1
|
Bruneau A, Shevchenko Y, Tacke F, Hammerich L. A comprehensive 26-color immunophenotyping panel to study the role of the gut-liver axis in chronic liver diseases. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024. [PMID: 39252408 DOI: 10.1002/cyto.b.22203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
The gut-liver axis includes the bidirectional communication between the gut and the liver, and thus covers signals from liver-to-gut and from gut-to-liver. Disruptions of the gut-liver axis have been associated with the progression of chronic liver diseases, including alcohol-related and metabolic dysfunction-associated steatotic liver disease and cholangiopathies. Immune cells and their expression of pattern recognition receptors, activation markers or immune checkpoints might play an active role in the communication between gut and liver. Here, we present a 26-color full spectrum flow cytometry panel for human cells to decipher the role of circulating immune cells in gut-liver communication during the progression of chronic liver diseases in a non-invasive manner, which has been optimized to be used on patient-derived whole blood samples, the most abundantly available clinical material. Our panel focuses on changes in pattern recognition receptors, including toll-like receptors (TLRs) or Dectin-1, and also includes other immunomodulatory molecules such as bile acid receptors and checkpoint molecules. Moreover, this panel can be utilized to follow the progression of chronic liver diseases and could be used as a tool to evaluate the efficiency of therapeutic targets directed against microbial mediators or modulating immune cell activation.
Collapse
Affiliation(s)
- Alix Bruneau
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Yaroslava Shevchenko
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
2
|
Moldenhauer LM, Foyle KL, Wilson JJ, Wong YY, Sharkey DJ, Green ES, Barry SC, Hull ML, Robertson SA. A disrupted FOXP3 transcriptional signature underpins systemic regulatory T cell insufficiency in early pregnancy failure. iScience 2024; 27:108994. [PMID: 38327801 PMCID: PMC10847744 DOI: 10.1016/j.isci.2024.108994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/22/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Regulatory T (Treg) cell defects are implicated in disorders of embryo implantation and placental development, but the origins of Treg cell dysfunction are unknown. Here, we comprehensively analyzed the phenotypes and transcriptional profile of peripheral blood Treg cells in individuals with early pregnancy failure (EPF). Compared to fertile subjects, EPF subjects had 32% fewer total Treg cells and 54% fewer CD45RA+CCR7+ naive Treg cells among CD4+ T cells, an altered Treg cell phenotype with reduced transcription factor FOXP3 and suppressive marker CTLA4 expression, and lower Treg:Th1 and Treg:Th17 ratios. RNA sequencing demonstrated an aberrant gene expression profile, with upregulation of pro-inflammatory genes including CSF2, IL4, IL17A, IL21, and IFNG in EPF Treg cells. In silico analysis revealed 25% of the Treg cell dysregulated genes are targets of FOXP3. We conclude that EPF is associated with systemic Treg cell defects arising due to disrupted FOXP3 transcriptional control and loss of lineage fidelity.
Collapse
Affiliation(s)
- Lachlan M. Moldenhauer
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Kerrie L. Foyle
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Jasmine J. Wilson
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Ying Y. Wong
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - David J. Sharkey
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Ella S. Green
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Simon C. Barry
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - M. Louise Hull
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Sarah A. Robertson
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
3
|
Chechushkov A, Desyukevich P, Yakovlev T, Al Allaf L, Shrainer E, Morozov V, Tikunova N. Sterile Fecal Microbiota Transplantation Boosts Anti-Inflammatory T-Cell Response in Ulcerative Colitis Patients. Int J Mol Sci 2024; 25:1886. [PMID: 38339169 PMCID: PMC10856413 DOI: 10.3390/ijms25031886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Ulcerative colitis is a chronic immune-mediated disease of unclear etiology, affecting people of different ages and significantly reducing the quality of life. Modern methods of therapy are mainly represented by anti-inflammatory drugs and are not aimed at a specific pathogenetic factor. In this study, we investigated the effect of transplantation of sterile stool filtrate from healthy donors on the induction of anti-inflammatory immune mechanisms. It was shown that performing such a procedure in patients with ulcerative colitis caused the appearance of T helper cells in the blood, which reacted to the content of sterile stool filtrates in an antigen-specific manner and produced IL-10. At the same time, cells of the same patients before therapy in response to the addition of sterile stool filtrates were less reactive and predominantly produced IL-4, indicating its pro-inflammatory skewing. The obtained data demonstrated the effect of an anti-inflammatory shift in the T-helper response after transplantation of sterile stool filtrate, which increased and persisted for at least three months after the procedure.
