1
|
Byun S, Lee J, Choi YH, Ko H, Lee C, Park JC, Kim SW, Lee H, Sharma A, Kim KS, Rudra D, Kim JK, Im SH. Gut Microbiota Defines Functional Direction of Colonic Regulatory T Cells with Unique TCR Repertoires. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:886-897. [PMID: 39101764 DOI: 10.4049/jimmunol.2300395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/03/2024] [Indexed: 08/06/2024]
Abstract
Intestinal microbiota and selected strains of commensal bacteria influence regulatory T (Treg) cell functionality in the colon. Nevertheless, whether and how microbiota changes the transcriptome profile and TCR specificities of colonic Tregs remain to be precisely defined. In this study, we have employed single-cell RNA sequencing and comparatively analyzed colonic Tregs from specific pathogen-free and germ-free (GF) mice. We found that microbiota shifts the activation trajectory of colonic Tregs toward a distinct phenotypic subset enriched in specific pathogen-free but not in GF mice. Moreover, microbiota induced the expansion of specific Treg clonotypes with shared transcriptional specificities. The microbiota-induced subset of colonic Tregs, identified as PD-1- CXCR3+ Tregs, displayed enhanced suppressive capabilities compared with colonic Tregs derived from GF mice, enhanced production of IL-10, and were the primary regulators of enteric inflammation in dextran sodium sulfate-induced colitis. These findings identify a hitherto unknown gut microbiota and immune cell interaction module that could contribute to the development of a therapeutic modality for intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Seohyun Byun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jusung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Haeun Ko
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Changhon Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - John Chulhoon Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seung Won Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Haena Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Amit Sharma
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Kwang Soon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Dipayan Rudra
- School of Life Science and Technology, ShanghaiTech University; Shanghai, People's Republic of China
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea
- ImmunoBiome Inc., Pohang, Republic of Korea
| |
Collapse
|
2
|
Pacini CP, Soares MVD, Lacerda JF. The impact of regulatory T cells on the graft-versus-leukemia effect. Front Immunol 2024; 15:1339318. [PMID: 38711496 PMCID: PMC11070504 DOI: 10.3389/fimmu.2024.1339318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) is the only curative therapy for many hematologic malignancies, whereby the Graft-versus-Leukemia (GVL) effect plays a pivotal role in controlling relapse. However, the success of GVL is hindered by Graft-versus-Host Disease (GVHD), where donor T cells attack healthy tissues in the recipient. The ability of natural regulatory T cells (Treg) to suppress immune responses has been exploited as a therapeutical option against GVHD. Still, it is crucial to evaluate if the ability of Treg to suppress GVHD does not compromise the benefits of GVL. Initial studies in animal models suggest that Treg can attenuate GVHD while preserving GVL, but results vary according to tumor type. Human trials using Treg as GVHD prophylaxis or treatment show promising results, emphasizing the importance of infusion timing and Treg/Tcon ratios. In this review, we discuss strategies that can be used aiming to enhance GVL post-Treg infusion and the proposed mechanisms for the maintenance of the GVL effect upon the adoptive Treg transfer. In order to optimize the therapeutic outcomes of Treg administration in allo-HSCT, future efforts should focus on refining Treg sources for infusion and evaluating their specificity for antigens mediating GVHD while preserving GVL responses.
Collapse
Affiliation(s)
- Carolina P. Pacini
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria V. D. Soares
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João F. Lacerda
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, ULS Santa Maria, Lisbon, Portugal
| |
Collapse
|
3
|
Brunner TM, Serve S, Marx AF, Fadejeva J, Saikali P, Dzamukova M, Durán-Hernández N, Kommer C, Heinrich F, Durek P, Heinz GA, Höfer T, Mashreghi MF, Kühn R, Pinschewer DD, Löhning M. A type 1 immunity-restricted promoter of the IL-33 receptor gene directs antiviral T-cell responses. Nat Immunol 2024; 25:256-267. [PMID: 38172258 PMCID: PMC10834369 DOI: 10.1038/s41590-023-01697-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024]
Abstract
The pleiotropic alarmin interleukin-33 (IL-33) drives type 1, type 2 and regulatory T-cell responses via its receptor ST2. Subset-specific differences in ST2 expression intensity and dynamics suggest that transcriptional regulation is key in orchestrating the context-dependent activity of IL-33-ST2 signaling in T-cell immunity. Here, we identify a previously unrecognized alternative promoter in mice and humans that is located far upstream of the curated ST2-coding gene and drives ST2 expression in type 1 immunity. Mice lacking this promoter exhibit a selective loss of ST2 expression in type 1- but not type 2-biased T cells, resulting in impaired expansion of cytotoxic T cells (CTLs) and T-helper 1 cells upon viral infection. T-cell-intrinsic IL-33 signaling via type 1 promoter-driven ST2 is critical to generate a clonally diverse population of antiviral short-lived effector CTLs. Thus, lineage-specific alternative promoter usage directs alarmin responsiveness in T-cell subsets and offers opportunities for immune cell-specific targeting of the IL-33-ST2 axis in infections and inflammatory diseases.
