1
|
Namdari M, McDonnell FS. Extracellular vesicles as emerging players in glaucoma: Mechanisms, biomarkers, and therapeutic targets. Vision Res 2025; 226:108522. [PMID: 39581065 PMCID: PMC11640964 DOI: 10.1016/j.visres.2024.108522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
In recent years, extracellular vesicles (EVs) have attracted significant scientific interest due to their widespread distribution, their potential as disease biomarkers, and their promising applications in therapy. Encapsulated by lipid bilayers these nanovesicles include small extracellular vesicles (sEV) (30-150 nm), microvesicles (100-1000 nm), and apoptotic bodies (100-5000 nm) and are essential for cellular communication, immune responses, biomolecular transport, and physiological regulation. As they reflect the condition and functionality of their originating cells, EVs play critical roles in numerous physiological processes and diseases. Therefore, EVs offer valuable opportunities for uncovering disease mechanisms, enhancing drug delivery systems, and identifying novel biomarkers. In the context of glaucoma, a leading cause of irreversible blindness, the specific roles of EVs are still largely unexplored. This review examines the emerging role of EVs in the pathogenesis of glaucoma, with a focus on their potential as diagnostic biomarkers and therapeutic agents. Through a thorough analysis of current literature, we summarize key advancements in EV research and identify areas where further investigation is needed to fully understand their function in glaucoma.
Collapse
Affiliation(s)
- Maral Namdari
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Fiona S McDonnell
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Pharmacology and Toxicology, University of Utah Salt Lake City, UT, USA.
| |
Collapse
|
2
|
Wei B, Wei M, Huang H, Fan T, Zhang Z, Song X. Mesenchymal Stem Cell-Derived Exosomes: A Promising Therapeutic Strategy for Age-Related Diseases. Cell Prolif 2024:e13795. [PMID: 39704104 DOI: 10.1111/cpr.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/09/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
The global increase in the aging population has led to a concurrent rise in the incidence of age-related diseases, posing substantial challenges to healthcare systems and affecting the well-being of the elderly. Identifying and securing effective treatments has become an urgent priority. In this context, mesenchymal stem cell-derived exosomes (MSC-Exos) have emerged as a promising and innovative modality in the field of anti-aging medicine, offering a multifaceted therapeutic approach. MSC-Exos demonstrate significant potential due to their immunomodulatory and anti-inflammatory properties, their ability to inhibit oxidative stress, and their reparative effects on senescent tissues. These attributes make them valuable in combating a range of conditions associated with aging, such as cardiovascular diseases, neurodegeneration, skin aging, and osteoarthritis. The integration of exosomes with membrane-penetrating peptides introduces a novel strategy for the delivery of biomolecules, surmounting traditional cellular barriers and enhancing therapeutic efficacy. This review provides a comprehensive synthesis of the current understanding of MSC-Exos, underscoring their role as a novel and potent therapeutic strategy against the intricate challenges of age-related diseases.
Collapse
Affiliation(s)
- Bohua Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Mengting Wei
- School of Stomatology, China Medical University, Shenyang, Liaoning Province, China
| | - Haonan Huang
- China Medical University, Shenyang, Liaoning Province, China
| | - Ting Fan
- Department of Computer, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Zhichang Zhang
- Department of Computer, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Xiaoyu Song
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
3
|
Jammes M, Tabasi A, Bach T, Ritter T. Healing the Cornea: Exploring the Therapeutic Solutions Offered by MSCs and MSC-derived EVs. Prog Retin Eye Res 2024:101325. [PMID: 39709150 DOI: 10.1016/j.preteyeres.2024.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Affecting a large proportion of the population worldwide, corneal disorders constitute a concerning health hazard associated to compromised eyesight or blindness for most severe cases. In the last decades, mesenchymal stem/stromal cells (MSCs) demonstrated promising abilities in improving symptoms associated to corneal diseases or alleviating these affections, especially through their anti-inflammatory, immunomodulatory and pro-regenerative properties. More recently, MSC therapeutic potential was shown to be mediated by the molecules they release, and particularly by their extracellular vesicles (EVs; MSC-EVs). Consequently, using MSC-EVs emerged as a pioneering strategy to mitigate the risks related to cell therapy while providing MSC therapeutic benefits. Despite the promises given by MSC- and MSC-EV-based approaches, many improvements are considered to optimize the therapeutic significance of these therapies. This review aspires to provide a comprehensive and detailed overview of current knowledge on corneal therapies involving MSCs and MSC-EVs, the strategies currently under evaluation, and the gaps remaining to be addressed for clinical implementation. From encapsulating MSCs or their EVs into biomaterials to enhance the ocular retention time to loading MSC-EVs with therapeutic drugs, a wide range of ground-breaking strategies are currently contemplated to lead to the safest and most effective treatments. Promising research initiatives also include diverse gene therapies and the targeting of specific cell types through the modification of the EV surface, paving the way for future therapeutic innovations. As one of the most important challenges, MSC-EV large-scale production strategies are extensively investigated and offer a wide array of possibilities to meet the needs of clinical applications.
Collapse
Affiliation(s)
- Manon Jammes
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Abbas Tabasi
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Trung Bach
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
4
|
Liu J, Zhang F, Shi X. The role of metal nanocarriers, liposomes and chitosan-based nanoparticles in diabetic retinopathy treatment: A review study. Int J Biol Macromol 2024; 291:139017. [PMID: 39708854 DOI: 10.1016/j.ijbiomac.2024.139017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Diabetic Retinopathy (DR) is a significant and progressive eye complication associated with diabetes mellitus, leading to potential vision loss. The pathophysiology of DR involves complex neurovascular changes due to prolonged hyperglycemia, resulting in microangiopathy and neurodegeneration. Current treatment modalities come with limitations such as low bioavailability of therapeutic agents, risk of side effects, and surgical complications. Consequently, the prevention and management of DR, particularly in its advanced stages, present ongoing challenges. This review investigates recent advancements in nanotechnology as a novel approach to enhance the treatment of DR. A comprehensive literature review of recent studies focusing on nanocarriers for drug delivery in DR treatment and an analysis of their efficacy compared to traditional methods was conducted for this study. The findings indicate that nanotechnology can significantly enhance the bioavailability of therapeutic agents while minimizing systemic exposure and associated side effects. The novelty of this study lies in its focus on the intersection of nanotechnology and ophthalmology, exploring innovative solutions that extend beyond existing literature on DR treatments. By highlighting recent advancements in this field, the study paves the way for future research aimed at developing more effective therapeutic strategies for managing DR.
Collapse
Affiliation(s)
- Junling Liu
- Linqu Zhengda Guangming Eye Hospital, Zhengda Guangming Eye Group, Weifang 262600, Shandong, China
| | - Feng Zhang
- Linqu Zhengda Guangming Eye Hospital, Zhengda Guangming Eye Group, Weifang 262600, Shandong, China.
| | - Xiaolong Shi
- Linqu Zhengda Guangming Eye Hospital, Zhengda Guangming Eye Group, Weifang 262600, Shandong, China
| |
Collapse
|
5
|
Taravat M, Asadpour R, Jafari Jozani R, Fattahi A, Khordadmehr M, Hajipour H. Engineered exosome as a biological nanoplatform for drug delivery of Rosmarinic acid to improve implantation in mice with induced endometritis. Syst Biol Reprod Med 2024; 70:3-19. [PMID: 38323586 DOI: 10.1080/19396368.2024.2306420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/06/2024] [Indexed: 02/08/2024]
Abstract
Endometritis is an inflammatory and histopathologic disease in uterine tissues that interferes with the proper decidualization and implantation of the embryo. In this study, rosmarinic acid (RA) is used as an anti-inflammatory agent that encapsulates in exosomes and is used to attenuate lipopolysaccharide (LPS)-induced endometritis and improve implantation. For this purpose, exosomes were loaded with RA and then administrated into the animal groups, including RA, exosome, RA plus exosome (RA + Exo), and RA-loaded exosomes (RALExo) groups. The concentrations of RA or exosomes used in this study were 10 mg/kg, and the compounds were injected into the uterine horn 24 h following the induction of endometritis. Upon the presence of inflammation detected by the histopathological method, the most proper groups were mated with male mice. The effect of the treatment group on the implantation rate, progesterone levels, and gene expressions were assessed by Chicago Blue staining, enzyme-linked immunosorbent assay (ELISA), and Quantitative PCR (qPCR), respectively. Results showed RALExo10 and RA10 + Exo10 groups improved pathological alterations, enhanced progesterone levels, increased implantation rate, as well as heightened expression levels of Leukemia inhibitory factor (LIF) and Mucin-16 (MUC-16) genes. Besides, the expression levels of inflammatory cytokines, including Transforming growth factor-β (TGF-β), Interlukine-10 (IL-10), Interlukine-15 (IL-15), and Interlukine-18 (IL-18), were regulated. Our findings indicated that the expression of LIF, Muc-16 genes as well as IL-18, were significantly correlated with serum progesterone concentrations and the implantation rate in the treatment groups. The RALExo10 and RA10 + Exo10 groups showed ameliorated implantation rates in experimental groups.
Collapse
Affiliation(s)
- Morteza Taravat
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Asadpour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Razi Jafari Jozani
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Khordadmehr
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hamed Hajipour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
6
|
Jin T, Liu X, Li G, Sun S, Xie L. Intravenous injection of BMSCs modulate tsRNA expression and ameliorate lung remodeling in COPD mice. Stem Cell Res Ther 2024; 15:450. [PMID: 39587604 PMCID: PMC11590572 DOI: 10.1186/s13287-024-04066-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by lung remodeling induced by chronic inflammation, presenting challenges for effective treatment. Mesenchymal stem cells (MSCs) and their extracellular vesicles (EVs) have shown promise in mitigating inflammation and tissue repairing in various diseases, including COPD. However, the optimal therapeutic pathways for different stages of COPD remain unclear. Transfer RNA-derived small RNAs (tsRNAs) are emerging as key regulators of cellular processes. However, their role in COPD and MSC therapy remains poorly understood. METHODS This study explored the optimal administration routes and efficacy of bone marrow mesenchymal stem cells (BMSCs) and their extracellular vesicles (BMSC-EVs) in treating inflammatory or emphysematous COPD stages in mouse models. Male C57BL/6 mice were exposed to cigarette smoke daily for 6 or 16 weeks, with intraperitoneal CSE injections every 10 days, to model different stages of COPD. Mice were then treated with tracheal or intravenous injections of BMSCs or BMSC-EVs. PKH26 fluorescent dye labeled BMSCs and BMSC-EVs for pulmonary distribution observation. Lung tissue inflammation, apoptosis, EMT, and collagen deposition were assessed using HE staining, TUNEL assay, immunohistochemistry, and Sirius Red staining. Gene and tsRNA expression in lung tissues were analyzed by high-throughput sequencing. Differentially expressed tsRNAs (DE-tsRNAs) were validated by RT-qPCR. Statistical analysis was performed using GraphPad Prism 9.0. Data are presented as mean ± standard deviation (SD). RESULTS In 16-week COPD mice characterized by emphysema, tracheal administration of BMSC-EVs showed more significant lung distribution and inhibition of emphysematous pathology. In 6-week COPD mice characterized by inflammation, intravenous injection of BMSCs led to significant pulmonary homing, significantly reduced lung inflammation, apoptosis, EMT, and collagen deposition (P < 0.05). High-throughput sequencing indicated BMSC treatment downregulated genes related to these processes while upregulating mitochondrial function genes. Co-expression networks of DE-tsRNAs and target genes suggested potential roles in COPD. RT-qPCR confirmed significant differential expression of two DE-tsRNAs during COPD progression and BMSC treatment (P < 0.05). CONCLUSIONS Our study provides insights into selecting MSC and MSC-EV administration routes for different COPD stages. High-throughput sequencing supports BMSCs' inhibitory effects on lung remodeling and identifies the first tsRNA expression profile in a COPD model, warranting further investigation.