Collapse
Affiliation(s)
- Anton Chechushkov
- Federal State Public Scientific Institution “Institute of Chemical Biology and Fundamental Medicine”, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (E.S.); (V.M.)
- Advanced Engineering School, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Pavel Desyukevich
- Federal State Public Scientific Institution “Institute of Chemical Biology and Fundamental Medicine”, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (E.S.); (V.M.)
| | - Timir Yakovlev
- Federal State Public Scientific Institution “Institute of Chemical Biology and Fundamental Medicine”, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (E.S.); (V.M.)
| | - Lina Al Allaf
- Federal State Public Scientific Institution “Institute of Chemical Biology and Fundamental Medicine”, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (E.S.); (V.M.)
| | - Evgeniya Shrainer
- Federal State Public Scientific Institution “Institute of Chemical Biology and Fundamental Medicine”, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (E.S.); (V.M.)
- Autonomous Non-Commercial Organization “Center of New Medical Technologies in Akademgorodok”, 630090 Novosibirsk, Russia
| | - Vitalyi Morozov
- Federal State Public Scientific Institution “Institute of Chemical Biology and Fundamental Medicine”, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (E.S.); (V.M.)
| | - Nina Tikunova
- Federal State Public Scientific Institution “Institute of Chemical Biology and Fundamental Medicine”, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (E.S.); (V.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Kennedy EC, Hawkes CP. Approaches to Measuring Beta Cell Reserve and Defining Partial Clinical Remission in Paediatric Type 1 Diabetes. CHILDREN (BASEL, SWITZERLAND) 2024; 11:186. [PMID: 38397298 PMCID: PMC10887271 DOI: 10.3390/children11020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
CONTEXT Type 1 diabetes (T1D) results from the autoimmune T-cell mediated destruction of pancreatic beta cells leading to insufficient insulin secretion. At the time of diagnosis of T1D, there is residual beta cell function that declines over the subsequent months to years. Recent interventions have been approved to preserve beta cell function in evolving T1D. OBJECTIVE The aim of this review is to summarise the approaches used to assess residual beta cell function in evolving T1D, and to highlight potential future directions. METHODS Studies including subjects aged 0 to 18 years were included in this review. The following search terms were used; "(type 1 diabetes) and (partial remission)" and "(type 1 diabetes) and (honeymoon)". References of included studies were reviewed to determine if additional relevant studies were eligible. RESULTS There are numerous approaches to quantifying beta cell reserve in evolving T1D. These include c-peptide measurement after a mixed meal or glucagon stimuli, fasting c-peptide, the urinary c-peptide/creatinine ratio, insulin dose-adjusted haemoglobin A1c, and other clinical models to estimate beta cell function. Other biomarkers may have a role, including the proinsulin/c-peptide ratio, cytokines, and microRNA. Studies using thresholds to determine if residual beta cell function is present often differ in values used to define remission. CONCLUSIONS As interventions are approved to preserve beta cell function, it will become increasingly necessary to quantify residual beta cell function in research and clinical contexts. In this report, we have highlighted the strengths and limitations of the current approaches.