Collapse
Affiliation(s)
- Tobias M Brunner
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany.
| | - Sebastian Serve
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
| | - Anna-Friederike Marx
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jelizaveta Fadejeva
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Philippe Saikali
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Maria Dzamukova
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Nayar Durán-Hernández
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Christoph Kommer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Frederik Heinrich
- Therapeutic Gene Regulation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Pawel Durek
- Therapeutic Gene Regulation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Gitta A Heinz
- Therapeutic Gene Regulation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Daniel D Pinschewer
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Max Löhning
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany.
| |
Collapse
|
4
|
Ramanan D, Chowdhary K, Candéias SM, Sassone-Corsi M, Gelineau A, Mathis D, Benoist C. Homeostatic, repertoire and transcriptional relationships between colon T regulatory cell subsets. Proc Natl Acad Sci U S A 2023; 120:e2311566120. [PMID: 38064511 PMCID: PMC10723124 DOI: 10.1073/pnas.2311566120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
Foxp3+ regulatory T cells (Tregs) in the colon are key to promoting peaceful coexistence with symbiotic microbes. Differentiated in either thymic or peripheral locations, and modulated by microbes and other cellular influencers, colonic Treg subsets have been identified through key transcription factors (TFs; Helios, Rorγ, Gata3, and cMaf), but their interrelationships are unclear. Applying a multimodal array of immunologic, genomic, and microbiological assays, we find more overlap than expected between populations. The key TFs (Rorγ, Helios, Gata3, and cMaf) play different roles, some essential for subset identity, others driving functional gene signatures. Functional divergence was clearest under challenge. Single-cell genomics revealed a spectrum of phenotypes between the Helios+ and Rorγ+ poles, different Treg-inducing bacteria inducing the same Treg phenotypes to varying degrees, not distinct populations. TCR repertoires in monocolonized mice revealed that Helios+ and Rorγ+ Tregs are related and cannot be uniquely equated to tTreg and pTreg. Comparison of spleen and colon repertoires revealed that 2 to 5% of clonotypes are shared between the locations. We propose that rather than the origin of their differentiation, tissue-specific cues dictate the spectrum of colonic Treg phenotypes.
Collapse
Affiliation(s)
| | | | - Serge M. Candéias
- Université Grenoble Alpes, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Interdisciplinary Research Institute of Grenoble, Laboratory of Chemistry and Biology of Metals, Grenoble38054, France
| | | | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA02115
| | | |
Collapse
|
5
|
Ramanan D, Pratama A, Zhu Y, Venezia O, Sassone-Corsi M, Chowdhary K, Galván-Peña S, Sefik E, Brown C, Gélineau A, Mathis D, Benoist C. Regulatory T cells in the face of the intestinal microbiota. Nat Rev Immunol 2023; 23:749-762. [PMID: 37316560 DOI: 10.1038/s41577-023-00890-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Regulatory T cells (Treg cells) are key players in ensuring a peaceful coexistence with microorganisms and food antigens at intestinal borders. Startling new information has appeared in recent years on their diversity, the importance of the transcription factor FOXP3, how T cell receptors influence their fate and the unexpected and varied cellular partners that influence Treg cell homeostatic setpoints. We also revisit some tenets, maintained by the echo chambers of Reviews, that rest on uncertain foundations or are a subject of debate.
Collapse
Affiliation(s)
| | - Alvin Pratama
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Yangyang Zhu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Olivia Venezia
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Esen Sefik
- Department of Immunology, Yale University, New Haven, CT, USA
| | - Chrysothemis Brown
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Paediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
6
|
Raugh A, Jing Y, Bettini ML, Bettini M. The amphiregulin/EGFR axis has limited contribution in controlling autoimmune diabetes. Sci Rep 2023; 13:18653. [PMID: 37903947 PMCID: PMC10616065 DOI: 10.1038/s41598-023-45738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
Conventional immunosuppressive functions of CD4+Foxp3+ regulatory T cells (Tregs) in type 1 diabetes (T1D) pathogenesis have been well described, but whether Tregs have additional non-immunological functions supporting tissue homeostasis in pancreatic islets is unknown. Within the last decade novel tissue repair functions have been ascribed to Tregs. One function is production of the epidermal growth factor receptor (EGFR) ligand, amphiregulin, which promotes tissue repair in response to inflammatory or mechanical tissue injury. However, whether such pathways are engaged during autoimmune diabetes and promote tissue repair is undetermined. Previously, we observed that upregulation of amphiregulin at the transcriptional level was associated with functional Treg populations in the non-obese diabetic (NOD) mouse model of T1D. From this we postulated that amphiregulin promoted islet tissue repair and slowed the progression of diabetes in NOD mice. Here, we report that islet-infiltrating Tregs have increased capacity to produce amphiregulin, and that both Tregs and beta cells express EGFR. Moreover, we show that amphiregulin can directly modulate mediators of endoplasmic reticulum stress in beta cells. Despite this, NOD amphiregulin deficient mice showed no acceleration of spontaneous autoimmune diabetes. Taken together, the data suggest that the ability for amphiregulin to affect the progression of autoimmune diabetes is limited.
