TGF-β inhibitors, epigenetic modulators) and gene (e.g. gene editing, gene silencing) therapeutic strategies in the corneal fibrosis context. Emerging therapeutical agents (e.g. neutralising antibodies, ligand traps, receptor kinase inhibitors, antisense oligonucleotides) that have shown promise in clinical setting but have not yet assessed in corneal fibrosis context are also discussed.
Collapse
Affiliation(s)
- Laura Trujillo Cubillo
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Mehmet Gurdal
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
3
|
Mohan RR, Gupta S, Kumar R, Sinha NR, Landreneau J, Sinha PR, Tandon A, Chaurasia SS, Hesemann NP. Tissue-targeted and localized AAV5-DCN and AAV5-PEDF combination gene therapy abrogates corneal fibrosis and concurrent neovascularization in rabbit eyes in vivo. Ocul Surf 2024; 32:13-25. [PMID: 38191093 DOI: 10.1016/j.jtos.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/20/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
PURPOSE Corneal fibrosis and neovascularization (CNV) after ocular trauma impairs vision. This study tested therapeutic potential of tissue-targeted adeno-associated virus5 (AAV5) mediated decorin (DCN) and pigment epithelium-derived factor (PEDF) combination genes in vivo. METHODS Corneal fibrosis and CNV were induced in New Zealand White rabbits via chemical trauma. Gene therapy in stroma was delivered 30-min after chemical-trauma via topical AAV5-DCN and AAV5-PEDF application using a cloning cylinder. Clinical eye examinations and multimodal imaging in live rabbits were performed periodically and corneal tissues were collected 9-day and 15-day post euthanasia. Histological, cellular, and molecular and apoptosis assays were used for efficacy, tolerability, and mechanistic studies. RESULTS The AAV5-DCN and AAV5-PEDF combination gene therapy significantly reduced corneal fibrosis (p < 0.01 or p < 0.001) and CNV (p < 0.001) in therapy-given (chemical-trauma and AAV5-DCN + AAV5-PEDF) rabbit eyes compared to the no-therapy given eyes (chemical-trauma and AAV5-naked vector). Histopathological analyses demonstrated significantly reduced fibrotic α-smooth muscle actin and endothelial lectin expression in therapy-given corneas compared to no-therapy corneas on day-9 (p < 0.001) and day-15 (p < 0.001). Further, therapy-given corneas showed significantly increased Fas-ligand mRNA levels (p < 0.001) and apoptotic cell death in neovessels (p < 0.001) compared to no-therapy corneas. AAV5 delivered 2.69 × 107 copies of DCN and 2.31 × 107 copies of PEDF genes per μg of DNA. AAV5 vector and delivered DCN and PEDF genes found tolerable to the rabbit eyes and caused no significant toxicity to the cornea. CONCLUSION The combination AAV5-DCN and AAV5-PEDF topical gene therapy effectively reduces corneal fibrosis and CNV with high tolerability in vivo in rabbits. Additional studies are warranted.
Collapse
Affiliation(s)
- Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Mason Eye Institute, University of Missouri, Columbia, MO, 65212, USA.
| | - Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Rajnish Kumar
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - James Landreneau
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Mason Eye Institute, University of Missouri, Columbia, MO, 65212, USA
| | - Prashant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Ashish Tandon
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Mason Eye Institute, University of Missouri, Columbia, MO, 65212, USA
| | - Shyam S Chaurasia
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Nathan P Hesemann
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Mason Eye Institute, University of Missouri, Columbia, MO, 65212, USA
| |
Collapse
|
4
|
Zhang L, Zhang XY, Hu YL, You J. Synthesis, Characterization and Biosafety Evaluation of Hollow Gold Nanospheres. Curr Pharm Biotechnol 2024; 25:340-349. [PMID: 37309773 DOI: 10.2174/1389201024666230612114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023]
Abstract
OBJECTIVES In order to assess the biosafety of HAuNS using zebrafish models and the cancer cell lines HepG2, HEK293, and A549, this study prepared HAuNS in a variety of sizes and alterations. METHODS By oxidizing cobalt nanoparticles encased in gold shells, HAuNS were created. In the meantime, PEG- and PEI-coated HAuNS were created. The diameters of the HAuNS that were produced were 30~40 nm, 50~60 nm, and 70~80 nm. MTT assay was used to assess the toxicity of HAuNS on HepG2, HEK293, and A549 cells. For the investigation of their toxicities, HAuNS (50~60 nm) of various concentrations were incubated with zebrafish embryos. Then, cell death was determined using acridine orange staining. RESULTS In a cell line model, it was demonstrated that purified HAuNS exhibit lower toxicity than unpurified HAuNS. Meanwhile, it was discovered that surface-modified HAuNS was less hazardous than unmodified HAuNS. Unpurified HAuNS (50.60 nm) exposure to embryos caused deformity and increased mortality. Moreover, embryos exposed to HAuNS displayed an increase in cell death, showing that HAuNS can put zebrafish under physiological stress. CONCLUSION The possible toxicity of HAuNS is now more understood thanks to this investigation. The details could improve our comprehension of the nanotoxicity of medication delivery systems. Comparing HAuNS (50~60 nm) to the other two particle sizes, its toxicity was quite low. Compared to unpurified HAuNS, purified HAuNS displayed less toxicity. Comparing PEI-HAuNS and HAuNS to PEG-HAuNS, cytotoxicity was found to be lower. Our data support the use of pure HAuNS, HAuNS-PEG, and HAuNS (50~60 nm) as possible photothermal conductors when seen as a whole.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Archaeology and Cultural Heritage, Zhejiang University, Hangzhou, P.R. China
- Naiman Market Inspection and Testing Center, Tongliao, P.R. China
| | - Xiao-Yan Zhang
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Yu-Lan Hu
- Department of Archaeology and Cultural Heritage, Zhejiang University, Hangzhou, P.R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
5
|
Tarvestad-Laise KE, Ceresa BP. Modulating Growth Factor Receptor Signaling to Promote Corneal Epithelial Homeostasis. Cells 2023; 12:2730. [PMID: 38067157 PMCID: PMC10706396 DOI: 10.3390/cells12232730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The corneal epithelium is the first anatomical barrier between the environment and the cornea; it is critical for proper light refraction onto the retina and prevents pathogens (e.g., bacteria, viruses) from entering the immune-privileged eye. Trauma to the highly innervated corneal epithelium is extremely painful and if not resolved quickly or properly, can lead to infection and ultimately blindness. The healthy eye produces its own growth factors and is continuously bathed in tear fluid that contains these proteins and other nutrients to maintain the rapid turnover and homeostasis of the ocular surface. In this article, we review the roles of growth factors in corneal epithelial homeostasis and regeneration and some of the limitations to their use therapeutically.
Collapse
Affiliation(s)
- Kate E. Tarvestad-Laise
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Brian P. Ceresa
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- Department of Ophthalmology and Vision Sciences, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
6
|
Gupta S, Martin LM, Zhang E, Sinha PR, Landreneau J, Sinha NR, Hesemann NP, Mohan RR. Toxicological effects of ocular acrolein exposure to eyelids in rabbits in vivo. Exp Eye Res 2023; 234:109575. [PMID: 37451567 DOI: 10.1016/j.exer.2023.109575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/19/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Acrolein is a highly reactive volatile toxic chemical that injures the eyes and many organs. It has been used in wars and terrorism for wounding masses on multiple occasions and is readily accessible commercially. Our earlier studies revealed acrolein's toxicity to the cornea and witnessed damage to other ocular tissues. Eyelids play a vital role in keeping eyes mobile, moist, lubricated, and functional utilizing a range of diverse lipids produced by the Meibomian glands located in the upper and lower eyelids. This study sought to investigate acrolein's toxicity to eyelid tissues by studying the expression of inflammatory and lipid markers in rabbit eyes in vivo utilizing our reported vapor-cap model. The study was approved by the institutional animal care and use committees and followed ARVO guidelines. Twelve New Zealand White Rabbits were divided into 3 groups: Naïve (group 1), 1-min acrolein exposure (group 2), or 3-min acrolein exposure (group 3). The toxicological effects of acrolein on ocular health in live animals were monitored with regular clinical eye exams and intraocular pressure measurements and eyelid tissues post-euthanasia were subjected to H&E and Masson's trichrome histology and qRT-PCR analysis. Clinical eye examinations witnessed severely swollen eyelids, abnormal ocular discharge, chemosis, and elevated intraocular pressure (p < 0.001) in acrolein-exposed eyes. Histological studies supported clinical findings and exhibited noticeable changes in eyelid tissue morphology. Gene expression studies exhibited significantly increased expression of inflammatory and lipid mediators (LOX, PAF, Cox-2, and LTB4; p < 0.001) in acrolein-exposed eyelid tissues compared to naïve eyelid tissues. The results suggest that acrolein exposure to the eyes causes acute damage to eyelids by altering inflammatory and lipid mediators in vivo.
Collapse
Affiliation(s)
- Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Lynn M Martin
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Eric Zhang
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Prashant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - James Landreneau
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Nathan P Hesemann
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
7
|
Wei J, Mu J, Tang Y, Qin D, Duan J, Wu A. Next-generation nanomaterials: advancing ocular anti-inflammatory drug therapy. J Nanobiotechnology 2023; 21:282. [PMID: 37598148 PMCID: PMC10440041 DOI: 10.1186/s12951-023-01974-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/29/2023] [Indexed: 08/21/2023] Open
Abstract
Ophthalmic inflammatory diseases, including conjunctivitis, keratitis, uveitis, scleritis, and related conditions, pose considerable challenges to effective management and treatment. This review article investigates the potential of advanced nanomaterials in revolutionizing ocular anti-inflammatory drug interventions. By conducting an exhaustive analysis of recent advancements and assessing the potential benefits and limitations, this review aims to identify promising avenues for future research and clinical applications. The review commences with a detailed exploration of various nanomaterial categories, such as liposomes, dendrimers, nanoparticles (NPs), and hydrogels, emphasizing their unique properties and capabilities for accurate drug delivery. Subsequently, we explore the etiology and pathophysiology of ophthalmic inflammatory disorders, highlighting the urgent necessity for innovative therapeutic strategies and examining recent preclinical and clinical investigations employing nanomaterial-based drug delivery systems. We discuss the advantages of these cutting-edge systems, such as biocompatibility, bioavailability, controlled release, and targeted delivery, alongside potential challenges, which encompass immunogenicity, toxicity, and regulatory hurdles. Furthermore, we emphasize the significance of interdisciplinary collaborations among material scientists, pharmacologists, and clinicians in expediting the translation of these breakthroughs from laboratory environments to clinical practice. In summary, this review accentuates the remarkable potential of advanced nanomaterials in redefining ocular anti-inflammatory drug therapy. We fervently support continued research and development in this rapidly evolving field to overcome existing barriers and improve patient outcomes for ophthalmic inflammatory disorders.
Collapse
Affiliation(s)
- Jing Wei
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jinyu Mu
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Education Ministry Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Education Ministry Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Junguo Duan
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Education Ministry Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
8
|
Kumar R, Sinha NR, Mohan RR. Corneal gene therapy: Structural and mechanistic understanding. Ocul Surf 2023; 29:279-297. [PMID: 37244594 DOI: 10.1016/j.jtos.2023.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Cornea, a dome-shaped and transparent front part of the eye, affords 2/3rd refraction and barrier functions. Globally, corneal diseases are the leading cause of vision impairment. Loss of corneal function including opacification involve the complex crosstalk and perturbation between a variety of cytokines, chemokines and growth factors generated by corneal keratocytes, epithelial cells, lacrimal tissues, nerves, and immune cells. Conventional small-molecule drugs can treat mild-to-moderate traumatic corneal pathology but requires frequent application and often fails to treat severe pathologies. The corneal transplant surgery is a standard of care to restore vision in patients. However, declining availability and rising demand of donor corneas are major concerns to maintain ophthalmic care. Thus, the development of efficient and safe nonsurgical methods to cure corneal disorders and restore vision in vivo is highly desired. Gene-based therapy has huge potential to cure corneal blindness. To achieve a nonimmunogenic, safe and sustained therapeutic response, the selection of a relevant genes, gene editing methods and suitable delivery vectors are vital. This article describes corneal structural and functional features, mechanistic understanding of gene therapy vectors, gene editing methods, gene delivery tools, and status of gene therapy for treating corneal disorders, diseases, and genetic dystrophies.
