1
|
Abu Rached N, Rüth J, Gambichler T, Ocker L, Bechara FG. A state-of-the-art systematic review of cancer in hidradenitis suppurativa. Ann Med 2024; 56:2382372. [PMID: 39046819 PMCID: PMC11271124 DOI: 10.1080/07853890.2024.2382372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 07/27/2024] Open
Abstract
PURPOSE Hidradenitis suppurativa (HS) is a chronic inflammatory disease associated with an increased risk of malignancy. The aim of this systematic review was to investigate the prevalence of different malignancies in HS. METHODS This review meets the PRISMA criteria. A data-driven approach was used to conduct the research, which involved a detailed keyword search. The study considered meta-analyses, experimental studies, case-control studies, cross-sectional studies, cohort studies, and recently published cases, published in English or German. Excluded were reviews, summaries, and letters to the editor, as well as studies, which are not based on the human population. RESULTS Out of the initial 443 publications found, 25 met the inclusion criteria for this systematic review. Patients with HS have a significantly increased risk of cancer, up to 50%. Additionally, the risk of oropharyngeal, central nervous system, colorectal, prostate, vulvar and non-melanocytic skin cancers increase with the severity of HS. The likelihood of comorbid lymphoma in patients with HS is significantly higher compared to healthy controls. In severe cases of HS, malignant degeneration of lesions in the groin, perianal, perineal, and gluteal region can occur in up to 4.6% of cases. This leads to the development of cSCC, which often have a complicated course, are more refractory to treatment and associated with a poorer outcome. The pathogenic mechanisms responsible for the malignant transformation of HS are currently unknown. CONCLUSIONS Patients with HS have a higher risk of cancer compared to the general population. Untreated, long-standing HS lesions can lead to complicated malignant degeneration resulting in cutaneous squamous cell carcinoma. The mechanisms underlying this malignant degeneration are not fully understood. HS patients also have an increased risk of developing other cancers, including prostate, oral, pharyngeal and colorectal cancers of the central nervous system and lymphomas.
Collapse
Affiliation(s)
- Nessr Abu Rached
- International Centre for Hidradenitis suppurativa/Acne inversa (ICH), Department of Dermatology, Venereology and Allergology, Ruhr-University, Bochum, Germany
- Skin Cancer Centre, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
| | - Jonas Rüth
- International Centre for Hidradenitis suppurativa/Acne inversa (ICH), Department of Dermatology, Venereology and Allergology, Ruhr-University, Bochum, Germany
- Skin Cancer Centre, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
| | - Thilo Gambichler
- Skin Cancer Centre, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
- Department of Dermatology and Phlebology, Christian Hospital Unna, Unna, Germany
- Department of Dermatology, Dortmund Hospital gGmbH and Faculty of Health, Witten/Herdecke University, Dortmund, Germany
| | - Lennart Ocker
- International Centre for Hidradenitis suppurativa/Acne inversa (ICH), Department of Dermatology, Venereology and Allergology, Ruhr-University, Bochum, Germany
- Skin Cancer Centre, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
| | - Falk G. Bechara
- International Centre for Hidradenitis suppurativa/Acne inversa (ICH), Department of Dermatology, Venereology and Allergology, Ruhr-University, Bochum, Germany
- Skin Cancer Centre, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
2
|
Ferrara B, Bourgoin-Voillard S, Habert D, Vallée B, Nicolas-Boluda A, Simanic I, Seve M, Vingert B, Gazeau F, Castellano F, Cohen J, Courty J, Cascone I. Matrix stiffness regulates the protein profile of extracellular vesicles of pancreatic cancer cell lines. Proteomics 2024; 24:e2400058. [PMID: 39279557 DOI: 10.1002/pmic.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024]
Abstract
The fibrotic stroma characterizing pancreatic ductal adenocarcinoma (PDAC) derives from a progressive tissue rigidification, which induces epithelial mesenchymal transition and metastatic dissemination. The aim of this study was to investigate the influence of matrix stiffness on PDAC progression by analyzing the proteome of PDAC-derived extracellular vesicles (EVs). PDAC cell lines (mPDAC and KPC) were grown on synthetic supports with a stiffness close to non-tumor (NT) or tumor tissue (T), and the protein expression levels in cell-derived EVs were analyzed by a quantitative MSE label-free mass spectrometry approach. Our analysis figured out 15 differentially expressed proteins (DEPs) in mPDAC-EVs and 20 DEPs in KPC-EVs in response to matrix rigidification. Up-regulated proteins participate to the processes of metabolism, matrix remodeling, and immune response, altogether hallmarks of PDAC progression. A multimodal network analysis revealed that the majority of DEPs are strongly related to pancreatic cancer. Interestingly, among DEPs, 11 related genes (ACTB/ANXA7/C3/IGSF8/LAMC1/LGALS3/PCD6IP/SFN/TPM3/VARS/YWHAZ) for mPDAC-EVs and 9 (ACTB/ALDH2/GAPDH/HNRNPA2B/ITGA2/NEXN/PKM/RPN1/S100A6) for KPC-EVs were significantly overexpressed in tumor tissues according to gene expression profiling interaction analysis (GEPIA). Concerning the potential clinical relevance of these data, the cluster of ACTB, ITGA2, GAPDH and PKM genes displayed an adverse effect (p < 0.05) on the overall survival of PDAC patients.
Collapse
Affiliation(s)
- Benedetta Ferrara
- Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, Université Paris-Est, Créteil, France
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sandrine Bourgoin-Voillard
- Université Grenoble Alpes, CNRS UMR 5525, Grenoble INP, TIMC, EPSP, Grenoble, France
- Université Grenoble Alpes, CNRS UMR 5525, Grenoble INP, CHU Grenoble Alpes, TIMC, EPSP, Grenoble, France
- Université Grenoble Alpes, LBFA et BEeSy, Inserm, U1055, CHU Grenoble Alpes, PROMETHEE Proteomic Platform, Grenoble, France
| | - Damien Habert
- Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, Université Paris-Est, Créteil, France
| | - Benoit Vallée
- Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, Université Paris-Est, Créteil, France
| | - Alba Nicolas-Boluda
- Matière et Systèmes Complexes MSC, CNRS, Université Paris Cité, Paris, France
| | - Isidora Simanic
- Modèles de cellules souches malignes et therapeutiques, INSERM UMR-S 935, Université Paris-Saclay, Villejuif, France
| | - Michel Seve
- Université Grenoble Alpes, CNRS UMR 5525, Grenoble INP, TIMC, EPSP, Grenoble, France
- Université Grenoble Alpes, CNRS UMR 5525, Grenoble INP, CHU Grenoble Alpes, TIMC, EPSP, Grenoble, France
- Université Grenoble Alpes, LBFA et BEeSy, Inserm, U1055, CHU Grenoble Alpes, PROMETHEE Proteomic Platform, Grenoble, France
| | - Benoit Vingert
- Etablissement Français du Sang, Créteil, France
- Inserm, U955, Equipe 2, Créteil, France
| | - Florence Gazeau
- Matière et Systèmes Complexes MSC, CNRS, Université Paris Cité, Paris, France
| | - Flavia Castellano
- Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, Université Paris-Est, Créteil, France
| | - José Cohen
- Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, Université Paris-Est, Créteil, France
- AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Centre d'investigation clinique Biotherapie, Créteil, France
| | - José Courty
- Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, Université Paris-Est, Créteil, France
- AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Centre d'investigation clinique Biotherapie, Créteil, France
| | - Ilaria Cascone
- Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, Université Paris-Est, Créteil, France
- AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Centre d'investigation clinique Biotherapie, Créteil, France
| |
Collapse
|
3
|
Balsini P, Weinzettl P, Samardzic D, Zila N, Buchberger M, Freystätter C, Tschandl P, Wielscher M, Weninger W, Pfisterer K. Stiffness-dependent LOX regulation via HIF-1 drives extracellular matrix modifications in psoriasis. J Invest Dermatol 2024:S0022-202X(24)02958-0. [PMID: 39603411 DOI: 10.1016/j.jid.2024.10.611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024]
Abstract
Psoriasis is a common chronic inflammatory skin disease characterized by a thickened epidermis with elongated rete ridges and massive immune cell infiltration. It is currently unclear what impact mechanoregulatory aspects may have on disease progression. Using multiphoton second harmonic generation microscopy we found that the extracellular matrix (ECM) was profoundly reorganized within psoriatic dermis. Collagen fibers were highly aligned and assembled into thick, long collagen bundles, whereas the overall fiber density was reduced. This was particularly pronounced within dermal papillae extending into the epidermis. Further, the ECM-modifying enzyme LOX was highly upregulated in the dermis of psoriasis patients. In vitro experiments identified a novel link between HIF-1 stabilization and LOX protein regulation in mechanosensitive skin fibroblasts. LOX secretion and activity directly correlated with substrate stiffness, and was independent of hypoxia and IL-17. Finally, scRNA-seq analysis identified skin fibroblasts expressing high amounts of LOX and confirmed elevated HIF-1 expression in psoriasis. Our findings suggest a potential yet undescribed mechanical aspect of psoriasis. Deregulated mechanical forces hence may be involved in initiating or maintaining of a positive feedback loop in fibroblasts and contribute to tissue stiffening and diminished skin elasticity in psoriasis, potentially exacerbating disease pathogenesis.
Collapse
Affiliation(s)
- Parvaneh Balsini
- Department of Dermatology, Medical University of Vienna, Austria
| | | | - David Samardzic
- Department of Dermatology, Medical University of Vienna, Austria
| | - Nina Zila
- Department of Dermatology, Medical University of Vienna, Austria; Section Biomedical Science, University of Applied Sciences FH Campus Wien, Austria
| | - Maria Buchberger
- Department of Dermatology, Medical University of Vienna, Austria
| | - Christian Freystätter
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Austria
| | - Philipp Tschandl
- Department of Dermatology, Medical University of Vienna, Austria
| | | | | | - Karin Pfisterer
- Department of Dermatology, Medical University of Vienna, Austria.
| |
Collapse
|
4
|
Letson J, Ren G, Zheng X, Sweef O, Corcino YL, Furuta S. Reduced S-nitrosylation of TGFβ1 elevates its binding affinity toward the receptor and promotes fibrogenic signaling in the breast. J Biol Chem 2024; 300:108011. [PMID: 39571651 DOI: 10.1016/j.jbc.2024.108011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/19/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Transforming Growth Factor β (TGFβ) is a pleiotropic cytokine closely linked to tumors. Previously, we pharmacologically inhibited basal nitric oxide (NO) production in healthy mammary glands and found that this induced precancerous progression accompanied by upregulation of TGFβ and desmoplasia. In the present study, we tested whether NO directly S-nitrosylates (forms an NO-adduct at a cysteine residue) TGFβ for inhibition, whereas reduction of NO denitrosylates TGFβ for de-repression. We introduced mutations to 3 C-terminal cysteines of TGFβ1 which were predicted to be S-nitrosylated. We found that these mutations indeed impaired S-nitrosylation of TGFβ1 and shifted the binding affinity towards the receptor from the latent complex. Furthermore, in silico structural analyses predicted that these S-nitrosylation-defective mutations strengthen the dimerization of mature protein, whereas S-nitrosylation-mimetic mutations weaken the dimerization. Such differences in dimerization dynamics of TGFβ1 by denitrosylation/S-nitrosylation likely account for the shift of the binding affinities toward the receptor versus latent complex. Our findings, for the first time, unravel a novel mode of TGFβ regulation based on S-nitrosylation or denitrosylation of the protein.
Collapse
Affiliation(s)
- Joshua Letson
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, Ohio, USA; Department of Orthopaedic Surgery, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, Ohio, USA
| | - Gang Ren
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, Ohio, USA; Department of Surgery, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, Ohio, USA
| | - Xunzhen Zheng
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, Ohio, USA
| | - Osama Sweef
- Department of Medicine, MetroHealth Medical Center, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Faculty of Science, Department of Zoology, Tanta University, Tanta, Egypt
| | - Yalitza Lopes Corcino
- Department of Medicine, MetroHealth Medical Center, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Saori Furuta
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, Ohio, USA; Department of Medicine, MetroHealth Medical Center, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
5
|
Forsthuber A, Aschenbrenner B, Korosec A, Jacob T, Annusver K, Krajic N, Kholodniuk D, Frech S, Zhu S, Purkhauser K, Lipp K, Werner F, Nguyen V, Griss J, Bauer W, Soler Cardona A, Weber B, Weninger W, Gesslbauer B, Staud C, Nedomansky J, Radtke C, Wagner SN, Petzelbauer P, Kasper M, Lichtenberger BM. Cancer-associated fibroblast subtypes modulate the tumor-immune microenvironment and are associated with skin cancer malignancy. Nat Commun 2024; 15:9678. [PMID: 39516494 PMCID: PMC11549091 DOI: 10.1038/s41467-024-53908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a key role in cancer progression and treatment outcome. This study dissects the intra-tumoral diversity of CAFs in basal cell carcinoma, squamous cell carcinoma, and melanoma using molecular and spatial single-cell analysis. We identify three distinct CAF subtypes: myofibroblast-like RGS5+ CAFs, matrix CAFs (mCAFs), and immunomodulatory CAFs (iCAFs). Large-cohort tissue analysis reveals significant shifts in CAF subtype patterns with increasing malignancy. Two CAF subtypes exhibit immunomodulatory properties via different mechanisms. mCAFs sythesize extracellular matrix and may restrict T cell invasion in low-grade tumors via ensheathing tumor nests, while iCAFs are enriched in late-stage tumors, and express high levels of cytokines and chemokines to aid immune cell recruitment and activation. This is supported by the induction of an iCAF-like phenotype with immunomodulatory functions in primary healthy fibroblasts exposed to skin cancer cell secretomes. Thus, targeting CAF variants holds promise to enhance immunotherapy efficacy in skin cancers.
