1
|
Zhou D, Liu H, Zheng L, Liu A, Zhuan Q, Luo Y, Zhou G, Meng L, Hou Y, Wu G, Li J, Fu X. Metformin alleviates cryoinjuries in porcine oocytes by reducing membrane fluidity through the suppression of mitochondrial activity. Commun Biol 2024; 7:925. [PMID: 39090373 PMCID: PMC11294456 DOI: 10.1038/s42003-024-06631-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Plasma membrane damage in vitrified oocytes is closely linked to mitochondrial dysfunction. However, the mechanism underlying mitochondria-regulated membrane stability is not elucidated. A growing body of evidence indicates that mitochondrial activity plays a pivotal role in cell adaptation. Since mitochondria work at a higher temperature than the constant external temperature of the cell, we hypothesize that suppressing mitochondrial activity would protect oocytes from extreme stimuli during vitrification. Here we show that metformin suppresses mitochondrial activity by reducing mitochondrial temperature. In addition, metformin affects the developmental potential of oocytes and improves the survival rate after vitrification. Transmission electron microscopy results show that mitochondrial abnormalities are markedly reduced in vitrified oocytes pretreated with metformin. Moreover, we find that metformin transiently inhibits mitochondrial activity. Interestingly, metformin pretreatment decreases cell membrane fluidity after vitrification. Furthermore, transcriptome results demonstrate that metformin pretreatment modulates the expression levels of genes involved in fatty acid elongation process, which is further verified by the increased long-chain saturated fatty acid contents in metformin-pretreated vitrified oocytes by lipidomic profile analysis. In summary, our study indicates that metformin alleviates cryoinjuries by reducing membrane fluidity via mitochondrial activity regulation.
Collapse
Affiliation(s)
- Dan Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongyu Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lv Zheng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Aiju Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qingrui Zhuan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuwen Luo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guizhen Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lin Meng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guoquan Wu
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China.
| |
Collapse
|
2
|
Vianey-Saban C, Guffon N, Fouilhoux A, Acquaviva C. Fifty years of research on mitochondrial fatty acid oxidation disorders: The remaining challenges. J Inherit Metab Dis 2023; 46:848-873. [PMID: 37530674 DOI: 10.1002/jimd.12664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Since the identification of the first disorder of mitochondrial fatty acid oxidation defects (FAOD) in 1973, more than 20 defects have been identified. Although there are some differences, most FAOD have similar clinical signs, which are mainly due to energy depletion and toxicity of accumulated metabolites. However, some of them have an unusual clinical phenotype or specific clinical signs. This manuscript focuses on what we have learnt so far on the pathophysiology of these disorders, which present with clinical signs that are not typical of categorical FAOD. It also highlights that some disorders have not yet been identified and tries to make assumptions to explain why. It also deals with new treatments under consideration in FAOD, including triheptanoin and similar anaplerotic substrates, ketone body treatments, RNA and gene therapy approaches. Finally, it suggests challenges for the diagnosis of FAOD in the coming years, both for symptomatic patients and for those diagnosed through newborn screening. The ultimate goal would be to identify all the patients born with FAOD and ensure for them the best possible quality of life.
Collapse
Affiliation(s)
- Christine Vianey-Saban
- Biochemical and Molecular Biology Laboratory, Metabolic Inborn Errors of Metabolism Unit, Groupement Hospitalier Est, CHU de Lyon, Bron, France
| | - Nathalie Guffon
- National Reference Centre for Hereditary Metabolic Diseases, Groupement Hospitalier Est, CHU de Lyon, Bron, France
| | - Alain Fouilhoux
- National Reference Centre for Hereditary Metabolic Diseases, Groupement Hospitalier Est, CHU de Lyon, Bron, France
| | - Cécile Acquaviva
- Biochemical and Molecular Biology Laboratory, Metabolic Inborn Errors of Metabolism Unit, Groupement Hospitalier Est, CHU de Lyon, Bron, France
| |
Collapse
|
3
|
De Leon DD, Arnoux JB, Banerjee I, Bergada I, Bhatti T, Conwell LS, Fu J, Flanagan SE, Gillis D, Meissner T, Mohnike K, Pasquini TL, Shah P, Stanley CA, Vella A, Yorifuji T, Thornton PS. International Guidelines for the Diagnosis and Management of Hyperinsulinism. Horm Res Paediatr 2023; 97:279-298. [PMID: 37454648 PMCID: PMC11124746 DOI: 10.1159/000531766] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/16/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Hyperinsulinism (HI) due to dysregulation of pancreatic beta-cell insulin secretion is the most common and most severe cause of persistent hypoglycemia in infants and children. In the 65 years since HI in children was first described, there has been a dramatic advancement in the diagnostic tools available, including new genetic techniques and novel radiologic imaging for focal HI; however, there have been almost no new therapeutic modalities since the development of diazoxide. SUMMARY Recent advances in neonatal research and genetics have improved our understanding of the pathophysiology of both transient and persistent forms of neonatal hyperinsulinism. Rapid turnaround of genetic test results combined with advanced radiologic imaging can permit identification and localization of surgically-curable focal lesions in a large proportion of children with congenital forms of HI, but are only available in certain centers in "developed" countries. Diazoxide, the only drug currently approved for treating HI, was recently designated as an "essential medicine" by the World Health Organization but has been approved in only 16% of Latin American countries and remains unavailable in many under-developed areas of the world. Novel treatments for HI are emerging, but they await completion of safety and efficacy trials before being considered for clinical use. KEY MESSAGES This international consensus statement on diagnosis and management of HI was developed in order to assist specialists, general pediatricians, and neonatologists in early recognition and treatment of HI with the ultimate aim of reducing the prevalence of brain injury caused by hypoglycemia. A previous statement on diagnosis and management of HI in Japan was published in 2017. The current document provides an updated guideline for management of infants and children with HI and includes potential accommodations for less-developed regions of the world where resources may be limited.
Collapse
Affiliation(s)
- Diva D. De Leon
- Congenital Hyperinsulinism Center and Division of Endocrinology and Diabetes, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Baptiste Arnoux
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants Malades Hospital, AP-HP, University of Paris-Cité, Paris, France
| | - Indraneel Banerjee
- Paediatric Endocrinology, Royal Manchester Children’s Hospital, University of Manchester, Manchester, UK
| | - Ignacio Bergada
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CONICET – FEI), Division de Endrocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Tricia Bhatti
- Department of Clinical Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Louise S. Conwell
- Australia and Children’s Health Queensland Clinical Unit, Department of Endocrinology and Diabetes, Queensland Children’s Hospital, Children’s Health Queensland, Greater Brisbane Clinical School, Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Junfen Fu
- National Clinical Research Center for Child Health, Department of Endocrinology, The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Sarah E. Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - David Gillis
- Hadassah Medical Center, Department of Pediatrics, Ein-Kerem, Jerusalem and Faculty of Medicine, Hebrew-University, Jerusalem, Israel
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Klaus Mohnike
- Department of General Pediatrics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Tai L.S. Pasquini
- Research and Policy Director, Congenital Hyperinsulinism International, Glen Ridge, NJ, USA
| | - Pratik Shah
- Pediatric Endocrinology, The Royal London Children’s Hospital, Queen Mary University of London, London, UK
| | - Charles A. Stanley
- Congenital Hyperinsulinism Center and Division of Endocrinology and Diabetes, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Adrian Vella
- Division of Diabetes, Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Tohru Yorifuji
- Pediatric Endocrinology and Metabolism, Children’s Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Paul S. Thornton
- Congenital Hyperinsulinism Center, Cook Children’s Medical Center and Texas Christian University Burnett School of Medicine, Fort Worth, TX, USA
| |
Collapse
|
4
|
Boodhansingh KE, Rosenfeld E, Lord K, Adzick NS, Bhatti T, Ganguly A, De Leon DD, Stanley CA. Mosaic GLUD1 Mutations Associated with Hyperinsulinism Hyperammonemia Syndrome. Horm Res Paediatr 2022; 95:492-498. [PMID: 35952631 PMCID: PMC9671865 DOI: 10.1159/000526203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION The hyperinsulinemia-hyperammonemia syndrome (HIHA) is the second most common cause of congenital hyperinsulinism and is caused by activating heterozygous missense mutations in GLUD1. In the majority of HIHA cases, the GLUD1 mutation is found to be de novo. We have identified 3 patients in whom clinical evaluation was suggestive of HIHA but with negative mutation analysis in peripheral blood DNA for GLUD1 as well as other known HI genes. METHODS We performed next-generation sequencing (NGS) on peripheral blood DNA from two children with clinical features of HIHA in order to look for mosaic mutations in GLUD1. Pancreas tissue was also available in one of these cases for NGS. In addition, NGS was performed on peripheral blood DNA from a woman with a history of HI in infancy whose child had HIHA due to a presumed de novo GLUD1 mutation. RESULTS Mosaic GLUD1 mutations were identified in these 3 cases at percent mosaicism ranging from 2.7% to 10.4% in peripheral blood. In one case with pancreas tissue available, the mosaic GLUD1 mutation was present at 17.9% and 28.9% in different sections of the pancreas. Two unique GLUD1 mutations were identified in these cases, both of which have been previously reported (c.1493c>t/p.Ser445Leu and c.820c>t/p.Arg221Cys). CONCLUSION The results suggest that low-level mosaic mutations in known HI genes may be the underlying molecular mechanism in some children with HI who have negative genetic testing in peripheral blood DNA.
Collapse
Affiliation(s)
- Kara E. Boodhansingh
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elizabeth Rosenfeld
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine Lord
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - N. Scott Adzick
- Department of Surgery, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tricia Bhatti
- Department of Pathology, The Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arupa Ganguly
- Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Diva D. De Leon
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles A. Stanley
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Vázquez-Mosquera ME, González-Vioque E, Barbosa-Gouveia S, Bellido-Guerrero D, Tejera-Pérez C, Martinez-Olmos MA, Fernández-Pombo A, Castaño-González LA, Chans-Gerpe R, Couce ML. Transcriptomic analysis of patients with clinical suspicion of maturity-onset diabetes of the young (MODY) with a negative genetic diagnosis. Orphanet J Rare Dis 2022; 17:105. [PMID: 35246208 PMCID: PMC8896342 DOI: 10.1186/s13023-022-02263-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/20/2022] [Indexed: 12/04/2022] Open
Abstract
Background Diagnosis of mature-onset diabetes of the young (MODY), a non-autoimmune monogenic form of diabetes mellitus, is confirmed by genetic testing. However, a positive genetic diagnosis is achieved in only around 50% of patients with clinical characteristics of this disease. Results We evaluated the diagnostic utility of transcriptomic analysis in patients with clinical suspicion of MODY but a negative genetic diagnosis. Using Nanostring nCounter technology, we conducted transcriptomic analysis of 19 MODY-associated genes in peripheral blood samples from 19 patients and 8 healthy controls. Normalized gene expression was compared between patients and controls and correlated with each patient’s biochemical and clinical variables. Z-scores were calculated to identify significant changes in gene expression in patients versus controls. Only 7 of the genes analyzed were detected in peripheral blood. HADH expression was significantly lower in patients versus controls. Among patients with suspected MODY, GLIS3 expression was higher in obese versus normal-weight patients, and in patients aged < 25 versus > 25 years at diabetes onset. Significant alteration with respect to controls of any gene was observed in 57.9% of patients. Conclusions Although blood does not seem to be a suitable sample for transcriptomic analysis of patients with suspected MODY, in our study, we detected expression alterations in some of the genes studied in almost 58% of patients. That opens the door for future studies that can clarify the molecular cause of the clinic of these patients and thus be able to maintain a more specific follow-up and treatment in each case. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02263-3.
