1
|
Katz DH, Lindholm ME, Ashley EA. Charting the Molecular Terrain of Exercise: Energetics, Exerkines, and the Future of Multiomic Mapping. Physiology (Bethesda) 2025; 40:0. [PMID: 39136551 DOI: 10.1152/physiol.00024.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 11/21/2024] Open
Abstract
Physical activity plays a fundamental role in human health and disease. Exercise has been shown to improve a wide variety of disease states, and the scientific community is committed to understanding the precise molecular mechanisms that underlie the exquisite benefits. This review provides an overview of molecular responses to acute exercise and chronic training, particularly energy mobilization and generation, structural adaptation, inflammation, and immune regulation. Furthermore, it offers a detailed discussion of known molecular signals and systemic regulators activated during various forms of exercise and their role in orchestrating health benefits. Critically, the increasing use of multiomic technologies is explored with an emphasis on how multiomic and multitissue studies contribute to a more profound understanding of exercise biology. These data inform anticipated future advancement in the field and highlight the prospect of integrating exercise with pharmacology for personalized disease prevention and treatment.
Collapse
Affiliation(s)
- Daniel H Katz
- Division of Cardiovascular MedicineStanford University School of Medicine, Stanford, California, United States
| | - Maléne E Lindholm
- Division of Cardiovascular MedicineStanford University School of Medicine, Stanford, California, United States
| | - Euan A Ashley
- Division of Cardiovascular MedicineStanford University School of Medicine, Stanford, California, United States
| |
Collapse
|
2
|
Jevtovic F, Wisseman B, Jahan F, Claiborne A, Collier DN, DeVente JE, Mouro S, Zeczycki T, Goodyear LJ, May LE. Effects of maternal exercise modes on infant cord blood proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623083. [PMID: 39605641 PMCID: PMC11601287 DOI: 10.1101/2024.11.11.623083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The aim of this study was to show the effects of different maternal exercise modes on infant cord blood proteome. We used infant cord blood from two randomized controlled trials where women with a wide range of BMI and free of pregnancy complications participated in controlled and supervised aerobic, resistance, or combination (aerobic+resistance) exercise from <16 weeks of gestation until delivery. Results of this study showed that infant cord blood proteome is altered in a maternal exercise mode specific manner. Additionally, results showed 61 downregulated proteins common to all exercise modes, which correspond to gas transport, cellular stress response, reactive oxygen species metabolism, and other biological processes. Collectively, these data demonstrate the differential effect of maternal exercise modes on infant cord blood proteome.
Collapse
Affiliation(s)
- Filip Jevtovic
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Breanna Wisseman
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Kinesiology, University of Rhode Island, Kingston, RI, USA
| | - Fahmida Jahan
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Alex Claiborne
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - David N. Collier
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Pediatrics, East Carolina University, Greenville, NC, USA
| | - James E. DeVente
- Department of Obstetrics and Gynecology, East Carolina University, Greenville, NC, USA
| | - Steven Mouro
- Department of Obstetrics and Gynecology, East Carolina University, Greenville, NC, USA
| | - Tonya Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Laurie J. Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Linda E. May
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Pediatrics, East Carolina University, Greenville, NC, USA
| |
Collapse
|
3
|