Collapse
Affiliation(s)
- Rajnish Kumar
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow campus, UP, 226028, India
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
9
|
Sampaio LP, Martinez VV, Shiju TM, Hilgert GSL, Santhiago MR, Wilson SE. Cell Biology of Spontaneous Persistent Epithelial Defects After Photorefractive Keratectomy in Rabbits. Transl Vis Sci Technol 2023; 12:15. [PMID: 37184499 PMCID: PMC10187792 DOI: 10.1167/tvst.12.5.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/15/2023] [Indexed: 05/16/2023] Open
Abstract
Purpose To evaluate wound healing in rabbit corneas that developed a spontaneous persistent epithelial defect (PED) after photorefractive keratectomy (PRK). Methods Forty-eight 10- to 15-week-old female New Zealand White rabbits weighing 2.5 to 3.0 kg underwent either -3 diopter (D) or -9 D PRK to generate a series of corneas to study wound healing after injury. During that series, seven corneas developed a PED detected with 1% fluorescein staining at a slit lamp that either did not have epithelial closure by 1 week after surgery or subsequently had the closed epithelium break down to form a PED 2 to 3 weeks after surgery. The corneas had slit-lamp photography, with and without 1% fluorescein, and were removed from the normal PRK series. Each PED cornea was evaluated using immunohistochemistry for the myofibroblast marker α-smooth muscle actin (α-SMA), keratocyte marker keratocan, and mesenchymal cell marker vimentin, as well as basement membrane components perlecan and collagen type IV. Results All seven corneas that had PRK with a PED, even the two evaluated at only 1 week after PRK, had α-SMA-positive myofibroblasts populating the anterior stroma within the PED, along with comingled α-SMA-negative cells that were likely corneal fibroblasts and possibly bone marrow-derived fibrocytes. Both perlecan and collagen type IV accumulated in the anterior stroma of the epithelial defects without an epithelial basement membrane, likely produced by corneal fibroblasts to modulate transforming growth factor-β entering the stroma from the tears and peripheral epithelium. Conclusions Corneas with a PED that occurred following PRK (a procedure that produces a transient neurotropic state in the cornea) had myofibroblasts populating the superficial stroma within the epithelial defect as early as 1 week after the surgery. Translational Relevance Pharmacologic treatments that trigger myofibroblast apoptosis, including topical losartan, could facilitate decreased scarring fibrosis in corneas with a PED.
Collapse
Affiliation(s)
- Lycia Pedral Sampaio
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Ophthalmology at University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Sarkar S, Panikker P, D’Souza S, Shetty R, Mohan RR, Ghosh A. Corneal Regeneration Using Gene Therapy Approaches. Cells 2023; 12:1280. [PMID: 37174680 PMCID: PMC10177166 DOI: 10.3390/cells12091280] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
One of the most remarkable advancements in medical treatments of corneal diseases in recent decades has been corneal transplantation. However, corneal transplants, including lamellar strategies, have their own set of challenges, such as graft rejection, delayed graft failure, shortage of donor corneas, repeated treatments, and post-surgical complications. Corneal defects and diseases are one of the leading causes of blindness globally; therefore, there is a need for gene-based interventions that may mitigate some of these challenges and help reduce the burden of blindness. Corneas being immune-advantaged, uniquely avascular, and transparent is ideal for gene therapy approaches. Well-established corneal surgical techniques as well as their ease of accessibility for examination and manipulation makes corneas suitable for in vivo and ex vivo gene therapy. In this review, we focus on the most recent advances in the area of corneal regeneration using gene therapy and on the strategies involved in the development of such therapies. We also discuss the challenges and potential of gene therapy for the treatment of corneal diseases. Additionally, we discuss the translational aspects of gene therapy, including different types of vectors, particularly focusing on recombinant AAV that may help advance targeted therapeutics for corneal defects and diseases.
Collapse
Affiliation(s)
- Subhradeep Sarkar
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, Karnataka, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Priyalakshmi Panikker
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, Karnataka, India
| | - Sharon D’Souza
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore 560010, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore 560010, Karnataka, India
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, Karnataka, India
| |
Collapse
|
11
|
Yang GN, Roberts PK, Gardner-Russell J, Shah MH, Couper TA, Zhu Z, Pollock GA, Dusting GJ, Daniell M. From bench to clinic: Emerging therapies for corneal scarring. Pharmacol Ther 2023; 242:108349. [PMID: 36682466 DOI: 10.1016/j.pharmthera.2023.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Corneal diseases are one of the leading causes of moderate-to-severe visual impairment and blindness worldwide, after glaucoma, cataract, and retinal disease in overall importance. Given its tendency to affect people at a younger age than other blinding conditions such as cataract and glaucoma, corneal scarring poses a huge burden both on the individuals and society. Furthermore, corneal scarring and fibrosis disproportionately affects people in poorer and remote areas, making it a significant ophthalmic public health problem. Traditional medical strategies, such as topical corticosteroids, are not effective in preventing fibrosis or scars. Corneal transplantation, the only effective sight-restoring treatment for corneal scars, is curbed by challenges including a severe shortage of tissue, graft rejection, secondary conditions, cultural barriers, the lack of well-trained surgeons, operating rooms, and well-equipped infrastructures. Thanks to tremendous research efforts, emerging therapeutic options including gene therapy, protein therapy, cell therapy and novel molecules are in development to prevent the progression of corneal scarring and compliment the surgical options currently available for treating established corneal scars in clinics. In this article, we summarise the most relevant preclinical and clinical studies on emerging therapies for corneal scarring in recent years, showing how these approaches may prevent scarring in its early development.
Collapse
Affiliation(s)
- Gink N Yang
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia.
| | - Philippe Ke Roberts
- Department of Ophthalmology, Medical University Vienna, 18-20 Währinger Gürtel, Vienna 1090, Austria
| | - Jesse Gardner-Russell
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Manisha H Shah
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Terry A Couper
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia; Lions Eye Donation Service, level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia
| | - Zhuoting Zhu
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Graeme A Pollock
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia; Lions Eye Donation Service, level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Mark Daniell
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia; Lions Eye Donation Service, level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia
| |
Collapse
|
12
|
Varkoly G, Hortobágyi TG, Gebri E, Bencze J, Hortobágyi T, Módis L. Expression Pattern of Tenascin-C, Matrilin-2, and Aggrecan in Diseases Affecting the Corneal Endothelium. J Clin Med 2022; 11:jcm11205991. [PMID: 36294311 PMCID: PMC9604752 DOI: 10.3390/jcm11205991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose: The aim of this study was to examine the expression pattern of tenascin-C, matrilin-2, and aggrecan in irreversible corneal endothelial pathology such as pseudophakic bullous keratopathy (PBK) and Fuchs’ endothelial corneal dystrophy (FECD), which most frequently require corneal transplantation. Materials and methods: Histological specimens of corneal buttons removed during keratoplasty were investigated in PBK (n = 20) and FECD (n = 9) and compared to healthy control corneas (n = 10). The sections were studied by chromogenic immunohistochemistry (CHR-IHC) and submitted for evaluation by two investigators. Semiquantitative scoring (0 to 3+) was applied according to standardized methods at high magnification (400x). Each layer of the cornea was investigated; in addition, the stroma was subdivided into anterior, middle, and posterior parts for more precise analysis. In case of non-parametric distribution Mann−Whitney test was applied to compare two groups. Kruskal−Wallis and Dunn’s multiple comparisons tests have been applied for comparison of the chromogenic IHC signal intensity among corneal layers within the control and patient groups. Differences of p < 0.05 were considered as significant. Results: Significantly elevated tenascin-C immunopositivity was present in the epithelium and every layer of the stroma in both pathologic conditions as compared to normal controls. In addition, also significantly stronger matrilin-2 positivity was detected in the epithelium; however, weaker reaction was present in the endothelium in PBK cases. Minimal, but significantly elevated immunopositivity could be observed in the anterior and posterior stroma in the FECD group. Additionally, minimally, but significantly higher aggrecan immunoreaction was present in the anterior stroma in PBK and in the posterior stroma in both endothelial disorders. All three antibodies disclosed the strongest reaction in the posterior stroma either in PBK or in FECD cases. Conclusions: These extracellular matrix molecules disclosed up to moderate immunopositivity in the corneal layers in varying extents. Through their networking, bridging, and adhesive abilities these proteins are involved in corneal regeneration and tissue reorganization in endothelial dysfunction.
Collapse
Affiliation(s)
- Gréta Varkoly
- Department of Ophthalmology, Szabolcs-Szatmár-Bereg County Hospitals, 4400 Nyíregyháza, Hungary
| | - Tibor G. Hortobágyi
- Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Enikő Gebri
- Department of Dentoalveolar Surgery and Dental Outpatient Care, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - János Bencze
- Division of Radiology and Imaging Science, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tibor Hortobágyi
- Department of Neurology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Institute of Psychiatry Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, 4011 Stavanger, Norway
- Institute of Neuropathology, University Hospital Zurich, 8091 Zurich, Switzerland
- Correspondence:
| | - László Módis
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
13
|
Gupta S, Fink MK, Kempuraj D, Sinha NR, Martin LM, Keele LM, Sinha PR, Giuliano EA, Hesemann NP, Raikwar SP, Chaurasia SS, Mohan RR. Corneal fibrosis abrogation by a localized AAV-mediated inhibitor of differentiation 3 (Id3) gene therapy in rabbit eyes in vivo. Mol Ther 2022; 30:3257-3269. [PMID: 35780298 PMCID: PMC9552811 DOI: 10.1016/j.ymthe.2022.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/18/2022] [Accepted: 06/29/2022] [Indexed: 11/28/2022] Open
Abstract
Previously we found that inhibitor of differentiation 3 (Id3) gene, a transcriptional repressor, efficiently inhibits corneal keratocyte differentiation to myofibroblasts in vitro. This study evaluated the potential of adeno-associated virus 5 (AAV5)-mediated Id3 gene therapy to treat corneal scarring using an established rabbit in vivo disease model. Corneal scarring/fibrosis in rabbit eyes was induced by alkali trauma, and 24 h thereafter corneas were administered with either balanced salt solution AAV5-naked vector, or AAV5-Id3 vector (n = 6/group) via an optimized reported method. Therapeutic effects of AAV5-Id3 gene therapy on corneal pathology and ocular health were evaluated with clinical, histological, and molecular techniques. Localized AAV5-Id3 gene therapy significantly inhibited corneal fibrosis/haze clinically from 2.7 to 0.7 on the Fantes scale in live animals (AAV5-naked versus AAV5-Id3; p < 0.001). Furthermore, AAV5-Id3 treatment significantly reduced profibrotic gene mRNA levels: α-smooth muscle actin (α-SMA) (2.8-fold; p < 0.001), fibronectin (3.2-fold; p < 0.001), collagen I (0.8-fold; p < 0.001), and collagen III (1.4-fold; p < 0.001), as well as protein levels of α-SMA (23.8%; p < 0.001) and collagens (1.8-fold; p < 0.001). The anti-fibrotic activity of AAV5-Id3 is attributed to reduced myofibroblast formation by disrupting the binding of E-box proteins to the promoter of α-SMA, a transforming growth factor-β signaling downstream target gene. In conclusion, these results indicate that localized AAV5-Id3 delivery in stroma caused no clinically relevant ocular symptoms or corneal cellular toxicity in the rabbit eyes.