Collapse
Affiliation(s)
- María E Vázquez-Mosquera
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain.,Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Universidad de Santiago de Compostela, Santiago de Compostela, Spain.,European Reference Network for Hereditary Metabolic Disorders (MetabERN), Padova, Italy
| | - Emiliano González-Vioque
- Division of Clinical Biochemistry, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Sofía Barbosa-Gouveia
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain.,Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Universidad de Santiago de Compostela, Santiago de Compostela, Spain.,European Reference Network for Hereditary Metabolic Disorders (MetabERN), Padova, Italy
| | | | - Cristina Tejera-Pérez
- Division of Endocrinology, Complejo Hospitalario Universitario de Ferrol, Ferrol, Spain
| | - Miguel A Martinez-Olmos
- Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.,Universidad de Santiago de Compostela, Santiago de Compostela, Spain.,Division of Endocrinology and Nutrition, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Antía Fernández-Pombo
- Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.,Universidad de Santiago de Compostela, Santiago de Compostela, Spain.,Division of Endocrinology and Nutrition, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Luis A Castaño-González
- Endocrinology and Diabetes Research Group, Instituto de Investigación Sanitaria BioCruces, Barakaldo, Spain
| | - Roi Chans-Gerpe
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain.,Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Universidad de Santiago de Compostela, Santiago de Compostela, Spain.,European Reference Network for Hereditary Metabolic Disorders (MetabERN), Padova, Italy
| | - María L Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain. .,Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain. .,Universidad de Santiago de Compostela, Santiago de Compostela, Spain. .,European Reference Network for Hereditary Metabolic Disorders (MetabERN), Padova, Italy.
| |
Collapse
|
6
|
Zhang W, Sang YM. Genetic pathogenesis, diagnosis, and treatment of short-chain 3-hydroxyacyl-coenzyme A dehydrogenase hyperinsulinism. Orphanet J Rare Dis 2021; 16:467. [PMID: 34736508 PMCID: PMC8567654 DOI: 10.1186/s13023-021-02088-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/17/2021] [Indexed: 11/27/2022] Open
Abstract
Congenital hyperinsulinism (CHI), a major cause of persistent and recurrent hypoglycemia in infancy and childhood. Numerous pathogenic genes have been associated with 14 known genetic subtypes of CHI. Adenosine triphosphate-sensitive potassium channel hyperinsulinism (KATP-HI) is the most common and most severe subtype, accounting for 40–50% of CHI cases. Short-chain 3-hydroxyacyl-coenzyme A dehydrogenase hyperinsulinism (SCHAD-HI) is a rare subtype that accounts for less than 1% of all CHI cases that are caused by homozygous mutations in the hydroxyacyl-coenzyme A dehydrogenase (HADH) gene. This review provided a systematic description of the genetic pathogenesis and current progress in the diagnosis and treatment of SCHAD-HI to improve our understanding of this disease.
Collapse
Affiliation(s)
- Wei Zhang
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Yan-Mei Sang
- Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| |
Collapse
|
7
|
Genotyping of ABCC8, KCNJ11, and HADH in Iranian Infants with Congenital Hyperinsulinism. Case Rep Endocrinol 2021; 2021:8826174. [PMID: 34055426 PMCID: PMC8137283 DOI: 10.1155/2021/8826174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/02/2021] [Accepted: 04/25/2021] [Indexed: 12/03/2022] Open
Abstract
Background Congenital hyperinsulinism (CHI) is a heterogeneous disease with various underlying genetic causes. Among different genes considered effective in the development of CHI, ABCC8, KCNJ11, and HADH genes are among the important genes, especially in a population with a considerable rate of consanguineous marriage. Mutational analysis of these genes guides clinicians to better treatment and prediction of prognosis for this rare disease. The present study aimed to evaluate genetic variants in ABCC8, KCNJ11, and HADH genes as causative genes for CHI in the Iranian population. Methods The present case series took place in Mashhad, Iran, within 11 years. Every child who had a clinical phenotype and confirmatory biochemical tests of CHI enrolled in this study. Variants in ABCC8, KCNJ11, and HADH genes were analyzed by the polymerase chain reaction and sequencing in our patients. Results Among 20 pediatric patients, 16 of them had variants in ABCC8, KCNJ11, and HADH genes. The mean age of genetic diagnosis was 18.6 days. A homozygous missense (c.2041-21G > A) mutation in the ABCC8 gene was seen in three infants. Other common variants were frameshift variants (c.3438dup) in the ABCC8 gene and a missense variant (c.287-288delinsTG) in the KCNJ11 gene. Most of the variants in our population were still categorized as variants of unknown significance and only 7 pathogenic variants were present. Conclusion Most variants were located in the ABCC8 gene in our population. Because most of the variants in our population are not previously reported, performing further functional studies is warranted.
Collapse
|
8
|
Alhaidan Y, Christesen HT, Lundberg E, Balwi MAA, Brusgaard K. CRISPR/Cas9 ADCY7 Knockout Stimulates the Insulin Secretion Pathway Leading to Excessive Insulin Secretion. Front Endocrinol (Lausanne) 2021; 12:657873. [PMID: 34177802 PMCID: PMC8231291 DOI: 10.3389/fendo.2021.657873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/18/2021] [Indexed: 11/15/2022] Open
Abstract
AIM Despite the enormous efforts to understand Congenital hyperinsulinism (CHI), up to 50% of the patients are genetically unexplained. We aimed to functionally characterize a novel candidate gene in CHI. PATIENT A 4-month-old boy presented severe hyperinsulinemic hypoglycemia. A routine CHI genetic panel was negative. METHODS A trio-based whole-exome sequencing (WES) was performed. Gene knockout in the RIN-m cell line was established by CRISPR/Cas9. Gene expression was performed using real-time PCR. RESULTS Hyperinsulinemic hypoglycemia with diffuse beta-cell involvement was demonstrated in the patient, who was diazoxide-responsive. By WES, compound heterozygous variants were identified in the adenylyl cyclase 7, ADCY7 gene p.(Asp439Glu) and p.(Gly1045Arg). ADCY7 is calcium-sensitive, expressed in beta-cells and converts ATP to cAMP. The variants located in the cytoplasmic domains C1 and C2 in a highly conserved and functional amino acid region. RIN-m(-/-Adcy7) cells showed a significant increase in insulin secretion reaching 54% at low, and 49% at high glucose concentrations, compared to wild-type. In genetic expression analysis Adcy7 loss of function led to a 34.1-fold to 362.8-fold increase in mRNA levels of the insulin regulator genes Ins1 and Ins2 (p ≤ 0.0002), as well as increased glucose uptake and sensing indicated by higher mRNA levels of Scl2a2 and Gck via upregulation of Pdx1, and Foxa2 leading to the activation of the glucose stimulated-insulin secretion (GSIS) pathway. CONCLUSION This study identified a novel candidate gene, ADCY7, to cause CHI via activation of the GSIS pathway.
Collapse
Affiliation(s)
- Yazeid Alhaidan
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Medical Genomics Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- *Correspondence: Yazeid Alhaidan,
| | - Henrik Thybo Christesen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Odense Pancreas Center, Odense, Denmark
| | - Elena Lundberg
- Institute of Clinical Science, Pediatrics, Umea University, Umeå, Sweden
| | - Mohammed A. Al Balwi
- Department of Medical Genomics Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, NGHA, Riyadh, Saudi Arabia
| | - Klaus Brusgaard
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Near East University, Nicosia, Cyprus
| |
Collapse
|
9
|
Gϋemes M, Rahman SA, Kapoor RR, Flanagan S, Houghton JAL, Misra S, Oliver N, Dattani MT, Shah P. Hyperinsulinemic hypoglycemia in children and adolescents: Recent advances in understanding of pathophysiology and management. Rev Endocr Metab Disord 2020; 21:577-597. [PMID: 32185602 PMCID: PMC7560934 DOI: 10.1007/s11154-020-09548-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hyperinsulinemic hypoglycemia (HH) is characterized by unregulated insulin release, leading to persistently low blood glucose concentrations with lack of alternative fuels, which increases the risk of neurological damage in these patients. It is the most common cause of persistent and recurrent hypoglycemia in the neonatal period. HH may be primary, Congenital HH (CHH), when it is associated with variants in a number of genes implicated in pancreatic development and function. Alterations in fifteen genes have been recognized to date, being some of the most recently identified mutations in genes HK1, PGM1, PMM2, CACNA1D, FOXA2 and EIF2S3. Alternatively, HH can be secondary when associated with syndromes, intra-uterine growth restriction, maternal diabetes, birth asphyxia, following gastrointestinal surgery, amongst other causes. CHH can be histologically characterized into three groups: diffuse, focal or atypical. Diffuse and focal forms can be determined by scanning using fluorine-18 dihydroxyphenylalanine-positron emission tomography. Newer and improved isotopes are currently in development to provide increased diagnostic accuracy in identifying lesions and performing successful surgical resection with the ultimate aim of curing the condition. Rapid diagnostics and innovative methods of management, including a wider range of treatment options, have resulted in a reduction in co-morbidities associated with HH with improved quality of life and long-term outcomes. Potential future developments in the management of this condition as well as pathways to transition of the care of these highly vulnerable children into adulthood will also be discussed.
Collapse
Affiliation(s)
- Maria Gϋemes
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK
- Endocrinology Service, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Sofia Asim Rahman
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK
| | - Ritika R Kapoor
- Pediatric Diabetes and Endocrinology, King's College Hospital NHS Trust, Denmark Hill, London, UK
| | - Sarah Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jayne A L Houghton
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- Royal Devon and Exeter Foundation Trust, Exeter, UK
| | - Shivani Misra
- Department of Diabetes, Endocrinology and Metabolic Medicine, Faculty of Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Nick Oliver
- Department of Diabetes, Endocrinology and Metabolic Medicine, Faculty of Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Mehul Tulsidas Dattani
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK
| | - Pratik Shah
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK.
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK.
| |
Collapse
|
10
|
Benlebna M, Balas L, Bonafos B, Pessemesse L, Fouret G, Vigor C, Gaillet S, Grober J, Bernex F, Landrier JF, Kuda O, Durand T, Coudray C, Casas F, Feillet-Coudray C. Long-term intake of 9-PAHPA or 9-OAHPA modulates favorably the basal metabolism and exerts an insulin sensitizing effect in obesogenic diet-fed mice. Eur J Nutr 2020; 60:2013-2027. [PMID: 32989473 DOI: 10.1007/s00394-020-02391-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Fatty acid esters of hydroxy fatty acids (FAHFAs) are a large family of endogenous bioactive lipids. To date, most of the studied FAHFAs are branched regioisomers of Palmitic Acid Hydroxyl Stearic Acid (PAHSA) that were reported to possess anti-diabetic and anti-inflammatory activity in humans and rodents. Recently, we have demonstrated that 9-PAHPA or 9-OAHPA intake increased basal metabolism and enhanced insulin sensitivity in healthy control diet-fed mice but induced liver damage in some mice. The present work aims to explore whether a long-term intake of 9-PAHPA or 9-OAHPA may have similar effects in obesogenic diet-fed mice. METHODS C57Bl6 mice were fed with a control or high fat-high sugar (HFHS) diets for 12 weeks. The HFHS diet was supplemented or not with 9-PAHPA or 9-OAHPA. Whole-body metabolism was explored. Glucose and lipid metabolism as well as mitochondrial activity and oxidative stress status were analyzed. RESULTS As expected, the intake of HFHS diet led to obesity and lower insulin sensitivity with minor effects on liver parameters. The long-term intake of 9-PAHPA or 9-OAHPA modulated favorably the basal metabolism and improved insulin sensitivity as measured by insulin tolerance test. On the contrary to what we have reported previously in healthy mice, no marked effect for these FAHFAs was observed on liver metabolism of obese diabetic mice. CONCLUSION This study indicates that both 9-PAHPA and 9-OAHPA may have interesting insulin-sensitizing effects in obese mice with lower insulin sensitivity.
Collapse
Affiliation(s)
| | - Laurence Balas
- Institut Des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | | | - Claire Vigor
- Institut Des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Jacques Grober
- LNC UMR1231, INSERM, Univ Bourgogne Franche-Comté, Agrosup Dijon, LipSTIC LabEx, Dijon, France
| | - Florence Bernex
- INSERM, U1194, Network of Experimental Histology, BioCampus, CNRS, UMS3426, Montpellier, France
| | | | - Ondrej Kuda
- Department of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Thierry Durand
- Institut Des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | | |
Collapse
|
11
|
Prentki M, Corkey BE, Madiraju SRM. Lipid-associated metabolic signalling networks in pancreatic beta cell function. Diabetologia 2020; 63:10-20. [PMID: 31423551 DOI: 10.1007/s00125-019-04976-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/29/2019] [Indexed: 01/01/2023]
Abstract
Significant advances have been made in deciphering the mechanisms underlying fuel-stimulated insulin secretion by pancreatic beta cells. The contribution of the triggering/ATP-sensitive potassium (KATP)-dependent Ca2+ signalling and KATP-independent amplification pathways, that include anaplerosis and lipid signalling of glucose-stimulated insulin secretion (GSIS), are well established. A proposed model included a key role for a metabolic partitioning 'switch', the acetyl-CoA carboxylase (ACC)/malonyl-CoA/carnitine palmitoyltransferase-1 (CPT-1) axis, in beta cell glucose and fatty acid signalling for insulin secretion. This model has gained overwhelming support from a number of studies in recent years and is now refined through its link to the glycerolipid/NEFA cycle that provides lipid signals through its lipolysis arm. Furthermore, acetyl-CoA carboxylase may also control beta cell growth. Here we review the evidence supporting a role for the ACC/malonyl-CoA/CPT-1 axis in the control of GSIS and its particular importance under conditions of elevated fatty acids (e.g. fasting, excess nutrients, hyperlipidaemia and diabetes). We also document how it is linked to a more global lipid signalling system that includes the glycerolipid/NEFA cycle.
Collapse
Affiliation(s)
- Marc Prentki
- Department of Nutrition, University of Montreal, Montréal, QC, Canada.
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montréal, QC, Canada.