Collapse
Affiliation(s)
- Agnes Forsthuber
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Bertram Aschenbrenner
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Ana Korosec
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Tina Jacob
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Natalia Krajic
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Daria Kholodniuk
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sophie Frech
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Shaohua Zhu
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Kim Purkhauser
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Katharina Lipp
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Franziska Werner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Vy Nguyen
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Ana Soler Cardona
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Benedikt Weber
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Gesslbauer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Clement Staud
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Jakob Nedomansky
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Christine Radtke
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Stephan N Wagner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Beate M Lichtenberger
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Zhong C, Ang KS, Chen J. Interpretable spatially aware dimension reduction of spatial transcriptomics with STAMP. Nat Methods 2024; 21:2072-2083. [PMID: 39407016 PMCID: PMC11541207 DOI: 10.1038/s41592-024-02463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2024] [Indexed: 11/08/2024]
Abstract
Spatial transcriptomics produces high-dimensional gene expression measurements with spatial context. Obtaining a biologically meaningful low-dimensional representation of such data is crucial for effective interpretation and downstream analysis. Here, we present Spatial Transcriptomics Analysis with topic Modeling to uncover spatial Patterns (STAMP), an interpretable spatially aware dimension reduction method built on a deep generative model that returns biologically relevant, low-dimensional spatial topics and associated gene modules. STAMP can analyze data ranging from a single section to multiple sections and from different technologies to time-series data, returning topics matching known biological domains and associated gene modules containing established markers highly ranked within. In a lung cancer sample, STAMP delineated cell states with supporting markers at a higher resolution than the original annotation and uncovered cancer-associated fibroblasts concentrated on the tumor edge's exterior. In time-series data of mouse embryonic development, STAMP disentangled the erythro-myeloid hematopoiesis and hepatocytes developmental trajectories within the liver. STAMP is highly scalable and can handle more than 500,000 cells.
Collapse
Affiliation(s)
- Chengwei Zhong
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kok Siong Ang
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jinmiao Chen
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Centre for Computational Biology and Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
- Immunology Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.
| |
Collapse
|
7
|
Vecchiotti D, Clementi L, Cornacchia E, Di Vito Nolfi M, Verzella D, Capece D, Zazzeroni F, Angelucci A. Evidence of the Link between Stroma Remodeling and Prostate Cancer Prognosis. Cancers (Basel) 2024; 16:3215. [PMID: 39335188 PMCID: PMC11430343 DOI: 10.3390/cancers16183215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Prostate cancer (PCa), the most commonly diagnosed cancer in men worldwide, is particularly challenging for oncologists when a precise prognosis needs to be established. Indeed, the entire clinical management in PCa has important drawbacks, generating an intense debate concerning the possibility to individuate molecular biomarkers able to avoid overtreatment in patients with pathological indolent cancers. To date, the paradigmatic change in the view of cancer pathogenesis prompts to look for prognostic biomarkers not only in cancer epithelial cells but also in the tumor microenvironment. PCa ecology has been defined with increasing details in the last few years, and a number of promising key markers associated with the reactive stroma are now available. Here, we provide an updated description of the most biologically significant and cited prognosis-oriented microenvironment biomarkers derived from the main reactive processes during PCa pathogenesis: tissue adaptations, inflammatory response and metabolic reprogramming. Proposed biomarkers include factors involved in stromal cell differentiation, cancer-normal cell crosstalk, angiogenesis, extracellular matrix remodeling and energy metabolism.
Collapse
Affiliation(s)
- Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Letizia Clementi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Emanuele Cornacchia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
8
|
Shahsavari A, Liu F. Diagnostic and therapeutic potentials of extracellular vesicles for primary Sjögren's Syndrome: A review. DENTISTRY REVIEW 2024; 4:100150. [PMID: 39310092 PMCID: PMC11416744 DOI: 10.1016/j.dentre.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Primary Sjögren syndrome (pSS) is a chronic autoimmune disease mainly affecting salivary and lacrimal glands. The current pSS biomarkers, serum autoantibodies, are negative in many pSS patients diagnosed with histopathology changes, indicating the need of novel biomarkers. The current therapies of pSS are merely short-term symptomatic relief and can't provide effective long-term remedy. Extracellular vehicles (EVs) are nano-sized lipid bilayer-delimited particles spontaneously released by almost all types of cells and carrying various bioactive molecules to mediate inter-cellular communications. Recent studies found that EVs from salivary gland epithelial cells and immune cells play essential roles in pSS pathogenesis. Correspondingly, EVs and their cargos in plasma and saliva are promising candidate biomarkers for pSS diagnosis. Moreover, EVs from mesenchymal stem cells have shown promises to improve pSS treatment by modulating immune responses. This review summarizes recent findings in roles of EVs in pSS pathogenesis, diagnosis, and treatment of pSS, as well as related challenges and future research directions.
Collapse
Affiliation(s)
- Arash Shahsavari
- Cell Biology and Genetics department, School of Medicine, Texas A&M University, College Station, TX, USA
| | - Fei Liu
- Cell Biology and Genetics department, School of Medicine, Texas A&M University, College Station, TX, USA
| |
Collapse
|
9
|
Zheng JH, Zhu YH, Yang J, Ji PX, Zhao RK, Duan ZH, Yao HF, Jia QY, Yin YF, Hu LP, Li Q, Jiang SH, Huo YM, Liu W, Sun YW, Liu DJ. A CLIC1 network coordinates matrix stiffness and the Warburg effect to promote tumor growth in pancreatic cancer. Cell Rep 2024; 43:114633. [PMID: 39154343 DOI: 10.1016/j.celrep.2024.114633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/19/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) features substantial matrix stiffening and reprogrammed glucose metabolism, particularly the Warburg effect. However, the complex interplay between these traits and their impact on tumor advancement remains inadequately explored. Here, we integrated clinical, cellular, and bioinformatics approaches to explore the connection between matrix stiffness and the Warburg effect in PDAC, identifying CLIC1 as a key mediator. Elevated CLIC1 expression, induced by matrix stiffness through Wnt/β-catenin/TCF4 signaling, signifies poorer prognostic outcomes in PDAC. Functionally, CLIC1 serves as a catalyst for glycolytic metabolism, propelling tumor proliferation. Mechanistically, CLIC1 fortifies HIF1α stability by curbing hydroxylation via reactive oxygen species (ROS). Collectively, PDAC cells elevate CLIC1 levels in a matrix-stiffness-responsive manner, bolstering the Warburg effect to drive tumor growth via ROS/HIF1α signaling. Our insights highlight opportunities for targeted therapies that concurrently address matrix properties and metabolic rewiring, with CLIC1 emerging as a promising intervention point.
Collapse
Affiliation(s)
- Jia-Hao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yu-Heng Zhu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Jian Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Pei-Xuan Ji
- Shanghai Institute of Digestive Disease, Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, P.R. China
| | - Rui-Kang Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Zong-Hao Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Hong-Fei Yao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Qin-Yuan Jia
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yi-Fan Yin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Li-Peng Hu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Qing Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Shu-Heng Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yan-Miao Huo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China.
| | - Wei Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China.
| | - Yong-Wei Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China.
| | - De-Jun Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China.
| |
Collapse
|
10
|
Hönscheid PV, Baretton GB, Puhr M, Siciliano T, Israel JS, Stope MB, Ebersbach C, Beier AMK, Thomas C, Erb HHH. Prostate Cancer's Silent Partners: Fibroblasts and Their Influence on Glutamine Metabolism Manipulation. Int J Mol Sci 2024; 25:9275. [PMID: 39273225 PMCID: PMC11394735 DOI: 10.3390/ijms25179275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer-associated fibroblast (CAF)s in the tumour microenvironment (TME) modulate the extracellular matrix, interact with cancer cells, and facilitate communication with infiltrating leukocytes, significantly contributing to cancer progression and therapeutic response. In prostate cancer (PCa), CAFs promote malignancy through metabolic rewiring, cancer stem cell regulation, and therapy resistance. Pre-clinical studies indicate that targeting amino acid metabolism, particularly glutamine (Gln) metabolism, reduces cancer proliferation and stemness. However, most studies lack the context of CAF-cancer interaction, focusing on monocultures. This study assesses the influence of CAFs on PCa growth by manipulating Gln metabolism using colour-labelled PCa cell lines (red) and fibroblast (green) in a co-culture system to evaluate CAFs' effects on PCa cell proliferation and clonogenic potential. CAFs increased the proliferation of hormone-sensitive LNCaP cells, whereas the castration-resistant C4-2 cells were unaffected. However, clonogenic growth increased in both cell lines. Gln deprivation and GLS1 inhibition experiments revealed that the increased growth rate of LNCAP cells was associated with increased dependence on Gln, which was confirmed by proteomic analyses. Tissue analysis of PCa patients revealed elevated GLS1 levels in both the PCa epithelium and stroma, suggesting that GLS1 is a therapeutic target. Moreover, the median overall survival analysis of GLS1 expression in the PCa epithelium and stroma identified a "high-risk" patient group that may benefit from GLS1-targeted therapies. Therefore, GLS1 targeting appears promising in castration-resistant PCa patients with high GLS1 epithelium and low GLS1 stromal expression.
Collapse
Affiliation(s)
- Pia V Hönscheid
- Institute of Pathology, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT) Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Gustavo B Baretton
- Institute of Pathology, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT) Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- Tumor and Normal Tissue Bank of the University Cancer Center (UCC), University Hospital Carl Gustav Carus, Medical Faculty, TU Dresden, 01307 Dresden, Germany
| | - Martin Puhr
- Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Tiziana Siciliano
- Institute of Pathology, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Urology, University Hospital Carl Gustav Carus, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Justus S Israel
- Department of Urology, University Hospital Carl Gustav Carus, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Matthias B Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
- UroFors Consortium (Natural Scientists in Urological Research), German Society of Urology, 14163 Berlin, Germany
| | - Celina Ebersbach
- Department of Urology, University Hospital Carl Gustav Carus, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Alicia-Marie K Beier
- Department of Urology, University Hospital Carl Gustav Carus, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Christian Thomas
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- Department of Urology, University Hospital Carl Gustav Carus, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Holger H H Erb
- Department of Urology, University Hospital Carl Gustav Carus, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
- UroFors Consortium (Natural Scientists in Urological Research), German Society of Urology, 14163 Berlin, Germany
| |
Collapse
|
11
|
Vitorakis N, Gargalionis AN, Papavassiliou KA, Adamopoulos C, Papavassiliou AG. Precision Targeting Strategies in Pancreatic Cancer: The Role of Tumor Microenvironment. Cancers (Basel) 2024; 16:2876. [PMID: 39199647 PMCID: PMC11352254 DOI: 10.3390/cancers16162876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Pancreatic cancer demonstrates an ever-increasing incidence over the last years and represents one of the top causes of cancer-associated mortality. Cells of the tumor microenvironment (TME) interact with cancer cells in pancreatic ductal adenocarcinoma (PDAC) tumors to preserve cancer cells' metabolism, inhibit drug delivery, enhance immune suppression mechanisms and finally develop resistance to chemotherapy and immunotherapy. New strategies target TME genetic alterations and specific pathways in cell populations of the TME. Complex molecular interactions develop between PDAC cells and TME cell populations including cancer-associated fibroblasts, myeloid-derived suppressor cells, pancreatic stellate cells, tumor-associated macrophages, tumor-associated neutrophils, and regulatory T cells. In the present review, we aim to fully explore the molecular landscape of the pancreatic cancer TME cell populations and discuss current TME targeting strategies to provide thoughts for further research and preclinical testing.
