1
|
Min L, Li X, Liang L, Ruan Z, Yu S. Targeting HSP90 in Gynecologic Cancer: Molecular Mechanisms and Therapeutic Approaches. Cell Biochem Biophys 2024:10.1007/s12013-024-01502-7. [PMID: 39249180 DOI: 10.1007/s12013-024-01502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 09/10/2024]
Abstract
One of the leading causes of mortality for women is gynecologic cancer (GC). Numerous molecules (tumor suppressor genes or oncogenes) are involved in this form of cancer's invasion, metastasis, tumorigenic process, and therapy resistance. Currently, there is a shortage of efficient methods to eliminate these diseases, hence it is crucial to carry out more extensive studies on GCs. Novel pharmaceuticals are required to surmount this predicament. Highly conserved molecular chaperon, heat shock protein (HSP) 90, is essential for the maturation of recently produced polypeptides and offers a refuge for misfolding or denatured proteins to be turned around. In cancer, the client proteins of HSP90 play a role in the entire process of oncogenesis, which is linked to all the characteristic features of cancer. In this study, we explore the various functions of HSPs in GC progression. We also discuss their potential as promising targets for pharmacological therapy.
Collapse
Affiliation(s)
- Lu Min
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China
| | - Xuewei Li
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China
| | - Lily Liang
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China
| | - Zheng Ruan
- Department of Traditional Chinese Medicine, 964th Hospital, Changchun, 130000, China
| | - Shaohui Yu
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China.
| |
Collapse
|
2
|
Zhang W, Oh JH, Zhang W, Rathi S, Larson JD, Wechsler-Reya RJ, Sirianni RW, Elmquist WF. Central Nervous System Distribution of Panobinostat in Preclinical Models to Guide Dosing for Pediatric Brain Tumors. J Pharmacol Exp Ther 2023; 387:315-327. [PMID: 37827699 PMCID: PMC10658912 DOI: 10.1124/jpet.123.001826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Achieving adequate exposure of the free therapeutic agent at the target is a critical determinant of efficacious chemotherapy. With this in mind, a major challenge in developing therapies for central nervous system (CNS) tumors is to overcome barriers to delivery, including the blood-brain barrier (BBB). Panobinostat is a nonselective pan-histone deacetylase inhibitor that is being tested in preclinical and clinical studies, including for the treatment of pediatric medulloblastoma, which has a propensity for leptomeningeal spread and diffuse midline glioma, which can infiltrate into supratentorial brain regions. In this study, we examined the rate, extent, and spatial heterogeneity of panobinostat CNS distribution in mice. Transporter-deficient mouse studies show that panobinostat is a dual substrate of P-glycoprotein (P-gp) and breast cancer resistant protein (Bcrp), which are major efflux transporters expressed at the BBB. The CNS delivery of panobinostat was moderately limited by P-gp and Bcrp, and the unbound tissue-to-plasma partition coefficient of panobinostat was 0.32 and 0.21 in the brain and spinal cord in wild-type mice. In addition, following intravenous administration, panobinostat demonstrated heterogeneous distribution among brain regions, indicating that its efficacy would be influenced by tumor location or the presence and extent of leptomeningeal spread. Simulation using a compartmental BBB model suggests inadequate exposure of free panobinostat in the brain following a recommended oral dosing regimen in patients. Therefore, alternative approaches to CNS delivery may be necessary to have adequate exposure of free panobinostat for the treatment of a broad range of pediatric brain tumors. SIGNIFICANCE STATEMENT: This study shows that the central nervous system (CNS) penetration of panobinostat is limited by P-gp and Bcrp, and its efficacy may be limited by inadequate distribution to the tumor. Panobinostat has heterogeneous distribution into various brain regions, indicating that its efficacy might depend on the anatomical location of the tumors. These distributional parameters in the mouse CNS can inform both preclinical and clinical trial study design and may guide treatment for these devastating brain tumors in children.
Collapse
Affiliation(s)
- Wenqiu Zhang
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Ju-Hee Oh
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Wenjuan Zhang
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Sneha Rathi
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Jon D Larson
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Robert J Wechsler-Reya
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Rachael W Sirianni
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - William F Elmquist
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| |
Collapse
|
3
|
Ferro A, Pantazaka E, Athanassopoulos CM, Cuendet M. Histone deacetylase-based dual targeted inhibition in multiple myeloma. Med Res Rev 2023; 43:2177-2236. [PMID: 37191917 DOI: 10.1002/med.21972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/08/2023] [Accepted: 04/30/2023] [Indexed: 05/17/2023]
Abstract
Despite enormous advances in terms of therapeutic strategies, multiple myeloma (MM) still remains an incurable disease with MM patients often becoming resistant to standard treatments. To date, multiple combined and targeted therapies have proven to be more beneficial compared to monotherapy approaches, leading to a decrease in drug resistance and an improvement in median overall survival in patients. Moreover, recent breakthroughs highlighted the relevant role of histone deacetylases (HDACs) in cancer treatment, including MM. Thus, the simultaneous use of HDAC inhibitors with other conventional regimens, such as proteasome inhibitors, is of interest in the field. In this review, we provide a general overview of HDAC-based combination treatments in MM, through a critical presentation of publications from the past few decades related to in vitro and in vivo studies, as well as clinical trials. Furthermore, we discuss the recent introduction of dual-inhibitor entities that could have the same beneficial effects as drug combinations with the advantage of having two or more pharmacophores in one molecular structure. These findings could represent a starting-point for both reducing therapeutic doses and lowering the risk of developing drug resistance.
Collapse
Affiliation(s)
- Angelica Ferro
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Evangelia Pantazaka
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, Patras, Greece
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology, and Development, Department of Biology, University of Patras, Patras, Greece
| | | | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Pal D, Raj K, Nandi SS, Sinha S, Mishra A, Mondal A, Lagoa R, Burcher JT, Bishayee A. Potential of Synthetic and Natural Compounds as Novel Histone Deacetylase Inhibitors for the Treatment of Hematological Malignancies. Cancers (Basel) 2023; 15:2808. [PMID: 37345145 PMCID: PMC10216849 DOI: 10.3390/cancers15102808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are enzymes that remove or add acetyl groups to lysine residues of histones, respectively. Histone deacetylation causes DNA to more snugly encircle histones and decreases gene expression, whereas acetylation has the opposite effect. Through these small alterations in chemical structure, HATs and HDACs regulate DNA expression. Recent research indicates histone deacetylase inhibitors (HDACis) may be used to treat malignancies, including leukemia, B-cell lymphoma, virus-associated tumors, and multiple myeloma. These data suggest that HDACis may boost the production of immune-related molecules, resulting in the growth of CD8-positive T-cells and the recognition of nonreactive tumor cells by the immune system, thereby diminishing tumor immunity. The argument for employing epigenetic drugs in the treatment of acute myeloid leukemia (AML) patients is supported by evidence that both epigenetic changes and mutations in the epigenetic machinery contribute to AML etiology. Although hypomethylating drugs have been licensed for use in AML, additional epigenetic inhibitors, such as HDACis, are now being tested in humans. Preclinical studies evaluating the efficacy of HDACis against AML have shown the ability of specific agents, such as anobinostat, vorinostat, and tricostatin A, to induce growth arrest, apoptosis, autophagy and cell death. However, these inhibitors do not seem to be successful as monotherapies, but instead achieve results when used in conjunction with other medications. In this article, we discuss the mounting evidence that HDACis promote extensive histone acetylation, as well as substantial increases in reactive oxygen species and DNA damage in hematological malignant cells. We also evaluate the potential of various natural product-based HDACis as therapeutic agents to combat hematological malignancies.
