1
|
Chang X, Han YM, Li QL, Wang C, Guo B, Jiang HL. Spatiotemporally cascade-driven "Lipo micelles" enhance extracellular matrix penetration and remodel intercellular crosstalk in pulmonary fibrosis. J Control Release 2024; 376:861-879. [PMID: 39489465 DOI: 10.1016/j.jconrel.2024.10.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Pulmonary fibrosis (PF) is an inevitable phase of many respiratory diseases with high mortality and limited effective treatments in the clinic. In PF, aberrant extracellular matrix (ECM) deposition is a significant pathological structural alteration that blocks intercellular crosstalk and hinders the deep penetration of therapeutics into lung tissues, reducing the effectiveness of conventional treatment strategies. Herein, a penetrating enhancer (Lipomicelles) composed of thermosensitive liposome shells loaded with collagenase IV and micellar cores containing thioketal bonds encapsulated with curcumin and decorated with cyclic RGDfc, is developed to alleviate PF. Specifically, Lipomicelles exhibit a cascade-responsive pattern to achieve precision delivery of curcumin through thermosensitivity, enhanced ECM penetration, site-specific targeting, and rapid release in injured alveolar epithelial type II cells (CellAEC2s). Subsequently, intercellular crosstalk is remodeled through the curcumin-mediated repair of CellAEC2s, combined with collagenase IV-mediated ECM degradation to inhibit myofibroblasts, ultimately achieving PF reversal. This work provides an innovative approach to enhance ECM penetration of therapeutics before remodeling intercellular crosstalk, addressing multi-phase PF therapy.
Collapse
Affiliation(s)
- Xin Chang
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Key Laboratory of Marine Bioactive Substances, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Technological Innovation Center of Liaoning Pharmaceutical Action and Quality Evaluation, Jinzhou Medical University, Jinzhou, Liaoning 121001, China.
| | - Yu-Mo Han
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Qiu-Ling Li
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Chao Wang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Bin Guo
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Key Laboratory of Marine Bioactive Substances, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Technological Innovation Center of Liaoning Pharmaceutical Action and Quality Evaluation, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu 210009, China..
| |
Collapse
|
2
|
Zounemat Kermani N, Chung KF, Macis G, Santini G, Clemeno FAA, Versi A, Sun K, Abdel-Aziz MI, Andersson LI, Auffray C, Badi Y, Bakke P, Brightling C, Brinkman P, Caruso M, Chanez P, De Meulder B, Djukanovic R, Fabbri L, Fowler SJ, Horvath I, Howarth P, James AJ, Kolmert J, Kraft M, Li CX, Maitland-van der Zee AH, Malerba M, Papi A, Rabe K, Sanak M, Shaw DE, Singh D, Sparreman Mikus M, van Den Berge M, Wheelock AM, Wheelock CE, Yasinska V, Guo YK, Wagers S, Barnes PJ, Bush A, Sterk PJ, Dahlen SE, Adcock IM, Siddiqui S, Montuschi P. Radiomultiomics: quantitative CT clusters of severe asthma associated with multiomics. Eur Respir J 2024; 64:2400207. [PMID: 39401856 PMCID: PMC11579543 DOI: 10.1183/13993003.00207-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/21/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Lung quantitative computed tomography (qCT) severe asthma clusters have been reported, but their replication and underlying disease mechanisms are unknown. We identified and replicated qCT clusters of severe asthma in two independent asthma cohorts and determined their association with molecular pathways, using radiomultiomics, integrating qCT, multiomics and machine learning/artificial intelligence. METHODS We used consensus clustering on qCT measurements of airway and lung CT scans, performed in 105 severe asthmatic adults from the U-BIOPRED cohort. The same qCT measurements were used to replicate qCT clusters in a subsample of the ATLANTIS asthma cohort (n=97). We performed integrated enrichment analysis using blood, sputum, bronchial biopsies, bronchial brushings and nasal brushings transcriptomics and blood and sputum proteomics to characterise radiomultiomic-associated clusters (RACs). RESULTS qCT clusters and clinical features in U-BIOPRED were replicated in the matched ATLANTIS cohort. In the U-BIOPRED cohort, RAC1 (n=30) was predominantly female with elevated body mass index, mild airflow limitation, decreased CT lung volume and increased lung density and upregulation of the complement pathway. RAC2 (n=34) subjects had airway wall thickness and a mild degree of airflow limitation, with upregulation of proliferative pathways including neurotrophic receptor tyrosine kinase 2/tyrosine kinase receptor B, and downregulation of semaphorin pathways. RAC3 (n=41) showed increased lung attenuation area and air trapping, severe airflow limitation, hyperinflation, and upregulation of cytokine signalling and signalling by interleukin pathways, and matrix metallopeptidase 1, 2 and 9. CONCLUSIONS U-BIOPRED severe asthma qCT clusters were replicated in a matched independent asthmatic cohort and associated with specific molecular pathways. Radiomultiomics might represent a novel strategy to identify new molecular pathways in asthma pathobiology.
Collapse
Affiliation(s)
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, London, UK
| | - Giuseppe Macis
- Radiology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Giuseppe Santini
- Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Franz A A Clemeno
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Ali Versi
- Data Science Institute, Imperial College London, London, UK
| | - Kai Sun
- Data Science Institute, Imperial College London, London, UK
| | - Mahmoud I Abdel-Aziz
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lars I Andersson
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Université de Lyon, Lyon, France
| | - Yusef Badi
- Data Science Institute, Imperial College London, London, UK
| | - Per Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Chris Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Paul Brinkman
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pascal Chanez
- AP-HM - Clinique des Bronches, Allergies et Sommeil, Aix Marseille Université, Marseille, France
| | - Bertrand De Meulder
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Université de Lyon, Lyon, France
| | - Ratko Djukanovic
- NIHR Southampton Respiratory Biomedical Research Unit and Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Leonardo Fabbri
- Respiratory Medicine, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Peter Howarth
- NIHR Southampton Respiratory Biomedical Research Unit and Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Anna J James
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Johan Kolmert
- Institute of Environmental Medicine, Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Monica Kraft
- Samuel Bronfman Department of Medicine, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Chuan-Xing Li
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | | | - Mario Malerba
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Alberto Papi
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Klaus Rabe
- LungenClinic Grosshansdorf and Department of Medicine, Christian Albrechts University, Airway Research Center North within the German Center for Lung Research (DZL), Kiel, Germany
| | - Marek Sanak
- Division of Clinical Genetics and Molecular Biology, Department of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Dominick E Shaw
- Respiratory Research Unit, University of Nottingham, Nottingham, UK
| | - Dave Singh
- Centre for Respiratory Medicine and Allergy, Manchester University NHS Foundation Hospital Trust, University of Manchester, Manchester, UK
| | | | - Maarten van Den Berge
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Asa M Wheelock
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Institute of Environmental Medicine, Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Valentyna Yasinska
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Yi-Ke Guo
- Data Science Institute, Imperial College London, London, UK
| | | | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter J Sterk
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sven-Erik Dahlen
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine, Karolinska University Hospital, Stockholm, Sweden
- Institute of Environmental Medicine, Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, UK
- I.M. Adcock, S. Siddiqui and P. Montuschi contributed equally to this article as lead authors and supervised the work
| | - Salman Siddiqui
- National Heart and Lung Institute, Imperial College London, London, UK
- I.M. Adcock, S. Siddiqui and P. Montuschi contributed equally to this article as lead authors and supervised the work
| | - Paolo Montuschi
- National Heart and Lung Institute, Imperial College London, London, UK
- Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy
- I.M. Adcock, S. Siddiqui and P. Montuschi contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
3
|
Attallah A, Ardourel M, Gallazzini F, Lesne F, De Oliveira A, Togbé D, Briault S, Perche O. Lack of FMRP in the retina: Evidence of a retinal specific transcriptomic profile. Exp Eye Res 2024; 246:110015. [PMID: 39089568 DOI: 10.1016/j.exer.2024.110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Fragile X Syndrome (FXS), the most common inherited form of human intellectual disability, is a monogenic neurodevelopmental disorder caused by a loss-of-function mutation of the FMR1 gene. FMR1 is encoding the Fragile X Messenger Ribonucleo Protein (FMRP) an RNA-binding protein that regulates the translation of synaptic proteins. The absence of FMRP expression has many important consequences on synaptic plasticity and function, leading to the FXS clinical phenotype. Over the last decade, a visual neurosensorial phenotype had been described in the FXS patients as well as in the murine model (Fmr1-/ymice), characterized by retinal deficits associated to retinal perception alterations. However, although the transcriptomic profile in the absence of FMRP has been studied in the cerebral part of the central nervous system (CNS), there are no actual data for the retina which is an extension of the CNS. Herein, we investigate the transcriptomic profile of mRNA from whole retinas of Fmr1-/ymice. Interestingly, we found a specific signature of Fmrp absence on retinal mRNA expression with few common genes compared to other brain studies. Gene Ontology on these retinal specific genes demonstrated an enrichment in retinal development genes as well as in synaptic genes. These alterations could be linked to the reported retinal phenotype of the FXS condition. In conclusion, we describe for the first time, retinal-specific transcriptomic changes in the absence of FMRP.
Collapse
Affiliation(s)
- Amir Attallah
- Orléans University, University Hospital Center of Orleans, LI(2)RSO, 14, Avenue de l'hôpital, 45100, Orléans, France; Orleans University, CNRS, laboratoire INEM, UMR7355, 3b Rue de la Férollerie, F-45071, Orléans, Cedex 2, France; ART ARNm US55, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Maryvonne Ardourel
- Orléans University, University Hospital Center of Orleans, LI(2)RSO, 14, Avenue de l'hôpital, 45100, Orléans, France; ART ARNm US55, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Felix Gallazzini
- University Hospital Center of Orleans, Genetic Department, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Fabien Lesne
- University Hospital Center of Orléans CAR&IB, Pôle Biopatholgie, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Anthony De Oliveira
- University Hospital Center of Orléans CAR&IB, Pôle Biopatholgie, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Dieudonnée Togbé
- Orleans University, CNRS, laboratoire INEM, UMR7355, 3b Rue de la Férollerie, F-45071, Orléans, Cedex 2, France
| | - Sylvain Briault
- Orléans University, University Hospital Center of Orleans, LI(2)RSO, 14, Avenue de l'hôpital, 45100, Orléans, France; ART ARNm US55, 14 Avenue de l'Hôpital, 45100, Orléans, France; University Hospital Center of Orleans, Genetic Department, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Olivier Perche
- Orléans University, University Hospital Center of Orleans, LI(2)RSO, 14, Avenue de l'hôpital, 45100, Orléans, France; ART ARNm US55, 14 Avenue de l'Hôpital, 45100, Orléans, France; University Hospital Center of Orleans, Genetic Department, 14 Avenue de l'Hôpital, 45100, Orléans, France.
| |
Collapse
|
4
|
Farrell LA, O’Rourke MB, Padula MP, Souza-Fonseca-Guimaraes F, Caramori G, Wark PAB, Dharmage SC, Hansbro PM. The Current Molecular and Cellular Landscape of Chronic Obstructive Pulmonary Disease (COPD): A Review of Therapies and Efforts towards Personalized Treatment. Proteomes 2024; 12:23. [PMID: 39189263 PMCID: PMC11348234 DOI: 10.3390/proteomes12030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) ranks as the third leading cause of global illness and mortality. It is commonly triggered by exposure to respiratory irritants like cigarette smoke or biofuel pollutants. This multifaceted condition manifests through an array of symptoms and lung irregularities, characterized by chronic inflammation and reduced lung function. Present therapies primarily rely on maintenance medications to alleviate symptoms, but fall short in impeding disease advancement. COPD's diverse nature, influenced by various phenotypes, complicates diagnosis, necessitating precise molecular characterization. Omics-driven methodologies, including biomarker identification and therapeutic target exploration, offer a promising avenue for addressing COPD's complexity. This analysis underscores the critical necessity of improving molecular profiling to deepen our comprehension of COPD and identify potential therapeutic targets. Moreover, it advocates for tailoring treatment strategies to individual phenotypes. Through comprehensive exploration-based molecular characterization and the adoption of personalized methodologies, innovative treatments may emerge that are capable of altering the trajectory of COPD, instilling optimism for efficacious disease-modifying interventions.
Collapse
Affiliation(s)
- Luke A. Farrell
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| | - Matthew B. O’Rourke
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| | - Matthew P. Padula
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | | | - Gaetano Caramori
- Pulmonology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Peter A. B. Wark
- School of Translational Medicine, Monash University, Melbourne, VIC 3000, Australia;
| | - Shymali C. Dharmage
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Phillip M. Hansbro
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| |
Collapse
|
5
|
Zhong MZ, Xu MN, Zheng SQ, Cheng SQ, Zeng K, Huang XW. Manipulating host secreted protein gene expression: an indirect approach by HPV11/16 E6/E7 to suppress PBMC cytokine secretion. Virol J 2024; 21:172. [PMID: 39095779 PMCID: PMC11295672 DOI: 10.1186/s12985-024-02432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/07/2024] [Indexed: 08/04/2024] Open
Abstract
Human papillomavirus (HPV) 11/16 E6/E7 proteins have been recognized to be pivotal in viral pathogenesis. This study sought to uncover the potential mechanisms of how HPV11/16 E6/E7-transfected keratinocytes inhibit cytokine secretion in peripheral blood mononuclear cells (PBMC). Upon co-culturing HPV11/16 E6/E7-transfected keratinocytes with PBMC in a non-contact manner, we observed a marked decrease in various cytokines secreted by PBMC. To determine if this suppression was mediated by specific common secreted factors, we conducted transcriptomic sequencing on these transfected cells. This analysis identified 53 common differentially secreted genes in all four HPV-transfected cells. Bioinformatics analysis demonstrated these genes were predominantly involved in immune regulation. Results from quantitative PCR (qPCR) and an extensive literature review suggested the downregulation of 12 genes (ACE2, BMP3, BPIFB1, CLU, CST6, CTF1, HMGB2, MMP12, PDGFA, RNASE7, SULF2, TGM2), and upregulation of 7 genes (CCL17, CCL22, FBLN1, PLAU, S100A7, S100A8, S100A9), may be crucial in modulating tumor immunity and combating pathogenic infections, with genes S100A8 and S100A9, and IL-17 signaling pathway being particularly noteworthy. Thus, HPV11/16 E6/E7 proteins may inhibit cytokine secretion of immune cells by altering the expression of host-secreted genes. Further exploration of these genes may yield new insights into the complex dynamics of HPV infection.