Collapse
Affiliation(s)
- Ting Jin
- Department of Respiratory and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xianyang Liu
- Department of Respiratory and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Guoan Li
- Department of Respiratory and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shenghua Sun
- Department of Respiratory and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lihua Xie
- Department of Respiratory and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
7
|
Xiao J, Xu Z. Roles of noncoding RNAs in diabetic retinopathy: Mechanisms and therapeutic implications. Life Sci 2024; 357:123092. [PMID: 39368772 DOI: 10.1016/j.lfs.2024.123092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes that leads to vision loss. The striking features of DR are hard exudate, cotton-wool spots, hemorrhage, and neovascularization. The dysregulated retinal cells, encompassing microvascular endothelial cells, pericytes, Müller cells, and adjacent retinal pigment epithelial cells, are involved in the pathological processes of DR. According to recent research, oxidative stress, inflammation, ferroptosis, pyroptosis, apoptosis, and angiogenesis contribute to DR. Recent advancements have highlighted that noncoding RNAs could regulate diverse targets in pathological processes that contribute to DR. Noncoding RNAs, including long noncoding RNAs, microRNAs (miRNA), and circular RNAs, are dysregulated in DR, and interact with miRNA, mRNA, or proteins to control the pathological processes of DR. Hence, modulation of noncoding RNAs may have therapeutic effects on DR. Small extracellular vesicles may be valuable tools for transferring noncoding RNAs and regulating the genes involved in progression of DR. However, the roles of noncoding RNA in developing DR are not fully understood; it is critical to summarize the mechanisms for noncoding RNA regulation of pathological processes and pathways related to DR. This review provides a fundamental understanding of the relationship between noncoding RNAs and DR, exploring the mechanism of how noncoding RNA modulates different signaling pathways, and pave the way for finding potential therapeutic strategies for DR.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
8
|
Song Y, Yin C, Kong N. Stem Cell-Derived Exosomes: Natural Intercellular Messengers with Versatile Mechanisms for the Treatment of Diabetic Retinopathy. Int J Nanomedicine 2024; 19:10767-10784. [PMID: 39469447 PMCID: PMC11514697 DOI: 10.2147/ijn.s475234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/05/2024] [Indexed: 10/30/2024] Open
Abstract
Diabetic retinopathy is one of the complications of diabetes mellitus that occurs in the early stages. It is a disease that has a serious impact, and may lead to blindness when the disease progresses to advanced stages. Currently, treatments for diabetic retinopathy are mainly limited to its advanced stages of the disease, being restricted to a single therapeutic mechanism. Stem cells hold the promise of regenerative therapy and have the potential to comprehensively improve diabetic retinopathy. However, direct stem cell therapy carries some risk of carcinogenesis. Exosomes secreted by stem cells have shown a similar overall improvement in disease as stem cells. Exosomes can carry a number of biologically active materials from donor cells to recipient cells or distant organs, regulating intercellular signaling. Exosomes have shown remarkable efficacy in alleviating oxidative stress, inhibiting inflammatory responses, suppressing angiogenesis, reducing apoptosis and protecting neural tissues. Currently, the experimental literature using stem cell exosomes in the treatment of diabetic retinopathy tends to converge on the above experimental results. With this in mind, we have chosen to explore exosomes in depth from a subtle molecular perspective. We will elaborate on this perspective in this paper and propose to advocate exosome therapy as one promising approach for the treatment of diabetic retinopathy to ameliorate the lesions through multiple mechanisms.
Collapse
Affiliation(s)
- Yameng Song
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, People’s Republic of China
| | - Caiyun Yin
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, People’s Republic of China
| | - Ning Kong
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
9
|
Wu S, Zhang Y, Hou Y, Zhu J, Yang H, Cui Y. Research on the role of exosomes secreted by immortalized adipose-derived mesenchymal stem cells differentiated into pericytes in the repair of high glucose-induced retinal vascular endothelial cell damage. Exp Eye Res 2024; 247:110046. [PMID: 39147191 DOI: 10.1016/j.exer.2024.110046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Diabetic retinopathy, a leading cause of vision impairment, is marked by microvascular complications in the retina, including pericyte loss, a key indicator of early-stage disease. This study explores the therapeutic potential of exosomes derived from immortalized adipose-mesenchymal stem cells differentiated into pericyte-like cells in restoring the function of mouse retinal microvascular endothelial cells damaged by high glucose conditions, thereby contributing to the understanding of early diabetic retinopathy intervention strategies. To induce immortalized adipose-mesenchymal stem cells differentiation into pericyte-like cells, the study employed pericyte growth supplement. And confirmed the success of cell differentiation through the detection of α-smooth muscle actin and neural/glial antigen 2 expression by Western blot and immunofluorescence. Exosomes were isolated from the culture supernatant of immortalized adipose-mesenchymal stem cells using ultracentrifugation and characterized through Western blot for exosomal markers (CD9, CD81, and TSG101), transmission electron microscopy, and nanoparticle tracking analysis. Their influence on mouse retinal microvascular endothelial cells under high glucose stress was assessed through various functional assays. Findings revealed that exosomes, especially those from pericyte-like immortalized adipose-mesenchymal stem cells, were efficiently internalized by retinal microvascular endothelial cells and effectively counteracted high glucose-induced apoptosis. These exosomes also mitigated the rise in reactive oxygen species levels and suppressed the migratory and angiogenic properties of retinal microvascular endothelial cells, as demonstrated by Transwell and tube formation assays, respectively. Furthermore, they preserved endothelial barrier function, reducing hyperglycemia-induced permeability. At the molecular level, qRT-PCR analysis showed that exosome treatment modulated the expression of critical genes involved in angiogenesis (VEGF-A, ANG2, MMP9), inflammation (IL-1β, TNF-α), gap junction communication (CX43), and cytoskeletal regulation (ROCK1), with the most prominent effects seen with exosomes from pericyte-like immortalized adipose-mesenchymal stem cells. High glucose increased the expression of pro-angiogenic and pro-inflammatory markers, which were effectively normalized post-exosome treatment. In conclusion, this research highlights the reparative capacity of exosomes secreted by pericyte-like differentiated immortalized adipose-mesenchymal stem cells in reversing the detrimental effects of high glucose on retinal microvascular endothelial cells. By reducing apoptosis, oxidative stress, inflammation, and abnormal angiogenic behavior, these exosomes present a promising avenue for therapeutic intervention in early diabetic retinopathy. Future studies can focus on elucidating the precise molecular mechanisms and exploring their translational potential in vivo.
Collapse
Affiliation(s)
- Sihui Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China; School of Medicine, Shandong University, Jinan, Shandong Province, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yunnan Zhang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China; School of Medicine, Shandong University, Jinan, Shandong Province, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yaru Hou
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China; School of Medicine, Shandong University, Jinan, Shandong Province, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Jing Zhu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
| | - Hongling Yang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
| | - Yan Cui
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
10
|
Ngcobo NN, Sibiya NH. The role of high mobility group box-1 on the development of diabetes complications: A plausible pharmacological target. Diab Vasc Dis Res 2024; 21:14791641241271949. [PMID: 39271468 PMCID: PMC11406611 DOI: 10.1177/14791641241271949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Diabetes mellitus has emerged as a pressing global concern, with a notable increase in recent years. Despite advancements in treatment, existing medications struggle to halt the progression of diabetes and its associated complications. Increasing evidence underscores inflammation as a significant driver in the onset of diabetes mellitus. Therefore, perspectives on new therapies must consider shifting focus from metabolic stress to inflammation. High mobility group box (HMGB-1), a nuclear protein regulating gene expression, gained attention as an endogenous danger signal capable of sparking inflammatory responses upon release into the extracellular environment in the late 1990s. PURPOSE Given the parallels between inflammatory responses and type 2 diabetes (T2D) development, this review paper explores HMGB-1's potential involvement in onset and progression of diabetes complications. Specifically, we will review and update the understanding of HMGB-1 and its inflammatory pathways in insulin resistance, diabetic nephropathy, diabetic neuropathy, and diabetic retinopathy. CONCLUSIONS HMGB-1 and its receptors i.e. receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLRs) present promising targets for antidiabetic interventions. Ongoing and future projects in this realm hold promise for innovative approaches targeting HMGB-1-mediated inflammation to ameliorate diabetes and its complications.
Collapse
Affiliation(s)
- Nokwanda N Ngcobo
- Discipline of Pharmaceutical Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo H Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
11
|
Su Y, Liu A, Chen H, Chen Q, Zhao B, Gao R, Zhang K, Peng T, Zhang Z, Ouyang C, Zhu D. Research progress of brain organoids in the field of diabetes. Mol Brain 2024; 17:53. [PMID: 39107846 PMCID: PMC11304585 DOI: 10.1186/s13041-024-01123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Human embryonic stem cells and human induced pluripotent stem cells may be used to create 3D tissues called brain organoids. They duplicate the physiological and pathological characteristics of human brain tissue more faithfully in terms of both structure and function, and they more precisely resemble the morphology and cellular structure of the human embryonic brain. This makes them valuable models for both drug screening and in vitro studies on the development of the human brain and associated disorders. The technical breakthroughs enabled by brain organoids have a significant impact on the research of different brain regions, brain development and sickness, the connections between the brain and other tissues and organs, and brain evolution. This article discusses the development of brain organoids, their use in diabetes research, and their progress.
Collapse
Affiliation(s)
- Ying Su
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Aimei Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
| | - Hongguang Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
| | - Bo Zhao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Runze Gao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Kangwei Zhang
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Tie Peng
- Hubei University of Science and Technology, Xianning, 437100, P. R. China
| | - Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China.
| | - Changhan Ouyang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China.
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China.
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China.
| |
Collapse
|
12
|
Zhou H, Liu Y, Zhou T, Yang Z, Ni B, Zhou Y, Xu H, Lin X, Lin S, He C, Liu X. IL-23 Priming Enhances the Neuroprotective Effects of MSC-Derived Exosomes in Treating Retinal Degeneration. Invest Ophthalmol Vis Sci 2024; 65:8. [PMID: 39102262 PMCID: PMC11309046 DOI: 10.1167/iovs.65.10.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose Neuroinflammation is a characteristic feature of neurodegenerative diseases. Mesenchymal stem cell-derived exosomes (MSC-exo) have shown neuroprotective effects through immunoregulation, but the therapeutic efficacy remains unsatisfactory. This study aims to enhance the neuroprotective capacity of MSC-exo through IL-23 priming for treating retinal degeneration in mice. Methods MSC were primed with IL-23 stimulation in vitro, and subsequently, exosomes (MSC-exo and IL-23-MSC-exo) were isolated and characterized. Two retinal degenerative disease models (NaIO3-induced mice and rd10 mice) received intravitreal injections of these exosomes. The efficacy of exosomes was assessed by examining retinal structural and functional recovery. Furthermore, exosomal microRNA (miRNA) sequencing was conducted, and the effects of exosomes on the M1 and M2 microglial phenotype shift were evaluated. Results IL-23-primed MSC-derived exosomes (IL-23-MSC-exo) exhibited enhanced capability in protecting photoreceptor cells and retinal pigment epithelium (RPE) cells against degenerative damage and fostering the restoration of retinal neural function in both NaIO3-induced retinal degeneration mice and rd10 mice when compared with MSC-exo. The exosomal miRNA suppression via Drosha knockdown in IL-23-primed MSC would abolish the neuroprotective role of IL-23-MSC-exo, highlighting the miRNA-dependent mechanism. Bioinformatic analysis, along with further in vivo biological studies, revealed that IL-23 priming induced a set of anti-inflammatory miRNAs in MSC-exo, prompting the transition of M1 to M2 microglial polarization. Conclusions IL-23 priming presents as a potential avenue for amplifying the immunomodulatory and neuroprotective effects of MSC-exo in treating retinal degeneration.
