1
|
Hazarika S, Yu T, Biswas A, Dube N, Villalona P, Okafor CD. Nuclear Receptor Interdomain Communication is Mediated by the Hinge with Ligand Specificity. J Mol Biol 2024; 436:168805. [PMID: 39332668 DOI: 10.1016/j.jmb.2024.168805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Nuclear receptors are ligand-induced transcription factors that bind directly to target genes and regulate their expression. Ligand binding initiates conformational changes that propagate to other domains, allosterically regulating their activity. The nature of this interdomain communication in nuclear receptors is poorly understood, largely owing to the difficulty of experimentally characterizing full-length structures. We have applied computational modeling approaches to describe and study the structure of the full-length farnesoid X receptor (FXR), approximated by the DNA binding domain (DBD) and ligand binding domain (LBD) connected by the flexible hinge region. Using extended molecular dynamics simulations (>10 microseconds) and enhanced sampling simulations, we provide evidence that ligands selectively induce domain rearrangement, leading to interdomain contact. We use protein-protein interaction assays to provide experimental evidence of these interactions, identifying a critical role of the hinge in mediating interdomain contact. Our results illuminate previously unknown aspects of interdomain communication in FXR and provide a framework to enable characterization of other full-length nuclear receptors.
Collapse
Affiliation(s)
- Saurov Hazarika
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Tracy Yu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Arumay Biswas
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Namita Dube
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Priscilla Villalona
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - C Denise Okafor
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
2
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
3
|
Li Y, Li J, Leng A, Zhang G, Qu J. Cardiac complications caused by biliary diseases: A review of clinical manifestations, pathogenesis and treatment strategies of cholecardia syndrome. Pharmacol Res 2024; 199:107006. [PMID: 38000562 DOI: 10.1016/j.phrs.2023.107006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/19/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Gallbladder and biliary diseases (GBDs) are one of the most common digestive diseases. The connections between GBDs and several organs other than the liver have gradually surfaced accompanied by the changes in people's diet structure and the continuous improvement of medical diagnosis technology. Among them, cholecardia syndrome that takes the heart as the important target of GBDs complications has been paid close attention. However, there are still no systematic report about its corresponding clinical manifestations and pathogenesis. This review summarized recent reported types of cholecardia syndrome and found that arrhythmia, myocardial injury, acute coronary syndrome and heart failure are common in the general population. Besides, the clinical diagnosis rate of intrahepatic cholestasis of pregnancy (ICP) and Alagille syndrome associated with gene mutation is also increasing. Accordingly, the underlying pathogenesis including abnormal secretion of bile acid, gene mutation, translocation and deletion (JAG1, NOTCH2, ABCG5/8 and CYP7A1), nerve reflex and autonomic neuropathy were further revealed. Finally, the potential treatment measures and clinical medication represented by ursodeoxycholic acid were summarized to provide assistance for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yanan Li
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
| | - Jinghong Li
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
| | - Aijing Leng
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Guixin Zhang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China.
| | - Jialin Qu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China.
| |
Collapse
|
4
|
Li Z, Zheng D, Zhang T, Ruan S, Li N, Yu Y, Peng Y, Wang D. The roles of nuclear receptors in cholesterol metabolism and reverse cholesterol transport in nonalcoholic fatty liver disease. Hepatol Commun 2024; 8:e0343. [PMID: 38099854 PMCID: PMC10727660 DOI: 10.1097/hc9.0000000000000343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023] Open
Abstract
As the most prevalent chronic liver disease globally, NAFLD encompasses a pathological process that ranges from simple steatosis to NASH, fibrosis, cirrhosis, and HCC, closely associated with numerous extrahepatic diseases. While the initial etiology was believed to be hepatocyte injury caused by lipid toxicity from accumulated triglycerides, recent studies suggest that an imbalance of cholesterol homeostasis is of greater significance. The role of nuclear receptors in regulating liver cholesterol homeostasis has been demonstrated to be crucial. This review summarizes the roles and regulatory mechanisms of nuclear receptors in the 3 main aspects of cholesterol production, excretion, and storage in the liver, as well as their cross talk in reverse cholesterol transport. It is hoped that this review will offer new insights and theoretical foundations for the study of the pathogenesis and progression of NAFLD and provide new research directions for extrahepatic diseases associated with NAFLD.
Collapse
|
5
|
Xiang D, Yang J, Liu L, Yu H, Gong X, Liu D. The regulation of tissue-specific farnesoid X receptor on genes and diseases involved in bile acid homeostasis. Biomed Pharmacother 2023; 168:115606. [PMID: 37812893 DOI: 10.1016/j.biopha.2023.115606] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
Bile acids (BAs) facilitate the absorption of dietary lipids and vitamins and have also been identified as signaling molecules involved in regulating their own metabolism, glucose and lipid metabolism, as well as immunity. Disturbances in BA homeostasis are associated with various enterohepatic and metabolic diseases, such as cholestasis, nonalcoholic steatohepatitis, inflammatory bowel disease, and obesity. As a key regulator, the nuclear orphan receptor farnesoid X receptor (FXR, NR1H4) precisely regulates BA homeostasis by transcriptional regulation of genes involved in BA synthesis, metabolism, and enterohepatic circulation. FXR is widely regarded as the most potential therapeutic target. Obeticholic acid is the only FXR agonist approved to treat patients with primary biliary cholangitis, but its non-specific activation of systemic FXR also causes high-frequency side effects. In recent years, developing tissue-specific FXR-targeting drugs has become a research highlight. This article provides a comprehensive overview of the role of tissue-specific intestine/liver FXR in regulating genes involved in BA homeostasis and briefly discusses tissue-specific FXR as a therapeutic target for treating diseases. These findings provide the basis for the development of tissue-specific FXR modulators for the treatment of enterohepatic and metabolic diseases associated with BA dysfunction.
Collapse
Affiliation(s)
- Dong Xiang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jinyu Yang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lu Liu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hengyi Yu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuepeng Gong
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
6
|
Rezaeianpour M, Mazidi SM, Nami R, Geramifar P, Mosayebnia M. Vimentin-targeted radiopeptide 99m Tc-HYNIC-(tricine/EDDA)-VNTANST: a promising drug for pulmonary fibrosis imaging. Nucl Med Commun 2023; 44:777-787. [PMID: 37395537 DOI: 10.1097/mnm.0000000000001724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
OBJECTIVE Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by the accumulation of extracellular matrix. Because there is no effective treatment for advanced IPF to date, its early diagnosis can be critical. Vimentin is a cytoplasmic intermediate filament that is significantly up-regulated at the surface of fibrotic foci with a crucial role in fibrotic morphological changes. METHODS In the present study, VNTANST sequence as a known vimentin-targeting peptide was conjugated to hydrazinonicotinic acid (HYNIC) and labeled with 99m Tc. The stability test in saline and human plasma and log P determination were performed. Next, the biodistribution study and single photon emission computed tomography (SPECT) integrated with computed tomography (CT) scanning were performed in healthy and bleomycin-induced fibrosis mice models. RESULTS The 99m Tc-HYNIC-(tricine/EDDA)-VNTANST showed a hydrophilic nature (log P = -2.20 ± 0.38) and high radiochemical purity > 97% and specific activity (336 Ci/mmol). The radiopeptide was approximately 93% and 86% intact in saline and human plasma within 6 h, respectively. The radiopeptide was substantially accumulated in the pulmonary fibrotic lesions (test vs. control = 4.08 ± 0.08% injected dose per gram (ID/g) vs. 0.36 ± 0.01% ID/g at 90 min postinjection). SPECT-CT images in fibrosis-bearing mice also indicated the fibrotic foci and kidneys. CONCLUSION Because there is no available drug for the treatment of advanced pulmonary fibrosis, early diagnosis is the only chance. The 99m Tc-HYNIC-(tricine/EDDA)-VNTANST could be a potential tracer for SPECT imaging of pulmonary fibrosis.
Collapse
Affiliation(s)
- Maliheh Rezaeianpour
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences
| | | | - Reza Nami
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences
- Department of Nuclear Medicine, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Mosayebnia
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences
| |
Collapse
|
7
|
Iyer DR, Venkatraman J, Tanguy E, Vitale N, Mahapatra NR. Chromogranin A and its derived peptides: potential regulators of cholesterol homeostasis. Cell Mol Life Sci 2023; 80:271. [PMID: 37642733 PMCID: PMC11072126 DOI: 10.1007/s00018-023-04908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
Chromogranin A (CHGA), a member of the granin family of proteins, has been an attractive therapeutic target and candidate biomarker for several cardiovascular, neurological, and inflammatory disorders. The prominence of CHGA stems from the pleiotropic roles of several bioactive peptides (e.g., catestatin, pancreastatin, vasostatins) generated by its proteolytic cleavage and by their wide anatomical distribution. These peptides are emerging as novel modulators of cardiometabolic diseases that are often linked to high blood cholesterol levels. However, their impact on cholesterol homeostasis is poorly understood. The dynamic nature of cholesterol and its multitudinous roles in almost every aspect of normal body function makes it an integral component of metabolic physiology. A tightly regulated coordination of cholesterol homeostasis is imperative for proper functioning of cellular and metabolic processes. The deregulation of cholesterol levels can result in several pathophysiological states. Although studies till date suggest regulatory roles for CHGA and its derived peptides on cholesterol levels, the mechanisms by which this is achieved still remain unclear. This review aims to aggregate and consolidate the available evidence linking CHGA with cholesterol homeostasis in health and disease. In addition, we also look at common molecular regulatory factors (viz., transcription factors and microRNAs) which could govern the expression of CHGA and genes involved in cholesterol homeostasis under basal and pathological conditions. In order to gain further insights into the pathways mediating cholesterol regulation by CHGA/its derived peptides, a few prospective signaling pathways are explored, which could act as primers for future studies.
