1
|
Aboragah AA, Sherlock DN, Wichasit N, Mauck J, Loor JJ. Intermediate metabolites and molecular correlates of one‑carbon and nutrient metabolism differ in tissues from Holstein fetuses. Res Vet Sci 2023; 164:104988. [PMID: 37678126 DOI: 10.1016/j.rvsc.2023.104988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Methionine and folate cycles along with transsulfuration comprise the one‑carbon metabolism (OCM) pathway. Amino acids and other nutrients feed into OCM, which is central to cellular function. mRNA abundance, proteins (Western blotting), and metabolites (GC-MC) associated with OCM were used to characterize these mechanisms in fetal tissues. Liver, whole intestine, and semitendinosus muscle were harvested from fetuses in 6 multiparous Holstein cows (37 kg milk/d, 100 d gestation). Data were analyzed using PROC MIXED (SAS 9.4). Protein abundance of BHMT was greatest (P < 0.01) in liver suggesting active remethylation of homocysteine to methionine. This idea was supported by the greater (P < 0.05) mRNA of CBS, BHMT, MTR, SHMT1, and MAT1A (encoding OCM enzymes) in liver. The antioxidant protein GPX3 had greatest (P < 0.05) abundance in liver, whereas the glutathione-transferase GSTM1 was 5-fold greater (P < 0.05) in intestine than liver and muscle. Greatest concentrations of glycine, serine, and taurine along with lower cysteine underscored the relevance of OCM in fetal liver. Phosphoethanolamine concentration was greatest (4-fold, P < 0.05) in intestine and along with the greatest (P < 0.05) mRNA of SLC44A1 (choline transporter), CHKA, and CEPT1 underscored the importance of the CDP-choline pathway. Greatest (P < 0.05) mRNA of PPARA, CPT1A, and HMGCS2 along with lower PCK1 in liver highlighted a potential reliance on fatty acid oxidation. In contrast, greater (P < 0.05) concentration of myo-inositol in muscle and intestine suggested both tissues rely on glucose as main source of energy. Future research should address how environmental inputs such as maternal nutrition alter these pathways in fetal tissues and their phenotypic outcomes.
Collapse
Affiliation(s)
- Ahmad A Aboragah
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA; Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Nithat Wichasit
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA; Department of Agricultural Science, Naresuan University, Phitsanulok 65000, Thailand
| | - John Mauck
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA; Division of Nutritional Sciences, University of Illinois, Urbana 61801, USA.
| |
Collapse
|
2
|
Croze ML, Soulage CO. Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie 2013; 95:1811-27. [PMID: 23764390 DOI: 10.1016/j.biochi.2013.05.011] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/30/2013] [Indexed: 02/08/2023]
Abstract
Several inositol isomers and in particular myo-inositol (MI) and D-chiro-inositol (DCI), were shown to possess insulin-mimetic properties and to be efficient in lowering post-prandial blood glucose. In addition, abnormalities in inositol metabolism are associated with insulin resistance and with long term microvascular complications of diabetes, supporting a role of inositol or its derivatives in glucose metabolism. The aim of this review is to focus on the potential benefits of a dietary supplement of myo-inositol, by far the most common inositol isomer in foodstuffs, in human disorders associated with insulin resistance (polycystic ovary syndrome, gestational diabetes mellitus or metabolic syndrome) or in prevention or treatment of some diabetic complications (neuropathy, nephropathy, cataract). The relevance of such a nutritional strategy will be discussed for each context on the basis of the clinical and/or animal studies. The dietary sources of myo-inositol and its metabolism from its dietary uptake to its renal excretion will be also covered in this review. Finally, the actual insights into inositol insulin-sensitizing effects will be addressed and in particular the possible role of inositol glycans as insulin second messengers.