Collapse
Affiliation(s)
- Hong Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ziqi Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Biyan Ni
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yang Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huiyi Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaojing Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shiya Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
13
|
Jin Y, Wan K, Liu C, Cheng W, Wang R. Mechanisms of exercise intervention in type 2 diabetes: a bibliometric and visualization analysis based on CiteSpace. Front Endocrinol (Lausanne) 2024; 15:1401342. [PMID: 39149117 PMCID: PMC11324446 DOI: 10.3389/fendo.2024.1401342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Objective Type 2 diabetes (T2D) is a common chronic metabolic disease, and its prevalence is increasing globally. Exercise is crucial for T2D management, yet many aspects of its mechanisms remain unclear. This study employs CiteSpace to reveal research hotspots and frontier issues in exercise intervention for T2D. Method A literature review spanning from January 1, 2013 to December 31, 2022, was conducted using the Web of Science Core Collection (WoSCC), with keywords including "exercise," "type 2 diabetes," and "mechanisms." We analyzed network diagrams generated by CiteSpace, which depicted relationships among countries, authors, and keywords. Results This study includes 1,210 English papers from 555 journals, affiliated with 348 institutions across 80 countries/regions. Notably, the United States, China, and the United Kingdom account for nearly half of all publications. The University of Copenhagen leads in publication volume, followed by Harvard Medical School and the University of Colorado. Key authors include Kirwan, John P (Case Western Reserve University), Malin, Steven K (Rutgers University), and Pedersen, Bente Klarlund (University of Copenhagen). Based on co-occurrence analysis of keywords, it is evident that terms such as "disease," "glucagon-like peptide 1," and "cardiovascular risk factor" exhibit high intermediary centrality. Conclusion The analysis highlights ongoing investigations into molecular mechanisms, such as β-cell function enhancement, exerkines, and epigenetic mechanisms. Emerging areas include exercise response heterogeneity, circadian rhythm regulation, transcription factors, neurotrophic factors, and mitochondrial function. Future studies should prioritize understanding interactions between different exercise mechanisms and optimizing exercise prescriptions for T2D. Exercise prescriptions are crucial for effective interventions. Collaboration between countries and institutions is essential to understand the influences of different genetic backgrounds and environmental factors. Currently, a combination of aerobic and resistance training is considered the optimal form of exercise. However, considering time efficiency, high-intensity interval training (HIIT) has gained widespread attention and research due to its ability to achieve similar exercise effects in a shorter duration. Additionally, circadian rhythm regulation may affect the exercise outcomes of diabetic individuals at different times of the day, particularly concerning the specific types, doses, and intensities used for precision intervention in T2D.
Collapse
Affiliation(s)
- Yue Jin
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kang Wan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Physical Education College, Henan Sport University, Zhengzhou, China
| | - Cheng Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Wei Cheng
- Department of Endocrinology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
14
|
Zhao H, Cai Y, Pan J, Chen Q. Role of MicroRNA in linking diabetic retinal neurodegeneration and vascular degeneration. Front Endocrinol (Lausanne) 2024; 15:1412138. [PMID: 39027475 PMCID: PMC11254631 DOI: 10.3389/fendo.2024.1412138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Diabetic retinopathy is the major cause of blindness in diabetic patients, with limited treatment options that do not always restore optimal vision. Retinal nerve degeneration and vascular degeneration are two primary pathological processes of diabetic retinopathy. The retinal nervous system and vascular cells have a close coupling relationship. The connection between neurodegeneration and vascular degeneration is not yet fully understood. Recent studies have found that microRNA plays a role in regulating diabetic retinal neurovascular degeneration and can help delay the progression of the disease. This article will review how microRNA acts as a bridge connecting diabetic retinal neurodegeneration and vascular degeneration, focusing on the mechanisms of apoptosis, oxidative stress, inflammation, and endothelial factors. The aim is to identify valuable targets for new research and clinical treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Haiyan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | | | | | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Chen Y, Tong J, Liu C, He C, Xiang J, Yao G, Zhang H, Xie Z. MSC-derived small extracellular vesicles mitigate diabetic retinopathy by stabilizing Nrf2 through miR-143-3p-mediated inhibition of neddylation. Free Radic Biol Med 2024; 219:76-87. [PMID: 38604315 DOI: 10.1016/j.freeradbiomed.2024.04.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Diabetic retinopathy (DR) is a highly hazardous and widespread complication of diabetes mellitus (DM). The accumulated reactive oxygen species (ROS) play a central role in DR development. The aim of this research was to examine the impact and mechanisms of mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEV) on regulating ROS and retinal damage in DR. Intravitreal injection of sEV inhibited Cullin3 neddylation, stabilized Nrf2, decreased ROS, reduced retinal inflammation, suppressed Müller gliosis, and mitigated DR. Based on MSC-sEV miRNA sequencing, bioinformatics software, and dual-luciferase reporter assay, miR-143-3p was identified to be the key effector for MSC-sEV's role in regulating neural precursor cell expressed developmentally down-regulated 8 (NEDD8)-mediated neddylation. sEV were able to be internalized by Müller cells. Compared to advanced glycation end-products (AGEs)-induced Müller cells, sEV coculture decreased Cullin3 neddylation, activated Nrf2 signal pathway to combat ROS-induced inflammation. The barrier function of endothelial cells was impaired when endothelial cells were treated with the supernatant of AGEs-induced Müller cells, but was restored when treated with supernatant of AGEs-induced Müller cells cocultured with sEV. The protective effect of sEV was, however, compromised when miR-143-3p was inhibited in sEV. Moreover, the protective efficacy of sEV was diminished when NEDD8 was overexpressed in Müller cells. These findings showed MSC-sEV delivered miR-143-3p to inhibit Cullin3 neddylation, stabilizing Nrf2 to counteract ROS-induced inflammation and reducing vascular leakage. Our findings suggest that MSC-sEV may be a potential nanotherapeutic agent for DR, and that Cullin3 neddylation could be a new target for DR therapy.
Collapse
Affiliation(s)
- Yueqin Chen
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jun Tong
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Cong Liu
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Chang He
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jinjin Xiang
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Genhong Yao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China.
| | - Huayong Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China.
| | - Zhenggao Xie
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
16
|
Chansoria P, Chaudhari A, Etter EL, Bonacquisti EE, Heavey MK, Le J, Maruthamuthu MK, Kussatz CC, Blackwell J, Jasiewicz NE, Sellers RS, Maile R, Wallet SM, Egan TM, Nguyen J. Instantly adhesive and ultra-elastic patches for dynamic organ and wound repair. Nat Commun 2024; 15:4720. [PMID: 38830847 PMCID: PMC11148085 DOI: 10.1038/s41467-024-48980-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Bioadhesive materials and patches are promising alternatives to surgical sutures and staples. However, many existing bioadhesives do not meet the functional requirements of current surgical procedures and interventions. Here, we present a translational patch material that exhibits instant adhesion to tissues (2.5-fold stronger than Tisseel, an FDA-approved fibrin glue), ultra-stretchability (stretching to >300% its original length without losing elasticity), compatibility with rapid photo-projection (<2 min fabrication time/patch), and ability to deliver therapeutics. Using our established procedures for the in silico design and optimization of anisotropic-auxetic patches, we created next-generation patches for instant attachment to tissues while conforming to a broad range of organ mechanics ex vivo and in vivo. Patches coated with extracellular vesicles derived from mesenchymal stem cells demonstrate robust wound healing capability in vivo without inducing a foreign body response and without the need for patch removal that can cause pain and bleeding. We further demonstrate a single material-based, void-filling auxetic patch designed for the treatment of lung puncture wounds.
Collapse
Affiliation(s)
- Parth Chansoria
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ameya Chaudhari
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Emma L Etter
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Emily E Bonacquisti
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mairead K Heavey
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jiayan Le
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Murali Kannan Maruthamuthu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Caden C Kussatz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - John Blackwell
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Natalie E Jasiewicz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rani S Sellers
- Pathology and Laboratory Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert Maile
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shannon M Wallet
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Thomas M Egan
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- North Carolina State University, Raleigh, NC, 27695, USA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
17
|
Peng X, Zhang T, Liu R, Jin X. Potential in exosome-based targeted nano-drugs and delivery vehicles for posterior ocular disease treatment: from barriers to therapeutic application. Mol Cell Biochem 2024; 479:1319-1333. [PMID: 37402019 DOI: 10.1007/s11010-023-04798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
Posterior ocular disease, a disease that accounts for 55% of all ocular diseases, can contribute to permanent vision loss if left without treatment. Due to the special structure of the eye, various obstacles make it difficult for drugs to reach lesions in the posterior ocular segment. Therefore, the development of highly permeable targeted drugs and delivery systems is particularly important. Exosomes are a class of extracellular vesicles at 30-150 nm, which are secreted by various cells, tissues, and body fluids. They carry various signaling molecules, thus endowing them with certain physiological functions. In this review, we describe the ocular barriers and the biogenesis, isolation, and engineering of exosomes, as exosomes not only have pharmacological effects but also are good nanocarriers with targeted properties. Moreover, their biocompatibility and immunogenicity are better than synthetic nanocarriers. Most importantly, they may have the ability to pass through the blood-eye barrier. Thus, they may be developed as both targeted nano-drugs and nano-delivery vehicles for the treatment of posterior ocular diseases. We focus on the current status and potential application of exosomes as targeted nano-drugs and nano-delivery vehicles in posterior ocular diseases.
Collapse
Affiliation(s)
- Xingru Peng
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tingting Zhang
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rui Liu
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xin Jin
- Department of Health Services, Logistics University of People's Armed Police Force, Tianjin, Chenlin Road, Hedong District, Tianjin, 300162, China.
| |
Collapse
|
18
|
Bhat A, Malik A, Yadav P, Ware WJ, Kakalij P, Chand S. Mesenchymal stem cell‐derived extracellular vesicles: Recent therapeutics and targeted drug delivery advances. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3. [DOI: 10.1002/jex2.156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/25/2024] [Indexed: 01/03/2025]
Abstract
AbstractThe targeted drug delivery field is rapidly advancing, focusing on developing biocompatible nanoparticles that meet rigorous criteria of non‐toxicity, biocompatibility, and efficient release of encapsulated molecules. Conventional synthetic nanoparticles (SNPs) face complications such as elevated immune responses, complex synthesis methods, and toxicity, which restrict their utility in therapeutics and drug delivery. Extracellular vesicles (EVs) have emerged as promising substitutes for SNPs, leveraging their ability to cross biological barriers, biocompatibility, reduced toxicity, and natural origin. Notably, mesenchymal stem cell‐derived EVs (MSC‐EVs) have garnered much curiosity due to their potential in therapeutics and drug delivery. Studies suggest that MSC‐EVs, the central paracrine contributors of MSCs, replicate the therapeutic effects of MSCs. This review explores the characteristics of MSC‐EVs, emphasizing their potential in therapeutics and drug delivery for various diseases, including CRISPR/Cas9 delivery for gene editing. It also delves into the obstacles and challenges of MSC‐EVs in clinical applications and provides insights into strategies to overcome the limitations of biodistribution and target delivery.