Collapse
Affiliation(s)
- Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Michael K Fink
- Department of Pathology, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Lynn M Martin
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Landon M Keele
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Prashant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Elizabeth A Giuliano
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Nathan P Hesemann
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Department of Pathology, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sudhanshu P Raikwar
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Shyam S Chaurasia
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA; Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA; Mason Eye Institute, School of Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65212, USA.
| |
Collapse
|
14
|
Sinha NR, Tripathi R, Balne PK, Green SL, Sinha PR, Bunyak F, Giuliano EA, Chaurasia SS, Mohan RR. Time-dependent in situ structural and cellular aberrations in rabbit cornea in vivo after mustard gas exposure. Exp Eye Res 2022; 224:109247. [PMID: 36113569 DOI: 10.1016/j.exer.2022.109247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/23/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022]
Abstract
An array of corneal pathologies collectively called mustard gas keratopathy (MGK) resulting from ocular exposure to sulfur mustard (SM) gas are the most prevalent chemical warfare injury. MGK involves chronic ocular discomfort that results in vision impairment. The etiology of MGK remains unclear and poorly understood primarily due to a lack of scientific data regarding structural and cellular changes in different layers of the cornea altered by mustard vapor exposure in vivo. The goals of this study were to (a) characterize time-dependent changes in different layers of corneal epithelium, stroma, and endothelium in live animals in situ by employing state-of-the-art multimodal clinical ophthalmic imaging techniques and (b) determine if SM-induced acute changes in corneal cells could be rescued by a topical eye drop (TED) treatment using in an established rabbit in vivo model. Forty-five New Zealand White Rabbit eyes were divided into four groups (Naïve, TED, SM, and SM + TED). Only one eye was exposed to SM (200 mg-min/m3 for 8 min), and each group had three time points with six eyes each (Table-1). TED was topically applied twice a day for seven days. Clinical eye examinations and imaging were performed in live rabbits with stereo, Slit-lamp, HRT-RCM3, and Spectralis microscopy system. Fantes grading, fluorescein staining, Schirmer's tests, and applanation tonometry were conducted to measure corneal haze, ocular surface aberrations, tears, and intraocular pressure respectively. H&E and PSR staining were used for histopathological cellular changes in the cornea. In vivo confocal and OCT imaging revealed significant changes in structural and morphological appearance of corneal epithelium, stroma, and endothelium in vivo in SM-exposed rabbit corneas in a time-dependent manner compared to naïve cornea. Also, SM-exposed eyes showed loss of corneal transparency characterized by increased stromal thickness and light-scattering myofibroblasts or activated keratocytes, representing haze formation in the cornea. Neither naive nor TED-alone treated eyes showed any structural, cellular, and functional abnormalities. Topical TED treatment significantly reduced SM-induced abnormalities in primary corneal layers. We conclude that structural and cellular changes in primary corneal layers are early pathological events contributing to MGK in vivo, and efficient targeting of them with suitable agents has the potential to mitigate SM ocular injury.
Collapse
Affiliation(s)
- Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Ratnakar Tripathi
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Praveen K Balne
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Sydney L Green
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Prashant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Filiz Bunyak
- Departments of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Elizabeth A Giuliano
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Shyam S Chaurasia
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, University of Missouri, Columbia, MO, USA; Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, University of Missouri, Columbia, MO, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
15
|
Ding Q, Wang GJ, Xue LF, Yue J, Xu YX, Fu ZZ, Xiao WL. p38MAPK silencing attenuates scar proliferation after cleft palate repair surgery in rats via MRTF-A/SRF pathway. Exp Cell Res 2022; 417:113248. [PMID: 35690133 DOI: 10.1016/j.yexcr.2022.113248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Scarring is the primary factor of maxilla growth restriction among people who have undergone cleft palate repair surgery. p38 mitogen-activated protein kinase (p38MAPK) promotes fibrosis in a variety of organs. However, its role in post-surgery scarring on the hard palate has not been fully understood. This study is designed to investigate the role of p38MAPK in scar formation and maxilla growth of rats. We removed the mucosa on the hard palate of rats and applied the p38MAPK silencing adenovirus vector on it two weeks after surgery. Then the scarring tissue and maxilla growth were evaluated by histological and morphological examination. The effect of p38MAPK silencing on scarring-related genes in fibroblasts was also studied. We found that local injection of Ad-p38MAPK-1 in vivo effectively reduces the expression of p38MAPK and scarring-related proteins and weakens the impact of scarring on the width of the hard palate. Mechanistically, p38MAPK silencing inhibits the expression of α-smooth muscle actin (α-SMA) via mediating the production and nuclear localization of myocardin-related transcription factor A (MRTF-A) in fibroblasts. These results reveal a molecular pathway of scar formation involving p38MAPK/MRTF-A stimulation and support targeting p38MAPK as a potentially effective treatment for post-surgery scarring on the hard palate.
Collapse
Affiliation(s)
- Qian Ding
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, Shandong, 266071, China
| | - Gong-Jun Wang
- Department of Radiology Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
| | - Ling-Fa Xue
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jin Yue
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yao-Xiang Xu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, Shandong, 266071, China
| | - Zhen-Zhen Fu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, Shandong, 266071, China
| | - Wen-Lin Xiao
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, Shandong, 266071, China.
| |
Collapse
|
16
|
BMP3 inhibits TGFβ2-mediated myofibroblast differentiation during wound healing of the embryonic cornea. NPJ Regen Med 2022; 7:36. [PMID: 35879352 PMCID: PMC9314337 DOI: 10.1038/s41536-022-00232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
Often acute damage to the cornea initiates drastic tissue remodeling, resulting in fibrotic scarring that disrupts light transmission and precedes vision impairment. Very little is known about the factors that can mitigate fibrosis and promote scar-free cornea wound healing. We previously described transient myofibroblast differentiation during non-fibrotic repair in an embryonic cornea injury model. Here, we sought to elucidate the mechanistic regulation of myofibroblast differentiation during embryonic cornea wound healing. We found that alpha-smooth muscle actin (αSMA)-positive myofibroblasts are superficial and their presence inversely correlates with wound closure. Expression of TGFβ2 and nuclear localization of pSMAD2 were elevated during myofibroblast induction. BMP3 and BMP7 were localized in the corneal epithelium and corresponded with pSMAD1/5/8 activation and absence of myofibroblasts in the healing stroma. In vitro analyses with corneal fibroblasts revealed that BMP3 inhibits the persistence of TGFβ2-induced myofibroblasts by promoting disassembly of focal adhesions and αSMA fibers. This was confirmed by the expression of vinculin and pFAK. Together, these data highlight a mechanism to inhibit myofibroblast persistence during cornea wound repair.
Collapse
|
17
|
Jeyabalan N, Ghosh A, Mathias GP, Ghosh A. Rare eye diseases in India: A concise review of genes and genetics. Indian J Ophthalmol 2022; 70:2232-2238. [PMID: 35791102 PMCID: PMC9426079 DOI: 10.4103/ijo.ijo_322_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rare eye diseases (REDs) are mostly progressive and are the leading cause of irreversible blindness. The disease onset can vary from early childhood to late adulthood. A high rate of consanguinity contributes to India’s predisposition to RED. Most gene variations causing REDs are monogenic and, in some cases, digenic. All three types of Mendelian inheritance have been reported in REDs. Some of the REDs are related to systemic illness with variable phenotypes in affected family members. Approximately, 50% of the children affected by REDs show associated phenotypes at the early stages of the disease. A precise clinical diagnosis becomes challenging due to high clinical and genetic heterogeneity. Technological advances, such as next-generation sequencing (NGS), have improved genetic and genomic testing for REDs, thereby aiding in determining the underlying causative gene variants. It is noteworthy that genetic testing together with genetic counseling facilitates a more personalized approach in the accurate diagnosis and management of the disease. In this review, we discuss REDs identified in the Indian population and their underlying genetic etiology.
Collapse
Affiliation(s)
- Nallathambi Jeyabalan
- Molecular Signaling and Gene Therapy Unit, GROW Research Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya Eye Hospital, Bengaluru, Karnataka, India
| | - Anuprita Ghosh
- Molecular Signaling and Gene Therapy Unit, GROW Research Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya Eye Hospital, Bengaluru, Karnataka, India
| | - Grace P Mathias
- Molecular Signaling and Gene Therapy Unit, GROW Research Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya Eye Hospital, Bengaluru, Karnataka, India
| | - Arkasubhra Ghosh
- Molecular Signaling and Gene Therapy Unit, GROW Research Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya Eye Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
18
|
Salman M, Verma A, Singh VK, Jaffet J, Chaurasia S, Sahel DK, Ramappa M, Singh V. New Frontier in the Management of Corneal Dystrophies: Basics, Development, and Challenges in Corneal Gene Therapy and Gene Editing. Asia Pac J Ophthalmol (Phila) 2022; 11:346-359. [PMID: 36041149 DOI: 10.1097/apo.0000000000000443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT Corneal dystrophies represent a group of heterogeneous hereditary disorders causing progressive corneal opacification and blindness. Current corneal transplant management for corneal dystrophies faces the challenges of repeated treatments, complex surgical procedures, shortage of appropriate donor cornea, and, more importantly, graft rejection. Genetic medicine could be an alternative treatment regime to overcome such challenges. Cornea carries promising scope for a gene-based therapy involving gene supplementation, gene silencing, and gene editing in both ex vivo and in vivo platforms. In the cornea, ex vivo gene therapeutic strategies were attempted for corneal graft survival, and in vivo gene augmentation therapies aimed to prevent herpes stromal keratitis, neovascularization, corneal clouding, and wound healing. However, none of these studies followed a clinical trial-based successful outcome. CRISPR/Cas system offers a broad scope of gene editing and engineering to correct underlying genetic causes in corneal dystrophies. Corneal tissue--specific gene correction in vitro with minimal off-target effects and optimal gene correction efficiency followed by their successful surgical implantation, or in vivo CRISPR administration targeting pathogenic genes finds a way to explore therapeutic intervention for corneal dystrophies. However, there are many limitations associated with such CRISPR-based corneal treatment management. This review will look into the development of corneal gene therapy and CRISPR-based study in corneal dystrophies, associated challenges, potential approaches, and future directions.
Collapse
Affiliation(s)
- Mohd Salman
- Prof. Brien Holden Eye Research Center, Champalimaud Translational Centre for Eye Research L.V. Prasad Eye Institute, Hyderabad, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anshuman Verma
- Prof. Brien Holden Eye Research Center, Champalimaud Translational Centre for Eye Research L.V. Prasad Eye Institute, Hyderabad, India
- MNR Foundation for Research and Innovations, MNR Medical College, MNR Nagar, Sangareddy, Telangana, India
| | - Vijay Kumar Singh
- Prof. Brien Holden Eye Research Center, Champalimaud Translational Centre for Eye Research L.V. Prasad Eye Institute, Hyderabad, India
| | - Jilu Jaffet
- Prof. Brien Holden Eye Research Center, Champalimaud Translational Centre for Eye Research L.V. Prasad Eye Institute, Hyderabad, India
| | - Sunita Chaurasia
- The Centre of Excellence for Rare Eye Diseases, L. V. Prasad Eye Institute, Hyderabad, India
| | - Deepak Kumar Sahel
- Department of Pharmacy, Birla Institute of Technology and Science - Pilani Campus. Vidya Vihar, Pilani, Rajasthan, India and
| | - Muralidhar Ramappa
- Cornea and Anterior Segment Services, L.V. Prasad Eye Institute, Kallam Anji Reddy Campus, L.V. Prasad Marg, Hyderabad, Telangana, India
| | - Vivek Singh
- Prof. Brien Holden Eye Research Center, Champalimaud Translational Centre for Eye Research L.V. Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
19
|
Nanoparticle-mediated corneal neovascularization treatments: Toward new generation of drug delivery systems. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Bian H, Dou QL, Wei J, Liu JL, Wang X, Liu X. Erythrocyte Ghost Based Fusogenic Glycoprotein Vesicular Stomatitis Virus Glycoprotein Complexes as an Efficient Deoxyribonucleic Acid Delivery System. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aimed to construct a new type of fused erythrocyte vector for gene delivery system. The conditioned medium of AD293 cells expressing vesicular stomatitis virus glycoprotein gene was collected, and erythrocyte ghost was prepared by hypotonic lysis. Using cationic polymer to
condense deoxyribonucleic acid to form a complex, fusogenic erythrocyte ghost was incubated with this complex to obtain virion. Flow cytometry and luciferase activity analysis were used to detect the delivery of fusogenic erythrocyte ghost to deoxyribonucleic acid in AD293 cells and refractory
cells, respectively. Transfection efficiency of fusogenic erythrocyte ghost in vivo was detected by confocal microscope. Vesicular stomatitis virus glycoprotein and erythrocyte ghost were effectively integrated, and fusogenic erythrocyte ghost was successfully prepared. deoxyribonucleic
acid/polyethylenimine complexes form 100–300 nm particles. Fusogenic erythrocyte ghost can effectively incorporation deoxyribonucleic acid complexes. Confocal microscope observed red fluorescence close to blue fluorescence, indicating that labeled fusogenic erythrocyte ghost may trigger
liver and spleen tissue endocytosis or fusion. A new delivery vector of fusogenic erythrocyte ghost was constructed. This system could enhance the delivery efficiency even in cells which refractory to conventional transfections in vitro.