Collapse
Affiliation(s)
- Elaine C Kennedy
- Department of Paediatrics and Child Health, University College Cork, T12 DC4A Cork, Ireland
- INFANT Research Centre, University College Cork, T12 DC4A Cork, Ireland
| | - Colin P Hawkes
- Department of Paediatrics and Child Health, University College Cork, T12 DC4A Cork, Ireland
- INFANT Research Centre, University College Cork, T12 DC4A Cork, Ireland
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Gomez-Muñoz L, Dominguez-Bendala J, Pastori RL, Vives-Pi M. Immunometabolic biomarkers for partial remission in type 1 diabetes mellitus. Trends Endocrinol Metab 2024; 35:151-163. [PMID: 37949732 DOI: 10.1016/j.tem.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Shortly after diagnosis of type 1 diabetes mellitus (T1DM) and initiation of insulin therapy, many patients experience a transient partial remission (PR) phase, also known as the honeymoon phase. This phase presents a potential therapeutic opportunity due to its association with immunoregulatory and β cell-protective mechanisms. However, the lack of biomarkers makes its characterization difficult. In this review, we cover the current literature addressing the discovery of new predictive and monitoring biomarkers that contribute to the understanding of the metabolic, epigenetic, and immunological mechanisms underlying PR. We further discuss how these peripheral biomarkers reflect attempts to arrest β cell autoimmunity and how these can be applied in clinical practice.
Collapse
Affiliation(s)
- Laia Gomez-Muñoz
- Immunology Section, Germans Trias i Pujol Research Institute, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ricardo L Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marta Vives-Pi
- Immunology Section, Germans Trias i Pujol Research Institute, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; Ahead Therapeutics SL, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
6
|
Narsale A, Almanza F, Tran T, Lam B, Seo D, Vu A, Long SA, Cooney L, Serti E, Davies JD. Th2 cell clonal expansion at diagnosis in human type 1 diabetes. Clin Immunol 2023; 257:109829. [PMID: 37907122 DOI: 10.1016/j.clim.2023.109829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
Soon after diagnosis with type 1 diabetes (T1D), many patients experience a period of partial remission. A longer partial remission is associated with a better response to treatment, but the mechanism is not known. The frequency of CD4+CD25+CD127hi (127-hi) cells, a cell subset with an anti-inflammatory Th2 bias, correlates positively with length of partial remission. The purpose of this study was to further characterize the nature of the Th2 bias in 127-hi cells. Single cell RNA sequencing paired with TCR sequencing of sorted 127-hi memory cells identifies clonally expanded Th2 clusters in 127-hi cells from T1D, but not from healthy donors. The Th2 clusters express GATA3, GATA3-AS1, PTGDR2, IL17RB, IL4R and IL9R. The existence of 127-hi Th2 cell clonal expansion in T1D suggests that disease factors may induce clonal expansion of 127-hi Th2 cells that prolong partial remission and delay disease progression.
Collapse
Affiliation(s)
- Aditi Narsale
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA.
| | - Francisco Almanza
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA.
| | - Theo Tran
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA
| | - Breanna Lam
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA.
| | - David Seo
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA
| | - Alisa Vu
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA.
| | - S Alice Long
- Benaroya Research Institute, 1201 9(th) Ave, Seattle, WA 98101, USA.
| | | | | | - Joanna D Davies
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA.
| |
Collapse
|
7
|
Balmas E, Chen J, Hu AK, DeBerg HA, Rosasco MG, Gersuk VH, Serti E, Speake C, Greenbaum CJ, Nepom GT, Linsley PS, Cerosaletti K. Islet-autoreactive CD4+ T cells are linked with response to alefacept in type 1 diabetes. JCI Insight 2023; 8:e167881. [PMID: 37751304 PMCID: PMC10721267 DOI: 10.1172/jci.insight.167881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 09/21/2023] [Indexed: 09/27/2023] Open
Abstract
Variation in the preservation of β cell function in clinical trials in type 1 diabetes (T1D) has emphasized the need to define biomarkers to predict treatment response. The T1DAL trial targeted T cells with alefacept (LFA-3-Ig) and demonstrated C-peptide preservation in approximately 30% of new-onset T1D individuals. We analyzed islet antigen-reactive (IAR) CD4+ T cells in PBMC samples collected prior to treatment from alefacept- and placebo-treated individuals using flow cytometry and single-cell RNA sequencing. IAR CD4+ T cells at baseline had heterogeneous phenotypes. Transcript profiles formed phenotypic clusters of cells along a trajectory based on increasing maturation and activation, and T cell receptor (TCR) chains showed clonal expansion. Notably, the frequency of IAR CD4+ T cells with a memory phenotype and a unique transcript profile (cluster 3) were inversely correlated with C-peptide preservation in alefacept-treated, but not placebo-treated, individuals. Cluster 3 cells had a proinflammatory phenotype characterized by expression of the transcription factor BHLHE40 and the cytokines GM-CSF and TNF-α, and shared TCR chains with effector memory-like clusters. Our results suggest IAR CD4+ T cells as a potential baseline biomarker of response to therapies targeting the CD2 pathway and warrant investigation for other T cell-related therapies.