Collapse
Affiliation(s)
- Dilipkumar Pal
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495 009, India
| | - Khushboo Raj
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495 009, India
| | - Shyam Sundar Nandi
- Department of Biotechnology, Indian Council for Medical Research-National Institute of Virology, Mumbai 400 012, India
| | - Surajit Sinha
- Department of Cancer Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Ricardo Lagoa
- Associate Laboratory in Chemical Engineering, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Jack T. Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
5
|
Kim SK, Choe JY, Kim JW, Park KY. Histone Deacetylase 6 Inhibitor CKD-WID Suppressed Monosodium Urate-Induced Osteoclast Formation by Blocking Calcineurin-NFAT Pathway in RAW 264.7 Cells. Pharmaceuticals (Basel) 2023; 16:ph16030446. [PMID: 36986544 PMCID: PMC10051978 DOI: 10.3390/ph16030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/18/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Histone deacetylase (HDAC) has been found to play a crucial role in the regulation of osteoclast differentiation and formation. This study was designed to identify the effect of the HDAC6 inhibitor CKD-WID on the receptor for the activation of nuclear factor-κB ligand (RANKL)-mediated osteoclast formation in the presence of monosodium urate (MSU) in RAW 264.7 murine macrophage cells. The expression of osteoclast-specific target genes, calcineurin, and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) was evaluated in RAW 264.7 murine macrophages treated with MSU, RANKL, or CKD-WID by real-time quantitative polymerase chain reaction and Western blot assay. The effect of CKD-WID on osteoclast formation was measured by tartrate-resistant acid phosphatase (TRAP) staining, F-actin ring formation staining, and assays for bone resorption activity. RANKL in the presence of MSU significantly induced HDAC6 gene and protein expression in RAW 264.7 cells. CKD-WID markedly suppressed the expression of osteoclast-related markers such as c-Fos, TRAP, cathepsin K, and carbonic anhydrase II induced by co-stimulation with RANKL and MSU in RAW 264.7 cells. Transcription factor NFATc1 mRNA expression and nuclear NFATc1 protein expression induced by co-stimulation with RANKL and MSU were significantly inhibited by CKD-WID treatment. CKD-WID also decreased the number of TRAP-positive multinuclear cells and F-actin ring-positive cells and attenuated bone resorption activity. Co-stimulation with RANKL and MSU increased calcineurin gene and protein expression, which was significantly blocked by CKD-WID treatment. The HDAC6 inhibitor CKD-WID suppressed MSU-induced osteoclast formation through blocking the calcineurin-NFAT pathway in RAW 264.7 cells. This suggests that HDAC6 is considered a therapeutic target in uric acid-mediated osteoclastogenesis.
Collapse
Affiliation(s)
- Seong-Kyu Kim
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
- Arthritis and Autoimmunity Research Center, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea
- Correspondence: ; Tel.: +82-53-650-3465; Fax: +82-53-629-8248
| | - Jung-Yoon Choe
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
- Arthritis and Autoimmunity Research Center, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea
| | - Ji-Won Kim
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
- Arthritis and Autoimmunity Research Center, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea
| | - Ki-Yeun Park
- Arthritis and Autoimmunity Research Center, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea
| |
Collapse
|
6
|
Single-Cell Sequencing Identifies Master Regulators Affected by Panobinostat in Neuroblastoma Cells. Genes (Basel) 2022; 13:genes13122240. [PMID: 36553506 PMCID: PMC9778475 DOI: 10.3390/genes13122240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The molecular mechanisms and gene regulatory networks sustaining cell proliferation in neuroblastoma (NBL) cells are still not fully understood. In this tumor context, it has been proposed that anti-proliferative drugs, such as the pan-HDAC inhibitor panobinostat, could be tested to mitigate tumor progression. Here, we set out to investigate the effects of panobinostat treatment at the unprecedented resolution offered by single-cell sequencing. We identified a global senescence signature paired with reduction in proliferation in treated Kelly cells and more isolated transcriptional responses compatible with early neuronal differentiation. Using master regulator analysis, we identified BAZ1A, HCFC1, MAZ, and ZNF146 as the transcriptional regulators most significantly repressed by panobinostat. Experimental silencing of these transcription factors (TFs) confirmed their role in sustaining NBL cell proliferation in vitro.
Collapse
|
7
|
Zhang J, Li H, Liu Y, Zhao K, Wei S, Sugarman ET, Liu L, Zhang G. Targeting HSP90 as a Novel Therapy for Cancer: Mechanistic Insights and Translational Relevance. Cells 2022; 11:cells11182778. [PMID: 36139353 PMCID: PMC9497295 DOI: 10.3390/cells11182778] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Heat shock protein (HSP90), a highly conserved molecular chaperon, is indispensable for the maturation of newly synthesized poly-peptides and provides a shelter for the turnover of misfolded or denatured proteins. In cancers, the client proteins of HSP90 extend to the entire process of oncogenesis that are associated with all hallmarks of cancer. Accumulating evidence has demonstrated that the client proteins are guided for proteasomal degradation when their complexes with HSP90 are disrupted. Accordingly, HSP90 and its co-chaperones have emerged as viable targets for the development of cancer therapeutics. Consequently, a number of natural products and their analogs targeting HSP90 have been identified. They have shown a strong inhibitory effect on various cancer types through different mechanisms. The inhibitors act by directly binding to either HSP90 or its co-chaperones/client proteins. Several HSP90 inhibitors—such as geldanamycin and its derivatives, gamitrinib and shepherdin—are under clinical evaluation with promising results. Here, we review the subcellular localization of HSP90, its corresponding mechanism of action in the malignant phenotypes, and the recent progress on the development of HSP90 inhibitors. Hopefully, this comprehensive review will shed light on the translational potential of HSP90 inhibitors as novel cancer therapeutics.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Houde Li
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Yu Liu
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong 999077, China
| | - Kejia Zhao
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Shiyou Wei
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Eric T. Sugarman
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Lunxu Liu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong 999077, China
- Correspondence:
| |
Collapse
|
8
|
Nguyen HP, Tran QD, Nguyen CQ, Hoa TP, Duy Binh T, Nhu Thao H, Hue BTB, Tuan NT, Le Dang Q, Quoc Chau Thanh N, Van Ky N, Pham MQ, Yang SG. Anti-multiple myeloma potential of resynthesized belinostat derivatives: an experimental study on cytotoxic activity, drug combination, and docking studies. RSC Adv 2022; 12:22108-22118. [PMID: 36043105 PMCID: PMC9364358 DOI: 10.1039/d2ra01969h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Multiple myeloma is a deadly cancer that is a complex and multifactorial disease. In the present study, 12 belinostat derivatives (four resynthesized and eight new), HDAC inhibitors, were resynthesized via either Knoevenagel condensation, or Wittig reaction, or Heck reaction. Then an evaluation of the antiproliferative activities against myeloma cells MOPC-315 was carried out. Amongst them, compound 7f was the most bioactive compound with an IC50 of 0.090 ± 0.016 μM, being 3.5-fold more potent than the reference belinostat (IC50 = 0.318 ± 0.049 μM). Furthermore, we also confirmed the inhibitory activity of 7f in a cellular model. Additionally, we found that the inhibitory activity of 7f against histone deacetylase 6 catalytic activity (HDAC6) is more potent than that of belinostat. Finally, we observed the strong synergistic interaction between the derivative 7f and the proteasome bortezomib inhibitor (CI = 0.26), while belinostat and bortezomib showed synergism with a CI value of 0.36. Taken together, the above results suggest that 7f is a promising HDAC inhibitor deserving further investigation.
