1
|
Motsoeneng BM, Dhar N, Nunes MC, Krammer F, Madhi SA, Moore PL, Richardson SI. Hemagglutinin Stalk-Specific Fc-Mediated Functions Are Associated With Protection Against Influenza Illness After Seasonal Influenza Vaccination. J Infect Dis 2024; 230:1329-1336. [PMID: 38743692 DOI: 10.1093/infdis/jiae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Future vaccine candidates aim to elicit antibodies against the conserved hemagglutinin stalk domain. Understanding the protective mechanism of these antibodies, which mediate broad neutralization and Fc-mediated functions, following seasonal vaccination is critical. METHODS Plasma samples were obtained from pregnant women with or without HIV-1 enrolled in a randomised trial (138 trivalent inactivated vaccine [TIV] and 145 placebo recipients). Twenty-three influenza cases were confirmed within 6 months postpartum. We measured H1 stalk-specific antibody-dependent cellular phagocytosis (ADCP), complement deposition (ADCD) and cellular cytotoxicity (ADCC) at enrolment and 1-month postvaccination. RESULTS Lower H1 stalk-specific ADCP and ADCD activity was detected for participants with confirmed influenza compared with individuals without illness 1-month postvaccination. Pre-existing ADCP scores ≥250 reduced the odds of A/H1N1 infection (odds ratio [OR], 0.11; P = .01) with an 83% likelihood of risk reduction. Following TIV, ADCD scores of ≥25 and ≥15 significantly reduced the odds against A/H1N1 (OR, 0.10; P = .01) and non-group 1 (OR, 0.06; P = .0004) influenza virus infections, respectively. These ADCD scores were associated with >84% likelihood of risk reduction. CONCLUSIONS Overall, H1 stalk-specific Fc effector function correlates with protection against influenza illness following influenza vaccination during pregnancy. These findings provide insight into the protective mechanisms of hemagglutinin stalk antibodies. CLINICAL TRIALS REGISTRATION NCT01306669 and NCT01306682 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Boitumelo M Motsoeneng
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| | - Nisha Dhar
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Marta C Nunes
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Innovation/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Center of Excellence in Respiratory Pathogens, Hospices Civils de Lyon and Centre International de Recherche en Infectiologie, Équipe Santé Publique, Épidémiologie et Écologie Évolutive des Maladies Infectieuses (PHE3ID), Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard, Lyon, France
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Innovation/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L Moore
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu Natal, Durban, South Africa
| | - Simone I Richardson
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| |
Collapse
|
2
|
Clark JJ, Hoxie I, Adelsberg DC, Sapse IA, Andreata-Santos R, Yong JS, Amanat F, Tcheou J, Raskin A, Singh G, González-Domínguez I, Edgar JE, Bournazos S, Sun W, Carreño JM, Simon V, Ellebedy AH, Bajic G, Krammer F. Protective effect and molecular mechanisms of human non-neutralizing cross-reactive spike antibodies elicited by SARS-CoV-2 mRNA vaccination. Cell Rep 2024; 43:114922. [PMID: 39504245 PMCID: PMC11804229 DOI: 10.1016/j.celrep.2024.114922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2024] [Revised: 09/22/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Neutralizing antibodies correlate with protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent studies, however, show that binding antibody titers, in the absence of robust neutralizing activity, also correlate with protection against disease progression. Non-neutralizing antibodies cannot directly protect against infection but may recruit effector cells and thus contribute to the clearance of infected cells. Additionally, they often bind conserved epitopes across multiple variants. Here, we characterize 42 human monoclonal antibodies (mAbs) from coronavirus disease 2019 (COVID-19)-vaccinated individuals. Most of these antibodies exhibit no neutralizing activity in vitro, but several non-neutralizing antibodies provide protection against lethal challenge with SARS-CoV-2 in different animal models. A subset of those mAbs shows a clear dependence on Fc-mediated effector functions. We have determined the structures of three non-neutralizing antibodies, with two targeting the receptor-binding domain and one that binds the subdomain 1 region. Our data confirm the real-world observation in humans that non-neutralizing antibodies to SARS-CoV-2 can be protective.
Collapse
Affiliation(s)
- Jordan J Clark
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Irene Hoxie
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel C Adelsberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Iden A Sapse
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Andreata-Santos
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Retrovirology Laboratory, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP 04023-062, Brazil
| | - Jeremy S Yong
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Johnstone Tcheou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ariel Raskin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Julia E Edgar
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Edgar JE, Bournazos S. Fc-FcγR interactions during infections: From neutralizing antibodies to antibody-dependent enhancement. Immunol Rev 2024; 328:221-242. [PMID: 39268652 PMCID: PMC11659939 DOI: 10.1111/imr.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/17/2024]
Abstract
Advances in antibody technologies have resulted in the development of potent antibody-based therapeutics with proven clinical efficacy against infectious diseases. Several monoclonal antibodies (mAbs), mainly against viruses such as SARS-CoV-2, HIV-1, Ebola virus, influenza virus, and hepatitis B virus, are currently undergoing clinical testing or are already in use. Although these mAbs exhibit potent neutralizing activity that effectively blocks host cell infection, their antiviral activity results not only from Fab-mediated virus neutralization, but also from the protective effector functions mediated through the interaction of their Fc domains with Fcγ receptors (FcγRs) on effector leukocytes. Fc-FcγR interactions confer pleiotropic protective activities, including the clearance of opsonized virions and infected cells, as well as the induction of antiviral T-cell responses. However, excessive or inappropriate activation of specific FcγR pathways can lead to disease enhancement and exacerbated pathology, as seen in the context of dengue virus infections. A comprehensive understanding of the diversity of Fc effector functions during infection has guided the development of engineered antiviral antibodies optimized for maximal effector activity, as well as the design of targeted therapeutic approaches to prevent antibody-dependent enhancement of disease.
Collapse
Affiliation(s)
- Julia E. Edgar
- The London School of Hygiene and Tropical MedicineLondonUK
| | - Stylianos Bournazos
- The Laboratory of Molecular Genetics and ImmunologyThe Rockefeller UniversityNew YorkNew YorkUSA
| |
Collapse
|
4
|
Izadi A, Godzwon M, Söderlund Strand A, Schmidt T, Kumlien Georén S, Drosten C, Ohlin M, Nordenfelt P. Protective Non-neutralizing anti-N-terminal Domain mAb Maintains Fc-mediated Function against SARS-COV-2 Variants up to BA.2.86-JN.1 with Superfluous In Vivo Protection against JN.1 Due to Attenuated Virulence. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:678-689. [PMID: 39018495 PMCID: PMC11335326 DOI: 10.4049/jimmunol.2300675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/14/2023] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
Substantial evidence supports that Fc-mediated effector functions of anti-spike Abs contribute to anti-SARS-Cov-2 protection. We have previously shown that two non-neutralizing but opsonic mAbs targeting the receptor-binding domain and N-terminal domain (NTD), Ab81 and Ab94, respectively, are protective against lethal Wuhan SARS-CoV-2 infection in K18-hACE2 mice. In this article, we investigated whether these protective non-neutralizing Abs maintain Fc-mediated function and Ag binding against mutated SARS-CoV-2 variants. Ab81 and Ab94 retained their nanomolar affinity and Fc-mediated function toward Omicron and its subvariants, such as BA.2, BA.4, BA.5, XBB, XBB1.5, and BQ1.1. However, when encountering the more heavily mutated BA.2.86, Ab81 lost its function, whereas the 10 new mutations in the NTD did not affect Ab94. In vivo experiments with Ab94 in K18-hACE2 mice inoculated with a stringent dose of 100,000 PFU of the JN.1 variant revealed unexpected results. Surprisingly, this variant exhibited low disease manifestation in this animal model with no weight loss or death in the control group. Still, assessment of mice using a clinical scoring system showed better protection for Ab94-treated mice, indicating that Fc-mediated functions are still beneficial. Our work shows that a protective anti-receptor-binding domain non-neutralizing mAb lost reactivity when BA.2.86 emerged, whereas the anti-NTD mAb was still functional. Finally, this work adds new insight into the evolution of the SARS-CoV-2 virus by reporting that JN.1 is substantially less virulent in vivo than previous strains.
Collapse
Affiliation(s)
- Arman Izadi
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Anna Söderlund Strand
- Department of Laboratory Medicine, Clinical Microbiology, Skåne University Hospital Lund, Lund University, Lund, Sweden
| | - Tobias Schmidt
- Department of Clinical Sciences Lund, Division of Pediatrics, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Christian Drosten
- German Center for Infection Research, Berlin, Germany
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden
- SciLifeLab Drug Discovery and Development, Lund University, Lund, Sweden
| | - Pontus Nordenfelt
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Laboratory Medicine, Clinical Microbiology, Skåne University Hospital Lund, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Clark J, Hoxie I, Adelsberg DC, Sapse IA, Andreata-Santos R, Yong JS, Amanat F, Tcheou J, Raskin A, Singh G, González-Domínguez I, Edgar JE, Bournazos S, Sun W, Carreño JM, Simon V, Ellebedy AH, Bajic G, Krammer F. Protective effect and molecular mechanisms of human non-neutralizing cross-reactive spike antibodies elicited by SARS-CoV-2 mRNA vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582613. [PMID: 38464151 PMCID: PMC10925278 DOI: 10.1101/2024.02.28.582613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 03/12/2024]
Abstract
Neutralizing antibodies correlate with protection against SARS-CoV-2. Recent studies, however, show that binding antibody titers, in the absence of robust neutralizing activity, also correlate with protection from disease progression. Non-neutralizing antibodies cannot directly protect from infection but may recruit effector cells thus contribute to the clearance of infected cells. Also, they often bind conserved epitopes across multiple variants. We characterized 42 human mAbs from COVID-19 vaccinated individuals. Most of these antibodies exhibited no neutralizing activity in vitro but several non-neutralizing antibodies protected against lethal challenge with SARS-CoV-2 in different animal models. A subset of those mAbs showed a clear dependence on Fc-mediated effector functions. We determined the structures of three non-neutralizing antibodies with two targeting the RBD, and one that targeting the SD1 region. Our data confirms the real-world observation in humans that non-neutralizing antibodies to SARS-CoV-2 can be protective.