Castro A, Ferreira AG, Catai AM, Amaral MAB, Cavaglieri CR, Chacon-Mikahil MPT. Metabolic Predictors of Cardiorespiratory Fitness Responsiveness to Continuous Endurance and High-Intensity Interval Training Programs: The TIMES Study-A Randomized Controlled Trial. Metabolites 2024; 14:512. [PMID: 39330519 PMCID: PMC11433752 DOI: 10.3390/metabo14090512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Background/Objectives: Cardiorespiratory fitness (CRF) levels significantly modulate the risk of cardiometabolic diseases, aging, and mortality. Nevertheless, there is a substantial interindividual variability in CRF responsiveness to a given standardized exercise dose despite the type of training. Predicting the responsiveness to regular exercise has the potential to contribute to personalized exercise medicine applications. This study aimed to identify predictive biomarkers for the classification of CRF responsiveness based on serum and intramuscular metabolic levels before continuous endurance training (ET) or high-intensity interval training (HIIT) programs using a randomized controlled trial. Methods: Forty-three serum and seventy intramuscular (vastus lateralis) metabolites were characterized and quantified via proton nuclear magnetic resonance (1H NMR), and CRF levels (expressed in METs) were measured in 70 sedentary young men (age: 23.7 ± 3.0 years; BMI: 24.8 ± 2.5 kg·m-2), at baseline and post 8 weeks of the ET, HIIT, and control (CO) periods. A multivariate binary logistic regression model was used to classify individuals at baseline as Responders or Non-responders to CRF gains after the training programs. Results: CRF responses ranged from 0.9 to 3.9 METs for ET, 1.1 to 4.7 METs for HIIT, and -0.9 to 0.2 METs for CO. The frequency of Responder/Non-responder individuals between ET (76.7%/23.3%) and HIIT (90.0%/10.0%) programs was similar (p = 0.166). The model based on serum O-acetylcarnitine levels [OR (odds ratio) = 4.72, p = 0.012] classified Responder/Non-responders individuals to changes in CRF regardless of the training program with 78.0% accuracy (p = 0.006), while the intramuscular model based on creatinine levels (OR = 4.53, p = 0.0137) presented 72.3% accuracy (p = 0.028). Conclusions: These results highlight the potential value of serum and intramuscular metabolites as biomarkers for the classification of CRF responsiveness previous to different aerobic training programs.
Collapse
Affiliation(s)
- Alex Castro
- Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas 13083-100, SP, Brazil
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas (UNICAMP), Campinas 13083-851, SP, Brazil; (M.A.B.A.); (C.R.C.)
- Laboratory of Nuclear Magnetic Resonance, Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil;
| | - Antonio Gilberto Ferreira
- Laboratory of Nuclear Magnetic Resonance, Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil;
| | - Aparecida Maria Catai
- Laboratory of Cardiovascular Physiotherapy, Department of Physiotherapy, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil;
| | - Matheus Alejandro Bolina Amaral
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas (UNICAMP), Campinas 13083-851, SP, Brazil; (M.A.B.A.); (C.R.C.)
| | - Claudia Regina Cavaglieri
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas (UNICAMP), Campinas 13083-851, SP, Brazil; (M.A.B.A.); (C.R.C.)
| | - Mara Patrícia Traina Chacon-Mikahil
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas (UNICAMP), Campinas 13083-851, SP, Brazil; (M.A.B.A.); (C.R.C.)
| |
Collapse
|
4
|
Ottosen RN, Seefeldt JM, Hansen J, Nielsen R, Møller N, Johannsen M, Poulsen TB. Preparation and Preclinical Characterization of a Simple Ester for Dual Exogenous Supply of Lactate and Beta-hydroxybutyrate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19883-19890. [PMID: 39214666 PMCID: PMC11403612 DOI: 10.1021/acs.jafc.4c04849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Elevation of the plasma levels of (S)-lactate (Lac) and/or (R)-beta-hydroxybutyrate (BHB) occurs naturally in response to strenuous exercise and prolonged fasting, respectively, resulting in millimolar concentrations of these two metabolites. It is increasingly appreciated that Lac and BHB have wide-ranging beneficial physiological effects, suggesting that novel nutritional solutions, compatible with high-level and/or sustained consumption, which allow direct control of plasma levels of Lac and BHB, are of strong interest. In this study, we present a molecular hybrid between (S)-lactate and the BHB-precursor (R)-1,3-butanediol in the form of a simple ester referred to as LaKe. We show that LaKe can be readily prepared on the kilogram scale and undergoes rapid hydrolytic conversion under a variety of physiological conditions to release its two constituents. Oral ingestion of LaKe, in rats, resulted in dose-dependent elevation of plasma levels of Lac and BHB triggering expected physiological responses such as reduced lipolysis and elevation of the appetite-suppressing compound N-L-lactoyl-phenylalanine (Lac-Phe).