Collapse
Affiliation(s)
- Marine L Croze
- Université de Lyon, INSA de Lyon, CarMeN, INSERM U1060, Univ Lyon-1, F-69621 Villeurbanne, France.
| | | |
Collapse
|
3
|
Berry GT, Wu S, Buccafusca R, Ren J, Gonzales LW, Ballard PL, Golden JA, Stevens MJ, Greer JJ. Loss of murine Na+/myo-inositol cotransporter leads to brain myo-inositol depletion and central apnea. J Biol Chem 2003; 278:18297-302. [PMID: 12582158 DOI: 10.1074/jbc.m213176200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
myo-Inositol (Ins) and its polyphosphoinositide derivatives that are important in membrane signaling have long been held to play a special role in brain metabolism. As polyphosphoinositides turn over rapidly and are exceptionally abundant in nervous tissue, high Ins levels in the range of 2-15 mm that have been observed in brain may be necessary to maintain the rates of phosphoinositide synthesis in diverse membrane locations within neurons. Cellular concentration gradients of this magnitude indicate a dependence on active Ins transport, especially at the time of growth and differentiation. The Na(+)/myo-inositol cotransporter (SMIT1 or SLC5A3) gene is highly expressed prenatally in the central nervous system and placenta. To gain more insight into brain Ins metabolism, while ascertaining the importance of SMIT1 as a transporter, we generated mice with a homozygous targeted deletion of this gene. Newborn SMIT1(-/-) animals have no evidence of SMIT1 mRNA, a 92% reduction in the level of brain Ins, an 84% reduction in whole body Ins, and expire shortly after birth due to hypoventilation. Gross pathologic and light microscopic examinations of each organ, as well as the placenta, of embryonic day 18.5 fetuses at near term gestation were normal. Based on [(3)H]acetate incorporation into phospholipids of lung tissue explants, immunostaining of lung tissue for surfactant protein A, B, and C, and electron microscopic examination of alveolar cells, there was no evidence of abnormal pulmonary surfactant production by type 2 pneumocytes in lung. Although no histologic lesions were detected in the nervous system, electrophysiological studies of the brainstem pre-Bötzinger respiratory control center demonstrated an abnormal rhythm discharge with periods of central apnea. The cause of death can be explained by the regulatory defect in brainstem control of ventilation. This model demonstrates the critical importance of SMIT1 in the developing nervous system. The high affinity SMIT1 transporter is responsible for the Ins concentration gradient in the murine fetal-placental unit.
Collapse
Affiliation(s)
- Gerard T Berry
- Department of Pediatrics, University of Pennsylvania School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Shetty HU, Siarey RJ, Galdzicki Z, Stoll J, Rapoport SI. Ts65Dn mouse, a Down syndrome model, exhibits elevated myo-inositol in selected brain regions and peripheral tissues. Neurochem Res 2000; 25:431-5. [PMID: 10823574 DOI: 10.1023/a:1007592006005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
myo-Inositol is elevated in the Down syndrome (DS; trisomy 21) brain and may play a role in mental retardation. In the present study, we examined brain regions and peripheral tissues of Ts65Dn mouse, a recently characterized genetic model of DS, for abnormal myo-inositol accumulation. A GC/MS technique was used to quantitate myo-inositol and other polyol species (ribitol, arabitol, xylitol, and 1,5-anhydrosorbitol) in tissues from the Ts65Dn mice and control diploid mice. myo-Inositol was found to be elevated in frontal cortex, hippocampus, and brain stem but not in cerebellum of the Ts65Dn mouse. Among peripheral organs examined, liver and skeletal muscle were found to excessively accumulate myo-inositol. In all tissues, concentrations of polyol internal controls were normal. The Ts65Dn mouse is useful to study the possible effect of elevated myo-inositol on cellular processes.
Collapse
Affiliation(s)
- H U Shetty
- Section on Brain Physiology and Metabolism, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892-1582, USA.
| | | | | | | | | |
Collapse
|
5
|
Porcellati F, Hosaka Y, Hlaing T, Togawa M, Larkin DD, Karihaloo A, Stevens MJ, Killen PD, Greene DA. Alternate splicing in human Na+-MI cotransporter gene yields differentially regulated transport isoforms. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C1325-37. [PMID: 10362595 DOI: 10.1152/ajpcell.1999.276.6.c1325] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
myo-Inositol is a ubiquitous intracellular organic osmolyte and phosphoinositide precursor maintained at millimolar intracellular concentrations through the action of membrane-associated Na+-myo-inositol cotransporters (SMIT). Functional cloning and expression of a canine SMIT cDNA, which conferred SMIT activity in Xenopus oocytes, predicted a 718-amino acid peptide homologous to the Na+-glucose cotransporter with a potential protein kinase A phosphorylation site and multiple protein kinase C phosphorylation sites. A consistent approximately 1.0- to 13.5-kb array of transcripts hybridizing with this cDNA are osmotically induced in a variety of mammalian cells and species, yet SMIT activity appears to vary among different tissues and species. An open reading frame on human chromosome 21 (SLC5A3) homologous to that of the canine cDNA (96.5%) is thought to comprise an intronless human SMIT gene. Recently, this laboratory ascribed multiply sized, osmotically induced SMIT transcripts in human retinal pigment epithelial cells to the alternate utilization of several 3'-untranslated SMIT exons. This article describes an alternate splice donor site within the coding region that extends the open reading frame into the otherwise untranslated 3' exons, potentially generating novel SMIT isoforms. In these isoforms, the last putative transmembrane domain is replaced with intracellular carboxy termini containing a novel potential protein kinase A phosphorylation site and multiple protein kinase C phosphorylation sites, and this could explain the heterogeneity in the regulation and structure of the SMIT.