Collapse
Affiliation(s)
- Jordan Clark
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Irene Hoxie
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel C. Adelsberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Iden A. Sapse
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Andreata-Santos
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Retrovirology Laboratory, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Jeremy S. Yong
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Johnstone Tcheou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ariel Raskin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Julia E. Edgar
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Abstract
Antibodies represent the primary correlate of immunity following most clinically approved vaccines. However, their mechanisms of action vary from pathogen to pathogen, ranging from neutralization, to opsonophagocytosis, to cytotoxicity. Antibody functions are regulated both by antigen specificity (Fab domain) and by the interaction of their Fc domain with distinct types of Fc receptors (FcRs) present in immune cells. Increasing evidence highlights the critical nature of Fc:FcR interactions in controlling pathogen spread and limiting the disease state. Moreover, variation in Fc-receptor engagement during the course of infection has been demonstrated across a range of pathogens, and this can be further influenced by prior exposure(s)/immunizations, age, pregnancy, and underlying health conditions. Fc:FcR functional variation occurs at the level of antibody isotype and subclass selection as well as post-translational modification of antibodies that shape Fc:FcR-interactions. These factors collectively support a model whereby the immune system actively harnesses and directs Fc:FcR interactions to fight disease. By defining the precise humoral mechanisms that control infections, as well as understanding how these functions can be actively tuned, it may be possible to open new paths for improving existing or novel vaccines.
Collapse
Affiliation(s)
- Kathryn A. Bowman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Paulina Kaplonek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Schwedler JL, Stefan MA, Thatcher CE, McIlroy PR, Sinha A, Phillips AM, Sumner CA, Courtney CM, Kim CY, Weilhammer DR, Harmon B. Therapeutic efficacy of a potent anti-Venezuelan equine encephalitis virus antibody is contingent on Fc effector function. MAbs 2024; 16:2297451. [PMID: 38170638 PMCID: PMC10766394 DOI: 10.1080/19420862.2023.2297451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
The development of specific, safe, and potent monoclonal antibodies (Abs) has led to novel therapeutic options for infectious disease. In addition to preventing viral infection through neutralization, Abs can clear infected cells and induce immunomodulatory functions through engagement of their crystallizable fragment (Fc) with complement proteins and Fc receptors on immune cells. Little is known about the role of Fc effector functions of neutralizing Abs in the context of encephalitic alphavirus infection. To determine the role of Fc effector function in therapeutic efficacy against Venezuelan equine encephalitis virus (VEEV), we compared the potently neutralizing anti-VEEV human IgG F5 (hF5) Ab with intact Fc function (hF5-WT) or containing the loss of function Fc mutations L234A and L235A (hF5-LALA) in the context of VEEV infection. We observed significantly reduced binding to complement and Fc receptors, as well as differential in vitro kinetics of Fc-mediated cytotoxicity for hF5-LALA compared to hF5-WT. The in vivo efficacy of hF5-LALA was comparable to hF5-WT at -24 and + 24 h post infection, with both Abs providing high levels of protection. However, when hF5-WT and hF5-LALA were administered + 48 h post infection, there was a significant decrease in the therapeutic efficacy of hF5-LALA. Together these results demonstrate that optimal therapeutic Ab treatment of VEEV, and possibly other encephalitic alphaviruses, requires neutralization paired with engagement of immune effectors via the Fc region.
Collapse
Affiliation(s)
- Jennifer L. Schwedler
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| | - Maxwell A. Stefan
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| | - Christine E. Thatcher
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| | - Peter R. McIlroy
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| | - Anupama Sinha
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| | - Ashlee M. Phillips
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Christopher A. Sumner
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| | - Colleen M. Courtney
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| | - Christina Y. Kim
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| | - Dina R. Weilhammer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Brooke Harmon
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| |
Collapse
|
8
|
Tong X, Deng Y, Cizmeci D, Fontana L, Carlock MA, Hanley HB, McNamara RP, Lingwood D, Ross TM, Alter G. Distinct Functional Humoral Immune Responses Are Induced after Live Attenuated and Inactivated Seasonal Influenza Vaccination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:24-34. [PMID: 37975667 PMCID: PMC10872955 DOI: 10.4049/jimmunol.2200956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/03/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Influenza viruses infect 5-30% of the world's population annually, resulting in millions of incidents of hospitalization and thousands of mortalities worldwide every year. Although annual vaccination has significantly reduced hospitalization rates in vulnerable populations, the current vaccines are estimated to offer a wide range of protection from 10 to 60% annually. Such incomplete immunity may be related to both poor antigenic coverage of circulating strains, as well as to the insufficient induction of protective immunity. Beyond the role of hemagglutinin (HA) and neuraminidase (NA), vaccine-induced Abs have the capacity to induce a broader array of Ab effector functions, including Ab-dependent cellular cytotoxicity, that has been implicated in universal immunity against influenza viruses. However, whether different vaccine platforms can induce functional humoral immunity in a distinct manner remains incompletely defined. In this study, we compared vaccine-induced humoral immune responses induced by two seasonal influenza vaccines in Homo sapiens, the i.m. inactivated vaccine (IIV/Fluzone) and the live attenuated mucosal vaccine (LAIV/FluMist). Whereas the inactivated influenza vaccine induced superior Ab titers and FcγR binding capacity to diverse HA and NA Ags, the live attenuated influenza mucosal vaccine induced a more robust functional humoral immune response against both the HA and NA domains. Multivariate Ab analysis further highlighted the significantly different overall functional humoral immune profiles induced by the two vaccines, marked by differences in IgG titers, FcR binding, and both NK cell-recruiting and opsonophagocytic Ab functions. These results highlight the striking differences in Ab Fc-effector profiles induced systemically by two distinct influenza vaccine platforms.
Collapse
Affiliation(s)
- Xin Tong
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Yixiang Deng
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Deniz Cizmeci
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Laura Fontana
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Michael A. Carlock
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Hannah B. Hanley
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | | | - Daniel Lingwood
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
9
|
Vanderven HA, Wentworth DN, Han WM, Peck H, Barr IG, Davey RT, Beigel JH, Dwyer DE, Jain MK, Angus B, Brandt CT, Mykietiuk A, Law MG, Neaton JD, Kent SJ. Understanding the treatment benefit of hyperimmune anti-influenza intravenous immunoglobulin (Flu-IVIG) for severe human influenza. JCI Insight 2023; 8:e167464. [PMID: 37289541 PMCID: PMC10443807 DOI: 10.1172/jci.insight.167464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2022] [Accepted: 06/05/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUNDAntibody-based therapies for respiratory viruses are of increasing importance. The INSIGHT 006 trial administered anti-influenza hyperimmune intravenous immunoglobulin (Flu-IVIG) to patients hospitalized with influenza. Flu-IVIG treatment improved outcomes in patients with influenza B but showed no benefit for influenza A.METHODSTo probe potential mechanisms of Flu-IVIG utility, sera collected from patients hospitalized with influenza A or B viruses (IAV or IBV) were analyzed for antibody isotype/subclass and Fcγ receptor (FcγR) binding by ELISA, bead-based multiplex, and NK cell activation assays.RESULTSInfluenza-specific FcγR-binding antibodies were elevated in Flu-IVIG-infused IBV- and IAV-infected patients. In IBV-infected participants (n = 62), increased IgG3 and FcγR binding were associated with more favorable outcomes. Flu-IVIG therapy also improved the odds of a more favorable outcome in patients with low levels of anti-IBV Fc-functional antibody. Higher FcγR-binding antibody was associated with less favorable outcomes in IAV-infected patients (n = 50), and Flu-IVIG worsened the odds of a favorable outcome in participants with low levels of anti-IAV Fc-functional antibody.CONCLUSIONThese detailed serological analyses provide insights into antibody features and mechanisms required for a successful humoral response against influenza, suggesting that IBV-specific, but not IAV-specific, antibodies with Fc-mediated functions may assist in improving influenza outcome. This work will inform development of improved influenza immunotherapies.TRIAL REGISTRATIONClinicalTrials.gov NCT02287467.FUNDINGFunding for this research was provided by subcontract 13XS134 under Leidos Biomedical Research Prime Contract HHSN261200800001E and HHSN261201500003I, NCI/NIAID.