Collapse
Affiliation(s)
- Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Janani Venkatraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France.
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
8
|
Vitulo M, Gnodi E, Rosini G, Meneveri R, Giovannoni R, Barisani D. Current Therapeutical Approaches Targeting Lipid Metabolism in NAFLD. Int J Mol Sci 2023; 24:12748. [PMID: 37628929 PMCID: PMC10454602 DOI: 10.3390/ijms241612748] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD, including nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH)) is a high-prevalence disorder, affecting about 1 billion people, which can evolve to more severe conditions like cirrhosis or hepatocellular carcinoma. NAFLD is often concomitant with conditions of the metabolic syndrome, such as central obesity and insulin-resistance, but a specific drug able to revert NAFL and prevent its evolution towards NASH is still lacking. With the liver being a key organ in metabolic processes, the potential therapeutic strategies are many, and range from directly targeting the lipid metabolism to the prevention of tissue inflammation. However, side effects have been reported for the drugs tested up to now. In this review, different approaches to the treatment of NAFLD are presented, including newer therapies and ongoing clinical trials. Particular focus is placed on the reverse cholesterol transport system and on the agonists for nuclear factors like PPAR and FXR, but also drugs initially developed for other conditions such as incretins and thyromimetics along with validated natural compounds that have anti-inflammatory potential. This work provides an overview of the different therapeutic strategies currently being tested for NAFLD, other than, or along with, the recommendation of weight loss.
Collapse
Affiliation(s)
- Manuela Vitulo
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (E.G.); (R.M.)
| | - Elisa Gnodi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (E.G.); (R.M.)
| | - Giulia Rosini
- Department of Biology, University of Pisa, 56021 Pisa, Italy; (G.R.); (R.G.)
| | - Raffaella Meneveri
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (E.G.); (R.M.)
| | - Roberto Giovannoni
- Department of Biology, University of Pisa, 56021 Pisa, Italy; (G.R.); (R.G.)
| | - Donatella Barisani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (E.G.); (R.M.)
| |
Collapse
|
9
|
Meadows V, Yang Z, Basaly V, Guo GL. FXR Friend-ChIPs in the Enterohepatic System. Semin Liver Dis 2023; 43:267-278. [PMID: 37442156 PMCID: PMC10620036 DOI: 10.1055/a-2128-5538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Chronic liver diseases encompass a wide spectrum of hepatic maladies that often result in cholestasis or altered bile acid secretion and regulation. Incidence and cost of care for many chronic liver diseases are rising in the United States with few Food and Drug Administration-approved drugs available for patient treatment. Farnesoid X receptor (FXR) is the master regulator of bile acid homeostasis with an important role in lipid and glucose metabolism and inflammation. FXR has served as an attractive target for management of cholestasis and fibrosis; however, global FXR agonism results in adverse effects in liver disease patients, severely affecting quality of life. In this review, we highlight seminal studies and recent updates on the FXR proteome and identify gaps in knowledge that are essential for tissue-specific FXR modulation. In conclusion, one of the greatest unmet needs in the field is understanding the underlying mechanism of intestinal versus hepatic FXR function.
Collapse
Affiliation(s)
- Vik Meadows
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey
| | - Zhenning Yang
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey
| | - Veronia Basaly
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey
- Department of Veterans Affairs, New Jersey Health Care System, East Orange, New Jersey
| |
Collapse
|
10
|
Jiang L, Liu X, Liang X, Dai S, Wei H, Guo M, Chen Z, Xiao D, Chen Y. Structural basis of the farnesoid X receptor/retinoid X receptor heterodimer on inverted repeat DNA. Comput Struct Biotechnol J 2023; 21:3149-3157. [PMID: 37287811 PMCID: PMC10242635 DOI: 10.1016/j.csbj.2023.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Farnesoid X receptor (FXR) is a ligand-activated transcription factor known as bile acid receptor (BAR). FXR plays critical roles in various biological processes, including metabolism, immune inflammation, liver regeneration and liver carcinogenesis. FXR forms a heterodimer with the retinoid X receptor (RXR) and binds to diverse FXR response elements (FXREs) to exert its various biological functions. However, the mechanism by which the FXR/RXR heterodimer binds the DNA elements remains unclear. In this study, we aimed to use structural, biochemical and bioinformatics analyses to study the mechanism of FXR binding to the typical FXRE, such as the IR1 site, and the heterodimer interactions in the FXR-DBD/RXR-DBD complex. Further biochemical assays showed that RAR, THR and NR4A2 do not form heterodimers with RXR when bound to the IR1 sites, which indicates that IR1 may be a unique binding site for the FXR/RXR heterodimer. Our studies may provide a further understanding of the dimerization specificity of nuclear receptors.
Collapse
|
11
|
Qin T, Gao X, Lei L, Feng J, Zhang W, Hu Y, Shen Z, Liu Z, Huan Y, Wu S, Xia J, Zhang L. Machine learning- and structure-based discovery of a novel chemotype as FXR agonists for potential treatment of nonalcoholic fatty liver disease. Eur J Med Chem 2023; 252:115307. [PMID: 37003047 DOI: 10.1016/j.ejmech.2023.115307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/12/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Farnesoid X receptor (FXR) is a promising target for drug discovery against nonalcoholic fatty liver disease (NAFLD). However, no FXR agonist has been approved for NAFLD so far. The R & D of FXR agonists are somewhat hindered by the lack of effective and safe chemotypes. To this end, we developed a multi-stage computational workflow to screen the Specs and ChemDiv chemical library for FXR agonists, which consisted of machine learning (ML)-based classifiers, shape-based and electrostatic-based models, a FRED-based molecular docking protocol, an ADMET prediction protocol and substructure search. As a result, we identified a novel chemotype that has never been reported before, with compound XJ02862 (ChemDiv ID: Y020-6413) as the representative. By designing an asymmetric synthesis strategy, we were able to prepare four isomers of compound XJ02862. Interestingly, one of the isomers, 2-((S)-1-((2S,4R)-2-methyl-4-(phenylamino)-3,4-dihydroquinolin-1(2H)-yl)-1-oxopropan-2-yl)hexahydro-1H-isoindole-1,3(2H)-dione (XJ02862-S2), showed potent FXR agonistic activity in HEK293T cells. The molecular docking, molecular dynamics simulations and site-directed mutagenesis suggested the hydrogen bond between compound XJ02862-S2 and HIS294 of FXR is essential for ligand binding. We further demonstrated that compound XJ02862-S2 had no agonistic effect on TGR5. Further biological experiments have shown that compound XJ02862-S2 could ameliorate hypercholesterolemia, hepatic steatosis, hyperglycemia, insulin resistance (IR) in high-fat-diet induced obese (DIO) mice. In term of molecular mechanism, compound XJ02862-S2 regulates the expression of FXR downstream genes involved in lipogenesis, cholesterol transport and bile acid biosynthesis and transport. Taken together, we have discovered a novel chemotype as potent FXR agonists for NAFLD by computational modeling, chemical synthesis and biological evaluation.
Collapse
Affiliation(s)
- Tong Qin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xuefeng Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lei Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jing Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuhua Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhufang Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yi Huan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
12
|
Rausch M, Samodelov SL, Visentin M, Kullak-Ublick GA. The Farnesoid X Receptor as a Master Regulator of Hepatotoxicity. Int J Mol Sci 2022; 23:ijms232213967. [PMID: 36430444 PMCID: PMC9695947 DOI: 10.3390/ijms232213967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The nuclear receptor farnesoid X receptor (FXR, NR1H4) is a bile acid (BA) sensor that links the enterohepatic circuit that regulates BA metabolism and elimination to systemic lipid homeostasis. Furthermore, FXR represents a real guardian of the hepatic function, preserving, in a multifactorial fashion, the integrity and function of hepatocytes from chronic and acute insults. This review summarizes how FXR modulates the expression of pathway-specific as well as polyspecific transporters and enzymes, thereby acting at the interface of BA, lipid and drug metabolism, and influencing the onset and progression of hepatotoxicity of varying etiopathogeneses. Furthermore, this review article provides an overview of the advances and the clinical development of FXR agonists in the treatment of liver diseases.
Collapse
|
13
|
Structural optimization and biological evaluation of 1-adamantylcarbonyl-4-phenylpiperazine derivatives as FXR agonists for NAFLD. Eur J Med Chem 2022; 245:114903. [DOI: 10.1016/j.ejmech.2022.114903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
14
|
Cai J, Rimal B, Jiang C, Chiang JYL, Patterson AD. Bile acid metabolism and signaling, the microbiota, and metabolic disease. Pharmacol Ther 2022; 237:108238. [PMID: 35792223 DOI: 10.1016/j.pharmthera.2022.108238] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
Abstract
The diversity, composition, and function of the bacterial community inhabiting the human gastrointestinal tract contributes to host health through its role in producing energy or signaling molecules that regulate metabolic and immunologic functions. Bile acids are potent metabolic and immune signaling molecules synthesized from cholesterol in the liver and then transported to the intestine where they can undergo metabolism by gut bacteria. The combination of host- and microbiota-derived enzymatic activities contribute to the composition of the bile acid pool and thus there can be great diversity in bile acid composition that depends in part on the differences in the gut bacteria species. Bile acids can profoundly impact host metabolic and immunological functions by activating different bile acid receptors to regulate signaling pathways that control a broad range of complex symbiotic metabolic networks, including glucose, lipid, steroid and xenobiotic metabolism, and modulation of energy homeostasis. Disruption of bile acid signaling due to perturbation of the gut microbiota or dysregulation of the gut microbiota-host interaction is associated with the pathogenesis and progression of metabolic disorders. The metabolic and immunological roles of bile acids in human health have led to novel therapeutic approaches to manipulate the bile acid pool size, composition, and function by targeting one or multiple components of the microbiota-bile acid-bile acid receptor axis.