Collapse
Affiliation(s)
- F Porcellati
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109-0354, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Monaco ME, Moldover NH. Evidence for a single pool of myo-inositol in hormone-responsive WRK-1 cells. J Cell Biochem 1995; 59:186-92. [PMID: 8904313 DOI: 10.1002/jcb.240590208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previous reports have suggested the existence of at least two pools of cellular myo-inositol (Ins); it has been further hypothesized that only one of these pools is utilized during hormone-activated, cyclic phosphatidylinositol (PtdIns) resynthesis. In an effort to investigate this possibility, we have undertaken kinetic studies of Ins metabolism in WRK-1 cells. Our results indicate that a single pool of Ins is involved in both basal and activated PtdIns synthesis. Ins generated by the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) mixes with the existing pool of free Ins and is not used exclusively for resynthesis of PtdIns.
Collapse
Affiliation(s)
- M E Monaco
- Department of Physiology and Biophysics, New York University Medical Center, 10010, USA
| | | |
Collapse
|
7
|
Fisher SK. Homologous and heterologous regulation of receptor-stimulated phosphoinositide hydrolysis. Eur J Pharmacol 1995; 288:231-50. [PMID: 7774668 DOI: 10.1016/0922-4106(95)90035-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Signal transduction at a diverse range of pharmacologically distinct receptors is effected by the enhanced turnover of inositol phospholipids, with the attendant formation of inositol 1,4,5-trisphosphate and diacylglycerol. Although considerable progress has been made in recent years towards the identification and characterization of the individual components of this pathway, much less is known of mechanisms that may underlie its regulation. In this review, evidence is presented for the potential regulation of inositol lipid turnover at the level of receptor, phosphoinositide-specific phospholipase C and substrate availability in response to either homologous or heterologous stimuli. Available data indicate that the extent of receptor-stimulated inositol lipid hydrolysis is regulated by multiple mechanisms that operate at different levels of the signal transduction pathway.
Collapse
Affiliation(s)
- S K Fisher
- Neuroscience Laboratory, University of Michigan, Ann Arbor 48104-1687, USA
| |
Collapse
|
8
|
Berry GT, Mallee JJ, Kwon HM, Rim JS, Mulla WR, Muenke M, Spinner NB. The human osmoregulatory Na+/myo-inositol cotransporter gene (SLC5A3): molecular cloning and localization to chromosome 21. Genomics 1995; 25:507-13. [PMID: 7789985 DOI: 10.1016/0888-7543(95)80052-n] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A human Na+/myo-inositol cotransporter (SLC5A3) gene was cloned; sequencing revealed a single intron-free open reading frame of 2157 nucleotides. Containing 718 amino acid residues, the predicted protein is highly homologous to the product of the canine osmoregulatory SLC5A3 gene. The SLC5A3 protein is number 3 of the solute carrier family 5 and was previously designated SMIT. Using fluorescence in situ hybridization, the human SLC5A3 gene was localized to band q22 on chromosome 21. Many tissues including brain demonstrate gene expression. The inability of a trisomic 21 cell to downregulate expression of three copies of this osmoregulatory gene could result in increased flux of both myo-inositol and Na+ across the plasma membrane. The potential consequences include perturbations in the cell membrane potential and tissue osmolyte levels. The SLC5A3 gene may play a role in the pathogenesis of Down syndrome.