Collapse
Affiliation(s)
- Hillary A. Vanderven
- Biomedicine, College of Public Health, Medical and Veterinary Sciences, and
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, Queensland, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Deborah N. Wentworth
- Divison of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Win Min Han
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Heidi Peck
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Ian G. Barr
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Richard T. Davey
- National Institute of Allergy and Infectious Disease (NIAID), Bethesda, Maryland, USA
| | - John H. Beigel
- National Institute of Allergy and Infectious Disease (NIAID), Bethesda, Maryland, USA
| | - Dominic E. Dwyer
- New South Wales Health Pathology-Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, Australia
| | | | - Brian Angus
- Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Christian T. Brandt
- Department of Infectious Diseases, Zealand University Hospital Roskilde, Denmark
| | | | - Matthew G. Law
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - James D. Neaton
- Divison of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen J. Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Carlton, Victoria, Australia
| | | |
Collapse
|
10
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Motsoeneng BM, Dhar N, Nunes MC, Krammer F, Madhi SA, Moore PL, Richardson SI. Influenza Vaccination Results in Differential Hemagglutinin Stalk-Specific Fc-Mediated Functions in Individuals Living With or Without HIV. Front Immunol 2022; 13:873191. [PMID: 35514992 PMCID: PMC9062095 DOI: 10.3389/fimmu.2022.873191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022] Open
Abstract
Influenza virus hemagglutinin (HA) stalk-specific antibodies have been shown to potently induce Fc-mediated effector functions which are important in protection from disease. In placebo-controlled maternal influenza (MatFlu) vaccination trials of pregnant women living with or without HIV, reduced risk of influenza illness was associated with high HA stalk antibody titers following trivalent inactivated vaccination (TIV). However, the mechanisms of immunity conferred by the HA stalk antibodies were not well understood. Here, we investigated HA stalk-specific Fc effector functions including antibody-dependent cellular phagocytosis (ADCP), antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent complement deposition (ADCD), and FcγRIIa and FcγRIIIa binding in response to seasonal influenza vaccination. These were measured pre- and 1-month post-vaccination in 141 HIV-uninfected women (67 TIV and 74 placebo recipients) and 119 women living with HIV (WLWH; 66 TIV and 53 placebo recipients). In contrast to HIV-uninfected women, where HA stalk-specific ADCP and FcγRIIa binding were significantly boosted, WLWH showed no increase in response to vaccination. HA stalk-specific ADCC potential and FcγRIIIa binding were not boosted regardless of HIV status but were higher in WLWH compared with HIV-uninfected women prior to vaccination. HA stalk-specific ADCD was significantly increased by vaccination in all women, but was significantly lower in the WLWH both pre- and post- vaccination. Co-ordination between HA stalk-specific ADCP and ADCD in WLWH was improved by vaccination. Fc polyfunctionality was enhanced by vaccination in HIV-uninfected women and driven by the HA stalk antibody titers. However, in the WLWH, higher pre-vaccination Fc polyfunctionality was maintained post-vaccination but was decoupled from titer. Overall, we showed differential regulation of Fc effector HA stalk responses, suggesting that HIV infection results in unique humoral immunity in response to influenza vaccination, with relevance for future strategies that aim to target the HA stalk in this population.
Collapse
Affiliation(s)
- Boitumelo M Motsoeneng
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of The National Health Laboratory Services, Johannesburg, South Africa.,South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nisha Dhar
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Innovation/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Marta C Nunes
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Innovation/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Pathology, Molecular and Cell based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Innovation/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,African Leadership in Vaccinology Expertise (ALIVE), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L Moore
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of The National Health Laboratory Services, Johannesburg, South Africa.,South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,African Leadership in Vaccinology Expertise (ALIVE), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Simone I Richardson
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of The National Health Laboratory Services, Johannesburg, South Africa.,South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
12
|
Fuentes-Villalobos F, Garrido JL, Medina MA, Zambrano N, Ross N, Bravo F, Gaete-Argel A, Oyarzún-Arrau A, Amanat F, Soto-Rifo R, Valiente-Echeverría F, Ocampo R, Esveile C, Ferreira L, Cabrera J, Torres V, Rioseco ML, Riquelme R, Barría S, Alvarez R, Pinos Y, Krammer F, Calvo M, Barria MI. Sustained Antibody-Dependent NK Cell Functions in Mild COVID-19 Outpatients During Convalescence. Front Immunol 2022; 13:796481. [PMID: 35197972 PMCID: PMC8859986 DOI: 10.3389/fimmu.2022.796481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2021] [Accepted: 01/14/2022] [Indexed: 01/10/2023] Open
Abstract
The coronavirus disease 2019 (COVID19) pandemic has left researchers scrambling to identify the humoral immune correlates of protection from COVID-19. To date, the antibody mediated correlates of virus neutralization have been extensively studied. However, the extent that non-neutralizing functions contribute to anti-viral responses are ill defined. In this study, we profiled the anti-spike antibody subtype/subclass responses, along with neutralization and antibody-dependent natural killer cell functions in 83 blood samples collected between 4 and 201 days post-symptoms onset from a cohort of COVID-19 outpatients. We observed heterogeneous humoral responses against the acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Overall, anti-spike profiles were characterized by a rapid rise of IgA and sustained IgG titers. In addition, strong antibody-mediated natural killer effector responses correlated with milder disease and being female. While higher neutralization profiles were observed in males along with increased severity. These results give an insight into the underlying function of antibodies beyond neutralization and suggest that antibody-mediated natural killer cell activity is a key function of the humoral response against the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
| | - Jose L Garrido
- Ichor Biologics LLC, New York, NY, United States.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Matías A Medina
- Department of Microbiology, Faculty of Biological Science, Universidad de Concepción, Concepción, Chile
| | - Nicole Zambrano
- Department of Microbiology, Faculty of Biological Science, Universidad de Concepción, Concepción, Chile
| | - Natalia Ross
- Department of Microbiology, Faculty of Biological Science, Universidad de Concepción, Concepción, Chile
| | - Felipe Bravo
- Department of Microbiology, Faculty of Biological Science, Universidad de Concepción, Concepción, Chile
| | - Aracelly Gaete-Argel
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Aarón Oyarzún-Arrau
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ricardo Soto-Rifo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | | | - Leonila Ferreira
- Hospital Clínico Regional Dr. Guillermo Grant Benavente, Concepción, Chile
| | | | - Vivianne Torres
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Maria L Rioseco
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile.,Hospital Puerto Montt Dr. Eduardo Schütz Schroeder, Puerto Montt, Chile
| | - Raúl Riquelme
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile.,Hospital Puerto Montt Dr. Eduardo Schütz Schroeder, Puerto Montt, Chile
| | - Sebastián Barría
- Hospital Puerto Montt Dr. Eduardo Schütz Schroeder, Puerto Montt, Chile
| | - Raymond Alvarez
- Ichor Biologics LLC, New York, NY, United States.,Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mario Calvo
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Maria I Barria
- Department of Microbiology, Faculty of Biological Science, Universidad de Concepción, Concepción, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | | |
Collapse
|
13
|
Vanderven HA, Esterbauer R, Jegaskanda S, Tan HX, Wheatley AK, Kent SJ. Poor protective potential of influenza nucleoprotein antibodies despite wide prevalence. Immunol Cell Biol 2021; 100:49-60. [PMID: 34687553 DOI: 10.1111/imcb.12508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/28/2022]
Abstract
Humans are exposed to influenza virus through periodic infections. Due to these repeated exposures, human populations commonly have elevated antibody titers targeting the conserved internal influenza virus nucleoprotein (NP). Despite the presence of anti-NP antibodies, humans are acutely susceptible to drifted influenza viruses with antigenically different surface proteins and the protective potential of human NP antibodies is unclear. In this study, high levels of anti-NP antibody and NP-specific B cells were detected in both adult humans and influenza-infected mice, confirming that NP is a major target of humoral immunity. Through sorting single B cells from influenza-exposed human adults, we generated a panel of 11 anti-NP monoclonal antibodies (mAbs). The majority of anti-NP human mAbs generated were capable of engaging cellular Fc receptors and bound NP on the surface of influenza-infected cell lines in vitro, suggesting that anti-NP mAbs have the potential to mediate downstream Fc effector functions such as antibody-dependent cellular cytotoxicity and antibody-dependent phagocytosis. However, human anti-NP mAbs were not protective in vivo when passively transferred into a murine influenza challenge model. Future in vivo studies examining the synergistic effect of anti-NP mAbs infused with other influenza-specific mAbs are warranted.
Collapse
Affiliation(s)
- Hillary A Vanderven
- Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Sinthujan Jegaskanda
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, Australia.,Melbourne Sexual Health Centre, Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Carlton, VIC, Australia
| |
Collapse
|
14
|
Siggins MK, Thwaites RS, Openshaw PJM. Durability of Immunity to SARS-CoV-2 and Other Respiratory Viruses. Trends Microbiol 2021; 29:648-662. [PMID: 33896688 PMCID: PMC8026254 DOI: 10.1016/j.tim.2021.03.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Even in nonpandemic times, respiratory viruses account for a vast global burden of disease. They remain a major cause of illness and death and they pose a perpetual threat of breaking out into epidemics and pandemics. Many of these respiratory viruses infect repeatedly and appear to induce only narrow transient immunity, but the situation varies from one virus to another. In the absence of effective specific treatments, understanding the role of immunity in protection, disease, and resolution is of paramount importance. These problems have been brought into sharp focus by the coronavirus disease 2019 (COVID-19) pandemic. Here, we summarise what is now known about adaptive immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and draw comparisons with immunity to other respiratory viruses, focusing on the longevity of protective responses.