Collapse
Affiliation(s)
- Rasmus N Ottosen
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Jacob M Seefeldt
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N DK-8200, Denmark
| | - Jakob Hansen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard. 99, Aarhus N DK-8200, Denmark
| | - Roni Nielsen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N DK-8200, Denmark
| | - Niels Møller
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard 11, Aarhus N DK-8200, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, Aarhus N DK-8200, Denmark
| | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard. 99, Aarhus N DK-8200, Denmark
| | - Thomas B Poulsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| |
Collapse
|
5
|
Lee-Ødegård S, Hjorth M, Olsen T, Moen GH, Daubney E, Evans DM, Hevener AL, Lusis AJ, Zhou M, Seldin MM, Allayee H, Hilser J, Viken JK, Gulseth H, Norheim F, Drevon CA, Birkeland KI. Serum proteomic profiling of physical activity reveals CD300LG as a novel exerkine with a potential causal link to glucose homeostasis. eLife 2024; 13:RP96535. [PMID: 39190027 PMCID: PMC11349297 DOI: 10.7554/elife.96535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Background Physical activity has been associated with preventing the development of type 2 diabetes and atherosclerotic cardiovascular disease. However, our understanding of the precise molecular mechanisms underlying these effects remains incomplete and good biomarkers to objectively assess physical activity are lacking. Methods We analyzed 3072 serum proteins in 26 men, normal weight or overweight, undergoing 12 weeks of a combined strength and endurance exercise intervention. We estimated insulin sensitivity with hyperinsulinemic euglycemic clamp, maximum oxygen uptake, muscle strength, and used MRI/MRS to evaluate body composition and organ fat depots. Muscle and subcutaneous adipose tissue biopsies were used for mRNA sequencing. Additional association analyses were performed in samples from up to 47,747 individuals in the UK Biobank, as well as using two-sample Mendelian randomization and mice models. Results Following 12 weeks of exercise intervention, we observed significant changes in 283 serum proteins. Notably, 66 of these proteins were elevated in overweight men and positively associated with liver fat before the exercise regimen, but were normalized after exercise. Furthermore, for 19.7 and 12.1% of the exercise-responsive proteins, corresponding changes in mRNA expression levels in muscle and fat, respectively, were shown. The protein CD300LG displayed consistent alterations in blood, muscle, and fat. Serum CD300LG exhibited positive associations with insulin sensitivity, and to angiogenesis-related gene expression in both muscle and fat. Furthermore, serum CD300LG was positively associated with physical activity and negatively associated with glucose levels in the UK Biobank. In this sample, the association between serum CD300LG and physical activity was significantly stronger in men than in women. Mendelian randomization analysis suggested potential causal relationships between levels of serum CD300LG and fasting glucose, 2 hr glucose after an oral glucose tolerance test, and HbA1c. Additionally, Cd300lg responded to exercise in a mouse model, and we observed signs of impaired glucose tolerance in male, but not female, Cd300lg knockout mice. Conclusions Our study identified several novel proteins in serum whose levels change in response to prolonged exercise and were significantly associated with body composition, liver fat, and glucose homeostasis. Serum CD300LG increased with physical activity and is a potential causal link to improved glucose levels. CD300LG may be a promising exercise biomarker and a therapeutic target in type 2 diabetes. Funding South-Eastern Norway Regional Health Authority, Simon Fougners Fund, Diabetesforbundet, Johan Selmer Kvanes' legat til forskning og bekjempelse av sukkersyke. The UK Biobank resource reference 53641. Australian National Health and Medical Research Council Investigator Grant (APP2017942). Australian Research Council Discovery Early Career Award (DE220101226). Research Council of Norway (Project grant: 325640 and Mobility grant: 287198). The Medical Student Research Program at the University of Oslo. Novo Nordisk Fonden Excellence Emerging Grant in Endocrinology and Metabolism 2023 (NNF23OC0082123). Clinical trial number clinicaltrials.gov: NCT01803568.