Collapse
Affiliation(s)
- G T Berry
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Berry GT, Johanson RA, Prantner JE, States B, Yandrasitz JR. myo-inositol transport and metabolism in fetal-bovine aortic endothelial cells. Biochem J 1993; 295 ( Pt 3):863-9. [PMID: 8240303 PMCID: PMC1134641 DOI: 10.1042/bj2950863] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The myo-inositol transport system in confluent fetal-bovine aortic endothelial cells was characterized after 7-10 days in subculture, at which time the myo-inositol levels and rates of myo-[2-3H]-inositol uptake and incorporation into phospholipid had reached steady state. Kinetic analysis indicated that the uptake occurred by both a high-affinity transport system with an apparent Kt of 31 microM and Vmax. of 45 pmol/min per mg of protein, and a non-saturable low-affinity system. Uptake was competitively inhibited by phlorhizin, with a Ki of 50 microM; phloretin was a non-competitive inhibitor, with half-maximal inhibition between 0.2 and 0.5 mM. Glucose was a weak competitive inhibitor, with a Ki of 37 mM; galactose failed to inhibit uptake. A weak dependence on Na+ for the initial rate of uptake was observed at 11 microM myo-inositol. When fetal-bovine-serum (FBS)-supplemented medium, which contained 225 microM myo-inositol, was used, the cells contained about 200 nmol of myo-inositol/mg of DNA. With adult-bovine-serum (ABS)-supplemented medium, which contained 13 microM myo-inositol, the cells contained about 110 nmol/mg of DNA. Transport of 11 microM myo-[2-3]inositol was 18 and 125 pmol/min per mg of DNA for cells grown in FBS and ABS respectively. Kinetic analysis showed that for the cells grown in FBS the Vmax. of the high-affinity system was decreased by 64%, whereas the Kt remained essentially unchanged. Increased cell myo-inositol levels were not associated with an increased rate of phosphatidylinositol synthesis. After prolonged exposure of fetal endothelial cells to a myo-inositol concentration which approximated to a high fetal as opposed to a low adult blood level, cell myo-inositol levels doubled and high-affinity transport underwent down-regulation.
Collapse
Affiliation(s)
- G T Berry
- Department of Pediatrics, University of Pennsylvania School of Medicine, Children's Hospital of Philadelphia 19104
| | | | | | | | | |
Collapse
|
10
|
Gani D, Downes CP, Batty I, Bramham J. Lithium and myo-inositol homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1177:253-69. [PMID: 8391849 DOI: 10.1016/0167-4889(93)90121-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- D Gani
- Chemistry Department, University, St. Andrews, Fife, UK
| | | | | | | |
Collapse
|
11
|
Abstract
myo-Inositol uptake and conversion to phosphatidylinositol (PI) was studied in isolated rat hepatocytes. Uptake of myo-[2-3H]-inositol into the trichloroacetic acid (TCA)-soluble fraction showed no evidence of saturation, while incorporation into lipid had an apparent Km of 0.28 mmol/L for external myo-inositol. With 50 mumol/L myo-[2-3H]-inositol, approximately half of the radiolabel was found in lipid at 30 minutes. Glucose and galactose were weak inhibitors, while phlorizin at 1 mmol/L reduced uptake by 50%. Metabolic inhibitors reduced incorporation of myo-[2-3H]-inositol into lipid, but had no effect on uptake. Hepatocytes maintained myo-inositol levels of 0.4 mmol/L for 60 minutes when incubated with 50 mumol/L myo-inositol, but levels increased when incubated with 1 mmol/L myo-inositol. Efflux of label was studied in hepatocytes prelabeled for 20 minutes with myo-[2-3H]-inositol. Loss of label was initially rapid, but had slowed by 20 minutes, with much of the label remaining in the cells. Phlorizin inhibited the loss of myo-[2-3H]-inositol, while increasing myo-inositol concentration in the medium enhanced efflux. The effects of these agents on the rate of efflux was found in lipid rather than in the TCA-soluble myo-inositol fraction. These findings suggest that myo-inositol is compartmentalized within hepatocytes, with a bulk metabolically inert pool and a smaller active pool that equilibrates with extracellular myo-inositol via an energy-independent carrier-mediated mechanism, and is preferentially available for efflux or for synthesis of phosphoinositides.