Collapse
Affiliation(s)
- Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, PR China
| | - John Y L Chiang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
15
|
Panzitt K, Zollner G, Marschall HU, Wagner M. Recent advances on FXR-targeting therapeutics. Mol Cell Endocrinol 2022; 552:111678. [PMID: 35605722 DOI: 10.1016/j.mce.2022.111678] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/25/2022]
Abstract
The bile acid receptor FXR has emerged as a bona fide drug target for chronic cholestatic and metabolic liver diseases, ahead of all non-alcoholic fatty liver disease (NAFLD). FXR is highly expressed in the liver and intestine and activation at both sites differentially contributes to its desired metabolic effects. Unrestricted FXR activation, however, also comes along with undesired effects such as a pro-atherogenic lipid profile, pruritus and hepatocellular toxicity under certain conditions. Several pre-clinical studies have confirmed the potency of FXR activation for cholestatic and metabolic liver diseases, but overall it remains still open whether selective activation of intestinal FXR is advantageous over pan-FXR activation and whether restricted or modulated FXR activation can limit some of the side effects. Even more, FXR antagonist also bear the potential as intestinal-selective drugs in NAFLD models. In this review we will discuss the molecular prerequisites for FXR activation, pan-FXR activation and intestinal FXR in/activation from a therapeutic point of view, different steroidal and non-steroidal FXR agonists, ways to restrict FXR activation and finally what we have learned from pre-clinical models and clinical trials with different FXR therapeutics.
Collapse
Affiliation(s)
- Katrin Panzitt
- Research Unit for Translational Nuclear Receptor Research, Medical University Graz, Graz, Austria; Division of Gastroenterology and Hepatology, Medical University Graz, Graz, Austria
| | - Gernot Zollner
- Division of Gastroenterology and Hepatology, Medical University Graz, Graz, Austria
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin Wagner
- Research Unit for Translational Nuclear Receptor Research, Medical University Graz, Graz, Austria; Division of Gastroenterology and Hepatology, Medical University Graz, Graz, Austria.
| |
Collapse
|
16
|
Chiang JYL, Ferrell JM. Discovery of farnesoid X receptor and its role in bile acid metabolism. Mol Cell Endocrinol 2022; 548:111618. [PMID: 35283218 PMCID: PMC9038687 DOI: 10.1016/j.mce.2022.111618] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022]
Abstract
In 1995, the nuclear hormone orphan receptor farnesoid X receptor (FXR, NR1H4) was identified as a farnesol receptor expressed mainly in liver, kidney, and adrenal gland of rats. In 1999, bile acids were identified as endogenous FXR ligands. Subsequently, FXR target genes involved in the regulation of hepatic bile acid synthesis, secretion, and intestinal re-absorption were identified. FXR signaling was proposed as a mechanism of feedback regulation of the rate-limiting enzyme for bile acid synthesis, cholesterol 7⍺-hydroxylase (CYP7A1). The primary bile acids synthesized in the liver are transformed to secondary bile acids by the gut microbiota. The gut-to-liver axis plays a critical role in the regulation of bile acid synthesis, composition and circulating bile acid pool size, which in turn regulates glucose, lipid, and energy metabolism. Dysregulation of bile acid metabolism and FXR signaling in the gut-to-liver axis contributes to metabolic diseases including obesity, diabetes, and non-alcoholic fatty liver disease. This review will cover the discovery of FXR as a bile acid sensor in the regulation of bile acid metabolism and as a metabolic regulator of lipid, glucose, and energy homeostasis. It will also provide an update of FXR functions in the gut-to-liver axis and the drug therapies targeting bile acids and FXR for the treatment of liver metabolic diseases.
Collapse
Affiliation(s)
- John Y L Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4029 SR 44, P.O. Box 95, Rootstown, OH, 44272, United States.
| | - Jessica M Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4029 SR 44, P.O. Box 95, Rootstown, OH, 44272, United States
| |
Collapse
|
17
|
Bashir A, Duseja A, De A, Mehta M, Tiwari P. Non-alcoholic fatty liver disease development: A multifactorial pathogenic phenomena. LIVER RESEARCH 2022. [DOI: 10.1016/j.livres.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
The Role and Mechanism of Oxidative Stress and Nuclear Receptors in the Development of NAFLD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6889533. [PMID: 34745420 PMCID: PMC8566046 DOI: 10.1155/2021/6889533] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
The overproduction of reactive oxygen species (ROS) and consequent oxidative stress contribute to the pathogenesis of acute and chronic liver diseases. It is now acknowledged that nonalcoholic fatty liver disease (NAFLD) is characterized as a redox-centered disease due to the role of ROS in hepatic metabolism. However, the underlying mechanisms accounting for these alternations are not completely understood. Several nuclear receptors (NRs) are dysregulated in NAFLD, and have a direct influence on the expression of a set of genes relating to the progress of hepatic lipid homeostasis and ROS generation. Meanwhile, the NRs act as redox sensors in response to metabolic stress. Therefore, targeting NRs may represent a promising strategy for improving oxidation damage and treating NAFLD. This review summarizes the link between impaired lipid metabolism and oxidative stress and highlights some NRs involved in regulating oxidant/antioxidant turnover in the context of NAFLD, shedding light on potential therapies based on NR-mediated modulation of ROS generation and lipid accumulation.
Collapse
|
19
|
Wen J, Mercado GP, Volland A, Doden HL, Lickwar CR, Crooks T, Kakiyama G, Kelly C, Cocchiaro JL, Ridlon JM, Rawls JF. Fxr signaling and microbial metabolism of bile salts in the zebrafish intestine. SCIENCE ADVANCES 2021; 7:eabg1371. [PMID: 34301599 PMCID: PMC8302129 DOI: 10.1126/sciadv.abg1371] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/07/2021] [Indexed: 05/02/2023]
Abstract
Bile salt synthesis, secretion into the intestinal lumen, and resorption in the ileum occur in all vertebrate classes. In mammals, bile salt composition is determined by host and microbial enzymes, affecting signaling through the bile salt-binding transcription factor farnesoid X receptor (Fxr). However, these processes in other vertebrate classes remain poorly understood. We show that key components of hepatic bile salt synthesis and ileal transport pathways are conserved and under control of Fxr in zebrafish. Zebrafish bile salts consist primarily of a C27 bile alcohol and a C24 bile acid that undergo multiple microbial modifications including bile acid deconjugation that augments Fxr activity. Using single-cell RNA sequencing, we provide a cellular atlas of the zebrafish intestinal epithelium and uncover roles for Fxr in transcriptional and differentiation programs in ileal and other cell types. These results establish zebrafish as a nonmammalian vertebrate model for studying bile salt metabolism and Fxr signaling.
Collapse
Affiliation(s)
- Jia Wen
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Gilberto Padilla Mercado
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Alyssa Volland
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Heidi L Doden
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Colin R Lickwar
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Taylor Crooks
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Genta Kakiyama
- Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Cecelia Kelly
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Jordan L Cocchiaro
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Jason M Ridlon
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA.
- Department of Animal Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Cancer Center of Illinois, Urbana, IL, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
20
|
Zhang Y, Lan X, Cai C, Li R, Gao Y, Yang L, Wu C, Dong H, Pang X, Bai D, Zeng G. Associations between Maternal Lipid Profiles and Pregnancy Complications: A Prospective Population-Based Study. Am J Perinatol 2021; 38:834-840. [PMID: 31891957 DOI: 10.1055/s-0039-3402724] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate whether plasma lipid profiles are independently associated with pregnancy complications including gestational diabetes mellitus (GDM), hypertensive disorder complicating pregnancy (HDCP), and intrahepatic cholestasis of pregnancy (ICP). STUDY DESIGN A prospective study was conducted among 1,704 pregnant women at three medical institutions in Chengdu, China. The concentrations of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured at gestational weeks 12 ± 1, 24 ± 1, and 34 ± 1. Logistic regression models were used to estimate the association between lipid profiles and pregnancy complications. Receiver operating characteristic analysis was performed to determine the value of lipid profiles to predict GDM and HDCP. RESULTS After adjusting for potential confounders, TG, TC, and LDL-C in the first trimester were independently associated with GDM (TG: odds ratio [OR] =2.00, 95% confidence interval [CI]: 1.57-2.56; TC: OR = 1.38, 95% CI: 1.16-1.64; LDL-C: OR = 1.43, 95% CI: 1.14-1.79) and HDCP (TG: OR = 2.42, 95% CI: 1.56-3.78, TC: OR = 1.64, 95% CI: 1.04-2.57; LDL-C: OR = 1.87, 95% CI: 1.07-3.25). The TC concentration during the whole pregnancy (first trimester: OR = 1.53, 95% CI: 1.13-2.08; second trimester: OR = 1.31, 95% CI: 1.06-1.61; third trimester: OR = 1.39, 95% CI: 1.17-2.04) and LDL-C in the last two trimesters (second trimester: OR = 1.62, 95% CI: 1.30-2.04; third trimester: OR = 1.56, 95% CI: 1.29-1.88) were positively associated with ICP. HDL-C in the third trimester was negatively associated with the risk of ICP (OR = 0.46, 95% CI: 0.22-0.98). Combining lipid profiles in the first trimester with the other common predictors to predict GDM or HDCP owned stronger predictive power with the largest area under the curve (GDM: 0.643 [95% CI: 0.613-0.673], HDCP: 0.707 [95% CI: 0.610-0.804]) than either indicator alone. CONCLUSION Maternal lipid profiles during the whole pregnancy are significantly associated with GDM, HDCP, and ICP. Combining lipid profiles in the first trimester with the other common predictors could effectively improve the power of predicting GDM and HDCP.