Collapse
Affiliation(s)
- Sindre Lee-Ødegård
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University HospitalOsloNorway
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloOsloNorway
| | - Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of OsloOsloNorway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of OsloOsloNorway
| | - Gunn-Helen Moen
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloOsloNorway
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- The Frazer Institute, The University of QueenslandWoolloongabbaAustralia
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and TechnologyTrondheimNorway
| | - Emily Daubney
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - David M Evans
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and TechnologyTrondheimNorway
- MRC Integrative Epidemiology Unit, University of BristolBristolUnited Kingdom
| | - Andrea L Hevener
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Aldons J Lusis
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Mingqi Zhou
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
| | - Hooman Allayee
- Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - James Hilser
- Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Jonas Krag Viken
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloOsloNorway
| | - Hanne Gulseth
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public HealthOsloNorway
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of OsloOsloNorway
| | | | - Kåre Inge Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University HospitalOsloNorway
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloOsloNorway
| |
Collapse
|
6
|
Rao P, Keyes MJ, Mi MY, Barber JL, Tahir UA, Deng S, Clish CB, Shen D, Farrell LA, Wilson JG, Gao Y, Yimer WK, Ekunwe L, Hall ME, Muntner PM, Guo X, Taylor KD, Tracy RP, Rich SS, Rotter JI, Xanthakis V, Vasan RS, Bouchard C, Sarzynski MA, Gerszten RE, Robbins JM. Plasma Proteomics of Exercise Blood Pressure and Incident Hypertension. JAMA Cardiol 2024; 9:713-722. [PMID: 38865108 PMCID: PMC11170454 DOI: 10.1001/jamacardio.2024.1397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
Importance Blood pressure response during acute exercise (exercise blood pressure [EBP]) is associated with the future risk of hypertension and cardiovascular disease (CVD). Biochemical characterization of EBP could inform disease biology and identify novel biomarkers of future hypertension. Objective To identify protein markers associated with EBP and test their association with incident hypertension. Design, Setting, and Participants This study assayed 4977 plasma proteins in 681 healthy participants (from 763 assessed) of the Health, Risk Factors, Exercise Training and Genetics (HERITAGE; data collection from January 1993 to December 1997 and plasma proteomics from January 2019 to January 2020) Family Study at rest who underwent 2 cardiopulmonary exercise tests. Individuals were free of CVD at the time of recruitment. Individuals with resting SBP ≥160 mm Hg or DBP ≥100 mm Hg or taking antihypertensive drug therapy were excluded from the study. The association between resting plasma protein levels to both resting BP and EBP was evaluated. Proteins associated with EBP were analyzed for their association with incident hypertension in the Framingham Heart Study (FHS; n = 1177) and validated in the Jackson Heart Study (JHS; n = 772) and Multi-Ethnic Study of Atherosclerosis (MESA; n = 1367). Proteins associated with incident hypertension were tested for putative causal links in approximately 700 000 individuals using cis-protein quantitative loci mendelian randomization (cis-MR). Data were analyzed from January 2023 to January 2024. Exposures Plasma proteins. Main Outcomes and Measures EBP was defined as the BP response during a fixed workload (50 W) on a cycle ergometer. Hypertension was defined as BP ≥140/90 mm Hg or taking antihypertensive medication. Results Among the 681 participants in the HERITAGE Family Study, the mean (SD) age was 34 (13) years; 366 participants (54%) were female; 238 (35%) were self-reported Black and 443 (65%) were self-reported White. Proteomic profiling of EBP revealed 34 proteins that would not have otherwise been identified through profiling of resting BP alone. Transforming growth factor β receptor 3 (TGFBR3) and prostaglandin D2 synthase (PTGDS) had the strongest association with exercise systolic BP (SBP) and diastolic BP (DBP), respectively (TGFBR3: exercise SBP, β estimate, -3.39; 95% CI, -4.79 to -2.00; P = 2.33 × 10-6; PTGDS: exercise DBP β estimate, -2.50; 95% CI, -3.29 to -1.70; P = 1.18 × 10-9). In fully adjusted models, TGFBR3 was inversely associated with incident hypertension in FHS, JHS, and MESA (hazard ratio [HR]: FHS, 0.86; 95% CI, 0.75-0.97; P = .01; JHS, 0.87; 95% CI, 0.77-0.97; P = .02; MESA, 0.84; 95% CI, 0.71-0.98; P = .03; pooled cohort, 0.86; 95% CI, 0.79-0.92; P = 6 × 10-5). Using cis-MR, genetically predicted levels of TGFBR3 were associated with SBP, hypertension, and CVD events (SBP: β, -0.38; 95% CI, -0.64 to -0.11; P = .006; hypertension: odds ratio [OR], 0.99; 95% CI, 0.98-0.99; P < .001; heart failure with hypertension: OR, 0.86; 95% CI, 0.77-0.97; P = .01; CVD: OR, 0.84; 95% CI, 0.77-0.92; P = 8 × 10-5; cerebrovascular events: OR, 0.77; 95% CI, 0.70-0.85; P = 5 × 10-7). Conclusions and Relevance Plasma proteomic profiling of EBP identified a novel protein, TGFBR3, which may protect against elevated BP and long-term CVD outcomes.