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Viger Tour, 900 rue Saint Denis, Room R08-412, Montréal, QC, H2X 0A9, Canada.
| | - Barbara E Corkey
- Evans Department of Medicine, Obesity Research Center, Boston University School of Medicine, Boston, MA, USA
| | - S R Murthy Madiraju
- Department of Nutrition, University of Montreal, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montréal, QC, Canada
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Viger Tour, 900 rue Saint Denis, Room R08-412, Montréal, QC, H2X 0A9, Canada
| |
Collapse
|
12
|
Peterson BS, Campbell JE, Ilkayeva O, Grimsrud PA, Hirschey MD, Newgard CB. Remodeling of the Acetylproteome by SIRT3 Manipulation Fails to Affect Insulin Secretion or β Cell Metabolism in the Absence of Overnutrition. Cell Rep 2019; 24:209-223.e6. [PMID: 29972782 PMCID: PMC6093627 DOI: 10.1016/j.celrep.2018.05.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/10/2018] [Accepted: 05/25/2018] [Indexed: 12/19/2022] Open
Abstract
SIRT3 is a nicotinamide adenine dinucleotide (NAD+)- dependent mitochondrial protein deacetylase purported to influence metabolism through post-translational modification of metabolic enzymes. Fuel-stimulated insulin secretion, which involves mitochondrial metabolism, could be susceptible to SIRT3-mediated effects. We used CRISPR/Cas9 technology to manipulate SIRT3 expression in β cells, resulting in widespread SIRT3-dependent changes in acetylation of key metabolic enzymes but no appreciable changes in glucose- or pyruvate-stimulated insulin secretion or metabolomic profile during glucose stimulation. Moreover, these broad changes in the SIRT3-targeted acetylproteome did not affect responses to nutritional or ER stress. We also studied mice with global SIRT3 knockout fed either standard chow (STD) or high-fat and high-sucrose (HFHS) diets. Only when chronically fed HFHS diet do SIRT3 KO animals exhibit a modest reduction in insulin secretion. We conclude that broad changes in mitochondrial protein acetylation in response to manipulation of SIRT3 are not sufficient to cause changes in islet function or metabolism. Peterson et al. report that ablation of SIRT3 in 832/13 β cells dramatically alters the mitochondrial acetylproteome but does not affect insulin secretion, metabolomic profile, or β cell survival. Moreover, SIRT3 knockout causes a modest reduction in insulin secretion in mice fed a high-fat and high-sucrose but not a standard chow diet.
Collapse
Affiliation(s)
- Brett S Peterson
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Paul A Grimsrud
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Matthew D Hirschey
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher B Newgard
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
13
|
Rosenfeld E, Ganguly A, De León DD. Congenital hyperinsulinism disorders: Genetic and clinical characteristics. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2019; 181:682-692. [PMID: 31414570 PMCID: PMC7229866 DOI: 10.1002/ajmg.c.31737] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/13/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022]
Abstract
Congenital hyperinsulinism (HI) is the most frequent cause of persistent hypoglycemia in infants and children. Delays in diagnosis and initiation of appropriate treatment contribute to a high risk of neurocognitive impairment. HI represents a heterogeneous group of disorders characterized by dysregulated insulin secretion by the pancreatic beta cells, which in utero, may result in somatic overgrowth. There are at least nine known monogenic forms of HI as well as several syndromic forms. Molecular diagnosis allows for prediction of responsiveness to medical treatment and likelihood of surgically-curable focal hyperinsulinism. Timely genetic mutation analysis has thus become standard of care. However, despite significant advances in our understanding of the molecular basis of this disorder, the number of patients without an identified genetic diagnosis remains high, suggesting that there are likely additional genetic loci that have yet to be discovered.
Collapse
Affiliation(s)
- Elizabeth Rosenfeld
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Arupa Ganguly
- Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Diva D. De León
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Boodhansingh KE, Kandasamy B, Mitteer L, Givler S, De Leon DD, Shyng S, Ganguly A, Stanley CA. Novel dominant K ATP channel mutations in infants with congenital hyperinsulinism: Validation by in vitro expression studies and in vivo carrier phenotyping. Am J Med Genet A 2019; 179:2214-2227. [PMID: 31464105 PMCID: PMC6852436 DOI: 10.1002/ajmg.a.61335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/02/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022]
Abstract
Inactivating mutations in the genes encoding the two subunits of the pancreatic beta-cell KATP channel, ABCC8 and KCNJ11, are the most common finding in children with congenital hyperinsulinism (HI). Interpreting novel missense variants in these genes is problematic, because they can be either dominant or recessive mutations, benign polymorphisms, or diabetes mutations. This report describes six novel missense variants in ABCC8 and KCNJ11 that were identified in 11 probands with congenital HI. One of the three ABCC8 mutations (p.Ala1458Thr) and all three KCNJ11 mutations were associated with responsiveness to diazoxide. Sixteen family members carried the ABCC8 or KCNJ11 mutations; only two had hypoglycemia detected at birth and four others reported symptoms of hypoglycemia. Phenotype testing of seven adult mutation carriers revealed abnormal protein-induced hypoglycemia in all; fasting hypoketotic hypoglycemia was demonstrated in four of the seven. All of six mutations were confirmed to cause dominant pathogenic defects based on in vitro expression studies in COSm6 cells demonstrating normal trafficking, but reduced responses to MgADP and diazoxide. These results indicate a combination of in vitro and in vivo phenotype tests can be used to differentiate dominant from recessive KATP channel HI mutations and personalize management of children with congenital HI.
Collapse
Affiliation(s)
- Kara E. Boodhansingh
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Balamurugan Kandasamy
- Department of Biochemistry and Molecular BiologyOregon Health & Science UniversityPortlandOregon
| | - Lauren Mitteer
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Stephanie Givler
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Diva D. De Leon
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvania
| | - Show‐Ling Shyng
- Department of Biochemistry and Molecular BiologyOregon Health & Science UniversityPortlandOregon
| | - Arupa Ganguly
- Department of GeneticsThe Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvania
| | - Charles A. Stanley
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvania
| |
Collapse
|
15
|
Galcheva S, Demirbilek H, Al-Khawaga S, Hussain K. The Genetic and Molecular Mechanisms of Congenital Hyperinsulinism. Front Endocrinol (Lausanne) 2019; 10:111. [PMID: 30873120 PMCID: PMC6401612 DOI: 10.3389/fendo.2019.00111] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
Abstract
Congenital hyperinsulinism (CHI) is a heterogenous and complex disorder in which the unregulated insulin secretion from pancreatic beta-cells leads to hyperinsulinaemic hypoglycaemia. The severity of hypoglycaemia varies depending on the underlying molecular mechanism and genetic defects. The genetic and molecular causes of CHI include defects in pivotal pathways regulating the secretion of insulin from the beta-cell. Broadly these genetic defects leading to unregulated insulin secretion can be grouped into four main categories. The first group consists of defects in the pancreatic KATP channel genes (ABCC8 and KCNJ11). The second and third categories of conditions are enzymatic defects (such as GDH, GCK, HADH) and defects in transcription factors (for example HNF1α, HNF4α) leading to changes in nutrient flux into metabolic pathways which converge on insulin secretion. Lastly, a large number of genetic syndromes are now linked to hyperinsulinaemic hypoglycaemia. As the molecular and genetic basis of CHI has expanded over the last few years, this review aims to provide an up-to-date knowledge on the genetic causes of CHI.
Collapse
Affiliation(s)
- Sonya Galcheva
- Department of Paediatrics, University Hospital St. Marina, Varna Medical University, Varna, Bulgaria
| | - Hüseyin Demirbilek
- Department of Paediatric Endocrinology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sara Al-Khawaga
- Division of Endocrinology, Department of Paediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Khalid Hussain
- Division of Endocrinology, Department of Paediatric Medicine, Sidra Medicine, Doha, Qatar
| |
Collapse
|
16
|
Shang C, Sun W, Wang C, Wang X, Zhu H, Wang L, Yang H, Wang X, Gong F, Pan H. Comparative Proteomic Analysis of Visceral Adipose Tissue in Morbidly Obese and Normal Weight Chinese Women. Int J Endocrinol 2019; 2019:2302753. [PMID: 31929791 PMCID: PMC6935805 DOI: 10.1155/2019/2302753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/26/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Visceral adipose tissue (VAT) plays a central role in the balance of energy metabolism. The objective of this study was to investigate the differentially expressed proteins in VAT between morbidly obese (BMI >35 kg/m2) and normal weight Chinese women. METHOD Nine morbidly obese women and 8 normal weight women as controls were enrolled. Abdominal VAT was excised and analyzed by label-free one-dimensional liquid chromatography tandem mass spectrometry (1D-LC-MS/MS). Differentially expressed VAT proteins were further analyzed with Gene Ontology (GO) analysis and Ingenuity Pathway Analysis (IPA). Masson's trichrome staining and CD68 immunohistochemical staining of VAT were conducted in all subjects. RESULT A total of 124 differentially expressed proteins were found with a ≥2-fold difference. Forty-one proteins were upregulated, and 83 proteins were downregulated in obese individuals. These altered VAT proteins were involved in the attenuation of the liver X receptor/retinoid X receptor (LXR/RXR) signaling pathway and the activation of the acute-phase response process. Three proteins (ACSL1, HADH, and UCHL1) were validated by western blotting using the same set of VAT samples from 6 morbidly obese and 7 normal weight patients, and the results indicated that the magnitude and direction of the protein changes were in accordance with the proteomic analysis. Masson's trichrome staining and CD68 immunohistochemical staining demonstrated that there was much more collagen fiber deposition and CD68-positive macrophages in the VAT of morbidly obese patients, suggesting extensive fiber deposition and macrophage infiltration. CONCLUSION A number of differentially expressed proteins were identified in VAT between morbidly obese and normal weight Chinese females. These differential proteins could be potential candidates in addressing the role of VAT in the development of obesity.
Collapse
Affiliation(s)
- Chen Shang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chunlin Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Xiangqing Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Xue Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
17
|
Merritt JL, Norris M, Kanungo S. Fatty acid oxidation disorders. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:473. [PMID: 30740404 DOI: 10.21037/atm.2018.10.57] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fatty acid oxidation disorders (FAODs) are inborn errors of metabolism due to disruption of either mitochondrial β-oxidation or the fatty acid transport using the carnitine transport pathway. The presentation of a FAOD will depend upon the specific disorder, but common elements may be seen, and ultimately require a similar treatment. Initial presentations of the FAODs in the neonatal period with severe symptoms include cardiomyopathy, while during infancy and childhood liver dysfunction and hypoketotic hypoglycemia are common. Episodic rhabdomyolysis is frequently the initial presentation during or after adolescence; although, these symptoms may develop at any age for most of the FAODs The treatment of all FAOD's include avoidance of fasting, aggressive treatment during illness, and supplementation of carnitine, if necessary. The long-chain FAODs differ by requiring a fat-restricted diet and supplementation of medium chain triglyceride oil and often docosahexaenoic acid (DHA)-an essential fatty acid, crucial for brain, visual, and immune functions and prevention of fat soluble vitamin deficiencies. The FAOD are a group of autosomal recessive disorders associated with significant morbidity and mortality, but early diagnosis on newborn screening (NBS) and early initiation of treatment are improving outcomes. There is a need for clinical studies including randomized, controlled, therapeutic trials to continue to evaluate current understanding and to implement future therapies.
Collapse
Affiliation(s)
- J Lawrence Merritt
- Department of Pediatrics, University of Washington, Seattle, WA, USA.,Biochemial Genetics, Seattle Children's Hospital, Seattle, WA, USA
| | - Marie Norris
- Biochemial Genetics, Seattle Children's Hospital, Seattle, WA, USA
| | - Shibani Kanungo
- Department of Pediatrics and Adolescent Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Congenital hyperinsulinism is the most common cause of persistent hypoglycemia in infants and children. Early and appropriate recognition and treatment of hypoglycemia is vital to minimize neurocognitive impairment. RECENT FINDINGS There are at least 11 known monogenic forms of hyperinsulinism and several associated syndromes. Molecular diagnosis allows for prediction of the effectiveness of diazoxide and the likelihood of focal hyperinsulinism. Inactivating mutations in the genes encoding the ATP-sensitive potassium channel (KATP hyperinsulinism) account for 60% of all identifiable mutations, including 85% of diazoxide-unresponsive cases. Syndromes or disorders associated with hyperinsulinism include Beckwith-Wiedemann syndrome, Kabuki syndrome, Turner syndrome, and congenital disorders of glycosylation. Although focal hyperinsulinism can be cured by resection of the lesion, therapeutic options for nonfocal hyperinsulinism remain limited and include diazoxide, octreotide, long-acting somatostatin analogs, and near-total pancreatectomy. Although sirolimus has been reported to improve glycemic control in infants with diazoxide-unresponsive hyperinsulinism, the extent of improvement has been limited, and significant adverse events have been reported. SUMMARY Identification of the cause of congenital hyperinsulinism helps guide management decisions. Use of therapies with limited benefit and significant potential risks should be avoided.