Collapse
Affiliation(s)
- Hong Phuong Nguyen
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine Incheon 22212 South Korea +82-32-890-1199 +82-32-890-2832
| | - Quang De Tran
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Cuong Quoc Nguyen
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Tran Phuong Hoa
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine Incheon 22212 South Korea +82-32-890-1199 +82-32-890-2832
| | - Tran Duy Binh
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine Incheon 22212 South Korea +82-32-890-1199 +82-32-890-2832
| | - Huynh Nhu Thao
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Bui Thi Buu Hue
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Nguyen Trong Tuan
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Quang Le Dang
- Institute for Tropical Technology, Vietnam Academy of Science and Technology Hanoi 10000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi 100000 Vietnam
| | - Nguyen Quoc Chau Thanh
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Nguyen Van Ky
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Minh Quan Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi 100000 Vietnam
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology Hanoi 100000 Vietnam
| | - Su-Geun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine Incheon 22212 South Korea +82-32-890-1199 +82-32-890-2832
| |
Collapse
|
9
|
Pharmacodynamic, pharmacokinetic, and phase 1a study of bisthianostat, a novel histone deacetylase inhibitor, for the treatment of relapsed or refractory multiple myeloma. Acta Pharmacol Sin 2022; 43:1091-1099. [PMID: 34341512 PMCID: PMC8976035 DOI: 10.1038/s41401-021-00728-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/27/2021] [Indexed: 11/12/2022] Open
Abstract
HDAC inhibitors (HDACis) have been intensively studied for their roles and potential as drug targets in T-cell lymphomas and other hematologic malignancies. Bisthianostat is a novel bisthiazole-based pan-HDACi evolved from natural HDACi largazole. Here, we report the preclinical study of bisthianostat alone and in combination with bortezomib in the treatment of multiple myeloma (MM), as well as preliminary first-in-human findings from an ongoing phase 1a study. Bisthianostat dose dependently induced acetylation of tubulin and H3 and increased PARP cleavage and apoptosis in RPMI-8226 cells. In RPMI-8226 and MM.1S cell xenograft mouse models, oral administration of bisthianostat (50, 75, 100 mg·kg-1·d-1, bid) for 18 days dose dependently inhibited tumor growth. Furthermore, bisthianostat in combination with bortezomib displayed synergistic antitumor effect against RPMI-8226 and MM.1S cell in vitro and in vivo. Preclinical pharmacokinetic study showed bisthianostat was quickly absorbed with moderate oral bioavailability (F% = 16.9%–35.5%). Bisthianostat tended to distribute in blood with Vss value of 0.31 L/kg. This distribution parameter might be beneficial to treat hematologic neoplasms such as MM with few side effects. In an ongoing phase 1a study, bisthianostat treatment was well tolerated and no grade 3/4 nonhematological adverse events (AEs) had occurred together with good pharmacokinetics profiles in eight patients with relapsed or refractory MM (R/R MM). The overall single-agent efficacy was modest, stable disease (SD) was identified in four (50%) patients at the end of first dosing cycle (day 28). These preliminary in-patient results suggest that bisthianostat is a promising HDACi drug with a comparable safety window in R/R MM, supporting for its further phase 1b clinical trial in combination with traditional MM therapies.
Collapse
|
10
|
Dziadowicz SA, Wang L, Akhter H, Aesoph D, Sharma T, Adjeroh DA, Hazlehurst LA, Hu G. Bone Marrow Stroma-Induced Transcriptome and Regulome Signatures of Multiple Myeloma. Cancers (Basel) 2022; 14:927. [PMID: 35205675 PMCID: PMC8870223 DOI: 10.3390/cancers14040927] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple myeloma (MM) is a hematological cancer with inevitable drug resistance. MM cells interacting with bone marrow stromal cells (BMSCs) undergo substantial changes in the transcriptome and develop de novo multi-drug resistance. As a critical component in transcriptional regulation, how the chromatin landscape is transformed in MM cells exposed to BMSCs and contributes to the transcriptional response to BMSCs remains elusive. We profiled the transcriptome and regulome for MM cells using a transwell coculture system with BMSCs. The transcriptome and regulome of MM cells from the upper transwell resembled MM cells that coexisted with BMSCs from the lower chamber but were distinctive to monoculture. BMSC-induced genes were enriched in the JAK2/STAT3 signaling pathway, unfolded protein stress, signatures of early plasma cells, and response to proteasome inhibitors. Genes with increasing accessibility at multiple regulatory sites were preferentially induced by BMSCs; these genes were enriched in functions linked to responses to drugs and unfavorable clinic outcomes. We proposed JUNB and ATF4::CEBPβ as candidate transcription factors (TFs) that modulate the BMSC-induced transformation of the regulome linked to the transcriptional response. Together, we characterized the BMSC-induced transcriptome and regulome signatures of MM cells to facilitate research on epigenetic mechanisms of BMSC-induced multi-drug resistance in MM.
Collapse
Affiliation(s)
- Sebastian A. Dziadowicz
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (S.A.D.); (L.W.); (H.A.); (D.A.); (T.S.)
| | - Lei Wang
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (S.A.D.); (L.W.); (H.A.); (D.A.); (T.S.)
| | - Halima Akhter
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (S.A.D.); (L.W.); (H.A.); (D.A.); (T.S.)
- Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| | - Drake Aesoph
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (S.A.D.); (L.W.); (H.A.); (D.A.); (T.S.)
- Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| | - Tulika Sharma
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (S.A.D.); (L.W.); (H.A.); (D.A.); (T.S.)
| | - Donald A. Adjeroh
- Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| | - Lori A. Hazlehurst
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA;
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morganton, WV 26506, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (S.A.D.); (L.W.); (H.A.); (D.A.); (T.S.)
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA;
| |
Collapse
|
11
|
Matsunaga T, Iske J, Schroeter A, Azuma H, Zhou H, Tullius SG. The potential of Senolytics in transplantation. Mech Ageing Dev 2021; 200:111582. [PMID: 34606875 PMCID: PMC10655132 DOI: 10.1016/j.mad.2021.111582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022]
Abstract
Older organs provide a substantial unrealized potential with the capacity to close the gap between demand and supply in organ transplantation. The potential of senolytics in improving age-related conditions has been shown in various experimental studies and early clinical trials. Those encouraging data may also be of relevance for transplantation. As age-differences between donor and recipients are not uncommon, aging may be accelerated in recipients when transplanting older organs; young organs may, at least in theory, have the potential to 'rejuvenate' old recipients. Here, we review the relevance of senescent cells and the effects of senolytics on organ quality, alloimmune responses and outcomes in solid organ transplantation. This article is part of the Special Issue - Senolytics - Edited by Joao Passos and Diana Jurk.
Collapse
Affiliation(s)
- Tomohisa Matsunaga
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Jasper Iske
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Institute of Transplant Immunology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Andreas Schroeter
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Haruhito Azuma
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Hao Zhou
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan G Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Berdeja JG, Laubach JP, Richter J, Stricker S, Spencer A, Richardson PG, Chari A. Panobinostat From Bench to Bedside: Rethinking the Treatment Paradigm for Multiple Myeloma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:752-765. [PMID: 34340951 DOI: 10.1016/j.clml.2021.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022]
Abstract
Relapsed and refractory multiple myeloma (RRMM) presents a therapeutic challenge due to the development of drug resistance. Panobinostat is an oral histone deacetylase inhibitor (HDACi) that affects multiple cellular pathways and has demonstrated the ability to resensitize refractory-multiple myeloma cells in preclinical studies, as well as in patients with RRMM in clinical trials. Synergy of panobinostat with a number of different classes of antimyeloma drugs (proteasome inhibitors, immunomodulatory drugs and monoclonal antibodies) has also been shown. Panobinostat is a promising HDACi for the treatment of multiple myeloma. Here, we present a comprehensive review of preclinical and clinical studies of panobinostat.