Collapse
Affiliation(s)
- Matthew K Siggins
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
15
|
Abstract
INTRODUCTION Antibodies mediate pathogen neutralization in addition to several cytotoxic Fc functions through engaging cellular receptors and recruiting effector cells. Fc effector functions have been well described in disease control and protection against infectious diseases including HIV, Ebola, malaria, influenza and tuberculosis, making them attractive targets for vaccine design. AREAS COVERED We briefly summarize the role of Fc effector functions in disease control and protection in viral, bacterial and parasitic infectious diseases. We review Fc effector function in passive immunization and vaccination, and primarily focus on strategies to elicit and modulate these functions as part of a robust vaccine strategy. EXPERT OPINION Despite their known correlation with vaccine efficacy for several diseases, only recently have seminal studies addressed how these Fc effector functions can be elicited and modulated in vaccination. However, gaps remain in assay standardization and the precise mechanisms of diverse functional assays. Furthermore, there are inherent difficulties in the translation of findings from animal models to humans, given the difference in sequence, expression and function of Fc receptors and Fc portions of antibodies. However, overall it is clear that vaccine development to elicit Fc effector function is an important goal for optimal prevention against infectious disease.
Collapse
Affiliation(s)
- Simone I Richardson
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, KwaZulu-Natal, South Africa
| |
Collapse
|
16
|
Selva KJ, van de Sandt CE, Lemke MM, Lee CY, Shoffner SK, Chua BY, Davis SK, Nguyen THO, Rowntree LC, Hensen L, Koutsakos M, Wong CY, Mordant F, Jackson DC, Flanagan KL, Crowe J, Tosif S, Neeland MR, Sutton P, Licciardi PV, Crawford NW, Cheng AC, Doolan DL, Amanat F, Krammer F, Chappell K, Modhiran N, Watterson D, Young P, Lee WS, Wines BD, Mark Hogarth P, Esterbauer R, Kelly HG, Tan HX, Juno JA, Wheatley AK, Kent SJ, Arnold KB, Kedzierska K, Chung AW. Systems serology detects functionally distinct coronavirus antibody features in children and elderly. Nat Commun 2021; 12:2037. [PMID: 33795692 PMCID: PMC8016934 DOI: 10.1038/s41467-021-22236-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2020] [Accepted: 02/26/2021] [Indexed: 02/08/2023] Open
Abstract
The hallmarks of COVID-19 are higher pathogenicity and mortality in the elderly compared to children. Examining baseline SARS-CoV-2 cross-reactive immunological responses, induced by circulating human coronaviruses (hCoVs), is needed to understand such divergent clinical outcomes. Here we show analysis of coronavirus antibody responses of pre-pandemic healthy children (n = 89), adults (n = 98), elderly (n = 57), and COVID-19 patients (n = 50) by systems serology. Moderate levels of cross-reactive, but non-neutralizing, SARS-CoV-2 antibodies are detected in pre-pandemic healthy individuals. SARS-CoV-2 antigen-specific Fcγ receptor binding accurately distinguishes COVID-19 patients from healthy individuals, suggesting that SARS-CoV-2 infection induces qualitative changes to antibody Fc, enhancing Fcγ receptor engagement. Higher cross-reactive SARS-CoV-2 IgA and IgG are observed in healthy elderly, while healthy children display elevated SARS-CoV-2 IgM, suggesting that children have fewer hCoV exposures, resulting in less-experienced but more polyreactive humoral immunity. Age-dependent analysis of COVID-19 patients, confirms elevated class-switched antibodies in elderly, while children have stronger Fc responses which we demonstrate are functionally different. These insights will inform COVID-19 vaccination strategies, improved serological diagnostics and therapeutics.
Collapse
Affiliation(s)
- Kevin J Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Melissa M Lemke
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Christina Y Lee
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Suzanne K Shoffner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Brendon Y Chua
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Samantha K Davis
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Chinn Yi Wong
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Francesca Mordant
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - David C Jackson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Katie L Flanagan
- Department of Infectious Diseases and Tasmanian Vaccine Trial Centre, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Jane Crowe
- Deepdene Surgery, Deepdene, VIC, Australia
| | - Shidan Tosif
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of General Medicine, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Melanie R Neeland
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Philip Sutton
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Paul V Licciardi
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Nigel W Crawford
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Immunisation Service, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Allen C Cheng
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Infection Prevention & Healthcare Epidemiology Unit, Alfred Health, Melbourne, VIC, Australia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keith Chappell
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Paul Young
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Hannah G Kelly
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre, Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
17
|
Zhu P, Yi X, Zhang L, Liu Y, Wang S, Gu J, Zhu X, Yu X. Identification of H7N9 hemagglutinin novel protein epitopes that elicit strong antibody-dependent, cell-mediated cytotoxic activities with protection from influenza infection in mouse model. Cell Immunol 2020; 359:104255. [PMID: 33316647 DOI: 10.1016/j.cellimm.2020.104255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2020] [Revised: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND Antibody-dependent cell-mediated cytotoxicity (ADCC) is one of the mechanisms connecting humoral immunity and cellular immunity and has been well-demonstrated in recent studies. Neutralizing antibodies and antibodies can mediate ADCC effects and both build a strong defense against H7N9 influenza virus infection. In our previous study, we found that H7N9 patients' plasma displayed low neutralizing activities that were not sufficient for host protection; however, the plasma of some patients can mediate strong ADCC effects. METHODS Based on the plasma samples of H7N9 infected patients collected, we measured the ADCC activities of these samples and selected the best to locate the dominant epitopes on H7N9 hemagglutinin (HA) protein that can elicit antibodies and strong ADCC activities. We constructed a yeast surface-display H7N9 HA protein epitope library and screened this library against plasma samples with different potencies in mediating ADCC effects. RESULTS Two dominant epitopes were selected from the screening. Plasma samples with depleted antibodies that were specific to the epitopes showed reduced ADCC activities. The serum of mice immunized with the epitopes elicited strong ADCC activities. Three monoclonal antibodies were isolated which showed high ADCC effects in vitro. Vaccination with isolated ADCC activating epitopes can provide partial protection from influenza infection in mouse model. And mice with vaccinated with combination of epitopes and extracellular domain can provide full protection from influenza infection in the same mouse model. CONCLUSIONS In this study, the epitopes isolated on H7N9 HA were immunogenic and elicited antibodies and strong ADCC activities in mice. Although the protective effect of the epitopes is partial, the combination of epitopes and extracellular domain can provide 100% protection from influenza virus infection in the same mouse model. Our study provides information on the potential use of epitope vaccine design against H7N9 viral infection.
Collapse
Affiliation(s)
- Peipei Zhu
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Xianghua Yi
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Long Zhang
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Yuting Liu
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Siqi Wang
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Jun Gu
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Xuyou Zhu
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China.
| | - Xiaoting Yu
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China.
| |
Collapse
|
18
|
Kavian N, Hachim A, Poon LLM, Valkenburg SA. Vaccination with ADCC activating HA peptide epitopes provides partial protection from influenza infection. Vaccine 2020; 38:5885-5890. [PMID: 32718818 PMCID: PMC7524583 DOI: 10.1016/j.vaccine.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2020] [Revised: 06/11/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
Influenza-specific antibody dependent cellular cytotoxicity (ADCC) antibodies have a broad cross reactivity and potential as an immune correlate for universal vaccines. Peptide-mapping for ADCC reactivity of H1-HA and H7-HA proteins from human serum samples identified high ADCC-inducing peptides in both the HA1 and HA2 regions. Vaccination of mice with single ADCC-peptides induced ADCC activity leading to partial protection from lethal influenza challenge, with increased survival, reduced viral loads, and reduced activation of NK cells in the lungs. Targeted vaccination strategies to elicit ADCC responses may provide an approach for universal vaccines.
Collapse
Affiliation(s)
- Niloufar Kavian
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region; Faculté de Médecine Université Paris Descartes, Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire Cochin, Serviced'Immunologie Biologique, Paris, France; Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Asmaa Hachim
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Leo L M Poon
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region; Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - Sophie A Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
19
|
Pierce S, Geanes ES, Bradley T. Targeting Natural Killer Cells for Improved Immunity and Control of the Adaptive Immune Response. Front Cell Infect Microbiol 2020; 10:231. [PMID: 32509600 PMCID: PMC7248265 DOI: 10.3389/fcimb.2020.00231] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are critical for targeting and killing tumor, virus-infected and stressed cells as a member of the innate immune system. Recently, NK cells have also emerged as key regulators of adaptive immunity and have become a prominent therapeutic target for cancer immunotherapy and infection control. NK cells display a diverse array of phenotypes and function. Determining how NK cells develop and are regulated is critical for understanding their role in both innate and adaptive immunity. In this review we discuss current research approaches into NK cell adaptive immunity and how these cells are being harnessed for improving cancer and vaccination outcomes.