Collapse
Affiliation(s)
- Arielle Raugh
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Yi Jing
- Microbiology and Immunology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Matthew L Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Maria Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
7
|
Yuan X, Jiang H, Fu D, Rech JC, Robida A, Rajanayake K, Yuan H, He M, Wen B, Sun D, Liu C, Chinnaswamy K, Stuckey JA, Paczesny S, Yang CY. Prophylactic Mitigation of Acute Graft versus Host Disease by Novel 2-(Pyrrolidin-1-ylmethyl)pyrrole-Based Stimulation-2 (ST2) Inhibitors. ACS Pharmacol Transl Sci 2023; 6:1275-1287. [PMID: 37705593 PMCID: PMC10496145 DOI: 10.1021/acsptsci.3c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 09/15/2023]
Abstract
Hematopoietic cell transplantation (HCT) is a proven and potentially curable therapy for hematological malignancies and inherited hematological disease. The main risk of HCT is the development of graft versus host disease (GVHD) acquired in up to 50% of patients. Upregulation of soluble ST2 (sST2) is a key clinical biomarker for GVHD prognosis and was shown to be a potential therapeutic target for GVHD. Agents targeting sST2 to reduce the sST2 level after HCT have the potential to mitigate GVHD progression. Here, we report 32 (or XY52) as the lead ST2 inhibitor from our optimization campaign. XY52 had improved inhibitory activity and metabolic stability in vitro and in vivo. XY52 suppressed proinflammatory T-cell proliferation while increasing regulatory T cells in vitro. In a clinically relevant GVHD model, a 21-day prophylactic regimen of XY52 reduced plasma sST2 and IFN-γ levels and GVHD score and extended survival in mice. XY52 represented a significant improvement over our previous compound, iST2-1, and further optimization of XY52 is warranted. The small-molecule ST2 inhibitors can potentially be used as a biomarker-guided therapy for mitigating GVHD in future clinical applications.
Collapse
Affiliation(s)
- Xinrui Yuan
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Hua Jiang
- Department
of Microbiology & Immunology, Medical
University of South Carolina, Charleston, South Carolina 29425-2503, United States
| | - Denggang Fu
- Department
of Microbiology & Immunology, Medical
University of South Carolina, Charleston, South Carolina 29425-2503, United States
| | - Jason C. Rech
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Aaron Robida
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Krishani Rajanayake
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hebao Yuan
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Miao He
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chen Liu
- Department
of Pathology, Yale University, New Haven, Connecticut 06520, United States
| | - Krishnapriya Chinnaswamy
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeanne A. Stuckey
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sophie Paczesny
- Department
of Microbiology & Immunology, Medical
University of South Carolina, Charleston, South Carolina 29425-2503, United States
| | - Chao-Yie Yang
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
8
|
Raugh A, Jing Y, Bettini ML, Bettini M. The Amphiregulin/EGFR axis has limited contribution in controlling autoimmune diabetes. RESEARCH SQUARE 2023:rs.3.rs-3204139. [PMID: 37577652 PMCID: PMC10418547 DOI: 10.21203/rs.3.rs-3204139/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Conventional immunosuppressive functions of CD4+Foxp3+ regulatory T cells (Tregs) in type 1 diabetes (T1D) pathogenesis have been well described, but whether Tregs have additional non-immunological functions supporting tissue homeostasis in pancreatic islets is unknown. Within the last decade novel tissue repair functions have been ascribed to Tregs. One function is production of the epidermal growth factor receptor (EGFR) ligand, amphiregulin, which promotes tissue repair in response to inflammatory or mechanical tissue injury. Whether such pathways are engaged during autoimmune diabetes and promote tissue repair is undetermined. Previously, we observed upregulation of amphiregulin at the transcriptional level was associated with functional Treg populations in the non-obese diabetic (NOD) mouse model of T1D. We postulated that amphiregulin promoted islet tissue repair and slowed the progression of diabetes in NOD mice. Here, we report that islet-infiltrating Tregs have increased capacity to produce amphiregulin and both Tregs and beta cells express EGFR. Moreover, we show that amphiregulin can directly modulate mediators of endoplasmic reticulum (ER) stress in beta cells. Despite this, NOD amphiregulin deficient mice showed no acceleration of spontaneous autoimmune diabetes. Taken together, the data suggest that the ability for amphiregulin to affect the progression of autoimmune diabetes is limited.