Collapse
Affiliation(s)
- Mei-Zhen Zhong
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mei-Nian Xu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Si-Qi Zheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shu-Qiong Cheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Xiao-Wen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Liang NE, Parker JB, Lu JM, Januszyk M, Wan DC, Griffin M, Longaker MT. Understanding the Foreign Body Response via Single-Cell Meta-Analysis. BIOLOGY 2024; 13:540. [PMID: 39056733 PMCID: PMC11273435 DOI: 10.3390/biology13070540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Foreign body response (FBR) is a universal reaction to implanted biomaterial that can affect the function and longevity of the implant. A few studies have attempted to identify targets for treating FBR through the use of single-cell RNA sequencing (scRNA-seq), though the generalizability of these findings from an individual study may be limited. In our study, we perform a meta-analysis of scRNA-seq data from all available FBR mouse studies and integrate these data to identify gene signatures specific to FBR across different models and anatomic locations. We identify subclusters of fibroblasts and macrophages that emerge in response to foreign bodies and characterize their signaling pathways, gene ontology terms, and downstream mediators. The fibroblast subpopulations enriched in the setting of FBR demonstrated significant signaling interactions in the transforming growth factor-beta (TGF-β) signaling pathway, with known pro-fibrotic mediators identified as top expressed genes in these FBR-derived fibroblasts. In contrast, FBR-enriched macrophage subclusters highly expressed pro-fibrotic and pro-inflammatory mediators downstream of tumor necrosis factor (TNF) signaling. Cell-cell interactions were additionally interrogated using CellChat, with identification of key signaling interactions enriched between fibroblasts and macrophages in FBR. By combining multiple FBR datasets, our meta-analysis study identifies common cell-specific gene signatures enriched in foreign body reactions, providing potential therapeutic targets for patients requiring medical implants across a myriad of devices and indications.
Collapse
Affiliation(s)
- Norah E. Liang
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.E.L.); (J.B.P.); (J.M.L.); (M.J.); (D.C.W.); (M.G.)
- Division of General Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer B. Parker
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.E.L.); (J.B.P.); (J.M.L.); (M.J.); (D.C.W.); (M.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John M. Lu
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.E.L.); (J.B.P.); (J.M.L.); (M.J.); (D.C.W.); (M.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Januszyk
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.E.L.); (J.B.P.); (J.M.L.); (M.J.); (D.C.W.); (M.G.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Derrick C. Wan
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.E.L.); (J.B.P.); (J.M.L.); (M.J.); (D.C.W.); (M.G.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Griffin
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.E.L.); (J.B.P.); (J.M.L.); (M.J.); (D.C.W.); (M.G.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael T. Longaker
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.E.L.); (J.B.P.); (J.M.L.); (M.J.); (D.C.W.); (M.G.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Jin L, Macoritto M, Wang J, Bi Y, Wang F, Suarez-Fueyo A, Paez-Cortez J, Hu C, Knight H, Mascanfroni I, Staron MM, Schwartz Sterman A, Houghton JM, Westmoreland S, Tian Y. Multi-Omics Characterization of Colon Mucosa and Submucosa/Wall from Crohn's Disease Patients. Int J Mol Sci 2024; 25:5108. [PMID: 38791146 PMCID: PMC11121447 DOI: 10.3390/ijms25105108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/17/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Crohn's disease (CD) is a subtype of inflammatory bowel disease (IBD) characterized by transmural disease. The concept of transmural healing (TH) has been proposed as an indicator of deep clinical remission of CD and as a predictor of favorable treatment endpoints. Understanding the pathophysiology involved in transmural disease is critical to achieving these endpoints. However, most studies have focused on the intestinal mucosa, overlooking the contribution of the intestinal wall in Crohn's disease. Multi-omics approaches have provided new avenues for exploring the pathogenesis of Crohn's disease and identifying potential biomarkers. We aimed to use transcriptomic and proteomic technologies to compare immune and mesenchymal cell profiles and pathways in the mucosal and submucosa/wall compartments to better understand chronic refractory disease elements to achieve transmural healing. The results revealed similarities and differences in gene and protein expression profiles, metabolic mechanisms, and immune and non-immune pathways between these two compartments. Additionally, the identification of protein isoforms highlights the complex molecular mechanisms underlying this disease, such as decreased RTN4 isoforms (RTN4B2 and RTN4C) in the submucosa/wall, which may be related to the dysregulation of enteric neural processes. These findings have the potential to inform the development of novel therapeutic strategies to achieve TH.
Collapse
Affiliation(s)
- Liang Jin
- AbbVie Bioresearch Center, Worcester, MA 01605, USA; (L.J.)
| | | | - Jing Wang
- Immunology Research, AbbVie, Cambridge, MA 02139, USA (A.S.-F.)
| | - Yingtao Bi
- AbbVie Bioresearch Center, Worcester, MA 01605, USA; (L.J.)
| | - Fei Wang
- AbbVie Bioresearch Center, Worcester, MA 01605, USA; (L.J.)
| | | | | | - Chenqi Hu
- Alnylam Pharmaceuticals, Cambridge, MA 02139, USA
| | - Heather Knight
- AbbVie Bioresearch Center, Worcester, MA 01605, USA; (L.J.)
| | | | | | | | - Jean Marie Houghton
- Division of Gastroenterology, Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA;
| | | | - Yu Tian
- AbbVie Bioresearch Center, Worcester, MA 01605, USA; (L.J.)
| |
Collapse
|
8
|
Ni C, Li D. Ferroptosis and oxidative stress in endometriosis: A systematic review of the literature. Medicine (Baltimore) 2024; 103:e37421. [PMID: 38489713 PMCID: PMC10939684 DOI: 10.1097/md.0000000000037421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/19/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Endometriosis (EMT) a common gynecological condition in women, an inflammatory disease characterized by the presence of endometrial tissue on organs and tissues in the pelvis, and is mainly associated with chronic pelvic pain and infertility. As the etiology has not been fully elucidated, current treatment is limited to surgery, hormones and painkillers, with more side effects and difficulty in achieving long-term relief. Oxidative stress manifests itself as an overproduction of reactive oxygen species, which has an integral impact in the pathology of female reproductive disorders. In this review, we evaluate the mechanisms of iron overload-induced oxidative stress and ferroptosis in EMT and their pathophysiological implications. METHODS Because the etiology has not been fully elucidated, current treatments are limited to surgery, hormones, and painkillers, which have many side effects and are difficult to achieve long-term relief. RESULTS We interpreted that antioxidants as well as ferroptosis inducers show promising results in the treatment of EMT, but their application in this population needs to be further investigated. CONCLUSION In combination with the interpretation of previous studies, it was shown that iron overload is present in the peritoneal fluid, endometriotic lesions, peritoneum and macrophages in the abdominal cavity. However, the programmed cellular ferroptosis associated with iron overload is resisted by endometriotic foci, which is critical to the pathophysiology of EMT with local iron overload and inflammation.
Collapse
Affiliation(s)
- Chenghong Ni
- Department of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Dingheng Li
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
9
|
Zhu L, Ruan WH, Han WQ, Gu WZ. Anatomical and immunohistochemical analyses of the fusion of the premaxillary-maxillary suture in human fetuses. J Orofac Orthop 2024; 85:123-133. [PMID: 35810249 DOI: 10.1007/s00056-022-00410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/29/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE The development of the premaxillary-maxillary suture (PMS) in human fetuses and a possible association between the fusion time of the PMS and maxillary deficiency were investigated. Expression of transforming growth factor beta (TGF-β1 and TGF-β3) and of fibulins (fibulin‑1 and fibulin-5) were also investigated. METHODS We analyzed 36 human fetus cadavers (19 males, 17 females; average age 23.97 ± 2.57 gestational weeks [gws], range 11-35 gws). Two cases, diagnosed with Down syndrome (DS), were characterized with maxillary deficiency; 34 fetus cadavers did not show any craniofacial abnormalities. The PMS was analyzed anatomically, followed by semi-quantitative immunohistochemical (IHC)-based expression analyses (i.e., TGF-β1/-β3, fibulin-1/-5). Spearman correlation test was conducted to investigate correlations. RESULTS In the fetuses without DS, the labial region of the PMS was open at 11 gws, after which it began to ossify from the middle to the upper and lower ends of the suture, typically fusing completely at 27 gws. Fetuses with DS demonstrated complete fusion of the labial region of PMS with a spongy bone structure at 23 gws and those without DS at 27 gws. IHC revealed similar patterns of TGF-βs and fibulins expression in the PMS during the human fetal period. There were significant positive correlations between the expression of TGF-β1 and TGF-β3 (r = 0.64, p = 0.009), TGF-β1 and fibulin‑1 (r = 0.66, p = 0.008), and TGF-β3 and fibulin‑1 (r = 0.67, p = 0.006). CONCLUSION Premature fusion of the PMS in the labial region during the human fetal period may be associated with maxillary deficiency, which is related to a class III malocclusion. Overall, the similar expression patterns of TGF-β1, TGF-β3 and fibulin‑1 suggested a close relationship between these factors in regulating the development of the PMS.
Collapse
Affiliation(s)
- Ling Zhu
- Department of Stomatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Health, 3333 Binsheng Road, 310052, Hangzhou, China
| | - Wen-Hua Ruan
- Department of Stomatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Health, 3333 Binsheng Road, 310052, Hangzhou, China.
| | - Wu-Qun Han
- Department of Ultrasound, The First People's Hospital of Fuyang District, 311400, Hangzhou, China
| | - Wei-Zhong Gu
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Health, 310052, Hangzhou, China
| |
Collapse
|
10
|
Das S, Adiody S, Varghese J, Vanditha M, Maria E, John M. Exploring the novel duo of Reticulocalbin, and Sideroflexin as future biomarker candidates for Exacerbated Chronic Obstructive Pulmonary Disease. Clin Proteomics 2024; 21:10. [PMID: 38355435 PMCID: PMC10865594 DOI: 10.1186/s12014-024-09459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND COPD is a complex respiratory disorder with high morbidity and mortality rates. Even with the current conventional diagnostic methods, including circulating inflammatory biomarkers, underdiagnosis rates in COPD remain as high as 70%. Our study was a comparative cross-sectional study that aimed to address the diagnostic challenges by identifying future biomarker candidates in COPD variants. METHODS This study used a label-free plasma proteomics approach that combined mass spectrometric data with bioinformatics to shed light on the functional roles of differentially expressed proteins in the COPD lung microenvironment. The predictive capacity of the screened proteins was assessed using Receiver Operating Characteristic (ROC) curves, with Western blot analysis validating protein expression patterns in an independent cohort. RESULTS Our study identified three DEPs-reticulocalbin-1, sideroflexin-4, and liprinα-3 that consistently exhibited altered expression in COPD exacerbation. ROC analysis indicated strong predictive potential, with AUC values of 0.908, 0.715, and 0.856 for RCN1, SFXN4, and LIPα-3, respectively. Validation through Western blot analysis confirmed their expression patterns in an independent validation cohort. CONCLUSIONS Our study discovered a novel duo of proteins reticulocalbin-1, and sideroflexin-4 that showed potential as valuable future biomarkers for the diagnosis and clinical management of COPD exacerbations.
Collapse
Affiliation(s)
- Sonu Das
- Biochemistry and Phytochemistry Research Division, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
- Department of Zoology, St. Thomas College, Kozhencherry, Affiliated to Mahatma Gandhi University, Kerala, India
| | - Supriya Adiody
- Department of Pulmonary Medicine, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Jinsu Varghese
- Department of Zoology, St. Thomas College, Kozhencherry, Affiliated to Mahatma Gandhi University, Kerala, India
| | - M Vanditha
- Department of Biochemistry, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Evelyn Maria
- Biochemistry and Phytochemistry Research Division, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Mathew John
- Biochemistry and Phytochemistry Research Division, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India.
| |
Collapse
|
11
|
Wijsman PC, Goorsenberg AWM, Keijzer N, d'Hooghe JNS, Ten Hacken NHT, Shah PL, Weersink EJM, de Brito JM, de Souza Xavier Costa N, Mauad T, Nawijn MC, Vonk JM, Annema JT, Burgess JK, Bonta PI. Airway wall extracellular matrix changes induced by bronchial thermoplasty in severe asthma. J Allergy Clin Immunol 2024; 153:435-446.e4. [PMID: 37805024 DOI: 10.1016/j.jaci.2023.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Airway remodeling is a prominent feature of asthma, which involves increased airway smooth muscle mass and altered extracellular matrix composition. Bronchial thermoplasty (BT), a bronchoscopic treatment for severe asthma, targets airway remodeling. OBJECTIVE We sought to investigate the effect of BT on extracellular matrix composition and its association with clinical outcomes. METHODS This is a substudy of the TASMA trial. Thirty patients with severe asthma were BT-treated, of whom 13 patients were treated for 6 months with standard therapy (control group) before BT. Demographic data, clinical data including pulmonary function, and bronchial biopsies were collected. Biopsies at BT-treated and nontreated locations were analyzed by histological and immunohistochemical staining. Associations between histology and clinical outcomes were explored. RESULTS Six months after treatment, it was found that the reticular basement membrane thickness was reduced from 7.28 μm to 5.74 μm (21% relative reduction) and the percentage area of tissue positive for collagen increased from 26.3% to 29.8% (13% relative increase). Collagen structure analysis revealed a reduction in the curvature frequency of fibers. The percentage area positive for fibulin-1 and fibronectin increased by 2.5% and 5.9%, respectively (relative increase of 124% and 15%). No changes were found for elastin. The changes in collagen and fibulin-1 negatively associated with changes in FEV1 reversibility. CONCLUSIONS Besides reduction of airway smooth muscle mass, BT has an impact on reticular basement membrane thickness and the extracellular matrix arrangement characterized by an increase in tissue area occupied by collagen with a less dense fiber organization. Both collagen and fibulin-1 are negatively associated with the change in FEV1 reversibility.
Collapse
Affiliation(s)
- Pieta C Wijsman
- Department of Pulmonary Medicine, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Annika W M Goorsenberg
- Department of Pulmonary Medicine, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Noa Keijzer
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Julia N S d'Hooghe
- Department of Pulmonary Medicine, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nick H T Ten Hacken
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Pallav L Shah
- Department of Pulmonology, Royal Brompton Hospital, Chelsea & Westminster Hospital, London, United Kingdom; National Heart and Lung Institute, Imperial College, Chelsea & Westminster Hospital, London, United Kingdom; Department of Pulmonology, Chelsea & Westminster Hospital, London, United Kingdom
| | - Els J M Weersink
- Department of Pulmonary Medicine, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jôse Mara de Brito
- Departamento de Patologia, LIM-05 Laboratório de Patologia Ambiental, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Natalia de Souza Xavier Costa
- Departamento de Patologia, LIM-05 Laboratório de Patologia Ambiental, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Thais Mauad
- Departamento de Patologia, LIM-05 Laboratório de Patologia Ambiental, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Martijn C Nawijn
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Judith M Vonk
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jouke T Annema
- Department of Pulmonary Medicine, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Janette K Burgess
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter I Bonta
- Department of Pulmonary Medicine, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Zhang G, Ji P, Xia P, Song H, Guo Z, Hu X, Guo Y, Yuan X, Song Y, Shen R, Wang D. Identification and targeting of cancer-associated fibroblast signature genes for prognosis and therapy in Cutaneous melanoma. Comput Biol Med 2023; 167:107597. [PMID: 37875042 DOI: 10.1016/j.compbiomed.2023.107597] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/15/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) play pivotal roles in tumor invasion and metastasis. However, studies on CAF biomarkers in Cutaneous Melanoma (CM) are still scarce. This study aimed to explore the potential CAF biomarkers in CM, propose the potential therapeutic targets, and provide new insights for targeted therapy of CAFs in CM. METHODS We utilized weighted gene co-expression network analysis to identify CAF signature genes in CM, and conducted comprehensive bioinformatics analysis on the CAF risk score established by these genes. Moreover, single-cell sequencing analysis, spatial transcriptome analysis, and cell experiments were utilized for verifying the expression and distribution pattern of signature genes. Furthermore, molecular docking was employed to screen potential target drugs. RESULTS FBLN1 and COL5A1, two crucial CAF signature genes, were screened to establish the CAF risk score. Subsequently, a comprehensive bioinformatic analysis of the CAF risk score revealed that high-risk score group was significantly enriched in pathways associated with tumor progression. Besides, CAF risk score was significantly negatively correlated with clinical prognosis, immunotherapy response, and tumor mutational burden in CM patients. In addition, FBLN1 and COL5A1 were further identified as CAF-specific biomarkers in CM by multi-omics analysis and experimental validation. Eventually, based on these two targets, Mifepristone and Dexamethasone were screened as potential anti-CAFs drugs. CONCLUSION The findings indicated that FBLN1 and COL5A1 were the CAF signature genes in CM, which were associated with the progression, treatment, and prognosis of CM. The comprehensive exploration of CAF signature genes is expected to provide new insight for clinical CM therapy.