Collapse
Affiliation(s)
- Nikolaos Vitorakis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonios N Gargalionis
- Department of Clinical Biochemistry, 'Attikon' University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Kostas A Papavassiliou
- First University Department of Respiratory Medicine, 'Sotiria' Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
12
|
Boire A, Burke K, Cox TR, Guise T, Jamal-Hanjani M, Janowitz T, Kaplan R, Lee R, Swanton C, Vander Heiden MG, Sahai E. Why do patients with cancer die? Nat Rev Cancer 2024; 24:578-589. [PMID: 38898221 PMCID: PMC7616303 DOI: 10.1038/s41568-024-00708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/21/2024]
Abstract
Cancer is a major cause of global mortality, both in affluent countries and increasingly in developing nations. Many patients with cancer experience reduced life expectancy and have metastatic disease at the time of death. However, the more precise causes of mortality and patient deterioration before death remain poorly understood. This scarcity of information, particularly the lack of mechanistic insights, presents a challenge for the development of novel treatment strategies to improve the quality of, and potentially extend, life for patients with late-stage cancer. In addition, earlier deployment of existing strategies to prolong quality of life is highly desirable. In this Roadmap, we review the proximal causes of mortality in patients with cancer and discuss current knowledge about the interconnections between mechanisms that contribute to mortality, before finally proposing new and improved avenues for data collection, research and the development of treatment strategies that may improve quality of life for patients.
Collapse
Affiliation(s)
- Adrienne Boire
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katy Burke
- University College London Hospitals NHS Foundation Trust and Central and North West London NHS Foundation Trust Palliative Care Team, London, UK
| | - Thomas R Cox
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
| | - Theresa Guise
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mariam Jamal-Hanjani
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
- Cancer Research UK Lung Centre of Excellence, University College London Cancer Institute, London, UK
| | - Tobias Janowitz
- Cold Spring Harbour Laboratory, Cold Spring Harbour, New York, NY, USA
- Northwell Health Cancer Institute, New York, NY, USA
| | - Rosandra Kaplan
- Paediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca Lee
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Charles Swanton
- Department of Oncology, University College London Hospitals, London, UK
- Cancer Research UK Lung Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
13
|
Mancini A, Gentile MT, Pentimalli F, Cortellino S, Grieco M, Giordano A. Multiple aspects of matrix stiffness in cancer progression. Front Oncol 2024; 14:1406644. [PMID: 39015505 PMCID: PMC11249764 DOI: 10.3389/fonc.2024.1406644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/18/2024] Open
Abstract
The biophysical and biomechanical properties of the extracellular matrix (ECM) are crucial in the processes of cell differentiation and proliferation. However, it is unclear to what extent tumor cells are influenced by biomechanical and biophysical changes of the surrounding microenvironment and how this response varies between different tumor forms, and over the course of tumor progression. The entire ensemble of genes encoding the ECM associated proteins is called matrisome. In cancer, the ECM evolves to become highly dysregulated, rigid, and fibrotic, serving both pro-tumorigenic and anti-tumorigenic roles. Tumor desmoplasia is characterized by a dramatic increase of α-smooth muscle actin expressing fibroblast and the deposition of hard ECM containing collagen, fibronectin, proteoglycans, and hyaluronic acid and is common in many solid tumors. In this review, we described the role of inflammation and inflammatory cytokines, in desmoplastic matrix remodeling, tumor state transition driven by microenvironment forces and the signaling pathways in mechanotransduction as potential targeted therapies, focusing on the impact of qualitative and quantitative variations of the ECM on the regulation of tumor development, hypothesizing the presence of matrisome drivers, acting alongside the cell-intrinsic oncogenic drivers, in some stages of neoplastic progression and in some tumor contexts, such as pancreatic carcinoma, breast cancer, lung cancer and mesothelioma.
Collapse
Affiliation(s)
- Alessandro Mancini
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- BioUp Sagl, Lugano, Switzerland
| | - Maria Teresa Gentile
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University “Giuseppe De Gennaro,” Casamassima, Bari, Italy
| | - Salvatore Cortellino
- Laboratory of Molecular Oncology, Responsible Research Hospital, Campobasso, Italy
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, Naples, NA, Italy
- Sbarro Health Research Organization (S.H.R.O.) Italia Foundation ETS, Candiolo, TO, Italy
| | - Michele Grieco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
14
|
Belle JI, Sen D, Baer JM, Liu X, Lander VE, Ye J, Sells BE, Knolhoff BL, Faiz A, Kang LI, Qian G, Fields RC, Ding L, Kim H, Provenzano PP, Stewart SA, DeNardo DG. Senescence Defines a Distinct Subset of Myofibroblasts That Orchestrates Immunosuppression in Pancreatic Cancer. Cancer Discov 2024; 14:1324-1355. [PMID: 38683144 DOI: 10.1158/2159-8290.cd-23-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 01/29/2024] [Accepted: 03/08/2024] [Indexed: 05/01/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) therapeutic resistance is largely attributed to a unique tumor microenvironment embedded with an abundance of cancer-associated fibroblasts (CAF). Distinct CAF populations were recently identified, but the phenotypic drivers and specific impact of CAF heterogeneity remain unclear. In this study, we identify a subpopulation of senescent myofibroblastic CAFs (SenCAF) in mouse and human PDAC. These SenCAFs are a phenotypically distinct subset of myofibroblastic CAFs that localize near tumor ducts and accumulate with PDAC progression. To assess the impact of endogenous SenCAFs in PDAC, we used an LSL-KRASG12D;p53flox;p48-CRE;INK-ATTAC (KPPC-IA) mouse model of spontaneous PDAC with inducible senescent cell depletion. Depletion of senescent stromal cells in genetic and pharmacologic PDAC models relieved immune suppression by macrophages, delayed tumor progression, and increased responsiveness to chemotherapy. Collectively, our findings demonstrate that SenCAFs promote PDAC progression and immune cell dysfunction. Significance: CAF heterogeneity in PDAC remains poorly understood. In this study, we identify a novel subpopulation of senescent CAFs that promotes PDAC progression and immunosuppression. Targeting CAF senescence in combination therapies could increase tumor vulnerability to chemo or immunotherapy. See related article by Ye et al., p. 1302.
Collapse
Affiliation(s)
- Jad I Belle
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Devashish Sen
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - John M Baer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Xiuting Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Varintra E Lander
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jiayu Ye
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Blake E Sells
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Brett L Knolhoff
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Ahmad Faiz
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Liang-I Kang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Guhan Qian
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
- Department of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Ryan C Fields
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Hyun Kim
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Paolo P Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
- Department of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Sheila A Stewart
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - David G DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
15
|
Tharp KM, Kersten K, Maller O, Timblin GA, Stashko C, Canale FP, Menjivar RE, Hayward MK, Berestjuk I, Ten Hoeve J, Samad B, Ironside AJ, di Magliano MP, Muir A, Geiger R, Combes AJ, Weaver VM. Tumor-associated macrophages restrict CD8 + T cell function through collagen deposition and metabolic reprogramming of the breast cancer microenvironment. NATURE CANCER 2024; 5:1045-1062. [PMID: 38831058 DOI: 10.1038/s43018-024-00775-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Tumor progression is accompanied by fibrosis, a condition of excessive extracellular matrix accumulation, which is associated with diminished antitumor immune infiltration. Here we demonstrate that tumor-associated macrophages (TAMs) respond to the stiffened fibrotic tumor microenvironment (TME) by initiating a collagen biosynthesis program directed by transforming growth factor-β. A collateral effect of this programming is an untenable metabolic milieu for productive CD8+ T cell antitumor responses, as collagen-synthesizing macrophages consume environmental arginine, synthesize proline and secrete ornithine that compromises CD8+ T cell function in female breast cancer. Thus, a stiff and fibrotic TME may impede antitumor immunity not only by direct physical exclusion of CD8+ T cells but also through secondary effects of a mechano-metabolic programming of TAMs, which creates an inhospitable metabolic milieu for CD8+ T cells to respond to anticancer immunotherapies.
Collapse
Affiliation(s)
- Kevin M Tharp
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Kelly Kersten
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Ori Maller
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Greg A Timblin
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Connor Stashko
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Fernando P Canale
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Rosa E Menjivar
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Mary-Kate Hayward
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ilona Berestjuk
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Johanna Ten Hoeve
- UCLA Metabolomics Center, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bushra Samad
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | | | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, Cancer Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Alexis J Combes
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences and Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and The Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
16
|
Lavi Arab F, Hoseinzadeh A, Hafezi F, Sadat Mohammadi F, Zeynali F, Hadad Tehran M, Rostami A. Mesenchymal stem cell-derived exosomes for management of prostate cancer: An updated view. Int Immunopharmacol 2024; 134:112171. [PMID: 38701539 DOI: 10.1016/j.intimp.2024.112171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Prostate cancer represents the second most prevalent form of cancer found in males, and stands as the fifth primary contributor to cancer-induced mortality on a global scale. Research has shown that transplanted mesenchymal stem cells (MSCs) can migrate by homing to tumor sites in the body. In prostate cancer, researchers have explored the fact that MSC-based therapies (including genetically modified delivery vehicles or vectors) and MSC-derived exosomes are emerging as attractive options to improve the efficacy and safety of traditional cancer therapies. In addition, researchers have reported new insights into the application of extracellular vesicle (EV)-MSC therapy as a novel treatment option that could provide a more effective and targeted approach to prostate cancer treatment. Moreover, the new generation of exosomes, which contain biologically functional molecules as signal transducers between cells, can simultaneously deliver different therapeutic agents and induce an anti-tumor phenotype in immune cells and their recruitment to the tumor site. The results of the current research on the use of MSCs in the treatment of prostate cancer may be helpful to researchers and clinicians working in this field. Nevertheless, it is crucial to emphasize that although dual-role MSCs show promise as a therapeutic modality for managing prostate cancer, further investigation is imperative to comprehensively grasp their safety and effectiveness. Ongoing clinical trials are being conducted to assess the viability of MSCs in the management of prostate cancer. The results of these trials will help determine the viability of this approach. Based on the current literature, engineered MSCs-EV offer great potential for application in targeted tumor therapy.
Collapse
Affiliation(s)
- Fahimeh Lavi Arab
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Akram Hoseinzadeh
- Department of Immunology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.; Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Hafezi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadat Mohammadi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farid Zeynali
- Department of Urology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Melika Hadad Tehran
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Amirreza Rostami
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Mull ML, Pratt SJP, Thompson KN, Annis DA, Gad AA, Lee RM, Chang KT, Stemberger MB, Ju JA, Gilchrist DE, Boyman L, Vitolo MI, Lederer WJ, Martin SS. Disruption of P2Y2 signaling promotes breast tumor cell dissemination by reducing ATP-dependent calcium elevation and actin localization to cell junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.31.533191. [PMID: 37034765 PMCID: PMC10081304 DOI: 10.1101/2023.03.31.533191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The tumor microenvironment and wound healing after injury both contain extremely high concentrations of the extracellular signaling molecule, adenosine triphosphate (ATP) compared to normal tissue. P2Y2 receptor, an ATP-activated purinergic receptor, is typically associated with pulmonary, endothelial, and neurological cell signaling. Here we report its role and importance in breast epithelial cell signaling and how it is altered in metastatic breast cancer. In response to ATP activation, P2Y2 receptor signaling causes an increase of intracellular Ca 2+ in non-tumorigenic breast epithelial cells, while their tumorigenic and metastatic counterparts have significantly reduced Ca 2+ responses. The non-tumorigenic cells respond to increased Ca 2+ with actin polymerization and localization to cell edges, while the metastatic cells remained unaffected. The increase in intracellular Ca 2+ after ATP stimulation was blunted using a P2Y2 antagonist, which also prevented actin mobilization and caused cell dissemination from spheroids in non-tumorigenic breast epithelial cells. Furthermore, the lack of Ca 2+ concentration changes and actin mobilization in the metastatic breast cancer cells could be due to reduced P2Y2 expression, which correlates with poorer overall survival in breast cancer patients. This study elucidates rapid changes that occur after elevated intracellular Ca 2+ in breast epithelial cells and how metastatic cancer cells have adapted to evade this cellular response.
Collapse
|
18
|
Farhangnia P, Khorramdelazad H, Nickho H, Delbandi AA. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol 2024; 17:40. [PMID: 38835055 PMCID: PMC11151541 DOI: 10.1186/s13045-024-01561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Foster DS. From Stroma to Scalpel: Celebrating a Mentor in Science and Surgery. Ann Surg Oncol 2024; 31:3626-3632. [PMID: 38436773 DOI: 10.1245/s10434-024-15082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Deshka S Foster
- Surgical Oncology, Memorial Sloan Kettering Cancer Center, New York, USA.