Collapse
Affiliation(s)
- Arielle Raugh
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Yi Jing
- Department of Pediatric Endocrinology, Texas Children’s Hospital, Houston, Texas, 77030, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Matthew L. Bettini
- Department of Pathology, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Maria Bettini
- Department of Pathology, University of Utah, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
9
|
Malard F, Holler E, Sandmaier BM, Huang H, Mohty M. Acute graft-versus-host disease. Nat Rev Dis Primers 2023; 9:27. [PMID: 37291149 DOI: 10.1038/s41572-023-00438-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/10/2023]
Abstract
Acute graft-versus-host disease (GVHD) is a common immune complication that can occur after allogeneic haematopoietic cell transplantation (alloHCT). Acute GVHD is a major health problem in these patients, and is associated with high morbidity and mortality. Acute GVHD is caused by the recognition and the destruction of the recipient tissues and organs by the donor immune effector cells. This condition usually occurs within the first 3 months after alloHCT, but later onset is possible. Targeted organs include the skin, the lower and upper gastrointestinal tract and the liver. Diagnosis is mainly based on clinical examination, and complementary examinations are performed to exclude differential diagnoses. Preventive treatment for acute GVHD is administered to all patients who receive alloHCT, although it is not always effective. Steroids are used for first-line treatment, and the Janus kinase 2 (JAK2) inhibitor ruxolitinib is second-line treatment. No validated treatments are available for acute GVHD that is refractory to steroids and ruxolitinib, and therefore it remains an unmet medical need.
Collapse
Affiliation(s)
- Florent Malard
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France.
| | - Ernst Holler
- University Hospital of Regensburg, Department of Internal Medicine 3, Regensburg, Germany
| | - Brenda M Sandmaier
- Fred Hutchinson Cancer Center, Translational Science and Therapeutics Division, Seattle, WA, USA
- University of Washington School of Medicine, Division of Medical Oncology, Seattle, WA, USA
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
- Engineering Laboratory for Stem Cell and Immunity Therapy, Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Mohamad Mohty
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France.
| |
Collapse
|
10
|
Ramanan D, Chowdhary K, Candéias SM, Sassone-Corsi M, Mathis D, Benoist C. Homeostatic, repertoire and transcriptional relationships between colon T regulatory cell subsets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541199. [PMID: 37292878 PMCID: PMC10245751 DOI: 10.1101/2023.05.17.541199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Foxp3 + regulatory T cells (Tregs) in the colon are key to promoting peaceful co-existence with symbiotic microbes. Differentiated in either thymic or peripheral locations, and modulated by microbes and other cellular influencers, colonic Treg subsets have been identified through key transcription factors (TF; Helios, Rorg, Gata3, cMaf), but their inter-relationships are unclear. Applying a multimodal array of immunologic, genomic, and microbiological assays, we find more overlap than expected between populations. The key TFs play different roles, some essential for subset identity, others driving functional gene signatures. Functional divergence was clearest under challenge. Single-cell genomics revealed a spectrum of phenotypes between the Helios+ and Rorγ+ poles, different Treg-inducing bacteria inducing the same Treg phenotypes to varying degrees, not distinct populations. TCR clonotypes in monocolonized mice revealed that Helios+ and Rorγ+ Tregs are related, and cannot be uniquely equated to tTreg and pTreg. We propose that rather than the origin of their differentiation, tissue-specific cues dictate the spectrum of colonic Treg phenotypes.
Collapse
|
11
|
Hippen KL, Hefazi M, Larson JH, Blazar BR. Emerging translational strategies and challenges for enhancing regulatory T cell therapy for graft-versus-host disease. Front Immunol 2022; 13:926550. [PMID: 35967386 PMCID: PMC9366169 DOI: 10.3389/fimmu.2022.926550] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 02/03/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative therapy for many types of cancer. Genetic disparities between donor and host can result in immune-mediated attack of host tissues, known as graft versus host disease (GVHD), a major cause of morbidity and mortality following HSCT. Regulatory CD4+ T cells (Tregs) are a rare cell type crucial for immune system homeostasis, limiting the activation and differentiation of effector T cells (Teff) that are self-reactive or stimulated by foreign antigen exposure. Adoptive cell therapy (ACT) with Treg has demonstrated, first in murine models and now in patients, that prophylactic Treg infusion can also suppress GVHD. While clinical trials have demonstrated Treg reduce severe GVHD occurrence, several impediments remain, including Treg variability and practical need for individualized Treg production for each patient. Additionally, there are challenges in the use of in vitro expansion techniques and in achieving in vivo Treg persistence in context of both immune suppressive drugs and in lymphoreplete patients being treated for GVHD. This review will focus on 3 main translational approaches taken to improve the efficacy of tTreg ACT in GVHD prophylaxis and development of treatment options, following HSCT: genetic modification, manipulating TCR and cytokine signaling, and Treg production protocols. In vitro expansion for Treg ACT presents a multitude of approaches for gene modification to improve efficacy, including: antigen specificity, tissue targeting, deletion of negative regulators/exhaustion markers, resistance to immunosuppressive drugs common in GVHD treatment. Such expansion is particularly important in patients without significant lymphopenia that can drive Treg expansion, enabling a favorable Treg:Teff ratio in vivo. Several potential therapeutics have also been identified that enhance tTreg stability or persistence/expansion following ACT that target specific pathways, including: DNA/histone methylation status, TCR/co-stimulation signaling, and IL-2/STAT5 signaling. Finally, this review will discuss improvements in Treg production related to tissue source, Treg subsets, therapeutic approaches to increase Treg suppression and stability during tTreg expansion, and potential for storing large numbers of Treg from a single production run to be used as an off-the-shelf infusion product capable of treating multiple recipients.