Collapse
Affiliation(s)
- Prashant Rao
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Michelle. J. Keyes
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Michael Y. Mi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Jacob L. Barber
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia
| | - Usman A. Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Shuliang Deng
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Clary B. Clish
- Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge
| | - Dongxiao Shen
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Laurie. A. Farrell
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - James G. Wilson
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Yan Gao
- Department of Data Sciences, University of Mississippi Medical Center, Jackson
| | - Wondwosen K. Yimer
- Department of Data Sciences, University of Mississippi Medical Center, Jackson
| | - Lynette Ekunwe
- Jackson Heart Study Field Center, University of Mississippi Medical Center, Jackson
| | - Michael E. Hall
- Department of Medicine, Division of Cardiology, University of Mississippi Medical Center, Jackson
| | - Paul M. Muntner
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, the Lundquist Institute for Biomedical Innovation at Harbor–University of California, Los Angeles Medical Center, Torrance
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, the Lundquist Institute for Biomedical Innovation at Harbor–University of California, Los Angeles Medical Center, Torrance
| | - Russell P. Tracy
- Department of Pathology Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, the Lundquist Institute for Biomedical Innovation at Harbor–University of California, Los Angeles Medical Center, Torrance
| | - Vanessa Xanthakis
- Boston University’s and National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Ramachandran S. Vasan
- Boston University’s and National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Mark A. Sarzynski
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge
| | - Jeremy M. Robbins
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
7
|
Perry AS, Farber-Eger E, Gonzales T, Tanaka T, Robbins JM, Murthy VL, Stolze LK, Zhao S, Huang S, Colangelo LA, Deng S, Hou L, Lloyd-Jones DM, Walker KA, Ferrucci L, Watts EL, Barber JL, Rao P, Mi MY, Gabriel KP, Hornikel B, Sidney S, Houstis N, Lewis GD, Liu GY, Thyagarajan B, Khan SS, Choi B, Washko G, Kalhan R, Wareham N, Bouchard C, Sarzynski MA, Gerszten RE, Brage S, Wells QS, Nayor M, Shah RV. Proteomic analysis of cardiorespiratory fitness for prediction of mortality and multisystem disease risks. Nat Med 2024; 30:1711-1721. [PMID: 38834850 PMCID: PMC11186767 DOI: 10.1038/s41591-024-03039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/30/2024] [Indexed: 06/06/2024]
Abstract
Despite the wide effects of cardiorespiratory fitness (CRF) on metabolic, cardiovascular, pulmonary and neurological health, challenges in the feasibility and reproducibility of CRF measurements have impeded its use for clinical decision-making. Here we link proteomic profiles to CRF in 14,145 individuals across four international cohorts with diverse CRF ascertainment methods to establish, validate and characterize a proteomic CRF score. In a cohort of around 22,000 individuals in the UK Biobank, a proteomic CRF score was associated with a reduced risk of all-cause mortality (unadjusted hazard ratio 0.50 (95% confidence interval 0.48-0.52) per 1 s.d. increase). The proteomic CRF score was also associated with multisystem disease risk and provided risk reclassification and discrimination beyond clinical risk factors, as well as modulating high polygenic risk of certain diseases. Finally, we observed dynamicity of the proteomic CRF score in individuals who undertook a 20-week exercise training program and an association of the score with the degree of the effect of training on CRF, suggesting potential use of the score for personalization of exercise recommendations. These results indicate that population-based proteomics provides biologically relevant molecular readouts of CRF that are additive to genetic risk, potentially modifiable and clinically translatable.