Collapse
Affiliation(s)
- Yiqi Zhang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Lan
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Congjie Cai
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Run Li
- Department of Clinical Nutrition, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China
| | - Yan Gao
- Department of Obstetrics, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China
| | - Liuqing Yang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Wu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongli Dong
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinxin Pang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Bai
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guo Zeng
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Jiang L, Zhang H, Xiao D, Wei H, Chen Y. Farnesoid X receptor (FXR): Structures and ligands. Comput Struct Biotechnol J 2021; 19:2148-2159. [PMID: 33995909 PMCID: PMC8091178 DOI: 10.1016/j.csbj.2021.04.029] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/10/2021] [Accepted: 04/10/2021] [Indexed: 02/07/2023] Open
Abstract
Farnesoid X receptor (FXR) is a bile acid activated nuclear receptor (BAR) and is mainly expressed in the liver and intestine. Upon ligand binding, FXR regulates key genes involved in the metabolic process of bile acid synthesis, transport and reabsorption and is also involved in the metabolism of carbohydrates and lipids. Because of its important functions, FXR is considered as a promising drug target for the therapy of bile acid-related liver diseases. With the approval of obeticholic acid (OCA) as the first small molecule to target FXR, many other small molecules are being evaluated in clinical trials. This review summarizes the structures of FXR, especially its ligand binding domain, and the development of small molecules (including agonists and antagonists) targeting FXR.
Collapse
Affiliation(s)
- Longying Jiang
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Huajun Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Desheng Xiao
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hudie Wei
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yongheng Chen
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
22
|
Thibaut R, Gage MC, Pineda-Torra I, Chabrier G, Venteclef N, Alzaid F. Liver macrophages and inflammation in physiology and physiopathology of non-alcoholic fatty liver disease. FEBS J 2021; 289:3024-3057. [PMID: 33860630 PMCID: PMC9290065 DOI: 10.1111/febs.15877] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/05/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Non‐alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome, being a common comorbidity of type 2 diabetes and with important links to inflammation and insulin resistance. NAFLD represents a spectrum of liver conditions ranging from steatosis in the form of ectopic lipid storage, to inflammation and fibrosis in nonalcoholic steatohepatitis (NASH). Macrophages that populate the liver play important roles in maintaining liver homeostasis under normal physiology and in promoting inflammation and mediating fibrosis in the progression of NAFLD toward to NASH. Liver macrophages are a heterogenous group of innate immune cells, originating from the yolk sac or from circulating monocytes, that are required to maintain immune tolerance while being exposed portal and pancreatic blood flow rich in nutrients and hormones. Yet, liver macrophages retain a limited capacity to raise the alarm in response to danger signals. We now know that macrophages in the liver play both inflammatory and noninflammatory roles throughout the progression of NAFLD. Macrophage responses are mediated first at the level of cell surface receptors that integrate environmental stimuli, signals are transduced through multiple levels of regulation in the cell, and specific transcriptional programmes dictate effector functions. These effector functions play paramount roles in determining the course of disease in NAFLD and even more so in the progression towards NASH. The current review covers recent reports in the physiological and pathophysiological roles of liver macrophages in NAFLD. We emphasise the responses of liver macrophages to insulin resistance and the transcriptional machinery that dictates liver macrophage function.
Collapse
Affiliation(s)
- Ronan Thibaut
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| | - Matthew C Gage
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Inès Pineda-Torra
- Department of Medicine, Centre for Cardiometabolic and Vascular Science, University College London, UK
| | - Gwladys Chabrier
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Nicolas Venteclef
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| | - Fawaz Alzaid
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| |
Collapse
|
23
|
FXR in liver physiology: Multiple faces to regulate liver metabolism. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166133. [PMID: 33771667 DOI: 10.1016/j.bbadis.2021.166133] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022]
Abstract
The liver is the central metabolic hub which coordinates nutritional inputs and metabolic outputs. Food intake releases bile acids which can be sensed by the bile acid receptor FXR in the liver and the intestine. Hepatic and intestinal FXR coordinately regulate postprandial nutrient disposal in a network of interacting metabolic nuclear receptors. In this review we summarize and update the "classical roles" of FXR as a central integrator of the feeding state response, which orchestrates the metabolic processing of carbohydrates, lipids, proteins and bile acids. We also discuss more recent and less well studied FXR effects on amino acid, protein metabolism, autophagic turnover and inflammation. In addition, we summarize the recent understanding of how FXR signaling is affected by posttranslational modifications and by different FXR isoforms. These modifications and variations in FXR signaling might be considered when FXR is targeted pharmaceutically in clinical applications.
Collapse
|
24
|
Fiorucci S, Distrutti E, Carino A, Zampella A, Biagioli M. Bile acids and their receptors in metabolic disorders. Prog Lipid Res 2021; 82:101094. [PMID: 33636214 DOI: 10.1016/j.plipres.2021.101094] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Bile acids are a large family of atypical steroids which exert their functions by binding to a family of ubiquitous cell membrane and nuclear receptors. There are two main bile acid activated receptors, FXR and GPBAR1, that are exclusively activated by bile acids, while other receptors CAR, LXRs, PXR, RORγT, S1PR2and VDR are activated by bile acids in addition to other more selective endogenous ligands. In the intestine, activation of FXR and GPBAR1 promotes the release of FGF15/19 and GLP1 which integrate their signaling with direct effects exerted by theother receptors in target tissues. This network is tuned in a time ordered manner by circadian rhythm and is critical for the regulation of metabolic process including autophagy, fast-to-feed transition, lipid and glucose metabolism, energy balance and immune responses. In the last decade FXR ligands have entered clinical trials but development of systemic FXR agonists has been proven challenging because their side effects including increased levels of cholesterol and Low Density Lipoproteins cholesterol (LDL-c) and reduced High-Density Lipoprotein cholesterol (HDL-c). In addition, pruritus has emerged as a common, dose related, side effect of FXR ligands. Intestinal-restricted FXR and GPBAR1 agonists and dual FXR/GPBAR1 agonists have been developed. Here we review the last decade in bile acids physiology and pharmacology.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Adriana Carino
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli, Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
25
|
Response Rate and Impact on Lipid Profiles of Obeticholic Acid Treatment for Patients with Primary Biliary Cholangitis: A Meta-Analysis. Can J Gastroenterol Hepatol 2021; 2021:8829510. [PMID: 33511089 PMCID: PMC7822683 DOI: 10.1155/2021/8829510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/16/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Up to 40% of patients with primary biliary cholangitis (PBC) have an inadequate response to ursodeoxycholic acid (UDCA). Obeticholic acid (OCA) is considered the addition of treatment, but the response rate based on commonly referenced biochemical response criteria and lipids' impact was unclear. Previous studies reported inconsistency results partially due to small sample size. Therefore, we performed a meta-analysis and aimed to explore OCA treatment's response rate and effect on lipids' profiles in PBC patients. METHODS We performed PubMed, Embase, and Cochrane controlled trials register (updated to JUN 2019) databases and manual bibliographical searches for randomized controlled trials reporting on OCA treatment in PBC patients. Two researchers independently extracted data and assessed the risk of bias of studies. We calculated risk ratio (RR) for the overall complete response rate, and the standardized mean difference (SMD) for the serum lipids changes after OCA treatment, all with 95% confidence intervals (CIs) using fixed-effects models. We registered this meta-analysis with PROSPERO (registration number: CRD42020148550). RESULTS Three trials, with 265 patients, were selected for the analysis. OCA was superior to placebo in PBC patients (RR, 1.48; 95% CI, 1.15-1.90). OCA's pooled treatment response rate was 65% (95% CI, 56%-74%), corresponding to Paris I criteria. Besides, OCA significantly decreased total cholesterol (P=0.02) with no heterogeneity (P=0.87, I 2 = 0%) and high-density lipoprotein levels (P < 0.05) with no heterogeneity (P=0.82, I 2 = 0%). CONCLUSIONS This meta-analysis demonstrated that OCA was a promising additional treatment for PBC patients and might reduce serum cholesterol levels. The longer follow-up studies are needed to give more evidence.
Collapse
|
26
|
Chen MJ, Liu C, Wan Y, Yang L, Jiang S, Qian DW, Duan JA. Enterohepatic circulation of bile acids and their emerging roles on glucolipid metabolism. Steroids 2021; 165:108757. [PMID: 33161055 DOI: 10.1016/j.steroids.2020.108757] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/28/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Bile acids (BAs) are amphiphilic molecules with a nonpolar steroid carbon skeleton and a polar carboxylate side chain. Recently, BAs have aroused the attention of scholars due to their potential roles on metabolic diseases. As important endogenous ligands, BAs are wildly active in the enterohepatic circulation, during which microbiota play a significant role in promoting the hydrolysis and dehydroxylation of BAs. Besides, many pathways initiated by BAs including glucolipid metabolism and inflammation signaling pathways have been reported to regulate the host metabolism and maintain immune homeostasis. Herein, the characteristics on the enterohepatic circulation and metabolism of BAs are systematically summarized. Moreover, the regulation mechanism of the glucolipid metabolism by BAs is intensively discussed. Worthily, FXR and TGR5, which are involved in glucolipid metabolism, are the prime candidates for targeted therapies of chronic metabolic diseases such as diabetes and hypercholesterolemia.