Collapse
Affiliation(s)
- Keli L. Hippen
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, MN, United States
| | - Mehrdad Hefazi
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - Jemma H. Larson
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, MN, United States
| | - Bruce R. Blazar
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, MN, United States
| |
Collapse
|
12
|
Borys SM, Bag AK, Brossay L, Adeegbe DO. The Yin and Yang of Targeting KLRG1 + Tregs and Effector Cells. Front Immunol 2022; 13:894508. [PMID: 35572605 PMCID: PMC9098823 DOI: 10.3389/fimmu.2022.894508] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
The literature surrounding KLRG1 has primarily focused on NK and CD8+ T cells. However, there is evidence that the most suppressive Tregs express KLRG1. Until now, the role of KLRG1 on Tregs has been mostly overlooked and remains to be elucidated. Here we review the current literature on KLRG1 with an emphasis on the KLRG1+ Treg subset role during cancer development and autoimmunity. KLRG1 has been recently proposed as a new checkpoint inhibitor target, but these studies focused on the effects of KLRG1 blockade on effector cells. We propose that when designing anti-tumor therapies targeting KLRG1, the effects on both effector cells and Tregs will have to be considered.
Collapse
Affiliation(s)
- Samantha M Borys
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, RI, United States
| | - Arup K Bag
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, RI, United States
| | - Dennis O Adeegbe
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|
13
|
Single Nucleotide Polymorphisms of IL-33 Gene Correlated with Renal Allograft Fibrosis in Kidney Transplant Recipients. J Immunol Res 2021; 2021:8029180. [PMID: 34950738 PMCID: PMC8689233 DOI: 10.1155/2021/8029180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background Nowadays, renal allograft survival is confined by the development of allograft fibrosis. Previous studies have reported interleukin-33 (IL-33) upregulated significantly in patients with chronic renal allograft dysfunction, and it could induce renal tubular epithelial to mesenchymal transition (EMT), which eventually contributed to renal allograft fibrosis. Our study intended to detect the underlying association between single nucleotide polymorphisms (SNPs) of IL-33 gene and renal allograft fibrosis in kidney transplant recipients. Methods We collected blood samples from 200 renal transplant recipients for the identification of SNPs and transplanted kidney tissue samples for identifying differentially expressed genes (DEGs). Intersection of SNP-related genes and DEGs was conducted for further analysis. Relationships between these SNPs and renal allograft fibrosis were evaluated by the inheritance models. Immunohistochemical (IHC) staining and western blotting (WB) were used to detect the expression of IL-33 and the markers of EMT in human kidney tissues obtained from control and chronic renal allograft dysfunction (CAD) patients. In vitro, we detected the progressions of EMT-related markers and the levels of MAPK signaling pathway mediators after transfecting IL-33 mutant plasmids in HK2 cells. Results Three intersected genes including IL-33 genes were significantly expressed. IL-33 expression was validated in kidney tissues by IHC and WB. Thirty-nine IL-33-related SNPs were identified in targeted sequencing, in which 26 tagger SNPs were found by linkage disequilibrium analysis for further analysis. General linear models indicated sirolimus administration significantly influenced renal allograft fibrosis (P < 0.05), adjustment of which was conducted in the following analysis. By multiple inheritance model analyses, SNP rs10975519 of IL-33 gene was found closely related to renal allograft fibrosis (P < 0.005). Furthermore, HK2 cells transfected with mutated plasmid of rs10975519 showed stronger mobility and migration ability. Moreover, IL-33 mutant plasmids could promote the IL-33-induced EMT through the sustained activation of p38 MAPK signaling pathway in HK2 cells. Conclusion In our study, rs10975519 on the IL-33 gene was found to be statistically associated with the development of renal allograft fibrosis in kidney transplant recipients. This process may be related to the IL-33-induced EMT and sustained activation of p38 MAPK signaling pathway.