Collapse
Affiliation(s)
- Andrew S Perry
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric Farber-Eger
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tomas Gonzales
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Toshiko Tanaka
- Longtidudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jeremy M Robbins
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Lindsey K Stolze
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shi Huang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laura A Colangelo
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shuliang Deng
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Donald M Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Keenan A Walker
- Multimodal Imaging of Neurodegenerative Disease (MIND) Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Luigi Ferrucci
- Longtidudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Eleanor L Watts
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jacob L Barber
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Prashant Rao
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael Y Mi
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kelley Pettee Gabriel
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bjoern Hornikel
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Nicholas Houstis
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory D Lewis
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Gabrielle Y Liu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California Davis, Sacramento, CA, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minnesota, MN, USA
| | - Sadiya S Khan
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bina Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - George Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ravi Kalhan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nick Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Claude Bouchard
- Human Genomic Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Mark A Sarzynski
- Department of Exercise Science, University of South Carolina Columbia, Columbia, SC, USA
| | - Robert E Gerszten
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Soren Brage
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Quinn S Wells
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew Nayor
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ravi V Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
8
|
Walzik D, Wences Chirino TY, Zimmer P, Joisten N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct Target Ther 2024; 9:138. [PMID: 38806473 PMCID: PMC11133400 DOI: 10.1038/s41392-024-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Despite substantial evidence emphasizing the pleiotropic benefits of exercise for the prevention and treatment of various diseases, the underlying biological mechanisms have not been fully elucidated. Several exercise benefits have been attributed to signaling molecules that are released in response to exercise by different tissues such as skeletal muscle, cardiac muscle, adipose, and liver tissue. These signaling molecules, which are collectively termed exerkines, form a heterogenous group of bioactive substances, mediating inter-organ crosstalk as well as structural and functional tissue adaption. Numerous scientific endeavors have focused on identifying and characterizing new biological mediators with such properties. Additionally, some investigations have focused on the molecular targets of exerkines and the cellular signaling cascades that trigger adaption processes. A detailed understanding of the tissue-specific downstream effects of exerkines is crucial to harness the health-related benefits mediated by exercise and improve targeted exercise programs in health and disease. Herein, we review the current in vivo evidence on exerkine-induced signal transduction across multiple target tissues and highlight the preventive and therapeutic value of exerkine signaling in various diseases. By emphasizing different aspects of exerkine research, we provide a comprehensive overview of (i) the molecular underpinnings of exerkine secretion, (ii) the receptor-dependent and receptor-independent signaling cascades mediating tissue adaption, and (iii) the clinical implications of these mechanisms in disease prevention and treatment.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Tiffany Y Wences Chirino
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
- Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, 37075, Göttingen, Lower Saxony, Germany.
| |
Collapse
|
9
|
Dorian D, Gustafson D, Quinn R, Bentley RF, Dorian P, Goodman JM, Fish JE, Connelly KA. Exercise-Dependent Modulation of Immunological Response Pathways in Endurance Athletes With and Without Atrial Fibrillation. J Am Heart Assoc 2024; 13:e033640. [PMID: 38497478 PMCID: PMC11009995 DOI: 10.1161/jaha.123.033640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/12/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) is a common arrhythmia characterized by uncoordinated atrial electrical activity. Lone AF occurs in the absence of traditional risk factors and is frequently observed in male endurance athletes, who face a 2- to 5-fold higher risk of AF compared with healthy, moderately active males. Our understanding of how endurance exercise contributes to the pathophysiology of lone AF remains limited. This study aimed to characterize the circulating protein fluctuations during high-intensity exercise as well as explore potential biomarkers of exercise-associated AF. METHODS AND RESULTS A prospective cohort of 12 male endurance cyclists between the ages of 40 and 65 years, 6 of whom had a history of exercise-associated AF, were recruited to participate using a convenience sampling method. The circulating proteome was subsequently analyzed using multiplex immunoassays and aptamer-based proteomics before, during, and after an acute high-intensity endurance exercise bout to assess temporality and identify potential markers of AF. The endurance exercise bout resulted in significant alterations to proteins involved in immune modulation (eg, growth/differentiation factor 15), skeletal muscle metabolism (eg, α-actinin-2), cell death (eg, histones), and inflammation (eg, interleukin-6). Subjects with AF differed from those without, displaying modulation of proteins previously known to have associations with incident AF (eg, C-reactive protein, insulin-like growth factor-1, and angiopoietin-2), and also with proteins having no previous association (eg, tapasin-related protein and α2-Heremans-Schmid glycoprotein). CONCLUSIONS These findings provide insights into the proteomic response to acute intense exercise, provide mechanistic insights into the pathophysiology behind AF in athletes, and identify targets for future study and validation.