Collapse
Affiliation(s)
- Guokun Zhang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Pengfei Ji
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Peng Xia
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Haoyun Song
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Zhao Guo
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Xiaohui Hu
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Yanan Guo
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Xinyi Yuan
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Yanfeng Song
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu, 730000, China.
| |
Collapse
|
13
|
Liu G, Haw TJ, Starkey MR, Philp AM, Pavlidis S, Nalkurthi C, Nair PM, Gomez HM, Hanish I, Hsu AC, Hortle E, Pickles S, Rojas-Quintero J, Estepar RSJ, Marshall JE, Kim RY, Collison AM, Mattes J, Idrees S, Faiz A, Hansbro NG, Fukui R, Murakami Y, Cheng HS, Tan NS, Chotirmall SH, Horvat JC, Foster PS, Oliver BG, Polverino F, Ieni A, Monaco F, Caramori G, Sohal SS, Bracke KR, Wark PA, Adcock IM, Miyake K, Sin DD, Hansbro PM. TLR7 promotes smoke-induced experimental lung damage through the activity of mast cell tryptase. Nat Commun 2023; 14:7349. [PMID: 37963864 PMCID: PMC10646046 DOI: 10.1038/s41467-023-42913-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Toll-like receptor 7 (TLR7) is known for eliciting immunity against single-stranded RNA viruses, and is increased in both human and cigarette smoke (CS)-induced, experimental chronic obstructive pulmonary disease (COPD). Here we show that the severity of CS-induced emphysema and COPD is reduced in TLR7-deficient mice, while inhalation of imiquimod, a TLR7-agonist, induces emphysema without CS exposure. This imiquimod-induced emphysema is reduced in mice deficient in mast cell protease-6, or when wild-type mice are treated with the mast cell stabilizer, cromolyn. Furthermore, therapeutic treatment with anti-TLR7 monoclonal antibody suppresses CS-induced emphysema, experimental COPD and accumulation of pulmonary mast cells in mice. Lastly, TLR7 mRNA is increased in pre-existing datasets from patients with COPD, while TLR7+ mast cells are increased in COPD lungs and associated with severity of COPD. Our results thus support roles for TLR7 in mediating emphysema and COPD through mast cell activity, and may implicate TLR7 as a potential therapeutic target.
Collapse
Affiliation(s)
- Gang Liu
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Tatt Jhong Haw
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Malcolm R Starkey
- Depatrment of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Healthcare clinical campus, UNSW, Sydney, Australia
| | - Stelios Pavlidis
- The Airways Disease Section, National Heart & Lung Institute, Imperial College London, London, UK
| | - Christina Nalkurthi
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Prema M Nair
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Henry M Gomez
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Irwan Hanish
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Alan Cy Hsu
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Elinor Hortle
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Sophie Pickles
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | | | - Raul San Jose Estepar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Jacqueline E Marshall
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Richard Y Kim
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Adam M Collison
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Joerg Mattes
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Sobia Idrees
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Alen Faiz
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Ryutaro Fukui
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minatoku, Tokyo, Japan
| | - Yusuke Murakami
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Musashino University, Nishitokyo-shi, Tokyo, Japan
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Jay C Horvat
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Paul S Foster
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Brian Gg Oliver
- Woolcock Institute of Medical Research, University of Sydney & School of Life Sciences, University of Technology, Sydney, Australia
| | | | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology, Università di Messina, Messina, Italy
| | - Francesco Monaco
- Thoracic Surgery, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento BIOMORF and Dipartimento di Medicina e Chirurgia, Universities of Messina and Parma, Messina, Italy
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Peter A Wark
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Ian M Adcock
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Healthcare clinical campus, UNSW, Sydney, Australia
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minatoku, Tokyo, Japan
| | - Don D Sin
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital & Respiratory Division, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia.
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
14
|
He CC, Song TC, Qi RQ, Gao XH. Integrated single-cell and spatial transcriptomics reveals heterogeneity of fibroblast and pivotal genes in psoriasis. Sci Rep 2023; 13:17134. [PMID: 37816883 PMCID: PMC10564713 DOI: 10.1038/s41598-023-44346-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023] Open
Abstract
Psoriasis, which is one of the most common skin diseases, involves an array of complex immune constituents including T cells, dendritic cells and monocytes. Particularly, the cytokine IL17A, primarily generated by TH17 cells, assumes a crucial function in the etiology of psoriasis. In this study, a comprehensive investigation utilizing bulk RNA analysis, single-cell RNA sequencing, and spatial transcriptomics was employed to elucidate the underlying mechanisms of psoriasis. Our study revealed that there is an overlap between the genes that are differentially expressed in psoriasis patients receiving three anti-IL17A monoclonal antibody drugs and the genes that are differentially expressed in lesion versus non-lesion samples in these patients. Further analysis using single-cell and spatial data from psoriasis samples confirmed the expression of hub genes that had low expressions in psoriasis tissue but were up-regulated after anti-IL17A treatments. These genes were found to be associated with the treatment effects of brodalumab and methotrexate, but not adalimumab, etanercept, and ustekinumab. Additionally, these genes were predominantly expressed in fibroblasts. In our study, fibroblasts were categorized into five clusters. Notably, hub genes exhibited predominant expression in cluster 3 fibroblasts, which were primarily engaged in the regulation of the extracellular matrix and were predominantly located in the reticular dermis. Subsequent analysis unveiled that cluster 3 fibroblasts also established communication with epithelial cells and monocytes via the ANGPTL-SDC4 ligand-receptor configuration, and their regulation was governed by the transcription factor TWIST1. Conversely, cluster 4 fibroblasts, responsible for vascular endothelial regulation, were predominantly distributed in the papillary dermis. Cluster 4 predominantly engaged in interactions with endothelial cells via MDK signals and was governed by the distinctive transcription factor, ERG. By means of an integrated analysis encompassing bulk transcriptomics, single-cell RNA sequencing, and spatial transcriptomics, we have discerned genes and clusters of fibroblasts that potentially contribute to the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Cong-Cong He
- Department of Dermatology, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, No.155 Nanjing Bei Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
| | - Tian-Cong Song
- Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Rui-Qun Qi
- Department of Dermatology, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, No.155 Nanjing Bei Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
| | - Xing-Hua Gao
- Department of Dermatology, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, No.155 Nanjing Bei Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China.
| |
Collapse
|
15
|
Shrestha J, Paudel KR, Nazari H, Dharwal V, Bazaz SR, Johansen MD, Dua K, Hansbro PM, Warkiani ME. Advanced models for respiratory disease and drug studies. Med Res Rev 2023; 43:1470-1503. [PMID: 37119028 PMCID: PMC10946967 DOI: 10.1002/med.21956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/02/2023] [Accepted: 03/17/2023] [Indexed: 04/30/2023]
Abstract
The global burden of respiratory diseases is enormous, with many millions of people suffering and dying prematurely every year. The global COVID-19 pandemic witnessed recently, along with increased air pollution and wildfire events, increases the urgency of identifying the most effective therapeutic measures to combat these diseases even further. Despite increasing expenditure and extensive collaborative efforts to identify and develop the most effective and safe treatments, the failure rates of drugs evaluated in human clinical trials are high. To reverse these trends and minimize the cost of drug development, ineffective drug candidates must be eliminated as early as possible by employing new, efficient, and accurate preclinical screening approaches. Animal models have been the mainstay of pulmonary research as they recapitulate the complex physiological processes, Multiorgan interplay, disease phenotypes of disease, and the pharmacokinetic behavior of drugs. Recently, the use of advanced culture technologies such as organoids and lung-on-a-chip models has gained increasing attention because of their potential to reproduce human diseased states and physiology, with clinically relevant responses to drugs and toxins. This review provides an overview of different animal models for studying respiratory diseases and evaluating drugs. We also highlight recent progress in cell culture technologies to advance integrated models and discuss current challenges and present future perspectives.
Collapse
Affiliation(s)
- Jesus Shrestha
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Keshav Raj Paudel
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Hojjatollah Nazari
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Vivek Dharwal
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Sajad Razavi Bazaz
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Matt D. Johansen
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of TechnologySydneyNew South WalesAustralia
- Faculty of Health, Australian Research Centre in Complementary & Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Philip M. Hansbro
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Majid Ebrahimi Warkiani
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
- Institute for Biomedical Materials and Devices, Faculty of ScienceUniversity of Technology SydneyUltimoNew South WalesAustralia
| |
Collapse
|
16
|
Vanders RL, Gomez HM, Hsu AC, Daly K, Wark PAB, Horvat JC, Hansbro PM. Inflammatory and antiviral responses to influenza A virus infection are dysregulated in pregnant mice with allergic airway disease. Am J Physiol Lung Cell Mol Physiol 2023; 325:L385-L398. [PMID: 37463835 DOI: 10.1152/ajplung.00232.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Influenza A virus (IAV) infections are increased during pregnancy especially with asthma as a comorbidity, leading to asthma exacerbations, secondary bacterial infections, intensive care unit admissions, and mortality. We aimed to define the processes involved in increased susceptibility and severity of IAV infections during pregnancy, especially with asthma. We sensitized mice to house dust mite (HDM), induced pregnancy, and challenged with HDM to induce allergic airway disease (AAD). At midpregnancy, we induced IAV infection. We assessed viral titers, airway inflammation, lung antiviral responses, mucus hypersecretion, and airway hyperresponsiveness (AHR). During early IAV infection, pregnant mice with AAD had increased mRNA expression of the inflammatory markers Il13 and IL17 and reduced mRNA expression of the neutrophil chemoattractant marker Kc. These mice had increased mucous hyperplasia and increased AHR. miR155, miR574, miR223, and miR1187 were also reduced during early infection, as was mRNA expression of the antiviral β-defensins, Bd1, Bd2, and Spd and IFNs, Ifnα, Ifnβ, and Ifnλ. During late infection, Il17 was still increased as was eosinophil infiltration in the lungs. mRNA expression of Kc was reduced, as was neutrophil infiltration and mRNA expression of the antiviral markers Ifnβ, Ifnλ, and Ifnγ and Ip10, Tlr3, Tlr9, Pkr, and Mx1. Mucous hyperplasia was still significantly increased as was AHR. Early phase IAV infection in pregnancy with asthma heightens underlying inflammatory asthmatic phenotype and reduces antiviral responses.NEW & NOTEWORTHY Influenza A virus (IAV) infection during pregnancy with asthma is a major health concern leading to increased morbidity for both mother and baby. Using murine models, we show that IAV infection in pregnancy with allergic airway disease is associated with impaired global antiviral and antimicrobial responses, increased lung inflammation, mucus hypersecretion, and airway hyperresponsiveness (AHR). Targeting specific β-defensins or microRNAs (miRNAs) may prove useful in future treatments for IAV infection during pregnancy.
Collapse
Affiliation(s)
- Rebecca L Vanders
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Henry M Gomez
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Alan C Hsu
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Katie Daly
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Kapellos TS, Baßler K, Fujii W, Nalkurthi C, Schaar AC, Bonaguro L, Pecht T, Galvao I, Agrawal S, Saglam A, Dudkin E, Frishberg A, de Domenico E, Horne A, Donovan C, Kim RY, Gallego-Ortega D, Gillett TE, Ansari M, Schulte-Schrepping J, Offermann N, Antignano I, Sivri B, Lu W, Eapen MS, van Uelft M, Osei-Sarpong C, van den Berge M, Donker HC, Groen HJM, Sohal SS, Klein J, Schreiber T, Feißt A, Yildirim AÖ, Schiller HB, Nawijn MC, Becker M, Händler K, Beyer M, Capasso M, Ulas T, Hasenauer J, Pizarro C, Theis FJ, Hansbro PM, Skowasch D, Schultze JL. Systemic alterations in neutrophils and their precursors in early-stage chronic obstructive pulmonary disease. Cell Rep 2023; 42:112525. [PMID: 37243592 PMCID: PMC10320832 DOI: 10.1016/j.celrep.2023.112525] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/18/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023] Open
Abstract
Systemic inflammation is established as part of late-stage severe lung disease, but molecular, functional, and phenotypic changes in peripheral immune cells in early disease stages remain ill defined. Chronic obstructive pulmonary disease (COPD) is a major respiratory disease characterized by small-airway inflammation, emphysema, and severe breathing difficulties. Using single-cell analyses we demonstrate that blood neutrophils are already increased in early-stage COPD, and changes in molecular and functional neutrophil states correlate with lung function decline. Assessing neutrophils and their bone marrow precursors in a murine cigarette smoke exposure model identified similar molecular changes in blood neutrophils and precursor populations that also occur in the blood and lung. Our study shows that systemic molecular alterations in neutrophils and their precursors are part of early-stage COPD, a finding to be further explored for potential therapeutic targets and biomarkers for early diagnosis and patient stratification.