Collapse
|
14
|
Jiang H, Fu D, Bidgoli A, Paczesny S. T Cell Subsets in Graft Versus Host Disease and Graft Versus Tumor. Front Immunol 2021; 12:761448. [PMID: 34675938 PMCID: PMC8525316 DOI: 10.3389/fimmu.2021.761448] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/13/2021] [Indexed: 01/04/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is an essential therapeutic modality for patients with hematological malignancies and other blood disorders. Unfortunately, acute graft-versus-host disease (aGVHD) remains a major source of morbidity and mortality following allo-HCT, which limits its use in a broader spectrum of patients. Chronic graft-versus-host disease (cGVHD) also remains the most common long-term complication of allo-HCT, occurring in reportedly 30-70% of patients surviving more than 100 days. Chronic GVHD is also the leading cause of non-relapse mortality (NRM) occurring more than 2 years after HCT for malignant disease. Graft versus tumor (GVT) is a major component of the overall beneficial effects of allogeneic HCT in the treatment of hematological malignancies. Better understanding of GVHD pathogenesis is important to identify new therapeutic targets for GVHD prevention and therapy. Emerging data suggest opposing roles for different T cell subsets, e.g., IFN-γ producing CD4+ and CD8+ T cells (Th1 and Tc1), IL-4 producing T cells (Th2 and Tc2), IL-17 producing T cells (Th17 and Tc17), IL-9 producing T cells (Th9 and Tc9), IL-22 producing T cells (Th22), T follicular helper cells (Tfh), regulatory T-cells (Treg) and tissue resident memory T cells (Trm) in GVHD and GVT etiology. In this review, we first summarize the general description of the cytokine signals that promote the differentiation of T cell subsets and the roles of these T cell subsets in the pathogenesis of GVHD. Next, we extensively explore preclinical findings of T cell subsets in both GVHD/GVT animal models and humans. Finally, we address recent findings about the roles of T-cell subsets in clinical GVHD and current strategies to modulate T-cell differentiation for treating and preventing GVHD in patients. Further exploring and outlining the immune biology of T-cell differentiation in GVHD that will provide more therapeutic options for maintaining success of allo-HCT.
Collapse
Affiliation(s)
| | | | | | - Sophie Paczesny
- Department of Microbiology and Immunology and Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
15
|
Jacobse J, Li J, Rings EHHM, Samsom JN, Goettel JA. Intestinal Regulatory T Cells as Specialized Tissue-Restricted Immune Cells in Intestinal Immune Homeostasis and Disease. Front Immunol 2021; 12:716499. [PMID: 34421921 PMCID: PMC8371910 DOI: 10.3389/fimmu.2021.716499] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022] Open
Abstract
FOXP3+ regulatory T cells (Treg cells) are a specialized population of CD4+ T cells that restrict immune activation and are essential to prevent systemic autoimmunity. In the intestine, the major function of Treg cells is to regulate inflammation as shown by a wide array of mechanistic studies in mice. While Treg cells originating from the thymus can home to the intestine, the majority of Treg cells residing in the intestine are induced from FOXP3neg conventional CD4+ T cells to elicit tolerogenic responses to microbiota and food antigens. This process largely takes place in the gut draining lymph nodes via interaction with antigen-presenting cells that convert circulating naïve T cells into Treg cells. Notably, dysregulation of Treg cells leads to a number of chronic inflammatory disorders, including inflammatory bowel disease. Thus, understanding intestinal Treg cell biology in settings of inflammation and homeostasis has the potential to improve therapeutic options for patients with inflammatory bowel disease. Here, the induction, maintenance, trafficking, and function of intestinal Treg cells is reviewed in the context of intestinal inflammation and inflammatory bowel disease. In this review we propose intestinal Treg cells do not compose fixed Treg cell subsets, but rather (like T helper cells), are plastic and can adopt different programs depending on microenvironmental cues.
Collapse
Affiliation(s)
- Justin Jacobse
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jing Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
| | - Edmond H. H. M. Rings
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Pediatrics, Sophia Children’s Hospital, Erasmus University, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Janneke N. Samsom
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeremy A. Goettel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
16
|
Kawai K, Uchiyama M, Hester J, Issa F. IL-33 drives the production of mouse regulatory T cells with enhanced in vivo suppressive activity in skin transplantation. Am J Transplant 2021; 21:978-992. [PMID: 33314772 PMCID: PMC7613121 DOI: 10.1111/ajt.16266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 01/25/2023]
Abstract
Regulatory T cells (Tregs) are crucial mediators of immune homeostasis with the ability to modulate allogeneic response and control transplant rejection. Although Treg-based cell therapies have shown immense promise, methods to optimize current strategies are critical for successful implementation within the clinic. IL-33 is a cytokine with pleiotropic properties and effects on Treg function and development. In this study, we explored the unique properties of Treg populations activated through the IL-33/ST2 pathway, aiming to exploit their tolerogenic properties for cell therapy. We show that treatment with exogenous IL-33 results in a generalized downregulation of genes critical to T cell biology together with an upregulation of Treg-associated genes. Tregs that develop in response to IL-33 upregulate critical Treg-associated markers, yet without developing enhanced in vitro suppressive capacity. Conversely, these Tregs display potent regulatory activity in vivo, promoting long-term skin allograft survival in a stringent transplantation model. Detailed transcriptomic and immunophenotypic analyses of IL-33-expanded Tregs reveal an enhancement in graft-homing chemokine receptors, which may be partly responsible for their superior in vivo activity that is not reflected in vitro. IL-33 treatment is therefore an attractive adjunctive strategy for patients receiving Treg cell therapeutics.