Collapse
Affiliation(s)
- Stephen Pierce
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, United States
| | - Eric S Geanes
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, United States
| | - Todd Bradley
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, United States.,Departments of Pediatrics and Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States.,Department of Pediatrics, University of Missouri Kansas City Medical School, Kansas City, MO, United States
| |
Collapse
|
20
|
Gao R, Sheng Z, Sreenivasan CC, Wang D, Li F. Influenza A Virus Antibodies with Antibody-Dependent Cellular Cytotoxicity Function. Viruses 2020; 12:v12030276. [PMID: 32121563 PMCID: PMC7150983 DOI: 10.3390/v12030276] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Influenza causes millions of cases of hospitalizations annually and remains a public health concern on a global scale. Vaccines are developed and have proven to be the most effective countermeasures against influenza infection. Their efficacy has been largely evaluated by hemagglutinin inhibition (HI) titers exhibited by vaccine-induced neutralizing antibodies, which correlate fairly well with vaccine-conferred protection. Contrarily, non-neutralizing antibodies and their therapeutic potential are less well defined, yet, recent advances in anti-influenza antibody research indicate that non-neutralizing Fc-effector activities, especially antibody-dependent cellular cytotoxicity (ADCC), also serve as a critical mechanism in antibody-mediated anti-influenza host response. Monoclonal antibodies (mAbs) with Fc-effector activities have the potential for prophylactic and therapeutic treatment of influenza infection. Inducing mAbs mediated Fc-effector functions could be a complementary or alternative approach to the existing neutralizing antibody-based prevention and therapy. This review mainly discusses recent advances in Fc-effector functions, especially ADCC and their potential role in influenza countermeasures. Considering the complexity of anti-influenza approaches, future vaccines may need a cocktail of immunogens in order to elicit antibodies with broad-spectrum protection via multiple protective mechanisms.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibody-Dependent Cell Cytotoxicity
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Host-Pathogen Interactions/immunology
- Humans
- Immunity, Innate
- Influenza A virus/immunology
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Rongyuan Gao
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (R.G.); (C.C.S.)
| | - Zizhang Sheng
- Zuckerman Institute, Columbia University, New York, NY 10027, USA;
| | - Chithra C. Sreenivasan
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (R.G.); (C.C.S.)
| | - Dan Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (R.G.); (C.C.S.)
- Correspondence: (D.W.); (F.L.)
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (R.G.); (C.C.S.)
- BioSNTR, Brookings, SD 57007, USA
- Correspondence: (D.W.); (F.L.)
| |
Collapse
|
21
|
van Erp EA, Lakerveld AJ, de Graaf E, Larsen MD, Schepp RM, Hipgrave Ederveen AL, Ahout IM, de Haan CA, Wuhrer M, Luytjes W, Ferwerda G, Vidarsson G, van Kasteren PB. Natural killer cell activation by respiratory syncytial virus-specific antibodies is decreased in infants with severe respiratory infections and correlates with Fc-glycosylation. Clin Transl Immunology 2020; 9:e1112. [PMID: 32099650 PMCID: PMC7029726 DOI: 10.1002/cti2.1112] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/20/2022] Open
Abstract
Objectives Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections in infants, and there is no vaccine available. In early life, the most important contributors to protection against infectious diseases are the innate immune response and maternal antibodies. However, antibody-mediated protection against RSV disease is incompletely understood, as both antibody levels and neutralisation capacity correlate poorly with protection. Since antibodies also mediate natural killer (NK) cell activation, we investigated whether this functionality correlates with RSV disease. Methods We performed an observational case-control study including infants hospitalised for RSV infection, hernia surgery or RSV-negative respiratory viral infections. We determined RSV antigen-specific antibody levels in plasma using a multiplex immunoassay. Subsequently, we measured the capacity of these antibodies to activate NK cells. Finally, we assessed Fc-glycosylation of the RSV-specific antibodies by mass spectrometry. Results We found that RSV-specific maternal antibodies activate NK cells in vitro. While concentrations of RSV-specific antibodies did not differ between cases and controls, antibodies from infants hospitalised for severe respiratory infections (RSV and/or other) induced significantly less NK cell interferon-γ production than those from uninfected controls. Furthermore, NK cell activation correlated with Fc-fucosylation of RSV-specific antibodies, but their glycosylation status did not significantly differ between cases and controls. Conclusion Our results suggest that Fc-dependent antibody function and quality, exemplified by NK cell activation and glycosylation, contribute to protection against severe RSV disease and warrant further studies to evaluate the potential of using these properties to evaluate and improve the efficacy of novel vaccines.
Collapse
Affiliation(s)
- Elisabeth A van Erp
- Centre for Infectious Disease Control National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands.,Section Pediatric Infectious Diseases Laboratory of Medical Immunology Radboud Institute for Molecular Life Sciences, Radboudumc Nijmegen The Netherlands.,Radboud Center for Infectious Diseases, Radboudumc Nijmegen The Netherlands
| | - Anke J Lakerveld
- Centre for Infectious Disease Control National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands
| | - Erik de Graaf
- Department of Experimental Immunohematology Sanquin Research and Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam Amsterdam The Netherlands
| | - Mads D Larsen
- Department of Experimental Immunohematology Sanquin Research and Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam Amsterdam The Netherlands
| | - Rutger M Schepp
- Centre for Infectious Disease Control National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands
| | | | - Inge Ml Ahout
- Section Pediatric Infectious Diseases Laboratory of Medical Immunology Radboud Institute for Molecular Life Sciences, Radboudumc Nijmegen The Netherlands.,Radboud Center for Infectious Diseases, Radboudumc Nijmegen The Netherlands
| | - Cornelis Am de Haan
- Department of Infectious Diseases and Immunology Virology Division Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics Leiden University Medical Center Leiden The Netherlands
| | - Willem Luytjes
- Centre for Infectious Disease Control National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands
| | - Gerben Ferwerda
- Section Pediatric Infectious Diseases Laboratory of Medical Immunology Radboud Institute for Molecular Life Sciences, Radboudumc Nijmegen The Netherlands.,Radboud Center for Infectious Diseases, Radboudumc Nijmegen The Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology Sanquin Research and Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam Amsterdam The Netherlands
| | - Puck B van Kasteren
- Centre for Infectious Disease Control National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands
| |
Collapse
|
22
|
Vanderven HA, Barr I, Reynaldi A, Wheatley AK, Wines BD, Davenport MP, Hogarth PM, Kent SJ. Fc functional antibody responses to adjuvanted versus unadjuvanted seasonal influenza vaccination in community-dwelling older adults. Vaccine 2020; 38:2368-2377. [PMID: 32035709 DOI: 10.1016/j.vaccine.2020.01.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Seasonal influenza vaccination with a standard trivalent influenza vaccine (TIV) induces a modest, and cross-reactive, Fc functional antibody response in older adults. Recent improvements to influenza vaccines include a quadrivalent influenza vaccine (QIV) and a TIV adjuvanted with the squalene-based oil-in-water emulsion MF59. METHODS Pre- and post-vaccination serum samples from older adults vaccinated with QIV (n = 27) and adjuvanted TIV (n = 44) were studied using hemagglutination inhibition (HAI) assays and dimeric Fc-gamma receptor IIIa binding ELISAs, as a surrogate of antibody-dependent cellular cytotoxicity (ADCC). RESULTS We found that the unadjuvanted QIV elicited a stronger HAI response against the H1N1 vaccine virus than the adjuvanted TIV. Post-vaccination levels of HA-specific ADCC antibodies were similar for older adults vaccinated with QIV and adjuvanted TIV. The ADCC response to influenza vaccination was largely determined by pre-vaccination or baseline levels of these antibodies, with older adults with low baseline levels of ADCC activity demonstrating greater post-vaccination rises. CONCLUSIONS In this cohort of community-dwelling older adults, the QIV was at least as good as the adjuvanted TIV in the induction of ADCC and HAI responses. Further studies on how these antibody responses translate to efficacy in preventing influenza infections are warranted.
Collapse
Affiliation(s)
- Hillary A Vanderven
- Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, Queensland, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | - Ian Barr
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia; WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Arnold Reynaldi
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria, Australia
| | - Bruce D Wines
- Immune Therapies Laboratory, Burnet Institute, Victoria, Australia
| | - Miles P Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - P Mark Hogarth
- Immune Therapies Laboratory, Burnet Institute, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria, Australia; Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Australia.
| |
Collapse
|
23
|
Vanderven HA, Kent SJ. The protective potential of Fc-mediated antibody functions against influenza virus and other viral pathogens. Immunol Cell Biol 2020; 98:253-263. [PMID: 31914207 DOI: 10.1111/imcb.12312] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/10/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023]
Abstract
In recent years, there has been a renewed interest in utilizing antibody fragment crystallizable (Fc) functions to prevent and control viral infections. The protective and therapeutic potential of Fc-mediated antibody functions have been assessed for some clinically important human viruses, including HIV, hemorrhagic fever viruses and influenza virus. There is mounting evidence that influenza-specific antibodies with Fc-mediated functions, such as antibody-dependent cellular cytotoxicity and antibody-dependent phagocytosis, can aid in the clearance of influenza virus infection. Recent influenza challenge studies and intravenous immunoglobulin G therapy studies in humans suggest a protective role for Fc effector functions in vivo. Broadly reactive influenza antibodies with Fc-mediated functions are prevalent in the human population and could inform the development of a universally protective influenza vaccine or therapy. In this review, we explore the utility of antibodies with Fc-mediated effector functions against viral infections with a focus on influenza virus.