Collapse
Affiliation(s)
- Meng-Jun Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Chen Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yue Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Lei Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
27
|
Systematic review and meta-analysis of randomized controlled trials on the effects of obeticholic acid on the blood lipid profile: Insights into liver disorders and liver cancer. Eur J Pharmacol 2020; 889:173616. [DOI: 10.1016/j.ejphar.2020.173616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
|
28
|
Xiao Y, Kim M, Lazar MA. Nuclear receptors and transcriptional regulation in non-alcoholic fatty liver disease. Mol Metab 2020; 50:101119. [PMID: 33220489 PMCID: PMC8324695 DOI: 10.1016/j.molmet.2020.101119] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As a result of a sedentary lifestyle and excess food consumption in modern society, non-alcoholic fatty liver disease (NAFLD) characterized by fat accumulation in the liver is becoming a major disease burden. Non-alcoholic steatohepatitis (NASH) is an advanced form of NAFLD characterized by inflammation and fibrosis that can lead to hepatocellular carcinoma and liver failure. Nuclear receptors (NRs) are a family of ligand-regulated transcription factors that closely control multiple aspects of metabolism. Their transcriptional activity is modulated by various ligands, including hormones and lipids. NRs serve as potential pharmacological targets for NAFLD/NASH and other metabolic diseases. SCOPE OF REVIEW In this review, we provide a comprehensive overview of NRs that have been studied in the context of NAFLD/NASH with a focus on their transcriptional regulation, function in preclinical models, and studies of their clinical utility. MAJOR CONCLUSIONS The transcriptional regulation of NRs is context-dependent. During the dynamic progression of NAFLD/NASH, NRs play diverse roles in multiple organs and different cell types in the liver, which highlights the necessity of targeting NRs in a stage-specific and cell-type-specific manner to enhance the efficacy and safety of treatment methods.
Collapse
Affiliation(s)
- Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mindy Kim
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Terui R, Yanase Y, Yokoo H, Suhara Y, Makishima M, Demizu Y, Misawa T. Development of Selective TGR5 Ligands Based on the 5,6,7,8-Tetrahydro-5,5,8,8-tetramethylnaphthalene Skeleton. ChemMedChem 2020; 16:458-462. [PMID: 32969181 DOI: 10.1002/cmdc.202000567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Indexed: 01/05/2023]
Abstract
TGR5, a G-protein-coupled receptor (GPCR), plays an important role in several physiological functions. TGR5 activation through bile acids induces an increase in energy expenditure. Therefore, synthetic TGR5 ligands could be useful for the treatment of obesity or dyslipidemia. In this study, we designed and synthesized a set of TGR5 ligands with a 5,6,7,8-tetrahydro-5,5,8,8-tetramethylnaphthalene (TMN) skeleton, and evaluated their TGR5 agonistic activity. We also investigated the selectivity of the synthesized compounds for TGR5 relative to the farnesoid X receptor (FXR) and retinoic acid receptor (RAR). Our results show that compound 4 b [N-(2-chlorophenyl)-5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenecarboxamide] exhibited potent TGR5 agonist activity with an IC50 value of 8.4 nM without significant cytotoxicity. In addition, compound 4 b showed only slight agonistic activity toward FXR and RAR at 1 μM treatment. These data indicate that compound 4 b is a selective TGR5 agonist, and could be a promising therapeutic agent for dyslipidemia.
Collapse
Affiliation(s)
- Ryusei Terui
- National Institute of Health Sciences, 1 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
- Faculty of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama, 337-8570, Japan
| | - Yuta Yanase
- National Institute of Health Sciences, 1 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa, 230-0045, Japan
| | - Hidetomo Yokoo
- National Institute of Health Sciences, 1 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Yoshitomo Suhara
- Faculty of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama, 337-8570, Japan
| | - Makoto Makishima
- Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Yosuke Demizu
- National Institute of Health Sciences, 1 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa, 230-0045, Japan
| | - Takashi Misawa
- National Institute of Health Sciences, 1 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| |
Collapse
|
30
|
Bedi S, Garcia E, Jeyarajah EJ, Shalaurova I, Perez-Matos MC, Jiang ZG, Dullaart RPF, Matyus SP, Kirk WJ, Otvos JD, Davidson WS, Connelly MA. Characterization of LP-Z Lipoprotein Particles and Quantification in Subjects with Liver Disease Using a Newly Developed NMR-Based Assay. J Clin Med 2020; 9:jcm9092915. [PMID: 32927635 PMCID: PMC7564541 DOI: 10.3390/jcm9092915] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Lipoprotein particles with abnormal compositions, such as lipoprotein X (LP-X) and lipoprotein Z (LP-Z), have been described in cases of obstructive jaundice and cholestasis. The study objectives were to: (1) develop an NMR-based assay for quantification of plasma/serum LP-Z particles, (2) evaluate the assay performance, (3) isolate LP-Z particles and characterize them by lipidomic and proteomic analysis, and (4) quantify LP-Z in subjects with various liver diseases. Methods: Assay performance was assessed for linearity, sensitivity, and precision. Mass spectroscopy was used to characterize the protein and lipid content of isolated LP-Z particles. Results: The assay showed good linearity and precision (2.5–6.3%). Lipid analyses revealed that LP-Z particles exhibit lower cholesteryl esters and higher free cholesterol, bile acids, acylcarnitines, diacylglycerides, dihexosylceramides, lysophosphatidylcholines, phosphatidylcholines, triacylglycerides, and fatty acids than low-density lipoprotein (LDL) particles. A proteomic analysis revealed that LP-Z have one copy of apolipoprotein B per particle such as LDL, but less apolipoprotein (apo)A-I, apoC3, apoA-IV and apoC2 and more complement C3. LP-Z were not detected in healthy volunteers or subjects with primary biliary cholangitis, primary sclerosing cholangitis, autoimmune hepatitis, or type 2 diabetes. LP-Z were detected in some, but not all, subjects with hypertriglyceridemia, and were high in some subjects with alcoholic liver disease. Conclusions: LP-Z differ significantly in their lipid and protein content from LDL. Further studies are needed to fully understand the pathophysiological reason for the enhanced presence of LP-Z particles in patients with cholestasis and alcoholic liver disease.
Collapse
Affiliation(s)
- Shimpi Bedi
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237-0507, USA; (S.B.); (W.S.D.)
| | - Erwin Garcia
- Laboratory Corporation of America Holdings (LabCorp), Burlington, NC 27560, USA; (E.G.); (E.J.J.); (I.S.); (S.P.M.); (W.J.K.); (J.D.O.)
| | - Elias J. Jeyarajah
- Laboratory Corporation of America Holdings (LabCorp), Burlington, NC 27560, USA; (E.G.); (E.J.J.); (I.S.); (S.P.M.); (W.J.K.); (J.D.O.)
| | - Irina Shalaurova
- Laboratory Corporation of America Holdings (LabCorp), Burlington, NC 27560, USA; (E.G.); (E.J.J.); (I.S.); (S.P.M.); (W.J.K.); (J.D.O.)
| | - Maria Camila Perez-Matos
- Division of Gastroenterology & Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (M.C.P.-M.); (Z.G.J.)
| | - Z. Gordon Jiang
- Division of Gastroenterology & Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (M.C.P.-M.); (Z.G.J.)
| | - Robin P. F. Dullaart
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands;
| | - Steven P. Matyus
- Laboratory Corporation of America Holdings (LabCorp), Burlington, NC 27560, USA; (E.G.); (E.J.J.); (I.S.); (S.P.M.); (W.J.K.); (J.D.O.)
| | - William J. Kirk
- Laboratory Corporation of America Holdings (LabCorp), Burlington, NC 27560, USA; (E.G.); (E.J.J.); (I.S.); (S.P.M.); (W.J.K.); (J.D.O.)
| | - James D. Otvos
- Laboratory Corporation of America Holdings (LabCorp), Burlington, NC 27560, USA; (E.G.); (E.J.J.); (I.S.); (S.P.M.); (W.J.K.); (J.D.O.)
| | - W. Sean Davidson
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237-0507, USA; (S.B.); (W.S.D.)
| | - Margery A. Connelly
- Laboratory Corporation of America Holdings (LabCorp), Burlington, NC 27560, USA; (E.G.); (E.J.J.); (I.S.); (S.P.M.); (W.J.K.); (J.D.O.)
- Correspondence: ; Tel.: +1-919-388-5534
| |
Collapse
|
31
|
Perino A, Demagny H, Velazquez-Villegas L, Schoonjans K. Molecular Physiology of Bile Acid Signaling in Health, Disease, and Aging. Physiol Rev 2020; 101:683-731. [PMID: 32790577 DOI: 10.1152/physrev.00049.2019] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the past two decades, bile acids (BAs) have become established as important signaling molecules that enable fine-tuned inter-tissue communication from the liver, their site of production, over the intestine, where they are modified by the gut microbiota, to virtually any organ, where they exert their pleiotropic physiological effects. The chemical variety of BAs, to a large extent determined by the gut microbiome, also allows for a complex fine-tuning of adaptive responses in our body. This review provides an overview of the mechanisms by which BA receptors coordinate several aspects of physiology and highlights new therapeutic strategies for diseases underlying pathological BA signaling.
Collapse
Affiliation(s)
- Alessia Perino
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Hadrien Demagny
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Laura Velazquez-Villegas
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Kristina Schoonjans
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| |
Collapse
|
32
|
Shah RA, Alkhouri N, Kowdley KV. Emerging drugs for the treatment of non-alcoholic steatohepatitis: a focused review of farnesoid X receptor agonists. Expert Opin Emerg Drugs 2020; 25:251-260. [DOI: 10.1080/14728214.2020.1796968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Connelly MA, Velez Rivera J, Guyton JR, Siddiqui MS, Sanyal AJ. Review article: the impact of liver-directed therapies on the atherogenic risk profile in non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2020; 52:619-636. [PMID: 32638417 PMCID: PMC7497003 DOI: 10.1111/apt.15935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/23/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Patients with non-alcoholic fatty liver disease (NAFLD), the most common cause of chronic liver disease, are at higher risk of cardiovascular disease (CVD) and associated mortality. Therefore, it is important to understand how new therapies for non-alcoholic steatohepatitis (NASH) may impact CVD risk factors in these patients. AIMS To summarise the effects of drug therapies on lipid and lipoprotein levels in patients with NASH and provide insight into the potential mechanisms for the observed changes. METHODS PubMed searches of the literature were performed and results were compiled. RESULTS Recent clinical trials have highlighted the safety and efficacy of drug candidates for the treatment of NASH. Several agents have shown improvements in the histological features of NASH and liver function. Pioglitazone, a drug that is currently available for type 2 diabetes and may be useful for NASH, exhibits beneficial effects on lipids. However, agents such as farnesoid X receptor agonists, which are in development for NASH, may adversely affect circulating lipids and lipoproteins. CONCLUSIONS NASH is a multi-system disease with a disproportionate CVD burden. Current and future drugs for NASH have had variable impact on the atherogenic risk profile. Potential co-administration of a statin may help mitigate the negative impact of some of these therapies on lipid and lipoprotein levels.