- Department of Surgery, Stanford University, Stanford, CA, USA.
| |
Collapse
|
20
|
Okano K, Miyai K, Mikoshi A, Edo H, Ito K, Tsuda H, Shinmoto H. Histological parameters and stromal desmoplastic status affecting accurate diagnosis of extraprostatic extension of prostate cancer using multi-parametric magnetic resonance imaging. Int J Urol 2024; 31:475-482. [PMID: 38193247 DOI: 10.1111/iju.15385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024]
Abstract
OBJECTIVE To investigate the clinicopathological factors affecting discrepancies between multi-parametric magnetic resonance imaging (mpMRI) and histopathological evaluation for diagnosis of extraprostatic extension (EPE) of prostate cancer. METHODS One hundred-and-three lesions from 96 cases with suspected EPE on preoperative mpMRI, of which 60 and 43 showed bulging and frank capsular breach, respectively, were grouped according to pathological (p)EPE in radical prostatectomy specimens. Additionally, clinicopathological/immunohistochemical findings for periostin reflecting a desmoplastic stromal reaction were compared between these groups. RESULTS pEPE was detected in 49 (48%) of the 103 lesions. Of these, 25 (42%) showed bulging and 24 (56%) showed frank capsular breach on MRI. In the total cohort, the absence of pEPE was significantly associated with a lower Gleason Grade Group (GG) (p < 0.0001), anterior location (p = 0.003), absence of intraductal carcinoma of the prostate (IDC-P) (p = 0.026), and high stromal periostin expression (p < 0.0001). These trends were preserved in subgroups defined by MRI findings, except for anterior location/IDC-P in the bulging subgroup. CONCLUSIONS GG, anterior location, and periostin expression may cause mpMRI-pathological discrepancies regarding EPE. Periostin expression was a significant pEPE-negative factor in all subgroup analyses. Our results indicate that patients with suspected EPE on MRI, regardless of their pEPE results, should be followed as carefully as those with definite pEPE.
Collapse
Affiliation(s)
- Kousuke Okano
- Department of Radiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kosuke Miyai
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Ayako Mikoshi
- Department of Radiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiromi Edo
- Department of Radiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Keiichi Ito
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroshi Shinmoto
- Department of Radiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
21
|
Ten A, Kumeiko V, Farniev V, Gao H, Shevtsov M. Tumor Microenvironment Modulation by Cancer-Derived Extracellular Vesicles. Cells 2024; 13:682. [PMID: 38667297 PMCID: PMC11049026 DOI: 10.3390/cells13080682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The tumor microenvironment (TME) plays an important role in the process of tumorigenesis, regulating the growth, metabolism, proliferation, and invasion of cancer cells, as well as contributing to tumor resistance to the conventional chemoradiotherapies. Several types of cells with relatively stable phenotypes have been identified within the TME, including cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), neutrophils, and natural killer (NK) cells, which have been shown to modulate cancer cell proliferation, metastasis, and interaction with the immune system, thus promoting tumor heterogeneity. Growing evidence suggests that tumor-cell-derived extracellular vesicles (EVs), via the transfer of various molecules (e.g., RNA, proteins, peptides, and lipids), play a pivotal role in the transformation of normal cells in the TME into their tumor-associated protumorigenic counterparts. This review article focuses on the functions of EVs in the modulation of the TME with a view to how exosomes contribute to the transformation of normal cells, as well as their importance for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Artem Ten
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Vladislav Farniev
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China;
| | - Maxim Shevtsov
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str., 2, 197341 St. Petersburg, Russia
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str., 22, 81675 Munich, Germany
| |
Collapse
|
22
|
Pradhan R, Kundu A, Kundu CN. The cytokines in tumor microenvironment: from cancer initiation-elongation-progression to metastatic outgrowth. Crit Rev Oncol Hematol 2024; 196:104311. [PMID: 38442808 DOI: 10.1016/j.critrevonc.2024.104311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
It is a well-known fact that cancer can be augmented by infections and inflammation. In fact, chronic inflammation establishes a tumor-supporting-microenvironment (TME), which contributes to neoplastic progression. Presently, extensive research is going on to establish the interrelationship between infection, inflammation, immune response, and cancer. Cytokines are the most essential components in this linkage, which are secreted by immune cells and stromal cells of TME. Cytokines have potential involvement in tumor initiation, elongation, progression, metastatic outgrowth, angiogenesis, and development of therapeutic resistance. They are also linked with increased cancer symptoms along with reduced quality of life in advanced cancer patients. The cancer patients experience multiple symptoms including pain, asthenia, fatigue, anorexia, cachexia, and neurodegenerative disorders etc. Anti-cancer therapeutics can be developed by targeting cytokines along with TME to reduce the immunocompromised state and also modulate the TME. This review article depicts the composition and function of different inflammatory cells within the TME, more precisely the role of cytokines in cancer initiation, elongation, and progression as well as the clinical effects in advanced cancer patients. It also provides an overview of different natural compounds, nanoparticles, and chemotherapeutic agents that can target cytokines along with TME, which finally pave the way for cytokines-targeted anti-cancer therapeutics.
Collapse
Affiliation(s)
- Rajalaxmi Pradhan
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India.
| | - Anushka Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India.
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
23
|
Sağraç D, Aydın S, Kırbaş OK, Öztürkoğlu D, Şahin F. Extracellular vesicles derived from human foreskin cells (hFS-Exo) accelerate cell migration and angiogenesis through MAPK pathway: an in vitro study. Mol Biol Rep 2024; 51:471. [PMID: 38551706 DOI: 10.1007/s11033-024-09378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Wound healing is one of the important processes in the body. Attempts to create new drugs are of interest due to the side effects of natural and chemical wound healing compounds. To overcome this obstacle, stem cells have been used as healing agents. However, both difficulties in collection and risks such as rejection and teratoma in the recipient body have limited the use of stem cells, directly. Since the potential content of the stem cells can be transferred to the recipient cells by vesicles, small extracellular vesicles have recently become prominent agents. METHODS AND RESULTS The wound-healing effect of extracellular vesicles derived from foreskin cells was investigated in both keratinocyte and endothelial cells. Migration assay, RT-PCR, Col1a1 ELISA and Western Blot experiments were utilized to reveal healing effect of EVs and its possible molecular pathways. EV-treated groups exhibited more proliferative, invasive, and migrative characteristics. When comparing to the control group, new vessel formation was induced in EV groups. An increase in gene levels of growth factors related to wound healing and change in the mitogen-activated protein kinase (MAPK) signaling pathway proteins in EV-treated groups were determined. Possible molecular mechanisms underlying cell movements were associated with the MAPK pathway. It was found that human foreskin cell EVs (hFS-Exo) may have a potential to heal wounds in a short period of time by triggering the MAPK pathway. CONCLUSIONS hFS-Exo could be a new promising wound healing agent in the future.
Collapse
Affiliation(s)
- Derya Sağraç
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| | - Safa Aydın
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| | - Oğuz Kaan Kırbaş
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| | - Dilek Öztürkoğlu
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkey.
| |
Collapse
|
24
|
Liu Z, Huang Y, Zhang P, Yang C, Wang Y, Yu Y, Xiang H. Establishment of an immunogenic cell death-related model for prognostic prediction and identification of therapeutic targets in endometrial carcinoma. Aging (Albany NY) 2024; 16:4920-4942. [PMID: 38461430 PMCID: PMC10968672 DOI: 10.18632/aging.205647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/02/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Studies have firmly established the pivotal role of the immunogenic cell death (ICD) in the development of tumors. This study seeks to develop a risk model related to ICD to predict the prognosis of patients with endometrial carcinoma (EC). MATERIALS AND METHODS RNA-seq data of EC retrieved from TCGA database were analyzed using R software. We determined clusters based on ICD-related genes (ICDRGs) expression levels. Cox and LASSO analyses were further used to build the prediction model, and its accuracy was evaluated in the train and validation sets. Finally, in vitro and in vivo experiments were conducted to confirm the impact of the high-risk gene IFNA2 on EC. RESULTS Patients were sorted into two ICD clusters, with survival analysis revealing divergent prognoses between the clusters. The Cox regression analysis identified prognostic risk genes, and the LASSO analysis constructed a model based on 9 of these genes. Notably, this model displayed excellent predictive accuracy when validated. Finally, increased IFNA2 levels led to decreased vitality, proliferation, and invasiveness in vitro. IFNA2 also has significant tumor inhibiting effect in vivo. CONCLUSIONS The ICD-related model can accurately predict the prognosis of patients with EC, and IFNA2 may be a potential treatment target.
Collapse
Affiliation(s)
- Zhenran Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, Anhui, China
| | - Yue Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, Anhui, China
| | - Pin Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, Anhui, China
| | - Chen Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, Anhui, China
| | - Yujie Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, Anhui, China
| | - Yaru Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, Anhui, China
| | - Huifen Xiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, Anhui, China
| |
Collapse
|
25
|
Delacher M, Schmidleithner L, Simon M, Stüve P, Sanderink L, Hotz-Wagenblatt A, Wuttke M, Schambeck K, Ruhland B, Hofmann V, Bittner S, Ritter U, Pant A, Helbich SS, Voss M, Lemmermann NA, Bessiri-Schake L, Bohn T, Eigenberger A, Menevse AN, Gebhard C, Strieder N, Abken H, Rehli M, Huehn J, Beckhove P, Hehlgans T, Junger H, Geissler EK, Prantl L, Werner JM, Schmidl C, Brors B, Imbusch CD, Feuerer M. The effector program of human CD8 T cells supports tissue remodeling. J Exp Med 2024; 221:e20230488. [PMID: 38226976 PMCID: PMC10791561 DOI: 10.1084/jem.20230488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 01/17/2024] Open
Abstract
CD8 T lymphocytes are classically viewed as cytotoxic T cells. Whether human CD8 T cells can, in parallel, induce a tissue regeneration program is poorly understood. Here, antigen-specific assay systems revealed that human CD8 T cells not only mediated cytotoxicity but also promoted tissue remodeling. Activated CD8 T cells could produce the epidermal growth factor receptor (EGFR)-ligand amphiregulin (AREG) and sensitize epithelial cells for enhanced regeneration potential. Blocking the EGFR or the effector cytokines IFN-γ and TNF could inhibit tissue remodeling. This regenerative program enhanced tumor spheroid and stem cell-mediated organoid growth. Using single-cell gene expression analysis, we identified an AREG+, tissue-resident CD8 T cell population in skin and adipose tissue from patients undergoing abdominal wall or abdominoplasty surgery. These tissue-resident CD8 T cells showed a strong TCR clonal relation to blood PD1+TIGIT+ CD8 T cells with tissue remodeling abilities. These findings may help to understand the complex CD8 biology in tumors and could become relevant for the design of therapeutic T cell products.
Collapse
Affiliation(s)
- Michael Delacher
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Lisa Schmidleithner
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Malte Simon
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Philipp Stüve
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Lieke Sanderink
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Agnes Hotz-Wagenblatt
- Core Facility Omics IT and Data Management, German Cancer Research Center, Heidelberg, Germany
| | - Marina Wuttke
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Kathrin Schambeck
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Brigitte Ruhland
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Veronika Hofmann
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Sebastian Bittner
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Uwe Ritter
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Asmita Pant
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Sara Salome Helbich
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Morten Voss
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Niels A. Lemmermann
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
- Institute of Virology, University Medical Center Mainz, Mainz, Germany
- Institute of Virology, University of Bonn, Bonn, Germany
| | - Lisa Bessiri-Schake
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Toszka Bohn
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Andreas Eigenberger
- Department of Plastic, Hand- and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Ayse Nur Menevse
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Interventional Immunology, University Regensburg, Regensburg, Germany
| | | | | | - Hinrich Abken
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Genetic Immunotherapy, University Regensburg, Regensburg, Germany
| | - Michael Rehli
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Hannover Medical School, Hannover, Germany
- RESIST, Cluster of Excellence 2155, Hannover Medical School, Hannover, Germany
| | - Philipp Beckhove
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Interventional Immunology, University Regensburg, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Thomas Hehlgans
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Henrik Junger
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Edward K. Geissler
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic, Hand- and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Jens M. Werner
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | | | - Benedikt Brors
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine Heidelberg, Heidelberg University, Heidelberg, Germany
- Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
- National Center for Tumor Diseases, Heidelberg, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Charles D. Imbusch
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
- Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Markus Feuerer
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| |
Collapse
|
26
|
Yadav MP, Ballal S, Martin M, Roesch F, Satapathy S, Moon ES, Tripathi M, Gogia A, Bal C. Therapeutic potential of [ 177Lu]Lu-DOTAGA-FAPi dimers in metastatic breast cancer patients with limited treatment options: efficacy and safety assessment. Eur J Nucl Med Mol Imaging 2024; 51:805-819. [PMID: 37932560 DOI: 10.1007/s00259-023-06482-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/15/2023] [Indexed: 11/08/2023]
Abstract
PURPOSE The upregulation of fibroblast activation protein (FAP) expression has been observed in various cancers, including metastatic breast carcinoma, prompting research into small molecule inhibitors for both diagnostic and therapeutic purposes. While the diagnostic value of PET/CT imaging using 68 Ga- or 18F-labelled FAPi-monomers in breast cancer diagnosis is well-established, there is a significant need for therapeutic analogs. This retrospective study aimed to assess the safety and effectiveness of [177Lu]Lu-DOTAGA.FAPi dimer radionuclide therapy in patients with advanced-stage breast cancer who had previously undergone [68 Ga]Ga-DOTA.SA.FAPi PET/CT scans to confirm the expression of FAP. MATERIALS AND METHODS Between November 2020 and March 2023, a compassionate treatment approach was utilized to administer [177Lu]Lu-DOTAGA.FAPi dimer radionuclide therapy to heavily pretreated patients with advanced breast cancer. Nineteen patients (18 females, 1 male) with metastatic breast cancer participated in the study, with an average age of 44.6 ± 10.7 years. The therapy was administered at intervals of 8 to 12 weeks, and the median follow-up duration was 14 months. The primary objective of the study was to assess molecular response using [68 Ga]Ga-DOTA.SA.FAPi PET/CT scans, with response evaluation based on the PERCIST criteria. Secondary endpoints included overall survival (OS), progression-free survival (PFS), clinical response assessment, and safety evaluation using CTCAE v5.0 guidelines. RESULTS A total of 65 cycles were administered, with a mean cumulative activity of 19 ± 5.7 GBq (510 ± 154 mCi) ranging from 11 to 33.3 GBq (300 to 900 mCi) of [177Lu]Lu-DOTAGA.FAPi dimer. The number of cycles ranged from 2 to 6, with a median of 3 cycles. The treatment protocol consisted of different numbers of cycles administered to the patients: specifically, two cycles were given to five patients, three cycles to nine patients, four cycles to one patient, and six cycles to four patients. Most patients had invasive/infiltrative ductal carcinoma (94.7%), while a small percentage had invasive lobular carcinoma (5.3%). All patients had bone metastases, and five of them also had liver involvement, while seven had brain metastases. Response assessment using [68 Ga]Ga-DOTA.SA.FAPi PET/CT scans showed that 25% of the 16 patients evaluated had partial remission, while 37.5% exhibited disease progression. According to the VAS response criteria, 26.3% achieved complete response, 15.7% had partial response, 42% showed minimal response, 11% had stable disease, and 5% had no response. The clinical disease control rate was promising, with 95% of patients achieving disease control. The clinical objective response rate was 84%. The median follow-up period was 14 months. At the time of analysis, the median overall survival was 12 months, and the median progression-free survival was 8.5 months. Notably, no severe hematological, renal, or hepatic toxicities, electrolyte imbalances, or adverse events of grade 3 or 4 were observed during the study. CONCLUSION The findings suggest that [177Lu]Lu-DOTAGA.FAPi dimer therapy is well-tolerated, safe, and effective for treating end-stage metastatic breast cancer patients. [177Lu]Lu-DOTAGA.FAPi dimer treatment demonstrated promising efficacy in patients with advanced breast cancer, as indicated by high disease control rates, favorable response outcomes, and acceptable safety profile. Further research and longer follow-up are warranted to assess long-term outcomes and validate these findings.