Collapse
Affiliation(s)
- Anjali Bhat
- Department of Anesthesiology University of Nebraska Medical Center Omaha Nebraska USA
| | - Anshu Malik
- Institute for Quantitative Health Science and Engineering (IQ) Michigan State University East Lansing Michigan USA
- Department of Biomedical Engineering Michigan State University East Lansing Michigan USA
| | - Poonam Yadav
- Medical Science Interdepartmental Area University of Nebraska Medical Center Omaha Omaha Nebraska USA
| | | | - Pratiksha Kakalij
- Department of Pharmaceutical Sciences University of Nebraska Medical Center Omaha Omaha Nebraska USA
| | - Subhash Chand
- Department of Anesthesiology University of Nebraska Medical Center Omaha Nebraska USA
| |
Collapse
|
19
|
Shi L, Zhou Y, Yin Y, Zhang J, Chen K, Liu S, Chen P, Jiang H, Liu J, Wu Y. Advancing Tissue Damage Repair in Geriatric Diseases: Prospects of Combining Stem Cell-Derived Exosomes with Hydrogels. Int J Nanomedicine 2024; 19:3773-3804. [PMID: 38708181 PMCID: PMC11068057 DOI: 10.2147/ijn.s456268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
Geriatric diseases are a group of diseases with unique characteristics related to senility. With the rising trend of global aging, senile diseases now mainly include endocrine, cardiovascular, neurodegenerative, skeletal, and muscular diseases and cancer. Compared with younger populations, the structure and function of various cells, tissues and organs in the body of the elderly undergo a decline as they age, rendering them more susceptible to external factors and diseases, leading to serious tissue damage. Tissue damage presents a significant obstacle to the overall health and well-being of older adults, exerting a profound impact on their quality of life. Moreover, this phenomenon places an immense burden on families, society, and the healthcare system.In recent years, stem cell-derived exosomes have become a hot topic in tissue repair research. The combination of these exosomes with biomaterials allows for the preservation of their biological activity, leading to a significant improvement in their therapeutic efficacy. Among the numerous biomaterial options available, hydrogels stand out as promising candidates for loading exosomes, owing to their exceptional properties. Due to the lack of a comprehensive review on the subject matter, this review comprehensively summarizes the application and progress of combining stem cell-derived exosomes and hydrogels in promoting tissue damage repair in geriatric diseases. In addition, the challenges encountered in the field and potential prospects are presented for future advancements.
Collapse
Affiliation(s)
- Ling Shi
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yunjun Zhou
- The Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yongkui Yin
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Jin Zhang
- Clinical Laboratory, Zhejiang Medical & Health Group Quzhou Hospital, Quzhou, 324004, People’s Republic of China
| | - Kaiyuan Chen
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Sen Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Peijian Chen
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Hua Jiang
- The Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Jieting Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| |
Collapse
|
20
|
Li N, Hu L, Li J, Ye Y, Bao Z, Xu Z, Chen D, Tang J, Gu Y. The Immunomodulatory effect of exosomes in diabetes: a novel and attractive therapeutic tool in diabetes therapy. Front Immunol 2024; 15:1357378. [PMID: 38720885 PMCID: PMC11076721 DOI: 10.3389/fimmu.2024.1357378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/03/2024] [Indexed: 05/12/2024] Open
Abstract
Exosomes carry proteins, metabolites, nucleic acids and lipids from their parent cell of origin. They are derived from cells through exocytosis, are ingested by target cells, and can transfer biological signals between local or distant cells. Therefore, exosomes are often modified in reaction to pathological processes, including infection, cancer, cardiovascular diseases and in response to metabolic perturbations such as obesity and diabetes, all of which involve a significant inflammatory aspect. Here, we discuss how immune cell-derived exosomes origin from neutrophils, T lymphocytes, macrophages impact on the immune reprogramming of diabetes and the associated complications. Besides, exosomes derived from stem cells and their immunomodulatory properties and anti-inflammation effect in diabetes are also reviewed. Moreover, As an important addition to previous reviews, we describes promising directions involving engineered exosomes as well as current challenges of clinical applications in diabetic therapy. Further research on exosomes will explore their potential in translational medicine and provide new avenues for the development of effective clinical diagnostics and therapeutic strategies for immunoregulation of diabetes.
Collapse
Affiliation(s)
- Na Li
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Lingli Hu
- Graduate School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingyang Li
- Graduate School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Ye
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Zhengyang Bao
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Zhice Xu
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Daozhen Chen
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Jiaqi Tang
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying Gu
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
- Department of Obstetrics, Wuxi Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
21
|
Jiao YR, Chen KX, Tang X, Tang YL, Yang HL, Yin YL, Li CJ. Exosomes derived from mesenchymal stem cells in diabetes and diabetic complications. Cell Death Dis 2024; 15:271. [PMID: 38632264 PMCID: PMC11024187 DOI: 10.1038/s41419-024-06659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Diabetes, a group of metabolic disorders, constitutes an important global health problem. Diabetes and its complications place a heavy financial strain on both patients and the global healthcare establishment. The lack of effective treatments contributes to this pessimistic situation and negative outlook. Exosomes released from mesenchymal stromal cells (MSCs) have emerged as the most likely new breakthrough and advancement in treating of diabetes and diabetes-associated complication due to its capacity of intercellular communication, modulating the local microenvironment, and regulating cellular processes. In the present review, we briefly outlined the properties of MSCs-derived exosomes, provided a thorough summary of their biological functions and potential uses in diabetes and its related complications.
Collapse
Affiliation(s)
- Yu-Rui Jiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Kai-Xuan Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiang Tang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yu-Long Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Hai-Lin Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Fuyang Normal University, Fuyang, Anhui, 236000, China
| | - Yu-Long Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Laboratory Animal Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
22
|
Malin SK, Erdbrügger U. Extracellular Vesicles in Metabolic and Vascular Insulin Resistance. J Vasc Res 2024; 61:129-141. [PMID: 38615667 PMCID: PMC11149383 DOI: 10.1159/000538197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/01/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Insulin resistance is a major etiological factor in obesity, type 2 diabetes, and cardiovascular disease (CVD). Endothelial dysfunction may precede impairments in insulin-stimulated glucose uptake, thereby making it a key feature in development of CVD. However, the mechanism by which vascular tissue becomes dysfunctional is not clear. SUMMARY Extracellular vesicles (EVs) have emerged as potential mediators of insulin resistance and vascular dysfunction. EVs are membrane-bound particles released by tissues following cellular stress or activation. They carry "cargo" (e.g., insulin signaling proteins, eNOS-nitric oxide, and miRNA) that are believed to promote inter-cellular and interorgan communications. Herein, we review the underlying physiology of EVs in relation to type 2 diabetes and CVD risk. Specifically, we discuss how EVs may modulate metabolic (e.g., skeletal muscle, liver, and adipose) insulin sensitivity, and propose that EVs may modulate vascular insulin action to influence both endothelial function and arterial stiffness. We lastly identify how EVs may play a unique role following exercise to promote metabolic and vascular insulin sensitivity changes. KEY MESSAGE Gaining insight toward insulin-mediated EV mechanism has potential to identify novel pathways regulating cardiometabolic health and provide foundation for examining EVs as unique biomarkers and targets to prevent and/or treat chronic diseases.
Collapse
Affiliation(s)
- Steven K Malin
- Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey, USA
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, New Brunswick, New Jersey, USA
- The New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Uta Erdbrügger
- Division of Nephrology, Department of Medicine, University of Virginia Health System, New Brunswick, New Jersey, USA
| |
Collapse
|
23
|
Lu P, Dai G, Shi L, Li Y, Zhang M, Wang H, Rui Y. HMGB1 Modulates High Glucose-Induced Erroneous Differentiation of Tendon Stem/Progenitor Cells through RAGE/ β-Catenin Pathway. Stem Cells Int 2024; 2024:2335270. [PMID: 38633380 PMCID: PMC11022503 DOI: 10.1155/2024/2335270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
The association of tendinopathy with diabetes has been well recognized. Tendon stem/progenitor cells (TSPCs) play critical roles in tendon repair, regeneration, and homeostasis maintenance. Diabetic TSPCs exhibit enhanced erroneous differentiation and are involved in the pathogenesis of diabetic tendinopathy, whereas the underlying mechanism of the erroneous differentiation of TSPCs remains unclear. Here, we showed that high glucose treatment promoted the erroneous differentiation of TSPCs with increased osteogenic differentiation capacity and decreased tenogenic differentiation ability, and stimulated the expression and further secretion of HMGB1 in TSPCs and. Functionally, exogenous HMGB1 significantly enhanced the erroneous differentiation of TSPCs, while HMGB1 knockdown mitigated high glucose-promoted erroneous differentiation of TSPCs. Mechanistically, the RAGE/β-catenin signaling was activated in TSPCs under high glucose, and HMGB1 knockdown inhibited the activity of RAGE/β-catenin signaling. Inhibition of RAGE/β-catenin signaling could ameliorate high glucose-induced erroneous differentiation of TSPCs. These results indicated that HMGB1 regulated high glucose-induced erroneous differentiation of TSPCs through the RAGE/β-catenin signaling pathway. Collectively, our findings suggest a novel essential mechanism of the erroneous differentiation of TSPCs, which might contribute to the pathogenesis of diabetic tendinopathy and provide a promising therapeutic target and approach for diabetic tendinopathy.
Collapse
Affiliation(s)
- Panpan Lu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- School of Medicine, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Orthopaedic Trauma Institute (OTI), Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Trauma Center, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
| | - Guangchun Dai
- Department of Orthopaedics, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- School of Medicine, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Orthopaedic Trauma Institute (OTI), Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Trauma Center, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- School of Medicine, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Orthopaedic Trauma Institute (OTI), Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Trauma Center, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
| | - Yingjuan Li
- School of Medicine, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Department of Geriatrics, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
| | - Ming Zhang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- School of Medicine, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Orthopaedic Trauma Institute (OTI), Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Trauma Center, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
| | - Hao Wang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- School of Medicine, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Orthopaedic Trauma Institute (OTI), Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Trauma Center, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- School of Medicine, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Orthopaedic Trauma Institute (OTI), Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Trauma Center, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
| |
Collapse
|
24
|
Singh S, Paul D, Nath V, A R. Exosomes: current knowledge and future perspectives. Tissue Barriers 2024; 12:2232248. [PMID: 37439246 PMCID: PMC11042064 DOI: 10.1080/21688370.2023.2232248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Exosomes are membrane-bound micro-vesicles that possess endless therapeutic potential for treatment of numerous pathologies including autoimmune, cardiovascular, ocular, and nervous disorders. Despite considerable knowledge about exosome biogenesis and secretion, still, there is a lack of information regarding exosome uptake by cell types and internal signaling pathways through which these exosomes process cellular response. Exosomes are key components of cell signaling and intercellular communication. In central nervous system (CNS), exosomes can penetrate BBB and maintain homeostasis by myelin sheath regulation and the waste products elimination. Therefore, the current review summarizes role of exosomes and their use as biomarkers in cardiovascular, nervous and ocular disorders. This aspect of exosomes provides positive hope to monitor disease development and enable early diagnosis and treatment optimization. In this review, we have summarized recent findings on physiological and therapeutic effects of exosomes and also attempt to provide insights about stress-preconditioned exosomes and stem cell-derived exosomes.
Collapse
Affiliation(s)
- Swati Singh
- College of Pharmacy, JSS Academy of Technical Sciences, Noida, Uttar Pradesh, India
| | - Deepraj Paul
- College of Pharmacy, JSS Academy of Technical Sciences, Noida, Uttar Pradesh, India
| | - Virendra Nath
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Rohini A
- College of Pharmacy, JSS Academy of Technical Sciences, Noida, Uttar Pradesh, India
| |
Collapse
|
25
|
Heo JI, Ryu J. Exosomal noncoding RNA: A potential therapy for retinal vascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102128. [PMID: 38356865 PMCID: PMC10865410 DOI: 10.1016/j.omtn.2024.102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Exosomes are extracellular vesicles that can contain DNA, RNA, proteins, and metabolites. They are secreted by cells and play a regulatory role in various biological responses by mediating cell-to-cell communication. Moreover, exosomes are of interest in developing therapies for retinal vascular disorders because they can deliver various substances to cellular targets. According to recent research, exosomes can be used as a strategy for managing retinal vascular diseases, and they are being investigated for therapeutic purposes in eye conditions, including glaucoma, dry eye syndrome, retinal ischemia, diabetic retinopathy, and age-related macular degeneration. However, the role of exosomal noncoding RNA in retinal vascular diseases is not fully understood. Here, we reviewed the latest research on the biological role of exosomal noncoding RNA in treating retinal vascular diseases. Research has shown that noncoding RNAs, including microRNAs, circular RNAs, and long noncoding RNAs play a significant role in the regulation of retinal vascular diseases. Furthermore, through exosome engineering, the expression of relevant noncoding RNAs in exosomes can be controlled to regulate retinal vascular diseases. Therefore, this review suggests that exosomal noncoding RNA could be considered as a biomarker for diagnosis and as a therapeutic target for treating retinal vascular disease.