Collapse
Affiliation(s)
- Kento Kawai
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Masateru Uchiyama
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK,Department of Surgery, Teikyo University, Tokyo, Japan
| | - Joanna Hester
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
IL-33/ST2 signaling in liver transplantation. Cell Mol Immunol 2020; 18:761-763. [PMID: 33041341 DOI: 10.1038/s41423-020-0418-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/13/2020] [Indexed: 11/08/2022] Open
|
18
|
Hill GR, Koyama M. Cytokines and costimulation in acute graft-versus-host disease. Blood 2020; 136:418-428. [PMID: 32526028 PMCID: PMC7378458 DOI: 10.1182/blood.2019000952] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/18/2020] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (alloSCT) is an important curative therapy for high-risk hematological malignancies, but the development of severe and/or steroid-refractory acute graft-versus-host disease (aGVHD) remains a significant limitation to optimal outcomes. New approaches to prevent and treat aGVHD remain an unmet need that can be best addressed by understanding the complex disease pathophysiology. It is now clear that chemoradiotherapy used prior to alloSCT induces the release of endogenous alarmins (eg, HMGB-1, ATP, IL-1α, IL-33) from recipient tissue. Exogenous pathogen-derived molecules (eg, lipopolysaccharide, nucleic acids) also translocate from the gastrointestinal tract lumen. Together, these danger signals activate antigen-presenting cells (APCs) to efficiently present alloantigen to donor T cells while releasing cytokines (eg, interleukin-12 [IL-12], IL-23, IL-6, IL-27, IL-10, transforming growth factor-β) that expand and differentiate both pathogenic and regulatory donor T cells. Concurrent costimulatory signals at the APC-T-cell interface (eg, CD80/CD86-CD28, CD40-CD40L, OX40L-OX40, CD155/CD112-DNAM-1) and subsequent coinhibitory signals (eg, CD80/CD86-CTLA4, PDL1/2-PD1, CD155/CD112-TIGIT) are critical to the acquisition of effector T-cell function and ensuing secretion of pathogenic cytokines (eg, IL-17, interferon-γ, tissue necrosis factor, granulocyte-macrophage colony-stimulating factor) and cytolytic degranulation pathway effectors (eg, perforin/granzyme). This review focuses on the combination of cytokine and costimulatory networks at the T-cell surface that culminates in effector function and subsequent aGVHD in target tissue. Together, these pathways now represent robust and clinically tractable targets for preventing the initiation of deleterious immunity after alloSCT.
Collapse
Affiliation(s)
- Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Motoko Koyama
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
| |
Collapse
|
19
|
Aarstad HH, Guðbrandsdottir G, Hjelle KM, Bostad L, Bruserud Ø, Tvedt THA, Beisland C. The Biological Context of C-Reactive Protein as a Prognostic Marker in Renal Cell Carcinoma: Studies on the Acute Phase Cytokine Profile. Cancers (Basel) 2020; 12:cancers12071961. [PMID: 32707675 PMCID: PMC7409073 DOI: 10.3390/cancers12071961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
High serum levels of the acute phase protein C-reactive protein (CRP) are associated with an adverse prognosis in renal cancer. The acute phase reaction is cytokine-driven and includes a wide range of inflammatory mediators. This overall profile of the response depends on the inducing event and can also differ between patients. We investigated an extended acute phase cytokine profile for 97 renal cancer patients. Initial studies showed that the serum CRP levels had an expected prognostic association together with tumor size, stage, nuclear grading, and Leibovich score. Interleukin (IL)6 family cytokines, IL1 subfamily mediators, and tumor necrosis factor (TNF)α can all be drivers of the acute phase response. Initial studies suggested that serum IL33Rα (the soluble IL33 receptor α chain) levels were also associated with prognosis, although the impact of IL33Rα is dependent on the overall cytokine profile, including seven IL6 family members (IL6, IL6Rα, gp130, IL27, IL31, CNTF, and OSM), two IL1 subfamily members (IL1RA and IL33Rα), and TNFα. We identified a patient subset characterized by particularly high levels of IL6, IL33Rα, and TNFα alongside an adverse prognosis. Thus, the acute phase cytokine reaction differs between renal cancer patients, and differences in the acute phase cytokine profile are associated with prognosis.
Collapse
Affiliation(s)
- Helene Hersvik Aarstad
- Department of Clinical Science, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway;
| | - Gigja Guðbrandsdottir
- Department of Urology, Haukeland University Hospital, N-5021 Bergen, Norway; (G.G.); (K.M.H.); (C.B.)
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway
| | - Karin M. Hjelle
- Department of Urology, Haukeland University Hospital, N-5021 Bergen, Norway; (G.G.); (K.M.H.); (C.B.)