Collapse
Affiliation(s)
- Jesus G Berdeja
- Sarah Cannon Research Institute, Nashville, TN; Tennessee Oncology PLLC, Nashville, TN
| | - Jacob P Laubach
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Joshua Richter
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY
| | | | - Andrew Spencer
- Alfred Hospital - Monash University, Melbourne, Australia
| | | | - Ajai Chari
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY.
| |
Collapse
|
13
|
Tierney C, Bazou D, Majumder MM, Anttila P, Silvennoinen R, Heckman CA, Dowling P, O'Gorman P. Next generation proteomics with drug sensitivity screening identifies sub-clones informing therapeutic and drug development strategies for multiple myeloma patients. Sci Rep 2021; 11:12866. [PMID: 34145309 PMCID: PMC8213739 DOI: 10.1038/s41598-021-90149-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
With the introduction of novel therapeutic agents, survival in Multiple Myeloma (MM) has increased in recent years. However, drug-resistant clones inevitably arise and lead to disease progression and death. The current International Myeloma Working Group response criteria are broad and make it difficult to clearly designate resistant and responsive patients thereby hampering proteo-genomic analysis for informative biomarkers for sensitivity. In this proof-of-concept study we addressed these challenges by combining an ex-vivo drug sensitivity testing platform with state-of-the-art proteomics analysis. 35 CD138-purified MM samples were taken from patients with newly diagnosed or relapsed MM and exposed to therapeutic agents from five therapeutic drug classes including Bortezomib, Quizinostat, Lenalidomide, Navitoclax and PF-04691502. Comparative proteomic analysis using liquid chromatography-mass spectrometry objectively determined the most and least sensitive patient groups. Using this approach several proteins of biological significance were identified in each drug class. In three of the five classes focal adhesion-related proteins predicted low sensitivity, suggesting that targeting this pathway could modulate cell adhesion mediated drug resistance. Using Receiver Operating Characteristic curve analysis, strong predictive power for the specificity and sensitivity of these potential biomarkers was identified. This approach has the potential to yield predictive theranostic protein panels that can inform therapeutic decision making.
Collapse
Affiliation(s)
- Ciara Tierney
- Department of Biology, National University of Ireland, Maynooth, Ireland
| | - Despina Bazou
- Department of Hematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Muntasir M Majumder
- Institute for Molecular Medicine Finland FIMM, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Pekka Anttila
- Department of Hematology, Helsinki University Hospital and Comprehensive Cancer Center, Helsinki, Finland
| | - Raija Silvennoinen
- Department of Hematology, Helsinki University Hospital and Comprehensive Cancer Center, Helsinki, Finland
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland FIMM, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Paul Dowling
- Department of Biology, National University of Ireland, Maynooth, Ireland
| | - Peter O'Gorman
- Department of Hematology, Mater Misericordiae University Hospital, Dublin, Ireland.
| |
Collapse
|
14
|
Zhang L, Zhang L, You H, Sun S, Liao Z, Zhao G, Chen J. Inhibition of osteoclastogenesis by histone deacetylase inhibitor Quisinostat protects mice against titanium particle-induced bone loss. Eur J Pharmacol 2021; 904:174176. [PMID: 34004213 DOI: 10.1016/j.ejphar.2021.174176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Periprosthetic osteolysis (PPO) and subsequent aseptic loosening are major long-term complications after total joint arthroplasty and have become the first causes for further revision surgery. Since PPO is primarily caused by excessive bone resorption stimulated by released wear particles, osteoclast-targeted therapy is considered to be of great potential for PPO prevention and treatment. Accumulating evidences indicated that inhibition of histone deacetylases (HDACs) may represent a novel approach to suppress osteoclast differentiation. However, different inhibitors of HDACs were shown to exhibit distinct safety profiles and efficacy in inhibiting osteoclastogenesis. Quisinostat (Qst) is a hydroxamate-based histone deacetylase inhibitor, and exerts potent anti-cancer activity. However, its effect on osteoclastogenesis and its therapeutic potential in preventing PPO are still unclear. In this study, we found that Qst suppressed RANKL-induced production of TRAP-positive mature osteoclasts, expression of osteoclast-specific genes, formation of F-actin rings, and bone resorption activity at a nanomolar concentration as low as 2 nM in vitro. Furthermore, we found that as low as 30 μg/kg of Qst was sufficient to exert preventive effect on titanium particle-induced osteolysis in the murine calvarial osteolysis model. Mechanistically, we found that Qst suppressed osteoclastogenesis by interfering with NF-κB and c-Fos/NFATc1 pathways. Thus, our study revealed that Qst may serve as a potential therapeutic agent for prevention and treatment of PPO and other osteoclast-mediated diseases.
Collapse
Affiliation(s)
- Liwei Zhang
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Lei Zhang
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Hongji You
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Shengxuan Sun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Zirui Liao
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Gang Zhao
- Department of Hand Surgery, Wuxi No.9 People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214062, China.
| | - Jianquan Chen
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
15
|
Hirano M, Imai Y, Kaito Y, Murayama T, Sato K, Ishida T, Yamamoto J, Ito T, Futami M, Ri M, Yasui H, Denda T, Tanaka Y, Ota Y, Nojima M, Kamikubo Y, Gotoh N, Iida S, Handa H, Tojo A. Small-molecule HDAC and Akt inhibitors suppress tumor growth and enhance immunotherapy in multiple myeloma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:110. [PMID: 33757580 PMCID: PMC7989023 DOI: 10.1186/s13046-021-01909-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/14/2021] [Indexed: 12/29/2022]
Abstract
Background Multiple myeloma (MM) is an incurable disease. The acquisition of resistance to drugs, including immunomodulatory drugs (IMiDs), has a negative effect on its prognosis. Cereblon (CRBN) is a key mediator of the bioactivities of IMiDs such as lenalidomide. Moreover, genetic alteration of CRBN is frequently detected in IMiD-resistant patients and is considered to contribute to IMiD resistance. Thus, overcoming resistance to drugs, including IMiDs, is expected to improve clinical outcomes. Here, we examined potential mechanisms of a histone deacetylase (HDAC) inhibitor and Akt inhibitor in relapsed/refractory MM patients. Methods We established lenalidomide-resistant cells by knocking down CRBN with RNAi-mediated downregulation or knocking out CRBN using CRISPR-Cas9 in MM cells. Additionally, we derived multi-drug (bortezomib, doxorubicin, or dexamethasone)-resistant cell lines and primary cells from relapsed/refractory MM patients. The effects of HDAC and Akt inhibitors on these drug-resistant MM cells were then observed with a particular focus on whether HDAC inhibitors enhance immunotherapy efficacy. We also investigated the effect of lenalidomide on CRBN-deficient cells. Results The HDAC inhibitor suppressed the growth of drug-resistant MM cell lines and enhanced the antibody-dependent cellular cytotoxicity (ADCC) of therapeutic antibodies by upregulating natural killer group 2D (NKG2D) ligands in MM cells. CRBN-deficient cells showed lenalidomide-induced upregulation of phosphorylated glycogen synthase kinase-3 (p-GSK-3) and c-Myc phosphorylation. Moreover, HDAC and Akt inhibitors downregulated c-Myc by blocking GSK-3 phosphorylation. HDAC and Akt inhibitors also exhibited synergistic cytotoxic and c-Myc-suppressive effects. The dual HDAC and PI3K inhibitor, CUDC-907, exhibited cytotoxic and immunotherapy-enhancing effects in MM cells, including multi-drug-resistant lines and primary cells from lenalidomide-resistant patients. Conclusions The combination of an HDAC and an Akt inhibitor represents a promising approach for the treatment of relapsed/refractory MM. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01909-7.