Collapse
Affiliation(s)
- Jong-Ik Heo
- Vessel-Organ Interaction Research Center, College of Pharmacy, Kyungpook National University, Daegu, South Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Juhee Ryu
- Vessel-Organ Interaction Research Center, College of Pharmacy, Kyungpook National University, Daegu, South Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
26
|
Li X, Ji LJ, Feng KD, Huang H, Liang MR, Cheng SJ, Meng XD. Emerging role of exosomes in ulcerative colitis: Targeting NOD-like receptor family pyrin domain containing 3 inflammasome. World J Gastroenterol 2024; 30:527-541. [PMID: 38463022 PMCID: PMC10921143 DOI: 10.3748/wjg.v30.i6.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/21/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic recurrent inflammatory bowel disease. Despite ongoing advances in our understanding of UC, its pathogenesis is yet unelucidated, underscoring the urgent need for novel treatment strategies for patients with UC. Exosomes are nanoscale membrane particles that mediate intercellular communication by carrying various bioactive molecules, such as proteins, RNAs, DNA, and metabolites. The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a cytosolic tripartite protein complex whose activation induces the maturation and secretion of proinflammatory cytokines interleukin-1β (IL-1β) and IL-18, triggering the inflammatory response to a pathogenic agent or injury. Growing evidence suggests that exosomes are new modulators of the NLRP3 inflammasome, with vital roles in the pathological process of UC. Here, recent evidence is reviewed on the role of exosomes and NLRP3 inflammasome in UC. First, the dual role of exosomes on NLRP3 inflammasome and the effect of NLRP3 inflammasome on exosome secretion are summarized. Finally, an outlook on the directions of exosome-NLRP3 inflammasome crosstalk research in the context of UC is proposed and areas of further research on this topic are highlighted.
Collapse
Affiliation(s)
- Xin Li
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou Province, China
| | - Li-Jiang Ji
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Kai-Di Feng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hua Huang
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Mei-Rou Liang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shi-Jin Cheng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiu-Dong Meng
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
27
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
28
|
Mrowicka M, Mrowicki J, Majsterek I. Relationship between Biochemical Pathways and Non-Coding RNAs Involved in the Progression of Diabetic Retinopathy. J Clin Med 2024; 13:292. [PMID: 38202299 PMCID: PMC10779474 DOI: 10.3390/jcm13010292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Diabetic retinopathy (DR) is a progressive blinding disease, which affects the vision and quality of life of patients, and it severely impacts the society. This complication, caused by abnormal glucose metabolism, leads to structural, functional, molecular, and biochemical abnormalities in the retina. Oxidative stress and inflammation also play pivotal roles in the pathogenic process of DR, leading to mitochondrial damage and a decrease in mitochondrial function. DR causes retinal degeneration in glial and neural cells, while the disappearance of pericytes in retinal blood vessels leads to alterations in vascular regulation and stability. Clinical changes include dilatation and blood flow changes in response to the decrease in retinal perfusion in retinal blood vessels, leading to vascular leakage, neovascularization, and neurodegeneration. The loss of vascular cells in the retina results in capillary occlusion and ischemia. Thus, DR is a highly complex disease with various biological factors, which contribute to its pathogenesis. The interplay between biochemical pathways and non-coding RNAs (ncRNAs) is essential for understanding the development and progression of DR. Abnormal expression of ncRNAs has been confirmed to promote the development of DR, suggesting that ncRNAs such as miRNAs, lncRNAs, and circRNAs have potential as diagnostic biomarkers and theranostic targets in DR. This review provides an overview of the interactions between abnormal biochemical pathways and dysregulated expression of ncRNAs under the influence of hyperglycemic environment in DR.
Collapse
Affiliation(s)
- Małgorzata Mrowicka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.M.); (I.M.)
| | | | | |
Collapse
|
29
|
Manai F, Smedowski A, Kaarniranta K, Comincini S, Amadio M. Extracellular vesicles in degenerative retinal diseases: A new therapeutic paradigm. J Control Release 2024; 365:448-468. [PMID: 38013069 DOI: 10.1016/j.jconrel.2023.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/03/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Nanoscale extracellular vesicles (EVs), consisting of exomers, exosomes and microvesicles/ectosomes, have been extensively investigated in the last 20 years, although their biological role is still something of a mystery. EVs are involved in the transfer of lipids, nucleic acids and proteins from donor to recipient cells or distant organs as well as regulating cell-cell communication and signaling. Thus, EVs are important in intercellular communication and this is not limited to sister cells, but may also mediate the crosstalk between different cell types even over long distances. EVs play crucial functions in both cellular homeostasis and the pathogenesis of diseases, and since their contents reflect the status of the donor cell, they represent an additional valuable source of information for characterizing complex biological processes. Recent advances in isolation and analytical methods have led to substantial improvements in both characterizing and engineering EVs, leading to their use either as novel biomarkers for disease diagnosis/prognosis or even as novel therapies. Due to their capacity to carry biomolecules, various EV-based therapeutic applications have been devised for several pathological conditions, including eye diseases. In the eye, EVs have been detected in the retina, aqueous humor, vitreous body and also in tears. Experiences with other forms of intraocular drug applications have opened new ways to use EVs in the treatment of retinal diseases. We here provide a comprehensive summary of the main in vitro, in vivo, and ex vivo literature-based studies on EVs' role in ocular physiological and pathological conditions. We have focused on age-related macular degeneration, diabetic retinopathy, glaucoma, which are common eye diseases leading to permanent blindness, if not treated properly. In addition, the putative use of EVs in retinitis pigmentosa and other retinopathies is discussed. Finally, we have reviewed the potential of EVs as therapeutic tools and/or biomarkers in the above-mentioned retinal disorders. Evidence emerging from experimental disease models and human material strongly suggests future diagnostic and/or therapeutic exploitation of these biological agents in various ocular disorders with a good possibility to improve the patient's quality of life.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Adrian Smedowski
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland; GlaucoTech Co., Katowice, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland; Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Sergio Comincini
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | |
Collapse
|
30
|
Izquierdo-Altarejos P, Moreno-Manzano V, Felipo V. Pathological and therapeutic effects of extracellular vesicles in neurological and neurodegenerative diseases. Neural Regen Res 2024; 19:55-61. [PMID: 37488844 PMCID: PMC10479838 DOI: 10.4103/1673-5374.375301] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 07/26/2023] Open
Abstract
Extracellular vesicles are released by all cell types and contain proteins, microRNAs, mRNAs, and other bioactive molecules. Extracellular vesicles play an important role in intercellular communication and in the modulation of the immune system and neuroinflammation. The cargo of extracellular vesicles (e.g., proteins and microRNAs) is altered in pathological situations. Extracellular vesicles contribute to the pathogenesis of many pathologies associated with sustained inflammation and neuroinflammation, including cancer, diabetes, hyperammonemia and hepatic encephalopathy, and other neurological and neurodegenerative diseases. Extracellular vesicles may cross the blood-brain barrier and transfer pathological signals from the periphery to the brain. This contributes to inducing neuroinflammation and cognitive and motor impairment in hyperammonemia and hepatic encephalopathy and in neurodegenerative diseases. The mechanisms involved are beginning to be understood. For example, increased tumor necrosis factor α in extracellular vesicles from plasma of hyperammonemic rats induces neuroinflammation and motor impairment when injected into normal rats. Identifying the mechanisms by which extracellular vesicles contribute to the pathogenesis of these diseases will help to develop new treatments and diagnostic tools for their easy and early detection. In contrast, extracellular vesicles from mesenchymal stem cells have therapeutic utility in many of the above pathologies, by reducing inflammation and neuroinflammation and improving cognitive and motor function. These extracellular vesicles recapitulate the beneficial effects of mesenchymal stem cells and have advantages as therapeutic tools: they are less immunogenic, may not differentiate to malignant cells, cross the blood-brain barrier, and may reach more easily target organs. Extracellular vesicles from mesenchymal stem cells have beneficial effects in models of ischemic brain injury, Alzheimer's and Parkinson's diseases, hyperammonemia, and hepatic encephalopathy. Extracellular vesicles from mesenchymal stem cells modulate the immune system, promoting the shift from a pro-inflammatory to an anti-inflammatory state. For example, extracellular vesicles from mesenchymal stem cells modulate the Th17/Treg balance, promoting the anti-inflammatory Treg. Extracellular vesicles from mesenchymal stem cells may also act directly in the brain to modulate microglia activation, promoting a shift from a pro-inflammatory to an anti-inflammatory state. This reduces neuroinflammation and improves cognitive and motor function. Two main components of extracellular vesicles from mesenchymal stem cells which contribute to these beneficial effects are transforming growth factor-β and miR-124. Identifying the mechanisms by which extracellular vesicles from mesenchymal stem cells induce the beneficial effects and the main molecules (e.g., proteins and mRNAs) involved may help to improve their therapeutic utility. The aims of this review are to summarize the knowledge of the pathological effects of extracellular vesicles in different pathologies, the therapeutic potential of extracellular vesicles from mesenchymal stem cells to recover cognitive and motor function and the molecular mechanisms for these beneficial effects on neurological function.
Collapse
Affiliation(s)
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
31
|
Yang C, Xue Y, Duan Y, Mao C, Wan M. Extracellular vesicles and their engineering strategies, delivery systems, and biomedical applications. J Control Release 2024; 365:1089-1123. [PMID: 38065416 DOI: 10.1016/j.jconrel.2023.11.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024]
Abstract
Extracellular vesicles are nanoscale vesicles that can be secreted by all cell types, are intracellular in origin and have the same composition as their parent cells, play a key role in intercellular communication in organismal health and disease, and are now often used as biomarkers of disease and therapeutic agents in biomedical research. When injected locally or systemically, they have the ability to provide a variety of therapeutic effects, for example, regeneration of skin damage or restoration of cardiac function. However, direct injection of extracellular vesicles may result in their rapid clearance from the injection site.In order to maintain the biological activity of extracellular vesicles and to control the release of effective concentrations for better therapeutic efficacy during long-term disease treatment, the design of an optimized drug delivery system is necessary and different systems for the continuous delivery of extracellular vesicles have been developed. This paper first provides an overview of the biogenesis, composition and physiological function of extracellular vesicles, followed by a review of different strategies for extracellular vesicle isolation and methods for engineering extracellular vesicles. In addition, this paper reviews the latest extracellular vesicle delivery platforms such as micro-nanoparticles, injectable hydrogels, microneedles and scaffold patches. At the same time, the research progress and key cases of extracellular vesicle delivery systems in the field of biomedical therapeutics are described. Finally, the challenges and future trends of extracellular vesicle delivery are discussed.
Collapse
Affiliation(s)
- Chunhao Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yunxin Xue
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yu Duan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
32
|
Olcar HN, Isildar B, Ozkan S, Ercin M, Gezginci-Oktayoglu S, Koyuturk M. Investigation of conditioned medium properties obtained from human umbilical cord mesenchymal stem/stromal cells preconditioned with dimethyloxalylglycine in a correlation with ultrastructural changes. Microsc Res Tech 2024; 87:159-171. [PMID: 37728208 DOI: 10.1002/jemt.24420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) hold significant therapeutic value due to their regeneration abilities, migration capacity, and immunosuppressive and immunomodulatory properties. These cells secrete soluble and insoluble factors, and this complex secretome contributes to their therapeutic effect. Furthermore, stimulation of cells by various external stimuli lead to secretome modifications that can increase the therapeutic efficacy. So, this study examined the effect of dimethyloxalylglycine (DMOG), a hypoxia-mimetic agent, on secretome profiles and exosome secretions of MSCs by evaluating conditioned medium (CM) and ultrastructural morphologies of the cells in comparison with unpreconditioned MSCs. The appropriate dose and duration of the use of DMOG were determined as 1000 μM and 24 h by evaluating the HIF-1α expression. DMOG-CM and N-CM were collected from MSCs incubated in serum-free medium with/without DMOG for 24 h, respectively. The content analysis of conditioned mediums (CMs) revealed that VEGF, NGF, and IL-4 levels were increased in DMOG-CM. Subsequently, exosomes were isolated from the CMs and were shown by transmission electron microscopy and Western blot analysis in both groups. The effects of CMs on proliferation and migration were determined by in vitro wound healing tests; both CMs increased the fibroblast's migratory and proliferative capacities. According to the ultrastructural evaluation, autophagosome, autolysosome, myelin figure, and microvesicular body structures were abundant in DMOG-preconditioned MSCs. Consistent with the high number of autophagic vacuoles, Beclin-1 expression was increased in those cells. These findings suggested that DMOG could alter MSCs' secretion profile, modify their ultrastructural morphology accordingly, and make the CM a more potent therapeutic tool. RESEARCH HIGHLIGHTS: Preconditioning mesenchymal stem/stromal cells with dimethyloxalylglycine, a hypoxia-mimetic agent, could modify cellular metabolism. Hypoxic mechanisms lead to alterations in the ultrastructural characteristics of mesenchymal stromal/stem cells. Preconditioning with dimethyloxalylglycine leads to ultrastructural and metabolic changes of mesenchymal stromal/stem cells along with modifications in their secretome profiles. Preconditioning of mesenchymal stromal/stem cells could render them a more potent therapeutic tool.