Collapse
Affiliation(s)
| | | | - Alex K. Hu
- Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington
| | - Hannah A. DeBerg
- Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington
| | - Mario G. Rosasco
- Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington
| | - Vivian H. Gersuk
- Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington
| | | | - Cate Speake
- Center for Interventional Immunology and Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Carla J. Greenbaum
- Center for Interventional Immunology and Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, Washington, USA
| | | | - Peter S. Linsley
- Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington
| | | |
Collapse
|
8
|
Viswanathan A, Wood JR, Hatipoglu BA. What Is a Honeymoon in Type 1, Can It Go into Remission? Endocrinol Metab Clin North Am 2023; 52:175-185. [PMID: 36754493 DOI: 10.1016/j.ecl.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type 1 diabetes is a chronic autoimmune disorder that results in destruction of insulin-producing cells in the pancreas. The autoimmune process is thought to be waxing and waning resulting in variable endogenous insulin secretion ability. An example of this is the honeymoon phase or partial remission phase of type 1 diabetes, during which optimal control of blood glucoses can be maintained with significantly reduced exogenous insulin, and occasionally exogenous insulin can be temporarily discontinued altogether. Understanding this phase is important because even fairly small amounts of endogenous insulin secretion is associated with reduced risk of severe hypoglycemia and microvascular complications.
Collapse
Affiliation(s)
- Anuradha Viswanathan
- Section for Pediatric Endocrinology, Cleveland Clinic Children's, 9500 Euclid Avenue, R Building- R-3, Cleveland, OH 44195, USA.
| | - Jamie R Wood
- University Hospitals Cleveland Medical Center, Rainbow Babies and Children's Hospital, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | - Betul A Hatipoglu
- University Hospitals Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
9
|
Roep BO. The need and benefit of immune monitoring to define patient and disease heterogeneity, mechanisms of therapeutic action and efficacy of intervention therapy for precision medicine in type 1 diabetes. Front Immunol 2023; 14:1112858. [PMID: 36733487 PMCID: PMC9887285 DOI: 10.3389/fimmu.2023.1112858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
The current standard of care for type 1 diabetes patients is limited to treatment of the symptoms of the disease, insulin insufficiency and its complications, not its cause. Given the autoimmune nature of type 1 diabetes, immunology is critical to understand the mechanism of disease progression, patient and disease heterogeneity and therapeutic action. Immune monitoring offers the key to all this essential knowledge and is therefore indispensable, despite the challenges and costs associated. In this perspective, I attempt to make this case by providing evidence from the past to create a perspective for future trials and patient selection.
Collapse
|
10
|
Long SA, Buckner JH. Clinical and experimental treatment of type 1 diabetes. Clin Exp Immunol 2022; 210:105-113. [PMID: 35980300 PMCID: PMC9750829 DOI: 10.1093/cei/uxac077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 01/25/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease resulting in the destruction of the insulin-producing pancreatic beta cells. Disease progression occurs along a trajectory from genetic risk, the development of islet autoantibodies, and autoreactive T cells ultimately progressing to clinical disease. Natural history studies and mechanistic studies linked to clinical trials have provided insight into the role of the immune system in disease pathogenesis. Here, we review our current understanding of the underlying etiology of T1D, focusing on the immune cell types that have been implicated in progression from pre-symptomatic T1D to clinical diagnosis and established disease. This knowledge has been foundational for the development of immunotherapies aimed at the prevention and treatment of T1D.