Collapse
Affiliation(s)
- Theodore S Kapellos
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Kevin Baßler
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Wataru Fujii
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Christina Nalkurthi
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia
| | - Anna C Schaar
- Institute of Computational Biology (ICB), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Mathematics, Technische Universität München, 85748 Garching, Germany
| | - Lorenzo Bonaguro
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany
| | - Tal Pecht
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Izabela Galvao
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia
| | - Shobhit Agrawal
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Adem Saglam
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany
| | - Erica Dudkin
- Computational Life Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Amit Frishberg
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Institute of Computational Biology (ICB), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Elena de Domenico
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany
| | - Arik Horne
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Chantal Donovan
- University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia; Immune Health, Hunter Medical Research Institute, New Lambton and The University of Newcastle, Newcastle, NSW 2305, Australia
| | - Richard Y Kim
- University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia; Immune Health, Hunter Medical Research Institute, New Lambton and The University of Newcastle, Newcastle, NSW 2305, Australia
| | - David Gallego-Ortega
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Garvan Institute of Medical Research, and St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Tessa E Gillett
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 AB Groningen, the Netherlands; GRIAC Research Institute, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Meshal Ansari
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Computational Biology (ICB), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Jonas Schulte-Schrepping
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Nina Offermann
- Immunregulation, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Ignazio Antignano
- Immunregulation, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Burcu Sivri
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, 7250 TAS, Australia
| | - Mathew S Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, 7250 TAS, Australia
| | - Martina van Uelft
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Collins Osei-Sarpong
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Maarten van den Berge
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 AB Groningen, the Netherlands; Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Hylke C Donker
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 AB Groningen, the Netherlands; Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Harry J M Groen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 AB Groningen, the Netherlands; Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, 7250 TAS, Australia
| | - Johanna Klein
- Department of Internal Medicine II, Pneumology, University Hospital Bonn, 53127 Bonn, Germany
| | - Tina Schreiber
- Department of Internal Medicine II, Pneumology, University Hospital Bonn, 53127 Bonn, Germany
| | - Andreas Feißt
- University Clinics for Radiology, University Hospital Bonn, 53127 Bonn, Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Martijn C Nawijn
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 AB Groningen, the Netherlands; GRIAC Research Institute, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Matthias Becker
- Modular HPC and AI, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Kristian Händler
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany; Institute of Human Genetics, University of Lübeck, 23562 Lübeck, Germany
| | - Marc Beyer
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany; Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Melania Capasso
- Immunregulation, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Thomas Ulas
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany
| | - Jan Hasenauer
- Institute of Computational Biology (ICB), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Mathematics, Technische Universität München, 85748 Garching, Germany; Computational Life Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Carmen Pizarro
- Department of Internal Medicine II, Pneumology, University Hospital Bonn, 53127 Bonn, Germany
| | - Fabian J Theis
- Institute of Computational Biology (ICB), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Mathematics, Technische Universität München, 85748 Garching, Germany
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia; University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia
| | - Dirk Skowasch
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, 7250 TAS, Australia
| | - Joachim L Schultze
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Mathematics, Technische Universität München, 85748 Garching, Germany.
| |
Collapse
|
18
|
Zhang M, Xu T, Tong D, Li S, Yu X, Liu B, Jiang L, Liu K. Research advances in endometriosis-related signaling pathways: A review. Biomed Pharmacother 2023; 164:114909. [PMID: 37210898 DOI: 10.1016/j.biopha.2023.114909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023] Open
Abstract
Endometriosis (EM) is characterized by the existence of endometrial mucosa outside the uterine cavity, which causesinfertility, persistent aches, and a decline in women's quality of life. Both hormone therapies and nonhormone therapies, such as NSAIDs, are ineffective, generic categories of EM drugs. Endometriosis is a benign gynecological condition, yet it shares a number of features with cancer cells, including immune evasion, survival, adhesion, invasion, and angiogenesis. Several endometriosis-related signaling pathways are comprehensively reviewed in this article, including E2, NF-κB, MAPK, ERK, PI3K/Akt/mTOR, YAP, Wnt/β-catenin, Rho/ROCK, TGF-β, VEGF, NO, iron, cytokines and chemokines. To find and develop novel medications for the treatment of EM, it is essential to implicitly determine the molecular pathways that are disordered during EM development. Additionally, research on the shared pathways between EM and tumors can provide hypotheses or suggestions for endometriosis therapeutic targets.
Collapse
Affiliation(s)
- Manlin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tongtong Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Deming Tong
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Siman Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodan Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Boya Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
19
|
Niu W, Zhang Y, Liu H, Liang N, Xu L, Li Y, Yao W, Shi W, Liu Z. Single-Cell Profiling Uncovers the Roles of Endometrial Fibrosis and Microenvironmental Changes in Adenomyosis. J Inflamm Res 2023; 16:1949-1965. [PMID: 37179754 PMCID: PMC10167994 DOI: 10.2147/jir.s402734] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Purpose Adenomyosis (AM) is a common benign uterine disorder that has deleterious effects on women's health. However, the pathogenesis of AM is not clearly understood. We aimed to investigate the pathophysiological changes and molecular mechanism in AM. Methods Single-cell RNA sequencing (scRNA-seq) was employed to construct a transcriptomic atlas of various cell subsets from the ectopic endometrium (EC) and eutopic endometrium (EM) of one AM patient and evaluate differential expression. The Cell Ranger software pipeline (version 4.0.0) was applied to conduct sample demultiplexing, barcode processing and mapping reads to the reference genome (human GRCh38). Different cell types were classified with markers with the "FindAllMarkers" function, and differential gene expression analysis was performed with Seurat software in R. The findings were confirmed by Reverse Transcription Real-Time PCR using samples from three AM patients. Results We identified nine cell types: endothelial cells, epithelial cells, myoepithelial cells, smooth muscle cells, fibroblasts, lymphocytes, mast cells, macrophages and unknown cells. A number of differentially expressed genes, including CLO4A1, MMP1, TPM2 and CXCL8, were identified from all cell types. Functional enrichment showed that aberrant gene expression in fibroblasts and immune cells was related to fibrosis-associated terms, such as extracellular matrix dysregulation, focal adhesion and the PI3K-Akt signaling pathway. We also identified fibroblast subtypes and determined a potential developmental trajectory related to AM. In addition, we identified increased cell-cell communication patterns in EC, highlighting the imbalanced microenvironment in AM progression. Conclusion Our results support the theory of endometrial-myometrial interface disruption for AM, and repeated tissue injury and repair could lead to increased fibrosis in the endometrium. Therefore, the present study reveals the association between fibrosis, the microenvironment, and AM pathogenesis. This study provides insight into the molecular mechanisms regulating AM progression.
Collapse
Affiliation(s)
- Weipin Niu
- Central Laboratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Yinuo Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Hongyun Liu
- Department of Gynecology, Linyi Central Hospital, Linyi, People’s Republic of China
| | - Na Liang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, People’s Republic of China
| | - Li Xu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Yalin Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Wei Yao
- Department of Gynecology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Wei Shi
- Department of Gynecology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Zhiyong Liu
- Central Laboratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| |
Collapse
|
20
|
Cooper GE, Mayall J, Donovan C, Haw TJ, Budden KF, Hansbro NG, Blomme EE, Maes T, Kong CW, Horvat JC, Khakoo SI, Wilkinson TMA, Hansbro PM, Staples KJ. Antiviral Responses of Tissue-resident CD49a + Lung Natural Killer Cells Are Dysregulated in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2023; 207:553-565. [PMID: 36170617 DOI: 10.1164/rccm.202205-0848oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: Tissue-resident natural killer (trNK) cells have been identified in numerous organs, but little is known about their functional contribution to respiratory immunity, in particular during chronic lung diseases such as chronic obstructive pulmonary disease (COPD). Objectives: To investigate the phenotype and antiviral responses of trNK cells in murine cigarette smoke-induced experimental COPD and in human lung parenchyma from COPD donors. Methods: Mice were exposed to cigarette smoke for 12 weeks to induce COPD-like lung disease. Lung trNK cell phenotypes and function were analyzed by flow cytometry in both murine and human disease with and without challenge with influenza A virus. Measurements and Main Results: In the mouse lung, CD49a+CD49b+EOMES+ and CD49a+CD49b-EOMESlo NK cell populations had a distinct phenotype compared with CD49a- circulating NK cells. CD49a+ NK cells were more extensively altered earlier in disease onset than circulating NK cells, and increased proportions of CD49a+ NK cells correlated with worsening disease in both murine and human COPD. Furthermore, the presence of lung disease delayed both circulating and trNK cell functional responses to influenza infection. CD49a+ NK cells markedly increased their NKG2D, CD103, and CD69 expression in experimental COPD after influenza infection, and human CD49a+ NK cells were hyperactive to ex vivo influenza infection in COPD donors. Conclusions: Collectively, these results demonstrate that trNK cell function is altered in cigarette smoke-induced disease and suggests that smoke exposure may aberrantly prime trNK cell responsiveness to viral infection. This may contribute to excess inflammation during viral exacerbations of COPD.
Collapse
Affiliation(s)
- Grace E Cooper
- Clinical & Experimental Sciences, Southampton General Hospital, Southampton, United Kingdom
| | - Jemma Mayall
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South Wales, Australia
| | - Tatt J Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South Wales, Australia
| | - Evy E Blomme
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Tania Maes
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Chia Wei Kong
- Clinical & Experimental Sciences, Southampton General Hospital, Southampton, United Kingdom
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Salim I Khakoo
- Clinical & Experimental Sciences, Southampton General Hospital, Southampton, United Kingdom
| | - Tom M A Wilkinson
- Clinical & Experimental Sciences, Southampton General Hospital, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, and
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South Wales, Australia
| | - Karl J Staples
- Clinical & Experimental Sciences, Southampton General Hospital, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, and
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
21
|
Zhu N, Zhang F, Zhou H, Ma W, Mao H, Wang M, Ke Z, Wang J, Qi L. Mechanisms of Immune-Related Long Non-Coding RNAs in Spleens of Mice Vaccinated with 23-Valent Pneumococcal Polysaccharide Vaccine (PPV23). Vaccines (Basel) 2023; 11:vaccines11030529. [PMID: 36992112 DOI: 10.3390/vaccines11030529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
The 23-valent pneumococcal vaccine (PPV23) is a classical common vaccine used to prevent pneumococcal disease. In past decades, it was thought that vaccination with this vaccine induces humoral immunity, thereby reducing the disease associated with infection with 23 common serotypes of Streptococcus pneumoniae (Sp). However, for this polysaccharide vaccine, the mechanism of immune response at the transcriptional level has not been fully studied. To identify the lncRNAs (long noncoding RNAs) and mRNAs in spleens related to immunity after PPV23 vaccination in mice, high-throughput RNA sequencing of spleens between a PPV23 treatment group and a control group were performed and evaluated in this study. The RNA-seq results identified a total of 41,321 mRNAs and 34,375 lncRNAs, including 55 significantly differentially expressed (DE) mRNAs and 389 DE lncRNAs (p < 0.05) between the two groups. GO and KEGG annotation analysis indicated that the target genes of DE lncRNAs and DE mRNAs were related to T-cell costimulation, positive regulation of alpha–beta T-cell differentiation, the CD86 biosynthetic process, and the PI3K-Akt signaling pathway, indicating that the polysaccharide component antigens of PPV23 might activate a cellular immune response during the PPV23 immunization process. Moreover, we found that Trim35 (tripartite motif containing 35), a target gene of lncRNA MSTRG.9127, was involved in regulating immunity. Our study provides a catalog of lncRNAs and mRNAs associated with immune cells’ proliferation and differentiation, and they deserve further study to deepen the understanding of the biological processes in the regulation of PPV23 during humoral immunity and cellular immunity.
Collapse
Affiliation(s)
- Nan Zhu
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Fan Zhang
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Huan Zhou
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Wei Ma
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Haiguang Mao
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Mengting Wang
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Zhijian Ke
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Jinbo Wang
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Lili Qi
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| |
Collapse
|
22
|
Jung JW, Li H, Lee JH, Hwang YJ, Dan K, Park MK, Han D, Suh MW. Dual viscosity mixture vehicle for intratympanic steroid treatment modifies the ROS and inflammation related proteomes. Front Pharmacol 2023; 14:1081724. [PMID: 36744248 PMCID: PMC9892634 DOI: 10.3389/fphar.2023.1081724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Until recently, the most standard treatment for sensorineural or sudden hearing loss, which is caused by inner ear damage or deterioration, has been systemic oral steroid administration. In recent, intratympanic steroid injections such as dexamethasone have been used for the treatment of sudden hearing loss as well. It is injected into the tympanic cavity through its membrane and is expected to diffuse over the round window located between the tympanic cavity and the inner ear. However, in clinical situations, the delivery time of steroids to the inner ear is shorter than 24 h, which does not allow for a sufficient therapeutic effect. Therefore, we applied a previously invented dual viscosity mixture vehicle (DVV) for intratympanic dexamethasone to a guinea pig model, which could reduce the side effects of systemic steroid administration with sufficient dwelling time for the treatment of hearing loss, and we investigated the physiological changes with a global proteomic approach. In this study, we extracted perilymph in three different conditions from guinea pigs treated with dexamethasone-embedded DVV, dexamethasone mixed in saline, and control groups to compare proteomic changes using tandem mass spectrometry analysis. After liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) analysis, we first identified 46 differentially expressed proteins (DEPs) that were statistically significant after one-way ANOVA multiple-sample test. We also performed pairwise comparisons among each group to identify DEPs closely related to the treatment response of dexamethasone-embedded DVV. Gene ontology enrichment analysis showed that these DEPs were mostly related to inflammation, immune, actin remodeling, and antioxidant-related processes. As a result, the proteome changes in the DVV-treated groups revealed that most upregulated proteins activate the cell proliferation process, and downregulated proteins inhibit apoptosis and inflammatory reactions. Moreover, the reactive oxygen process was also regulated by DEPs after DVV treatment.
Collapse
Affiliation(s)
- Jin Woo Jung
- Proteomics Core Facility, Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Hui Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Jung Hun Lee
- Proteomics Core Facility, Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Yu-Jung Hwang
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Kisoon Dan
- Proteomics Core Facility, Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Dohyun Han
- Proteomics Core Facility, Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea,Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea,*Correspondence: Dohyun Han, ; Myung-Whan Suh,
| | - Myung-Whan Suh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea,*Correspondence: Dohyun Han, ; Myung-Whan Suh,
| |
Collapse
|
23
|
Tu X, Gomez HM, Kim RY, Brown AC, de Jong E, Galvao I, Faiz A, Bosco A, Horvat JC, Hansbro P, Donovan C. Airway and parenchyma transcriptomics in a house dust mite model of experimental asthma. Respir Res 2023; 24:32. [PMID: 36698141 PMCID: PMC9878882 DOI: 10.1186/s12931-022-02298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/15/2022] [Indexed: 01/26/2023] Open
Abstract
Lung transcriptomics studies in asthma have provided valuable information in the whole lung context, however, deciphering the individual contributions of the airway and parenchyma in disease pathogenesis may expedite the development of novel targeted treatment strategies. In this study, we performed transcriptomics on the airway and parenchyma using a house dust mite (HDM)-induced model of experimental asthma that replicates key features of the human disease. HDM exposure increased the expression of 3,255 genes, of which 212 were uniquely increased in the airways, 856 uniquely increased in the parenchyma, and 2187 commonly increased in both compartments. Further interrogation of these genes using a combination of network and transcription factor enrichment analyses identified several transcription factors that regulate airway and/or parenchymal gene expression, including transcription factor EC (TFEC), transcription factor PU.1 (SPI1), H2.0-like homeobox (HLX), metal response element binding transcription factor-1 (MTF1) and E74-like factor 4 (ets domain transcription factor, ELF4) involved in controlling innate immune responses. We next assessed the effects of inhibiting lung SPI1 responses using commercially available DB1976 and DB2313 on key disease outcomes. We found that both compounds had no protective effects on airway inflammation, however DB2313 (8 mg/kg) decreased mucus secreting cell number, and both DB2313 (1 mg/kg) and DB1976 (2.5 mg/kg and 1 mg/kg) reduced small airway collagen deposition. Significantly, both compounds decreased airway hyperresponsiveness. This study demonstrates that SPI1 is important in HDM-induced experimental asthma and that its pharmacological inhibition reduces HDM-induced airway collagen deposition and hyperresponsiveness.