Collapse
Affiliation(s)
- S H Sigal
- Division of Biochemical Development and Molecular Diseases, Children's Hospital of Philadelphia, PA 19104
| | | | | |
Collapse
|
12
|
Grafton G, Baxter MA. The role of magnesium in diabetes mellitus. A possible mechanism for the development of diabetic complications. J Diabetes Complications 1992; 6:143-9. [PMID: 1611139 DOI: 10.1016/1056-8727(92)90026-h] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- G Grafton
- Department of Medicine, Queen Elizabeth Hospital, Birmingham, England
| | | |
Collapse
|
13
|
Torrens Y, Dietl MM, Beaujouan JC, Glowinski J. Myoinositol uptake in rat parotid gland. A selective bioassay for NK1 receptors. Ann N Y Acad Sci 1991; 632:145-53. [PMID: 1719862 DOI: 10.1111/j.1749-6632.1991.tb33103.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Y Torrens
- Département de Neuropharmacologie, Collège de France, Paris
| | | | | | | |
Collapse
|
14
|
Abstract
The inositol metabolism of Down's syndrome (DS, trisomy 21) skin fibroblasts was examined. We report that DS cells accumulated [3H]inositol 2-3-fold faster than did other aneuploid or diploid controls. In contrast, trisomy 21 did not affect the uptake of choline, serine or glucose. Kinetic analysis demonstrated an increased maximal velocity of high-affinity, Na(+)-dependent, inositol transport, consistent with the expression of higher numbers of transporters by DS cells. Enhanced uptake was accompanied by a proportional increase in the incorporation of radiolabelled inositol into phospholipid. We suggest that an imbalance of inositol metabolism may contribute to plasma membrane abnormalities characteristic of DS cells.
Collapse
Affiliation(s)
- B R Fruen
- Department of Genetics and Cell Biology, University of Minnesota, Minneapolis 55455
| | | |
Collapse
|
15
|
Reboulleau CP. Inositol metabolism during neuroblastoma B50 cell differentiation: effects of differentiating agents on inositol uptake. J Neurochem 1990; 55:641-50. [PMID: 2164574 DOI: 10.1111/j.1471-4159.1990.tb04181.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inositol uptake was studied in the rat CNS neuroblastoma B50 cell line. Eadie-Hofstee analysis of the uptake pattern reveals two defined modes of inositol entry into the cell. The high-affinity uptake component requires the presence of extracellular sodium and is inhibited by phloridzin. Analysis of the uptake velocities of the high-affinity uptake component provided the following apparent kinetic parameters: Km = 13.7 microM and Vmax = 14.7 pmol/mg of protein/min (without correcting for residual diffusion) and Km = 12.9 microM and Vmax = 12.3 pmol/mg of protein/min (with correction). At physiological concentrations, the high-affinity transport process contributes approximately 70% to total uptake; the remainder is due to a low-affinity diffusion-like process. Uptake inhibition studies reveal that the uptake process is sensitive to ouabain, amiloride, and dichlorobenzamil inhibition but relatively insensitive to cytochalasin B or phloretin. When neuroblastoma B50 cells are induced to differentiate morphologically with high extracellular calcium or with dibutyryl cyclic AMP, a significant decrease in inositol uptake is observed. The dibutyryl cyclic AMP-mediated inhibition of uptake affects only the high-affinity uptake component and is noncompetitive in nature. The high extracellular calcium-mediated inhibition is less specific; it involves "disappearance" of the high-affinity process, some inhibition of the low-affinity process, and an increase of inositol efflux. The significance of these observations is discussed in the context of neuroblastoma B50 cell differentiation.
Collapse
Affiliation(s)
- C P Reboulleau
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102
| |
Collapse
|
16
|
Lagos N, Vergara J. Phosphoinositides in frog skeletal muscle: a quantitative analysis. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1043:235-44. [PMID: 2157489 DOI: 10.1016/0005-2760(90)90022-p] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The contents of major phospholipids per g of wet wt. in frog skeletal muscle are: 5.3 mumol PC; 1.4 mumol PE; 1 mumol SM; 0.4 mumol PtdIns; 0.3 mumol CL; and 0.13 mumol PS. The quantities of polyphosphoinositides per g of wet wt. are: 181 nmol PtInsP; 28 nmol PtdInsP2; and 8 nmol lyso-PtdInsP2. The specific activity of labelling of the total muscle ATP attained by external incubation with [32P]Pi was found to be 57 dpm/nmol x g muscle wet wt. PtdInsP2, the highest labelled polyphosphoinositide, showed a specific activity of 64,000 dpm/nmol per g muscle wet wt., suggesting that high specific activity ATP may be compartmentalized in the local environment of the triads and used as a substrate by the PtdIns and PtInsP kinase in that region. PtdInsP2 which is the immediate precursor for the release of InsP3, is found at a significant concentration and strategically located for its postulated role as a substrate for the action of phosphoinositidase C. The presence of a novel endogenous polyphosphoinositide, lyso-PtdInsP2, in animal tissues is reported for the first time. Electrical stimulation leads towards a rapid catabolization of polyphosphoinositides revealed by reductions in the 3H- and 32P-labelling, suggesting that muscle excitation is associated with the activation of breaking down of polyphosphoinositides.