Collapse
Affiliation(s)
| | - Jonathan Velez Rivera
- Division of Endocrinology, Metabolism, and NutritionDepartment of MedicineDuke University Medical CenterDurhamNCUSA
| | - John R. Guyton
- Division of Endocrinology, Metabolism, and NutritionDepartment of MedicineDuke University Medical CenterDurhamNCUSA
| | | | - Arun J. Sanyal
- Division of Gastroenterology and HepatologyVirginia Commonwealth UniversityRichmondVAUSA
| |
Collapse
|
34
|
Abstract
INTRODUCTION NAFLD has grown to become the most prevalent liver disease in the world, with a quarter of the general population estimated to have the disease. NASH, characterized as NAFLD with inflammation, is associated with worsening fibrosis along with increased incidence of HCC. Despite high prevalence of this disease, no pharmacologic treatments approved by regulatory agencies are available. AREAS COVERED This review briefly discusses present understanding of NASH pathology and currently available treatments. We also discuss data on the role of OCA as an FXR agonist in modulating disease in NASH. A comprehensive literature search of review articles, original research articles, and prospective clinical trials from 1998 to the present was performed. EXPERT OPINION Based on 18-month interim findings of the REGENERATE trial, OCA likely improves fibrosis in NASH and therefore may have a beneficial effect in delaying or even preventing cirrhosis. The side effect of an atherogenic lipoprotein profile may adversely affect long-term outcomes, though studies have shown that co-administration of statins is able to mitigate this effect. OCA is likely to become an option for treatment, but the specific context within which it may be prescribed still needs to be clarified.
Collapse
Affiliation(s)
- Raj A Shah
- Liver Institute Northwest , Seattle, WA, USA
| | | |
Collapse
|
35
|
Lemes RMR, Silva CADME, Marques MÂDM, Atella GC, Nery JADC, Nogueira MRS, Rosa PS, Soares CT, De P, Chatterjee D, Pessolani MCV, de Macedo CS. Altered composition and functional profile of high-density lipoprotein in leprosy patients. PLoS Negl Trop Dis 2020; 14:e0008138. [PMID: 32226013 PMCID: PMC7145193 DOI: 10.1371/journal.pntd.0008138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/09/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
The changes in host lipid metabolism during leprosy have been correlated to fatty acid alterations in serum and with high-density lipoprotein (HDL) dysfunctionality. This is most evident in multibacillary leprosy patients (Mb), who present an accumulation of host lipids in Schwann cells and macrophages. This accumulation in host peripheral tissues should be withdrawn by HDL, but it is unclear why this lipoprotein from Mb patients loses this function. To investigate HDL metabolism changes during the course of leprosy, HDL composition and functionality of Mb, Pb patients (paucibacillary) pre- or post-multidrug therapy (MDT) and HC (healthy controls) were analyzed. Mb pre-MDT patients presented lower levels of HDL-cholesterol compared to HC. Moreover, Ultra Performance Liquid Chromatography-Mass Spectrometry lipidomics of HDL showed an altered lipid profile of Mb pre-MDT compared to HC and Pb patients. In functional tests, HDL from Mb pre-MDT patients showed impaired anti-inflammatory and anti-oxidative stress activities and a lower cholesterol acceptor capacity compared to other groups. Mb pre-MDT showed lower concentrations of ApoA-I (apolipoprotein A-I), the major HDL protein, when compared to HC, with a post-MDT recovery. Changes in ApoA-I expression could also be observed in M. leprae-infected hepatic cells. The presence of bacilli in the liver of a Mb patient, along with cell damage, indicated hepatic involvement during leprosy, which may reflect on ApoA-I expression. Together, altered compositional and functional profiles observed on HDL of Mb patients can explain metabolic and physiological changes observed in Mb leprosy, contributing to a better understanding of its pathogenesis.
Collapse
Affiliation(s)
- Robertha Mariana R. Lemes
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Adriano de M. e Silva
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Maria Ângela de M. Marques
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Georgia C. Atella
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Augusto da C. Nery
- Ambulatório Souza Araújo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Prithwiraj De
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Maria Cristina V. Pessolani
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiana S. de Macedo
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Wang D, Huang J, Gui T, Yang Y, Feng T, Tzvetkov NT, Xu T, Gai Z, Zhou Y, Zhang J, Atanasov AG. SR-BI as a target of natural products and its significance in cancer. Semin Cancer Biol 2020; 80:18-38. [PMID: 31935456 DOI: 10.1016/j.semcancer.2019.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/25/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Scavenger receptor class B type I (SR-BI) protein is an integral membrane glycoprotein. SR-BI is emerging as a multifunctional protein, which regulates autophagy, efferocytosis, cell survival and inflammation. It is well known that SR-BI plays a critical role in lipoprotein metabolism by mediating cholesteryl esters selective uptake and the bi-directional flux of free cholesterol. Recently, SR-BI has also been identified as a potential marker for cancer diagnosis, prognosis, or even a treatment target. Natural products are a promising source for the discovery of new drug leads. Multiple natural products were identified to regulate SR-BI protein expression. There are still a number of challenges in modulating SR-BI expression in cancer and in using natural products for modulation of such protein expression. In this review, our purpose is to discuss the relationship between SR-BI protein and cancer, and the molecular mechanisms regulating SR-BI expression, as well as to provide an overview of natural products that regulate SR-BI expression.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Jiansheng Huang
- Department of Medicine, Vanderbilt University Medical Center, 318 Preston Research Building, 2200 Pierce Avenue, Nashville, Tennessee, 37232, USA
| | - Ting Gui
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yaxin Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Tingting Feng
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi university town, 550025, Guiyang, China
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 21 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Tao Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi university town, 550025, Guiyang, China.
| | - Jingjie Zhang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China.
| | - Atanas G Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552, Jastrzębiec, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria; Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
37
|
Impact of obeticholic acid on the lipoprotein profile in patients with non-alcoholic steatohepatitis. J Hepatol 2020; 72:25-33. [PMID: 31634532 PMCID: PMC6920569 DOI: 10.1016/j.jhep.2019.10.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND & AIMS Obeticholic acid (OCA), a farnesoid X receptor agonist, increases total and low-density lipoprotein cholesterol (LDL-C) in patients with non-alcoholic steatohepatitis. In the present study, we aimed to evaluate the impact of OCA therapy on lipoprotein sub-particles. METHOD This study included 196 patients (99 OCA group and 97 placebo group) who were enrolled in the FLINT trial and had samples available for lipid analysis and liver biopsies at enrollment and end-of-treatment (EOT) at 72 weeks. Very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) particles were evaluated at baseline, 12 and 72 weeks after randomization, and 24 weeks following EOT. RESULTS Baseline lipoprotein profiles were similar among OCA and placebo groups. OCA did not affect total VLDL particle concentrations, but OCA vs. placebo treatment was associated with decreased large VLDL particle concentration at 12 weeks (baseline-adjusted mean: 6.8 vs. 8.9 nmol/L; p = 0.002), mirrored by an increase in less atherogenic, small VLDL particle concentration (33.9 vs. 28.0 nmol/L; p = 0.02). After 12 weeks, total LDL particle concentration was higher in the OCA group than the placebo group (1,667 vs. 1,329 nmol/L; p <0.0001), characterized by corresponding increases in both less atherogenic, large-buoyant LDL (475 vs. 308 nmol/L; p ≤0.001) and more atherogenic small-dense LDL particles (1,015 vs. 872 nmol/L; p = 0.002). The changes in LDL particle concentrations were similar between treatment groups (OCA and placebo) 24 weeks following EOT due to improvement in the OCA cohort. Compared to placebo, a reduction in total HDL particle concentration, particularly large and medium HDL particles, was noted in the OCA-treated patients, but this resolved after drug discontinuation. CONCLUSION OCA therapy is associated with increases in small VLDL particles, large and small LDL particles, and a reduction in HDL particles at 12 weeks. These lipoprotein concentrations reverted to baseline values 24 weeks after drug discontinuation. LAY SUMMARY Non-alcoholic steatohepatitis is a chronic liver disease that is associated with an increased risk of developing cirrhosis and cardiovascular disease. Recently, obeticholic acid (OCA), a farnesoid X receptor agonist, improved liver disease but led to an increase in cholesterol. However, the impact of OCA on cholesterol is not well understood. In the present study, we show that OCA therapy is associated with a detrimental increase in lipoprotein levels, which improves after drug discontinuation. ClinicalTrials.gov numbers: NCT01265498.
Collapse
|
38
|
Ahmad TR, Haeusler RA. Bile acids in glucose metabolism and insulin signalling - mechanisms and research needs. Nat Rev Endocrinol 2019; 15:701-712. [PMID: 31616073 PMCID: PMC6918475 DOI: 10.1038/s41574-019-0266-7] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Of all the novel glucoregulatory molecules discovered in the past 20 years, bile acids (BAs) are notable for the fact that they were hiding in plain sight. BAs were well known for their requirement in dietary lipid absorption and biliary cholesterol secretion, due to their micelle-forming properties. However, it was not until 1999 that BAs were discovered to be endogenous ligands for the nuclear receptor FXR. Since that time, BAs have been shown to act through multiple receptors (PXR, VDR, TGR5 and S1PR2), as well as to have receptor-independent mechanisms (membrane dynamics, allosteric modulation of N-acyl phosphatidylethanolamine phospholipase D). We now also have an appreciation of the range of physiological, pathophysiological and therapeutic conditions in which endogenous BAs are altered, raising the possibility that BAs contribute to the effects of these conditions on glycaemia. In this Review, we highlight the mechanisms by which BAs regulate glucose homeostasis and the settings in which endogenous BAs are altered, and provide suggestions for future research.