Collapse
Affiliation(s)
- Mitsuhito Hirano
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Imai
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Yuta Kaito
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takahiko Murayama
- Division of Cancer Cell Biology, Cancer Research Institute of Kanazawa University, Kanazawa, Japan
| | - Kota Sato
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Tadao Ishida
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Junichi Yamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Department of Chemical Biology, Tokyo Medical University, Tokyo, Japan
| | - Takumi Ito
- Department of Chemical Biology, Tokyo Medical University, Tokyo, Japan
| | - Muneyoshi Futami
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaki Ri
- Department of Hematology & Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroshi Yasui
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Project Division of Fundamental Study on Cutting Edge of Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tamami Denda
- Department of Pathology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yukihisa Tanaka
- Department of Pathology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasunori Ota
- Department of Pathology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masanori Nojima
- Center for Translational Research/Division of Advanced Medicine Promotion The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasuhiko Kamikubo
- Laboratory of Oncology and Strategic Innovation, Laboratory Science, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute of Kanazawa University, Kanazawa, Japan
| | - Shinsuke Iida
- Department of Hematology & Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroshi Handa
- Department of Chemical Biology, Tokyo Medical University, Tokyo, Japan
| | - Arinobu Tojo
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Latest Development in Multiple Myeloma. Cancers (Basel) 2020; 12:cancers12092544. [PMID: 32906677 PMCID: PMC7563652 DOI: 10.3390/cancers12092544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
|
17
|
McGuire JJ, Nerlakanti N, Lo CH, Tauro M, Utset-Ward TJ, Reed DR, Lynch CC. Histone deacetylase inhibition prevents the growth of primary and metastatic osteosarcoma. Int J Cancer 2020; 147:2811-2823. [PMID: 32599665 DOI: 10.1002/ijc.33046] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/18/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
Overall survival rates for patients with advanced osteosarcoma have remained static for over three decades. An in vitro analysis of osteosarcoma cell lines for sensitivity to an array of approved cancer therapies revealed that panobinostat, a broad spectrum histone deacetalyase (HDAC) inhibitor, is highly effective at triggering osteosarcoma cell death. Using in vivo models of orthotopic and metastatic osteosarcoma, here we report that panobinostat impairs the growth of primary osteosarcoma in bone and spontaneous metastasis to the lung, the most common site of metastasis for this disease. Further, pretreatment of mice with panobinostat prior to tail vein inoculation of osteosarcoma prevents the seeding and growth of lung metastases. Additionally, panobinostat impaired the growth of established lung metastases and improved overall survival, and these effects were also manifest in the lung metastatic SAOS2-LM7 model. Mechanistically, the efficacy of panobinostat was linked to high expression of HDAC1 and HDAC2 in osteosarcoma, and silencing of HDAC1 and 2 greatly reduced osteosarcoma growth in vitro. In accordance with these findings, treatment with the HDAC1/2 selective inhibitor romidepsin compromised the growth of osteosarcoma in vitro and in vivo. Analysis of patient-derived xenograft osteosarcoma cell lines further demonstrated the sensitivity of the disease to panobinostat or romidepsin. Collectively, these studies provide rationale for clinical trials in osteosarcoma patients using the approved therapies panobinostat or romidepsin.
Collapse
Affiliation(s)
- Jeremy J McGuire
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Niveditha Nerlakanti
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Chen Hao Lo
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Marilena Tauro
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Thomas J Utset-Ward
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Orthopaedic Surgery and Rehabilitation Medicine, University of Chicago, Chicago, Illinois, USA
| | - Damon R Reed
- Sarcoma Department & Department of Interdisciplinary Cancer Management (DICaM), H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Conor C Lynch
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
18
|
Yang J, Li D, Zhou J. Histone Deacetylase 6 as a Therapeutic Target in B cell-associated Hematological Malignancies. Front Pharmacol 2020; 11:971. [PMID: 32676030 PMCID: PMC7333221 DOI: 10.3389/fphar.2020.00971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
B lymphocytes play a critical role in humoral immunity. Abnormal B cell development and function cause a variety of hematological malignancies such as myeloma, B cell lymphoma, and leukemia. Histone deacetylase 6 (HDAC6) inhibitors alone or in combination with other drugs have shown efficacy in several hematological malignancies, including those resistant to targeted therapies. Mechanistically, HDAC6 inhibitors promote malignant tumor cell apoptosis by inhibiting protein degradation, reinvigorating anti-tumor immunity, and inhibiting cell survival signaling pathways. Due to their specificity, HDAC6 inhibitors represent a very promising and feasible new development pipeline for high-efficacy drugs with limited side effects. This article reviews recent progress in the mechanisms of action of HDAC6 inhibitors for the treatment of B cell-associated hematological malignancies, such as multiple myeloma and B cell non-Hodgkin lymphoma, which are often resistant to targeted therapies.
Collapse
Affiliation(s)
- Jia Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
19
|
Zagato E, Pozzi C, Bertocchi A, Schioppa T, Saccheri F, Guglietta S, Fosso B, Melocchi L, Nizzoli G, Troisi J, Marzano M, Oresta B, Spadoni I, Atarashi K, Carloni S, Arioli S, Fornasa G, Asnicar F, Segata N, Guglielmetti S, Honda K, Pesole G, Vermi W, Penna G, Rescigno M. Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth. Nat Microbiol 2020; 5:511-524. [PMID: 31988379 PMCID: PMC7048616 DOI: 10.1038/s41564-019-0649-5] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
The microbiota has been shown to promote intestinal tumourigenesis, but a possible anti-tumourigenic effect has also been postulated. Here, we demonstrate that changes in the microbiota and mucus composition are concomitant with tumourigenesis. We identified two anti-tumourigenic strains of the microbiota-Faecalibaculum rodentium and its human homologue, Holdemanella biformis-that are strongly under-represented during tumourigenesis. Reconstitution of ApcMin/+ or azoxymethane- and dextran sulfate sodium-treated mice with an isolate of F. rodentium (F. PB1) or its metabolic products reduced tumour growth. Both F. PB1 and H. biformis produced short-chain fatty acids that contributed to control protein acetylation and tumour cell proliferation by inhibiting calcineurin and NFATc3 activation in mouse and human settings. We have thus identified endogenous anti-tumourigenic bacterial strains with strong diagnostic, therapeutic and translational potential.
Collapse
Affiliation(s)
- Elena Zagato
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Chiara Pozzi
- Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | | | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fabiana Saccheri
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Silvia Guglietta
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Bruno Fosso
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Laura Melocchi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Pathology Department, Fondazione Poliambulanza Hospital, Brescia, Italy
| | - Giulia Nizzoli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Jacopo Troisi
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy
- Theoreo Srl, Montecorvino Pugliano, Italy
- European Biomedical Research Institute of Salerno, Salerno, Italy
| | - Marinella Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Bianca Oresta
- Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | - Ilaria Spadoni
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Koji Atarashi
- RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Japan
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Sara Carloni
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Stefania Arioli
- Division of Food Microbiology and Bioprocesses and Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giulia Fornasa
- Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | | | - Nicola Segata
- CIBIO Department, University of Trento, Trento, Italy
| | - Simone Guglielmetti
- Division of Food Microbiology and Bioprocesses and Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Kenya Honda
- RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Japan
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - William Vermi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Department of Pathology and Immunology, Washington University, Saint Louis, MO, USA
| | - Giuseppe Penna
- Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | - Maria Rescigno
- Humanitas Clinical and Research Center, IRCCS, Milan, Italy.