Collapse
Affiliation(s)
- David Dorian
- Department of Medicine, Division of CardiologyUniversity of TorontoTorontoOntarioCanada
| | - Dakota Gustafson
- Department of Laboratory Medicine & PathobiologyUniversity of TorontoTorontoOntarioCanada
- Toronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
- Faculty of Health SciencesQueen’s UniversityKingstonOntarioCanada
| | - Ryan Quinn
- Division of CardiologyLi Ka Shing Knowledge Institute of St. Michael’s HospitalTorontoOntarioCanada
| | - Robert F. Bentley
- Faculty of Kinesiology and Physical EducationUniversity of TorontoTorontoOntarioCanada
| | - Paul Dorian
- Department of Medicine, Division of CardiologyUniversity of TorontoTorontoOntarioCanada
- Division of CardiologyLi Ka Shing Knowledge Institute of St. Michael’s HospitalTorontoOntarioCanada
- Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Keenan Research Centre for Biomedical ScienceSt Michael’s Hospital, University of TorontoTorontoOntarioCanada
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
- Heart and Stroke Richard Lewar Centre for Research ExcellenceUniversity of TorontoTorontoOntarioCanada
| | - Jack M. Goodman
- Faculty of Kinesiology and Physical EducationUniversity of TorontoTorontoOntarioCanada
- Heart and Stroke Richard Lewar Centre for Research ExcellenceUniversity of TorontoTorontoOntarioCanada
- Division of CardiologySinai Health/University Health NetworkTorontoOntarioCanada
| | - Jason E. Fish
- Department of Laboratory Medicine & PathobiologyUniversity of TorontoTorontoOntarioCanada
- Toronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
- Peter Munk Cardiac CentreUniversity Health NetworkTorontoOntarioCanada
| | - Kim A. Connelly
- Department of Medicine, Division of CardiologyUniversity of TorontoTorontoOntarioCanada
- Division of CardiologyLi Ka Shing Knowledge Institute of St. Michael’s HospitalTorontoOntarioCanada
- Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Keenan Research Centre for Biomedical ScienceSt Michael’s Hospital, University of TorontoTorontoOntarioCanada
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
- Heart and Stroke Richard Lewar Centre for Research ExcellenceUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
10
|
Ashcroft SP, Stocks B, Egan B, Zierath JR. Exercise induces tissue-specific adaptations to enhance cardiometabolic health. Cell Metab 2024; 36:278-300. [PMID: 38183980 DOI: 10.1016/j.cmet.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
The risk associated with multiple cancers, cardiovascular disease, diabetes, and all-cause mortality is decreased in individuals who meet the current recommendations for physical activity. Therefore, regular exercise remains a cornerstone in the prevention and treatment of non-communicable diseases. An acute bout of exercise results in the coordinated interaction between multiple tissues to meet the increased energy demand of exercise. Over time, the associated metabolic stress of each individual exercise bout provides the basis for long-term adaptations across tissues, including the cardiovascular system, skeletal muscle, adipose tissue, liver, pancreas, gut, and brain. Therefore, regular exercise is associated with a plethora of benefits throughout the whole body, including improved cardiorespiratory fitness, physical function, and glycemic control. Overall, we summarize the exercise-induced adaptations that occur within multiple tissues and how they converge to ultimately improve cardiometabolic health.
Collapse
Affiliation(s)
- Stephen P Ashcroft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brendan Egan
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
11
|
Nieman DC, Sakaguchi CA, Pelleigrini M, Thompson MJ, Sumner S, Zhang Q. Healthy lifestyle linked to innate immunity and lipoprotein metabolism: a cross-sectional comparison using untargeted proteomics. Sci Rep 2023; 13:16728. [PMID: 37794065 PMCID: PMC10550951 DOI: 10.1038/s41598-023-44068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023] Open
Abstract
This study used untargeted proteomics to compare blood proteomic profiles in two groups of adults that differed widely in lifestyle habits. A total of 52 subjects in the lifestyle group (LIFE) (28 males, 24 females) and 52 in the control group (CON) (27 males, 25 females) participated in this cross-sectional study. Age, education level, marital status, and height did not differ significantly between LIFE and CON groups. The LIFE and CON groups differed markedly in body composition, physical activity patterns, dietary intake patterns, disease risk factor prevalence, blood measures of inflammation, triglycerides, HDL-cholesterol, glucose, and insulin, weight-adjusted leg/back and handgrip strength, and mood states. The proteomics analysis showed strong group differences for 39 of 725 proteins identified in dried blood spot samples. Of these, 18 were downregulated in the LIFE group and collectively indicated a lower innate immune activation signature. A total of 21 proteins were upregulated in the LIFE group and supported greater lipoprotein metabolism and HDL remodeling. Lifestyle-related habits and biomarkers were probed and the variance (> 50%) in proteomic profiles was best explained by group contrasts in indicators of adiposity. This cross-sectional study established that a relatively small number of proteins are associated with good lifestyle habits.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Biology Department, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, USA.