Collapse
Affiliation(s)
- Hong Bian
- Department of Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Qing-Li Dou
- The Baoan Hospital Affiliated with Southern Medical University, People’s Hospital of Baoan District of Shenzhen, Shenzhen 518101, Guangdong, China
| | - Jian Wei
- The Baoan Hospital Affiliated with Southern Medical University, People’s Hospital of Baoan District of Shenzhen, Shenzhen 518101, Guangdong, China
| | - Jing-Le Liu
- The Baoan Hospital Affiliated with Southern Medical University, People’s Hospital of Baoan District of Shenzhen, Shenzhen 518101, Guangdong, China
| | - Xiao Wang
- The Baoan Hospital Affiliated with Southern Medical University, People’s Hospital of Baoan District of Shenzhen, Shenzhen 518101, Guangdong, China
| | - Xin Liu
- Ningxia Medical University, Yinchuan 750004, Ningxia, China
| |
Collapse
|
21
|
Evaluation of CRISPR/Cas9 mediated TGIF gene editing to inhibit corneal fibrosis in vitro. Exp Eye Res 2022; 220:109113. [PMID: 35588782 DOI: 10.1016/j.exer.2022.109113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022]
Abstract
Corneal wound healing is influenced by many factors including transcriptional co-repressors and co-activators. Interactions of co-activators and co-repressors with Smads influence mechanistic loop facilitating transcription of alpha-smooth muscle actin (α-SMA), a key profibrotic gene, in corneal repair. The role of a transcriptional repressor, 5'TG3'-interacting factor (TGIF), in the regulation of α-SMA and myofibroblast formation in the cornea was shown previously by our group. This study tested a hypothesis if TGIF1 gene editing via CRISPR/Cas9 can ease myofibroblast formation in the cornea using an in vitro model. Primary human corneal stromal fibroblasts (hCSFs) generated from donor corneas received gene-editing plasmid facilitating loss (CRISPR/Cas9 knockout) or gain (CRISPR activation) of TGIF function by UltraCruz transfection reagent. Phase-contrast microscopy, immunoblotting, immunocytochemistry and quantitative polymerase chain reaction (qPCR) were used to measure levels of myofibroblast profibrotic genes (α-SMA, fibronectin, Collagen-I, and Collagen-IV) in hCSFs lacking or overexpressing TGIF1 after growing them in± transforming growth factor beta1 (TGF-β1) under serum-free conditions. The CRISPR-assisted TGIF1 activation (gain of function) in hCSFs demonstrated significantly decreased myofibroblast formation and messenger ribonucleic acid (mRNA) and protein levels of profibrotic genes. Conversely, CRISPR/Cas9-assisted TGIF knockdown (loss of function) in hCSFs demonstrated no significant change in the levels of myofibroblast formation or profibrotic genes under similar conditions. These results suggest that TGIF gene-editing approach can be employed to modulate the transcriptional activity of α-SMA in controlling pathological and promoting physiological wound healing in an injured cornea.
Collapse
|
22
|
Corneal stromal repair and regeneration. Prog Retin Eye Res 2022; 91:101090. [DOI: 10.1016/j.preteyeres.2022.101090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/02/2023]
|
23
|
Gupta S, Buyank F, Sinha NR, Grant DG, Sinha PR, Iozzo RV, Chaurasia SS, Mohan RR. Decorin regulates collagen fibrillogenesis during corneal wound healing in mouse in vivo. Exp Eye Res 2022; 216:108933. [PMID: 35031282 PMCID: PMC8885890 DOI: 10.1016/j.exer.2022.108933] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 12/22/2022]
Abstract
A characteristic rigid spatial arrangement of collagen fibrils in the stroma is critical for corneal transparency. This unique organization of collagen fibrils in corneal stroma can be impacted by the presence and interactions of proteoglycans and extracellular matrix (ECM) proteins in a corneal microenvironment. Earlier studies revealed that decorin, a leucine-rich proteoglycan in stroma, regulates keratocyte-collagen matrix assembly and wound healing in the cornea. This study investigated the role of decorin in the regulation of stromal fibrillogenesis and corneal transparency in vivo employing a loss-of-function genetic approach using decorin null (dcn-/-) and wild type (dcn+/+) mice and a standard alkali-injury model. A time-dependent ocular examinations with Slit lamp microscope in live animals assessed corneal clarity, haze, and neovascularization levels in normal and injured eyes. Morphometric changes in normal and injured dcn+/+ and dcn-/- corneas, post-euthanasia, were analyzed with Masson's Trichrome and Periodic Acid-Schiff (PAS) histology evaluations. The ultrastructure changes in all corneas were investigated with transmission electron microscopy (TEM). Injury to eye produced clinically relevant corneal haze and neovascularization in dcn-/- and dcn+/+ mice while corneas of uninjured eyes remained clear and avascular. A clinically significant haze and neovascularization appeared in injured dcn-/- corneas compared to the dcn+/+ corneas at day 21 post-injury and not at early tested times. Histological examinations revealed noticeably abnormal morphology and compromised collagen levels in injured dcn-/- corneas compared to the injured/normal dcn+/+ and uninjured dcn-/- corneas. TEM analysis exhibited remarkably uneven collagen fibrils size and distribution in the stroma with asymmetrical organization and loose packing in injured dcn-/- corneas than injured/normal dcn+/+ and uninjured dcn-/- corneas. The minimum and maximum inter-fibril distances were markedly irregular in injured dcn-/- corneas compared to all other corneas. Together, results of clinical, histological, and ultrastructural investigations in a genetic knockout model suggested that decorin influenced stromal fibrillogenesis and transparency in healing cornea.
Collapse
Affiliation(s)
- Suneel Gupta
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, USA.,Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Filiz Buyank
- Department of Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Nihant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, USA.,Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - DeAna G. Grant
- Electron Microscopy Core, University of Missouri, Columbia, Missouri, USA
| | - Prashant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, USA.,Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Renato V. Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and Translational Cellular Oncology Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Shyam S. Chaurasia
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, USA.,Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, USA.,Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA.,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri, USA.,Corresponding author: Rajiv R. Mohan, MS, PhD, FARVO, Professor of Ophthalmology & Molecular Medicine, University of Missouri, 1600 E. Rollins Rd, Columbia, MO 65211,
| |
Collapse
|
24
|
Suppression of lipopolysaccharide-induced corneal opacity by hepatocyte growth factor. Sci Rep 2022; 12:494. [PMID: 35017561 PMCID: PMC8752742 DOI: 10.1038/s41598-021-04418-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022] Open
Abstract
Keratitis induced by bacterial toxins, including lipopolysaccharide (LPS), is a major cause of corneal opacity and vision loss. Our previous study demonstrates hepatocyte growth factor (HGF) promotes epithelial wound healing following mechanical corneal injury. Here, we investigated whether HGF has the capacity to suppress infectious inflammatory corneal opacity using a new model of LPS-induced keratitis. Keratitis, induced by two intrastromal injections of LPS on day 1 and 4 in C57BL/6 mice, resulted in significant corneal opacity for up to day 10. Following keratitis induction, corneas were topically treated with 0.1% HGF or PBS thrice daily for 5 days. HGF-treated mice showed a significantly smaller area of corneal opacity compared to PBS-treated mice, thus improving corneal transparency. Moreover, HGF treatment resulted in suppression of α-SMA expression, compared to PBS treatment. HGF-treated corneas showed normalized corneal structure and reduced expression of pro-inflammatory cytokine, demonstrating that HGF restores corneal architecture and immune quiescence in corneas with LPS-induced keratitis. These findings offer novel insight into the potential application of HGF-based therapies for the prevention and treatment of infection-induced corneal opacity.
Collapse
|
25
|
Fuchs AA, Balne PK, Giuliano EA, Sinha NR, Mohan RR. Evaluation of a novel combination of TRAM-34 and ascorbic acid for the treatment of corneal fibrosis in vivo. PLoS One 2022; 17:e0262046. [PMID: 35007294 PMCID: PMC8746773 DOI: 10.1371/journal.pone.0262046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023] Open
Abstract
Corneal injury and aberrant wound healing commonly result in corneal fibrosis and subsequent vision loss. Intermediate-conductance calmodulin/calcium-activated K+ channels (KCa3.1) have been shown to promote fibrosis in non-ocular and ocular tissues via upregulation of transforming growth factor beta (TGFβ). TRAM-34 is a selective inhibitor of KCa3.1 and reduces fibrosis by downregulation of TGFβ-induced transdifferentiation of stromal fibroblasts to myofibroblasts. Ascorbic acid has been demonstrated to be effective in promoting corneal re-epithelialization and reduction of neovascularization via anti-VEGF and anti-MMP mechanisms. This study evaluates tolerability and efficacy of a novel combination of TRAM-34 (25μM) and ascorbic acid (10%) topical treatment for corneal fibrosis using an established in vivo rabbit model and conducting clinical eye examinations. Markers of corneal fibrosis were evaluated in all corneas at study endpoint via histopathology, immunofluorescence, and quantitative real-time PCR. The eyedrop treated eyes showed significantly improved clinical outcomes based on modified McDonald Shadduck scores, reduction of clinical haze on Fantes scores, and reduction of central corneal thickness (CCT). At cellular and molecular levels, eyedrop treatment also significantly reduced expression of alpha smooth muscle actin (α-SMA) mRNA and protein, collagen III mRNA, and fibronectin mRNA compared to non-treated eyes. Our study suggests that a tested new bimodal eyedrop is well tolerated and effectively reduces corneal fibrosis/haze in rabbits in vivo.
Collapse
Affiliation(s)
- Allison A. Fuchs
- Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Praveen K. Balne
- Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States of America
| | - Elizabeth A. Giuliano
- Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Nishant R. Sinha
- Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States of America
| | - Rajiv R. Mohan
- Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States of America
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
26
|
Sinha NR, Balne PK, Bunyak F, Hofmann AC, Lim RR, Mohan RR, Chaurasia SS. Collagen matrix perturbations in corneal stroma of Ossabaw mini pigs with type 2 diabetes. Mol Vis 2021; 27:666-678. [PMID: 35002212 PMCID: PMC8684810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 12/05/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose Diabetes mellitus (DM) is a metabolic disorder that affects over 450 million people worldwide. DM is characterized by hyperglycemia, causing severe systemic damage to the heart, kidneys, skin, vasculature, nerves, and eye. Type 2 diabetes (T2DM) constitutes 90% of clinical cases and is the most common cause of blindness in working adults. Also, about 70% of T2DM patients show corneal complications including delayed wound healing, often described as diabetic keratopathy (DK). Despite the increasing severity of DM, the research on DK is bleak. This study investigated cellular morphology and collagen matrix alterations of the diabetic and non-diabetic corneas collected from Ossabaw mini pigs, a T2DM animal model with a "thrifty genotype." Methods Pig corneas were collected from six-month-old Ossabaw miniature pigs fed on a western diet (WD) for ten weeks. The tissues were processed for immunohistochemistry and analyzed using hematoxylin and eosin staining, Mason Trichrome staining, Picrosirus Red staining, Collage I staining, and TUNEL assay. mRNA was prepared to quantify fibrotic gene expression using quantitative reverse-transcriptase PCR (qRT-PCR). Transmission electron microscopy (TEM) was performed to evaluate stromal fibril arrangements to compare collagen dynamics in WD vs. standard diet (SD) fed Ossabaw pig corneas. Results Ossabaw mini pigs fed on a WD for 10 weeks exhibit classic symptoms of metabolic syndrome and hyperglycemia seen in T2DM patients. We observed significant disarray in cornea stromal collagen matrix in Ossabaw mini pigs fed on WD compared to the age-matched mini pigs fed on a standard chow diet using Masson Trichome and Picrosirius Red staining. Furthermore, ultrastructure evaluation using TEM showed alterations in stromal collagen fibril size and organization in diabetic corneas compared to healthy age-matched corneas. These changes were accompanied by significantly decreased levels of Collagen IV and increased expression of matrix metallopeptidase 9 in WD-fed pigs. Conclusions This pilot study indicates that Ossabaw mini pigs fed on WD showed collagen disarray and altered gene expression involved in wound healing, suggesting that corneal stromal collagens are vulnerable to diabetic conditions.