Collapse
Affiliation(s)
- Hillary A Vanderven
- Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, Australia.,Melbourne Sexual Health Centre, Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Clayton, VIC, Australia
| |
Collapse
|
24
|
Valkenburg SA, Fang VJ, Leung NHL, Chu DKW, Ip DKM, Perera RAPM, Wang Y, Li APY, Peiris JSM, Cowling BJ, Poon LLM. Cross-reactive antibody-dependent cellular cytotoxicity antibodies are increased by recent infection in a household study of influenza transmission. Clin Transl Immunology 2019; 8:e1092. [PMID: 31763042 PMCID: PMC6864499 DOI: 10.1002/cti2.1092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Influenza causes a spectrum of disease from asymptomatic infection to fatal outcome, and pre-existing immunity can alter susceptibility and disease severity. In a household transmission study, we recruited outpatients with confirmed influenza virus infection and prospectively identified secondary infections in their household contacts, therefore identifying infection cases with baseline samples for determining immune-mediated protection from influenza infection. METHODS We examined baseline broadly reactive immune correlates of relevance to universal vaccine development, specifically antibody-dependent cytotoxic (ADCC) antibodies and T-cell responses in functional assays. Antibodies were assessed in a cell-based NK cell degranulation assay by flow cytometry, and T-cell responses were assessed by IFN-γ intracellular cytokine staining flow cytometry assay. RESULTS The magnitude of antibody responses and ADCC function for multiple influenza-specific proteins was lower in participants who became infected, consolidating the role of pre-existing antibodies in protection from seasonal influenza virus infection. Among H1N1-infected contacts, we found that higher levels of pre-existing H1-haemagglutinin ADCC responses correlated with reduced symptom severity. Recent infection boosted the titre and magnitude of haemagglutinin-, neuraminidase- and nucleoprotein-specific ADCC antibodies. Limited T-cell samples precluded conclusions on the role of pre-existing T-cell responses. CONCLUSIONS Overall, ADCC responses are a protective correlate against influenza virus infection that should be considered in future vaccine development and evaluation.Influenza-specific ADCC responses are elevated in uninfected subjects, associated with reduced symptoms and boosted by recent infection, whilst HA stem and NA IgG are also elevated in uninfected participants irrespective of ADCC function.
Collapse
Affiliation(s)
- Sophie A Valkenburg
- Li Ka Shing Faculty of MedicineHKU Pasteur Research PoleSchool of Public HealthThe University of Hong KongHong Kong
- Li Ka Shing Faculty of MedicineSchool of Public HealthWHO Collaborating Centre for Infectious Disease Epidemiology and ControlThe University of Hong KongHong Kong
| | - Vicky J Fang
- Li Ka Shing Faculty of MedicineSchool of Public HealthWHO Collaborating Centre for Infectious Disease Epidemiology and ControlThe University of Hong KongHong Kong
| | - Nancy HL Leung
- Li Ka Shing Faculty of MedicineSchool of Public HealthWHO Collaborating Centre for Infectious Disease Epidemiology and ControlThe University of Hong KongHong Kong
| | - Daniel KW Chu
- Li Ka Shing Faculty of MedicineSchool of Public HealthWHO Collaborating Centre for Infectious Disease Epidemiology and ControlThe University of Hong KongHong Kong
| | - Dennis KM Ip
- Li Ka Shing Faculty of MedicineSchool of Public HealthWHO Collaborating Centre for Infectious Disease Epidemiology and ControlThe University of Hong KongHong Kong
| | - Ranawaka APM Perera
- Li Ka Shing Faculty of MedicineSchool of Public HealthWHO Collaborating Centre for Infectious Disease Epidemiology and ControlThe University of Hong KongHong Kong
| | - Yizhuo Wang
- Li Ka Shing Faculty of MedicineSchool of Public HealthWHO Collaborating Centre for Infectious Disease Epidemiology and ControlThe University of Hong KongHong Kong
| | - Athena PY Li
- Li Ka Shing Faculty of MedicineHKU Pasteur Research PoleSchool of Public HealthThe University of Hong KongHong Kong
| | - JS Malik Peiris
- Li Ka Shing Faculty of MedicineSchool of Public HealthWHO Collaborating Centre for Infectious Disease Epidemiology and ControlThe University of Hong KongHong Kong
| | - Benjamin J Cowling
- Li Ka Shing Faculty of MedicineSchool of Public HealthWHO Collaborating Centre for Infectious Disease Epidemiology and ControlThe University of Hong KongHong Kong
| | - Leo LM Poon
- Li Ka Shing Faculty of MedicineSchool of Public HealthWHO Collaborating Centre for Infectious Disease Epidemiology and ControlThe University of Hong KongHong Kong
| |
Collapse
|
25
|
Wong J, Layton D, Wheatley AK, Kent SJ. Improving immunological insights into the ferret model of human viral infectious disease. Influenza Other Respir Viruses 2019; 13:535-546. [PMID: 31583825 PMCID: PMC6800307 DOI: 10.1111/irv.12687] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Ferrets are a well-established model for studying both the pathogenesis and transmission of human respiratory viruses and evaluation of antiviral vaccines. Advanced immunological studies would add substantial value to the ferret models of disease but are hindered by the low number of ferret-reactive reagents available for flow cytometry and immunohistochemistry. Nevertheless, progress has been made to understand immune responses in the ferret model with a limited set of ferret-specific reagents and assays. This review examines current immunological insights gained from the ferret model across relevant human respiratory diseases, with a focus on influenza viruses. We highlight key knowledge gaps that need to be bridged to advance the utility of ferrets for immunological studies.
Collapse
Affiliation(s)
- Julius Wong
- Department of Microbiology and ImmunologyPeter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVic.Australia
| | - Daniel Layton
- CSIRO Health and BiosecurityAustralian Animal Health LaboratoriesGeelongVic.Australia
| | - Adam K. Wheatley
- Department of Microbiology and ImmunologyPeter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVic.Australia
| | - Stephen J. Kent
- Department of Microbiology and ImmunologyPeter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVic.Australia
- Melbourne Sexual Health Centre and Department of Infectious DiseasesAlfred Hospital and Central Clinical SchoolMonash UniversityMelbourneVic.Australia
- ARC Centre for Excellence in Convergent Bio‐Nano Science and TechnologyUniversity of MelbourneParkvilleVic.Australia
| |
Collapse
|
26
|
Vanderven HA, Wragg K, Ana-Sosa-Batiz F, Kristensen AB, Jegaskanda S, Wheatley AK, Wentworth D, Wines BD, Hogarth PM, Rockman S, Kent SJ. Anti-Influenza Hyperimmune Immunoglobulin Enhances Fc-Functional Antibody Immunity During Human Influenza Infection. J Infect Dis 2019; 218:1383-1393. [PMID: 29860297 DOI: 10.1093/infdis/jiy328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2018] [Accepted: 05/30/2018] [Indexed: 11/13/2022] Open
Abstract
Background New treatments for severe influenza are needed. Passive transfer of influenza-specific hyperimmune pooled immunoglobulin (Flu-IVIG) boosts neutralizing antibody responses to past strains in influenza-infected subjects. The effect of Flu-IVIG on antibodies with Fc-mediated functions, which may target diverse influenza strains, is unclear. Methods We studied the capacity of Flu-IVIG, relative to standard IVIG, to bind to Fcγ receptors and mediate antibody-dependent cellular cytotoxicity in vitro. The effect of Flu-IVIG infusion, compared to placebo infusion, was examined in serial plasma samples from 24 subjects with confirmed influenza infection in the INSIGHT FLU005 pilot study. Results Flu-IVIG contains higher concentrations of Fc-functional antibodies than IVIG against a diverse range of influenza hemagglutinins. Following infusion of Flu-IVIG into influenza-infected subjects, a transient increase in Fc-functional antibodies was present for 1-3 days against infecting and noninfecting strains of influenza. Conclusions Flu-IVIG contains antibodies with Fc-mediated functions against influenza virus, and passive transfer of Flu-IVIG increases anti-influenza Fc-functional antibodies in the plasma of influenza-infected subjects. Enhancement of Fc-functional antibodies to a diverse range of influenza strains suggests that Flu-IVIG infusion could prove useful in the context of novel influenza virus infections, when there may be minimal or no neutralizing antibodies in the Flu-IVIG preparation.
Collapse
Affiliation(s)
- Hillary A Vanderven
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia.,Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, Queensland, Australia
| | - Kathleen Wragg
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | - Fernanda Ana-Sosa-Batiz
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | - Anne B Kristensen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | - Sinthujan Jegaskanda
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | | | | | | | - Steve Rockman
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia.,Seqirus Ltd, Parkville
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia.,Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
27
|
Billings H, Wines BD, Dyer WB, Center RJ, Trist HM, Kent SJ, Hogarth PM. Boosting of Markers of Fcγ Receptor Function in Anti-HIV Antibodies During Structured Treatment Interruption. AIDS Res Hum Retroviruses 2019; 35:842-852. [PMID: 31288562 PMCID: PMC6735329 DOI: 10.1089/aid.2019.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
Anti-HIV envelope (Env) antibodies elicit important Fc receptor functions, including FcγRIIIa-mediated natural killer cell killing of opsonized infected targets. How these antibodies evolve during HIV infection and treatment remains poorly understood. We describe changes in anti-HIV Env IgG using longitudinal samples from seroconverter subjects treated soon after infection and later during periods of structured treatment interruption (STI). Our well-validated dimeric rsFcγR binding assays combine effects of opsonizing antibody subclasses, epitopes, and geometries to provide a measure of FcγR (Fcγ receptor)-mediated functionality. IgG1 anti-Env titers diminished rapidly during antiretroviral therapy (ART; t1/2 3.0 ± 0.8 months), while the dimeric rsFcγRIIIa activity persisted longer (t1/2 33 ± 11 months), suggesting that there is maintenance of functional antibody specificities within the diminished pool of anti-HIV Env Abs. The initial antibody response to infection in two subjects was characterized by approximately fivefold higher FcγRIIIa compared with FcγRIIa binding activity. Uncoupling of FcγRIIa and FcγRIIIa activities may be a distinct feature of the early antibody response that preferentially engages FcγRIIIa-mediated effector functions. Two to three STI cycles, even with low viremia, were sufficient to boost dimeric FcγR activity in these seroconverter subjects. We hypothesize that increased humoral immunity induced by STI is a desirable functional outcome potentially achievable by therapeutic immunization during ART. We conclude that controlled viral antigen exposure under the protection of suppressive ART may be effective in eliciting FcγR-dependent function in support of viral reactivation and kill strategies.