| | - Camila A Sakaguchi
- Human Performance Laboratory, Biology Department, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Matteo Pelleigrini
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael J Thompson
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Susan Sumner
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA
| | - Qibin Zhang
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| |
Collapse
|
12
|
Mi MY, Barber JL, Rao P, Farrell LA, Sarzynski MA, Bouchard C, Robbins JM, Gerszten RE. Plasma Proteomic Kinetics in Response to Acute Exercise. Mol Cell Proteomics 2023; 22:100601. [PMID: 37343698 PMCID: PMC10460691 DOI: 10.1016/j.mcpro.2023.100601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/09/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023] Open
Abstract
Regular exercise has many favorable effects on human health, which may be mediated in part by the release of circulating bioactive factors during each bout of exercise. Limited data exist regarding the kinetic responses of plasma proteins during and after acute exercise. Proteomic profiling of 4163 proteins was performed using a large-scale, affinity-based platform in 75 middle-aged adults who were referred for treadmill exercise stress testing. Plasma proteins were quantified at baseline, peak exercise, and 1-h postexercise, and those with significant changes at both exercise timepoints were further examined for their associations with cardiometabolic traits and change with aerobic exercise training in the Health, Risk Factors, Exercise Training and Genetics Family Study, a 20-week exercise intervention study. A total of 765 proteins changed (false discovery rate < 0.05) at peak exercise compared to baseline, and 128 proteins changed (false discovery rate < 0.05) at 1-h postexercise. The 56 proteins that changed at both timepoints included midkine, brain-derived neurotrophic factor, metalloproteinase inhibitor 4, and coiled-coil domain-containing protein 126 and were enriched for secreted proteins. The majority had concordant direction of change at both timepoints. Across all proteins assayed, gene set enrichment analysis showed increased abundance of coagulation-related proteins at 1-h postexercise. Forty-five proteins were associated with at least one measure of adiposity, lipids, glucose homeostasis, or cardiorespiratory fitness in Health, Risk Factors, Exercise Training and Genetics Family Study, and 20 proteins changed with aerobic exercise training. We identified hundreds of novel proteins that change during acute exercise, most of which resolved by 1 h into recovery. Proteins with sustained changes during exercise and recovery may be of particular interest as circulating biomarkers and pathways for further investigation in cardiometabolic diseases. These data will contribute to a biochemical roadmap of acute exercise that will be publicly available for the entire scientific community.
Collapse
Affiliation(s)
- Michael Y Mi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
| | - Jacob L Barber
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Prashant Rao
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Laurie A Farrell
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Mark A Sarzynski
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Jeremy M Robbins
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Robbins JM, Gerszten RE. Exercise, exerkines, and cardiometabolic health: from individual players to a team sport. J Clin Invest 2023; 133:e168121. [PMID: 37259917 PMCID: PMC10231996 DOI: 10.1172/jci168121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
Exercise confers numerous salutary effects that extend beyond individual organ systems to provide systemic health benefits. Here, we discuss the role of exercise in cardiovascular health. We summarize major findings from human exercise studies in cardiometabolic disease. We next describe our current understanding of cardiac-specific substrate metabolism that occurs with acute exercise and in response to exercise training. We subsequently focus on exercise-stimulated circulating biochemicals ("exerkines") as a paradigm for understanding the global health circuitry of exercise, and discuss important concepts in this emerging field before highlighting exerkines relevant in cardiovascular health and disease. Finally, this Review identifies gaps that remain in the field of exercise science and opportunities that exist to translate biologic insights into human health improvement.
Collapse
Affiliation(s)
- Jeremy M. Robbins
- Division of Cardiovascular Medicine and
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine and
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|