Collapse
Affiliation(s)
- Nishant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Praveen K. Balne
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Filiz Bunyak
- Department of Computer Science, University of Missouri, Columbia, MO
| | - Alexandria C. Hofmann
- One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Rayne R. Lim
- Department of Ophthalmology, University of Washington, Seattle, WA
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO
| | - Shyam S. Chaurasia
- One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
- Department of Ophthalmology and Visual Sciences, The Eye Institute, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
27
|
Understanding Drivers of Ocular Fibrosis: Current and Future Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms222111748. [PMID: 34769176 PMCID: PMC8584003 DOI: 10.3390/ijms222111748] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 01/10/2023] Open
Abstract
Ocular fibrosis leads to severe visual impairment and blindness worldwide, being a major area of unmet need in ophthalmology and medicine. To date, the only available treatments are antimetabolite drugs that have significant potentially blinding side effects, such as tissue damage and infection. There is thus an urgent need to identify novel targets to prevent/treat scarring and postsurgical fibrosis in the eye. In this review, the latest progress in biological mechanisms underlying ocular fibrosis are discussed. We also summarize the current knowledge on preclinical studies based on viral and non-viral gene therapy, as well as chemical inhibitors, for targeting TGFβ or downstream effectors in fibrotic disorders of the eye. Moreover, the role of angiogenetic and biomechanical factors in ocular fibrosis is discussed, focusing on related preclinical treatment approaches. Moreover, we describe available evidence on clinical studies investigating the use of therapies targeting TGFβ-dependent pathways, angiogenetic factors, and biomechanical factors, alone or in combination with other strategies, in ocular tissue fibrosis. Finally, the recent progress in cell-based therapies for treating fibrotic eye disorders is discussed. The increasing knowledge of these disorders in the eye and the promising results from testing of novel targeted therapies could offer viable perspectives for translation into clinical use.
Collapse
|
28
|
Gupta S, Sinha NR, Martin LM, Keele LM, Sinha PR, Rodier JT, Landreneau JR, Hesemann NP, Mohan RR. Long-Term Safety and Tolerability of BMP7 and HGF Gene Overexpression in Rabbit Cornea. Transl Vis Sci Technol 2021; 10:6. [PMID: 34383876 PMCID: PMC8362627 DOI: 10.1167/tvst.10.10.6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Tissue-targeted localized BMP7+HGF genes delivered into the stroma via nanoparticle effectively treats corneal fibrosis and rehabilitates transparency in vivo without acute toxicity. This study evaluated the long-term safety and tolerability of BMP7+HGF nanomedicine for the eye in vivo. Methods One eye each of 36 rabbits received balanced salt solution (group 1, naïve; n = 12), naked vector with polyethylenimine-conjugated gold nanoparticles (PEI2-GNP; group 2, naked-vector; n = 12), or BMP7+HGF genes with PEI2-GNP (group 3, BMP7+HGF; n = 12) via a topical delivery technique. Safety and tolerability measurements were performed by clinical biomicroscopy in live rabbits at predetermined time intervals up to 7 months. Corneal tissues were collected at 2 months and 7 months after treatment and subjected to histology, immunofluorescence, and quantitative real-time PCR analyses. Results Clinical ophthalmic examinations and modified MacDonald-Shadduck scores showed no significant changes in corneal thickness (P = 0.3389), tear flow (P = 0.2121), intraocular pressure (P = 0.9958), epithelial abrasion, or ocular abnormality. Slit-lamp, stereo, confocal, and specular biomicroscopy showed no signs of blepharospasm chemosis, erythema, epiphora, abnormal ocular discharge, or changes in epithelium, stroma, and endothelium after BMP7+HGF therapy for up to 7 months, as compared with control groups. Throughout the 7-month period, no significant changes were recorded in endothelial density (P = 0.9581). Histological and molecular data were well corroborated with the subjective clinical analyses and showed no differences in the naïve, naked-vector, and BMP7+HGF groups. Conclusions Localized BMP7+HGF therapy is a safe, tolerable, and innovative modality for the treatment of corneal fibrosis. Translational Relevance Nanoparticle-mediated BMP7+HGF combination gene therapy has the potential to treat corneal fibrosis in vivo without short- or long-term toxicity.
Collapse
Affiliation(s)
- Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Lynn M Martin
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Landon M Keele
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Prashant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Jason T Rodier
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - James R Landreneau
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Nathan P Hesemann
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
29
|
Mohan RR, Balne PK, Muayad MS, Tripathi R, Sinha NR, Gupta S, An JA, Sinha PR, Hesemann NP. Six-Month In Vivo Safety Profiling of Topical Ocular AVV5-Decorin Gene Transfer. Transl Vis Sci Technol 2021; 10:5. [PMID: 34383877 PMCID: PMC8362634 DOI: 10.1167/tvst.10.10.5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose A significant remission of corneal fibrosis and neovascularization in rabbit eye in vivo was observed from a tissue-selective localized adeno-associated virus (AAV)5–Decorin (Dcn) gene therapy. This study sought to investigate 6-month toxicity profiling of this gene therapy for the eye in vivo using a rabbit model. Methods A small epithelial scrape followed by corneal drying was performed unilaterally in 12 rabbit eyes and either AAV5–Dcn (n = 6) or naked vector (n = 6) was delivered topically using a cloning cylinder technique. Contralateral eyes served as naïve control (n = 6). Safety and tolerability measurements in live rabbits were performed periodically until month 6 using multimodel clinical ophthalmic imaging tools—a slit lamp, stereomicroscope, and HRT3-RCM in vivo confocal microscope. Thereafter, corneas were excised and subjected to hematoxylin and eosin staining, Mason trichome staining, propidium iodide nuclear staining, and quantitative real-time polymerase chain reaction analyses. Results Clinical eye examinations based on the modified Hackett–McDonald ocular scoring system, and in vivo confocal imaging of the cornea showed no signs of ocular toxicity in rabbit eyes given AAV5–Dcn gene transfer vs control eyes (P > 0.05) through 6 months after treatment. The histologic and molecular analyses showed no significant differences in AAV5–Dcn vs AAV naked or naïve control groups (P > 0.05) and were in accordance with the masked clinical ophthalmic observations showing no abnormalities. Conclusions Topical tissue-targeted localized AAV5–Dcn gene therapy seems to be safe and nontoxic to the rabbit eye in vivo. Translational Relevance AAV5–Dcn gene therapy has the potential to treat corneal fibrosis and neovascularization in vivo safely without significant ocular toxicity.
Collapse
Affiliation(s)
- Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Praveen K Balne
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Maryam S Muayad
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Ratnakar Tripathi
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Jella A An
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Prashant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Nathan P Hesemann
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
30
|
Amador C, Shah R, Ghiam S, Kramerov AA, Ljubimov AV. Gene therapy in the anterior eye segment. Curr Gene Ther 2021; 22:104-131. [PMID: 33902406 DOI: 10.2174/1566523221666210423084233] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/14/2021] [Accepted: 04/04/2021] [Indexed: 11/22/2022]
Abstract
This review provides comprehensive information about the advances in gene therapy in the anterior segment of the eye including cornea, conjunctiva, lacrimal gland, and trabecular meshwork. We discuss gene delivery systems including viral and non-viral vectors as well as gene editing techniques, mainly CRISPR-Cas9, and epigenetic treatments including antisense and siRNA therapeutics. We also provide a detailed analysis of various anterior segment diseases where gene therapy has been tested with corresponding outcomes. Disease conditions include corneal and conjunctival fibrosis and scarring, corneal epithelial wound healing, corneal graft survival, corneal neovascularization, genetic corneal dystrophies, herpetic keratitis, glaucoma, dry eye disease, and other ocular surface diseases. Although most of the analyzed results on the use and validity of gene therapy at the ocular surface have been obtained in vitro or using animal models, we also discuss the available human studies. Gene therapy approaches are currently considered very promising as emerging future treatments of various diseases, and this field is rapidly expanding.
Collapse
Affiliation(s)
- Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
31
|
Liu Y, Shu Y, Yin L, Xie T, Zou J, Zhan P, Wang Y, Wei T, Zhu L, Yang X, Wang W, Cai J, Li Y, Yao Y, Wang X. Protective roles of the TIR/BB-loop mimetic AS-1 in alkali-induced corneal neovascularization by inhibiting ERK phosphorylation. Exp Eye Res 2021; 207:108568. [PMID: 33839112 DOI: 10.1016/j.exer.2021.108568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 11/19/2022]
Abstract
Hydrocinnamoyl-L-valylpyrrolidine (AS-1), a synthetic low-molecule mimetic of myeloid differentiation primary response gene 88 (MyD88), inhibits inflammation by disrupting the interaction between the interleukin-1 receptor (IL-1R) and MyD88. Here, we describe the effects of AS-1 on injury-induced increases in inflammation and neovascularization in mouse corneas. Mice were administered a subconjunctival injection of 8 μL AS-1 diluent before or after corneal alkali burn, followed by evaluation of corneal resurfacing and corneal neovascularization (CNV) by slit-lamp biomicroscopy and clinical assessment. Corneal inflammation was assessed by whole-mount CD45+ immunofluorescence staining, and corneal hemangiogenesis and lymphangiogenesis following injury were evaluated by immunostaining for the vascular markers isolectin B4 (IB4) and the lymphatic vascularized marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), respectively. Additionally, corneal tissues were collected to determine the expression of 35 cytokines, and we detected activation of IL-1RI, MyD88, and mitogen-activated protein kinase (MAPK). The results showed that alkali conditions increased the number of CD45+ cells and expression of vascular endothelial growth factor (VEGF)-A, VEGF-C, and LYVE1 in corneas, with these levels decreased in the AS-1-treated group. Moreover, AS-1 effectively prevented alkali-induced cytokine production, blocked interactions between IL-1RI and MyD88, and inhibited MAPK activation post-alkali burn. These results indicated that AS-1 prevented alkali-induced corneal hemangiogenesis and lymphangiogenesis by blocking IL-1RI-MyD88 interaction, as well as extracellular signal-regulated kinase phosphorylation, and could be efficacious for the prevention and treatment of corneal alkali burn.
Collapse
Affiliation(s)
- Yanqiu Liu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Yishun Shu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Li Yin
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Tianhua Xie
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Jian Zou
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Pengfei Zhan
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Yangningzhi Wang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Tingting Wei
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Lingpeng Zhu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Xusheng Yang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Wenjuan Wang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Jiping Cai
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Yuehua Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, 211100, People's Republic of China
| | - Yong Yao
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China.
| | - Xiaolu Wang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China.
| |
Collapse
|
32
|
Gupta S, Kamil S, Sinha PR, Rodier JT, Chaurasia SS, Mohan RR. Glutathione is a potential therapeutic target for acrolein toxicity in the cornea. Toxicol Lett 2021; 340:33-42. [PMID: 33421550 PMCID: PMC9206442 DOI: 10.1016/j.toxlet.2021.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 11/19/2022]
Abstract
Toxic and volatile chemicals are widely used in household products and previously used as warfare agents, causing a public health threat worldwide. This study aimed to evaluate the extent of injury and mechanisms of acrolein toxicity in the cornea. Primary human corneal stromal fibroblasts cultures (hCSFs) from human donor cornea were cultured and exposed to acrolein toxicity with -/+ N-acetylcysteine (NAC) to study the mode of action in the presence of Buthionine sulphoximine (BSO). PrestoBlue and MTT assays were used to optimize acrolein, NAC, and BSO doses for hCSFs. Cell-based assays and qRT-PCR analyses were performed to understand the acrolein toxicity and mechanisms. Acrolein exposure leads to an increased reactive oxygen species (ROS), compromised glutathione (GSH) levels, and mitochondrial dysfunction. The TUNEL and caspase assays showed that acrolein caused cell death in hCSFs. These deleterious effects can be mitigated using NAC in hCSFs, suggesting that GSH can be a potential target for acrolein toxicity in the cornea.
Collapse
Affiliation(s)
- Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Sabeeh Kamil
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Prashant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Jason T Rodier
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Shyam S Chaurasia
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
33
|
Gumus K. On the Horizon: Biologics and Nutrients for Neurotrophic Keratitis. Eye Contact Lens 2021; 47:154-156. [PMID: 33156130 DOI: 10.1097/icl.0000000000000757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2020] [Indexed: 10/23/2022]
Abstract
ABSTRACT Neurotrophic keratitis (NK), a potentially sight-threatening corneal disease, still does not have a specific treatment. The reduction or complete loss of corneal sensation, the most important factor in its pathogenesis, is one of the most important factors that complicate the treatment of corneal wound healing. In addition, the visual outcome may be adversely affected because of aggressive stromal fibrosis in severe NK cases. Basically, the current management of NK aims to accelerate wound healing and prevent the progression. However, new therapeutic agents, particularly developed depending on cell type-specific healing mechanisms are required for better visual outcomes. In recent years, several studies have started to use new promising areas of translational research, including gene therapy, stem cell therapy, miRNA, and bioengineering. Evidence has emerged that future treatment strategies for NK will be designed by the results of these studies. In this review, it is aimed to summarize scientific data of new treatment modalities for NK.