Collapse
Affiliation(s)
- Hugh Billings
- Immune Therapies Group, Life Sciences, Burnet Institute, Melbourne, Australia
| | - Bruce D. Wines
- Immune Therapies Group, Life Sciences, Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University Central Clinical School, Melbourne, Australia
- Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Wayne B. Dyer
- Australian Red Cross Blood Service, Alexandria, Australia
- School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Robert J. Center
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
- Disease Elimination, Life Sciences, Burnet Institute, Melbourne, Australia
| | - Halina M. Trist
- Immune Therapies Group, Life Sciences, Burnet Institute, Melbourne, Australia
| | - Stephen J. Kent
- Disease Elimination, Life Sciences, Burnet Institute, Melbourne, Australia
- Department of Infectious Diseases, Melbourne Sexual Health Centre, Alfred Health, Central Clinical School, Monash University, Melbourne, Australia
| | - P. Mark Hogarth
- Immune Therapies Group, Life Sciences, Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University Central Clinical School, Melbourne, Australia
- Department of Pathology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
28
|
Von Holle TA, Moody MA. Influenza and Antibody-Dependent Cellular Cytotoxicity. Front Immunol 2019; 10:1457. [PMID: 31316510 PMCID: PMC6611398 DOI: 10.3389/fimmu.2019.01457] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2019] [Accepted: 06/10/2019] [Indexed: 12/26/2022] Open
Abstract
Despite the availability of yearly vaccinations, influenza continues to cause seasonal, and pandemic rises in illness and death. An error prone replication mechanism results in antigenic drift and viral escape from immune pressure, and recombination results in antigenic shift that can rapidly move through populations that lack immunity to newly emergent strains. The development of a “universal” vaccine is a high priority and many strategies have been proposed, but our current understanding of influenza immunity is incomplete making the development of better influenza vaccines challenging. Influenza immunity has traditionally been measured by neutralization of virions and hemagglutination inhibition, but in recent years there has been a growing appreciation of other responses that can contribute to protection such as antibody-dependent cellular cytotoxicity (ADCC) that can kill influenza-infected cells. ADCC has been shown to provide cross-strain protection and to assist in viral clearance, making it an attractive target for “universal” vaccine designs. Here we provide a brief overview of the current state of influenza research that leverages “the other end of the antibody.”
Collapse
Affiliation(s)
- Tarra A Von Holle
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - M Anthony Moody
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States.,Department of Immunology, Duke University School of Medicine, Durham, NC, United States.,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
29
|
Vanderven HA, Jegaskanda S, Wines BD, Hogarth PM, Carmuglia S, Rockman S, Chung AW, Kent SJ. Antibody-Dependent Cellular Cytotoxicity Responses to Seasonal Influenza Vaccination in Older Adults. J Infect Dis 2019; 217:12-23. [PMID: 29106590 DOI: 10.1093/infdis/jix554] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2017] [Accepted: 08/10/2017] [Indexed: 12/16/2022] Open
Abstract
Background Older adults are at high risk of influenza disease, but generally respond poorly to vaccination. Antibody-dependent cellular cytotoxicity (ADCC) may be an important component of protection against influenza infection. An improved understanding of the ADCC response to influenza vaccination in older adults is required. Methods We studied sera samples from 3 groups of subjects aged ≥65 years (n = 16-17/group) receiving the 2008/2009 seasonal trivalent influenza vaccine (TIV). Subjects had minimal pre-existing hemagglutination inhibiting (HAI) antibodies and TIV induced either no, low, or high HAI responses. Serum ADCC activity was analyzed using Fc receptor cross-linking, NK cell activation, and influenza-infected cell killing. Results Most subjects from TIV nonresponder, low responder, and high responder groups had detectable ADCC antibodies prevaccination, but baseline ADCC was not predictive of HAI vaccine responsiveness. Interestingly, ADCC and HAI responses tracked closely across all groups, against all 3 TIV hemagglutinins, and in all ADCC assays tested. Conclusions Older adults commonly have pre-existing ADCC antibodies in the absence of high HAI titers to circulating influenza strains. In older vaccinees, ADCC response mirrored HAI antibodies and was readily detectable despite high postvaccination HAI titers. Alternate measures of vaccine responsiveness and improved vaccinations in this at-risk group are needed.
Collapse
Affiliation(s)
- Hillary A Vanderven
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne
| | - Sinthujan Jegaskanda
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne
| | | | | | | | | | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne.,Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
30
|
van Erp EA, Luytjes W, Ferwerda G, van Kasteren PB. Fc-Mediated Antibody Effector Functions During Respiratory Syncytial Virus Infection and Disease. Front Immunol 2019; 10:548. [PMID: 30967872 PMCID: PMC6438959 DOI: 10.3389/fimmu.2019.00548] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2018] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections and hospitalization in infants under 1 year of age and there is currently no market-approved vaccine available. For protection against infection, young children mainly depend on their innate immune system and maternal antibodies. Traditionally, antibody-mediated protection against viral infections is thought to be mediated by direct binding of antibodies to viral particles, resulting in virus neutralization. However, in the case of RSV, virus neutralization titers do not provide an adequate correlate of protection. The current lack of understanding of the mechanisms by which antibodies can protect against RSV infection and disease or, alternatively, contribute to disease severity, hampers the design of safe and effective vaccines against this virus. Importantly, neutralization is only one of many mechanisms by which antibodies can interfere with viral infection. Antibodies consist of two structural regions: a variable fragment (Fab) that mediates antigen binding and a constant fragment (Fc) that mediates downstream effector functions via its interaction with Fc-receptors on (innate) immune cells or with C1q, the recognition molecule of the complement system. The interaction with Fc-receptors can lead to killing of virus-infected cells through a variety of immune effector mechanisms, including antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Antibody-mediated complement activation may lead to complement-dependent cytotoxicity (CDC). In addition, both Fc-receptor interactions and complement activation can exert a broad range of immunomodulatory functions. Recent studies have emphasized the importance of Fc-mediated antibody effector functions in both protection and pathogenesis for various infectious agents. In this review article, we aim to provide a comprehensive overview of the current knowledge on Fc-mediated antibody effector functions in the context of RSV infection, discuss their potential role in establishing the balance between protection and pathogenesis, and point out important gaps in our understanding of these processes. Furthermore, we elaborate on the regulation of these effector functions on both the cellular and humoral side. Finally, we discuss the implications of Fc-mediated antibody effector functions for the rational design of safe and effective vaccines and monoclonal antibody therapies against RSV.
Collapse
Affiliation(s)
- Elisabeth A. van Erp
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Radboud Center for Infectious Diseases, Nijmegen, Netherlands
| | - Willem Luytjes
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Gerben Ferwerda
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Radboud Center for Infectious Diseases, Nijmegen, Netherlands
| | - Puck B. van Kasteren
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
31
|
Zhong M, Wang H, Ma L, Yan H, Wu S, Gu Z, Li Y. DMO-CAP inhibits influenza virus replication by activating heme oxygenase-1-mediated IFN response. Virol J 2019; 16:21. [PMID: 30786886 PMCID: PMC6381609 DOI: 10.1186/s12985-019-1125-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/19/2018] [Accepted: 01/24/2019] [Indexed: 02/01/2023] Open
Abstract
Background As a leading cause of respiratory disease, influenza A virus (IAV) infection remains a pandemic threat in annual seasonal outbreaks. Given the limitation of existing anti-influenza therapeutic drugs, development of new drugs is urgently required. Flavonoids extracted from Artemisia rupestris L. have an inhibitory effect on virus infections. Despite this fact, the antiviral properties of 6-demethoxy-4′-O-methylcapillarisin (DMO-CAP), one of such flavonoids, against the influenza virus have not been reported. Thus, the aim of this study is to investigate the anti-IAV virus efficacy and antiviral mechanism of DMO-CAP. Methods The inhibitory activity of DMO-CAP against IAV was detected in vitro using viral titers by Western blot analysis, qRT-PCR, and immunofluorescence assays. The mechanism of DMO-CAP against influenza virus was analyzed by Western blot analysis, qRT-PCR, and luciferase assay. Results DMO-CAP exhibits broad spectrum of antiviral activities against IAV in vitro. Mechanistically, DMO-CAP treatment induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK), JNK MAPK, and ERK MAPK, which led to the activation of Nrf2/heme oxygenase-1 (HO-1) pathway. Then, the up-regulation of HO-1 expression activated the IFN response and induced the expression of IFN-stimulated genes, thereby leading to efficient anti-IAV effects. Conclusions DMO-CAP inhibited IAV replication by activating HO-1-mediated IFN response. DMO-CAP may be a potential agent or supplement against IAV infection.