Collapse
Affiliation(s)
- S Alice Long
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
11
|
Sonigra A, Nel HJ, Wehr P, Ramnoruth N, Patel S, van Schie KA, Bladen MW, Mehdi AM, Tesiram J, Talekar M, Rossjohn J, Reid HH, Stuurman FE, Roberts H, Vecchio P, Gourley I, Rigby M, Becart S, Toes RE, Scherer HU, Lê Cao KA, Campbell K, Thomas R. Randomized phase I trial of antigen-specific tolerizing immunotherapy with peptide/calcitriol liposomes in ACPA+ rheumatoid arthritis. JCI Insight 2022; 7:e160964. [PMID: 36278483 PMCID: PMC9714780 DOI: 10.1172/jci.insight.160964] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/12/2022] [Indexed: 10/11/2023] Open
Abstract
BACKGROUNDAntigen-specific regulation of autoimmune disease is a major goal. In seropositive rheumatoid arthritis (RA), T cell help to autoreactive B cells matures the citrullinated (Cit) antigen-specific immune response, generating RA-specific V domain glycosylated anti-Cit protein antibodies (ACPA VDG) before arthritis onset. Low or escalating antigen administration under "sub-immunogenic" conditions favors tolerance. We explored safety, pharmacokinetics, and immunological and clinical effects of s.c. DEN-181, comprising liposomes encapsulating self-peptide collagen II259-273 (CII) and NF-κB inhibitor 1,25-dihydroxycholecalciferol.METHODSA double-blind, placebo-controlled, exploratory, single-ascending-dose, phase I trial assessed the impact of low, medium, and high DEN-181 doses on peripheral blood CII-specific and bystander Cit64vimentin59-71-specific (Cit-Vim-specific) autoreactive T cell responses, cytokines, and ACPA in 17 HLA-DRB1*04:01+ or *01:01+ ACPA+ RA patients on methotrexate.RESULTSDEN-181 was well tolerated. Relative to placebo and normalized to baseline values, Cit-Vim-specific T cells decreased in patients administered medium and high doses of DEN-181. Relative to placebo, percentage of CII-specific programmed cell death 1+ T cells increased within 28 days of DEN-181. Exploratory analysis in DEN-181-treated patients suggested improved RA disease activity was associated with expansion of CII-specific and Cit-Vim-specific T cells; reduction in ACPA VDG, memory B cells, and inflammatory myeloid populations; and enrichment in CCR7+ and naive T cells. Single-cell sequencing identified T cell transcripts associated with tolerogenic TCR signaling and exhaustion after low or medium doses of DEN-181.CONCLUSIONThe safety and immunomodulatory activity of low/medium DEN-181 doses provide rationale to further assess antigen-specific immunomodulatory therapy in ACPA+ RA.TRIAL REGISTRATIONAnzctr.org.au identifier ACTRN12617001482358, updated September 8, 2022.FUNDINGInnovative Medicines Initiative 2 Joint Undertaking (grant agreement 777357), supported by European Union's Horizon 2020 research and innovation programme and European Federation of Pharmaceutical Industries and Associations; Arthritis Queensland; National Health and Medical Research Council (NHMRC) Senior Research Fellowship; and NHMRC grant 2008287.