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.
| |
Collapse
|
20
|
Zhu M, Huang Y, Tang J, Shao S, Zhang L, Zhou Y, He S, Wang Y. Role of Apg-1 in HSF1 activation and bortezomib sensitivity in myeloma cells. Exp Hematol 2020; 81:50-59. [DOI: 10.1016/j.exphem.2019.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/14/2019] [Accepted: 12/28/2019] [Indexed: 01/08/2023]
|
21
|
Parrondo RD, Sher T. Prevention Of Skeletal Related Events In Multiple Myeloma: Focus On The RANK-L Pathway In The Treatment Of Multiple Myeloma. Onco Targets Ther 2019; 12:8467-8478. [PMID: 31686861 PMCID: PMC6798817 DOI: 10.2147/ott.s192490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/20/2019] [Indexed: 01/11/2023] Open
Abstract
More than 90% of patients with multiple myeloma (MM) have osteolytic bone lesions which increase the risk of skeletal-related events (SRE). The cytokine milieu in the bone marrow microenvironment (BMME) of MM plays a key role in myeloma bone disease by impairing the balance between osteoclastogenesis and osteoblastogenesis. This is orchestrated by the malignant plasma cell (MPC) with the ultimate outcome of MPC proliferation and survival at the expense of excess osteoclast activation resulting in osteolytic bone lesions. Prevention of SRE is currently accomplished by the inhibition of osteoclasts. Bisphosphonates (BPs) are pyrophosphate analogues that cause apoptosis of osteoclasts and have been proven to prevent and delay SRE. Denosumab, a fully humanized monoclonal antibody that binds and inhibits receptor activator of nuclear factor-ĸB ligand (RANKL), a key molecule in the BMME crucial for osteoclastogenesis, is also approved for the prevention of SRE in MM. The addition of BPs and denosumab to standard MM treatment affords a survival benefit for patients with MM. Specifically, the addition of denosumab to standard MM treatments results in superior PFS compared to BPs, highlighting the key role of the RANKL pathway in MM. This review focuses on the pathophysiology of myeloma bone disease as well as on the importance of targeting the RANK-L pathway for the treatment of MM and prevention of SRE.
Collapse
Affiliation(s)
- Ricardo D Parrondo
- Department of Medicine, Hematology-Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Taimur Sher
- Department of Medicine, Hematology-Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| |
Collapse
|
22
|
Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res 2019; 46:D956-D963. [PMID: 29136207 PMCID: PMC5753188 DOI: 10.1093/nar/gkx1090] [Citation(s) in RCA: 1438] [Impact Index Per Article: 239.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022] Open
Abstract
The LinkedOmics database contains multi-omics data and clinical data for 32 cancer types and a total of 11 158 patients from The Cancer Genome Atlas (TCGA) project. It is also the first multi-omics database that integrates mass spectrometry (MS)-based global proteomics data generated by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) on selected TCGA tumor samples. In total, LinkedOmics has more than a billion data points. To allow comprehensive analysis of these data, we developed three analysis modules in the LinkedOmics web application. The LinkFinder module allows flexible exploration of associations between a molecular or clinical attribute of interest and all other attributes, providing the opportunity to analyze and visualize associations between billions of attribute pairs for each cancer cohort. The LinkCompare module enables easy comparison of the associations identified by LinkFinder, which is particularly useful in multi-omics and pan-cancer analyses. The LinkInterpreter module transforms identified associations into biological understanding through pathway and network analysis. Using five case studies, we demonstrate that LinkedOmics provides a unique platform for biologists and clinicians to access, analyze and compare cancer multi-omics data within and across tumor types. LinkedOmics is freely available at http://www.linkedomics.org.
Collapse
Affiliation(s)
- Suhas V Vasaikar
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter Straub
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Jing Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
23
|
Ullah TR. The role of CXCR4 in multiple myeloma: Cells' journey from bone marrow to beyond. J Bone Oncol 2019; 17:100253. [PMID: 31372333 PMCID: PMC6658931 DOI: 10.1016/j.jbo.2019.100253] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
CXCR4 is a pleiotropic chemokine receptor which acts through its ligand CXCL12 to regulate diverse physiological processes. CXCR4/CXCL12 axis plays a pivotal role in proliferation, invasion, dissemination and drug resistance in multiple myeloma (MM). Apart from its role in homing, CXCR4 also affects MM cell mobilization and egression out of the bone marrow (BM) which is correlated with distant organ metastasis. Aberrant CXCR4 expression pattern is associated with osteoclastogenesis and tumor growth in MM through its cross talk with various important cell signalling pathways. A deeper insight into understanding of CXCR4 mediated signalling pathways and its role in MM is essential to identify potential therapeutic interventions. The current therapeutic focus is on disrupting the interaction of MM cells with its protective tumor microenvironment where CXCR4 axis plays an essential role. There are still multiple challenges that need to be overcome to target CXCR4 axis more efficiently and to identify novel combination therapies with existing strategies. This review highlights the role of CXCR4 along with its significant interacting partners as a mediator of MM pathogenesis and summarizes the targeted therapies carried out so far.
Collapse
Key Words
- AMC, Angiogenic monomuclear cells
- BM, Bone marrow
- BMSC, Bone marrow stromal cells
- CAM-DR, Cell adhesion‐mediated drug resistance
- CCR–CC, Chemokine receptor
- CCX–CKR, Chemo Centryx–chemokine receptor
- CD4, Cluster of differentiation 4
- CL—CC, Chemokine ligand
- CNS, Central nervous system
- CSCs, Cancer stem cells
- CTAP-III, Connective tissue-activating peptide-III
- CXCL, CXC chemokine ligand
- CXCR, CXC chemokine receptor
- EGF, Epidermal growth factor
- EMD, Extramedullary disease
- EPC, Endothelial progenitor cells
- EPI, Endogenous peptide inhibitor
- ERK, Extracellular signal related kinase
- FGF, Fibroblast growth factor
- G-CSF, Granulocyte colony-stimulating factor
- GPCRs, G protein-coupled chemokine receptors
- HCC, Hepatocellular carcinoma
- HD, Hodgkin's disease
- HGF, Hepatocyte growth factor
- HIF1α, Hypoxia-inducible factor-1 alpha
- HIV, Human Immunodeficiency Virus
- HMGB1, High Mobility Group Box 1
- HPV, Human papillomavirus
- HSC, Hematopoietic stem cells
- IGF, Insulin-like growth factor
- JAK/STAT, Janus Kinase signal transducer and activator of transcription
- JAM-A, Junctional adhesion molecule-A
- JNK, Jun N-terminal kinase
- MAPK, Mitogen Activated Protein Kinase
- MIF, Macrophage migration inhibitory factor
- MM, Multiple myeloma
- MMP, Matrix metalloproteinases
- MRD, Minimal residual disease
- NHL, Non-Hodgkin's lymphoma
- OCL, Octeoclast
- OPG, Osteoprotegerin
- PI3K, phosphoinositide-3 kinase
- PKA, protein kinase A
- PKC, Protein kinase C
- PLC, Phospholipase C
- Pim, Proviral Integrations of Moloney virus
- RANKL, Receptor activator of nuclear factor kappa-Β ligand
- RRMM, Relapsed/refractory multiple myeloma
- SFM-DR, Soluble factor mediated drug resistance
- VEGF, Vascular endothelial growth factor
- VHL, Von Hippel-Lindau
- WHIM, Warts, Hypogammaglobulinemia, Infections, and Myelokathexis
- WM, Waldenström macroglobulinemia
Collapse
|
24
|
Huang FI, Wu YW, Sung TY, Liou JP, Lin MH, Pan SL, Yang CR. MPT0G413, A Novel HDAC6-Selective Inhibitor, and Bortezomib Synergistically Exert Anti-tumor Activity in Multiple Myeloma Cells. Front Oncol 2019; 9:249. [PMID: 31024851 PMCID: PMC6465934 DOI: 10.3389/fonc.2019.00249] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/19/2019] [Indexed: 12/16/2022] Open
Abstract
In multiple myeloma (MM), homeostasis is largely maintained by misfolded protein clearance via the proteasomal and aggresomal pathways. Histone deacetylase 6 (HDAC6) binds polyubiquitinated proteins and dynein motors and transports this protein cargo to the aggresome for further degradation. Accordingly, a combination of an HDAC6 inhibitor and bortezomib (BTZ) could increase ubiquitinated protein accumulation, leading to further apoptosis. Here we evaluated the anti-MM activity of MPT0G413, a novel specific HDAC6 inhibitor, using in vitro and in vivo models. MPT0G413 treatment more significantly inhibited cell growth in MM cells than in normal bone marrow cells. Furthermore, the combination of MPT0G413 and BTZ enhanced polyubiquitinated protein accumulation and synergistically reduced MM viability, increased caspase-3, caspase-8, caspase-9 levels, and cleaved poly (ADP) ribosome polymerase and also inhibited adherence of MM cells to bone marrow stromal cells (BMSC) and reduced VEGF and IL-6 levels and cell growth in a co-culture system. The combination treatment disturbed the bone marrow microenvironment and induced synergic, caspase-dependent apoptosis. Xenograft tumor growth significantly decreased in combination-treated SCID mice. In conclusion, MPT0G413 and BTZ synergistically inhibit MM viability, providing a framework for the clinical evaluation of combined therapies for MM.