Collapse
Affiliation(s)
- Xiaofan Tu
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia
| | - Henry M. Gomez
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia
| | - Richard Y. Kim
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia ,grid.117476.20000 0004 1936 7611Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW Australia
| | - Alexandra C. Brown
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia
| | - Emma de Jong
- Centre for Health Research, Telethon Kids Institute, The University of Western Australia, Nedlands, WA Australia
| | - Izabela Galvao
- grid.117476.20000 0004 1936 7611Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW Australia
| | - Alen Faiz
- grid.117476.20000 0004 1936 7611Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW Australia
| | - Anthony Bosco
- grid.134563.60000 0001 2168 186XAsthma and Airway Disease Research Center, University of Arizona, Arizona, USA
| | - Jay C. Horvat
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia
| | - Philip Hansbro
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia ,grid.117476.20000 0004 1936 7611Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW Australia
| | - Chantal Donovan
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia ,grid.117476.20000 0004 1936 7611Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW Australia
| |
Collapse
|
24
|
Budden KF, Gellatly SL, Vaughan A, Amorim N, Horvat JC, Hansbro NG, Wood DLA, Hugenholtz P, Dennis PG, Wark PAB, Hansbro PM. Probiotic Bifidobacterium longum subsp. longum Protects against Cigarette Smoke-Induced Inflammation in Mice. Int J Mol Sci 2022; 24:252. [PMID: 36613693 PMCID: PMC9820259 DOI: 10.3390/ijms24010252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Bifidobacterium are prominent gut commensals that produce the short-chain fatty acid (SCFA) acetate, and they are often used as probiotics. Connections between the gut and the lung, termed the gut-lung axis, are regulated by the microbiome. The gut-lung axis is increasingly implicated in cigarette smoke-induced diseases, and cigarette smoke exposure has been associated with depletion of Bifidobacterium species. In this study, we assessed the impact of acetate-producing Bifidobacterium longum subsp. longum (WT) and a mutant strain with an impaired acetate production capacity (MUT) on cigarette smoke-induced inflammation. The mice were treated with WT or MUT B. longum subsp. longum and exposed to cigarette smoke for 8 weeks before assessments of lung inflammation, lung tissue gene expression and cecal SCFAs were performed. Both strains of B. longum subsp. longum reduced lung inflammation, inflammatory cytokine expression and adhesion factor expression and alleviated cigarette smoke-induced depletion in caecum butyrate. Thus, the probiotic administration of B. longum subsp. longum, irrespective of its acetate-producing capacity, alleviated cigarette smoke-induced inflammation and the depletion of cecal butyrate levels.
Collapse
Affiliation(s)
- Kurtis F. Budden
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, Hunter Medical Research Institute and The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Shaan L. Gellatly
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, Hunter Medical Research Institute and The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Annalicia Vaughan
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Nadia Amorim
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jay C. Horvat
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, Hunter Medical Research Institute and The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Nicole G. Hansbro
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - David L. A. Wood
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Paul G. Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter A. B. Wark
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, Hunter Medical Research Institute and The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, Hunter Medical Research Institute and The University of Newcastle, Callaghan, NSW 2308, Australia
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
25
|
Liu G, Jarnicki AG, Paudel KR, Lu W, Wadhwa R, Philp AM, Van Eeckhoutte H, Marshall JE, Malyla V, Katsifis A, Fricker M, Hansbro NG, Dua K, Kermani NZ, Eapen MS, Tiotiu A, Chung KF, Caramori G, Bracke K, Adcock IM, Sohal SS, Wark PA, Oliver BG, Hansbro PM. Adverse roles of mast cell chymase-1 in COPD. Eur Respir J 2022; 60:2101431. [PMID: 35777766 DOI: 10.1183/13993003.01431-2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/08/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND COPD is the third leading cause of death worldwide. Cigarette smoke (CS)-induced chronic inflammation inducing airway remodelling, emphysema and impaired lung function is the primary cause. Effective therapies are urgently needed. Human chymase (hCMA)1 and its orthologue mCMA1/mouse mast cell protease (mMCP)5 are exocytosed from activated mast cells and have adverse roles in numerous disorders, but their role in COPD is unknown. METHODS We evaluated hCMA1 levels in lung tissues of COPD patients. We used mmcp5-deficient (-/-) mice to evaluate this protease's role and potential for therapeutic targeting in CS-induced experimental COPD. In addition, we used ex vivo/in vitro studies to define mechanisms. RESULTS The levels of hCMA1 mRNA and CMA1+ mast cells were increased in lung tissues from severe compared to early/mild COPD patients, non-COPD smokers and healthy controls. Degranulated mast cell numbers and mMCP5 protein were increased in lung tissues of wild-type mice with experimental COPD. mmcp5 -/- mice were protected against CS-induced inflammation and macrophage accumulation, airway remodelling, emphysema and impaired lung function in experimental COPD. CS extract challenge of co-cultures of mast cells from wild-type, but not mmcp5 -/- mice with wild-type lung macrophages increased in tumour necrosis factor (TNF)-α release. It also caused the release of CMA1 from human mast cells, and recombinant hCMA-1 induced TNF-α release from human macrophages. Treatment with CMA1 inhibitor potently suppressed these hallmark features of experimental COPD. CONCLUSION CMA1/mMCP5 promotes the pathogenesis of COPD, in part, by inducing TNF-α expression and release from lung macrophages. Inhibiting hCMA1 may be a novel treatment for COPD.
Collapse
Affiliation(s)
- Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Andrew G Jarnicki
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Keshav R Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
- St Vincent's Medical School, University of New South Wales Medicine, University of New South Wales, Sydney, Australia
| | - Hannelore Van Eeckhoutte
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jacqueline E Marshall
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Vamshikrishna Malyla
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Angelica Katsifis
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| | - Nazanin Z Kermani
- Data Science Institute, Department of Computing, Imperial College London, London, UK
| | - Mathew S Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Angelica Tiotiu
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Pulmonology, University Hospital of Nancy, Nancy, France
| | - K Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Gaetano Caramori
- UOC di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Ken Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - Brian G Oliver
- Woolcock Institute and School of Life Science, Faculty of Science Life Science, University of Technology Sydney, Sydney, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| |
Collapse
|
26
|
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E, Jaks V. Matricellular proteins in cutaneous wound healing. Front Cell Dev Biol 2022; 10:1073320. [PMID: 36506087 PMCID: PMC9730256 DOI: 10.3389/fcell.2022.1073320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.
Collapse
Affiliation(s)
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,Dermatology Clinic, Tartu University Clinics, Tartu, Estonia,*Correspondence: Viljar Jaks,
| |
Collapse
|
27
|
Vanka KS, Shukla S, Gomez HM, James C, Palanisami T, Williams K, Chambers DC, Britton WJ, Ilic D, Hansbro PM, Horvat JC. Understanding the pathogenesis of occupational coal and silica dust-associated lung disease. Eur Respir Rev 2022; 31:31/165/210250. [PMID: 35831008 DOI: 10.1183/16000617.0250-2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/20/2022] [Indexed: 01/15/2023] Open
Abstract
Workers in the mining and construction industries are at increased risk of respiratory and other diseases as a result of being exposed to harmful levels of airborne particulate matter (PM) for extended periods of time. While clear links have been established between PM exposure and the development of occupational lung disease, the mechanisms are still poorly understood. A greater understanding of how exposures to different levels and types of PM encountered in mining and construction workplaces affect pathophysiological processes in the airways and lungs and result in different forms of occupational lung disease is urgently required. Such information is needed to inform safe exposure limits and monitoring guidelines for different types of PM and development of biomarkers for earlier disease diagnosis. Suspended particles with a 50% cut-off aerodynamic diameter of 10 µm and 2.5 µm are considered biologically active owing to their ability to bypass the upper respiratory tract's defences and penetrate deep into the lung parenchyma, where they induce potentially irreversible damage, impair lung function and reduce the quality of life. Here we review the current understanding of occupational respiratory diseases, including coal worker pneumoconiosis and silicosis, and how PM exposure may affect pathophysiological responses in the airways and lungs. We also highlight the use of experimental models for better understanding these mechanisms of pathogenesis. We outline the urgency for revised dust control strategies, and the need for evidence-based identification of safe level exposures using clinical and experimental studies to better protect workers' health.
Collapse
Affiliation(s)
- Kanth Swaroop Vanka
- School of Biomedical Sciences and Pharmacy, The University of Newcastle/Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Division of Pulmonary, Allergy, and Critical Care Medicine, Dept of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Shakti Shukla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Henry M Gomez
- School of Biomedical Sciences and Pharmacy, The University of Newcastle/Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Carole James
- School of Health Sciences, The University of Newcastle, Newcastle, NSW, Australia
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment (CERSE), The University of Newcastle, Newcastle, NSW, Australia
| | - Kenneth Williams
- Newcastle Institute for Energy and Resources (NIER), School of Engineering, The University of Newcastle, Newcastle, NSW, Australia
| | - Daniel C Chambers
- School of Clinical Medicine, The University of Queensland, Brisbane, QLD, Australia.,Queensland Lung Transplant Program, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Warwick J Britton
- Centenary Institute, The University of Sydney, Sydney, NSW, Australia.,Dept of Clinical Immunology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Dusan Ilic
- Newcastle Institute for Energy and Resources (NIER), School of Engineering, The University of Newcastle, Newcastle, NSW, Australia
| | - Philip Michael Hansbro
- School of Biomedical Sciences and Pharmacy, The University of Newcastle/Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,P.M. Hansbro and J.C. Horvat have equally contributed as senior authors
| | - Jay Christopher Horvat
- School of Biomedical Sciences and Pharmacy, The University of Newcastle/Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia .,P.M. Hansbro and J.C. Horvat have equally contributed as senior authors
| |
Collapse
|
28
|
Tang F, Brune JE, Chang MY, Reeves SR, Altemeier WA, Frevert CW. Defining the versican interactome in lung health and disease. Am J Physiol Cell Physiol 2022; 323:C249-C276. [PMID: 35649251 PMCID: PMC9291419 DOI: 10.1152/ajpcell.00162.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM) imparts critical mechanical and biochemical information to cells in the lungs. Proteoglycans are essential constituents of the ECM and play a crucial role in controlling numerous biological processes, including regulating cellular phenotype and function. Versican, a chondroitin sulfate proteoglycan required for embryonic development, is almost absent from mature, healthy lungs and is reexpressed and accumulates in acute and chronic lung disease. Studies using genetically engineered mice show that the versican-enriched matrix can be pro- or anti-inflammatory depending on the cellular source or disease process studied. The mechanisms whereby versican develops a contextual ECM remain largely unknown. The primary goal of this review is to provide an overview of the interaction of versican with its many binding partners, the "versican interactome," and how through these interactions, versican is an integrator of complex extracellular information. Hopefully, the information provided in this review will be used to develop future studies to determine how versican and its binding partners can develop contextual ECMs that control select biological processes. Although this review focuses on versican and the lungs, what is described can be extended to other proteoglycans, tissues, and organs.
Collapse
Affiliation(s)
- Fengying Tang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Jourdan E Brune
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Mary Y Chang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Stephen R Reeves
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - William A Altemeier
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Charles W Frevert
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
29
|
Tu X, Kim RY, Brown AC, de Jong E, Jones-Freeman B, Ali MK, Gomez HM, Budden KF, Starkey MR, Cameron GJM, Loering S, Nguyen DH, Nair PM, Haw TJ, Alemao CA, Faiz A, Tay HL, Wark PAB, Knight DA, Foster PS, Bosco A, Horvat JC, Hansbro PM, Donovan C. Airway and parenchymal transcriptomics in a novel model of asthma and COPD overlap. J Allergy Clin Immunol 2022; 150:817-829.e6. [PMID: 35643377 DOI: 10.1016/j.jaci.2022.04.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Asthma and chronic obstructive pulmonary disease (COPD) are common chronic respiratory diseases, and some patients have overlapping disease features, termed asthma-COPD overlap (ACO). Patients characterized with ACO have increased disease severity; however, the mechanisms driving this have not been widely studied. OBJECTIVES This study sought to characterize the phenotypic and transcriptomic features of experimental ACO in mice induced by chronic house dust mite antigen and cigarette smoke exposure. METHODS Female BALB/c mice were chronically exposed to house dust mite antigen for 11 weeks to induce experimental asthma, cigarette smoke for 8 weeks to induce experimental COPD, or both concurrently to induce experimental ACO. Lung inflammation, structural changes, and lung function were assessed. RNA-sequencing was performed on separated airway and parenchyma lung tissues to assess transcriptional changes. Validation of a novel upstream driver SPI1 in experimental ACO was assessed using the pharmacological SPI1 inhibitor, DB2313. RESULTS Experimental ACO recapitulated features of both asthma and COPD, with mixed pulmonary eosinophilic/neutrophilic inflammation, small airway collagen deposition, and increased airway hyperresponsiveness. Transcriptomic analysis identified common and distinct dysregulated gene clusters in airway and parenchyma samples in experimental asthma, COPD, and ACO. Upstream driver analysis revealed increased expression of the transcription factor Spi1. Pharmacological inhibition of SPI1 using DB2313, reduced airway remodeling and airway hyperresponsiveness in experimental ACO. CONCLUSIONS A new experimental model of ACO featuring chronic dual exposures to house dust mite and cigarette smoke mimics key disease features observed in patients with ACO and revealed novel disease mechanisms, including upregulation of SPI1, that are amenable to therapy.
Collapse
Affiliation(s)
- Xiaofan Tu
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Richard Y Kim
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Alexandra C Brown
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Emma de Jong
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Australia
| | - Bernadette Jones-Freeman
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Md Khadem Ali
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Henry M Gomez
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Kurtis F Budden
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Malcolm R Starkey
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Guy J M Cameron
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Svenja Loering
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Duc H Nguyen
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Prema Mono Nair
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Tatt Jhong Haw
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Charlotte A Alemao
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Alen Faiz
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Hock L Tay
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Peter A B Wark
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Darryl A Knight
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Providence Health Care Research Institute, Vancouver, British Columbia, Canada
| | - Paul S Foster
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Anthony Bosco
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Australia
| | - Jay C Horvat
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, Australia.
| | - Chantal Donovan
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, Australia.
| |
Collapse
|
30
|
Donovan C, Kim RY, Galvao I, Jarnicki AG, Brown AC, Jones-Freeman B, Gomez HM, Wadhwa R, Hortle E, Jayaraman R, Khan H, Pickles S, Sahu P, Chimankar V, Tu X, Ali MK, Mayall JR, Nguyen DH, Budden KF, Kumar V, Schroder K, Robertson AA, Cooper MA, Wark PA, Oliver BG, Horvat JC, Hansbro PM. Aim2 suppresses cigarette smoke-induced neutrophil recruitment, neutrophil caspase-1 activation and anti-Ly6G-mediated neutrophil depletion. Immunol Cell Biol 2022; 100:235-249. [PMID: 35175629 PMCID: PMC9545917 DOI: 10.1111/imcb.12537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
Abstract
Increased inflammasome responses are strongly implicated in inflammatory diseases; however, their specific roles are incompletely understood. Therefore, we sought to examine the roles of nucleotide‐binding oligomerization domain–like receptor (NLR) family, pyrin domain–containing 3 (NLRP3) and absent in melanoma‐2 (AIM2) inflammasomes in cigarette smoke–induced inflammation in a model of experimental chronic obstructive pulmonary disease (COPD). We targeted NLRP3 with the inhibitor MCC950 given prophylactically or therapeutically and examined Aim2−/− mice in cigarette smoke–induced experimental COPD. MCC950 treatment had minimal effects on disease development and/or progression. Aim2−/− mice had increased airway neutrophils with decreased caspase‐1 levels, independent of changes in lung neutrophil chemokines. Suppressing neutrophils with anti‐Ly6G in experimental COPD in wild‐type mice reduced neutrophils in bone marrow, blood and lung. By contrast, anti‐Ly6G treatment in Aim2−/− mice with experimental COPD had no effect on neutrophils in bone marrow, partially reduced neutrophils in the blood and had no effect on neutrophils or neutrophil caspase‐1 levels in the lungs. These findings identify that following cigarette smoke exposure, Aim2 is important for anti‐Ly6G–mediated depletion of neutrophils, suppression of neutrophil recruitment and mediates activation of caspase‐1 in neutrophils.