Collapse
Affiliation(s)
- Tiara R Ahmad
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
39
|
Yang J, Zhu A, Xiao S, Zhang T, Wang L, Wang Q, Han L. Anthraquinones in the aqueous extract of Cassiae semen cause liver injury in rats through lipid metabolism disorder. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153059. [PMID: 31401496 DOI: 10.1016/j.phymed.2019.153059] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cassiae semen has been used as the tea or medicine component to treat hyperlipidemia or for hepatoprotection. However, Cassiae semen was reported to be a potentially hepatotoxic herb, and the underlying hepatotoxicity mechanisms or specific hepatotoxic components of Cassiae semen are unknown. PURPOSE In this study, we aimed to explore the potential hepatotoxicity mechanisms and the hepatotoxic components of Cassiae semen. METHODS Both young adult male and female SD rats were orally administrated with the aqueous extract of the seeds of Senna obtusifolia (L.) H.S.Irwin & Barneby at doses of 4.73, 15.75, 47.30 g/kg for 28 days, and the body weight, liver coefficient, bile acids, histopathology, serum levels of TC, TG, LDL, HDL, ALP, ALT, AST, and LDH were examined. Lipidomic analysis of rat serum was performed by LC-MS to investigate the specifically changed lipids caused by the aqueous extract treatment. The components absorbed in plasma were detected by UHPLC-Q-Exactive-MS. MTT assay was used to evaluate the cytotoxicity of these components absorbed in plasma. RESULTS The serum levels of ALP, AST, ALT, LDH were increased on day 7 with some of which gradually dropped to normal level on day 28. In high dose of the aqueous extract treated group, the histopathological changes were observed based on the cytoplasmic vacuolation in the liver and the increase of bile acids, indicating the hepatotoxicity of the aqueous extract. The changes of TC, TG, LDL, HDL indicated the disorder of lipid metabolism. By comparing the difference in lipids between high dose group and control group, the results showed that the alterations were primarily focused on glycerophospholipid metabolism in both male and female rats. In addition, the glycerolipid metabolism in female rats also changed. Further analyses found that PC (18:2/20:4) and LysoPC 18:0 were significantly increased. Among these phytochemicals detected in plasma, nine components in the aqueous extract were considered to have the highest concentrations, particularly some types of anthraquinones (AQs) existing in Cassiae semen (AQs-in-CS), such as obtusifolin, aurantio-obtusin, and obtusin. The MTT assay showed that emodin, obtusifolin, rhein, aurantio-obtusin, and obtusin inhibited cell viability. Considering plasma concentrations and cytotoxicity of these components, our study indicates that the AQs-in-CS (obtusifolin, aurantio-obtusin and obtusin), emodin and rhein are the potential hepatotoxic phytochemicals in the aqueous extract.
Collapse
Affiliation(s)
- Jinlan Yang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - An Zhu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Shuo Xiao
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Tao Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Liming Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine (TCM) for Compatibility Toxicology, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China.
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
40
|
Effect of Cytochrome P450 7A1 (CYP7A1) Polymorphism on Lipid Responses to Simvastatin Treatment. J Cardiovasc Pharmacol 2019; 75:168-173. [PMID: 31663874 DOI: 10.1097/fjc.0000000000000774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Identifying patients with high risk of low response to statin therapy is important for optimization of lipid-lowering therapy. Cholesterol 7α-hydroxylase, a rate-limiting enzyme encoded by cytochrome P450 7A1 (CYP7A1) gene, is considered to be associated with statin efficacy. This study aimed to investigate the association between a novel CYP7A1 single nucleotide polymorphism rs3824260 and statin treatment response for hypercholesteremic patients in Chinese Han population. METHODS A total of 336 subjects were prescribed with simvastatin for 12 weeks after enrollment. Plasma lipid parameters were measured at enrollment and after 12-week simvastatin treatment separately. Subjects were classified into high- and low-response groups depending on their total cholesterol, low-density lipoprotein cholesterol (LDL-C) and TG changes and increase or reduction groups according to their high-density lipoprotein cholesterol (HDL-C) levels changing after simvastatin treatment. The CYP7A1 rs3824260 was genotyped from blood samples with a SNaPshot assay. RESULTS At baseline, the LDL-C level and TG level were significantly higher in the AA genotype, while the HDL-C level was significantly higher in the GG genotype of CYP7A1 rs3824260. Patients carrying AA genotype are at an increased risk of low response for LDL-C reduction (odds ratio = 2.295, 95% confidence interval = 1.164-4.524, P = 0.016). Furthermore, the GG genotype of rs3824260 was significantly associated with a high risk of HDL-C reduction response after simvastatin therapy (odds ratio = 2.240, 95% confidence interval = 1.137-4.413, P = 0.025). CONCLUSIONS The CYP7A1 gene polymorphism rs3824260 is related to inappropriate response of simvastatin treatment for hypercholesterolemia patients in Chinese Han population.
Collapse
|
41
|
Feltrin C, Oliveira Simões CM. Reviewing the mechanisms of natural product-drug interactions involving efflux transporters and metabolic enzymes. Chem Biol Interact 2019; 314:108825. [PMID: 31553897 DOI: 10.1016/j.cbi.2019.108825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/28/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
Abstract
The World Health Organization (WHO) and other worldwide health agencies have recently taken initiatives to encourage the use of traditional medicine and/or complementary/alternative medicine in order to promote well-being and public health. In this way, one of the WHO's concerns is the safe use of these therapies. Phytotherapy is a strategy consisting of the use of medicinal plants (MP) and/or herbal medicinal products (HMP) for medicinal purposes. The use of phytotherapy concomitantly with drugs may cause interactions compromising the expected pharmacological action or generating toxic effects. These interactions are complex processes that may occur with multiple medications targeting different metabolic pathways, and involving different compounds present in MP and HMP. Thus, the aim of this review was to summarize the main MP- and HMP-drug interactions that involve specific transporters (P-glycoprotein and BCRP) and CYP450 enzymes (CYP3A4 and CYP2D6), which play relevant roles in the mechanisms of interactions. Firstly, multiple databases were used to search studies describing in vitro or in vivo MP and HMP-drug interactions and, after that, a systematic note-taking and appraisal of the literature was conducted. It was observed that several MP and HMP, metabolic pathways and transcription factors are involved in the transporters and enzymes expression or in the modulation of their activity having the potential to provide such interactions. Thus, the knowledge of MP- and HMP-drug interaction mechanisms could contribute to prevent harmful interactions and can ensure the safe use of these products to help the establishment of the therapeutic planning in order to certify the best treatment strategy to be used.
Collapse
Affiliation(s)
- Clarissa Feltrin
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Cláudia Maria Oliveira Simões
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
42
|
Abstract
This review provides a historical perspective of bile acids and their receptors as therapeutic targets. Bile acids are atypical steroids generated by the liver from cholesterol and have been used for almost half a century for treating liver and biliary disorders. Since the early 1970s of the last century, chenodeoxycholic acid (CDCA), a primary bile acid, and ursodeoxycholic acid (UDCA), a secondary bile acid and the 7βepimer of CDCA, have been shown effective in promoting the dissolution of cholesterol gallstones. However, lack of activity and side effects associated with the use of CDCA, along with the advent of laparoscopic cholecystectomy, have greatly reduced the clinical relevance of this application. At the turn of the century, however, the discovery that bile acids activate specific receptors, along with the discovery that those receptors are placed at the interface of the host and intestinal microbiota regulating physiologically relevant enterohepatic and entero-pancreatic axes, has led to a "bile acid renaissance." Similarly to other steroids, bile acids bind and activate both cell surface and nuclear receptors, including the bile acid sensor farnesoid X receptor (FXR) and a G-protein-coupled bile acid receptor, known as GPBAR1 (TGR5). Both receptors have been proved druggable, and several highly potent, selective, and nonselective ligands for the two receptors have been discovered in the last two decades. Currently, in addition to obeticholic acid, a semisynthetic derivative of CDCA and the first in class of FXR ligands approved for clinical use, either selective or dual FXR and GPBAR1 ligands, have been developed, and some of them are undergoing pre-approval trials. The effects of FXR and GPBAR1 ligands in different therapeutic area are reviewed.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Section of Gastroenterology, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy.
| | | |
Collapse
|
43
|
Semisynthetic bile acids: a new therapeutic option for metabolic syndrome. Pharmacol Res 2019; 146:104333. [PMID: 31254667 DOI: 10.1016/j.phrs.2019.104333] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/14/2019] [Accepted: 06/25/2019] [Indexed: 12/11/2022]
Abstract
Bile acids are endogenous emulsifiers synthesized from cholesterol having a peculiar amphiphilic structure. Appreciation of their beneficial effects on human health, recognized since ancient times, has expanded enormously since the discovery of their role as signaling molecules. Activation of farnesoid X receptor (FXR) and Takeda G-protein receptor-5 (TGR5) signaling pathways by bile acids, regulating glucose, lipid and energy metabolism, have become attractive avenue for metabolic syndrome treatment. Therefore, extensive effort has been directed into the research and synthesis of bile acid derivatives with improved pharmacokinetic properties and high potency and selectivity for these receptors. Minor modifications in the structure of bile acids and their derivatives may result in fine-tuning modulation of their biological functions, and most importantly, in an evasion of undesired effect. A great number of semisynthetic bile acid analogues have been designed and put in preclinical and clinical settings. Obeticholic acid (INT-747) has achieved the biggest clinical success so far being in use for the treatment of primary biliary cholangitis. This review summarizes and critically evaluates the key chemical modifications of bile acids resulting in development of novel semisynthetic derivatives as well as the current status of their preclinical and clinical evaluation in the treatment of metabolic syndrome, an aspect that is so far lacking in the scientific literature. Taking into account the balance between therapeutic benefits and potential adverse effects associated with specific structure and mechanism of action, recommendations for future studies are proposed.