Collapse
|
19
|
Abstract
Pancreatic β-cells are finely tuned to secrete insulin so that plasma glucose levels are maintained within a narrow physiological range (3.5-5.5 mmol/L). Hyperinsulinaemic hypoglycaemia (HH) is the inappropriate secretion of insulin in the presence of low plasma glucose levels and leads to severe and persistent hypoglycaemia in neonates and children. Mutations in 12 different key genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A, HNF1A, HK1, PGM1 and PMM2) that are involved in the regulation of insulin secretion from pancreatic β-cells have been described to be responsible for the underlying molecular mechanisms leading to congenital HH. In HH due to the inhibitory effect of insulin on lipolysis and ketogenesis there is suppressed ketone body formation in the presence of hypoglycaemia thus leading to increased risk of hypoglycaemic brain injury. Therefore, a prompt diagnosis and immediate management of HH is essential to avoid hypoglycaemic brain injury and long-term neurological complications in children. Advances in molecular genetics, imaging techniques (18F-DOPA positron emission tomography/computed tomography scanning), medical therapy and surgical advances (laparoscopic and open pancreatectomy) have changed the management and improved the outcome of patients with HH. This review article provides an overview to the background, clinical presentation, diagnosis, molecular genetics and therapy in children with different forms of HH.
Collapse
Affiliation(s)
- Hüseyin Demirbilek
- Hacettepe University Faculty of Medicine, Department of Paediatric Endocrinology, Ankara, Turkey
| | - Khalid Hussain
- Sidra Medical and Research Center, Clinic of Paediatric Medicine, Doha, Qatar
,* Address for Correspondence: Sidra Medical and Research Center, Clinic of Paediatric Medicine, Doha, Qatar Phone: +974-30322007 E-mail:
| |
Collapse
|
20
|
Lu M, Li C. Nutrient sensing in pancreatic islets: lessons from congenital hyperinsulinism and monogenic diabetes. Ann N Y Acad Sci 2017; 1411:65-82. [PMID: 29044608 DOI: 10.1111/nyas.13448] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/05/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022]
Abstract
Pancreatic beta cells sense changes in nutrients during the cycles of fasting and feeding and release insulin accordingly to maintain glucose homeostasis. Abnormal beta cell nutrient sensing resulting from gene mutations leads to hypoglycemia or diabetes. Glucokinase (GCK) plays a key role in beta cell glucose sensing. As one form of congenital hyperinsulinism (CHI), activating mutations of GCK result in a decreased threshold for glucose-stimulated insulin secretion and hypoglycemia. In contrast, inactivating mutations of GCK result in diabetes, including a mild form (MODY2) and a severe form (permanent neonatal diabetes mellitus (PNDM)). Mutations of beta cell ion channels involved in insulin secretion regulation also alter glucose sensing. Activating or inactivating mutations of ATP-dependent potassium (KATP ) channel genes result in severe but completely opposite clinical phenotypes, including PNDM and CHI. Mutations of the other ion channels, including voltage-gated potassium channels (Kv 7.1) and voltage-gated calcium channels, also lead to abnormal glucose sensing and CHI. Furthermore, amino acids can stimulate insulin secretion in a glucose-independent manner in some forms of CHI, including activating mutations of the glutamate dehydrogenase gene, HDAH deficiency, and inactivating mutations of KATP channel genes. These genetic defects have provided insight into a better understanding of the complicated nature of beta cell fuel-sensing mechanisms.
Collapse
Affiliation(s)
- Ming Lu
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics & Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Changhong Li
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics & Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Demirbilek H, Rahman SA, Buyukyilmaz GG, Hussain K. Diagnosis and treatment of hyperinsulinaemic hypoglycaemia and its implications for paediatric endocrinology. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2017; 2017:9. [PMID: 28855921 PMCID: PMC5575922 DOI: 10.1186/s13633-017-0048-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/15/2017] [Indexed: 12/14/2022]
Abstract
Glucose homeostasis requires appropriate and synchronous coordination of metabolic events and hormonal activities to keep plasma glucose concentrations in a narrow range of 3.5–5.5 mmol/L. Insulin, the only glucose lowering hormone secreted from pancreatic β-cells, plays the key role in glucose homeostasis. Insulin release from pancreatic β-cells is mainly regulated by intracellular ATP-generating metabolic pathways. Hyperinsulinaemic hypoglycaemia (HH), the most common cause of severe and persistent hypoglycaemia in neonates and children, is the inappropriate secretion of insulin which occurs despite low plasma glucose levels leading to severe and persistent hypoketotic hypoglycaemia. Mutations in 12 different key genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A, HNF1A, HK1, PGM1 and PMM2) constitute the underlying molecular mechanisms of congenital HH. Since insulin supressess ketogenesis, the alternative energy source to the brain, a prompt diagnosis and immediate management of HH is essential to avoid irreversible hypoglycaemic brain damage in children. Advances in molecular genetics, imaging methods (18F–DOPA PET-CT), medical therapy and surgical approach (laparoscopic and open pancreatectomy) have changed the management and improved the outcome of patients with HH. This up to date review article provides a background to the diagnosis, molecular genetics, recent advances and therapeutic options in the field of HH in children.
Collapse
Affiliation(s)
- Huseyin Demirbilek
- Department of Paediatric Endocrinology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Sofia A Rahman
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Gonul Gulal Buyukyilmaz
- Department of Paediatric Endocrinology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Khalid Hussain
- Department of Paediatric Medicine Sidra Medical & Research Center, OPC, C6-337, PO Box 26999, Doha, Qatar
| |
Collapse
|
22
|
Abstract
Pancreatic islet β cells secrete insulin in response to nutrient secretagogues, like glucose, dependent on calcium influx and nutrient metabolism. One of the most intriguing qualities of β cells is their ability to use metabolism to amplify the amount of secreted insulin independent of further alterations in intracellular calcium. Many years studying this amplifying process have shaped our current understanding of β cell stimulus-secretion coupling; yet, the exact mechanisms of amplification have been elusive. Recent studies utilizing metabolomics, computational modeling, and animal models have progressed our understanding of the metabolic amplifying pathway of insulin secretion from the β cell. New approaches will be discussed which offer in-roads to a more complete model of β cell function. The development of β cell therapeutics may be aided by such a model, facilitating the targeting of aspects of the metabolic amplifying pathway which are unique to the β cell.
Collapse
Affiliation(s)
- Michael A Kalwat
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
23
|
Yen CF, Huang CY, Chan CI, Hsu CH, Wang NL, Wang TY, Lin CL, Ting WH. Successful treatment of a newborn with congenital hyperinsulinism having a novel heterozygous mutation in the ABCC8 gene using subtotal pancreatectomy. Tzu Chi Med J 2016; 28:162-165. [PMID: 28757749 PMCID: PMC5442909 DOI: 10.1016/j.tcmj.2016.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/04/2016] [Accepted: 03/15/2016] [Indexed: 12/03/2022] Open
Abstract
Congenital hyperinsulinism (CHI) is the most common cause of persistent hypoglycemia in newborns and infants. CHI is characterized by unregulated secretion of insulin from pancreatic β: cells. Here, we reported the case of a large-for-gestational-age, full-term newborn that suffered from CHI and developed severe and persistent hypoglycemia at an early stage of life. The infant was nearly unresponsive to medical treatment, which included continuous intravenous glucagon infusion, oral diazoxide, and nifedipine. After medical treatment had failed, an 18-fluoro L-3,4-dihydroxyphenylalanine positron emission tomography scan of the patient showed a focal lesion at the neck of the pancreas. The patient received subtotal pancreatectomy, and shortly after the procedure, the patient's blood sugar returned to the normal range. The patient was confirmed to have a novel heterozygous mutation at position c.2475+1G>A of the ABCC8 gene. This is the first report of a focal form of CHI in a patient in Taiwan, which had preoperatively been confirmed using 18-fluoro L-3,4-dihydroxyphenylalanine positron emission tomography.
Collapse
Affiliation(s)
- Chi-Feng Yen
- Department of Pediatrics, MacKay Children Hospital, Taipei, Taiwan
| | - Chi-Yu Huang
- Department of Pediatrics, MacKay Children Hospital, Taipei, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Chon-In Chan
- Department of Pediatrics, MacKay Children Hospital, Taipei, Taiwan
| | - Chiung-Hsing Hsu
- Department of Pediatrics, MacKay Children Hospital, Taipei, Taiwan
| | - Nien-Lu Wang
- Department of Pediatric Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tao-Yeuan Wang
- Department of Pathology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chiung-Ling Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wei-Hsin Ting
- Department of Pediatrics, MacKay Children Hospital, Taipei, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| |
Collapse
|
24
|
Molven A, Hollister-Lock J, Hu J, Martinez R, Njølstad PR, Liew CW, Weir G, Kulkarni RN. The Hypoglycemic Phenotype Is Islet Cell-Autonomous in Short-Chain Hydroxyacyl-CoA Dehydrogenase-Deficient Mice. Diabetes 2016; 65:1672-8. [PMID: 26953163 PMCID: PMC4878426 DOI: 10.2337/db15-1475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/04/2016] [Indexed: 11/30/2022]
Abstract
Congenital hyperinsulinism of infancy (CHI) can be caused by inactivating mutations in the gene encoding short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD), a ubiquitously expressed enzyme involved in fatty acid oxidation. The hypersecretion of insulin may be explained by a loss of interaction between SCHAD and glutamate dehydrogenase in the pancreatic β-cells. However, there is also a general accumulation of metabolites specific for the enzymatic defect in affected individuals. It remains to be explored whether hypoglycemia in SCHAD CHI can be uncoupled from the systemic effect on fatty acid oxidation. We therefore transplanted islets from global SCHAD knockout (SCHADKO) mice into mice with streptozotocin-induced diabetes. After transplantation, SCHADKO islet recipients exhibited significantly lower random and fasting blood glucose compared with mice transplanted with normal islets or nondiabetic, nontransplanted controls. Furthermore, intraperitoneal glucose tolerance was improved in animals receiving SCHADKO islets compared with those receiving normal islets. Graft β-cell proliferation and apoptosis rates were similar in the two transplantation groups. We conclude that hypoglycemia in SCHAD-CHI is islet cell-autonomous.
Collapse
Affiliation(s)
- Anders Molven
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Jennifer Hollister-Lock
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Jiang Hu
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Rachael Martinez
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Pål R Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Chong Wee Liew
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL
| | - Gordon Weir
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA Harvard Stem Cell Institute, Boston, MA
| |
Collapse
|
25
|
Abstract
CONTEXT Congenital hyperinsulinism (HI) is the most common cause of hypoglycemia in children. The risk of permanent brain injury in infants with HI continues to be as high as 25-50% due to delays in diagnosis and inadequate treatment. Congenital HI has been described since the birth of the JCEM under various terms, including "idiopathic hypoglycemia of infancy," "leucine-sensitive hypoglycemia," or "nesidioblastosis." EVIDENCE ACQUISITION In the past 20 years, it has become apparent that HI is caused by genetic defects in the pathways that regulate pancreatic β-cell insulin secretion. EVIDENCE SYNTHESIS There are now 11 genes associated with monogenic forms of HI (ABCC8, KCNJ11, GLUD1, GCK, HADH1, UCP2, MCT1, HNF4A, HNF1A, HK1, PGM1), as well as several syndromic genetic forms of HI (eg, Beckwith-Wiedemann, Kabuki, and Turner syndromes). HI is also the cause of hypoglycemia in transitional neonatal hypoglycemia and in persistent hypoglycemia in various groups of high-risk neonates (such as birth asphyxia, small for gestational age birthweight, infant of diabetic mother). Management of HI is one of the most difficult problems faced by pediatric endocrinologists and frequently requires difficult choices, such as near-total pancreatectomy and/or highly intensive care with continuous tube feedings. For 50 years, diazoxide, a KATP channel agonist, has been the primary drug for infants with HI; however, it is ineffective in most cases with mutations of ABCC8 or KCNJ11, which constitute the majority of infants with monogenic HI. CONCLUSIONS Genetic mutation testing has become standard of care for infants with HI and has proven to be useful not only in projecting prognosis and family counseling, but also in diagnosing infants with surgically curable focal HI lesions. (18)F-fluoro-L-dihydroxyphenylalanine ((18)F-DOPA) PET scans have been found to be highly accurate for localizing such focal lesions preoperatively. New drugs under investigation provide hope for improving the outcomes of children with HI.