Collapse
Affiliation(s)
- N Lagos
- Department of Physiology, School of Medicine, University of California, Los Angeles 90024-1751
| | | |
Collapse
|
17
|
Olgemöller B, Schwaabe S, Schleicher ED, Gerbitz KD. Competitive inhibition by glucose of myo-inositol incorporation into cultured porcine aortic endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1052:47-52. [PMID: 2108731 DOI: 10.1016/0167-4889(90)90056-j] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To explore the significance of hyperglycaemia as a causal factor for the appearance of diabetic angiopathies we investigated aspects of myo-inositol metabolism in porcine aortic endothelial cells. myo-Inositol was shown to be a long-living metabolite. Its uptake into the cells was mediated by a high-affinity, Na(+)-dependent uptake system inhibitable by ouabain with an apparent KM of 18.6 mumols/l, which was responsible for more than 80% of total uptake at physiological myo-inositol concentrations. Inhibition of inositol uptake by D-glucose was exclusively competitive with an apparent Ki of 24 mmol/l as shown by Lineweaver-Burk- and Dixon-plot analysis. The specificity of competitive inhibition was studied. L-Glucose which is stereochemically related to myo-inositol in the same way as the D-isomer proved to be an equally potent inhibitor. The hexoses D-galactose, D-mannose and D-fructose inhibited myo-inositol uptake to a minor extent. D-allose and 3-O-methyl-D-glucose had no inhibitory effect indicating that the OH-group of the carbon atom in 3 position is essential for the interaction with the carrier. The acyclic hexitol sorbitol also did not compete. As expected, the aldose reductase blocker sorbinil did not influence the carrier since there is no polyol pathway operating in porcine aortic endothelial cells. In accordance with the results of the uptake experiments, the incorporation of exogenous myo-inositol into membrane phosphatidylinositol was reduced at elevated extracellular glucose levels. The results raise the possibility that hyperglycaemia impairs endothelial inositol supply.
Collapse
Affiliation(s)
- B Olgemöller
- Institut für klinische Chemie und Forschergruppe Diabetes, Städtisches Krankenhaus Schwabing, München, F.R.G
| | | | | | | |
Collapse
|
18
|
Abstract
The purpose of this study was to investigate the mechanism of inositol uptake into rat thoracic aorta. 3H-inositol uptake into deendothelialized aorta was linear for at least 2 h and was composed of both a saturable, Na(+)-dependent, and a nonsaturable, Na(+)-independent component. The Na(+)-dependent component of inositol uptake had a Km of 50 microM and a Vmax of 289 pmol/mg prot/h. Exposure to LiCl, ouabain, or Ca2(+)-free Krebs-Ringer bicarbonate solution inhibited uptake. Metabolic poisoning with dinitrophenol, as well as incubation with phloretin, an inhibitor of carrier-mediated hexose transport, also inhibited uptake. Exposure to norepinephrine decreased inositol uptake, while phorbol myristate acetate was without effect. Isobutylmethylxanthine significantly increased inositol uptake, while the increased uptake due to dibutyryl cyclic AMP and forskolin were not statistically significant. Sodium nitroprusside, an activator of guanylate cyclase, and 8-bromo cyclic GMP, were without effect on uptake, as was methylene blue, an inhibitor of guanylate cyclase. Inositol uptake into the aorta was increased when the endothelium was allowed to remain intact, although this effect was likely due to uptake into both the endothelial and smooth muscle cells. These results suggest that the uptake of inositol into vascular smooth muscle is: (1) dependent upon an inward Na(+)-gradient; (2) carrier mediated, and (3) inhibited by alpha 1 adrenoceptor agonists.