Collapse
|
44
|
Mogilenko DA, Shavva VS, Dizhe EB, Orlov SV. Characterization of Distal and Proximal Alternative Promoters of the Human ApoA-I Gene. Mol Biol 2019. [DOI: 10.1134/s0026893319030129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Ge MX, Shao RG, He HW. Advances in understanding the regulatory mechanism of cholesterol 7α-hydroxylase. Biochem Pharmacol 2019; 164:152-164. [DOI: 10.1016/j.bcp.2019.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
|
46
|
Peng Z, Chen J, Drachenberg CB, Raufman JP, Xie G. Farnesoid X receptor represses matrix metalloproteinase 7 expression, revealing this regulatory axis as a promising therapeutic target in colon cancer. J Biol Chem 2019; 294:8529-8542. [PMID: 30967475 DOI: 10.1074/jbc.ra118.004361] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 04/03/2019] [Indexed: 12/13/2022] Open
Abstract
The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily of bile acid-activated transcription factors and an important regulator of cell proliferation, apoptosis, and Wnt signaling. Down-regulated expression of FXR plays an important role in some malignancies such as colon cancer, and in rodent models of intestinal neoplasia, FXR knockout increases the size and number of colon tumors. These previous observations implicate FXR as a tumor suppressor, but the underlying molecular mechanisms are unclear. Employing complementary experimental approaches and using human colon cancer specimens, human and murine colon cancer cell lines, and FXR transgenic mice, here we identified an additional, potentially important role for FXR. We observed an inverse relationship between the expression of FXR and matrix metalloproteinase-7 (MMP7), a collagenase and signaling molecule consistently associated with colon cancer progression. We noted that FXR gene ablation increases MMP7 expression. Consistent with this finding, FXR overexpression and a dominant-negative FXR mutation reduced and augmented, respectively, MMP7 expression. Of note, MMP7 was the only MMP gene family member whose expression was down-regulated after FXR activation. FXR-mediated regulation of MMP7 transcription did not require heterodimerization with the retinoid X receptor (RXR), indicating that FXR represses MMP7 expression independently of RXR. Last, we uncovered that FXR suppresses MMP7 transcription by binding to a negative FXR-responsive element in the 5' MMP7 promoter, an event that inhibited colon cancer cell proliferation and invasion. These findings identify the FXR-MMP7 axis as a potential therapeutic target for managing colon cancer.
Collapse
Affiliation(s)
- Zhongsheng Peng
- Veterans Affairs Maryland Healthcare System, Department of Medicine, Division of Gastroenterology and Hepatology, and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Jiayan Chen
- Veterans Affairs Maryland Healthcare System, Department of Medicine, Division of Gastroenterology and Hepatology, and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Cinthia B Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Jean-Pierre Raufman
- Veterans Affairs Maryland Healthcare System, Department of Medicine, Division of Gastroenterology and Hepatology, and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Guofeng Xie
- Veterans Affairs Maryland Healthcare System, Department of Medicine, Division of Gastroenterology and Hepatology, and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
47
|
Vantaggiato C, Panzeri E, Citterio A, Orso G, Pozzi M. Antipsychotics Promote Metabolic Disorders Disrupting Cellular Lipid Metabolism and Trafficking. Trends Endocrinol Metab 2019; 30:189-210. [PMID: 30718115 DOI: 10.1016/j.tem.2019.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/04/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022]
Abstract
Antipsychotics frequently cause obesity and related metabolic disorders that current psychopharmacological/endocrinological theories do not explain consistently. An integrative/alternative theory implies metabolic alterations happening at the cellular level. Many observations in vitro and in vivo, and pivotal observations in humans, point towards chemical properties of antipsychotics, independent of receptor binding characteristics. Being amphiphilic weak bases, antipsychotics can disrupt lysosomal function, affecting cholesterol trafficking; moreover, by chemical mimicry, antipsychotics can inhibit cholesterol biosynthesis. These two molecular adverse effects may trigger a cascade of transcriptional and biochemical events, ultimately reducing available cholesterol while increasing cholesterol precursors and fatty acids. The macroscopic manifestation of these molecular alterations includes decreased high-density lipoprotein and increased very low-density lipoprotein and triglycerides that may translate into obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Chiara Vantaggiato
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy
| | - Elena Panzeri
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy
| | - Andrea Citterio
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy
| | - Genny Orso
- Department of Pharmacological Sciences, University of Padova (PD), 35131, Italy
| | - Marco Pozzi
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy.
| |
Collapse
|
48
|
Wu PL, Zeng C, Zhou YF, Yin L, Yu XL, Xue Q. Farnesoid X Receptor Agonist GW4064 Inhibits Aromatase and ERβ Expression in Human Endometriotic Stromal Cells. Reprod Sci 2018; 26:1111-1120. [PMID: 30428773 DOI: 10.1177/1933719118808912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endometriosis is an estrogen-dependent disease. Farnesoid X receptor (FXR) activation has been shown to inhibit estrogen signaling in breast cancer and testicular tumors. However, the role of FXR in endometriosis is still poorly understood. Here, we aimed to investigate whether FXR activation by its synthetic agonist GW4064 has a therapeutic effect on endometriosis and the underlying molecular mechanisms. We found that the expression of FXR (encoded by the NR1H4 gene) in endometriotic tissues and stromal cells (ESCs) was higher than that in eutopic endometrial tissues and stromal cells. The GW4064 treatment led to a dose-dependent decrease in aromatase and estrogen receptor β (ERβ) expression and induced ERK1/2, p38, AMPK, and Stat3 activation in ESCs. In contrast, ERK1/2 inhibitor reversed the GW4064-induced reduction in aromatase expression. In addition, treatment with p38, AMPK, and Stat3 inhibitors or small interfering RNAs could also reverse the GW4064-induced reduction of ERβ expression in ESCs. The GW4064 treatment markedly increased Stat3 phosphorylation, enhancing the binding of Stat3 to the ESR2 promoter, which resulted in the downregulation of ERβ. Coimmunoprecipitation assay and chromatin immunoprecipitation analysis revealed that FXR was able to compete with cyclic AMP response element-binding (CREB) protein for binding to a common sequence on the aromatase promoter region after GW4064 treatment in ESCs. Moreover, treatment of endometriosis xenografts with GW4064 suppressed aromatase and ERβ expression in nude mice. Our results suggest that FXR may represent a potential therapeutic target for future therapy.
Collapse
Affiliation(s)
- Pei-Li Wu
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Cheng Zeng
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Ying-Fang Zhou
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Ling Yin
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Xiao-Lan Yu
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Qing Xue
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
49
|
Papazyan R, Liu X, Liu J, Dong B, Plummer EM, Lewis RD, Roth JD, Young MA. FXR activation by obeticholic acid or nonsteroidal agonists induces a human-like lipoprotein cholesterol change in mice with humanized chimeric liver. J Lipid Res 2018; 59:982-993. [PMID: 29559521 PMCID: PMC5983391 DOI: 10.1194/jlr.m081935] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/01/2018] [Indexed: 12/15/2022] Open
Abstract
Obeticholic acid (OCA) is a selective farnesoid X receptor (FXR) agonist that regulates bile acid and lipid metabolism. FXR activation induces distinct changes in circulating cholesterol among animal models and humans. The mechanistic basis of these effects has been elusive because of difficulties in studying lipoprotein homeostasis in mice, which predominantly package circulating cholesterol in HDLs. Here, we tested the effects of OCA in chimeric mice whose livers are mostly composed (≥80%) of human hepatocytes. Chimeric mice exhibited a human-like ratio of serum LDL cholesterol (LDL-C) to HDL cholesterol (HDL-C) at baseline. OCA treatment in chimeric mice increased circulating LDL-C and decreased circulating HDL-C levels, demonstrating that these mice closely model the cholesterol effects of FXR activation in humans. Mechanistically, OCA treatment increased hepatic cholesterol in chimeric mice but not in control mice. This increase correlated with decreased SREBP-2 activity and target gene expression, including a significant reduction in LDL receptor protein. Cotreatment with atorvastatin reduced total cholesterol, rescued LDL receptor protein levels, and normalized serum LDL-C. Treatment with two clinically relevant nonsteroidal FXR agonists elicited similar lipoprotein and hepatic changes in chimeric mice, suggesting that the increase in circulating LDL-C is a class effect of FXR activation.
Collapse
Affiliation(s)
| | - Xueqing Liu
- Intercept Pharmaceuticals, Inc., San Diego, CA 92121
| | - Jingwen Liu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | - Bin Dong
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | | | | | | | - Mark A Young
- Intercept Pharmaceuticals, Inc., San Diego, CA 92121.
| |
Collapse
|
50
|
Hiebl V, Ladurner A, Latkolik S, Dirsch VM. Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnol Adv 2018; 36:1657-1698. [PMID: 29548878 DOI: 10.1016/j.biotechadv.2018.03.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 01/25/2023]
Abstract
Nuclear receptors (NRs) represent attractive targets for the treatment of metabolic syndrome-related diseases. In addition, natural products are an interesting pool of potential ligands since they have been refined under evolutionary pressure to interact with proteins or other biological targets. This review aims to briefly summarize current basic knowledge regarding the liver X (LXR) and farnesoid X receptors (FXR) that form permissive heterodimers with retinoid X receptors (RXR). Natural product-based ligands for these receptors are summarized and the potential of LXR, FXR and RXR as targets in precision medicine is discussed.
Collapse
Affiliation(s)
- Verena Hiebl
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Angela Ladurner
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria.
| | - Simone Latkolik
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Verena M Dirsch
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|