Collapse
Affiliation(s)
- Chantal Donovan
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Woolcock Institute of Medical Research, University of Sydney and School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Richard Y Kim
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Izabela Galvao
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Andrew G Jarnicki
- Department of Biochemistry and Pharmacology, Lung Health Research Centre, University of Melbourne, Parkville, VIC, Australia
| | - Alexandra C Brown
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Bernadette Jones-Freeman
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Henry M Gomez
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Elinor Hortle
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Ranjith Jayaraman
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Haroon Khan
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Sophie Pickles
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Priyanka Sahu
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Vrushali Chimankar
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Xiaofan Tu
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Md Khadem Ali
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Jemma R Mayall
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Duc H Nguyen
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Kurtis F Budden
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Vinod Kumar
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Avril Ab Robertson
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Peter Ab Wark
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney and School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Jay C Horvat
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
31
|
Burgess JK, Harmsen MC. Chronic lung diseases: entangled in extracellular matrix. Eur Respir Rev 2022; 31:31/163/210202. [PMID: 35264410 DOI: 10.1183/16000617.0202-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023] Open
Abstract
The extracellular matrix (ECM) is the scaffold that provides structure and support to all organs, including the lung; however, it is also much more than this. The ECM provides biochemical and biomechanical cues to cells that reside or transit through this micro-environment, instructing their responses. The ECM structure and composition changes in chronic lung diseases; how such changes impact disease pathogenesis is not as well understood. Cells bind to the ECM through surface receptors, of which the integrin family is one of the most widely recognised. The signals that cells receive from the ECM regulate their attachment, proliferation, differentiation, inflammatory secretory profile and survival. There is extensive evidence documenting changes in the composition and amount of ECM in diseased lung tissues. However, changes in the topographical arrangement, organisation of the structural fibres and stiffness (or viscoelasticity) of the matrix in which cells are embedded have an undervalued but strong impact on cell phenotype. The ECM in diseased lungs also changes in physical and biomechanical ways that drive cellular responses. The characteristics of these environments alter cell behaviour and potentially orchestrate perpetuation of lung diseases. Future therapies should target ECM remodelling as much as the underlying culprit cells.
Collapse
Affiliation(s)
- Janette K Burgess
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands .,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, KOLFF Institute - REGENERATE, Groningen, The Netherlands
| | - Martin C Harmsen
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, KOLFF Institute - REGENERATE, Groningen, The Netherlands
| |
Collapse
|
32
|
Zhang Y, Almazi JG, Ong HX, Johansen MD, Ledger S, Traini D, Hansbro PM, Kelleher AD, Ahlenstiel CL. Nanoparticle Delivery Platforms for RNAi Therapeutics Targeting COVID-19 Disease in the Respiratory Tract. Int J Mol Sci 2022; 23:2408. [PMID: 35269550 PMCID: PMC8909959 DOI: 10.3390/ijms23052408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Since December 2019, a pandemic of COVID-19 disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread across the globe. At present, the Food and Drug Administration (FDA) has issued emergency approval for the use of some antiviral drugs. However, these drugs still have limitations in the specific treatment of COVID-19, and as such, new treatment strategies urgently need to be developed. RNA-interference-based gene therapy provides a tractable target for antiviral treatment. Ensuring cell-specific targeted delivery is important to the success of gene therapy. The use of nanoparticles (NPs) as carriers for the delivery of small interfering RNA (siRNAs) to specific tissues or organs of the human body could play a crucial role in the specific therapy of severe respiratory infections, such as COVID-19. In this review, we describe a variety of novel nanocarriers, such as lipid NPs, star polymer NPs, and glycogen NPs, and summarize the pre-clinical/clinical progress of these nanoparticle platforms in siRNA delivery. We also discuss the application of various NP-capsulated siRNA as therapeutics for SARS-CoV-2 infection, the challenges with targeting these therapeutics to local delivery in the lung, and various inhalation devices used for therapeutic administration. We also discuss currently available animal models that are used for preclinical assessment of RNA-interference-based gene therapy. Advances in this field have the potential for antiviral treatments of COVID-19 disease and could be adapted to treat a range of respiratory diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Juhura G. Almazi
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Scott Ledger
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Anthony D. Kelleher
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | | |
Collapse
|
33
|
Upregulated Fibulin-1 Increased Endometrial Stromal Cell Viability and Migration by Repressing EFEMP1-Dependent Ferroptosis in Endometriosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4809415. [PMID: 35127942 PMCID: PMC8816540 DOI: 10.1155/2022/4809415] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022]
Abstract
Endometriosis (EMS) is a prevalent disease in women characterized by the presence of endometrial stroma and glands outside the uterus. Recent studies have showed that EMS is correlated with the resistance of endometrial stromal cells (ESCs) to ferroptosis, an iron-dependent nonapoptotic cell death. Fibulin-1 (FBLN1) is a newly identified target regulated by progesterone in the process of ESC decidualization. However, the role of FBLN1 in regulating ESC ferroptosis and EMS remains unclear. In the present study, the gene expression profiles of GSE58178, GSE23339, and GSE25628 were downloaded from the Gene Expression Omnibus (GEO) database, and the commonly differential genes were identified using Venn diagram analysis. The role of FBLN1 in ESC viability and migration was evaluated using Cell Counting Kit-8, transwell, and western blot analysis. We found that the FBLN1 expression was increased significantly in eutopic and ectopic endometrial tissues of patients with EMS compared with normal endometrium. FBLN1 overexpression in normal ESCs (NESCs) promoted cell viability and migration, whereas FBLN1 inhibition in ectopic ESCs (EESCs) decreased cell viability and migration. Furthermore, FBLN1 inhibition facilitated EESC death by triggering ferroptosis, as evidenced by increased Fe2+, lipid ROS, and malondialdehyde (MDA) level and decreased glutathione peroxidase 4 (GPX4) expression and glutathione (GSH) level. Mechanistically, FBLN1 interacted with EGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1) and increased the protein stability of EFEMP1. More importantly, EFEMP1 silencing repressed the effect of FBLN1 on regulating EESC ferroptosis, death, and migration. Taken together, these results verify the role of the FBLN1/EFEMP1/ferroptosis pathway in the pathogenesis of EMS, and silencing of FBLN1/EFEMP1 might be an effective approach to treat EMS.
Collapse
|
34
|
Xu G, Geng X, Yang F, Zhang H. FBLN1 promotes chondrocyte proliferation by increasing phosphorylation of Smad2. J Orthop Sci 2022; 27:242-248. [PMID: 33610427 DOI: 10.1016/j.jos.2020.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/24/2020] [Accepted: 12/01/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND The role of fibulin-1 or FBLN1 in chondrocyte proliferation has not been reported so far. In this study, we aimed to verify whether FBLN1 promotes chondrocyte proliferation in elderly patients with knee osteoarthritis by phosphorylating Smad2. METHODS Chondrocytes were isolated from cartilage samples collected from elderly patients with osteoarthritis (n = 6) and young patients (n = 6). The isolated chondrocytes were divided into the following three groups: control (medium only); cells transfected with adenovirus expressing green fluorescent protein (Ad-GFP); and those transfected with adenovirus expressing green fluorescent protein and FBLN1 (Ad-GFP-FBLN1). Furthermore, chondrocytes were divided into the following three groups in the mechanistic analysis: group 1, medium only; group 2, Ad-FBLN1; and group 3, Ad-FBLN1+pSmad2 inhibitor. The cells were analyzed for the relevant indicators after culturing for 48 h. RESULTS There were more EdU-positive cells in the Ad-GFP-FBLN1 group than in the other two groups (both P < 0.05). Compared with the other two groups, the level of pSmad2 and Col2 in the Ad-GFP-FBLN1 group was significantly increased (P < 0.05). The gene expression level of each indicator was consistent with the protein expression level. There was no significant difference in the indicators between groups 1 and 3. The percentage of EdU-positive cells in group 2 was higher than that in the other two groups (P < 0.05). The expression of pSmad2 and Col2 in group 2 was higher than that in the other two groups (both P < 0.05). CONCLUSION FBLN1 can promote chondrocyte proliferation in the knee cartilage in elderly patients by phosphorylating Smad2.
Collapse
Affiliation(s)
- Gang Xu
- Department of Orthopedics, Shanxi Provincial Cancer Hospital, No. 3, Zhigong New Street, Xinghualing District, Taiyuan, 030001, China
| | - Xiang Geng
- Shanxi Health Vocational College, No. 100, Wenjin Road, Jinzhong, 030619, China
| | - Fan Yang
- Department of Orthopedics, Shanxi Provincial Cancer Hospital, No. 3, Zhigong New Street, Xinghualing District, Taiyuan, 030001, China
| | - Haijiao Zhang
- Hospital Infection-Control Dept, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, China.
| |
Collapse
|
35
|
Wang Y, Xu X, Marshall JE, Gong M, Zhao Y, Dua K, Hansbro PM, Xu J, Liu G. Loss of Hyaluronan and Proteoglycan Link Protein-1 Induces Tumorigenesis in Colorectal Cancer. Front Oncol 2021; 11:754240. [PMID: 34966673 PMCID: PMC8710468 DOI: 10.3389/fonc.2021.754240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common diagnosed cancer worldwide, but there are no effective cures for it. Hyaluronan and proteoglycan link protein-1 (HAPLN1) is a component of the extracellular matrix (ECM) proteins and involved in the tumor environment in the colon. Transforming growth factor (TGF)-β is a key cytokine that regulates the deposition of ECM proteins in CRC. However, the role of HAPLN1 in TGF-β contributions to CRC remains unknown. We found that the mRNA expression of HAPLN1 was decreased in tumors from CRC patients compared with healthy controls and normal tissue adjacent to the tumor using two existing microarray datasets. This was validated at the protein level by tissue array from CRC patients (n = 59). HAPLN1 protein levels were also reduced in human CRC epithelial cells after 24 h of TGF-β stimulation, and its protein expression correlated with type I collagen alpha-1 (COL1A1) in CRC. Transfection of HAPLN1 overexpression plasmids into these cells increased protein levels but reduced COL1A1 protein, tumor growth, and cancer cell migration. TGF-β stimulation increased Smad2/3, p-Smad2/3, Smad4, and E-adhesion proteins; however, HAPLN1 overexpression restored these proteins to baseline levels in CRC epithelial cells after TGF-β stimulation. These findings suggest that HAPLN1 regulates the TGF-β signaling pathway to control collagen deposition via the TGF-β signaling pathway and mediates E-adhesion to control tumor growth. Thus, treatments that increase HAPLN1 levels may be a novel therapeutic option for CRC.
Collapse
Affiliation(s)
- Yao Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China.,Hangzhou Xunyao Biotechnology Pty. Ltd., Hangzhou, China
| | - Xiaoyue Xu
- School of Population Health, University of New South Wales, Sydney, NSW, Australia
| | - Jacqueline E Marshall
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology, Sydney, NSW, Australia
| | - Muxue Gong
- School of Clinical Medicine, Bengbu Medicine College, Bengbu, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology, Sydney, NSW, Australia
| | - Jincheng Xu
- Stomatology Department, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,School of Dental Medicine, Bengbu Medical College, Bengbu, China
| | - Gang Liu
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology, Sydney, NSW, Australia
| |
Collapse
|
36
|
Tsai YC, Hung WW, Chang WA, Wu PH, Wu LY, Lee SC, Kuo MC, Hsu YL. Autocrine Exosomal Fibulin-1 as a Target of MiR-1269b Induces Epithelial–Mesenchymal Transition in Proximal Tubule in Diabetic Nephropathy. Front Cell Dev Biol 2021; 9:789716. [PMID: 34977033 PMCID: PMC8718747 DOI: 10.3389/fcell.2021.789716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Diabetic nephropathy (DN) is an increasing threat to human health and is regarded to be the leading cause of end-stage renal disease worldwide. Exosomes deliver biomolecule massages and may play a key role in cell communication and the progression of DN. Methods: A cross-disciplinary study, including in vivo, in vitro, and human studies, was conducted to explore the cross-talk within proximal tubular epithelial cells (PTECs) in DN. Exosomal protein from PTECs treated with high glucose (HG) was purified and examined using liquid chromatography–tandem mass spectrometry (LC-MS/MS). Next-generation sequencing (NGS) was utilized to analyze RNAs extracted from PTECs from a type 2 diabetic patient and a normal individual. HK-2 cells were used to assess exosomal protein and its modulation and biofunction in DN. Normal individuals and type 2 diabetic patients were enrolled, and nondiabetic db/m mice and diabetic db/db mice were used to validate the molecular mechanism of exosomes in DN. Results: HG stimulated PTECs to increase Fibulin-1 (FBLN1) expression, and PTECs secreted FBLN1 through exosome delivery, thereby inducing epithelial–mesenchymal transition (EMT) in PTECs. Transcriptome analysis found that FBLN1 expression was modulated by miR-1269b, which was downregulated by HG in HK-2 cells. While transfection of miR-1269b reversed FBLN1-mediated EMT in PTECs, miR-1269b inhibitor modulated the phenotype of PTECs toward mesenchymal type under normal glucose (NG) condition. Most importantly, urinary FBLN1 and exosomal miR-1269b levels were correlated with the severity of kidney injury in type 2 diabetic patients. Conclusion: This study demonstrated the communication within PTECs through exosome transmission in an autocrine pattern. MiR-1269b–FBLN1 epigenetic regulatory network could be a potential therapeutic strategy to prevent the progression of DN.