Collapse
Affiliation(s)
- R M Rapoport
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Ohio 45267-0575
| | | | | |
Collapse
|
19
|
Moyer JD, Malinowski N, Napier EA, Strong J. Uptake and metabolism of myo-inositol by L1210 leukaemia cells. Biochem J 1988; 254:95-100. [PMID: 3178761 PMCID: PMC1135044 DOI: 10.1042/bj2540095] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The initial rate of uptake of [3H]myo-inositol by L1210 murine leukaemia cells is directly proportional to the extracellular concentration and unaffected by several analogues of myo-inositol even at millimolar concentrations. Scyllitol, a geometric isomer of myo-inositol, partially inhibited the uptake of myo-inositol (40% at 0.1 mM). A portion of the uptake of myo-inositol was not inhibited even at 5 mM-scyllitol. At steady-state the intracellular concentration of [3H]myo-inositol is directly proportional to the extracellular concentration. Addition of myo-inositol to medium does not enhance the growth of L1210 cells; these cells can maintain an extracellular concentration of 20 microM-myo-inositol even when grown in myo-inositol-free medium. Synthesis of myo-inositol from glucose by L1210 cells was demonstrated by use of [13C]glucose and m.s. L1210 cells maintain myo-inositol pools by a combination of synthesis de novo and uptake of exogenous myo-inositol by either passive diffusion or a low affinity carrier.
Collapse
Affiliation(s)
- J D Moyer
- Laboratory of Biological Chemistry, National Cancer Institute, Bethesda, MD 20892
| | | | | | | |
Collapse
|
20
|
Howerton TC, Rutledge CO. [3H]-myo-inositol uptake in rat cortical slices. Identification of Na+-dependent and Na+-independent systems. Biochem Pharmacol 1988; 37:911-5. [PMID: 3125838 DOI: 10.1016/0006-2952(88)90180-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
[3H]-myo-Inositol (MI) uptake was measured in vitro using chopped rat cerebral cortical tissue. The uptake and accumulation of MI were linearly proportional to the amount of protein (0.1 to 4.0 mg) in the incubation medium. The uptake was also linear vs time for the first 20 min of incubation. When the uptake was observed at various substrate concentrations, it was found to be unsaturable up to a concentration of 0.78 M. Decreasing the concentration of NaCl or increasing the concentration of KCl in the incubation medium resulted in inhibition of the uptake and accumulation of MI. Inhibition of MI uptake was also produced by veratrine, ouabain and A23187 which alter the ionic gradients across the neuronal membranes. Inhibition of oxidative metabolism with dinitrophenol did not alter MI uptake. Sodium-independent uptake appeared to be the same as that which occurred at 0 degree. Sodium-independent uptake was still present in water-lysed homogenates and was inhibited by relatively high concentrations of ethanol. Thus, it appears that approximately one-half of the [3H]inositol uptake and accumulation in chopped rat cerebral cortex occurs by a sodium-dependent mechanism that can be altered by drugs which change the sodium gradient and the remaining occurs by a sodium-independent mechanism that can be altered by ethanol which is known to change membrane fluidity of neuronal membranes.
Collapse
Affiliation(s)
- T C Howerton
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence 66045
| | | |
Collapse
|
21
|
Abstract
myo-Inositol transport by isolated pancreatic islets was measured with a dual isotope technique. Uptake was saturable with a half-maximal response at approx. 75 microM. With 50 microM-inositol, uptake was linear for at least 2 h during which time the free intracellular concentration rose to double that of the incubation medium. Inositol transport is therefore active and probably energized by electrogenic co-transport of Na+ down its concentration gradient as uptake was inhibited by ouabain, Na+ removal or depolarizing K+ concentrations. Inositol transport was abolished by cytochalasin B which binds to hexose carriers, but not by carbamoylcholine or Li+ which respectively stimulate or inhibit phosphoinositide turnover. Uptake of inositol was not affected by 3-O-methylglucose or L-glucose (both 100 mM) nor by physiological concentrations of D-glucose. The results suggest that most intracellular inositol in pancreatic islets would be derived from the extracellular medium. Since the transport mechanism is distinct from that of glucose, inositol uptake would not be inhibited during periods of hyperglycaemia.