Collapse
Affiliation(s)
- Charles A Stanley
- Division of Endocrinology, The Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
26
|
Nessa A, Rahman SA, Hussain K. Hyperinsulinemic Hypoglycemia - The Molecular Mechanisms. Front Endocrinol (Lausanne) 2016; 7:29. [PMID: 27065949 PMCID: PMC4815176 DOI: 10.3389/fendo.2016.00029] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/21/2016] [Indexed: 12/14/2022] Open
Abstract
Under normal physiological conditions, pancreatic β-cells secrete insulin to maintain fasting blood glucose levels in the range 3.5-5.5 mmol/L. In hyperinsulinemic hypoglycemia (HH), this precise regulation of insulin secretion is perturbed so that insulin continues to be secreted in the presence of hypoglycemia. HH may be due to genetic causes (congenital) or secondary to certain risk factors. The molecular mechanisms leading to HH involve defects in the key genes regulating insulin secretion from the β-cells. At this moment, in time genetic abnormalities in nine genes (ABCC8, KCNJ11, GCK, SCHAD, GLUD1, SLC16A1, HNF1A, HNF4A, and UCP2) have been described that lead to the congenital forms of HH. Perinatal stress, intrauterine growth retardation, maternal diabetes mellitus, and a large number of developmental syndromes are also associated with HH in the neonatal period. In older children and adult's insulinoma, non-insulinoma pancreatogenous hypoglycemia syndrome and post bariatric surgery are recognized causes of HH. This review article will focus mainly on describing the molecular mechanisms that lead to unregulated insulin secretion.
Collapse
Affiliation(s)
- Azizun Nessa
- Genetics and Genomic Medicine Programme, Department of Paediatric Endocrinology, UCL Institute of Child Health, Great Ormond Street Hospital for Children NHS, London, UK
| | - Sofia A. Rahman
- Genetics and Genomic Medicine Programme, Department of Paediatric Endocrinology, UCL Institute of Child Health, Great Ormond Street Hospital for Children NHS, London, UK
| | - Khalid Hussain
- Genetics and Genomic Medicine Programme, Department of Paediatric Endocrinology, UCL Institute of Child Health, Great Ormond Street Hospital for Children NHS, London, UK
- *Correspondence: Khalid Hussain,
| |
Collapse
|
27
|
Senniappan S, Sadeghizadeh A, Flanagan SE, Ellard S, Hashemipour M, Hosseinzadeh M, Salehi M, Hussain K. Genotype and phenotype correlations in Iranian patients with hyperinsulinaemic hypoglycaemia. BMC Res Notes 2015; 8:350. [PMID: 26268944 PMCID: PMC4535259 DOI: 10.1186/s13104-015-1319-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 08/04/2015] [Indexed: 01/19/2023] Open
Abstract
Background Hyperinsulinaemic hypoglycaemia (HH) is a group of clinically and genetically heterogeneous disorders characterized by unregulated insulin secretion. Abnormalities in nine different genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, HNF4A, UCP2 and HNF1A) have been reported in HH, the most common being ABCC8 and KCNJ11. We describe the genetic aetiology and phenotype of Iranian patients with HH. Methods Retrospective clinical, biochemical and genetic information was collected on 23 patients with biochemically confirmed HH. Mutation analysis was carried out for the ATP-sensitive potassium (KATP) channel genes (ABCC8 and KCNJ11), GLUD1, GCK, HADH and HNF4A. Results 78 % of the patients were identified to have a genetic cause for HH. 48 % of patients had mutation in HADH, whilst ABCC8/KCNJ11 mutations were identified in 30 % of patients. Among the diazoxide-responsive patients (18/23), mutations were identified in 72 %. These include two novel homozygous ABCC8 mutations. Of the five patients with diazoxide-unresponsive HH, three had homozygous ABCC8 mutation, one had heterozygous ABCC8 mutation inherited from an unaffected father and one had homozygous KCNJ11 mutation. 52 % of children in our cohort were born to consanguineous parents. Patients with ABCC8/KCNJ11 mutations were noted to be significantly heavier than those with HADH mutation (p = 0.002). Our results revealed neurodevelopmental deficits in 30 % and epilepsy in 52 % of all patients. Conclusions To the best of our knowledge, this is the first study of its kind in Iran. We found disease-causing mutations in 78 % of HH patients. The predominance of HADH mutation might be due to a high incidence of consanguineous marriage in this population. Further research involving a larger cohort of HH patients is required in Iranian population.
Collapse
Affiliation(s)
| | - Atefeh Sadeghizadeh
- Department of Pediatrics, Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sarah E Flanagan
- Institute Biomedical and Clinical Science, University of Exeter Medical School, Exeter, EX2 5DW, UK.
| | - Sian Ellard
- Institute Biomedical and Clinical Science, University of Exeter Medical School, Exeter, EX2 5DW, UK.
| | - Mahin Hashemipour
- Endocrinology and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Majid Hosseinzadeh
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mansour Salehi
- Pediatric Inherited Disease Research Center (PIDRC), Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Khalid Hussain
- Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health, University College London, London, UK. .,Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK.
| |
Collapse
|
28
|
Roženková K, Güemes M, Shah P, Hussain K. The Diagnosis and Management of Hyperinsulinaemic Hypoglycaemia. J Clin Res Pediatr Endocrinol 2015; 7:86-97. [PMID: 26316429 PMCID: PMC4563192 DOI: 10.4274/jcrpe.1891] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Insulin secretion from pancreatic β-cells is tightly regulated to keep fasting blood glucose concentrations within the normal range (3.5-5.5 mmol/L). Hyperinsulinaemic hypoglycaemia (HH) is a heterozygous condition in which insulin secretion becomes unregulated and its production persists despite low blood glucose levels. It is the most common cause of severe and persistent hypoglycaemia in neonates and children. The most severe and permanent forms are due to congenital hyperinsulinism (CHI). Recent advances in genetics have linked CHI to mutations in 9 genes that play a key role in regulating insulin secretion (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A and HNF1A). Histologically, CHI can be divided into 3 types; diffuse, focal and atypical. Given the biochemical nature of HH (non-ketotic), a delay in the diagnosis and management can result in irreversible brain damage. Therefore, it is essential to diagnose and treat HH promptly. Advances in molecular genetics, imaging methods (18F-DOPA PET-CT), medical therapy and surgical approach (laparoscopic surgery) have completely changed the management and improved the outcome of these children. This review provides an overview of the genetic and molecular mechanisms leading to development of HH in children. The article summarizes the current diagnostic methods and management strategies for the different types of CHI.
Collapse
Affiliation(s)
| | | | | | - Khalid Hussain
- Great Ormond Street Hospital for Children, UCL Institute of Child Health, Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, London, UK Phone: +44 2079052128 E-mail:
| |
Collapse
|
29
|
Çamtosun E, Flanagan SE, Ellard S, Şıklar Z, Hussain K, Kocaay P, Berberoğlu M. A Deep Intronic HADH Splicing Mutation (c.636+471G>T) in a Congenital Hyperinsulinemic Hypoglycemia Case: Long Term Clinical Course. J Clin Res Pediatr Endocrinol 2015; 7:144-7. [PMID: 26316438 PMCID: PMC4563187 DOI: 10.4274/jcrpe.1963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Unlike other congenital fatty acid oxidation defects, short-chain L-3-hydroxyacyl-CoA (SCHAD, HADH) deficiency is characterised by hypoglycemia with hyperinsulinism in the neonatal or infancy periods. The long-term and detailed clinical progression of the disease is largely unknown with almost 40 patients reported and only a few patients described clinically. We present clinical and laboratory findings together with the long-term clinical course of a case with a deep intronic HADH splicing mutation (c.636+471G>T) causing neonatal-onset hyperinsulinemic hypoglycemia with mild progression.
Collapse
Affiliation(s)
- Emine Çamtosun
- Ankara University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Sarah E. Flanagan
- Exeter University Faculty of Medicine, Institute of Biomedical and Clinical Science, Exeter, UK
| | - Sian Ellard
- Exeter University Faculty of Medicine, Institute of Biomedical and Clinical Science, Exeter, UK
| | - Zeynep Şıklar
- Ankara University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey Phone: +90 312 595 66 35 E-mail:
| | - Khalid Hussain
- UCL Institute of Child Health, Genetics and Epigenetics in Health and Disease Genetics and Genomic Medicine Programme, London, UK
,
Great Ormond Street Hospital for Children, Clinic of Pediatric Endocrinology, London, UK
| | - Pınar Kocaay
- Ankara University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Merih Berberoğlu
- Ankara University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| |
Collapse
|
30
|
Weber S, Salabei JK, Möller G, Kremmer E, Bhatnagar A, Adamski J, Barski OA. Aldo-keto Reductase 1B15 (AKR1B15): a mitochondrial human aldo-keto reductase with activity toward steroids and 3-keto-acyl-CoA conjugates. J Biol Chem 2015; 290:6531-45. [PMID: 25577493 DOI: 10.1074/jbc.m114.610121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldo-keto reductases (AKRs) comprise a superfamily of proteins involved in the reduction and oxidation of biogenic and xenobiotic carbonyls. In humans, at least 15 AKR superfamily members have been identified so far. One of these is a newly identified gene locus, AKR1B15, which clusters on chromosome 7 with the other human AKR1B subfamily members (i.e. AKR1B1 and AKR1B10). We show that alternative splicing of the AKR1B15 gene transcript gives rise to two protein isoforms with different N termini: AKR1B15.1 is a 316-amino acid protein with 91% amino acid identity to AKR1B10; AKR1B15.2 has a prolonged N terminus and consists of 344 amino acid residues. The two gene products differ in their expression level, subcellular localization, and activity. In contrast with other AKR enzymes, which are mostly cytosolic, AKR1B15.1 co-localizes with the mitochondria. Kinetic studies show that AKR1B15.1 is predominantly a reductive enzyme that catalyzes the reduction of androgens and estrogens with high positional selectivity (17β-hydroxysteroid dehydrogenase activity) as well as 3-keto-acyl-CoA conjugates and exhibits strong cofactor selectivity toward NADP(H). In accordance with its substrate spectrum, the enzyme is expressed at the highest levels in steroid-sensitive tissues, namely placenta, testis, and adipose tissue. Placental and adipose expression could be reproduced in the BeWo and SGBS cell lines, respectively. In contrast, AKR1B15.2 localizes to the cytosol and displays no enzymatic activity with the substrates tested. Collectively, these results demonstrate the existence of a novel catalytically active AKR, which is associated with mitochondria and expressed mainly in steroid-sensitive tissues.
Collapse
Affiliation(s)
- Susanne Weber
- From the Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, 85764 Neuherberg, Germany
| | - Joshua K Salabei
- the Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, Kentucky 40202
| | - Gabriele Möller
- From the Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, 85764 Neuherberg, Germany
| | - Elisabeth Kremmer
- the Institute of Molecular Immunology, German Research Center for Environmental Health, Helmholtz Zentrum Muenchen, 81377 Muenchen, Germany
| | - Aruni Bhatnagar
- the Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, Kentucky 40202
| | - Jerzy Adamski
- From the Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, 85764 Neuherberg, Germany, the Lehrstuhl für Experimentelle Genetik, Technische Universitaet Muenchen, 85356 Freising-Weihenstephan, Germany, and the German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Oleg A Barski
- the Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, Kentucky 40202,
| |
Collapse
|
31
|
Chandran S, Yap F, Hussain K. Molecular mechanisms of protein induced hyperinsulinaemic hypoglycaemia. World J Diabetes 2014; 5:666-677. [PMID: 25317244 PMCID: PMC4138590 DOI: 10.4239/wjd.v5.i5.666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/23/2014] [Accepted: 05/29/2014] [Indexed: 02/05/2023] Open
Abstract
The interplay between glucose metabolism and that of the two other primary nutrient classes, amino acids and fatty acids is critical for regulated insulin secretion. Mitochondrial metabolism of glucose, amino acid and fatty acids generates metabolic coupling factors (such as ATP, NADPH, glutamate, long chain acyl-CoA and diacylglycerol) which trigger insulin secretion. The observation of protein induced hypoglycaemia in patients with mutations in GLUD1 gene, encoding the enzyme glutamate dehydrogenase (GDH) and HADH gene, encoding for the enzyme short-chain 3-hydroxyacyl-CoA dehydrogenase has provided new mechanistic insights into the regulation of insulin secretion by amino acid and fatty acid metabolism. Metabolic signals arising from amino acid and fatty acid metabolism converge on the enzyme GDH which integrates both signals from both pathways and controls insulin secretion. Hence GDH seems to play a pivotal role in regulating both amino acid and fatty acid metabolism.