Collapse
Affiliation(s)
- Koray Gumus
- Ophthalmology, Memorial Ankara Hospital, Eye Clinic, Ankara, Turkey
| |
Collapse
|
34
|
Guérin LP, Le-Bel G, Desjardins P, Couture C, Gillard E, Boisselier É, Bazin R, Germain L, Guérin SL. The Human Tissue-Engineered Cornea (hTEC): Recent Progress. Int J Mol Sci 2021; 22:ijms22031291. [PMID: 33525484 PMCID: PMC7865732 DOI: 10.3390/ijms22031291] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Each day, about 2000 U.S. workers have a job-related eye injury requiring medical treatment. Corneal diseases are the fifth cause of blindness worldwide. Most of these diseases can be cured using one form or another of corneal transplantation, which is the most successful transplantation in humans. In 2012, it was estimated that 12.7 million people were waiting for a corneal transplantation worldwide. Unfortunately, only 1 in 70 patients received a corneal graft that same year. In order to provide alternatives to the shortage of graftable corneas, considerable progress has been achieved in the development of living corneal substitutes produced by tissue engineering and designed to mimic their in vivo counterpart in terms of cell phenotype and tissue architecture. Most of these substitutes use synthetic biomaterials combined with immortalized cells, which makes them dissimilar from the native cornea. However, studies have emerged that describe the production of tridimensional (3D) tissue-engineered corneas using untransformed human corneal epithelial cells grown on a totally natural stroma synthesized by living corneal fibroblasts, that also show appropriate histology and expression of both extracellular matrix (ECM) components and integrins. This review highlights contributions from laboratories working on the production of human tissue-engineered corneas (hTECs) as future substitutes for grafting purposes. It overviews alternative models to the grafting of cadaveric corneas where cell organization is provided by the substrate, and then focuses on their 3D counterparts that are closer to the native human corneal architecture because of their tissue development and cell arrangement properties. These completely biological hTECs are therefore very promising as models that may help understand many aspects of the molecular and cellular mechanistic response of the cornea toward different types of diseases or wounds, as well as assist in the development of novel drugs that might be promising for therapeutic purposes.
Collapse
Affiliation(s)
- Louis-Philippe Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Gaëtan Le-Bel
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Pascale Desjardins
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Camille Couture
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Elodie Gillard
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Élodie Boisselier
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Richard Bazin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Germain
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-682-7565
| |
Collapse
|
35
|
Mohan RR, Martin LM, Sinha NR. Novel insights into gene therapy in the cornea. Exp Eye Res 2021; 202:108361. [PMID: 33212142 PMCID: PMC9205187 DOI: 10.1016/j.exer.2020.108361] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022]
Abstract
Corneal disease remains a leading cause of impaired vision world-wide, and advancements in gene therapy continue to develop with promising success to prevent, treat and cure blindness. Ideally, gene therapy requires a vector and gene delivery method that targets treatment of specific cells or tissues and results in a safe and non-immunogenic response. The cornea is a model tissue for gene therapy due to its ease of clinician access and immune-privileged state. Improvements in the past 5-10 years have begun to revolutionize the approach to gene therapy in the cornea with a focus on adeno-associated virus and nanoparticle delivery of single and combination gene therapies. In addition, the potential applications of gene editing (zinc finger nucleases [ZNFs], transcription activator-like effector nucleases [TALENs], Clustered Regularly Interspaced Short Palindromic Repeats/Associated Systems [CRISPR/Cas9]) are rapidly expanding. This review focuses on recent developments in gene therapy for corneal diseases, including promising multiple gene therapy, while outlining a practical approach to the development of such therapies and potential impediments to successful delivery of genes to the cornea.
Collapse
Affiliation(s)
- Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-health Vision Research Center, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States.
| | - Lynn M Martin
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-health Vision Research Center, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-health Vision Research Center, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
36
|
Tawfik M, Zhang X, Grigartzik L, Heiduschka P, Hintz W, Henrich-Noack P, van Wachem B, Sabel BA. Gene therapy with caspase-3 small interfering RNA-nanoparticles is neuroprotective after optic nerve damage. Neural Regen Res 2021; 16:2534-2541. [PMID: 33907045 PMCID: PMC8374570 DOI: 10.4103/1673-5374.313068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Apoptosis, a key mechanism of programmed cell death, is triggered by caspase-3 protein and lowering its levels with gene therapy may rescue cell death after central nervous system damage. We developed a novel, non-viral gene therapy to block caspase-3 gene expression using small interfering RNA (siRNA) delivered by polybutylcyanoacrylate nanoparticles (CaspNPs). In vitro CaspNPs significantly blocked caspase-3 protein expression in C6 cells, and when injected intraocularly in vivo, CaspNPs lowered retinal capsase-3 immunofluorescence by 57.9% in rats with optic nerve crush. Longitudinal, repeated retinal ganglion cell counts using confocal neuroimaging showed that post-traumatic cell loss after intraocular CaspNPs injection was only 36.1% versus 63.4% in lesioned controls. Because non-viral gene therapy with siRNA-nanoparticles can selectively silence caspace-3 gene expression and block apoptosis in post-mitotic neurons, siRNA delivery with nanoparticles may be promising for neuroprotection or restoration of central visual system damage and other neurological disorders. The animal study procedures were approved by the German National Act on the use of experimental animals (Ethic Committee Referat Verbraucherschutz, Veterinärangelegenheiten; Landesverwaltungsamt Sachsen-Anhalt, Halle, Germany, # IMP/G/01-1150/12 and # IMP/G/01-1469/17).
Collapse
Affiliation(s)
- Mohamed Tawfik
- Institute of Medical Psychology, Otto von Guericke University of Magdeburg, Magdeburg, Germany
| | - Xiwei Zhang
- Institute of Process Engineering, Otto von Guericke University of Magdeburg, Magdeburg, Germany
| | - Lisa Grigartzik
- Institute of Medical Psychology, Otto von Guericke University of Magdeburg, Magdeburg, Germany
| | - Peter Heiduschka
- Department of Ophthalmology, Münster University Hospital, Münster, Germany
| | - Werner Hintz
- Institute of Process Engineering, Otto von Guericke University of Magdeburg, Magdeburg, Germany
| | - Petra Henrich-Noack
- Institute of Medical Psychology, Otto von Guericke University of Magdeburg, Magdeburg; Department of Neurology with Institute of Translational Neurology, Münster University Hospital, Münster, Germany
| | - Berend van Wachem
- Institute of Process Engineering, Otto von Guericke University of Magdeburg, Magdeburg, Germany
| | - Bernhard A Sabel
- Institute of Medical Psychology, Otto von Guericke University of Magdeburg; Center of Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
37
|
Mobaraki M, Soltani M, Zare Harofte S, L. Zoudani E, Daliri R, Aghamirsalim M, Raahemifar K. Biodegradable Nanoparticle for Cornea Drug Delivery: Focus Review. Pharmaceutics 2020; 12:E1232. [PMID: 33353013 PMCID: PMC7765989 DOI: 10.3390/pharmaceutics12121232] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
During recent decades, researchers all around the world have focused on the characteristic pros and cons of the different drug delivery systems for cornea tissue change for sense organs. The delivery of various drugs for cornea tissue is one of the most attractive and challenging activities for researchers in biomaterials, pharmacology, and ophthalmology. This method is so important for cornea wound healing because of the controllable release rate and enhancement in drug bioavailability. It should be noted that the delivery of various kinds of drugs into the different parts of the eye, especially the cornea, is so difficult because of the unique anatomy and various barriers in the eye. Nanoparticles are investigated to improve drug delivery systems for corneal disease. Biodegradable nanocarriers for repeated corneal drug delivery is one of the most attractive and challenging methods for corneal drug delivery because they have shown acceptable ability for this purpose. On the other hand, by using these kinds of nanoparticles, a drug could reside in various part of the cornea for longer. In this review, we summarized all approaches for corneal drug delivery with emphasis on the biodegradable nanoparticles, such as liposomes, dendrimers, polymeric nanoparticles, niosomes, microemulsions, nanosuspensions, and hydrogels. Moreover, we discuss the anatomy of the cornea at first and gene therapy at the end.
Collapse
Affiliation(s)
- Mohammadmahdi Mobaraki
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 15875‐4413, Iran;
- Translational Ophthalmology Research Center, Tehran University of Medical Science, Tehran 1417614411, Iran;
| | - Madjid Soltani
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Faculty of Science, School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (S.Z.H.); (E.L.Z.); (R.D.)
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Advanced Bioengineering Initiative Center, K. N. Toosi University of Technology, Tehran 1417614411, Iran
- Computational Medicine Center, K. N. Toosi University of Technology, Tehran 1417614411, Iran
| | - Samaneh Zare Harofte
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (S.Z.H.); (E.L.Z.); (R.D.)
| | - Elham L. Zoudani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (S.Z.H.); (E.L.Z.); (R.D.)
| | - Roshanak Daliri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (S.Z.H.); (E.L.Z.); (R.D.)
| | - Mohamadreza Aghamirsalim
- Translational Ophthalmology Research Center, Tehran University of Medical Science, Tehran 1417614411, Iran;
| | - Kaamran Raahemifar
- Faculty of Science, School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, Pennsylvania, PA 16801, USA
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
- Electrical and Computer Engineering Department, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| |
Collapse
|
38
|
Fu DJ, Allen EHA, Hickerson RP, Leslie Pedrioli DM, McLean WHI. Development of a Corneal Bioluminescence Mouse for Real-Time In Vivo Evaluation of Gene Therapies. Transl Vis Sci Technol 2020; 9:44. [PMID: 33442498 PMCID: PMC7774114 DOI: 10.1167/tvst.9.13.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/11/2020] [Indexed: 01/11/2023] Open
Abstract
Purpose The purpose of this study was to develop and characterize a novel bioluminescence transgenic mouse model that facilitates rapid evaluation of genetic medicine delivery methods for inherited and acquired corneal diseases. Methods Corneal expression of the firefly luciferase transgene (luc2) was achieved via insertion into the Krt12 locus, a type I intermediate filament keratin that is exclusively expressed in the cornea, to generate the Krt12luc2 mouse. The transgene includes a multiple target cassette with human pathogenic mutations in K3 and K12. Results The Krt12luc2 mouse exclusively expresses luc2 in the corneal epithelium under control of the keratin K12 promoter. The luc2 protein is enzymatically active, can be readily visualized, and exhibits a symmetrically consistent readout. Moreover, structural integrity of the corneal epithelium is preserved in mice that are heterozygous for the luc2 transgene (Krt12+/luc2). Conclusions This novel Krt12luc2 mouse model represents a potentially ideal in vivo system for evaluating the efficacies of cornea-targeting gene therapies and for establishing and/or validating new delivery modalities. Importantly, the multiple targeting cassette that is included in the Luc2 transgene will greatly reduce mouse numbers required for in vivo therapy evaluation.