Collapse
Affiliation(s)
- Hanife Nurdan Olcar
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Basak Isildar
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Serbay Ozkan
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Merve Ercin
- Department of Biology, Molecular Biology Section, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Selda Gezginci-Oktayoglu
- Department of Biology, Molecular Biology Section, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Meral Koyuturk
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
33
|
Ali Mohammed S, Elbaramawy A, Hassan Abd-Allah S, Elkholy A, Ibrahim Elsayed N, Hussein S. Therapeutic potentials of mesenchymal stem cells in the treatment of inflammatory bowel disease in rats. J Biochem Mol Toxicol 2024; 38:e23532. [PMID: 37676835 DOI: 10.1002/jbt.23532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Interleukin-1beta (IL-1β) and interleukin-17A (IL-17A) have strong pro-inflammatory activities that are involved in inflammatory bowel diseases (IBDs). Mesenchymal stem cell (MSC) therapy is considered a promising treatment for IBD. This study was performed to understand the role of rat Nlrp3 inflammasome, Hmgb1, and pro-inflammatory cytokines (IL-1β and IL-17a) in the pathogenesis of IBD. Also, to evaluate the role of human umbilical cord blood-MSCs (hUCB-MSCs) in the management of IBD. The rats were in four groups: normal controls, indomethacin-induced IBD group, indomethacin-induced IBD rats that received phosphate-buffered saline (PBS), and the IBD group that received hUCB-MSCs as a treatment. The messenger RNA (mRNA) expression levels of rat Nlrp3, Hmgb1, IL-1β, and IL-17a were evaluated by quantitative real-time polymerase chain reaction. Histopathological examination of the small intestinal tissues of the studied rats was performed. There was a significant upregulation of the rat Nlrp3, IL-1β, IL-17a mRNA expression (p < 0.001 for the three parameters), and Hmgb1 (p < 0.05) in the untreated IBD group compared to the normal control group. In the MSC-treated group, IL-1β, IL-17a, and rat Nlrp3 mRNA expression significantly decreased compared to both the untreated IBD group and PBS group (p < 0.05 for all). hUCB-MSCs ameliorated IBD in rats by downregulating the pro-inflammatory cytokines (IL-1β and IL-17a) and other inflammatory mediators such as Hmgb1 and rat Nlrp3.
Collapse
Affiliation(s)
- Shuzan Ali Mohammed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Azza Elbaramawy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Somia Hassan Abd-Allah
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Adel Elkholy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Nashwa Ibrahim Elsayed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Samia Hussein
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
34
|
Sergi CM. MASLD and aspartame: are new studies in the horizon? Front Med (Lausanne) 2023; 10:1266918. [PMID: 38143439 PMCID: PMC10739386 DOI: 10.3389/fmed.2023.1266918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
Fatty liver disease has been on the rise in the past few decades, and there is no hope that it will stop. The terminology change that has been recently proposed may not be sufficient to advocate for a reduction of steatogenic foods and a change in lifestyle. A course change may be supported by the recent labeling of aspartame sweetener as a possible carcinogenic compound by the International Association for Research on Cancer (IARC), an agency of the World Health Organization (WHO). Aspartame sweeteners and other edulcorating molecular compounds besides colorings may trigger liver cancer other than fatty liver disease, despite limited data supporting it. An essential bias in human cohort studies is indeed the exclusion of all confounding factors, which may be barely impossible for human studies. In this perspective, we suggest that the activation of the NOD-like receptor-enclosing protein 3 (NLRP3) inflammasome and the stimulation of the tumor suppression gene TP53 may be critical in the progression from fatty liver to liver inflammation and liver cancer. Aspartame reduces a transcriptional coactivator, precisely the peroxisomal proliferator-initiated receptor-γ (gamma) coactivator 1-α (alpha) (or PGC1α). This coactivator upregulates mitochondrial bioformation, oxidative phosphorylation, respiratory capacity, and fatty acid β-oxidation. Aspartame acts in this way, probably through the activation of TP53. These events have been accountable for the variations in the lipid outline in serum and total lipid storage as well as for the impairment of gluconeogenesis in the liver, as supported by the downregulation of the gluconeogenic enzymes in experimental animals, and may be relevant in humans as well.
Collapse
Affiliation(s)
- Consolato M. Sergi
- Department of Laboratory Medicine, University of Alberta, Edmonton, AB, Canada
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
35
|
Isildar B, Ozkan S, Koyuturk M. Therapeutic Potential of Mesenchymal Stem Cell‐Derived Conditioned Medium for Diabetes Mellitus and Related Complications. ADVANCED THERAPEUTICS 2023; 6. [DOI: 10.1002/adtp.202300216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 01/06/2025]
Abstract
AbstractDiabetes mellitus (DM) is one of the most life‐threatening metabolic disorders, with 9% of the global prevalence, and it is estimated to be rising to 12.2% in 2045. Currently, there is no definitive treatment for DM. Although life‐saving, insulin administration to control blood sugar is not a cure for DM and is insufficient to prevent DM‐related complications such as nephropathy, neuropathy, or retinopathy. For this reason, studies are continuing to develop treatments that will provide β‐cell regeneration while suppressing autoimmunity. Mesenchymal stem cells (MSCs) are multipotent stem cells with a high proliferation capacity, immunosuppression, and immunomodulation ability. MSCs have gained therapeutic importance with these properties besides their differentiation ability. The immunosuppressive and immunomodulatory properties of the cells arise from the soluble and insoluble factors they secrete into the extracellular environment. Therefore, the culture medium where these cells grow has therapeutic value and is named conditioned medium (CM). In this context, CM obtained from MSCs can provide a similar therapeutic effect with fewer safety concerns. Furthermore, preconditioning of MSCs can improve the effectiveness of these cells and associated cellular products. So, this review summarizes the recent advances in MSC‐derived CMs and their therapeutic potential for DM and related complications.
Collapse
Affiliation(s)
- Basak Isildar
- Balikesir University Faculty of Medicine Histology and Embryology Department Balikesir 10185 Turkey
| | - Serbay Ozkan
- Izmir Katip Celebi University Faculty of Medicine Histology and Embryology Department Izmir 35620 Turkey
| | - Meral Koyuturk
- Istanbul University‐Cerrahpasa Cerrahpasa Faculty of Medicine Histology and Embryology Department Istanbul 34098 Turkey
| |
Collapse
|
36
|
Sharma S, Bhonde R. Applicability of mesenchymal stem cell-derived exosomes as a cell-free miRNA therapy and epigenetic modifiers for diabetes. Epigenomics 2023; 15:1323-1336. [PMID: 38018455 DOI: 10.2217/epi-2023-0302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Given that exosome nanovesicles constitute various growth factors, miRNAs and lncRNAs, they have implications for epigenetic modifications. Few studies have shown that exosomes from mesenchymal stem cells (MSCs) exhibit therapeutic effects on diabetic complications by substituting miRNAs and regulating histone modifications. Therefore, reversing epigenetic aberrations in diabetes may provide new insight into its treatment. This review discusses the impact of DNA and histone methylations on the development of diabetes and its complications. Further, we talk about miRNAs dysregulated in diabetic conditions and the possibility of utilizing mesenchymal stem cell (MSC) exosomes for the development of miRNA cell-free therapy and epigenetic modifiers in reversing diabetic-induced epigenetic alterations.
Collapse
Affiliation(s)
- Shikha Sharma
- Institute For Stem Cell Science & Regenerative Medicine, Bangalore, 560065, India
| | - Ramesh Bhonde
- Dr D.Y. Patil Vidyapeeth, Pimpri, Pune, 411018, India
| |
Collapse
|
37
|
Zhang Z, Shi C, Wang Z. The physiological functions and therapeutic potential of exosomes during the development and treatment of polycystic ovary syndrome. Front Physiol 2023; 14:1279469. [PMID: 38028777 PMCID: PMC10657906 DOI: 10.3389/fphys.2023.1279469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Polycystic ovary syndrome is a very common disease of gynecological endocrine, accompanied by irregular menstruation, hyperandrogenism, metabolic abnormalities, reproductive disorders and other clinical symptoms, which seriously endangers women's physical and mental health, but its etiology and pathogenesis are not completely clear. Recently, the contribution of exosomes to the diagnosis and treatment of various diseases in the biomedical field has attracted much attention, including PCOS. Exosomes are extracellular vesicles secreted by cells, containing various biologically active molecules such as cell-specific proteins, lipids, and nucleic acids. They are important signaling regulators in vivo and widely participate in various physiopathological processes. They are new targets for disease diagnosis and treatment. Considering the important role of non-coding RNAs during the development and treatment of PCOS, this article takes exosomal miRNAs as the breakthrough point for elucidating the physiological functions and therapeutic potential of exosomes during the development and treatment of PCOS through analyzing the effects of exosomal miRNAs on ovarian follicle development, hormone secretion, oxidative stress, inflammatory response and insulin resistance, thus providing new research directions and theoretical basis for PCOS pathogenesis, clinical diagnosis and prognosis improvement.