Collapse
|
32
|
Xu Y, Li H, Jin YH, Fan J, Sun F. Dimerization interface of 3-hydroxyacyl-CoA dehydrogenase tunes the formation of its catalytic intermediate. PLoS One 2014; 9:e95965. [PMID: 24763278 PMCID: PMC3999109 DOI: 10.1371/journal.pone.0095965] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/02/2014] [Indexed: 12/13/2022] Open
Abstract
3-hydroxyacyl-CoA dehydrogenase (HAD, EC 1.1.1.35) is a homodimeric enzyme localized in the mitochondrial matrix, which catalyzes the third step in fatty acid β-oxidation. The crystal structures of human HAD and subsequent complexes with cofactor/substrate enabled better understanding of HAD catalytic mechanism. However, numerous human diseases were found related to mutations at HAD dimerization interface that is away from the catalytic pocket. The role of HAD dimerization in its catalytic activity needs to be elucidated. Here, we solved the crystal structure of Caenorhabditis elegans HAD (cHAD) that is highly conserved to human HAD. Even though the cHAD mutants (R204A, Y209A and R204A/Y209A) with attenuated interactions on the dimerization interface still maintain a dimerization form, their enzymatic activities significantly decrease compared to that of the wild type. Such reduced activities are in consistency with the reduced ratios of the catalytic intermediate formation. Further molecular dynamics simulations results reveal that the alteration of the dimerization interface will increase the fluctuation of a distal region (a.a. 60–80) that plays an important role in the substrate binding. The increased fluctuation decreases the stability of the catalytic intermediate formation, and therefore the enzymatic activity is attenuated. Our study reveals the molecular mechanism about the essential role of the HAD dimerization interface in its catalytic activity via allosteric effects.
Collapse
Affiliation(s)
- Yingzhi Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - He Li
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, Jilin University, Changchun, China
| | - Ying-Hua Jin
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, Jilin University, Changchun, China
| | - Jun Fan
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China
- * E-mail: (FS); (JF)
| | - Fei Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (FS); (JF)
| |
Collapse
|
33
|
Gillingham MB, Harding CO, Schoeller DA, Matern D, Purnell JQ. Altered body composition and energy expenditure but normal glucose tolerance among humans with a long-chain fatty acid oxidation disorder. Am J Physiol Endocrinol Metab 2013; 305:E1299-308. [PMID: 24064340 PMCID: PMC3840216 DOI: 10.1152/ajpendo.00225.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of insulin resistance has been associated with impaired mitochondrial fatty acid oxidation (FAO), but the exact relationship between FAO capacity and glucose metabolism continues to be debated. To address this controversy, patients with long-chain 3-hydroxy acyl-CoA dehydrogenase (LCHAD) deficiency underwent an oral glucose tolerance test (OGTT) and measurement of energy expenditure, body composition, and plasma metabolites. Compared with controls, patients with LCHAD deficiency had a trend toward higher total body fat and extramyocellular lipid deposition but similar levels of intramyocelluar and intrahepatic lipids. Resting energy expenditure was similar between the groups, but respiratory quotient was higher and total energy expenditure was lower in LCHAD-deficient patients compared with controls. High-molecular-weight (HMW) adiponectin levels were lower and plasma long-chain acylcarnitines were higher among LCHAD-deficient patients. Fasting and post-OGTT levels of glucose, insulin, and ghrelin, along with estimates of insulin sensitivity, were the same between the groups. Despite decreased capacity for FAO, lower total energy expenditure and plasma HMW adiponectin, and increased plasma acylcarnitines, LCHAD-deficient patients exhibited normal glucose tolerance. These data suggest that inhibition of the FAO pathway in humans is not sufficient to induce insulin resistance.
Collapse
Affiliation(s)
- Melanie B Gillingham
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | | | | | | | | |
Collapse
|
34
|
Henquin JC, Sempoux C, Marchandise J, Godecharles S, Guiot Y, Nenquin M, Rahier J. Congenital hyperinsulinism caused by hexokinase I expression or glucokinase-activating mutation in a subset of β-cells. Diabetes 2013; 62:1689-96. [PMID: 23274908 PMCID: PMC3636634 DOI: 10.2337/db12-1414] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Congenital hyperinsulinism causes persistent hypoglycemia in neonates and infants. Most often, uncontrolled insulin secretion (IS) results from a lack of functional K(ATP) channels in all β-cells or only in β-cells within a resectable focal lesion. In more rare cases, without K(ATP) channel mutations, hyperfunctional islets are confined within few lobules, whereas hypofunctional islets are present throughout the pancreas. They also can be cured by selective partial pancreatectomy; however, unlike those with a K(ATP) focal lesion, they show clinical sensitivity to diazoxide. Here, we characterized in vitro IS by fragments of pathological and adjacent normal pancreas from six such cases. Responses of normal pancreas were unremarkable. In pathological region, IS was elevated at 1 mmol/L and was further increased by 15 mmol/L glucose. Diazoxide suppressed IS and tolbutamide antagonized the inhibition. The most conspicuous anomaly was a large stimulation of IS by 1 mmol/L glucose. In five of six cases, immunohistochemistry revealed undue presence of low-K(m) hexokinase-I in β-cells of hyperfunctional islets only. In one case, an activating mutation of glucokinase (I211F) was found in pathological islets only. Both abnormalities, attributed to somatic genetic events, may account for inappropriate IS at low glucose levels by a subset of β-cells. They represent a novel cause of focal congenital hyperinsulinism.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, University of Louvain, Faculty of Medicine, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
35
|
Khoriati D, Arya VB, Flanagan SE, Ellard S, Hussain K. Prematurity, macrosomia, hyperinsulinaemic hypoglycaemia and a dominant ABCC8 gene mutation. BMJ Case Rep 2013; 2013:bcr-2013-008767. [PMID: 23563683 DOI: 10.1136/bcr-2013-008767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Congenital hyperinsulinism (CHI) is a rare cause of hyperinsulinaemic hypoglycaemia (HH) and is due to an inappropriate secretion of insulin by the pancreatic β-cells. Genetic defects in key genes lead to dysregulated insulin secretion and consequent hypoglycaemia. Mutations in the genes ABCC8/KCNJ11, encoding SUR1/Kir6.2 components of the K(ATP) channels, respectively, are the commonest cause of CHI. A 33(+6) week gestation male infant weighing 3.38 kg (above 90th centile) presented with severe neonatal symptomatic hypoglycaemia. He required a glucose infusion rate of 20 mg/kg/min to maintain normoglycaemia (blood glucose levels at >3.5 mmol/l). Investigations established the diagnosis of HH (blood glucose 2.2 mmol/l with simultaneous insulin of 97.4 mU/l). Subsequent molecular genetic studies identified a heterozygous pathogenic ABCC8 missense mutation, p.R1353H (c.4058G>A), inherited from an unaffected mother. His HH was diazoxide responsive and resolved within 3 months of life.
Collapse
Affiliation(s)
- Dana Khoriati
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | | | | | | |
Collapse
|
36
|
Kapoor RR, Flanagan SE, Arya VB, Shield JP, Ellard S, Hussain K. Clinical and molecular characterisation of 300 patients with congenital hyperinsulinism. Eur J Endocrinol 2013; 168:557-64. [PMID: 23345197 PMCID: PMC3599069 DOI: 10.1530/eje-12-0673] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Congenital hyperinsulinism (CHI) is a clinically heterogeneous condition. Mutations in eight genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, HNF4A and HNF1A) are known to cause CHI. AIM To characterise the clinical and molecular aspects of a large cohort of patients with CHI. METHODOLOGY Three hundred patients were recruited and clinical information was collected before genotyping. ABCC8 and KCNJ11 genes were analysed in all patients. Mutations in GLUD1, HADH, GCK and HNF4A genes were sought in patients with diazoxide-responsive CHI with hyperammonaemia (GLUD1), raised 3-hydroxybutyrylcarnitine and/or consanguinity (HADH), positive family history (GCK) or when CHI was diagnosed within the first week of life (HNF4A). RESULTS Mutations were identified in 136/300 patients (45.3%). Mutations in ABCC8/KCNJ11 were the commonest genetic cause identified (n=109, 36.3%). Among diazoxide-unresponsive patients (n=105), mutations in ABCC8/KCNJ11 were identified in 92 (87.6%) patients, of whom 63 patients had recessively inherited mutations while four patients had dominantly inherited mutations. A paternal mutation in the ABCC8/KCNJ11 genes was identified in 23 diazoxide-unresponsive patients, of whom six had diffuse disease. Among the diazoxide-responsive patients (n=183), mutations were identified in 41 patients (22.4%). These include mutations in ABCC8/KCNJ11 (n=15), HNF4A (n=7), GLUD1 (n=16) and HADH (n=3). CONCLUSIONS A genetic diagnosis was made for 45.3% of patients in this large series. Mutations in the ABCC8 gene were the commonest identifiable cause. The vast majority of patients with diazoxide-responsive CHI (77.6%) had no identifiable mutations, suggesting other genetic and/or environmental mechanisms.
Collapse
Affiliation(s)
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical SchoolExeter, EX2 5DWUK
| | | | - Julian P Shield
- Department of Child Health, Bristol Royal Hospital for ChildrenBristol, BS2 8BJUK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical SchoolExeter, EX2 5DWUK
| | - Khalid Hussain
- (Correspondence should be addressed to K Hussain who is now at Molecular Genetics Unit, Developmental Endocrinology Research Group, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK; )
| |
Collapse
|
37
|
Lord K, De León DD. Monogenic hyperinsulinemic hypoglycemia: current insights into the pathogenesis and management. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2013; 2013:3. [PMID: 23384201 PMCID: PMC3573904 DOI: 10.1186/1687-9856-2013-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/01/2013] [Indexed: 11/10/2022]
Abstract
Hyperinsulinism (HI) is the leading cause of persistent hypoglycemia in children, which if unrecognized may lead to development delays and permanent neurologic damage. Prompt recognition and appropriate treatment of HI are essential to avoid these sequelae. Major advances have been made over the past two decades in understanding the molecular basis of hyperinsulinism and mutations in nine genes are currently known to cause HI. Inactivating KATP channel mutations cause the most common and severe type of HI, which occurs in both a focal and a diffuse form. Activating mutations of glutamate dehydrogenase (GDH) lead to hyperinsulinism/hyperammonemia syndrome, while activating mutations of glucokinase (GK), the “glucose sensor” of the beta cell, causes hyperinsulinism with a variable clinical phenotype. More recently identified genetic causes include mutations in the genes encoding short-chain 3-hydroxyacyl-CoA (SCHAD), uncoupling protein 2 (UCP2), hepatocyte nuclear factor 4-alpha (HNF-4α), hepatocyte nuclear factor 1-alpha (HNF-1α), and monocarboyxlate transporter 1 (MCT-1), which results in a very rare form of HI triggered by exercise. For a timely diagnosis, a critical sample and a glucagon stimulation test should be done when plasma glucose is < 50 mg/dL. A failure to respond to a trial of diazoxide, a KATP channel agonist, suggests a KATP defect, which frequently requires pancreatectomy. Surgery is palliative for children with diffuse KATPHI, but children with focal KATPHI are cured with a limited pancreatectomy. Therefore, distinguishing between diffuse and focal disease and localizing the focal lesion in the pancreas are crucial aspects of HI management. Since 2003, 18 F-DOPA PET scans have been used to differentiate diffuse and focal disease and localize focal lesions with higher sensitivity and specificity than more invasive interventional radiology techniques. Hyperinsulinism remains a challenging disorder, but recent advances in the understanding of its genetic basis and breakthroughs in management should lead to improved outcomes for these children.
Collapse
Affiliation(s)
- Katherine Lord
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center Room 802A, Philadelphia, PA, 19104, USA.
| | | |
Collapse
|
38
|
Snider KE, Becker S, Boyajian L, Shyng SL, MacMullen C, Hughes N, Ganapathy K, Bhatti T, Stanley CA, Ganguly A. Genotype and phenotype correlations in 417 children with congenital hyperinsulinism. J Clin Endocrinol Metab 2013; 98:E355-63. [PMID: 23275527 PMCID: PMC3565119 DOI: 10.1210/jc.2012-2169] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CONTEXT Hypoglycemia due to congenital hyperinsulinism (HI) is caused by mutations in 9 genes. OBJECTIVE Our objective was to correlate genotype with phenotype in 417 children with HI. METHODS Mutation analysis was carried out for the ATP-sensitive potassium (KATP) channel genes (ABCC8 and KCNJ11), GLUD1, and GCK with supplemental screening of rarer genes, HADH, UCP2, HNF4A, HNF1A, and SLC16A1. RESULTS Mutations were identified in 91% (272 of 298) of diazoxide-unresponsive probands (ABCC8, KCNJ11, and GCK), and in 47% (56 of 118) of diazoxide-responsive probands (ABCC8, KCNJ11, GLUD1, HADH, UCP2, HNF4A, and HNF1A). In diazoxide-unresponsive diffuse probands, 89% (109 of 122) carried KATP mutations; 2% (2 of 122) had GCK mutations. In mutation-positive diazoxide-responsive probands, 42% were GLUD1, 41% were dominant KATP mutations, and 16% were in rare genes (HADH, UCP2, HNF4A, and HNF1A). Of the 183 unique KATP mutations, 70% were novel at the time of identification. Focal HI accounted for 53% (149 of 282) of diazoxide-unresponsive probands; monoallelic recessive KATP mutations were detectable in 97% (145 of 149) of these cases (maternal transmission excluded in all cases tested). The presence of a monoallelic recessive KATP mutation predicted focal HI with 97% sensitivity and 90% specificity. CONCLUSIONS Genotype to phenotype correlations were most successful in children with GLUD1, GCK, and recessive KATP mutations. Correlations were complicated by the high frequency of novel missense KATP mutations that were uncharacterized, because such defects might be either recessive or dominant and, if dominant, be either responsive or unresponsive to diazoxide. Accurate and timely prediction of phenotype based on genotype is critical to limit exposure to persistent hypoglycemia in infants and children with congenital HI.