Collapse
Affiliation(s)
- Dun Jack Fu
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Edwin H. A. Allen
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Robyn P. Hickerson
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Deena M. Leslie Pedrioli
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
- Department of Molecular Mechanisms of Disease, University of Zürich Hospital, Zürich, Switzerland
| | - W. H. Irwin McLean
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
39
|
Gupta S, Martin LM, Sinha NR, Smith KE, Sinha PR, Dailey EM, Hesemann NP, Mohan RR. Role of inhibitor of differentiation 3 gene in cellular differentiation of human corneal stromal fibroblasts. Mol Vis 2020; 26:742-756. [PMID: 33273801 PMCID: PMC7700910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/23/2020] [Indexed: 11/07/2022] Open
Abstract
Purpose Inhibitor of differentiation (Id) proteins are helix-loop-helix (HLH) transcriptional repressors that modulate a range of developmental and cellular processes, including cell differentiation and cell cycle mobilization. The inhibitor of differentiation 3 (Id3) gene, a member of the Id gene family, governs the expression and progression of transforming growth factor beta (TGFβ)-mediated cell differentiation. In the face of mechanical, chemical, or surgical corneal insults, corneal keratocytes differentiate into myofibroblasts for wound repair. Excessive development or persistence or both of myofibroblasts after wound repair results in corneal haze that compromises corneal clarity and visual function. The objective of this study was to investigate whether Id3 overexpression in human corneal stromal fibroblasts governs TGFβ-driven cellular differentiation and inhibits keratocyte to myofibroblast transformation. Methods Primary human corneal stromal fibroblast (h-CSF) cultures were generated from donor human corneas. Human corneal myofibroblasts (h-CMFs) were produced by growing h-CSF in the presence of TGFβ1 under serum-free conditions. The Id3 gene was cloned into a mammalian expression vector (pcDNA3 mCherry LIC cloning vector), and the nucleotide sequence of the vector constructs was confirmed with sequencing as well as through restriction enzyme analysis. The Id3 mammalian overexpression vector was introduced into h-CSFs using a lipofectamine transfection kit. The expression of Id3 in selected clones was characterized with quantitative real-time PCR (qRT-PCR), immunocytochemistry, and western blotting. Phase contrast microscopy and trypan blue exclusion assays were used to evaluate the effects of the transfer of the Id3 gene on the hCSF phenotype and viability, respectively. To analyze the inhibitory effects of the Id3 gene transfer on TGFβ-induced formation of h-CMFs, expression of the mRNA and protein of the myofibroblast marker alpha smooth muscle actin (α-SMA) was examined with qRT-PCR, western blotting, and immunocytochemistry. Student t test, analysis of variance (ANOVA), and Bonferroni adjustment for repeated measures were used for statistical analysis. Results The results indicate that Id3 overexpression does not alter the cellular phenotype or viability of h-CSFs. Overexpression of the Id3 gene in h-CSF cells grown in the presence of TGFβ1 under serum-free conditions showed a statistically significant decrease (76.3±4.3%) in α-SMA expression (p<0.01) compared to the naked-vector transfected or non-transfected h-CSF cells. Id3-transfected, naked-vector transfected, and non-transfected h-CSF cells grown in the absence of TGFβ1 showed the expected low expression of α-SMA (0-5%). Furthermore, Id3 overexpression statistically significantly decreased TGFβ-induced mRNA levels of profibrogenic genes such as fibronectin, collagen type I, and collagen type IV (1.80±0.26-, 1.70±0.35- and 1.70±0.36-fold, respectively; p<0.05) that a play role in stromal matrix modulation and corneal wound healing. Results of the protein analysis with western blotting indicated that Id3 overexpression in h-CSF cells effectively slows TGFβ-driven differentiation and formation of h-CMFs. Results for subsequent overexpression studies showed that this process occurs through the regulation of E2A, a TATA box protein. Conclusions Id3 regulates TGFβ-driven differentiation of h-CSFs and formation of h-CMFs in vitro. Targeted Id3 gene delivery has potential to treat corneal fibrosis and reestablish corneal clarity in vivo.
Collapse
Affiliation(s)
- Suneel Gupta
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Lynn M. Martin
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Nishant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Kaitlin E. Smith
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO
| | - Prashant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Emilee M. Dailey
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO
| | - Nathan P. Hesemann
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO
| |
Collapse
|
40
|
Tripathi R, Balne PK, Sinha NR, Martin LM, Kamil S, Landreneau JR, Gupta S, Rodier JT, Sinha PR, Hesemann NP, Hofmann AC, Fink MK, Chaurasia SS, Mohan RR. A Novel Topical Ophthalmic Formulation to Mitigate Acute Mustard Gas Keratopathy In Vivo: A Pilot Study. Transl Vis Sci Technol 2020; 9:6. [PMID: 33200047 PMCID: PMC7645241 DOI: 10.1167/tvst.9.12.6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/09/2020] [Indexed: 01/29/2023] Open
Abstract
Purpose This pilot study investigated the in vivo therapeutic potential and tolerability of a multimodal ophthalmic formulation, topical eye drops (TED), for acute mustard gas keratopathy (MGK) using a rabbit model. Methods Twenty New Zealand White rabbits were used. Only right eyes of 18 rabbits (oculus dexter [OD]) received single sulfur mustard gas (SM) vapor injury, whereas contralateral eyes were left untreated or received TED for tolerabilty evaluation. Two rabbit eyes received no treatment and served as age-matched naive control. The four groups were: Naive (oculus sinister [OS] untreated eyes; n = 9); TED (OS treated only with TED BID for 3 days; n = 9); SM (OD exposed to SM vapor; n = 9); and SM+TED (OD exposed to SM+TED BID for 3 days; n = 9). Ocular examination in live rabbits were performed utilizing slit-lamp biomicroscopy, Fantes grading system, fluorescein staining, Schirmer's tests, pachymetry, and applanation tonometry. Cellular and molecular changes in rabbit corneas were assessed after humane euthanasia on day-3 and day-7 with histopathological and real-time polymerase chain reaction PCR techniques. Results TED to rabbit eyes was found tolerable in vivo. SM-exposed eyes showed significant increase in Fantes scores, central corneal thickness (CCT), Schirmer's test, epithelium-stroma separation, and corneal edema. TED mitigated clinical symptoms by reducing corneal edema, Fantes scores, CCT, and Schirmer's test. Further, TED decreased SM-induced corneal haze, inflammatory and profibrotic markers, transforming growth factor-TGF-β1 and cyclooxygenase-2COX-2, and damage to corneal structure, including epithelial-stromal integrity. Conclusions The developed multimodal eyedrop formulation, TED, has potential to mitigate acute MGK effectively in vivo. Translational Relevance TED is effective against MGK.
Collapse
Affiliation(s)
- Ratnakar Tripathi
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Praveen K. Balne
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Nishant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Lynn M. Martin
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Sabeeh Kamil
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - James R. Landreneau
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Suneel Gupta
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Jason T. Rodier
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Prashant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Nathan P. Hesemann
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Alexandria C. Hofmann
- One-Health Vision Research Program, Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Michael K. Fink
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Shyam S. Chaurasia
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
41
|
Gupta S, Fink MK, Martin LM, Sinha PR, Rodier JT, Sinha NR, Hesemann NP, Chaurasia SS, Mohan RR. A rabbit model for evaluating ocular damage from acrolein toxicity in vivo. Ann N Y Acad Sci 2020; 1480:233-245. [PMID: 33067838 PMCID: PMC9206444 DOI: 10.1111/nyas.14514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Acrolein is a highly reactive and volatile unsaturated aldehyde commonly used for producing scores of commercial products. It has been recognized as a chemical weapon since its use during World War I, and more recently, in Syria. Acrolein exposure causes severe eye, skin, and lung damage in addition to many casualties. In the eye, it causes severe pain, eyelid swelling, corneal burns, and vision impairment. Very little information is available about how acrolein damages the cornea and causes vision loss. At present, the lack of clinically relevant animal models limits evaluation of acrolein toxicity and mechanisms specific to the eye. We aim to standardize the mode of delivery and exposure duration of acrolein, damaging the rabbit eye in vivo as an ocular injury model for studying the toxicity of acrolein and developing medical countermeasures. Rabbit eyes were exposed to two modes of delivery (topical and vapor) for different durations (1-5 minutes). Clinical ophthalmic examinations with a slit lamp, stereomicroscope, fluorescein dye, pachymeter, tonometer, and tearing examinations in live rabbits were performed at various times up to 4 weeks. Corneas were histologically diagnosed for transparency, fibrosis, collagens, and neovascularization. Our study successfully established an in vivo rabbit model for evaluating acrolein toxicity to the eye, accounting for different modes and durations of exposure.
Collapse
Affiliation(s)
- Suneel Gupta
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Michael K. Fink
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Lynn M. Martin
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Prashant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Jason T. Rodier
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri
| | - Nishant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Nathan P. Hesemann
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri
| | - Shyam S. Chaurasia
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
42
|
Kamil S, Mohan RR. Corneal stromal wound healing: Major regulators and therapeutic targets. Ocul Surf 2020; 19:290-306. [PMID: 33127599 DOI: 10.1016/j.jtos.2020.10.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/16/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022]
Abstract
Corneal stromal wound healing is a complex event that occurs to restore the transparency of an injured cornea. It involves immediate apoptosis of keratocytes followed by their activation, proliferation, migration, and trans-differentiation to myofibroblasts. Myofibroblasts contract to close the wound and secrete extracellular matrix and proteinases to remodel it. Released proteinases may degenerate the basement membrane allowing an influx of cytokines from overlying epithelium. Immune cells infiltrate the wound to clear cellular debris and prevent infections. Gradually basement membrane regenerates, myofibroblasts and immune cells disappear, abnormal matrix is resorbed, and transparency of the cornea is restored. Often this cascade deregulates and corneal opacity results. Factors that prevent corneal opacity after an injury have always intrigued the researchers. They hold clinical relevance as they can guide the outcomes of corneal surgeries. Studies in the past have shed light on the role of various factors in stromal healing. TGFβ (transforming growth factor-beta) signaling is the central player guiding stromal responses. Other major regulators include myofibroblasts, basement membrane, collagen fibrils, small leucine-rich proteoglycans, biophysical cues, proteins derived from extracellular matrix, and membrane channels. The knowledge about their roles helped to develop novel therapies to prevent corneal opacity. This article reviews the role of major regulators that determine the outcome of stromal healing. It also discusses emerging therapies that modulate the role of these regulators to prevent stromal opacity.
Collapse
Affiliation(s)
- Sabeeh Kamil
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
43
|
Boumil EF, Castro N, Phillips AT, Chatterton JE, McCauley SM, Wolfson AD, Shmushkovich T, Ridilla M, Bernstein AM. USP10 Targeted Self-Deliverable siRNA to Prevent Scarring in the Cornea. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:1029-1043. [PMID: 32829179 PMCID: PMC7452140 DOI: 10.1016/j.omtn.2020.07.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/17/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
Ocular scarring after surgery, trauma, or infection leads to vision loss. The transparent cornea is an excellent model system to test anti-scarring therapies. Cholesterol-conjugated fully modified asymmetric small interfering RNAs (siRNAs) (self-deliverable siRNAs [sdRNAs]) are a novel modality for in vivo gene knockdown, transfecting cells and tissues without any additional formulations. Myofibroblasts are a main contributor to scarring and fibrosis. αv integrins play a central role in myofibroblast pathological adhesion, overcontraction, and transforming growth factor β (TGF-β) activation. Previously, we demonstrated that αv integrins are protected from intracellular degradation after wounding by upregulation of the deubiquitinase (DUB) ubiquitin-specific protease 10 (USP10), leading to integrin cell surface accumulation. In this study, we tested whether knockdown of USP10 with a USP10-targeting sdRNA (termed US09) will reduce scarring after wounding a rabbit cornea in vivo. The wounded corneal stroma was treated once with US09 or non-targeting control (NTC) sdRNA. At 6 weeks US09 treatment resulted in faster wound closure, limited scarring, and suppression of fibrotic markers and immune response. Specifically, fibronectin-extra domain A (EDA), collagen III, and a-smooth muscle actin (p < 0.05), CD45+ cell infiltration (p < 0.01), and apoptosis at 24 (p < 0.01) and 48 h (p < 0.05) were reduced post-wounding. Corneal thickness and cell proliferation were restored to unwounded parameters. Targeting the DUB, USP10 is a novel strategy to reduce scarring. This study indicates that ubiquitin-mediated pathways should be considered in the pathogenesis of fibrotic healing.
Collapse
Affiliation(s)
- Edward F Boumil
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Nileyma Castro
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Andrew T Phillips
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | | | | | | | | - Marc Ridilla
- Repair Biotechnologies, 841 East Fayette Street, Syracuse, NY 13210, USA
| | - Audrey M Bernstein
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
44
|
Espana EM, Birk DE. Composition, structure and function of the corneal stroma. Exp Eye Res 2020; 198:108137. [PMID: 32663498 PMCID: PMC7508887 DOI: 10.1016/j.exer.2020.108137] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
No other tissue in the body depends more on the composition and organization of the extracellular matrix (ECM) for normal structure and function than the corneal stroma. The precise arrangement and orientation of collagen fibrils, lamellae and keratocytes that occurs during development and is needed in adults to maintain stromal function is dependent on the regulated interaction of multiple ECM components that contribute to attain the unique properties of the cornea: transparency, shape, mechanical strength, and avascularity. This review summarizes the contribution of different ECM components, their structure, regulation and function in modulating the properties of the corneal stroma. Fibril forming collagens (I, III, V), fibril associated collagens with interrupted triple helices (XII and XIV), network forming collagens (IV, VI and VIII) as well as small leucine-rich proteoglycans (SLRP) expressed in the stroma: decorin, biglycan, lumican, keratocan, and fibromodulin are some of the ECM components reviewed in this manuscript. There are spatial and temporal differences in the expression of these ECM components, as well as interactions among them that contribute to stromal function. Unique regions within the stroma like Bowman's layer and Descemet's layer are discussed. To define the complexity of corneal stroma composition and structure as well as the relationship to function is a daunting task. Our knowledge is expanding, and we expect that this review provides a comprehensive overview of current knowledge, definition of gaps and suggests future research directions.