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway
| | - Leif Bostad
- Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway;
| | - Øystein Bruserud
- Department of Clinical Science, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway;
- Department of Medicine, Section for Hematology, Haukeland University Hospital, N-5021 Bergen, Norway;
- Correspondence: ; Tel.: +47-5597-2997
| | - Tor Henrik Anderson Tvedt
- Department of Medicine, Section for Hematology, Haukeland University Hospital, N-5021 Bergen, Norway;
| | - Christian Beisland
- Department of Urology, Haukeland University Hospital, N-5021 Bergen, Norway; (G.G.); (K.M.H.); (C.B.)
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
20
|
Bcl6 and Blimp1 reciprocally regulate ST2 + Treg-cell development in the context of allergic airway inflammation. J Allergy Clin Immunol 2020; 146:1121-1136.e9. [PMID: 32179158 DOI: 10.1016/j.jaci.2020.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/12/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bcl6 is required for the development of T follicular helper cells and T follicular regulatory (Tfr) cells that regulate germinal center responses. Bcl6 also affects the function of regulatory T (Treg) cells. OBJECTIVE The goal of this study was to define the functions of Bcl6 in Treg cells, including Tfr cells, in the context of allergic airway inflammation. METHODS We used a model of house dust mite sensitization to challenge wild-type, Bcl6fl/fl Foxp3-Cre, and Prdm1 (Blimp1)fl/fl Foxp3-Cre mice to study the reciprocal roles of Bcl6 and Blimp1 in allergic airway inflammation. RESULTS In the house dust mite model, Tfr cells repress the production of IgE and Bcl6+ Treg cells suppress the generation of type 2 cytokine-producing cells in the lungs. In mice with Bcl6-deficient Treg cells, twice as many ST2+ (IL-33R+) Treg cells develop as are observed in wild-type mice. ST2+ Treg cells in the context of allergic airway inflammation are Blimp1 dependent, express type 2 cytokines, and share features of visceral adipose tissue Treg cells. Bcl6-deficient Treg cells are more susceptible, and Blimp1-deficient Treg cells are resistant, to acquiring the ST2+ Treg-cell phenotype in vitro and in vivo in response to IL-33. Bcl6-deficient ST2+ Treg cells, but not Bcl6-deficient ST2+ conventional T cells, strongly promote allergic airway inflammation when transferred into recipient mice. Lastly, ST2 is required for the exacerbated allergic airway inflammation in Bcl6fl/fl Foxp3-Cre mice. CONCLUSIONS During allergic airway inflammation, Bcl6 and Blimp1 play dual roles in regulating Tfr-cell activity in the germinal center and in the development of ST2+ Treg cells that promote type 2 cytokine responses.
Collapse
|
21
|
Griesenauer B, Jiang H, Yang J, Zhang J, Ramadan AM, Egbosiuba J, Campa K, Paczesny S. ST2/MyD88 Deficiency Protects Mice against Acute Graft-versus-Host Disease and Spares Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 202:3053-3064. [PMID: 30979817 DOI: 10.4049/jimmunol.1800447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/18/2019] [Indexed: 12/11/2022]
Abstract
Acute graft-versus-host disease (aGVHD) hinders the efficacy of allogeneic hematopoietic cell transplantation (HCT). Plasma levels of soluble membrane-bound ST2 (ST2) are elevated in human and murine aGVHD and correlated to type 1 T cells response. ST2 signals through the adapter protein MyD88. The role of MyD88 in T cells during aGVHD has yet to be elucidated. We found that knocking out MyD88 in the donor T cells protected against aGVHD independent of IL-1R and TLR4 signaling in two murine HCT models. This protection was entirely driven by MyD88-/- CD4 T cells. Transplanting donor MyD88-/- conventional T cells (Tcons) with wild-type (WT) or MyD88-/- regulatory T cells (Tregs) lowered aGVHD severity and mortality. Transcriptome analysis of sorted MyD88-/- CD4 T cells from the intestine 10 d post-HCT showed lower levels of Il1rl1 (gene of ST2), Ifng, Csf2, Stat5, Batf, and Jak2 Transplanting donor ST2-/- Tcons with WT or ST2-/- Tregs showed a similar phenotype with what we observed when using donor MyD88-/- Tcons. Decreased ST2 was confirmed at the protein level with less secretion of soluble ST2 and more expression of ST2 compared with WT T cells. Our data suggest that Treg suppression from lack of MyD88 signaling in donor Tcons during alloreactivity uses the ST2 but not the IL-1R or TLR4 pathways, and ST2 represents a potential aGVHD therapeutic target sparing Tregs.
Collapse
Affiliation(s)
| | - Hua Jiang
- Indiana University School of Medicine, Indianapolis, IN 46202
| | - Jinfeng Yang
- Indiana University School of Medicine, Indianapolis, IN 46202
| | - Jilu Zhang
- Indiana University School of Medicine, Indianapolis, IN 46202
| | | | - Jane Egbosiuba
- Indiana University School of Medicine, Indianapolis, IN 46202
| | - Khaled Campa
- Indiana University School of Medicine, Indianapolis, IN 46202
| | - Sophie Paczesny
- Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|