Collapse
Affiliation(s)
- K E Snider
- Department of Genetics, University of Pennsylvania, 415 Anatomy Chemistry Building, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Palladino AA, Chen J, Kallish S, Stanley CA, Bennett MJ. Measurement of tissue acyl-CoAs using flow-injection tandem mass spectrometry: acyl-CoA profiles in short-chain fatty acid oxidation defects. Mol Genet Metab 2012; 107:679-83. [PMID: 23117082 PMCID: PMC3600647 DOI: 10.1016/j.ymgme.2012.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 10/10/2012] [Accepted: 10/10/2012] [Indexed: 12/30/2022]
Abstract
The primary accumulating metabolites in fatty acid oxidation defects are intramitochondrial acyl-CoAs. Typically, secondary metabolites such as acylcarnitines, acylglycines and dicarboxylic acids are measured to study these disorders. Methods have not been adapted for tissue acyl-CoA measurement in defects with primarily acyl-CoA accumulation. Our objective was to develop a method to measure fatty acyl-CoA species that are present in tissues of mice with fatty acid oxidation defects using flow-injection tandem mass spectrometry. Following the addition of internal standards of [(13)C(2)] acetyl-CoA, [(13)C(8)] octanoyl-CoA, and [C(17)] heptadecanoic CoA, acyl-CoA's are extracted from tissue samples and are injected directly into the mass spectrometer. Data is acquired using a 506.9 neutral loss scan and multiple reaction-monitoring (MRM). This method can identify all long, medium and short-chain acyl-CoA species in wild type mouse liver including predicted 3-hydroxyacyl-CoA species. We validated the method using liver of the short-chain-acyl-CoA dehydrogenase (SCAD) knock-out mice. As expected, there is a significant increase in [C(4)] butyryl-CoA species in the SCAD -/- mouse liver compared to wild type. We then tested the assay in liver from the short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) deficient mice to determine the profile of acyl-CoA accumulation in this less predictable model. There was more modest accumulation of medium chain species including 3-hydroxyacyl-CoA's consistent with the known chain-length specificity of the SCHAD enzyme.
Collapse
Affiliation(s)
- Andrew A. Palladino
- Division of Endocrinology, Department of Pediatrics, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jie Chen
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U74SA
| | - Staci Kallish
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U74SA
| | - Charles A. Stanley
- Division of Endocrinology, Department of Pediatrics, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J. Bennett
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U74SA
- Corresponding author at: Department of Pathology & Laboratory Medicine, 5NW58, Children’s Hospital of Philadelphia, 34th Street & Civic Center Blvd, Philadelphia, PA 19104, USA. (M.J. Bennett)
| |
Collapse
|
40
|
Mohamed Z, Arya VB, Hussain K. Hyperinsulinaemic hypoglycaemia:genetic mechanisms, diagnosis and management. J Clin Res Pediatr Endocrinol 2012; 4:169-81. [PMID: 23032149 PMCID: PMC3537282 DOI: 10.4274/jcrpe.821] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Hyperinsulinaemic hypoglycaemia (HH) is characterized by unregulated insulin secretion from pancreatic β-cells. Untreated hypoglycaemia in infants can lead to seizures, developmental delay, and subsequent permanent brain injury. Early identification and meticulous managementof these patients is vital to prevent neurological insult. Mutations in eight different genes (ABCC8, KCNJ11, GLUD1, CGK, HADH, SLC16A1, HNF4A and UCP2) have been identified to date in patients with congenital forms of hyperinsulinism (CHI). The most severe forms of CHI are due to mutations in ABCC8 and KCJN11, which encode the two components of pancreatic β-cell ATP-sensitive potassium channel. Recent advancement in understanding the genetic aetiology, histological characterisation into focal and diffuse variety combined with improved imaging (such as fluorine 18 L-3, 4-dihydroxyphenylalanine positron emission tomography 18F-DOPA-PET scanning) and laparoscopic surgical techniques have greatly improved management. In adults, HH can be due to an insulinoma, pancreatogenous hypoglycaemic syndrome, post gastric-bypass surgery for morbid obesity as well as to mutations in insulin receptor gene. This review provides an overview of the molecular basis of CHI and outlines the clinical presentation, diagnostic criteria, and management of these patients.
Collapse
Affiliation(s)
- Zainaba Mohamed
- University College London, Institue of Child Health, Developmental Endocrinology Research Clinical, Molecular Genetics Unit, London, United Kingdom
| | - Ved Bhushan Arya
- University College London, Institue of Child Health, Developmental Endocrinology Research Clinical, Molecular Genetics Unit, London, United Kingdom
| | - Khalid Hussain
- University College London, Institue of Child Health, Developmental Endocrinology Research Clinical, Molecular Genetics Unit, London, United Kingdom
,* Address for Correspondence: Khalid Hussain MD, University College London, Institue of Child Health, Developmental Endocrinology Research Clinical, Molecular Genetics Unit, London, United Kingdom Phone: +44 207 905 2128 E-mail:
| |
Collapse
|
41
|
Senniappan S, Shanti B, James C, Hussain K. Hyperinsulinaemic hypoglycaemia: genetic mechanisms, diagnosis and management. J Inherit Metab Dis 2012; 35:589-601. [PMID: 22231386 DOI: 10.1007/s10545-011-9441-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/06/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
Abstract
Hyperinsulinaemic hypoglycaemia (HH) is due to the unregulated secretion of insulin from pancreatic β-cells. A rapid diagnosis and appropriate management of these patients is essential to prevent the potentially associated complications like epilepsy, cerebral palsy and neurological impairment. The molecular basis of HH involves defects in key genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, HNF4A and UCP2) which regulate insulin secretion. The most severe forms of HH are due to loss of function mutations in ABCC8/KCNJ11 which encode the SUR1 and KIR6.2 components respectively of the pancreatic β-cell K(ATP) channel. At a histological level there are two major forms (diffuse and focal) each with a different genetic aetiology. The diffuse form is inherited in an autosomal recessive (or dominant) manner whereas the focal form is sporadic in inheritance and is localised to a small region of the pancreas. The focal form can now be accurately localised pre-operatively using a specialised positron emission tomography scan with the isotope Fluroine-18L-3, 4-dihydroxyphenyalanine (18F-DOPA-PET). Focal lesionectomy can provide cure from the hypoglycaemia. However the diffuse form is managed medically or by near total pancreatectomy (with high risk of diabetes mellitus). Recent advances in molecular genetics, imaging with 18F-DOPA-PET/CT and novel surgical techniques have changed the clinical approach to patients with HH.
Collapse
Affiliation(s)
- Senthil Senniappan
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children NHS Trust WC1N 3JH and Institute of Child Health, University College London, London, WC1N 1EH, UK
| | | | | | | |
Collapse
|
42
|
Douillard C, Mention K, Dobbelaere D, Wemeau JL, Saudubray JM, Vantyghem MC. Hypoglycaemia related to inherited metabolic diseases in adults. Orphanet J Rare Dis 2012; 7:26. [PMID: 22587661 PMCID: PMC3458880 DOI: 10.1186/1750-1172-7-26] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 03/19/2012] [Indexed: 12/15/2022] Open
Abstract
In non-diabetic adult patients, hypoglycaemia may be related to drugs, critical illness, cortisol or glucagon insufficiency, non-islet cell tumour, insulinoma, or it may be surreptitious. Nevertheless, some hypoglycaemic episodes remain unexplained, and inborn errors of metabolism (IEM) should be considered, particularly in cases of multisystemic involvement. In children, IEM are considered a differential diagnosis in cases of hypoglycaemia. In adulthood, IEM-related hypoglycaemia can persist in a previously diagnosed childhood disease. Hypoglycaemia may sometimes be a presenting sign of the IEM. Short stature, hepatomegaly, hypogonadism, dysmorphia or muscular symptoms are signs suggestive of IEM-related hypoglycaemia. In both adults and children, hypoglycaemia can be clinically classified according to its timing. Postprandial hypoglycaemia can be an indicator of either endogenous hyperinsulinism linked to non-insulinoma pancreatogenic hypoglycaemia syndrome (NIPHS, unknown incidence in adults) or very rarely, inherited fructose intolerance. Glucokinase-activating mutations (one family) are the only genetic disorder responsible for NIPH in adults that has been clearly identified so far. Exercise-induced hyperinsulinism is linked to an activating mutation of the monocarboxylate transporter 1 (one family). Fasting hypoglycaemia may be caused by IEM that were already diagnosed in childhood and persist into adulthood: glycogen storage disease (GSD) type I, III, 0, VI and IX; glucose transporter 2 deficiency; fatty acid oxidation; ketogenesis disorders; and gluconeogenesis disorders. Fasting hypoglycaemia in adulthood can also be a rare presenting sign of an IEM, especially in GSD type III, fatty acid oxidation [medium-chain acyl-CoA dehydrogenase (MCAD), ketogenesis disorders (3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) lyase deficiency, and gluconeogenesis disorders (fructose-1,6-biphosphatase deficiency)].
Collapse
Affiliation(s)
- Claire Douillard
- Service d'Endocrinologie et maladies Métaboliques, Hôpital Claude Huriez, Centre Hospitalier Régional et Universitaire de Lille, France.
| | | | | | | | | | | |
Collapse
|
43
|
Heslegrave AJ, Kapoor RR, Eaton S, Chadefaux B, Akcay T, Simsek E, Flanagan SE, Ellard S, Hussain K. Leucine-sensitive hyperinsulinaemic hypoglycaemia in patients with loss of function mutations in 3-Hydroxyacyl-CoA Dehydrogenase. Orphanet J Rare Dis 2012; 7:25. [PMID: 22583614 PMCID: PMC3433310 DOI: 10.1186/1750-1172-7-25] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/14/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Loss of function mutations in 3-Hydroxyacyl-CoA Dehydrogenase (HADH) cause protein sensitive hyperinsulinaemic hypoglycaemia (HH). HADH encodes short chain 3-hydroxacyl-CoA dehydrogenase, an enzyme that catalyses the penultimate reaction in mitochondrial β-oxidation of fatty acids. Mutations in GLUD1 encoding glutamate dehydrogenase, also cause protein sensitive HH (due to leucine sensitivity). Reports suggest a protein-protein interaction between HADH and GDH. This study was undertaken in order to understand the mechanism of protein sensitivity in patients with HADH mutations. METHODS An oral leucine tolerance test was conducted in controls and nine patients with HADH mutations. Basal GDH activity and the effect of GTP were determined in lymphoblast homogenates from 4 patients and 3 controls. Immunoprecipitation was conducted in patient and control lymphoblasts to investigate protein interactions. RESULTS Patients demonstrated severe HH (glucose range 1.7-3.2 mmol/l; insulin range 4.8-63.8 mU/l) in response to the oral leucine load, this HH was not observed in control patients subjected to the same leucine load. Basal GDH activity and half maximal inhibitory concentration of GTP was similar in patients and controls. HADH protein could be co-immunoprecipitated with GDH protein in control samples but not in patient samples. CONCLUSIONS We conclude that GDH and HADH have a direct protein-protein interaction, which is lost in patients with HADH mutations causing leucine induced HH. This is not associated with loss of inhibitory effect of GTP on GDH (as in patients with GLUD1 mutations).
Collapse
Affiliation(s)
- Amanda J Heslegrave
- The Institute of Child Health, University College London, London, WC1N 1EH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Short-chain 3-hydroxyacyl-coenzyme A dehydrogenase associates with a protein super-complex integrating multiple metabolic pathways. PLoS One 2012; 7:e35048. [PMID: 22496890 PMCID: PMC3322157 DOI: 10.1371/journal.pone.0035048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 03/10/2012] [Indexed: 11/29/2022] Open
Abstract
Proteins involved in mitochondrial metabolic pathways engage in functionally relevant multi-enzyme complexes. We previously described an interaction between short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD) and glutamate dehydrogenase (GDH) explaining the clinical phenotype of hyperinsulinism in SCHAD-deficient patients and adding SCHAD to the list of mitochondrial proteins capable of forming functional, multi-pathway complexes. In this work, we provide evidence of SCHAD's involvement in additional interactions forming tissue-specific metabolic super complexes involving both membrane-associated and matrix-dwelling enzymes and spanning multiple metabolic pathways. As an example, in murine liver, we find SCHAD interaction with aspartate transaminase (AST) and GDH from amino acid metabolic pathways, carbamoyl phosphate synthase I (CPS-1) from ureagenesis, other fatty acid oxidation and ketogenesis enzymes and fructose-bisphosphate aldolase, an extra-mitochondrial enzyme of the glycolytic pathway. Most of the interactions appear to be independent of SCHAD's role in the penultimate step of fatty acid oxidation suggesting an organizational, structural or non-enzymatic role for the SCHAD protein.