Collapse
Affiliation(s)
- Yi-Chun Tsai
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Wen Hung
- Division of Endocrinology and Metabolism, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-An Chang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ping-Hsun Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ling-Yu Wu
- College of Medicine, Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Su-Chu Lee
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Chuan Kuo
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ling Hsu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Ya-Ling Hsu,
| |
Collapse
|
37
|
Kim RY, Sunkara KP, Bracke KR, Jarnicki AG, Donovan C, Hsu AC, Ieni A, Beckett EL, Galvão I, Wijnant S, Ricciardolo FL, Di Stefano A, Haw TJ, Liu G, Ferguson AL, Palendira U, Wark PA, Conickx G, Mestdagh P, Brusselle GG, Caramori G, Foster PS, Horvat JC, Hansbro PM. A microRNA-21-mediated SATB1/S100A9/NF-κB axis promotes chronic obstructive pulmonary disease pathogenesis. Sci Transl Med 2021; 13:eaav7223. [PMID: 34818056 DOI: 10.1126/scitranslmed.aav7223] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Richard Y Kim
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Krishna P Sunkara
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia.,Graduate School of Health, Discipline of Pharmacy, University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Intensive Care Unit, John Hunter Hospital, Newcastle, New South Wales 2308, Australia
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Andrew G Jarnicki
- Department of Biochemistry and Pharmacology, University of Melbourne, Victoria 3010, Australia
| | - Chantal Donovan
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Alan C Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology, University of Messina, Messina 98100, Italy
| | - Emma L Beckett
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Izabela Galvão
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Sara Wijnant
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Fabio Lm Ricciardolo
- Rare Lung Disease Unit, Department of Clinical and Biological Sciences, University of Torino, San Luigi Gonzaga University Hospital Orbassano, Torino 10043, Italy
| | - Antonino Di Stefano
- Istituti Clinici Scientifici Maugeri, IRCCS, SpA Società Benefit, Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Veruno, Novara 28100, Italy
| | - Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Angela L Ferguson
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia.,Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2006, Australia
| | - Umamainthan Palendira
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Griet Conickx
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium.,Ablynx N.V., a Sanofi company, Ghent 9052, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Guy G Brusselle
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina 98100, Italy
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| |
Collapse
|
38
|
iTRAQ-based quantitative proteomic analysis of the improved effects of total flavones of Dracocephalum Moldavica L. in chronic mountain sickness. Sci Rep 2021; 11:17526. [PMID: 34471201 PMCID: PMC8410788 DOI: 10.1038/s41598-021-97091-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023] Open
Abstract
To use isobaric tags for relative and absolute quantification (iTRAQ) technology to study the pathogenesis of chronic mountain sickness (CMS), identify biomarkers for CMS, and investigate the effect of total flavones of Dracocephalum moldavica L. (TFDM) on a rat model of CMS. We simulated high altitude hypobaric hypoxia conditions and generated a rat model of CMS. Following the administration of TFDM, we measured the pulmonary artery pressure and serum levels of hemoglobin (Hb), the hematocrit (Hct), and observed the structure of the pulmonary artery in experimental rats. Furthermore, we applied iTRAQ-labeled quantitative proteomics technology to identify differentially expressed proteins (DEPs) in the serum, performed bioinformatics analysis, and verified the DEPs by immunohistochemistry. Analysis showed that the pulmonary artery pressure, serum levels of Hb, and the Hct, were significantly increased in a rat model of CMS (P < 0.05). Pathological analysis of lung tissue and pulmonary artery tissue showed that the alveolar compartment had obvious hyperplasia and the pulmonary artery degree of muscularization was enhanced. Both pulmonary artery pressure and tissue morphology were improved following the administration of TFDM. We identified 532 DEPs by quantitative proteomics; gene ontology (GO)and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis further revealed that metabolic pathways associated with coagulation and complement play crucial roles in the occurrence of CMS. Immunohistochemistry verified that several DEPs (α-1-acid glycoprotein, collagen, fibulin, haptoglobin, PLTP, and TAGLN2) are important biological markers for CMS. Our analyses demonstrated that TFDM can improve CMS and exert action by influencing the metabolic pathways associated with coagulation and complement. This process relieves pulmonary artery pressure and improves lung function. We also identified that α-1-acid glycoprotein, collagen, fibulin, haptoglobin, PLTP, and TAGLN2 may represent potential biomarkers for CMS.
Collapse
|
39
|
Skerrett-Byrne DA, Bromfield EG, Murray HC, Jamaluddin MFB, Jarnicki AG, Fricker M, Essilfie AT, Jones B, Haw TJ, Hampsey D, Anderson AL, Nixon B, Scott RJ, Wark PAB, Dun MD, Hansbro PM. Time-resolved proteomic profiling of cigarette smoke-induced experimental chronic obstructive pulmonary disease. Respirology 2021; 26:960-973. [PMID: 34224176 DOI: 10.1111/resp.14111] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/01/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE Chronic obstructive pulmonary disease (COPD) is the third leading cause of illness and death worldwide. Current treatments aim to control symptoms with none able to reverse disease or stop its progression. We explored the major molecular changes in COPD pathogenesis. METHODS We employed quantitative label-based proteomics to map the changes in the lung tissue proteome of cigarette smoke-induced experimental COPD that is induced over 8 weeks and progresses over 12 weeks. RESULTS Quantification of 7324 proteins enabled the tracking of changes to the proteome. Alterations in protein expression profiles occurred in the induction phase, with 18 and 16 protein changes at 4- and 6-week time points, compared to age-matched controls, respectively. Strikingly, 269 proteins had altered expression after 8 weeks when the hallmark pathological features of human COPD emerge, but this dropped to 27 changes at 12 weeks with disease progression. Differentially expressed proteins were validated using other mouse and human COPD bronchial biopsy samples. Major changes in RNA biosynthesis (heterogeneous nuclear ribonucleoproteins C1/C2 [HNRNPC] and RNA-binding protein Musashi homologue 2 [MSI2]) and modulators of inflammatory responses (S100A1) were notable. Mitochondrial dysfunction and changes in oxidative stress proteins also occurred. CONCLUSION We provide a detailed proteomic profile, identifying proteins associated with the pathogenesis and disease progression of COPD establishing a platform to develop effective new treatment strategies.
Collapse
Affiliation(s)
- David A Skerrett-Byrne
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Elizabeth G Bromfield
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia.,Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Heather C Murray
- University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - M Fairuz B Jamaluddin
- University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Andrew G Jarnicki
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Ama T Essilfie
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Bernadette Jones
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Tatt J Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Daniel Hampsey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Amanda L Anderson
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Brett Nixon
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Rodney J Scott
- University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Matthew D Dun
- University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
40
|
Vasse GF, Nizamoglu M, Heijink IH, Schlepütz M, van Rijn P, Thomas MJ, Burgess JK, Melgert BN. Macrophage-stroma interactions in fibrosis: biochemical, biophysical, and cellular perspectives. J Pathol 2021; 254:344-357. [PMID: 33506963 PMCID: PMC8252758 DOI: 10.1002/path.5632] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022]
Abstract
Fibrosis results from aberrant wound healing and is characterized by an accumulation of extracellular matrix, impairing the function of an affected organ. Increased deposition of extracellular matrix proteins, disruption of matrix degradation, but also abnormal post-translational modifications alter the biochemical composition and biophysical properties of the tissue microenvironment - the stroma. Macrophages are known to play an important role in wound healing and tissue repair, but the direct influence of fibrotic stroma on macrophage behaviour is still an under-investigated element in the pathogenesis of fibrosis. In this review, the current knowledge on interactions between macrophages and (fibrotic) stroma will be discussed from biochemical, biophysical, and cellular perspectives. Furthermore, we provide future perspectives with regard to how macrophage-stroma interactions can be examined further to ultimately facilitate more specific targeting of these interactions in the treatment of fibrosis. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Gwenda F Vasse
- University of Groningen, University Medical Center GroningenBiomedical Engineering Department‐FB40GroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials ScienceGroningenThe Netherlands
- University of Groningen, Department of Molecular PharmacologyGroningen Research Institute for PharmacyGroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| | - Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of Pathology and Medical BiologyGroningenThe Netherlands
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of Pathology and Medical BiologyGroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of PulmonologyGroningenThe Netherlands
| | - Marco Schlepütz
- Immunology & Respiratory Diseases ResearchBoehringer Ingelheim Pharma GmbH & Co KGBiberach an der RissGermany
| | - Patrick van Rijn
- University of Groningen, University Medical Center GroningenBiomedical Engineering Department‐FB40GroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials ScienceGroningenThe Netherlands
| | - Matthew J Thomas
- Immunology & Respiratory Diseases ResearchBoehringer Ingelheim Pharma GmbH & Co KGBiberach an der RissGermany
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials ScienceGroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of Pathology and Medical BiologyGroningenThe Netherlands
| | - Barbro N Melgert
- University of Groningen, Department of Molecular PharmacologyGroningen Research Institute for PharmacyGroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| |
Collapse
|
41
|
Prihandoko R, Kaur D, Wiegman CH, Alvarez-Curto E, Donovan C, Chachi L, Ulven T, Tyas MR, Euston E, Dong Z, Alharbi AGM, Kim RY, Lowe JG, Hansbro PM, Chung KF, Brightling CE, Milligan G, Tobin AB. Pathophysiological regulation of lung function by the free fatty acid receptor FFA4. Sci Transl Med 2021; 12:12/557/eaaw9009. [PMID: 32817367 DOI: 10.1126/scitranslmed.aaw9009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 10/22/2019] [Accepted: 07/28/2020] [Indexed: 12/31/2022]
Abstract
Increased prevalence of inflammatory airway diseases including asthma and chronic obstructive pulmonary disease (COPD) together with inadequate disease control by current frontline treatments means that there is a need to define therapeutic targets for these conditions. Here, we investigate a member of the G protein-coupled receptor family, FFA4, that responds to free circulating fatty acids including dietary omega-3 fatty acids found in fish oils. We show that FFA4, although usually associated with metabolic responses linked with food intake, is expressed in the lung where it is coupled to Gq/11 signaling. Activation of FFA4 by drug-like agonists produced relaxation of murine airway smooth muscle mediated at least in part by the release of the prostaglandin E2 (PGE2) that subsequently acts on EP2 prostanoid receptors. In normal mice, activation of FFA4 resulted in a decrease in lung resistance. In acute and chronic ozone models of pollution-mediated inflammation and house dust mite and cigarette smoke-induced inflammatory disease, FFA4 agonists acted to reduce airway resistance, a response that was absent in mice lacking expression of FFA4. The expression profile of FFA4 in human lung was similar to that observed in mice, and the response to FFA4/FFA1 agonists similarly mediated human airway smooth muscle relaxation ex vivo. Our study provides evidence that pharmacological targeting of lung FFA4, and possibly combined activation of FFA4 and FFA1, has in vivo efficacy and might have therapeutic value in the treatment of bronchoconstriction associated with inflammatory airway diseases such as asthma and COPD.
Collapse
Affiliation(s)
- Rudi Prihandoko
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK
| | - Davinder Kaur
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, LE3 9QP, Leicester, UK
| | - Coen H Wiegman
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Elisa Alvarez-Curto
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton, NSW 2305 and The University of Newcastle, Callaghan, NSW 2208, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, and University of Technology Sydney, Faculty of Science, Ultimo NSW 2007, Australia
| | - Latifa Chachi
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, LE3 9QP, Leicester, UK
| | - Trond Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Martha R Tyas
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK
| | - Eloise Euston
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK
| | - Zhaoyang Dong
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK
| | - Abdulrahman Ghali M Alharbi
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK.,Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 42353, Saudi Arabia
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton, NSW 2305 and The University of Newcastle, Callaghan, NSW 2208, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, and University of Technology Sydney, Faculty of Science, Ultimo NSW 2007, Australia
| | - Jack G Lowe
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton, NSW 2305 and The University of Newcastle, Callaghan, NSW 2208, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, and University of Technology Sydney, Faculty of Science, Ultimo NSW 2007, Australia
| | - Kian Fan Chung
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Christopher E Brightling
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, LE3 9QP, Leicester, UK.
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK.
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK.
| |
Collapse
|
42
|
The role of osteoprotegerin (OPG) in fibrosis: its potential as a biomarker and/or biological target for the treatment of fibrotic diseases. Pharmacol Ther 2021; 228:107941. [PMID: 34171336 DOI: 10.1016/j.pharmthera.2021.107941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is defined by excessive formation and accumulation of extracellular matrix proteins, produced by myofibroblasts, that supersedes normal wound healing responses to injury and results in progressive architectural remodelling. Fibrosis is often detected in advanced disease stages when an organ is already severely damaged and can no longer function properly. Therefore, there is an urgent need for reliable and easily detectable markers to identify and monitor fibrosis onset and progression as early as possible; this will greatly facilitate the development of novel therapeutic strategies. Osteoprotegerin (OPG), a well-known regulator of bone extracellular matrix and most studied for its role in regulating bone mass, is expressed in various organs and functions as a decoy for receptor activator of nuclear factor kappa-B ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Recently, OPG has been linked to fibrosis and fibrogenesis, and has been included in a panel of markers to diagnose liver fibrosis. Multiple studies now suggest that OPG may be a general biomarker suitable for detection of fibrosis and/or monitoring the impact of fibrosis treatment. This review summarizes our current understanding of the role of OPG in fibrosis and will discuss its potential as a biomarker and/or novel therapeutic target for fibrosis.
Collapse
|
43
|
Lu Z, Van Eeckhoutte HP, Liu G, Nair PM, Jones B, Gillis CM, Nalkurthi BC, Verhamme F, Buyle-Huybrecht T, Vandenabeele P, Berghe TV, Brusselle GG, Horvat JC, Murphy JM, Wark PA, Bracke KR, Fricker M, Hansbro PM. Necroptosis Signalling Promotes Inflammation, Airway Remodelling and Emphysema in COPD. Am J Respir Crit Care Med 2021; 204:667-681. [PMID: 34133911 DOI: 10.1164/rccm.202009-3442oc] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Necroptosis, mediated by RIPK3 and MLKL, is a form of regulated necrosis that can drive tissue inflammation and destruction, however its contribution to COPD pathogenesis is poorly understood. OBJECTIVES To determine the role of necroptosis in COPD. METHODS Levels of RIPK3, MLKL and activated phospho-MLKL were measured in lung tissues of COPD patients and non-COPD controls. Necroptosis-related mRNA and proteins and cell death were examined in the lungs and pulmonary macrophages of mice with cigarette smoke (CS)-induced experimental COPD. The responses of Ripk3- and Mlkl-deficient (-/-) mice to CS exposure were compared to wild-type mice. Combined inhibition of apoptosis (pan-caspase inhibitor qVD-OPh) and necroptosis (Mlkl-/- mice) was assessed. MEASUREMENTS AND MAIN RESULTS Protein levels of MLKL and pMLKL but not RIPK3 were increased in lung tissues of COPD patients compared to never smokers or smoker non-COPD controls. Necroptosis-related mRNA and protein levels were increased in lung tissue and macrophages in CS-exposed mice/experimental COPD. Ripk3 or Mlkl deletion prevented airway inflammation in response to acute CS-exposure. Ripk3 deficiency reduced airway inflammation and remodelling and development of emphysematous pathology following chronic CS-exposure. Mlkl deletion and qVD-OPh treatment reduced chronic CS-induced airway inflammation, but only Mlkl deletion prevented airway remodelling and emphysema. Ripk3 or Mlkl deletion and qVD-OPh treatment reduced CS-induced lung cell death. CONCLUSIONS Necroptosis is induced by CS exposure and increased in COPD patient lungs and experimental COPD. Inhibiting necroptosis attenuates CS-induced airway inflammation, airway remodelling and emphysema. Targeted inhibition of necroptosis is a potential therapeutic strategy in COPD.