Collapse
Affiliation(s)
- Fang-I Huang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Wen Wu
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Ting-Yi Sung
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Mei-Hsiang Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shiow-Lin Pan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
25
|
Imai Y, Hirano M, Kobayashi M, Futami M, Tojo A. HDAC Inhibitors Exert Anti-Myeloma Effects through Multiple Modes of Action. Cancers (Basel) 2019; 11:cancers11040475. [PMID: 30987296 PMCID: PMC6520917 DOI: 10.3390/cancers11040475] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 11/29/2022] Open
Abstract
HDACs are critical regulators of gene expression that function through histone modification. Non-histone proteins and histones are targeted by these proteins and the inhibition of HDACs results in various biological effects. Moreover, the aberrant expression and function of these proteins is thought to be related to the pathogenesis of multiple myeloma (MM) and several inhibitors have been introduced or clinically tested. Panobinostat, a pan-HDAC inhibitor, in combination with a proteasome inhibitor and dexamethasone has improved survival in relapsing/refractory MM patients. We revealed that panobinostat inhibits MM cell growth by degrading the protein PPP3CA, a catalytic subunit of calcineurin. This degradation was suggested to be mediated by suppression of the chaperone function of HSP90 due to HDAC6 inhibition. Cytotoxicity due to the epigenetic regulation of tumor-associated genes by HDAC inhibitors has also been reported. In addition, HDAC6 inhibition enhances tumor immunity and has been suggested to strengthen the cytotoxic effects of therapeutic antibodies against myeloma. Furthermore, therapeutic strategies to enhance the anti-myeloma effects of HDAC inhibitors through the addition of other agents has been intensely evaluated. Thus, the treatment of patients with MM using HDAC inhibitors is promising as these drugs exert their effects through multiple modes of action.
Collapse
Affiliation(s)
- Yoichi Imai
- Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Mitsuhito Hirano
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Masayuki Kobayashi
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Muneyoshi Futami
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Arinobu Tojo
- Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
26
|
The biological significance of histone modifiers in multiple myeloma: clinical applications. Blood Cancer J 2018; 8:83. [PMID: 30190472 PMCID: PMC6127133 DOI: 10.1038/s41408-018-0119-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/20/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a clonal plasma cell disorder that is characterized by a variety of genetic alterations. Recent studies have highlighted not only the importance of these genetic events but also epigenetic aberrations including DNA methylation, histone modifications, and non-coding RNAs in the biology of MM. Post-translational modifications of histone, such as methylation and acetylation, contribute to chromatin dynamics, and are modulated by histone modifying enzymes, and dysregulation of these enzymes is implicated in the pathogenesis of cancers, including MM. Histone modifiers also have non-histone substrates and enzymatically independent roles, which are also involved in tumorigenesis. Here we review and provide comprehensive insight into the biologic significance of histone methyl- and acetyl-modifiers in MM, and further provide an overview of the clinical applications of histone modifier inhibitors, especially histone deacetylase inhibitors. These findings underline the emerging roles of histone modifiers in the pathogenesis of MM, and further highlight the possibility of novel epigenetic therapies in MM.
Collapse
|
27
|
Dias JN, Aguiar SI, Pereira DM, André AS, Gano L, Correia JD, Carrapiço B, Rütgen B, Malhó R, Peleteiro C, Goncalves J, Rodrigues CM, Gil S, Tavares L, Aires-da-Silva F. The histone deacetylase inhibitor panobinostat is a potent antitumor agent in canine diffuse large B-cell lymphoma. Oncotarget 2018; 9:28586-28598. [PMID: 29983882 PMCID: PMC6033347 DOI: 10.18632/oncotarget.25580] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/19/2018] [Indexed: 12/18/2022] Open
Abstract
Non-Hodgkin lymphoma (NHL) is one of the most common causes of cancer-related death in the United States and Europe. Although the outcome of NHL patients has improved over the last years with current therapies, the rate of mortality is still high. A plethora of new drugs is entering clinical development for NHL treatment; however, the approval of new treatments remains low due in part to the paucity of clinically relevant models for validation. Canine lymphoma shares remarkable similarities with its human counterpart, making the dog an excellent animal model to explore novel therapeutic molecules and approaches. Histone deacetylase inhibitors (HDACis) have emerged as a powerful new class of anti-cancer drugs for human therapy. To investigate HDACi antitumor properties on canine diffuse large B-cell lymphoma, a panel of seven HDACi compounds (CI-994, panobinostat, SBHA, SAHA, scriptaid, trichostatin A and tubacin) was screened on CLBL-1 canine B-cell lymphoma cell line. Our results demonstrated that all HDACis tested exhibited dose-dependent inhibitory effects on proliferation of CLBL-1 cells, while promoting increased H3 histone acetylation. Amongst all HDACis studied, panobinostat proved to be the most promising compound and was selected for further in vitro and in vivo evaluation. Panobinostat cytotoxicity was linked to H3 histone and α-tubulin acetylation, and to apoptosis induction. Importantly, panobinostat efficiently inhibited CLBL-1 xenograft tumor growth, and strongly induced acetylation of H3 histone and apoptosis in vivo. In conclusion, these results provide new data validating HDACis and, especially, panobinostat as a novel anti-cancer therapy for veterinary applications, while contributing to comparative oncology.