Collapse
Affiliation(s)
- Madhav P Yadav
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sanjana Ballal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Marcel Martin
- Department of Chemistry - TRIGA site, Johannes Gutenberg University, Mainz, Germany
| | - Frank Roesch
- Department of Chemistry - TRIGA site, Johannes Gutenberg University, Mainz, Germany
| | - Swayamjeet Satapathy
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Euy S Moon
- Department of Chemistry - TRIGA site, Johannes Gutenberg University, Mainz, Germany
| | - Madhavi Tripathi
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Ajay Gogia
- Department of Medical Oncology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Chandrasekhar Bal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
27
|
Zmorzynski S, Kimicka-Szajwaj A, Szajwaj A, Czerwik-Marcinkowska J, Wojcierowski J. Genetic Changes in Mastocytes and Their Significance in Mast Cell Tumor Prognosis and Treatment. Genes (Basel) 2024; 15:137. [PMID: 38275618 PMCID: PMC10815783 DOI: 10.3390/genes15010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Mast cell tumors are a large group of diseases occurring in dogs, cats, mice, as well as in humans. Systemic mastocytosis (SM) is a disease involving the accumulation of mast cells in organs. KIT gene mutations are very often seen in abnormal mast cells. In SM, high KIT/CD117 expression is observed; however, there are usually no KIT gene mutations present. Mastocytoma (MCT)-a form of cutaneous neoplasm-is common in animals but quite rare in humans. KIT/CD117 receptor mutations were studied as the typical changes for human mastocytosis. In 80% of human cases, the KIT gene substitution p.D816H was present. In about 25% of MCTs, metastasis was observed. Changes in the gene expression of certain genes, such as overexpression of the DNAJ3A3 gene, promote metastasis. In contrast, the SNORD93 gene blocks the expression of metastasis genes. The panel of miR-21-5p, miR-379, and miR-885 has a good efficiency in discriminating healthy and MCT-affected dogs, as well as MCT-affected dogs with and without nodal metastasis. Further studies on the pathobiology of mast cells can lead to clinical improvements, such as better MCT diagnosis and treatment. Our paper reviews studies on the topic of mast cells, which have been carried out over the past few years.
Collapse
|
28
|
Levra Levron C, Elettrico L, Duval C, Piacenti G, Proserpio V, Donati G. Bridging tissue repair and epithelial carcinogenesis: epigenetic memory and field cancerization. Cell Death Differ 2024:10.1038/s41418-023-01254-6. [PMID: 38228801 DOI: 10.1038/s41418-023-01254-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
The epigenome coordinates spatial-temporal specific gene expression during development and in adulthood, for the maintenance of homeostasis and upon tissue repair. The upheaval of the epigenetic landscape is a key event in the onset of many pathologies including tumours, where epigenetic changes cooperate with genetic aberrations to establish the neoplastic phenotype and to drive cell plasticity during its evolution. DNA methylation, histone modifiers and readers or other chromatin components are indeed often altered in cancers, such as carcinomas that develop in epithelia. Lining the surfaces and the cavities of our body and acting as a barrier from the environment, epithelia are frequently subjected to acute or chronic tissue damages, such as mechanical injuries or inflammatory episodes. These events can activate plasticity mechanisms, with a deep impact on cells' epigenome. Despite being very effective, tissue repair mechanisms are closely associated with tumour onset. Here we review the similarities between tissue repair and carcinogenesis, with a special focus on the epigenetic mechanisms activated by cells during repair and opted by carcinoma cells in multiple epithelia. Moreover, we discuss the recent findings on inflammatory and wound memory in epithelia and describe the epigenetic modifications that characterise them. Finally, as wound memory in epithelial cells promotes carcinogenesis, we highlight how it represents an early step for the establishment of field cancerization.
Collapse
Affiliation(s)
- Chiara Levra Levron
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Luca Elettrico
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Carlotta Duval
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Gabriele Piacenti
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Valentina Proserpio
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
- Italian Institute for Genomic Medicine, Candiolo (TO), Italy
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy.
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy.
| |
Collapse
|
29
|
Akinjiyan FA, Ibitoye Z, Zhao P, Shriver LP, Patti GJ, Longmore GD, Fuh KC. DDR2-regulated arginase activity in ovarian cancer-associated fibroblasts promotes collagen production and tumor progression. Oncogene 2024; 43:189-201. [PMID: 37996700 PMCID: PMC10786713 DOI: 10.1038/s41388-023-02884-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Ovarian cancer has poor survival outcomes particularly for advanced stage, metastatic disease. Metastasis is promoted by interactions of stromal cells, such as cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME), with tumor cells. CAFs play a key role in tumor progression by remodeling the TME and extracellular matrix (ECM) to result in a more permissive environment for tumor progression. It has been shown that fibroblasts, in particular myofibroblasts, utilize metabolism to support ECM remodeling. However, the intricate mechanisms by which CAFs support collagen production and tumor progression are poorly understood. In this study, we show that the fibrillar collagen receptor, Discoidin Domain Receptor 2 (DDR2), promotes collagen production in human and mouse omental CAFs through arginase activity. CAFs with high DDR2 or arginase promote tumor colonization in the omentum. In addition, DDR2-depleted CAFs had decreased ornithine levels leading to decreased collagen production and polyamine levels compared to WT control CAFs. Tumor cell invasion was decreased in the presence CAF conditioned media (CM) depleted of DDR2 or arginase-1, and this invasion defect was rescued in the presence of CM from DDR2-depleted CAFs that constitutively overexpressed arginase-1. Similarly, the addition of exogenous polyamines to CM from DDR2-depleted CAFs led to increased tumor cell invasion. We detected SNAI1 protein at the promoter region of the arginase-1 gene, and DDR2-depleted CAFs had decreased levels of SNAI1 protein at the arginase-1 promoter region. Furthermore, high stromal arginase-1 expression correlated with poor survival in ovarian cancer patients. These findings highlight how DDR2 regulates collagen production by CAFs in the tumor microenvironment by controlling the transcription of arginase-1, and CAFs are a major source of arginase activity and L-arginine metabolites in ovarian cancer models.
Collapse
Affiliation(s)
- Favour A Akinjiyan
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Reproductive Health Sciences, Washington University, St Louis, MO, 63110, USA
- ICCE Institute, Washington University, St Louis, MO, 63110, USA
- Department of Medicine (Oncology), Washington University, St. Louis, MO, 63110, USA
| | - Zainab Ibitoye
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Reproductive Health Sciences, Washington University, St Louis, MO, 63110, USA
- ICCE Institute, Washington University, St Louis, MO, 63110, USA
- Department of Medicine (Oncology), Washington University, St. Louis, MO, 63110, USA
| | - Peinan Zhao
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Leah P Shriver
- Department of Medicine (Oncology), Washington University, St. Louis, MO, 63110, USA
- Department of Chemistry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Metabolomics and Isotope Tracing, Washington University, St. Louis, MO, 63130, USA
| | - Gary J Patti
- Department of Medicine (Oncology), Washington University, St. Louis, MO, 63110, USA
- Department of Chemistry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Metabolomics and Isotope Tracing, Washington University, St. Louis, MO, 63130, USA
| | - Gregory D Longmore
- ICCE Institute, Washington University, St Louis, MO, 63110, USA
- Department of Medicine (Oncology), Washington University, St. Louis, MO, 63110, USA
| | - Katherine C Fuh
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Center for Reproductive Health Sciences, Washington University, St Louis, MO, 63110, USA.
- Department of Obstetrics and Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
30
|
Southern BD, Li H, Mao H, Crish JF, Grove LM, Scheraga RG, Mansoor S, Reinhardt A, Abraham S, Deshpande G, Loui A, Ivanov AI, Rosenfeld SS, Bresnick AR, Olman MA. A novel mechanoeffector role of fibroblast S100A4 in myofibroblast transdifferentiation and fibrosis. J Biol Chem 2024; 300:105530. [PMID: 38072048 PMCID: PMC10789633 DOI: 10.1016/j.jbc.2023.105530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 12/23/2023] Open
Abstract
Fibroblast to myofibroblast transdifferentiation mediates numerous fibrotic disorders, such as idiopathic pulmonary fibrosis (IPF). We have previously demonstrated that non-muscle myosin II (NMII) is activated in response to fibrotic lung extracellular matrix, thereby mediating myofibroblast transdifferentiation. NMII-A is known to interact with the calcium-binding protein S100A4, but the mechanism by which S100A4 regulates fibrotic disorders is unclear. In this study, we show that fibroblast S100A4 is a calcium-dependent, mechanoeffector protein that is uniquely sensitive to pathophysiologic-range lung stiffness (8-25 kPa) and thereby mediates myofibroblast transdifferentiation. Re-expression of endogenous fibroblast S100A4 rescues the myofibroblastic phenotype in S100A4 KO fibroblasts. Analysis of NMII-A/actin dynamics reveals that S100A4 mediates the unraveling and redistribution of peripheral actomyosin to a central location, resulting in a contractile myofibroblast. Furthermore, S100A4 loss protects against murine in vivo pulmonary fibrosis, and S100A4 expression is dysregulated in IPF. Our data reveal a novel mechanosensor/effector role for endogenous fibroblast S100A4 in inducing cytoskeletal redistribution in fibrotic disorders such as IPF.