Collapse
Affiliation(s)
- Zhe Lu
- The University of Newcastle Hunter Medical Research Institute, 454568, Priority Research Centre for Healthy Lungs, New Lambton, New South Wales, Australia
| | | | - Gang Liu
- The University of Newcastle Hunter Medical Research Institute, 454568, Priority Research Centre for Healthy Lungs, New Lambton, New South Wales, Australia.,University of Technology Sydney Faculty of Science, 170529, Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia
| | - Prema M Nair
- University of Newcastle Hunter Medical Research Institute, 454568, Priority Research Centres for Healthy Lungs and GrowUpWell, New Lambton, New South Wales, Australia.,The University of Newcastle Faculty of Health and Medicine, 64834, School of Biomedical Sciences and Pharmacy, Callaghan, New South Wales, Australia
| | - Bernadette Jones
- The University of Newcastle, 5982, Centre for Asthma & Respiratory Disease, Callaghan, New South Wales, Australia
| | - Caitlin M Gillis
- University of Technology Sydney Faculty of Science, 170529, Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Ghent University, 26656, VIB Center for Inflammation Research, Department for Biomedical Molecular Biology, Gent, Belgium.,Ghent University, 26656, Methusalem program CEDAR-IC, Gent, Belgium
| | - B Christina Nalkurthi
- University of Technology Sydney Faculty of Science, 170529, Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia
| | | | - Tamariche Buyle-Huybrecht
- University Hospital Ghent, 60200, Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Gent, Belgium
| | - Peter Vandenabeele
- University Hospital Ghent, 60200, Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Gent, Belgium
| | - Tom Vanden Berghe
- Ghent University, 26656, VIB Center for Inflammation Research, Department for Biomedical Molecular Biology, Gent, Belgium.,University of Antwerp, 26660, Department Biomedical Sciences, Antwerpen, Belgium
| | - Guy G Brusselle
- University Hospital Ghent, 60200, Respiratory Medicine, Gent, Belgium
| | - Jay C Horvat
- Hunter Medical Research Institute, Vaccines, Immunity, Viruses and Asthma Group, Newcastle, New South Wales, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 5388, Department of Medical Biology University of Melbourne , Melbourne, Victoria, Australia
| | - Peter A Wark
- The University of Newcastle, 5982, Centre for Asthma & Respiratory Disease, Callaghan, New South Wales, Australia.,The University of Newcastle Hunter Medical Research Institute, 454568, Vaccines, Infection, Viruses & Asthma, New Lambton, New South Wales, Australia
| | - Ken R Bracke
- University Hospital Ghent, 60200, Respiratory Medicine, Gent, Belgium
| | - Michael Fricker
- The University of Newcastle Hunter Medical Research Institute, 454568, Priority Research Centres for Healthy Lungs & Grow Up Well, New Lambton, New South Wales, Australia
| | - Philip M Hansbro
- University of Technology Sydney, 1994, Sydney, New South Wales, Australia;
| |
Collapse
|
44
|
Busch SM, Lorenzana Z, Ryan AL. Implications for Extracellular Matrix Interactions With Human Lung Basal Stem Cells in Lung Development, Disease, and Airway Modeling. Front Pharmacol 2021; 12:645858. [PMID: 34054525 PMCID: PMC8149957 DOI: 10.3389/fphar.2021.645858] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
The extracellular matrix (ECM) is not simply a quiescent scaffold. This three-dimensional network of extracellular macromolecules provides structural, mechanical, and biochemical support for the cells of the lung. Throughout life, the ECM forms a critical component of the pulmonary stem cell niche. Basal cells (BCs), the primary stem cells of the airways capable of differentiating to all luminal cell types, reside in close proximity to the basolateral ECM. Studying BC-ECM interactions is important for the development of therapies for chronic lung diseases in which ECM alterations are accompanied by an apparent loss of the lung's regenerative capacity. The complexity and importance of the native ECM in the regulation of BCs is highlighted as we have yet to create an in vitro culture model that is capable of supporting the long-term expansion of multipotent BCs. The interactions between the pulmonary ECM and BCs are, therefore, a vital component for understanding the mechanisms regulating BC stemness during health and disease. If we are able to replicate these interactions in airway models, we could significantly improve our ability to maintain basal cell stemness ex vivo for use in in vitro models and with prospects for cellular therapies. Furthermore, successful, and sustained airway regeneration in an aged or diseased lung by small molecules, novel compounds or via cellular therapy will rely upon both manipulation of the airway stem cells and their immediate niche within the lung. This review will focus on the current understanding of how the pulmonary ECM regulates the basal stem cell function, how this relationship changes in chronic disease, and how replicating native conditions poses challenges for ex vivo cell culture.
Collapse
Affiliation(s)
- Shana M. Busch
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Zareeb Lorenzana
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Amy L. Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
45
|
Wu CL, Yin R, Wang SN, Ying R. A Review of CXCL1 in Cardiac Fibrosis. Front Cardiovasc Med 2021; 8:674498. [PMID: 33996954 PMCID: PMC8113392 DOI: 10.3389/fcvm.2021.674498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/01/2021] [Indexed: 12/31/2022] Open
Abstract
Chemokine C-X-C motif ligand-1 (CXCL1), principally expressed in neutrophils, macrophages and epithelial cells, is a valid pro-inflammatory factor which performs an important role in mediating the infiltration of neutrophils and monocytes/macrophages. Elevated serum level of CXCL1 is considered a pro-inflammatory reaction by the organism. CXCL1 is also related to diverse organs fibrosis according to relevant studies. A growing body of evidence suggests that CXCL1 promotes the process of cardiac remodeling and fibrosis. Here, we review structure and physiological functions of CXCL1 and recent progress on the effects and mechanisms of CXCL1 in cardiac fibrosis. In addition, we explore the role of CXCL1 in the fibrosis of other organs. Besides, we probe the possibility that CXCL1 can be a therapeutic target for the treatment of cardiac fibrosis in cardiovascular diseases.
Collapse
Affiliation(s)
- Cheng-Long Wu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ran Yin
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Su-Nan Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ru Ying
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
46
|
Karatzas E, Kakouri AC, Kolios G, Delis A, Spyrou GM. Fibrotic expression profile analysis reveals repurposed drugs with potential anti-fibrotic mode of action. PLoS One 2021; 16:e0249687. [PMID: 33826640 PMCID: PMC8026018 DOI: 10.1371/journal.pone.0249687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrotic diseases cover a spectrum of systemic and organ-specific maladies that affect a large portion of the population, currently without cure. The shared characteristic these diseases feature is their uncontrollable fibrogenesis deemed responsible for the accumulated damage in the susceptible tissues. Idiopathic Pulmonary Fibrosis, an interstitial lung disease, is one of the most common and studied fibrotic diseases and still remains an active research target. In this study we highlight unique and common (i) genes, (ii) biological pathways and (iii) candidate repurposed drugs among 9 fibrotic diseases. We identify 7 biological pathways involved in all 9 fibrotic diseases as well as pathways unique to some of these diseases. Based on our Drug Repurposing results, we suggest captopril and ibuprofen that both appear to slow the progression of fibrotic diseases according to existing bibliography. We also recommend nafcillin and memantine, which haven't been studied against fibrosis yet, for further wet-lab experimentation. We also observe a group of cardiomyopathy-related pathways that are exclusively highlighted for Oral Submucous Fibrosis. We suggest digoxin to be tested against Oral Submucous Fibrosis, since we observe cardiomyopathy-related pathways implicated in Oral Submucous Fibrosis and there is bibliographic evidence that digoxin may potentially clear myocardial fibrosis. Finally, we establish that Idiopathic Pulmonary Fibrosis shares several involved genes, biological pathways and candidate inhibiting-drugs with Dupuytren's Disease, IgG4-related Disease, Systemic Sclerosis and Cystic Fibrosis. We propose that treatments for these fibrotic diseases should be jointly pursued.
Collapse
Affiliation(s)
- Evangelos Karatzas
- Department of Informatics and Telecommunications, University of Athens, Athens, Greece
| | - Andrea C. Kakouri
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - George Kolios
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alex Delis
- Department of Informatics and Telecommunications, University of Athens, Athens, Greece
| | - George M. Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
47
|
Liu G, Philp AM, Corte T, Travis MA, Schilter H, Hansbro NG, Burns CJ, Eapen MS, Sohal SS, Burgess JK, Hansbro PM. Therapeutic targets in lung tissue remodelling and fibrosis. Pharmacol Ther 2021; 225:107839. [PMID: 33774068 DOI: 10.1016/j.pharmthera.2021.107839] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Structural changes involving tissue remodelling and fibrosis are major features of many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Abnormal deposition of extracellular matrix (ECM) proteins is a key factor in the development of tissue remodelling that results in symptoms and impaired lung function in these diseases. Tissue remodelling in the lungs is complex and differs between compartments. Some pathways are common but tissue remodelling around the airways and in the parenchyma have different morphologies. Hence it is critical to evaluate both common fibrotic pathways and those that are specific to different compartments; thereby expanding the understanding of the pathogenesis of fibrosis and remodelling in the airways and parenchyma in asthma, COPD and IPF with a view to developing therapeutic strategies for each. Here we review the current understanding of remodelling features and underlying mechanisms in these major respiratory diseases. The differences and similarities of remodelling are used to highlight potential common therapeutic targets and strategies. One central pathway in remodelling processes involves transforming growth factor (TGF)-β induced fibroblast activation and myofibroblast differentiation that increases ECM production. The current treatments and clinical trials targeting remodelling are described, as well as potential future directions. These endeavours are indicative of the renewed effort and optimism for drug discovery targeting tissue remodelling and fibrosis.
Collapse
Affiliation(s)
- Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia; St Vincent's Medical School, UNSW Medicine, UNSW, Sydney, NSW, Australia
| | - Tamera Corte
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Mark A Travis
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre and Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Heidi Schilter
- Pharmaxis Ltd, 20 Rodborough Road, Frenchs Forest, Sydney, NSW, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Chris J Burns
- Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mathew S Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Department of Pathology and Medical Biology, Groningen, The Netherlands; Woolcock Institute of Medical Research, Discipline of Pharmacology, The University of Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
48
|
Koba T, Takeda Y, Narumi R, Shiromizu T, Nojima Y, Ito M, Kuroyama M, Futami Y, Takimoto T, Matsuki T, Edahiro R, Nojima S, Hayama Y, Fukushima K, Hirata H, Koyama S, Iwahori K, Nagatomo I, Suzuki M, Shirai Y, Murakami T, Nakanishi K, Nakatani T, Suga Y, Miyake K, Shiroyama T, Kida H, Sasaki T, Ueda K, Mizuguchi K, Adachi J, Tomonaga T, Kumanogoh A. Proteomics of serum extracellular vesicles identifies a novel COPD biomarker, fibulin-3 from elastic fibres. ERJ Open Res 2021; 7:00658-2020. [PMID: 33778046 PMCID: PMC7983195 DOI: 10.1183/23120541.00658-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/18/2020] [Indexed: 12/28/2022] Open
Abstract
There is an unmet need for novel biomarkers in the diagnosis of multifactorial COPD. We applied next-generation proteomics to serum extracellular vesicles (EVs) to discover novel COPD biomarkers. EVs from 10 patients with COPD and six healthy controls were analysed by tandem mass tag-based non-targeted proteomics, and those from elastase-treated mouse models of emphysema were also analysed by non-targeted proteomics. For validation, EVs from 23 patients with COPD and 20 healthy controls were validated by targeted proteomics. Using non-targeted proteomics, we identified 406 proteins, 34 of which were significantly upregulated in patients with COPD. Of note, the EV protein signature from patients with COPD reflected inflammation and remodelling. We also identified 63 upregulated candidates from 1956 proteins by analysing EVs isolated from mouse models. Combining human and mouse biomarker candidates, we validated 45 proteins by targeted proteomics, selected reaction monitoring. Notably, levels of fibulin-3, tripeptidyl-peptidase 2, fibulin-1, and soluble scavenger receptor cysteine-rich domain-containing protein were significantly higher in patients with COPD. Moreover, six proteins; fibulin-3, tripeptidyl-peptidase 2, UTP-glucose-1-phosphate uridylyl transferase, CD81, CD177, and oncoprotein-induced transcript 3, were correlated with emphysema. Upregulation of fibulin-3 was confirmed by immunoblotting of EVs and immunohistochemistry in lungs. Strikingly, fibulin-3 knockout mice spontaneously developed emphysema with age, as evidenced by alveolar enlargement and elastin destruction. We discovered potential pathogenic biomarkers for COPD using next-generation proteomics of EVs. This is a novel strategy for biomarker discovery and precision medicine. This study identified novel biomarkers for COPD using next-generation proteomics of serum extracellular vesicles. Notably, the expression of fibulin-3 is correlated with lung function and emphysema. This could be useful for personalised medicine.https://bit.ly/2JfRCgk
Collapse
Affiliation(s)
- Taro Koba
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshito Takeda
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryohei Narumi
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Takashi Shiromizu
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Yosui Nojima
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Mari Ito
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Muneyoshi Kuroyama
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yu Futami
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takayuki Takimoto
- Dept of Respiratory Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Kita-Ku, Sakai, Osaka, Japan
| | - Takanori Matsuki
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryuya Edahiro
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoshi Nojima
- Dept of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshitomo Hayama
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kiyoharu Fukushima
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Haruhiko Hirata
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shohei Koyama
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kota Iwahori
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Izumi Nagatomo
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mayumi Suzuki
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuya Shirai
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Teruaki Murakami
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kaori Nakanishi
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takeshi Nakatani
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasuhiko Suga
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kotaro Miyake
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takayuki Shiroyama
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroshi Kida
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takako Sasaki
- Dept of Biochemistry II, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto, Tokyo, Japan
| | - Kenji Mizuguchi
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Atsushi Kumanogoh
- Dept of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
49
|
Mehta M, Paudel KR, Panth N, Xenaki D, Macloughlin R, Oliver BG, Lobenberg R, Hansbro PM, Chellappan DK, Dua K. Drug delivery advances in mitigating inflammation via matrix metalloproteinases in respiratory diseases. Nanomedicine (Lond) 2021; 16:437-439. [DOI: 10.2217/nnm-2021-0016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Nisha Panth
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
| | - Dikaia Xenaki
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW 2037, Australia
| | - Ronan Macloughlin
- Aerogen, IDA Business Park, Dangan, Galway H91 HE94, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
- School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin D02 PN40, Ireland
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW 2037, Australia
| | - Raimar Lobenberg
- University of Alberta, Faculty of Pharmacy & Pharmaceutical Sciences, Edmonton, AB, T6G 2N8, Canada
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
- University of Alberta, Faculty of Pharmacy & Pharmaceutical Sciences, Edmonton, AB, T6G 2N8, Canada
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, NSW 2305, Australia
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| |
Collapse
|
50
|
Tu X, Donovan C, Kim RY, Wark PAB, Horvat JC, Hansbro PM. Asthma-COPD overlap: current understanding and the utility of experimental models. Eur Respir Rev 2021; 30:30/159/190185. [PMID: 33597123 PMCID: PMC9488725 DOI: 10.1183/16000617.0185-2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Pathological features of both asthma and COPD coexist in some patients and this is termed asthma-COPD overlap (ACO). ACO is heterogeneous and patients exhibit various combinations of asthma and COPD features, making it difficult to characterise the underlying pathogenic mechanisms. There are no controlled studies that define effective therapies for ACO, which arises from the lack of international consensus on the definition and diagnostic criteria for ACO, as well as scant in vitro and in vivo data. There remain unmet needs for experimental models of ACO that accurately recapitulate the hallmark features of ACO in patients. The development and interrogation of such models will identify underlying disease-causing mechanisms, as well as enabling the identification of novel therapeutic targets and providing a platform for assessing new ACO therapies. Here, we review the current understanding of the clinical features of ACO and highlight the approaches that are best suited for developing representative experimental models of ACO. Understanding the pathogenesis of asthma-COPD overlap is critical for improving therapeutic approaches. We present current knowledge on asthma-COPD overlap and the requirements for developing an optimal animal model of disease.https://bit.ly/3lsjyvm
Collapse
Affiliation(s)
- Xiaofan Tu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Both authors contributed equally
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute, Camperdown, Australia.,University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia.,Both authors contributed equally
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute, Camperdown, Australia.,University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia .,Centre for Inflammation, Centenary Institute, Camperdown, Australia.,University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| |
Collapse
|