Collapse
Affiliation(s)
- Joana N.R. Dias
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra I. Aguiar
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Diane M. Pereira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S. André
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional, Bobadela LRS, Portugal
| | - João D.G. Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional, Bobadela LRS, Portugal
| | - Belmira Carrapiço
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Barbara Rütgen
- Department of Pathobiology, Clinical Pathology Unit, University of Veterinary Medicine, Vienna, Austria
| | - Rui Malhó
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Conceição Peleteiro
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - João Goncalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Cecília M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Solange Gil
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Luís Tavares
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Frederico Aires-da-Silva
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
28
|
Iroz A, Montagner A, Benhamed F, Levavasseur F, Polizzi A, Anthony E, Régnier M, Fouché E, Lukowicz C, Cauzac M, Tournier E, Do-Cruzeiro M, Daujat-Chavanieu M, Gerbal-Chalouin S, Fauveau V, Marmier S, Burnol AF, Guilmeau S, Lippi Y, Girard J, Wahli W, Dentin R, Guillou H, Postic C. A Specific ChREBP and PPARα Cross-Talk Is Required for the Glucose-Mediated FGF21 Response. Cell Rep 2018; 21:403-416. [PMID: 29020627 PMCID: PMC5643524 DOI: 10.1016/j.celrep.2017.09.065] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 08/15/2017] [Accepted: 09/20/2017] [Indexed: 02/03/2023] Open
Abstract
While the physiological benefits of the fibroblast growth factor 21 (FGF21) hepatokine are documented in response to fasting, little information is available on Fgf21 regulation in a glucose-overload context. We report that peroxisome-proliferator-activated receptor α (PPARα), a nuclear receptor of the fasting response, is required with the carbohydrate-sensitive transcription factor carbohydrate-responsive element-binding protein (ChREBP) to balance FGF21 glucose response. Microarray analysis indicated that only a few hepatic genes respond to fasting and glucose similarly to Fgf21. Glucose-challenged Chrebp−/− mice exhibit a marked reduction in FGF21 production, a decrease that was rescued by re-expression of an active ChREBP isoform in the liver of Chrebp−/− mice. Unexpectedly, carbohydrate challenge of hepatic Pparα knockout mice also demonstrated a PPARα-dependent glucose response for Fgf21 that was associated with an increased sucrose preference. This blunted response was due to decreased Fgf21 promoter accessibility and diminished ChREBP binding onto Fgf21 carbohydrate-responsive element (ChoRE) in hepatocytes lacking PPARα. Our study reports that PPARα is required for the ChREBP-induced glucose response of FGF21. Fgf21 is a unique hepatic gene inducible by both catabolic and anabolic signals The ChREBP-mediated induction of Fgf21 in hepatocytes requires PPARα Loss of PPARα impairs Fgf21 promoter accessibility at the ChoRE PPARα is required for the control of sucrose preference in vivo
Collapse
Affiliation(s)
- Alison Iroz
- INSERM U1016, Institut Cochin, Paris 75014, France; CNRS UMR 8104, Paris 75014, France; University of Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
| | - Alexandra Montagner
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse 31027, France
| | - Fadila Benhamed
- INSERM U1016, Institut Cochin, Paris 75014, France; CNRS UMR 8104, Paris 75014, France; University of Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
| | - Françoise Levavasseur
- INSERM U1016, Institut Cochin, Paris 75014, France; CNRS UMR 8104, Paris 75014, France; University of Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
| | - Arnaud Polizzi
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse 31027, France
| | - Elodie Anthony
- INSERM U1016, Institut Cochin, Paris 75014, France; CNRS UMR 8104, Paris 75014, France; University of Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
| | - Marion Régnier
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse 31027, France
| | - Edwin Fouché
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse 31027, France
| | - Céline Lukowicz
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse 31027, France
| | - Michèle Cauzac
- INSERM U1016, Institut Cochin, Paris 75014, France; CNRS UMR 8104, Paris 75014, France; University of Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
| | - Emilie Tournier
- INSERM U1016, Institut Cochin, Paris 75014, France; CNRS UMR 8104, Paris 75014, France; University of Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
| | - Marcio Do-Cruzeiro
- INSERM U1016, Institut Cochin, Paris 75014, France; CNRS UMR 8104, Paris 75014, France; University of Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
| | - Martine Daujat-Chavanieu
- INSERM, U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France; Université de Montpellier, UMR 1183, Montpellier, France; CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Montpellier, France
| | - Sabine Gerbal-Chalouin
- INSERM, U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France; Université de Montpellier, UMR 1183, Montpellier, France; CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Montpellier, France
| | - Véronique Fauveau
- INSERM U1016, Institut Cochin, Paris 75014, France; CNRS UMR 8104, Paris 75014, France; University of Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
| | - Solenne Marmier
- INSERM U1016, Institut Cochin, Paris 75014, France; CNRS UMR 8104, Paris 75014, France; University of Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
| | - Anne-Françoise Burnol
- INSERM U1016, Institut Cochin, Paris 75014, France; CNRS UMR 8104, Paris 75014, France; University of Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
| | - Sandra Guilmeau
- INSERM U1016, Institut Cochin, Paris 75014, France; CNRS UMR 8104, Paris 75014, France; University of Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
| | - Yannick Lippi
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse 31027, France
| | - Jean Girard
- INSERM U1016, Institut Cochin, Paris 75014, France; CNRS UMR 8104, Paris 75014, France; University of Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
| | - Walter Wahli
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse 31027, France; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; Center for Integrative Genomics, University of Lausanne, Genopode Building, Lausanne 1015, Switzerland
| | - Renaud Dentin
- INSERM U1016, Institut Cochin, Paris 75014, France; CNRS UMR 8104, Paris 75014, France; University of Paris Descartes, Sorbonne Paris Cité, Paris 75005, France.
| | - Hervé Guillou
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse 31027, France.
| | - Catherine Postic
- INSERM U1016, Institut Cochin, Paris 75014, France; CNRS UMR 8104, Paris 75014, France; University of Paris Descartes, Sorbonne Paris Cité, Paris 75005, France.
| |
Collapse
|
29
|
Imai Y, Maru Y, Tanaka J. Action mechanisms of histone deacetylase inhibitors in the treatment of hematological malignancies. Cancer Sci 2016; 107:1543-1549. [PMID: 27554046 PMCID: PMC5132279 DOI: 10.1111/cas.13062] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 12/31/2022] Open
Abstract
Histone deacetylases (HDACs) critically regulate gene expression by determining the acetylation status of histones. Studies have increasingly focused on the activities of HDACs, especially involving non-histone proteins, and their various biological effects. Aberrant HDAC expression observed in several kinds of human tumors makes HDACs potential targets for cancer treatment. Several preclinical studies have suggested that HDAC inhibitors show some efficacy in the treatment of acute myelogenous leukemia with AML1-ETO, which mediates transcriptional repression through its interaction with a complex including HDAC1. Recurrent mutations in epigenetic regulators are found in T-cell lymphomas (TCLs), and HDAC inhibitors and hypomethylating agents were shown to act cooperatively in the treatment of TCLs. Preclinical modeling has suggested that persistent activation of the signal transducer and activator of transcription signaling pathway could serve as a useful biomarker of resistance to HDAC inhibitor in patients with cutaneous TCL. Panobinostat, a pan-HDAC inhibitor, in combination with bortezomib and dexamethasone, has achieved longer progression-free survival in patients with relapsed/refractory multiple myeloma (MM) than the placebo in combination with bortezomib and dexamethasone. Panobinostat inhibited MM cell growth by degrading protein phosphatase 3 catalytic subunit α (PPP3CA), a catalytic subunit of calcineurin. This degradation was suggested to be mediated by the blockade of the chaperone function of heat shock protein 90 due to HDAC6 inhibition. Aberrant PPP3CA expression in advanced MM indicated a possible correlation between high PPP3CA expression and the pathogenesis of MM. Furthermore, PPP3CA was suggested as a common target of panobinostat and bortezomib.
Collapse
Affiliation(s)
- Yoichi Imai
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshiro Maru
- Department of Pharmacology, Tokyo Women's Medical University, Tokyo, Japan
| | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|