Collapse
Affiliation(s)
- Brian D Southern
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA; Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Haiyan Li
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hongxia Mao
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - James F Crish
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lisa M Grove
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rachel G Scheraga
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA; Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sanaa Mansoor
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Amanda Reinhardt
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Susamma Abraham
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gauravi Deshpande
- Lerner Research Institute Imaging Core, Cleveland Clinic, Cleveland, Ohio, USA
| | - Alicia Loui
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrei I Ivanov
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Steven S Rosenfeld
- Division of Hematology/Oncology, Mayo Clinic Jacksonville, Jacksonville, Florida, USA
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Mitchell A Olman
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA; Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
31
|
Cheng P, Ming S, Cao W, Wu J, Tian Q, Zhu J, Wei W. Recent advances in sonodynamic therapy strategies for pancreatic cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1945. [PMID: 38403882 DOI: 10.1002/wnan.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Pancreatic cancer, a prevalent malignancy of the digestive system, has a poor 5-year survival rate of around 10%. Although numerous minimally invasive alternative treatments, including photothermal therapy and photodynamic therapy, have shown effectiveness compared with traditional surgical procedures, radiotherapy, and chemotherapy. However, the application of these alternative treatments is constrained by their depth of penetration, making it challenging to treat pancreatic cancer situated deep within the tissue. Sonodynamic therapy (SDT) has emerged as a promising minimally invasive therapy method that is particularly potent against deep-seated tumors such as pancreatic cancer. However, the unique characteristics of pancreatic cancer, including a dense surrounding matrix, high reductivity, and a hypoxic tumor microenvironment, impede the efficient application of SDT. Thus, to guide the evolution of SDT for pancreatic cancer therapy, this review addresses these challenges, examines current strategies for effective SDT enhancement for pancreatic cancer, and investigates potential future advances to boost clinical applicability. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shuai Ming
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Cao
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jixiao Wu
- School of Materials and Chemistry, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Qiwei Tian
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jing Zhu
- School of Materials and Chemistry, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Wei Wei
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
32
|
Olea AR, Jurado A, Slor G, Tevet S, Pujals S, De La Rosa VR, Hoogenboom R, Amir RJ, Albertazzi L. Reaching the Tumor: Mobility of Polymeric Micelles Inside an In Vitro Tumor-on-a-Chip Model with Dual ECM. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59134-59144. [PMID: 38102079 PMCID: PMC10755695 DOI: 10.1021/acsami.3c12798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Degradable polymeric micelles are promising drug delivery systems due to their hydrophobic core and responsive design. When applying micellar nanocarriers for tumor delivery, one of the bottlenecks encountered in vivo is the tumor tissue barrier: crossing the dense mesh of cells and the extracellular matrix (ECM). Sometimes overlooked, the extracellular matrix can trap nanoformulations based on charge, size, and hydrophobicity. Here, we used a simple design of a microfluidic chip with two types of ECM and MCF7 spheroids to allow "high-throughput" screening of the interactions between biological interfaces and polymeric micelles. To demonstrate the applicability of the chip, a small library of fluorescently labeled polymeric micelles varying in their hydrophilic shell and hydrophobic core forming blocks was studied. Three widely used hydrophilic shells were tested and compared, namely, poly(ethylene glycol), poly(2-ethyl-2-oxazoline), and poly(acrylic acid), along with two enzymatically degradable dendritic hydrophobic cores (based on hexyl or nonyl end groups). Using ratiometric imaging of unimer:micelle fluorescence and FRAP inside the chip model, we obtained the local assembly state and dynamics inside the chip. Notably, we observed different micelle behaviors in the basal lamina ECM, from avoidance of the ECM structure to binding of the poly(acrylic acid) formulations. Binding to the basal lamina correlated with higher uptake into MCF7 spheroids. Overall, we proposed a simple microfluidic chip containing dual ECM and spheroids for the assessment of the interactions of polymeric nanocarriers with biological interfaces and evaluating nanoformulations' capacity to cross the tumor tissue barrier.
Collapse
Affiliation(s)
- Alis R. Olea
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology, Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | - Alicia Jurado
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology, Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | - Gadi Slor
- Department
of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shahar Tevet
- Department
of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Silvia Pujals
- Department
of Biological Chemistry, Institute for Advanced
Chemistry of Catalonia (IQAC−CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Victor R. De La Rosa
- Supramolecular
Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department
of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular
Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department
of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| | - Roey J. Amir
- Department
of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The
ADAMA
Center for Novel Delivery Systems in Crop Protection, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lorenzo Albertazzi
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology, Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Department
of Biomedical Engineering, Institute of Complex Molecular Systems
(ICMS), Eindhoven University of Technology
(TUE), Eindhoven 5612 AZ, The Netherlands
| |
Collapse
|
33
|
Wrenn ED, Apfelbaum AA, Rudzinski ER, Deng X, Jiang W, Sud S, Van Noord RA, Newman EA, Garcia NM, Miyaki A, Hoglund VJ, Bhise SS, Kanaan SB, Waltner OG, Furlan SN, Lawlor ER. Cancer-Associated Fibroblast-Like Tumor Cells Remodel the Ewing Sarcoma Tumor Microenvironment. Clin Cancer Res 2023; 29:5140-5154. [PMID: 37471463 PMCID: PMC10801911 DOI: 10.1158/1078-0432.ccr-23-1111] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
PURPOSE Despite limited genetic and histologic heterogeneity, Ewing sarcoma (EwS) tumor cells are transcriptionally heterogeneous and display varying degrees of mesenchymal lineage specification in vitro. In this study, we investigated if and how transcriptional heterogeneity of EwS cells contributes to heterogeneity of tumor phenotypes in vivo. EXPERIMENTAL DESIGN Single-cell proteogenomic-sequencing of EwS cell lines was performed and integrated with patient tumor transcriptomic data. Cell subpopulations were isolated by FACS for assessment of gene expression and phenotype. Digital spatial profiling and human whole transcriptome analysis interrogated transcriptomic heterogeneity in EwS xenografts. Tumor cell subpopulations and matrix protein deposition were evaluated in xenografts and patient tumors using multiplex immunofluorescence staining. RESULTS We identified CD73 as a biomarker of highly mesenchymal EwS cell subpopulations in tumor models and patient biopsies. CD73+ tumor cells displayed distinct transcriptional and phenotypic properties, including selective upregulation of genes that are repressed by EWS::FLI1, and increased migratory potential. CD73+ cells were distinguished in vitro and in vivo by increased expression of matrisomal genes and abundant deposition of extracellular matrix (ECM) proteins. In epithelial-derived malignancies, ECM is largely deposited by cancer-associated fibroblasts (CAF), and we thus labeled CD73+ EwS cells, CAF-like tumor cells. Marked heterogeneity of CD73+ EwS cell frequency and distribution was detected in tumors in situ, and CAF-like tumor cells and associated ECM were observed in peri-necrotic regions and invasive foci. CONCLUSIONS EwS tumor cells can adopt CAF-like properties, and these distinct cell subpopulations contribute to tumor heterogeneity by remodeling the tumor microenvironment. See related commentary by Kuo and Amatruda, p. 5002.
Collapse
Affiliation(s)
- Emma D. Wrenn
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
| | - April A. Apfelbaum
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
- Cancer Biology PhD Program, University of Michigan, Ann Arbor, Michigan
| | - Erin R. Rudzinski
- Pathology Department, Seattle Children’s Hospital, Seattle, Washington
| | - Xuemei Deng
- Pathology Department, Seattle Children’s Hospital, Seattle, Washington
| | - Wei Jiang
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Sudha Sud
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | | | - Erika A. Newman
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Nicolas M. Garcia
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
| | - Aya Miyaki
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
| | - Virginia J. Hoglund
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
| | - Shruti S. Bhise
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Sami B. Kanaan
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Olivia G. Waltner
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Scott N. Furlan
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Elizabeth R. Lawlor
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
34
|
Mascharak S, Guo JL, Foster DS, Khan A, Davitt MF, Nguyen AT, Burcham AR, Chinta MS, Guardino NJ, Griffin M, Lopez DM, Miller E, Januszyk M, Raghavan SS, Longacre TA, Delitto DJ, Norton JA, Longaker MT. Desmoplastic stromal signatures predict patient outcomes in pancreatic ductal adenocarcinoma. Cell Rep Med 2023; 4:101248. [PMID: 37865092 PMCID: PMC10694604 DOI: 10.1016/j.xcrm.2023.101248] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/01/2023] [Accepted: 09/26/2023] [Indexed: 10/23/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is projected to become the second leading cause of cancer-related death. Hallmarks include desmoplasia with variable extracellular matrix (ECM) architecture and a complex microenvironment with spatially defined tumor, stromal, and immune populations. Nevertheless, the role of desmoplastic spatial organization in patient/tumor variability remains underexplored, which we elucidate using two technologies. First, we quantify ECM patterning in 437 patients, revealing architectures associated with disease-free and overall survival. Second, we spatially profile the cellular milieu of 78 specimens using codetection by indexing, identifying an axis of pro-inflammatory cell interactions predictive of poorer outcomes. We discover that clinical characteristics, including neoadjuvant chemotherapy status, tumor stage, and ECM architecture, correlate with differential stromal-immune organization, including fibroblast subtypes with distinct niches. Lastly, we define unified signatures that predict survival with areas under the receiver operating characteristic curve (AUCs) of 0.872-0.903, differentiating survivorship by 655 days. Overall, our findings establish matrix ultrastructural and cellular organizations of fibrosis linked to poorer outcomes.
Collapse
Affiliation(s)
- Shamik Mascharak
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jason L Guo
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Deshka S Foster
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anum Khan
- Cell Sciences Imaging Facility, Stanford University, Stanford, CA 94305, USA
| | - Michael F Davitt
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan T Nguyen
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Austin R Burcham
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Malini S Chinta
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas J Guardino
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Griffin
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David M Lopez
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elisabeth Miller
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Michael Januszyk
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shyam S Raghavan
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Teri A Longacre
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel J Delitto
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeffrey A Norton
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Michael T Longaker
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
35
|
Katkat E, Demirci Y, Heger G, Karagulle D, Papatheodorou I, Brazma A, Ozhan G. Canonical Wnt and TGF-β/BMP signaling enhance melanocyte regeneration but suppress invasiveness, migration, and proliferation of melanoma cells. Front Cell Dev Biol 2023; 11:1297910. [PMID: 38020918 PMCID: PMC10679360 DOI: 10.3389/fcell.2023.1297910] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Melanoma is the deadliest form of skin cancer and develops from the melanocytes that are responsible for the pigmentation of the skin. The skin is also a highly regenerative organ, harboring a pool of undifferentiated melanocyte stem cells that proliferate and differentiate into mature melanocytes during regenerative processes in the adult. Melanoma and melanocyte regeneration share remarkable cellular features, including activation of cell proliferation and migration. Yet, melanoma considerably differs from the regenerating melanocytes with respect to abnormal proliferation, invasive growth, and metastasis. Thus, it is likely that at the cellular level, melanoma resembles early stages of melanocyte regeneration with increased proliferation but separates from the later melanocyte regeneration stages due to reduced proliferation and enhanced differentiation. Here, by exploiting the zebrafish melanocytes that can efficiently regenerate and be induced to undergo malignant melanoma, we unravel the transcriptome profiles of the regenerating melanocytes during early and late regeneration and the melanocytic nevi and malignant melanoma. Our global comparison of the gene expression profiles of melanocyte regeneration and nevi/melanoma uncovers the opposite regulation of a substantial number of genes related to Wnt signaling and transforming growth factor beta (TGF-β)/(bone morphogenetic protein) BMP signaling pathways between regeneration and cancer. Functional activation of canonical Wnt or TGF-β/BMP pathways during melanocyte regeneration promoted melanocyte regeneration but potently suppressed the invasiveness, migration, and proliferation of human melanoma cells in vitro and in vivo. Therefore, the opposite regulation of signaling mechanisms between melanocyte regeneration and melanoma can be exploited to stop tumor growth and develop new anti-cancer therapies.
Collapse
Affiliation(s)
- Esra Katkat
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Türkiye
| | - Yeliz Demirci
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Türkiye
| | | | - Doga Karagulle
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| | - Irene Papatheodorou
- European Molecular Biology Laboratory—European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Alvis Brazma
- European Molecular Biology Laboratory—European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| |
Collapse
|
36
|
Huangfu L, Li R, Huang Y, Wang S. The IL-17 family in diseases: from bench to bedside. Signal Transduct Target Ther 2023; 8:402. [PMID: 37816755 PMCID: PMC10564932 DOI: 10.1038/s41392-023-01620-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 10/12/2023] Open
Abstract
The interleukin-17 (IL-17) family comprises six members (IL-17A-17F), and recently, all of its related receptors have been discovered. IL-17 was first discovered approximately 30 years ago. Members of this family have various biological functions, including driving an inflammatory cascade during infections and autoimmune diseases, as well as boosting protective immunity against various pathogens. IL-17 is a highly versatile proinflammatory cytokine necessary for vital processes including host immune defenses, tissue repair, inflammatory disease pathogenesis, and cancer progression. However, how IL-17 performs these functions remains controversial. The multifunctional properties of IL-17 have attracted research interest, and emerging data have gradually improved our understanding of the IL-17 signaling pathway. However, a comprehensive review is required to understand its role in both host defense functions and pathogenesis in the body. This review can aid researchers in better understanding the mechanisms underlying IL-17's roles in vivo and provide a theoretical basis for future studies aiming to regulate IL-17 expression and function. This review discusses recent progress in understanding the IL-17 signaling pathway and its physiological roles. In addition, we present the mechanism underlying IL-17's role in various pathologies, particularly, in IL-17-induced systemic lupus erythematosus and IL-17-related tumor cell transformation and metastasis. In addition, we have briefly discussed promising developments in the diagnosis and treatment of autoimmune diseases and tumors.
Collapse
Affiliation(s)
- Longjie Huangfu
- School of Stomatology, Harbin Medical University, Harbin, 150001, P. R. China
| | - Ruiying Li
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yamei Huang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Shan Wang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China.
- Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, P. R. China.
| |
Collapse
|
37
|
Singh M, Jana BK, Pal P, Singha I, Rajkumari A, Chowrasia P, Nath V, Mazumder B. Nanoparticles in pancreatic cancer therapy: a detailed and elaborated review on patent literature. Expert Opin Ther Pat 2023; 33:681-699. [PMID: 37991186 DOI: 10.1080/13543776.2023.2287520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
INTRODUCTION Nanotechnology may open up new avenues for overcoming the challenges of pancreatic cancer therapy as a broad arsenal of anticancer medicines fail to realize their full therapeutic potential in pancreatic ductal adenocarcinoma due to the formation of multiple resistance mechanisms inside the tumor. Many studies have reported the successful use of various nano formulations in pancreatic cancer therapy. AREAS COVERED This review covers all the major nanotechnology-based patent litrature available on renowned patent data bases like Patentscope and Espacenet, through the time period of 2007-2022. This is an entirely patent centric review, and it includes both clinical and non-clinical data available on nanotechnology-based therapeutics and diagnostic tools for pancreatic cancer. EXPERT OPINION For the sake of understanding, the patents are categorized under various formulation-specific heads like metallic/non-metallic nanoparticles, polymeric nanoparticles, liposomes, carbon nanotubes, protein nanoparticles and liposomes. This distinguishes one specific nanoparticle type from another and makes this review a one-of-a-kind comprehensive patent compilation that has not been reported so far in the history of nanotechnological formulations in pancreatic cancer.
Collapse
Affiliation(s)
- Mohini Singh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Bani Kumar Jana
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Paulami Pal
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Ishita Singha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Ananya Rajkumari
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Pinky Chowrasia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Venessa Nath
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
38
|
Letson J, Furuta S. Reduced S-nitrosylation of TGFβ1 elevates its binding affinity towards the receptor and promotes fibrogenic signaling in the breast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.07.556714. [PMID: 37745487 PMCID: PMC10515751 DOI: 10.1101/2023.09.07.556714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Transforming Growth Factor β (TGFβ) is a pleiotropic cytokine closely linked to tumors. TGFβ is often elevated in precancerous breast lesions in association with epithelial-to-mesenchymal transition (EMT), indicating its contribution to precancerous progression. We previously reported that basal nitric oxide (NO) levels declined along with breast cancer progression. We then pharmacologically inhibited NO production in healthy mammary glands of wild-type mice and found that this induced precancerous progression accompanied by desmoplasia and upregulation of TGFβ activity. In the present study, we tested our hypothesis that NO directly S-nitrosylates (forms an NO-adduct at a cysteine residue) TGFβ to inhibit the activity, whereas the reduction of NO denitrosylates TGFβ and de-represses the activity. We introduced mutations to three C-terminal cysteines of TGFβ1 which were predicted to be S-nitrosylated. We found that these mutations indeed impaired S-nitrosylation of TGFβ1 and shifted the binding affinity towards the receptor from the latent complex. Furthermore, in silico structural analyses predicted that these S-nitrosylation-defective mutations strengthen the dimerization of mature protein, whereas S-nitrosylation-mimetic mutations weaken the dimerization. Such differences in dimerization dynamics of TGFβ1 by denitrosylation/S-nitrosylation likely account for the shift of the binding affinities towards the receptor vs. latent complex. Our findings, for the first time, unravel a novel mode of TGFβ regulation based on S-nitrosylation or denitrosylation of the protein.
Collapse
Affiliation(s)
- Joshua Letson
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
- Department of Orthopaedic Surgery, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
| | - Saori Furuta
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, 2500 MetroHealth Drive, Cleveland, OH 44109
| |
Collapse
|
39
|
Jafari N, Gheitasi R, Khorasani HR, Golpour M, Mehri M, Nayeri K, Pourbagher R, Mostafazadeh M, Kalali B, Mostafazadeh A. Proteome analysis, bioinformatic prediction and experimental evidence revealed immune response down-regulation function for serum-starved human fibroblasts. Heliyon 2023; 9:e19238. [PMID: 37674821 PMCID: PMC10477462 DOI: 10.1016/j.heliyon.2023.e19238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/15/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023] Open
Abstract
Emerging evidence indicates that fibroblasts play pivotal roles in immunoregulation by producing various proteins under health and disease states. In the present study, for the first time, we compared the proteomes of serum-starved human skin fibroblasts and peripheral blood mononuclear cells (PBMCs) using Nano-LC-ESI-tandem mass spectrometry. This analysis contributes to a better understanding of the underlying molecular mechanisms of chronic inflammation and cancer, which are intrinsically accompanied by growth factor deficiency.The proteomes of starved fibroblasts and PBMCs consisted of 307 and 294 proteins, respectively, which are involved in lymphocyte migration, complement activation, inflammation, acute phase response, and immune regulation. Starved fibroblasts predominantly produced extracellular matrix-related proteins such as collagen/collagenase, while PBMCs produced focal adhesion-related proteins like beta-parvin and vinculin which are involved in lymphocyte migration. PBMCs produced a more diverse set of inflammatory molecules like heat shock proteins, while fibroblasts produced human leukocytes antigen-G and -E that are known as main immunomodulatory molecules. Fifty-four proteins were commonly found in both proteomes, including serum albumin, amyloid-beta, heat shock cognate 71 kDa, and complement C3. GeneMANIA bioinformatic tool predicted 418 functions for PBMCs, including reactive oxygen species metabolic processes and 241 functions for starved fibroblasts such as antigen processing and presentation including non-classical MHC -Ib pathway, and negative regulation of the immune response. Protein-protein interactions network analysis indicated the immunosuppressive function for starved fibroblasts-derived human leucocytes antigen-G and -E. Moreover, in an in vitro model of allogeneic transplantation, the immunosuppressive activity of starved fibroblasts was experimentally documented. Conclusion Under serum starvation-induced metabolic stress, both PBMCs and fibroblasts produced molecules like heat shock proteins and amyloid-beta, which can have pathogenic roles in auto-inflammatory diseases such as rheumatoid arthritis, type 1 diabetes mellitus, systemic lupus erythematosus, aging, and cancer. However, starved fibroblasts showed immunosuppressive activity in an in vitro model of allogeneic transplantation, suggesting their potential to modify such adverse reactions by down-regulating the immune system.
Collapse
Affiliation(s)
- Negar Jafari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Reza Gheitasi
- Institutes for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Hamid Reza Khorasani
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Babol, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Monireh Golpour
- Department of Immunology, Molecular and Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Mehri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Kosar Nayeri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Roghayeh Pourbagher
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Behnam Kalali
- Department of Medicine II, Klinikum Grosshadern, LMU University, 81377, Munich, Germany
| | - Amrollah Mostafazadeh
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
40
|
Tang Y, Ren K, Yin X, Yang Y, Fang F, Zhou B, Bu W. Tissue RNA Sequencing Reveals Novel Biomarkers Associated with Postoperative Keloid Recurrence. J Clin Med 2023; 12:5511. [PMID: 37685578 PMCID: PMC10488753 DOI: 10.3390/jcm12175511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Keloids can be resected through surgery, but they may still recur. The purpose of this study was to explore the biomarkers to predict the postoperative recurrence of keloids. Patients who underwent surgical treatment and postoperative superficial X-ray radiation between January 2019 and December 2020 were recruited with clinical data and keloid samples for RNA-seq. By screening differentially expressed genes (DEGs) between postoperative recurrent and non-recurrent sample groups and constructing a co-expression network via the weighted gene co-expression network analysis (WGCNA), an immunity-related module was chosen for subsequent analysis. By constructing a DEG co-expression network and using the Molecular Complex Detection (MCODE) algorithm, five hub genes were identified in the key module. Receiver Operating Characteristic (ROC) curve analysis showed that the area under the curve (AUC) for the five combined hub genes was 0.776. The result of qRT-PCR showed that CHI3L1, IL1RN, MMP7, TNFAIP3, and TNFAIP6 were upregulated in the recurrent group with statistical significance (p < 0.05). Immune infiltration analysis showed that mast cells, macrophages, and T cells were the major components of the keloid immune microenvironment. This study provides potential biomarkers for predicting keloid recurrence and offers insights into genetic targets for recurrence prevention.
Collapse
Affiliation(s)
- Yanqiu Tang
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; (Y.T.); (K.R.); (X.Y.); (Y.Y.)
| | - Kehui Ren
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; (Y.T.); (K.R.); (X.Y.); (Y.Y.)
| | - Xufeng Yin
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; (Y.T.); (K.R.); (X.Y.); (Y.Y.)
| | - Yunning Yang
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; (Y.T.); (K.R.); (X.Y.); (Y.Y.)
| | - Fang Fang
- Department of Dermatologic Surgery, Dermatology Hospital of Chinese Academy of Medical Sciences, Nanjing 210042, China;
| | - Bingrong Zhou
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; (Y.T.); (K.R.); (X.Y.); (Y.Y.)
| | - Wenbo Bu
- Department of Dermatologic Surgery, Dermatology Hospital of Chinese Academy of Medical Sciences, Nanjing 210042, China;
| |
Collapse
|
41
|
Sung JH, Kim JJ. Recent advances in in vitro skin-on-a-chip models for drug testing. Expert Opin Drug Metab Toxicol 2023. [PMID: 37379024 DOI: 10.1080/17425255.2023.2227379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION The skin is an organ that has the largest surface area and provides a barrier against external environment. While providing protection, it also interacts with other organs in the body and has implications in various diseases. Development of physiologically realistic in vitro models of the skin in the context of the whole body is important for studying these diseases, and will be a valuable tool for pharmaceutical, cosmetics, and food industry. AREA COVERED This article covers the basic background in skin structure, physiology, as well as drug metabolism in the skin, and dermatological diseases. We summarize various in vitro skin models currently available, and novel in vitro models based on organ-on-a-chip technology. We also explain the concept of multi-organ-on-a-chip and describe recent developments in this field aimed at recapitulating the interaction of the skin with other organs in the body. EXPERT OPINION Recent development in the organ-on-a-chip field has enabled the development of in vitro model systems that resemble human skin more closely than conventional models. In near future, we will be seeing various model systems that allow researchers to study complex diseases in a more mechanistic manner, which will help the development of new pharmaceuticals for such diseases.
Collapse
Affiliation(s)
- Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, Republic of Korea
| | - Jae Jung Kim
- Department of Chemical Engineering, Hongik University, Seoul, Republic of Korea
| |
Collapse
|
42
|
Cheng SH, Chiou HYC, Wang JW, Lin MH. Reciprocal Regulation of Cancer-Associated Fibroblasts and Tumor Microenvironment in Gastrointestinal Cancer: Implications for Cancer Dormancy. Cancers (Basel) 2023; 15:2513. [PMID: 37173977 PMCID: PMC10177044 DOI: 10.3390/cancers15092513] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Gastrointestinal (GI) cancers remain a major cause of cancer-related deaths worldwide. Despite the progress made in current treatments, patients with GI cancers still have high recurrence rates after initial treatment. Cancer dormancy, which involves the entry and escape of cancer cells from dormancy, is linked to treatment resistance, metastasis, and disease relapse. Recently, the role of the tumor microenvironment (TME) in disease progression and treatment has received increasing attention. The crosstalk between cancer-associated fibroblasts (CAF)-secreted cytokines/chemokines and other TME components, for example, extracellular matrix remodeling and immunomodulatory functions, play crucial roles in tumorigenesis. While there is limited direct evidence of a relationship between CAFs and cancer cell dormancy, this review explores the potential of CAF-secreted cytokines/chemokines to either promote cancer cell dormancy or awaken dormant cancer cells under different conditions, and the therapeutic strategies that may be applicable. By understanding the interactions between cytokines/chemokines released by CAFs and the TME, and their impact on the entry/escape of cancer dormancy, researchers may develop new strategies to reduce the risk of therapeutic relapse in patients with GI cancers.
Collapse
Affiliation(s)
- Shih-Hsuan Cheng
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsin-Ying Clair Chiou
- Teaching and Research Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
- Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jiunn-Wei Wang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Hong Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
43
|
Wrenn ED, Apfelbaum AA, Rudzinski ER, Deng X, Jiang W, Sud S, Van Noord RA, Newman EA, Garcia NM, Hoglund VJ, Bhise SS, Kanaan SB, Waltner OG, Furlan SN, Lawlor ER. Carcinoma-associated fibroblast-like tumor cells remodel the Ewing sarcoma tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536619. [PMID: 37090655 PMCID: PMC10120623 DOI: 10.1101/2023.04.12.536619] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Tumor heterogeneity is a major driver of cancer progression. In epithelial-derived malignancies, carcinoma-associated fibroblasts (CAFs) contribute to tumor heterogeneity by depositing extracellular matrix (ECM) proteins that dynamically remodel the tumor microenvironment (TME). Ewing sarcomas (EwS) are histologically monomorphous, mesenchyme-derived tumors that are devoid of CAFs. Here we identify a previously uncharacterized subpopulation of transcriptionally distinct EwS tumor cells that deposit pro-tumorigenic ECM. Single cell analyses revealed that these CAF-like cells differ from bulk EwS cells by their upregulation of a matrisome-rich gene signature that is normally repressed by EWS::FLI1, the oncogenic fusion transcription factor that underlies EwS pathogenesis. Further, our studies showed that ECM-depositing tumor cells express the cell surface marker CD73, allowing for their isolation ex vivo and detection in situ. Spatial profiling of tumor xenografts and patient biopsies demonstrated that CD73 + EwS cells and tumor cell-derived ECM are prevalent along tumor borders and invasive fronts. Importantly, despite loss of EWS::FLI1-mediated gene repression, CD73 + EwS cells retain expression of EWS::FLI1 and the fusion-activated gene signature, as well as tumorigenic and proliferative capacities. Thus, EwS tumor cells can be reprogrammed to adopt CAF-like properties and these transcriptionally and phenotypically distinct cell subpopulations contribute to tumor heterogeneity by remodeling the TME.