Collapse
Affiliation(s)
- Ming Zhong
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, 100050, China.,Xinjiang Institute of Materia Medica, Urumqi, 830002, China.,Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832000, China
| | - Huiqiang Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, 100050, China
| | - Linlin Ma
- Key Laboratory of Molecular Imaging of Shanghai Education Commission, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Haiyan Yan
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, 100050, China
| | - Shuo Wu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, 100050, China
| | - Zhengyi Gu
- Xinjiang Institute of Materia Medica, Urumqi, 830002, China.
| | - Yuhuan Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, 100050, China.
| |
Collapse
|
32
|
Wines BD, Tan CW, Duncan E, McRae S, Baker RI, Andrews RK, Esparon S, Gardiner EE, Hogarth PM. Dimeric FcγR ectodomains detect pathogenic anti-platelet factor 4-heparin antibodies in heparin-induced thromobocytopenia. J Thromb Haemost 2018; 16:2520-2525. [PMID: 30269432 PMCID: PMC6635755 DOI: 10.1111/jth.14306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2018] [Indexed: 11/28/2022]
Abstract
Essentials FcγRIIa mediates life-threatening heparin-induced thrombocytopenia (HIT). Most anti-platelet factor (PF)4-heparin IgGs are not pathogenic so diagnosis of HIT is challenging. Dimeric rsFcγRIIa was used to quantify receptor-binding activity of anti-PF4-heparin antibodies. Dimeric rsFcγRIIa binding specifically correlated with occurrence of HIT. SUMMARY: Background Heparin-induced thrombocytopenia (HIT) is a major and potentially fatal consequence of antibodies produced against platelet factor 4 (PF4)-heparin complexes following heparin exposure. Not all anti-PF4-heparin antibodies are pathogenic, so overdiagnosis can occur, with resulting inappropriate use of alternative anticoagulation therapies that have associated risks of bleeding. However, definitive platelet functional assays are not widely available for routine analysis. Objectives To assess the utility of dimeric recombinant soluble FcγRIIa (rsFcγRIIa) ectodomains for detecting HIT antibodies. Patients/Methods Plasma from 27 suspected HIT patients were tested for pathogenic anti-PF4-heparin antibodies by binding of a novel dimeric FcγRIIa ectodomain probe. Plasmas were also tested by the use of PF4-heparin IgG ELISA, the HemosIL AcuStar HIT IgG-specific assay, and a serotonin release assay (SRA). Results The dimeric rsFcγRIIa test produced no false positives and excluded four samples that were positive by IgG ELISA. In this small patient cohort, the novel assay correctly assigned 93% of the suspected HIT patients, with two of the HIT patients being scored as false negatives. The improved discrimination of the novel assay over the IgG ELISA, which scored four false positives, supports the mechanistic interpretation that binding of dimeric rsFcγRIIa detects pairs of closely spaced IgG antibodies in PF4-heparin immune complexes. Conclusions This study found the cell-free, function-based dimeric rsFcγRIIa assay to be convenient, simple, and potentially predictive of HIT. The assay had improved specificity over the IgG ELISA, and correlated strongly with the AcuStar HIT IgG-specific assay, warranting further evaluation of its potential to identify HIT in larger patient cohorts.
Collapse
Affiliation(s)
- B. D. Wines
- Immune Therapies GroupBurnet InstituteMelbourneVictoriaAustralia
- Department of ImmunologyMonash University Central Clinical SchoolMelbourneVictoriaAustralia
- Department of PathologyThe University of MelbourneMelbourneVictoriaAustralia
| | - C. W. Tan
- SA PathologyRoyal Adelaide HospitalAdelaideSouth AustraliaAustralia
| | - E. Duncan
- SA PathologyRoyal Adelaide HospitalAdelaideSouth AustraliaAustralia
| | - S. McRae
- SA PathologyRoyal Adelaide HospitalAdelaideSouth AustraliaAustralia
| | - R. I. Baker
- Murdoch UniversityPerthWestern AustraliaAustralia
| | - R. K. Andrews
- Australian Centre for Blood DiseasesMonash UniversityMelbourneVictoriaAustralia
| | - S. Esparon
- Immune Therapies GroupBurnet InstituteMelbourneVictoriaAustralia
- Department of ImmunologyMonash University Central Clinical SchoolMelbourneVictoriaAustralia
- Department of PathologyThe University of MelbourneMelbourneVictoriaAustralia
| | - E. E. Gardiner
- ACRF Department of Cancer Biology and TherapeuticsJohn Curtin School of Medical ResearchAustralian National UniversityCanberraAustralia
| | - P. M. Hogarth
- Immune Therapies GroupBurnet InstituteMelbourneVictoriaAustralia
- Department of ImmunologyMonash University Central Clinical SchoolMelbourneVictoriaAustralia
- Department of PathologyThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
33
|
Valkenburg SA, Leung NHL, Bull MB, Yan LM, Li APY, Poon LLM, Cowling BJ. The Hurdles From Bench to Bedside in the Realization and Implementation of a Universal Influenza Vaccine. Front Immunol 2018; 9:1479. [PMID: 30013557 PMCID: PMC6036122 DOI: 10.3389/fimmu.2018.01479] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2018] [Accepted: 06/14/2018] [Indexed: 12/23/2022] Open
Abstract
Influenza viruses circulate worldwide causing annual epidemics that have a substantial impact on public health. This is despite vaccines being in use for over 70 years and currently being administered to around 500 million people each year. Improvements in vaccine design are needed to increase the strength, breadth, and duration of immunity against diverse strains that circulate during regular epidemics, occasional pandemics, and from animal reservoirs. Universal vaccine strategies that target more conserved regions of the virus, such as the hemagglutinin (HA)-stalk, or recruit other cellular responses, such as T cells and NK cells, have the potential to provide broader immunity. Many pre-pandemic vaccines in clinical development do not utilize new vaccine platforms but use "tried and true" recombinant HA protein or inactivated virus strategies despite substantial leaps in fundamental research on universal vaccines. Significant hurdles exist for universal vaccine development from bench to bedside, so that promising preclinical data is not yet translating to human clinical trials. Few studies have assessed immune correlates derived from asymptomatic influenza virus infections, due to the scale of a study required to identity these cases. The realization and implementation of a universal influenza vaccine requires identification and standardization of set points of protective immune correlates, and consideration of dosage schedule to maximize vaccine uptake.
Collapse
Affiliation(s)
- Sophie A. Valkenburg
- HKU Pasteur Research Pole, The University of Hong Kong, Pokfulam, Hong Kong
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Nancy H. L. Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Maireid B. Bull
- HKU Pasteur Research Pole, The University of Hong Kong, Pokfulam, Hong Kong
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Li-meng Yan
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Athena P. Y. Li
- HKU Pasteur Research Pole, The University of Hong Kong, Pokfulam, Hong Kong
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Leo L. M. Poon
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Benjamin J. Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
34
|
The Potential Role of Fc-Receptor Functions in the Development of a Universal Influenza Vaccine. Vaccines (Basel) 2018; 6:vaccines6020027. [PMID: 29772781 PMCID: PMC6027188 DOI: 10.3390/vaccines6020027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023] Open
Abstract
Despite global vaccination efforts, influenza virus continues to cause yearly epidemics and periodic pandemics throughout most of the world. Many of us consider the generation of broader, potent and long-lasting immunity against influenza viruses as critical in curtailing the global health and economic impact that influenza currently plays. To date, classical vaccinology has relied on the generation of neutralizing antibodies as the benchmark to measure vaccine effectiveness. However, recent developments in numerous related fields of biomedical research including, HIV, HSV and DENV have emphasized the importance of Fc-mediate effector functions in pathogenesis and immunity. The concept of Fc effector functions in contributing to protection from illness is not a new concept and has been investigated in the field for over four decades. However, in recent years the application and study of Fc effector functions has become revitalized with new knowledge and technologies to characterize their potential importance in immunity. In this perspective, we describe the current state of the field of Influenza Fc effector functions and discuss its potential utility in universal vaccine design in the future.
Collapse
|
35
|
Arnold KB, Chung AW. Prospects from systems serology research. Immunology 2017; 153:279-289. [PMID: 29139548 PMCID: PMC5795183 DOI: 10.1111/imm.12861] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 12/28/2022] Open
Abstract
Antibodies are highly functional glycoproteins capable of providing immune protection through multiple mechanisms, including direct pathogen neutralization and the engagement of their Fc portions with surrounding effector immune cells that induce anti-pathogenic responses. Small modifications to multiple antibody biophysical features induced by vaccines can significantly alter functional immune outcomes, though it is difficult to predict which combinations confer protective immunity. In order to give insight into the highly complex and dynamic processes that drive an effective humoral immune response, here we discuss recent applications of 'Systems Serology', a new approach that uses data-driven (also called 'machine learning') computational analysis and high-throughput experimental data to infer networks of important antibody features associated with protective humoral immunity and/or Fc functional activity. This approach offers the ability to understand humoral immunity beyond single correlates of protection, assessing the relative importance of multiple biophysical modifications to antibody features with multivariate computational approaches. Systems Serology has the exciting potential to help identify novel correlates of protection from infection and may generate a more comprehensive understanding of the mechanisms behind protection, including key relationships between specific Fc functions and antibody biophysical features (e.g. antigen recognition, isotype, subclass and/or glycosylation events). Reviewed here are some of the experimental and computational technologies available for Systems Serology research and evidence that the application has broad relevance to multiple different infectious diseases including viruses, bacteria, fungi and parasites.
Collapse
Affiliation(s)
- Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|