Collapse
Affiliation(s)
| | | | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
38
|
Leal AF, Inci OK, Seyrantepe V, Rintz E, Celik B, Ago Y, León D, Suarez DA, Alméciga-Díaz CJ, Tomatsu S. Molecular Trojan Horses for treating lysosomal storage diseases. Mol Genet Metab 2023; 140:107648. [PMID: 37598508 DOI: 10.1016/j.ymgme.2023.107648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023]
Abstract
Lysosomal storage diseases (LSDs) are caused by monogenic mutations in genes encoding for proteins related to the lysosomal function. Lysosome plays critical roles in molecule degradation and cell signaling through interplay with many other cell organelles, such as mitochondria, endoplasmic reticulum, and peroxisomes. Even though several strategies (i.e., protein replacement and gene therapy) have been attempted for LSDs with promising results, there are still some challenges when hard-to-treat tissues such as bone (i.e., cartilages, ligaments, meniscus, etc.), the central nervous system (mostly neurons), and the eye (i.e., cornea, retina) are affected. Consistently, searching for novel strategies to reach those tissues remains a priority. Molecular Trojan Horses have been well-recognized as a potential alternative in several pathological scenarios for drug delivery, including LSDs. Even though molecular Trojan Horses refer to genetically engineered proteins to overcome the blood-brain barrier, such strategy can be extended to strategies able to transport and deliver drugs to specific tissues or cells using cell-penetrating peptides, monoclonal antibodies, vesicles, extracellular vesicles, and patient-derived cells. Only some of those platforms have been attempted in LSDs. In this paper, we review the most recent efforts to develop molecular Trojan Horses and discuss how this strategy could be implemented to enhance the current efficacy of strategies such as protein replacement and gene therapy in the context of LSDs.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia; Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Orhan Kerim Inci
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Izmir, Turkey
| | - Volkan Seyrantepe
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Izmir, Turkey
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Betul Celik
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Yasuhiko Ago
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Daniel León
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Diego A Suarez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland; Faculty of Arts and Sciences, University of Delaware, Newark, DE, USA; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
39
|
Ferrara F, Pecorelli A, Valacchi G. Redox Regulation of Nucleotide-Binding and Oligomerization Domain-Like Receptors Inflammasome. Antioxid Redox Signal 2023; 39:744-770. [PMID: 37440315 DOI: 10.1089/ars.2022.0180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Significance: Inflammasomes are multimeric complexes that, as part of the innate immune response, sense a wide range of pathogenic and sterile stimuli. They consist of three components, namely a sensor protein, an adaptor, and procaspase-1, which once activated result in secretion of proinflammatory interleukin (IL)-1β and IL-18 and, eventually, in a gasdermin D-dependent lytic cell death called pyroptosis. Recent Advances: Since their discovery 20 years ago, the molecular mechanisms underlying the regulation of inflammasomes have been extensively studied. Oxidative stress appears as a major contributor to modulate inflammasomes, especially NLRP3 as well as NLRP1, NLRP6, and NLRC4. Growing evidence supports the idea that the positive feedback between redox imbalance and inflammasome-driven inflammation fuels an OxInflammatory state in a variety of human pathologies. Critical Issues: The current knowledge about the redox signaling pathways involved in inflammasomes activation and functions are here highlighted. In addition, we discuss the role of this complex molecular network interaction in the onset and progression of pathological conditions including neurological and metabolic diseases as well as skin disorders, also with an insight on COVID-19-related pathology. Finally, the therapeutic strategies able to mitigate the redox-mediated inflammasome activation with synthetic and natural compounds as well as by acting on inflammasome-related post-translational modifications and microRNAs are also addressed. Future Directions: Further investigations leading to a deeper understanding of the reciprocal interaction between inflammasomes and reactive oxygen species will help identify other molecular targets for modulating their hyperactivated state, and to design novel therapeutics for chronic OxInflammatory conditions. Antioxid. Redox Signal. 39, 744-770.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
- Plants for Human Health Institute, Animal Science Dept., North Carolina State University, Kannapolis, North Carolina, USA
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
- Plants for Human Health Institute, Animal Science Dept., North Carolina State University, Kannapolis, North Carolina, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
40
|
Zhang ZX, Zhou YJ, Gu P, Zhao W, Chen HX, Wu RY, Zhou LY, Cui QZ, Sun SK, Zhang LQ, Zhang K, Xu HJ, Chai XQ, An SJ. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate Parkinson's disease and neuronal damage through inhibition of microglia. Neural Regen Res 2023; 18:2291-2300. [PMID: 37056150 PMCID: PMC10328268 DOI: 10.4103/1673-5374.368300] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 04/15/2023] Open
Abstract
Microglia-mediated inflammatory responses have been shown to play a crucial role in Parkinson's disease. In addition, exosomes derived from mesenchymal stem cells have shown anti-inflammatory effects in the treatment of a variety of diseases. However, whether they can protect neurons in Parkinson's disease by inhibiting microglia-mediated inflammatory responses is not yet known. In this study, exosomes were isolated from human umbilical cord mesenchymal stem cells and injected into a 6-hydroxydopamine-induced rat model of Parkinson's disease. We found that the exosomes injected through the tail vein and lateral ventricle were absorbed by dopaminergic neurons and microglia on the affected side of the brain, where they repaired nigral-striatal dopamine system damage and inhibited microglial activation. Furthermore, in an in vitro cell model, pretreating lipopolysaccharide-stimulated BV2 cells with exosomes reduced interleukin-1β and interleukin-18 secretion, prevented the adoption of pyroptosis-associated morphology by BV2 cells, and increased the survival rate of SH-SY5Y cells. Potential targets for treatment with human umbilical cord mesenchymal stem cells and exosomes were further identified by high-throughput microRNA sequencing and protein spectrum sequencing. Our findings suggest that human umbilical cord mesenchymal stem cells and exosomes are a potential treatment for Parkinson's disease, and that their neuroprotective effects may be mediated by inhibition of excessive microglial proliferation.
Collapse
Affiliation(s)
- Zhong-Xia Zhang
- Department of Neurology, the First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yong-Jie Zhou
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Ping Gu
- Department of Neurology, the First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Wei Zhao
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Hong-Xu Chen
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Ruo-Yu Wu
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Lu-Yang Zhou
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Qing-Zhuo Cui
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Shao-Kang Sun
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Lin-Qi Zhang
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Ke Zhang
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Hong-Jun Xu
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Xi-Qing Chai
- Department of Neurology, the First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Sheng-Jun An
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| |
Collapse
|
41
|
Mierzejewski B, Ciemerych MA, Streminska W, Janczyk-Ilach K, Brzoska E. miRNA-126a plays important role in myoblast and endothelial cell interaction. Sci Rep 2023; 13:15046. [PMID: 37699959 PMCID: PMC10497517 DOI: 10.1038/s41598-023-41626-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Muscle satellite cells (SCs) are stem cells and the main players in skeletal muscle reconstruction. Since satellite cells are located near or in direct contact with blood vessels their niche is formed, inter alia, by endothelial cells. The cross-talk between satellite cells and endothelial cells determines quiescence or proliferation of these cells. However, little is known about the role of miRNA in these interactions. In the present study we identified miRNA that were up-regulated in SC-derived myoblasts treated with stromal derived factor-1 (SDF-1) and/or down-regulated in cells in which the expression of CXCR4 or CXCR7, that is, SDF-1 receptors, was silenced. SDF-1 is one of the important regulators of cell migration, mobilization, skeletal muscle regeneration, and angiogenesis. We hypothesized that selected miRNAs affect SC-derived myoblast fate and interactions with endothelial cells. We showed that miR-126a-3p inhibited both, myoblast migration and fusion. Moreover, the levels of Cxcl12, encoding SDF-1 and Ackr3, encoding CXCR7, were reduced by miR-126a-3p mimic. Interestingly, the miR-126a-3p mimic significantly decreased the level of numerous factors involved in myogenesis and the miR-126a-5p mimic increased the level of Vefga. Importantly, the treatment of endothelial cells with medium conditioned by miR-126-5p mimic transfected SC-derived myoblasts promoted tubulogenesis.
Collapse
Affiliation(s)
- Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland
| | - Katarzyna Janczyk-Ilach
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland.
| |
Collapse
|
42
|
Satyadev N, Rivera MI, Nikolov NK, Fakoya AOJ. Exosomes as biomarkers and therapy in type 2 diabetes mellitus and associated complications. Front Physiol 2023; 14:1241096. [PMID: 37745252 PMCID: PMC10515224 DOI: 10.3389/fphys.2023.1241096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most prevalent metabolic disorders worldwide. However, T2DM still remains underdiagnosed and undertreated resulting in poor quality of life and increased morbidity and mortality. Given this ongoing burden, researchers have attempted to locate new therapeutic targets as well as methodologies to identify the disease and its associated complications at an earlier stage. Several studies over the last few decades have identified exosomes, small extracellular vesicles that are released by cells, as pivotal contributors to the pathogenesis of T2DM and its complications. These discoveries suggest the possibility of novel detection and treatment methods. This review provides a comprehensive presentation of exosomes that hold potential as novel biomarkers and therapeutic targets. Additional focus is given to characterizing the role of exosomes in T2DM complications, including diabetic angiopathy, diabetic cardiomyopathy, diabetic nephropathy, diabetic peripheral neuropathy, diabetic retinopathy, and diabetic wound healing. This study reveals that the utilization of exosomes as diagnostic markers and therapies is a realistic possibility for both T2DM and its complications. However, the majority of the current research is limited to animal models, warranting further investigation of exosomes in clinical trials. This review represents the most extensive and up-to-date exploration of exosomes in relation to T2DM and its complications.
Collapse
Affiliation(s)
- Nihal Satyadev
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, United States
| | - Milagros I. Rivera
- University of Medicine and Health Sciences, Basseterre, St. Kitts and Nevis
| | | | | |
Collapse
|
43
|
Tian Y, Zhang T, Li J, Tao Y. Advances in development of exosomes for ophthalmic therapeutics. Adv Drug Deliv Rev 2023; 199:114899. [PMID: 37236425 DOI: 10.1016/j.addr.2023.114899] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
Exosomes contain multiple bioactive molecules and maintain the connection between cells. Recent advances in exosome-based therapeutics have witnessed unprecedented opportunities in treating ophthalmic diseases, including traumatic diseases, autoimmune diseases, chorioretinal diseases and others. Utilization of exosomes as delivery vectors to encapsulate both drugs and therapeutic genes could yield higher efficacy and avoid the unnecessary immune responses. However, exosome-based therapies also come with some potential ocular risks. In this review, we first present a general introduction to exosomes. Then we provide an overview of available applications and discuss their potential risks. Moreover, we review recently reported exosomes as delivery vectors for ophthalmic diseases. Finally, we put forward future perspectives to grapple with its translation and underlying issues.
Collapse
Affiliation(s)
- Ying Tian
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Tao Zhang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response, College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China.
| |
Collapse
|
44
|
Nouralishahi A, Fazlinejad N, Pecho RDC, Zaidan HK, Kheradjoo H, Amin AH, Mohammadzadehsaliani S. Pathological role of inflammation in ocular disease progress and its targeting by mesenchymal stem cells (MSCs) and their exosome; current status and prospect. Pathol Res Pract 2023; 248:154619. [PMID: 37406377 DOI: 10.1016/j.prp.2023.154619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
Because of their unique capacity for differentiation to a diversity of cell lineages and immunosuppressive properties, mesenchymal stem cells (MSC) are being looked at as a potential new treatment option in ophthalmology. The MSCs derived from all tissue sources possess immunomodulatory attributes through cell-to-cell contact and releasing a myriad of immunomodulatory factors (IL-10, TGF-β, growth-related oncogene (GRO), indoleamine 2,3 dioxygenase (IDO), nitric oxide (NO), interleukin 1 receptor antagonist (IL-1Ra), prostaglandin E2 (PGE2)). Such mediators, in turn, alter both the phenotype and action of all immune cells that serve a pathogenic role in the progression of inflammation in eye diseases. Exosomes from MSCs, as natural nano-particles, contain the majority of the bioactive components of parental MSCs and can easily by-pass all biological barriers to reach the target epithelial and immune cells in the eye without interfering with nearby parenchymal cells, thus having no serious side effects. We outlined the most recent research on the molecular mechanisms underlying the therapeutic benefits of MSC and MSC-exosome in the treatment of inflammatory eye diseases in the current article.
Collapse
Affiliation(s)
- Alireza Nouralishahi
- Isfahan Eye Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; KIMS Hospital, Oman
| | | | | | - Haider Kamil Zaidan
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hillah, Babylon, Iraq
| | | | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | | |
Collapse
|
45
|
Han JW, Chang HS, Yang JY, Choi HS, Park HS, Jun HO, Choi JH, Paik SS, Chung KH, Shin HJ, Nam S, Son JH, Lee SH, Lee EJ, Seo KY, Lyu J, Kim JW, Kim IB, Park TK. Intravitreal Administration of Retinal Organoids-Derived Exosomes Alleviates Photoreceptor Degeneration in Royal College of Surgeons Rats by Targeting the Mitogen-Activated Protein Kinase Pathway. Int J Mol Sci 2023; 24:12068. [PMID: 37569444 PMCID: PMC10419150 DOI: 10.3390/ijms241512068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Increasing evidence suggests that exosomes are involved in retinal cell degeneration, including their insufficient release; hence, they have become important indicators of retinopathies. The exosomal microRNA (miRNA), in particular, play important roles in regulating ocular and retinal cell functions, including photoreceptor maturation, maintenance, and visual function. Here, we generated retinal organoids (ROs) from human induced pluripotent stem cells that differentiated in a conditioned medium for 60 days, after which exosomes were extracted from ROs (Exo-ROs). Subsequently, we intravitreally injected the Exo-RO solution into the eyes of the Royal College of Surgeons (RCS) rats. Intravitreal Exo-RO administration reduced photoreceptor apoptosis, prevented outer nuclear layer thinning, and preserved visual function in RCS rats. RNA sequencing and miRNA profiling showed that exosomal miRNAs are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway. In addition, the expression of MAPK-related genes and proteins was significantly decreased in the Exo-RO-treated group. These results suggest that Exo-ROs may be a potentially novel strategy for delaying retinal degeneration by targeting the MAPK signaling pathway.