Collapse
|
44
|
Dzobo K, Dandara C. The Extracellular Matrix: Its Composition, Function, Remodeling, and Role in Tumorigenesis. Biomimetics (Basel) 2023; 8:146. [PMID: 37092398 PMCID: PMC10123695 DOI: 10.3390/biomimetics8020146] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
The extracellular matrix (ECM) is a ubiquitous member of the body and is key to the maintenance of tissue and organ integrity. Initially thought to be a bystander in many cellular processes, the extracellular matrix has been shown to have diverse components that regulate and activate many cellular processes and ultimately influence cell phenotype. Importantly, the ECM's composition, architecture, and stiffness/elasticity influence cellular phenotypes. Under normal conditions and during development, the synthesized ECM constantly undergoes degradation and remodeling processes via the action of matrix proteases that maintain tissue homeostasis. In many pathological conditions including fibrosis and cancer, ECM synthesis, remodeling, and degradation is dysregulated, causing its integrity to be altered. Both physical and chemical cues from the ECM are sensed via receptors including integrins and play key roles in driving cellular proliferation and differentiation and in the progression of various diseases such as cancers. Advances in 'omics' technologies have seen an increase in studies focusing on bidirectional cell-matrix interactions, and here, we highlight the emerging knowledge on the role played by the ECM during normal development and in pathological conditions. This review summarizes current ECM-targeted therapies that can modify ECM tumors to overcome drug resistance and better cancer treatment.
Collapse
Affiliation(s)
- Kevin Dzobo
- Medical Research Council, SA Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| | - Collet Dandara
- Division of Human Genetics and Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
- The South African Medical Research Council-UCT Platform for Pharmacogenomics Research and Translation, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| |
Collapse
|
45
|
Kruglov O, Vats K, Soman V, Tyurin VA, Tyurina YY, Wang J, Williams L, Zhang J, Donahue Carey C, Jaklitsch E, Chandran UR, Bayir H, Kagan VE, Bunimovich YL. Melanoma-associated repair-like Schwann cells suppress anti-tumor T-cells via 12/15-LOX/COX2-associated eicosanoid production. Oncoimmunology 2023; 12:2192098. [PMID: 36998620 PMCID: PMC10044150 DOI: 10.1080/2162402x.2023.2192098] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 04/01/2023] Open
Abstract
Peripheral glia, specifically the Schwann cells (SCs), have been implicated in the formation of the tumor microenvironment (TME) and in cancer progression. However, in vivo and ex vivo analyses of how cancers reprogram SC functions in different organs of tumor-bearing mice are lacking. We generated Plp1-CreERT/tdTomato mice which harbor fluorescently labeled myelinated and non-myelin forming SCs. We show that this model enables the isolation of the SCs with high purity from the skin and multiple other organs. We used this model to study phenotypic and functional reprogramming of the SCs in the skin adjacent to melanoma tumors. Transcriptomic analyses of the peritumoral skin SCs versus skin SCs from tumor-free mice revealed that the former existed in a repair-like state typically activated during nerve and tissue injury. Peritumoral skin SCs also downregulated pro-inflammatory genes and pathways related to protective anti-tumor responses. In vivo and ex vivo functional assays confirmed immunosuppressive activities of the peritumoral skin SCs. Specifically, melanoma-reprogrammed SCs upregulated 12/15-lipoxygenase (12/15-LOX) and cyclooxygenase (COX)-2, and increased production of anti-inflammatory polyunsaturated fatty acid (PUFA) metabolites prostaglandin E2 (PGE2) and lipoxins A4/B4. Inhibition of 12/15-LOX or COX2 in SCs, or EP4 receptor on lymphocytes reversed SC-dependent suppression of anti-tumor T-cell activation. Therefore, SCs within the skin adjacent to melanoma tumors demonstrate functional switching to repair-like immunosuppressive cells with dysregulated lipid oxidation. Our study suggests the involvement of the melanoma-associated repair-like peritumoral SCs in the modulation of locoregional and systemic anti-tumor immune responses.
Collapse
Affiliation(s)
- Oleg Kruglov
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kavita Vats
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vishal Soman
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vladimir A. Tyurin
- Center for Free Radical and Antioxidant Health, Department of Environmental Health and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yulia Y. Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental Health and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiefei Wang
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Li’an Williams
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jiying Zhang
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Erik Jaklitsch
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Uma R. Chandran
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, Department of Environmental Health and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Children’s Neuroscience Institute, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E. Kagan
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Free Radical and Antioxidant Health, Department of Environmental Health and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Children’s Neuroscience Institute, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Hillman Cancer Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yuri L. Bunimovich
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Free Radical and Antioxidant Health, Department of Environmental Health and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Hillman Cancer Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
46
|
Nicolini G, Balzan S, Forini F. Activated fibroblasts in cardiac and cancer fibrosis: An overview of analogies and new potential therapeutic options. Life Sci 2023; 321:121575. [PMID: 36933828 DOI: 10.1016/j.lfs.2023.121575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Heart disease and cancer are two major causes of morbidity and mortality in the industrialized countries, and their increasingly recognized connections are shifting the focus from single disease studies to an interdisciplinary approach. Fibroblast-mediated intercellular crosstalk is critically involved in the evolution of both pathologies. In healthy myocardium and in non-cancerous conditions, resident fibroblasts are the main cell source for synthesis of the extracellular matrix (ECM) and important sentinels of tissue integrity. In the setting of myocardial disease or cancer, quiescent fibroblasts activate, respectively, into myofibroblasts (myoFbs) and cancer-associated fibroblasts (CAFs), characterized by increased production of contractile proteins, and by a highly proliferative and secretory phenotype. Although the initial activation of myoFbs/CAFs is an adaptive process to repair the damaged tissue, massive deposition of ECM proteins leads to maladaptive cardiac or cancer fibrosis, a recognized marker of adverse outcome. A better understanding of the key mechanisms orchestrating fibroblast hyperactivity may help developing innovative therapeutic options to restrain myocardial or tumor stiffness and improve patient prognosis. Albeit still unappreciated, the dynamic transition of myocardial and tumor fibroblasts into myoFbs and CAFs shares several common triggers and signaling pathways relevant to TGF-β dependent cascade, metabolic reprogramming, mechanotransduction, secretory properties, and epigenetic regulation, which might lay the foundation for future antifibrotic intervention. Therefore, the aim of this review is to highlight emerging analogies in the molecular signature underlying myoFbs and CAFs activation with the purpose of identifying novel prognostic/diagnostic biomarkers, and to elucidate the potential of drug repositioning strategies to mitigate cardiac/cancer fibrosis.
Collapse
Affiliation(s)
| | - Silvana Balzan
- CNR Institute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy
| | - Francesca Forini
- CNR Institute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
47
|
Hampton S. The importance of a skilled clinical assessment in the management and healing of complex wounds. Br J Community Nurs 2023; 28:S40-S41. [PMID: 36809895 DOI: 10.12968/bjcn.2023.28.sup3.s40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Sylvie Hampton
- Tissue Viability Consultant Nurse; Director of Wound Care Consultancy Ltd
| |
Collapse
|
48
|
Pradhan R, Paul S, Das B, Sinha S, Dash SR, Mandal M, Kundu CN. Resveratrol nanoparticle attenuates metastasis and angiogenesis by deregulating inflammatory cytokines through inhibition of CAFs in oral cancer by CXCL-12/IL-6-dependent pathway. J Nutr Biochem 2023; 113:109257. [PMID: 36572069 DOI: 10.1016/j.jnutbio.2022.109257] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/22/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are one of the highly abundant components in the tumor microenvironment (TME). They secrete several cytokines, which amplified tumor progression, invasion, stemness, metastasis, and angiogenesis. Here, we evaluate the potentiality of cytokines for the formation of cancer stem cells (CSCs) in oral cancer cells niche and investigate the anti-inflammatory and anti-carcinogenic effect of Resveratrol-nanoparticle (Res-NP). We first differentiated quiescent human fibroblasts into CAFs in vitro in response to PDGF-B and TGF-β stimulation and these CAFs were found to increase CXCL-12 and IL-6 secretion. CSCs-enriched population was created by incubating H-357 cells with CAFs and cytokine-enriched CAFs-conditioned media (CAFs-CM). Likewise, CSCs-populated environment was also generated after incubating CAFs-CM to patient-derived primary oral cancer cells. It was noted that CXCL-12 and IL-6 secreted from CAFs significantly promoted CSCs growth, proliferation, aggressiveness, metastasis, and angiogenesis. However, Res-NP reduced CSCs growth and proliferation by abrogating the secretion of CXCL-12 and IL-6. A significant decrease in the expression of metastatic and angiogenic markers, in ovo blood vascularization, intracellular NO generation, MMPs expression and tube formation was found upon Res-NP treatment. Reduction of representative CSCs and angiogenesis markers were also noted after Res-NP treatment in xenograft mice model. CXCL-12 physically interact with IL-6 and this interaction was diminished after Res-NP treatment. Moreover, the expression of CD133 and VEGF-A were down-regulated either on Res-NP or CXCL-12/IL-6-specific inhibitors treated CSCs-enriched cells. Thus, the data suggest that CSCs growth is CXCL-12 and IL-6 dependent and Res-NP obstruct carcinogenesis and metastasis by inhibiting CXCL-12 and IL-6 production in in vitro, in vivo, in ovo, and ex vivo systems.
Collapse
Affiliation(s)
- Rajalaxmi Pradhan
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha, India
| | - Subarno Paul
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha, India
| | - Biswajit Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha, India
| | - Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha, India
| | - Somya Ranjan Dash
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
49
|
Tanaka HY, Nakazawa T, Enomoto A, Masamune A, Kano MR. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15030724. [PMID: 36765684 PMCID: PMC9913712 DOI: 10.3390/cancers15030724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approximately 10-200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to be the "magic bullet"-both effective and safe-to treat pancreatic cancer. However, the densely fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted. Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications. Finally, we discuss critical gaps in our understanding and how we might better formulate strategies to successfully overcome the fibrotic barriers in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y. Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya-shi 466-8550, Aichi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi 980-8574, Miyagi, Japan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
- Correspondence:
| |
Collapse
|
50
|
Bibliometric Analysis of Hotspots and Frontiers of Immunotherapy in Pancreatic Cancer. Healthcare (Basel) 2023; 11:healthcare11030304. [PMID: 36766879 PMCID: PMC9914338 DOI: 10.3390/healthcare11030304] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most common malignant neoplasms with an increasing incidence, low rate of early diagnosis, and high degree of malignancy. In recent years, immunotherapy has made remarkable achievements in various cancer types including pancreatic cancer, due to the long-lasting antitumor responses elicited in the human body. Immunotherapy mainly relies on mobilizing the host's natural defense mechanisms to regulate the body state and exert anti-tumor effects. However, no bibliometric research about pancreatic cancer immunotherapy has been reported to date. This study aimed to assess research trends and offer possible new research directions in pancreatic cancer immunotherapy. METHODS The articles and reviews related to pancreatic cancer immunotherapy were collected from the Web of Science Core Collection. CiteSpace, VOSviewer, and an online platform, and were used to analyze co-authorship, citation, co-citation, and co-occurrence of terms retrieved from the literature highlighting the scientific advances in pancreatic cancer immunotherapy. RESULTS We collected 2475 publications and the number of articles was growing year by year. The United States had a strong presence worldwide with the most articles. The most contributing institution was Johns Hopkins University (103 papers). EM Jaffee was the most productive researcher with 43 papers, and L Zheng and RH Vonderheide ranked second and third, with 34 and 29 papers, respectively. All the keywords were grouped into four clusters: "immunotherapy", "clinical treatment study", "tumor immune cell expression", "tumor microenvironment". In the light of promising hotspots, keywords with recent citation bursts can be summarized into four aspects: immune microenvironment, adaptive immunotherapy, immunotherapy combinations, and molecular and gene therapy. CONCLUSIONS In recent decades, immunotherapy showed great promise for many cancer types, so various immunotherapy approaches have been introduced to treat pancreatic cancer. Understanding the mechanisms of immunosuppressive microenvironment, eliminating immune suppression and blocking immune checkpoints, and combining traditional treatments will be hotspots for future research.
Collapse
|