Collapse
Affiliation(s)
- Edgar M Espana
- Department of Molecular Pharmacology and Physiology, USA; Cornea, External Disease and Refractive Surgery, Department of Ophthalmology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, USA.
| |
Collapse
|
45
|
Bansal M, Tandon R, Saxena R, Sharma A, Sen S, Kishore A, Venkatesh P, Maiti S, Chakraborty D. Ophthalmic genetics practice and research in India: Vision in 2020. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:718-727. [PMID: 32865332 DOI: 10.1002/ajmg.c.31827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/19/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Abstract
Ophthalmic genetics is a much needed and growing area in India. Ethnic diversity, with a high degree of consanguinity, has led to a high prevalence of genetic disorders in the country. As the second most populous country in the world, this naturally results in a significant number of affected people overall. Practice involves coherent association between ophthalmologists, genetic counselor and pediatricians. Eye genetics in India in recent times has witnessed advanced research using cutting edge diagnostics, next generation sequencing (NGS) approaches, stem cell therapies, gene therapy and genomic editing. This article will highlight the studies reporting genetic variations in the country, challenges in practice, and the latest advances in ophthalmic genetic research in India.
Collapse
Affiliation(s)
- Mayank Bansal
- Council for Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology (IGIB), New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Delhi, India.,Department of Ophthalmology, Fortis Memorial Research Institute, Gurugram, India
| | - Radhika Tandon
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rohit Saxena
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Arundhati Sharma
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sagnik Sen
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alisha Kishore
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Pradeep Venkatesh
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Souvik Maiti
- Council for Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology (IGIB), New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Delhi, India
| | - Debojyoti Chakraborty
- Council for Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology (IGIB), New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Delhi, India
| |
Collapse
|
46
|
Rodier JT, Tripathi R, Fink MK, Sharma A, Korampally M, Gangopadhyay S, Giuliano EA, Sinha PR, Mohan RR. Linear Polyethylenimine-DNA Nanoconstruct for Corneal Gene Delivery. J Ocul Pharmacol Ther 2020; 35:23-31. [PMID: 30699061 DOI: 10.1089/jop.2018.0024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE This study investigated the efficiency and potential toxicity of a linear 22-kDa polyethylenimine (PEI)-DNA nanoconstruct for delivering genes to corneal cells and the effects of PEI nitrogen-to-DNA phosphate (N:P) ratio on gene transfer efficiency in vitro and in vivo. METHODS A gel retardation assay, zeta potential measurement, bright-field microscopy, transfection with green fluorescent protein (GFP), immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) were used to characterize the physicochemical and biological properties and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and reactive oxygen species (ROS) assay for cytotoxicity of the linear PEI-DNA nanoconstruct using in vitro cultured primary human corneal fibroblast and in vivo mouse models. RESULTS Of the several evaluated N:P ratios, the highest gene transfection efficiency achieved without any notable cytotoxicity was observed at an N:P ratio of 30:1 (N:P 30). In vivo gene transfer studies revealed substantial GFP gene delivery into the corneas of mice 3 days after a single 5-min topical application without any significant adverse ocular effects. Slit-lamp biomicroscope ophthalmic examination of the mouse exposed to the linear PEI-DNA nanoconstruct showed no evidence of hyperemia (redness), corneal edema, ocular inflammation, or epiphora (excessive tearing). CONCLUSIONS The 22-kDa linear PEI-DNA nanoconstruct is an efficient and well-tolerated vector for corneal gene therapy in vitro and in vivo and could be used as a platform for developing novel gene-based nanomedicine approaches for corneal diseases.
Collapse
Affiliation(s)
- Jason T Rodier
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 2 Mason Eye Institute, School of Medicine & Vision, University of Missouri, Columbia, Missouri
| | - Ratnakar Tripathi
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 3 One-Health One-Medicine Ophthalmology Research Center, University of Missouri, Columbia, Missouri
| | - Michael K Fink
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 3 One-Health One-Medicine Ophthalmology Research Center, University of Missouri, Columbia, Missouri
| | - Ajay Sharma
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 3 One-Health One-Medicine Ophthalmology Research Center, University of Missouri, Columbia, Missouri
| | - Madhuri Korampally
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 4 Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri
| | - Shubhra Gangopadhyay
- 4 Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri
| | - Elizabeth A Giuliano
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 3 One-Health One-Medicine Ophthalmology Research Center, University of Missouri, Columbia, Missouri
| | - Prashant R Sinha
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 3 One-Health One-Medicine Ophthalmology Research Center, University of Missouri, Columbia, Missouri
| | - Rajiv R Mohan
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 2 Mason Eye Institute, School of Medicine & Vision, University of Missouri, Columbia, Missouri
- 3 One-Health One-Medicine Ophthalmology Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
47
|
Vicente-Pascual M, Gómez-Aguado I, Rodríguez-Castejón J, Rodríguez-Gascón A, Muntoni E, Battaglia L, del Pozo-Rodríguez A, Solinís Aspiazu MÁ. Topical Administration of SLN-Based Gene Therapy for the Treatment of Corneal Inflammation by De Novo IL-10 Production. Pharmaceutics 2020; 12:pharmaceutics12060584. [PMID: 32586018 PMCID: PMC7355708 DOI: 10.3390/pharmaceutics12060584] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 01/13/2023] Open
Abstract
One of the main challenges in gene therapy is the issue of delivery, and it is especially relevant for the success of gene therapy in the cornea. In the present work, eye drops containing biocompatible non-viral vectors based on solid lipid nanoparticles (SLNs) as gene delivery systems to induce the expression of interleukin 10 (IL-10) were designed to address the treatment of corneal inflammation. Two kinds of SLNs combined with different ligands (protamine, dextran, or hyaluronic acid (HA)) and formulated with polyvinyl alcohol (PVA) were prepared. SLN-based vectors were characterized in terms of size, adhesiveness, viscosity, and pH, before topical administration to wild type and IL-10 knock out (KO) mice. The formulations showed a homogenous particle size below 400 nm and a positive surface charge to favor bioadhesion; the incorporation of PVA improved the corneal penetration. After three days of treatment by topical instillation, SLN-based vectors mainly transfected corneal epithelial cells, HA-formulations being the most effective ones. IL-10 was capable of reaching even the endothelial layer. Corneal sections showed no histological change and formulations seemed to be well tolerated after repeated topical administration. These promising results highlight the possible contribution of non-viral gene augmentation therapy to the future clinical approach of corneal gene therapy.
Collapse
Affiliation(s)
- Mónica Vicente-Pascual
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.V.-P.); (I.G.-A.); (J.R.-C.); (A.R.-G.)
| | - Itziar Gómez-Aguado
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.V.-P.); (I.G.-A.); (J.R.-C.); (A.R.-G.)
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.V.-P.); (I.G.-A.); (J.R.-C.); (A.R.-G.)
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.V.-P.); (I.G.-A.); (J.R.-C.); (A.R.-G.)
| | - Elisabetta Muntoni
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy; (E.M.); (L.B.)
| | - Luigi Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy; (E.M.); (L.B.)
| | - Ana del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.V.-P.); (I.G.-A.); (J.R.-C.); (A.R.-G.)
- Correspondence: (A.d.P.-R.); (M.Á.S.A.)
| | - María Ángeles Solinís Aspiazu
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.V.-P.); (I.G.-A.); (J.R.-C.); (A.R.-G.)
- Correspondence: (A.d.P.-R.); (M.Á.S.A.)
| |
Collapse
|
48
|
Lu XX, Zhao SZ. Gene-based Therapeutic Tools in the Treatment of Cornea Disease. Curr Gene Ther 2020; 19:7-19. [PMID: 30543166 DOI: 10.2174/1566523219666181213120634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/23/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND As one of the main blinding ocular diseases, corneal blindness resulted from neovascularization that disrupts the angiogenic privilege of corneal avascularity. Following neovascularization, inflammatory cells are infiltrating into cornea to strengthen corneal injury. How to maintain corneal angiogenic privilege to treat corneal disease has been investigated for decades. METHODOLOGY Local administration of viral and non-viral-mediated anti-angiogenic factors reduces angiogenic protein expression in situ with limited or free of off-target effects upon gene delivery. Recently, Mesenchymal Stem Cells (MSCs) have been studied to treat corneal diseases. Once MSCs are manipulated to express certain genes of interest, they could achieve superior therapeutic efficacy after transplantation. DISCUSSION In the text, we first introduce the pathological development of corneal disease in the aspects of neovascularization and inflammation. We summarize how MSCs become an ideal candidate in cell therapy for treating injured cornea, focusing on cell biology, property and features. We provide an updated review of gene-based therapies in animals and preclinical studies in the aspects of controlling target gene expression, safety and efficacy. Gene transfer vectors are potent to induce candidate protein expression. Delivered by vectors, MSCs are equipped with certain characters by expressing a protein of interest, which facilitates better for MSC-mediated therapeutic intervention for the treatment of corneal disease. CONCLUSION As the core of this review, we discuss how MSCs could be engineered to be vector system to achieve enhanced therapeutic efficiency after injection.
Collapse
Affiliation(s)
- Xiao-Xiao Lu
- Tianjin Medical University Eye Hospital and Institute, Tianjin 300384, China
| | - Shao-Zhen Zhao
- Tianjin Medical University Eye Hospital and Institute, Tianjin 300384, China
| |
Collapse
|
49
|
El Ayadi A, Jay JW, Prasai A. Current Approaches Targeting the Wound Healing Phases to Attenuate Fibrosis and Scarring. Int J Mol Sci 2020; 21:ijms21031105. [PMID: 32046094 PMCID: PMC7037118 DOI: 10.3390/ijms21031105] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cutaneous fibrosis results from suboptimal wound healing following significant tissue injury such as severe burns, trauma, and major surgeries. Pathologic skin fibrosis results in scars that are disfiguring, limit normal movement, and prevent patient recovery and reintegration into society. While various therapeutic strategies have been used to accelerate wound healing and decrease the incidence of scarring, recent studies have targeted the molecular regulators of each phase of wound healing, including the inflammatory, proliferative, and remodeling phases. Here, we reviewed the most recent literature elucidating molecular pathways that can be targeted to reduce fibrosis with a particular focus on post-burn scarring. Current research targeting inflammatory mediators, the epithelial to mesenchymal transition, and regulators of myofibroblast differentiation shows promising results. However, a multimodal approach addressing all three phases of wound healing may provide the best therapeutic outcome.
Collapse
|
50
|
Wang L, Zhao Y, Yang F, Feng M, Zhao Y, Chen X, Mi J, Yao Y, Guan D, Xiao Z, Chen B, Dai J. Biomimetic collagen biomaterial induces in situ lung regeneration by forming functional alveolar. Biomaterials 2020; 236:119825. [PMID: 32044576 DOI: 10.1016/j.biomaterials.2020.119825] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/07/2020] [Accepted: 01/25/2020] [Indexed: 01/02/2023]
Abstract
In situ restoration of severely damaged lung remains difficult due to its limited regeneration capacity after injury. Artificial lung scaffolds are emerging as potential substitutes, but it is still a challenge to reconstruct lung regeneration microenvironment in scaffold after lung resection injury. Here, a 3D biomimetic porous collagen scaffold with similar structure characteristics as lung is fabricated, and a novel collagen binding hepatocyte growth factor (CBD-HGF) is tethered on the collagen scaffold for maintaining the biomimetic function of HGF to improve the lung regeneration microenvironment. The biomimetic scaffold was implanted into the operative region of a rat partial lung resection model. The results revealed that vascular endothelial cells and endogenous alveolar stem cells entered the scaffold at the early stage of regeneration. At the later stage, inflammation and fibrosis were attenuated, the microvascular and functional alveolar-like structures were formed, and the general morphology of the injured lung was restored. Taken together, the functional 3D biomimetic collagen scaffold facilitates recovery of the injured lung, alveolar regeneration, and angiogenesis after acute lung injury. Particularly, this is the first study of lung regeneration in vivo guided by biomimetic collagen scaffold materials, which supports the concept that tissue engineering is an effective strategy for alveolar regeneration.
Collapse
Affiliation(s)
- Linjie Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yannan Zhao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Yang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Meng Feng
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yazhen Zhao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xi Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Junwei Mi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yuanjiang Yao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Dongwei Guan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhifeng Xiao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwu Dai
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|