Collapse
Affiliation(s)
- Amee Sonigra
- Department of Rheumatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Hendrik J Nel
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Pascale Wehr
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Nishta Ramnoruth
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Swati Patel
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Karin A van Schie
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Maxwell W Bladen
- Melbourne Integrative Genomics and School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia
| | - Ahmed M Mehdi
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Joanne Tesiram
- Department of Rheumatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Meghna Talekar
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Hugh H Reid
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Frederik E Stuurman
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Helen Roberts
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
- Dendright Pty Ltd, Brisbane, Queensland, Australia
| | - Phillip Vecchio
- Department of Rheumatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Ian Gourley
- Immunology Clinical Development, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Mark Rigby
- Immunology Clinical Development, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Stephane Becart
- Discovery Immunology, Janssen Research & Development, LLC, La Jolla, California, USA
| | - Rene Em Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Hans Ulrich Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics and School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia
| | - Kim Campbell
- Immunology Translational Medicine, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Ranjeny Thomas
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
12
|
Gomez-Muñoz L, Perna-Barrull D, Caroz-Armayones JM, Murillo M, Rodriguez-Fernandez S, Valls A, Vazquez F, Perez J, Corripio R, Castaño L, Bel J, Vives-Pi M. Candidate Biomarkers for the Prediction and Monitoring of Partial Remission in Pediatric Type 1 Diabetes. Front Immunol 2022; 13:825426. [PMID: 35280980 PMCID: PMC8904370 DOI: 10.3389/fimmu.2022.825426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
The partial remission (PR) phase, a period experienced by most patients with type 1 diabetes (T1D) soon after diagnosis, is characterized by low insulin requirements and improved glycemic control. Given the great potential of this phase as a therapeutic window for immunotherapies because of its association with immunoregulatory mechanisms and β-cell protection, our objective was to find peripheral immunological biomarkers for its better characterization, monitoring, and prediction. The longitudinal follow-up of 17 pediatric patients with new-onset T1D over one year revealed that, during the PR phase, remitter patients show increased percentages of effector memory (EM) T lymphocytes, terminally differentiated EM T lymphocytes, and neutrophils in comparison to non-remitter patients. On the contrary, remitter patients showed lower percentages of naïve T lymphocytes, regulatory T cells (TREG), and dendritic cells (DCs). After a year of follow-up, these patients also presented increased levels of regulatory B cells and transitional T1 B lymphocytes. On the other hand, although none of the analyzed cytokines (IL-2, IL-6, TGF-β1, IL-17A, and IL-10) could distinguish or predict remission, IL-17A was increased at T1D diagnosis in comparison to control subjects, and remitter patients tended to maintain lower levels of this cytokine than non-remitters. Therefore, these potential monitoring immunological biomarkers of PR support that this stage is governed by both metabolic and immunological factors and suggest immunoregulatory attempts during this phase. Furthermore, since the percentage of TREG, monocytes, and DCs, and the total daily insulin dose at diagnosis were found to be predictors of the PR phase, we next created an index-based predictive model comprising those immune cell percentages that could potentially predict remission at T1D onset. Although our preliminary study needs further validation, these candidate biomarkers could be useful for the immunological characterization of the PR phase, the stratification of patients with better disease prognosis, and a more personalized therapeutic management.
Collapse
Affiliation(s)
- Laia Gomez-Muñoz
- Immunology Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | - David Perna-Barrull
- Immunology Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | - Josep M. Caroz-Armayones
- Department of Political and Social Sciences, Health Inequalities Research Group (GREDS-EMCONET), Pompeu Fabra University, Barcelona, Spain
- Johns Hopkins University–Pompeu Fabra University Public Policy Center, Barcelona, Spain
| | - Marta Murillo
- Pediatrics Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | - Silvia Rodriguez-Fernandez
- Immunology Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | - Aina Valls
- Pediatrics Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | - Federico Vazquez
- Endocrinology Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | - Jacobo Perez
- Pediatric Endocrinology Department, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Autonomous University of Barcelona, Sabadell, Spain
| | - Raquel Corripio
- Pediatric Endocrinology Department, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Autonomous University of Barcelona, Sabadell, Spain
| | - Luis Castaño
- Cruces University Hospital, Biocruces Bizkaia Research Institute, UPV/EHU, CIBERDEM, CIBERER, Endo-ERN, Bilbao, Spain
| | - Joan Bel
- Pediatrics Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | - Marta Vives-Pi
- Immunology Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| |
Collapse
|
13
|
Kahn SE, Chen YC, Esser N, Taylor AJ, van Raalte DH, Zraika S, Verchere CB. The β Cell in Diabetes: Integrating Biomarkers With Functional Measures. Endocr Rev 2021; 42:528-583. [PMID: 34180979 PMCID: PMC9115372 DOI: 10.1210/endrev/bnab021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 02/08/2023]
Abstract
The pathogenesis of hyperglycemia observed in most forms of diabetes is intimately tied to the islet β cell. Impairments in propeptide processing and secretory function, along with the loss of these vital cells, is demonstrable not only in those in whom the diagnosis is established but typically also in individuals who are at increased risk of developing the disease. Biomarkers are used to inform on the state of a biological process, pathological condition, or response to an intervention and are increasingly being used for predicting, diagnosing, and prognosticating disease. They are also proving to be of use in the different forms of diabetes in both research and clinical settings. This review focuses on the β cell, addressing the potential utility of genetic markers, circulating molecules, immune cell phenotyping, and imaging approaches as biomarkers of cellular function and loss of this critical cell. Further, we consider how these biomarkers complement the more long-established, dynamic, and often complex measurements of β-cell secretory function that themselves could be considered biomarkers.