Collapse
|
22
|
Auchus RJ, Wilson DB, Covey DF, Majerus PW. The 5-hydroxyl of myo-inositol is essential for uptake into HSDM1C1 mouse fibrosarcoma cells. Biochem Biophys Res Commun 1985; 130:1139-46. [PMID: 4026861 DOI: 10.1016/0006-291x(85)91734-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We attempted to replace the myo-inositol in cellular inositol phosphatides with 5-deoxy-myo-inositol to evaluate the role of inositol 1,4,5-trisphosphate as a second messenger. This analog, lacking a 5-hydroxyl, might be incorporated into 5-deoxyphosphatidylinositol and converted to the corresponding phosphatidylcyclitol 4-phosphate but could not be converted to phosphatidylinositol 4,5-diphosphate, the precursor of the second messenger molecule inositol 1,4,5-trisphosphate. We synthesized 5-deoxy-myo-inositol and found that this analog does not replace myo-inositol as an essential growth factor for essential fatty acid deficient HSDM1C1 mouse fibrosarcoma cells. Furthermore, [5-3H]-5-deoxy-myo-inositol was neither incorporated into the phospholipids nor accumulated in the cytoplasm of these cells. It appears that this cell line has a specific myo-inositol uptake system that excludes a potentially harmful analog of inositol.
Collapse
|
23
|
Greene DA, Lattimer SA. Impaired rat sciatic nerve sodium-potassium adenosine triphosphatase in acute streptozocin diabetes and its correction by dietary myo-inositol supplementation. J Clin Invest 1983; 72:1058-63. [PMID: 6309904 PMCID: PMC1129273 DOI: 10.1172/jci111030] [Citation(s) in RCA: 210] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nerve conduction impairment in experimental diabetes has been empirically but not mechanistically linked to altered nerve myo-inositol metabolism. The phospholipid-dependent membrane-bound sodium-potassium ATPase provides a potential mechanism to relate defects in diabetic peripheral nerve myo-inositol-phospholipid metabolism, impulse conduction, and energy utilization. Therefore, the effect of streptozocin-induced diabetes mellitus and dietary myo-inositol supplementation on rat sciatic nerve sodium-potassium ATPase was studied. ATPase activity was measured enzymatically in sciatic nerve homogenates from 4-wk streptozocin diabetic rats and age-matched controls either fed a standard or 1% myo-inositol supplemented diet. The sodium-potassium ATPase components were assessed by ouabain inhibition or the omission of sodium and potassium ions. Diabetes reduced the composite ATPase activity recovered in crude homogenates of sciatic nerve. The 40% reduction in the sodium-potassium ATPase was selectively prevented by 1% myo-inositol supplementation (which preserved normal nerve conduction). Thus, in diabetic peripheral nerve, abnormal myo-inositol metabolism is associated with abnormal sodium-potassium ATPase activity. The mechanism of the effect of dietary myo-inositol to correct diabetic nerve conduction may be through changes in a sodium-potassium ATPase, possibly via changes in myo-inositol-containing phospholipids.
Collapse
|
24
|
Greene DA, Lattimer SA. Sodium- and energy-dependent uptake of myo-inositol by rabbit peripheral nerve. Competitive inhibition by glucose and lack of an insulin effect. J Clin Invest 1982; 70:1009-18. [PMID: 6813354 PMCID: PMC370313 DOI: 10.1172/jci110688] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Experimental diabetes consistently reduces the concentration of free myo-inositol in peripheral nerve, which usually exceeds that of plasma by 90-100-fold. This phenomenon has been explicitly linked to the impairment of nerve conduction in the acutely diabetic streptozocin-treated rat. However, the mechanism by which acute experimental diabetes lowers nerve myo-inositol content and presumably alters nerve myo-inositol content and presumably alters nerve myo-inositol metabolism is unknown. Therefore, the effects of insulin and elevated medium glucose concentration of 2-[3H]myo-inositol uptake were studied in a metabolically-defined in vitro peripheral nerve tissue preparation derived from rabbit sciatic nerve, whose free myo-inositol content is reduced by experimental diabetes. The results demonstrate that myo-inositol uptake occurs by at least two distinct transport systems in the normal endoneurial preparation. A sodium- and energy-dependent saturable transport system is responsible for at least 94% of the measured uptake at medium myo-inositol concentrations approximating that present in plasma. This carrier-mediated transport system has a high affinity for myo-inositol (Kt = 63 microM), and is not influenced acutely by physiological concentrations of insulin; it is, however, inhibited by hyperglycemic concentrations of glucose added to the incubation medium in a primarily competitive fashion. Thus, competitive inhibition of peripheral nerve myo-inositol uptake by glucose may constitute a mechanism by which diabetes produces physiologically significant alterations in peripheral nerve myo-inositol metabolism.
Collapse
|