Collapse
Affiliation(s)
- Jung Woo Han
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.W.H.); (H.S.C.); (H.S.P.); (S.H.L.)
| | - Hun Soo Chang
- Department of Microbiolo and BK21 FOUR Project, Soonchunhyang University College of Medicine, Cheonan 31538, Republic of Korea; (H.S.C.); (J.-H.S.)
| | - Jin Young Yang
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (H.O.J.); (J.H.C.); (K.H.C.)
| | - Han Sol Choi
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.W.H.); (H.S.C.); (H.S.P.); (S.H.L.)
| | - Hyo Song Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.W.H.); (H.S.C.); (H.S.P.); (S.H.L.)
| | - Hyoung Oh Jun
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (H.O.J.); (J.H.C.); (K.H.C.)
| | - Ji Hye Choi
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (H.O.J.); (J.H.C.); (K.H.C.)
| | - Sun-Sook Paik
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 14662, Republic of Korea; (S.-S.P.); (I.-B.K.)
- Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul 14662, Republic of Korea
| | - Kyung Hwun Chung
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (H.O.J.); (J.H.C.); (K.H.C.)
| | - Hee Jeong Shin
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang Graduate School, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea;
| | - Seungyeon Nam
- Department of Neuroscience and Behavior, University of Notre Dame College of Science, Notre Dame, IN 46556, USA;
| | - Ji-Hye Son
- Department of Microbiolo and BK21 FOUR Project, Soonchunhyang University College of Medicine, Cheonan 31538, Republic of Korea; (H.S.C.); (J.-H.S.)
| | - Si Hyung Lee
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.W.H.); (H.S.C.); (H.S.P.); (S.H.L.)
| | - Eun Jung Lee
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; (E.J.L.); (J.W.K.)
| | - Kyoung Yul Seo
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Jungmook Lyu
- Department of Medical Science, Konyang University, Daejun 32992, Republic of Korea;
| | - Jin Woo Kim
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; (E.J.L.); (J.W.K.)
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 14662, Republic of Korea; (S.-S.P.); (I.-B.K.)
- Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul 14662, Republic of Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.W.H.); (H.S.C.); (H.S.P.); (S.H.L.)
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (H.O.J.); (J.H.C.); (K.H.C.)
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang Graduate School, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea;
- oligoNgene Pharmaceutical Co., Ltd., Bucheon 31538, Republic of Korea
| |
Collapse
|
46
|
Zhu Y, Liao ZF, Mo MH, Xiong XD. Mesenchymal Stromal Cell-Derived Extracellular Vesicles for Vasculopathies and Angiogenesis: Therapeutic Applications and Optimization. Biomolecules 2023; 13:1109. [PMID: 37509145 PMCID: PMC10377109 DOI: 10.3390/biom13071109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Extracellular vesicles (EVs), as part of the cellular secretome, have emerged as essential cell-cell communication regulators in multiple physiological and pathological processes. Previous studies have widely reported that mesenchymal stromal cell-derived EVs (MSC-EVs) have potential therapeutic applications in ischemic diseases or regenerative medicine by accelerating angiogenesis. MSC-EVs also exert beneficial effects on other vasculopathies, including atherosclerosis, aneurysm, vascular restenosis, vascular calcification, vascular leakage, pulmonary hypertension, and diabetic retinopathy. Consequently, the potential of MSC-EVs in regulating vascular homeostasis is attracting increasing interest. In addition to native or naked MSC-EVs, modified MSC-EVs and appropriate biomaterials for delivering MSC-EVs can be introduced to this area to further promote their therapeutic applications. Herein, we outline the functional roles of MSC-EVs in different vasculopathies and angiogenesis to elucidate how MSC-EVs contribute to maintaining vascular system homeostasis. We also discuss the current strategies to optimize their therapeutic effects, which depend on the superior bioactivity, high yield, efficient delivery, and controlled release of MSC-EVs to the desired regions, as well as the challenges that need to be overcome to allow their broad clinical translation.
Collapse
Affiliation(s)
- Ying Zhu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Zhao-Fu Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Miao-Hua Mo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xing-Dong Xiong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
47
|
Wang J, Wang Z, Zhang Y, Li J. Proteomic analysis of vitreal exosomes in patients with proliferative diabetic retinopathy. Eye (Lond) 2023; 37:2061-2068. [PMID: 36253458 PMCID: PMC10333309 DOI: 10.1038/s41433-022-02286-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/06/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To determine the proteomic profiles of exosomes derived from vitreous humour (VH) obtained from proliferative diabetic retinopathy (PDR) patients and non-diabetic controls with idiopathic macular hole/epiretinal membrane. METHODS Vitreal exosomes were isolated using differential ultracentrifugation, followed by characterisation performed using different techniques. A label-free proteomic analysis was conducted to determine the protein profiles of the exosomes. A parallel reaction monitoring (PRM) analysis was performed to verify the identified proteins and associated functional annotations were derived by gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Receiver operating characteristic (ROC) analysis was utilised to evaluate the diagnostic value of target proteins in distinguishing PDR from controls. RESULTS Exosomes were successfully isolated from VH, and were well characterised by various techniques. The results of proteomic analysis showed that a total of 758 proteins were identified and 10 proteins were screened as differentially expressed proteins, significantly changed in the PDR group containing 4 elevated proteins and 6 reduced proteins. GO analysis indicated that these differential proteins were mainly involved in many metabolic pathways, including nicotinamide adenine dinucleotide metabolism, adenosine diphosphate metabolic process and glycolytic process. The KEGG analysis enriched the top five pathways including glycolysis/gluconeogenesis, fructose and mannose metabolism, biosynthesis of amino acids, hypoxia-inducible factor 1 signalling pathway and carbon metabolism. The differential proteins, namely, lactate dehydrogenase A, ficolin 3, apolipoprotein B and apolipoprotein M, were further verified by PRM and showed a consistent trend with label-free proteomic analysis. The ROC analysis identified these proteins as promising biomarkers for PDR diagnosis. CONCLUSIONS Vitreal exosomes from patients with PDR contained few proteins unique to PDR; thus, exosomal proteins have great potential as disease biomarkers and therapeutic targets for PDR.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenzhen Wang
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Liaocheng Eye Hospital, Liaocheng, China
| | - Ying Zhang
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianqiao Li
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
48
|
Bhujel B, Oh SH, Kim CM, Yoon YJ, Kim YJ, Chung HS, Ye EA, Lee H, Kim JY. Mesenchymal Stem Cells and Exosomes: A Novel Therapeutic Approach for Corneal Diseases. Int J Mol Sci 2023; 24:10917. [PMID: 37446091 DOI: 10.3390/ijms241310917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The cornea, with its delicate structure, is vulnerable to damage from physical, chemical, and genetic factors. Corneal transplantation, including penetrating and lamellar keratoplasties, can restore the functions of the cornea in cases of severe damage. However, the process of corneal transplantation presents considerable obstacles, including a shortage of available donors, the risk of severe graft rejection, and potentially life-threatening complications. Over the past few decades, mesenchymal stem cell (MSC) therapy has become a novel alternative approach to corneal regeneration. Numerous studies have demonstrated the potential of MSCs to differentiate into different corneal cell types, such as keratocytes, epithelial cells, and endothelial cells. MSCs are considered a suitable candidate for corneal regeneration because of their promising therapeutic perspective and beneficial properties. MSCs compromise unique immunomodulation, anti-angiogenesis, and anti-inflammatory properties and secrete various growth factors, thus promoting corneal reconstruction. These effects in corneal engineering are mediated by MSCs differentiating into different lineages and paracrine action via exosomes. Early studies have proven the roles of MSC-derived exosomes in corneal regeneration by reducing inflammation, inhibiting neovascularization, and angiogenesis, and by promoting cell proliferation. This review highlights the contribution of MSCs and MSC-derived exosomes, their current usage status to overcome corneal disease, and their potential to restore different corneal layers as novel therapeutic agents. It also discusses feasible future possibilities, applications, challenges, and opportunities for future research in this field.
Collapse
Affiliation(s)
- Basanta Bhujel
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Se-Heon Oh
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Chang-Min Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Ye-Ji Yoon
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Young-Jae Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Ho-Seok Chung
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Eun-Ah Ye
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Hun Lee
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Jae-Yong Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| |
Collapse
|
49
|
Gu F, Jiang J, Sun P. Recent advances of exosomes in age-related macular degeneration. Front Pharmacol 2023; 14:1204351. [PMID: 37332352 PMCID: PMC10272348 DOI: 10.3389/fphar.2023.1204351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023] Open
Abstract
Exosomes are 30-150 nm extracellular vesicles that are secreted by almost all types of cells. Exosomes contain a variety of biologically active substances, such as proteins, nucleic acids, and lipids, and are important in the intercellular communication of biological mediators involved in nerve injury and repair, vascular regeneration, immune response, fibrosis formation, and many other pathophysiological processes. Although it has been extensively studied in the field of cancer, the exploration of ocular diseases has only just begun. Here, we discuss the latest developments in exosomes for age-related macular degeneration (AMD), including the pathogenesis of exosomes in age-related macular degeneration, their potential as diagnostic markers, and therapeutic vectors of the disease. Finally, the study of exosomes in age-related macular degeneration is still relatively few, and more detailed basic research and clinical trials are needed to verify its application in treatment and diagnosis, so as to adopt more personalized diagnosis and treatment strategies to stop the progression of age-related macular degeneration.
Collapse
|
50
|
Thomaidou AC, Goulielmaki M, Tsintarakis A, Zoumpourlis P, Toya M, Christodoulou I, Zoumpourlis V. miRNA-Guided Regulation of Mesenchymal Stem Cells Derived from the Umbilical Cord: Paving the Way for Stem-Cell Based Regeneration and Therapy. Int J Mol Sci 2023; 24:ijms24119189. [PMID: 37298143 DOI: 10.3390/ijms24119189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
The human body is an abundant source of multipotent cells primed with unique properties that can be exploited in a multitude of applications and interventions. Mesenchymal stem cells (MSCs) represent a heterogenous population of undifferentiated cells programmed to self-renew and, depending on their origin, differentiate into distinct lineages. Alongside their proven ability to transmigrate toward inflammation sites, the secretion of various factors that participate in tissue regeneration and their immunoregulatory function render MSCs attractive candidates for use in the cytotherapy of a wide spectrum of diseases and conditions, as well as in different aspects of regenerative medicine. In particular, MSCs that can be found in fetal, perinatal, or neonatal tissues possess additional capabilities, including predominant proliferation potential, increased responsiveness to environmental stimuli, and hypoimmunogenicity. Since microRNA (miRNA)-guided gene regulation governs multiple cellular functions, miRNAs are increasingly being studied in the context of driving the differentiation process of MSCs. In the present review, we explore the mechanisms of miRNA-directed differentiation of MSCs, with a special focus on umbilical cord-derived mesenchymal stem cells (UCMSCs), and we identify the most relevant miRNAs and miRNA sets and signatures. Overall, we discuss the potent exploitations of miRNA-driven multi-lineage differentiation and regulation of UCMSCs in regenerative and therapeutic protocols against a range of diseases and/or injuries that will achieve a meaningful clinical impact through maximizing treatment success rates, while lacking severe adverse events.
Collapse
Affiliation(s)
- Arsinoe C Thomaidou
- Laboratory of Clinical Virology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Antonis Tsintarakis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Panagiotis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Marialena Toya
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Ioannis Christodoulou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| |
Collapse
|