Collapse
Affiliation(s)
- Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Yi-Chun Chen
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Austin J Taylor
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, 1007 MB Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - C Bruce Verchere
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| |
Collapse
|
14
|
Thomas R, Carballido JM, Wesley JD, Ahmed ST. Overcoming Obstacles in the Development of Antigen-Specific Immunotherapies for Type 1 Diabetes. Front Immunol 2021; 12:730414. [PMID: 34421931 PMCID: PMC8375663 DOI: 10.3389/fimmu.2021.730414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/22/2021] [Indexed: 01/01/2023] Open
Abstract
Antigen-specific immunotherapy (ASI) holds great promise for type 1 diabetes (T1D). Preclinical success for this approach has been demonstrated in vivo, however, clinical translation is still pending. Reasons explaining the slow progress to approve ASI are complex and span all stages of research and development, in both academic and industry environments. The basic four hurdles comprise a lack of translatability of pre-clinical research to human trials; an absence of robust prognostic and predictive biomarkers for therapeutic outcome; a need for a clear regulatory path addressing ASI modalities; and the limited acceptance to develop therapies intervening at the pre-symptomatic stages of disease. The core theme to address these challenges is collaboration-early, transparent, and engaged interactions between academic labs, pharmaceutical research and clinical development teams, advocacy groups, and regulatory agencies to drive a fundamental shift in how we think and treat T1D.
Collapse
Affiliation(s)
- Ranjeny Thomas
- University of Queensland Diamantina Institute, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - José M. Carballido
- Translational Medicine/Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Johnna D. Wesley
- Type 1 Diabetes, Immunology, & Kidney Disease Research, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, United States
| | - Simi T. Ahmed
- Strategic Partnerships, The New York Stem Cell Foundation Research Institute, New York, NY, United States
| |
Collapse
|
15
|
O'Brien JA, McGuire HM, Shinko D, Fazekas de St Groth B, Russo MA, Bailey D, Santarelli DM, Wynne K, Austin PJ. T lymphocyte and monocyte subsets are dysregulated in type 1 diabetes patients with peripheral neuropathic pain. Brain Behav Immun Health 2021; 15:100283. [PMID: 34589782 PMCID: PMC8474166 DOI: 10.1016/j.bbih.2021.100283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetic neuropathic pain is a common and devastating complication of type 1 diabetes, but the mechanism by which it develops and persists is yet to be fully elucidated. This study utilised high-dimensional suspension mass cytometry in a pilot cohort to investigate differences in peripheral blood immunophenotypes between type 1 diabetes patients with (n = 9) and without (n = 9) peripheral neuropathic pain. The abundance and activation of several leukocyte subsets were investigated with unsupervised clustering approaches FlowSOM and SPADE, as well as by manual gating. Major findings included a proportional increase in CD4+ central memory T cells and an absolute increase in classical monocytes, non-classical monocytes, and mature natural killer cells in type 1 diabetes patients with pain compared to those without pain. The expression of CD27, CD127, and CD39 was upregulated on select T cell populations, and the phosphorylated form of pro-inflammatory transcription factor MK2 was upregulated across most populations. These results provide evidence that distinct immunological signatures are associated with painful neuropathy in type 1 diabetes patients. Further research may link these changes to mechanisms by which pain in type 1 diabetes is initiated and maintained, paving the way for much needed targeted treatments.