Collapse
|
45
|
Banasik K, Hollensted M, Andersson E, Sparsø T, Sandbaek A, Lauritzen T, Jørgensen T, Witte DR, Pedersen O, Hansen T. The effect of FOXA2 rs1209523 on glucose-related phenotypes and risk of type 2 diabetes in Danish individuals. BMC MEDICAL GENETICS 2012; 13:10. [PMID: 22325233 PMCID: PMC3344680 DOI: 10.1186/1471-2350-13-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 02/12/2012] [Indexed: 01/12/2023]
Abstract
BACKGROUND Variations within the FOXA family have been studied for a putative contribution to the risk of type 2 diabetes (T2D), and recently the minor T-allele of FOXA2 rs1209523 was reported to associate with decreased fasting plasma glucose levels in a study using a weighted false discovery rate control procedure to enhance the statistical power of genome wide association studies in detecting associations between low-frequency variants and a given trait.Thus, the primary aim of this study was to investigate whether the minor T-allele of rs1205923 in FOXA2 associated with 1) decreased fasting plasma glucose and 2) a lower risk of developing T2D. Secondly, we investigated whether rs1205923 in FOXA2 associated with other glucose-related phenotypes. METHODS The variant was genotyped in Danish individuals from four different study populations using KASPar(®) PCR SNP genotyping system. We examined for associations of the FOXA2 genotype with fasting plasma glucose and estimates of insulin release and insulin sensitivity following an oral glucose tolerance test in 6,162 Danish individuals from the population-based Inter99 study while association with T2D risk was assessed in 10,196 Danish individuals including four different study populations. RESULTS The FOXA2 rs1209523 was not associated with fasting plasma glucose (effect size (β) = -0.03 mmol/l (95%CI: -0.07; 0.01), p = 0.2) in glucose-tolerant individuals from the general Danish population. Furthermore, when employing a case-control setting the variant showed no association with T2D (odds ratio (OR) = 0.82 (95%CI: 0.62-1.07), p = 0.1) among Danish individuals. However, when we performed the analysis in a subset of 6,022 non-obese individuals (BMI < 30 kg/m(2)) an association with T2D was observed (OR = 0.68 (95%CI: 0.49-0.94), p = 0.02). Also, several indices of insulin release and β-cell function were associated with the minor T-allele of FOXA2 rs1209523 in non-obese individuals. CONCLUSIONS We failed to replicate association of the minor T-allele of FOXA2 rs1209523 with fasting plasma glucose in a population based sample of glucose tolerant individuals. More extensive studies are needed in order to fully elucidate the potential role of FOXA2 in glucose homeostasis.
Collapse
Affiliation(s)
- Karina Banasik
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health Sciences, University of Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Schulz N, Himmelbauer H, Rath M, van Weeghel M, Houten S, Kulik W, Suhre K, Scherneck S, Vogel H, Kluge R, Wiedmer P, Joost HG, Schürmann A. Role of medium- and short-chain L-3-hydroxyacyl-CoA dehydrogenase in the regulation of body weight and thermogenesis. Endocrinology 2011; 152:4641-51. [PMID: 21990309 PMCID: PMC3359510 DOI: 10.1210/en.2011-1547] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dysregulation of fatty acid oxidation plays a pivotal role in the pathophysiology of obesity and insulin resistance. Medium- and short-chain-3-hydroxyacyl-coenzyme A (CoA) dehydrogenase (SCHAD) (gene name, hadh) catalyze the third reaction of the mitochondrial β-oxidation cascade, the oxidation of 3-hydroxyacyl-CoA to 3-ketoacyl-CoA, for medium- and short-chain fatty acids. We identified hadh as a putative obesity gene by comparison of two genome-wide scans, a quantitative trait locus analysis previously performed in the polygenic obese New Zealand obese mouse and an earlier described small interfering RNA-mediated mutagenesis in Caenorhabditis elegans. In the present study, we show that mice lacking SCHAD (hadh(-/-)) displayed a lower body weight and a reduced fat mass in comparison with hadh(+/+) mice under high-fat diet conditions, presumably due to an impaired fuel efficiency, the loss of acylcarnitines via the urine, and increased body temperature. Food intake, total energy expenditure, and locomotor activity were not altered in knockout mice. Hadh(-/-) mice exhibited normal fat tolerance at 20 C. However, during cold exposure, knockout mice were unable to clear triglycerides from the plasma and to maintain their normal body temperature, indicating that SCHAD plays an important role in adaptive thermogenesis. Blood glucose concentrations in the fasted and postprandial state were significantly lower in hadh(-/-) mice, whereas insulin levels were elevated. Accordingly, insulin secretion in response to glucose and glucose plus palmitate was elevated in isolated islets of knockout mice. Therefore, our data indicate that SCHAD is involved in thermogenesis, in the maintenance of body weight, and in the regulation of nutrient-stimulated insulin secretion.
Collapse
Affiliation(s)
- Nadja Schulz
- Department of Experimental Diabetology and Pharmacology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Arnoux JB, Verkarre V, Saint-Martin C, Montravers F, Brassier A, Valayannopoulos V, Brunelle F, Fournet JC, Robert JJ, Aigrain Y, Bellanné-Chantelot C, de Lonlay P. Congenital hyperinsulinism: current trends in diagnosis and therapy. Orphanet J Rare Dis 2011; 6:63. [PMID: 21967988 PMCID: PMC3199232 DOI: 10.1186/1750-1172-6-63] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 10/03/2011] [Indexed: 01/25/2023] Open
Abstract
Congenital hyperinsulinism (HI) is an inappropriate insulin secretion by the pancreatic β-cells secondary to various genetic disorders. The incidence is estimated at 1/50, 000 live births, but it may be as high as 1/2, 500 in countries with substantial consanguinity. Recurrent episodes of hyperinsulinemic hypoglycemia may expose to high risk of brain damage. Hypoglycemias are diagnosed because of seizures, a faint, or any other neurological symptom, in the neonatal period or later, usually within the first two years of life. After the neonatal period, the patient can present the typical clinical features of a hypoglycemia: pallor, sweat and tachycardia. HI is a heterogeneous disorder with two main clinically indistinguishable histopathological lesions: diffuse and focal. Atypical lesions are under characterization. Recessive ABCC8 mutations (encoding SUR1, subunit of a potassium channel) and, more rarely, recessive KCNJ11 (encoding Kir6.2, subunit of the same potassium channel) mutations, are responsible for most severe diazoxide-unresponsive HI. Focal HI, also diazoxide-unresponsive, is due to the combination of a paternally-inherited ABCC8 or KCNJ11 mutation and a paternal isodisomy of the 11p15 region, which is specific to the islets cells within the focal lesion. Genetics and 18F-fluoro-L-DOPA positron emission tomography (PET) help to diagnose diffuse or focal forms of HI. Hypoglycemias must be rapidly and intensively treated to prevent severe and irreversible brain damage. This includes a glucose load and/or a glucagon injection, at the time of hypoglycemia, to correct it. Then a treatment to prevent the recurrence of hypoglycemia must be set, which may include frequent and glucose-enriched feeding, diazoxide and octreotide. When medical and dietary therapies are ineffective, or when a focal HI is suspected, surgical treatment is required. Focal HI may be definitively cured when the partial pancreatectomy removes the whole lesion. By contrast, the long-term outcome of diffuse HI after subtotal pancreatectomy is characterized by a high risk of diabetes, but the time of its onset is hardly predictable.
Collapse
Affiliation(s)
- Jean-Baptiste Arnoux
- Centre de Référence des Maladies Héréditaires du Métabolisme de l'Enfant et l'Adulte, AP-HP Hôpital Necker-Enfants Malades, Université Paris Descartes, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Popa FI, Perlini S, Teofoli F, Degani D, Funghini S, La Marca G, Rinaldo P, Vincenzi M, Antoniazzi F, Boner A, Camilot M. 3-hydroxyacyl-coenzyme a dehydrogenase deficiency: identification of a new mutation causing hyperinsulinemic hypoketotic hypoglycemia, altered organic acids and acylcarnitines concentrations. JIMD Rep 2011; 2:71-7. [PMID: 23430856 DOI: 10.1007/8904_2011_50] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/03/2011] [Accepted: 03/04/2011] [Indexed: 12/24/2022] Open
Abstract
The human HADH gene encodes the short-chain-L-3-hydroxyacyl-CoA dehydrogenase, the enzyme which catalyzes the third step of the β-oxidation of the fatty acids in the mitochondrial matrix. Loss-of-function mutations in the HADH gene lead to short-chain-L-3-hydroxyacyl-CoA dehydrogenase deficiency, an autosomal recessive genetic defect of unknown prevalence with a wide spectrum of phenotypic variability. As in other metabolic diseases, the diagnostic relevance of the biochemical evaluations, plasma acylcarnitines, and urinary organic acids, are crucially dependent on the clinical conditions of the patient during specimen collection.This paper describes the eighth patient carrying a HADH gene mutation, a new homozygous deletion c.565delG leading to an early stop codon (p.V116Wfs124X), in an infant with hyperinsulininemic hypoglycemia, displaying abnormal patterns of plasma acylcarnitines and urinary organic acids. We conclude that, when the residual catalytic activity of the mutated enzyme is seriously reduced, the biochemical hallmarks of the disease, namely plasma 3-hydroxybutyrylcarnitine and urinary 3-hydroxyglutaric acid, are invariably present.
Collapse
Affiliation(s)
- Florina Ion Popa
- Department of Life Sciences and Reproduction, Division of Pediatrics, University of Verona, P.le L.A. Scuro 10, 37134, Verona, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Martins E, Cardoso ML, Rodrigues E, Barbot C, Ramos A, Bennett MJ, Teles EL, Vilarinho L. Short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: the clinical relevance of an early diagnosis and report of four new cases. J Inherit Metab Dis 2011; 34:835-42. [PMID: 21347589 DOI: 10.1007/s10545-011-9287-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 01/22/2011] [Accepted: 01/25/2011] [Indexed: 02/07/2023]
Abstract
Short-chain 3-hydroxyacyl-CoA dehydrogenase (HADH, SCHAD) deficiency (OMIM #231530) represents a recently described disorder of mitochondrial fatty acid beta-oxidation, with less than ten cases described worldwide. The main clinical presentation of this metabolic disease is different from other inherited defects of fatty acid β-oxidation as the hypoglycemia is associated with hyperinsulinism. We present the clinical, biochemical and molecular findings of four new Caucasian patients with HADH deficiency. These new cases contribute to a more comprehensive description of the phenotype, diagnostic biomarkers and treatment options for this poorly defined disease.
Collapse
Affiliation(s)
- Esmeralda Martins
- Unidade de Doenças Metabólicas, Hospital de Crianças Maria Pia, Rua da Boavista, 827, 4050-111 Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Hallows WC, Yu W, Smith BC, Devries MK, Devires MK, Ellinger JJ, Someya S, Shortreed MR, Prolla T, Markley JL, Smith LM, Zhao S, Guan KL, Denu JM. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol Cell 2011; 41:139-49. [PMID: 21255725 DOI: 10.1016/j.molcel.2011.01.002] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 10/13/2010] [Accepted: 01/04/2011] [Indexed: 12/12/2022]
Abstract
Emerging evidence suggests that protein acetylation is a broad-ranging regulatory mechanism. Here we utilize acetyl-peptide arrays and metabolomic analyses to identify substrates of mitochondrial deacetylase Sirt3. We identified ornithine transcarbamoylase (OTC) from the urea cycle, and enzymes involved in β-oxidation. Metabolomic analyses of fasted mice lacking Sirt3 (sirt3(-/-)) revealed alterations in β-oxidation and the urea cycle. Biochemical analysis demonstrated that Sirt3 directly deacetylates OTC and stimulates its activity. Mice under caloric restriction (CR) increased Sirt3 protein levels, leading to deacetylation and stimulation of OTC activity. In contrast, sirt3(-/-) mice failed to deacetylate OTC in response to CR. Inability to stimulate OTC under CR led to a failure to reduce orotic acid levels, a known outcome of OTC deficiency. Thus, Sirt3 directly regulates OTC activity and promotes the urea cycle during CR, and the results suggest that under low energy input, Sirt3 modulates mitochondria by promoting amino acid catabolism and β-oxidation.
Collapse
Affiliation(s)
- William C Hallows
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|