Collapse
Affiliation(s)
- Jayden A. O'Brien
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Brain and Mind Centre, 94 Mallett St, Camperdown, NSW, 2050, Australia
| | - Helen M. McGuire
- Discipline of Pathology, Faculty of Medicine and Health, The University of Sydney, NSW, Australia
- Ramaciotti Facility for Human Systems Biology, Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Diana Shinko
- Ramaciotti Facility for Human Systems Biology, Charles Perkins Centre, The University of Sydney, NSW, Australia
- Sydney Cytometry, The University of Sydney, NSW, Australia
| | - Barbara Fazekas de St Groth
- Discipline of Pathology, Faculty of Medicine and Health, The University of Sydney, NSW, Australia
- Ramaciotti Facility for Human Systems Biology, Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Marc A. Russo
- Genesis Research Services, Broadmeadow, NSW, Australia
| | - Dominic Bailey
- Genesis Research Services, Broadmeadow, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | | | - Katie Wynne
- Department of Diabetes and Endocrinology, John Hunter Hospital, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, NSW, Australia
| | - Paul J. Austin
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Brain and Mind Centre, 94 Mallett St, Camperdown, NSW, 2050, Australia
| |
Collapse
|
16
|
Musthaffa Y, Hamilton-Williams EE, Nel HJ, Bergot AS, Mehdi AM, Harris M, Thomas R. Proinsulin-specific T-cell responses correlate with estimated c-peptide and predict partial remission duration in type 1 diabetes. Clin Transl Immunology 2021; 10:e1315. [PMID: 34336205 PMCID: PMC8312239 DOI: 10.1002/cti2.1315] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/20/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
Objective Type 1 diabetes (T1D) is an autoimmune disorder in which autoreactive T cells destroy insulin-producing β-cells. Interventions that preserve β-cell function represent a fundamental therapeutic goal in T1D and biomarkers that predict and monitor β-cell function, and changes in islet autoantigenic signatures are needed. As proinsulin and neoantigens derived from proinsulin peptides (hybrid insulin peptides, HIPs) are important T1D autoantigens, we analysed peripheral blood CD4+ T-cell autoantigen-specific proliferative responses and their relationship to estimated β-cell function. Methods We recruited 72 people with and 42 without T1D, including 17 pre-diabetic islet antibody-positive and 9 antibody-negative first-degree relatives and 16 unrelated healthy controls with T1D-risk HLA types. We estimated C-peptide level at 3-month intervals for 2 years post-diagnosis and measured CD4+ T-cell proliferation to proinsulin epitopes and HIPs using an optimised bioassay. Results We show that CD4+ T-cell proliferation to any islet peptide and to multiple epitopes were significantly more frequent in pre-diabetic islet antibody-positive siblings and participants with T1D ≤ 3 months of duration, than in participants with T1D > 3 months or healthy controls. Among participants with T1D and first-degree relatives, CD4+ T-cell proliferation occurred most frequently in response to proinsulin33-63 (full-length C-peptide). Proinsulin33-63-specific responses were associated with HLA-DR3-DQ2 and/or HLA-DR4/DQ8. In children with T1D, proinsulin33-63-specific T-cell proliferation positively associated with concurrent estimated C-peptide and predicted survival in honeymoon. Conclusion CD4+ T-cell proliferative responses to proinsulin-containing autoantigens are common before and immediately after diagnosis of T1D but decline thereafter. Proinsulin33-63-specific CD4+ T-cell response is a novel marker of estimated residual endogenous β-cell function and predicts a better 2-year disease outcome.
Collapse
Affiliation(s)
- Yassmin Musthaffa
- Department of Endocrinology and Diabetes Queensland Children's Hospital South Brisbane QLD Australia.,The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Hendrik J Nel
- The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Anne-Sophie Bergot
- The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Ahmed M Mehdi
- The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Mark Harris
- Department of Endocrinology and Diabetes Queensland Children's Hospital South Brisbane QLD Australia.,The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| |
Collapse
|