1
|
Johnson TN, Batchelor HK, Goelen J, Horniblow RD, Dinh J. Combining data on the bioavailability of midazolam and physiologically-based pharmacokinetic modeling to investigate intestinal CYP3A4 ontogeny. CPT Pharmacometrics Syst Pharmacol 2024; 13:1570-1581. [PMID: 38923249 PMCID: PMC11533100 DOI: 10.1002/psp4.13192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Pediatric physiologically-based modeling in drug development has grown in the past decade and optimizing the underlying systems parameters is important in relation to overall performance. In this study, variation of clinical oral bioavailability of midazolam as a function of age is used to assess the underlying ontogeny models for intestinal CYP3A4. Data on midazolam bioavailability in adults and children and different ontogeny patterns for intestinal CYP3A4 were first collected from the literature. A pediatric PBPK model was then used to assess six different ontogeny models in predicting bioavailability from preterm neonates to adults. The average fold error ranged from 0.7 to 1.38, with the rank order of least to most biased model being No Ontogeny < Upreti = Johnson < Goelen < Chen < Kiss. The absolute average fold error ranged from 1.17 to 1.64 with the rank order of most to least precise being Johnson > Upreti > No Ontogeny > Goelen > Kiss > Chen. The optimal ontogeny model is difficult to discern when considering the possible influence of CYP3A5 and other population variability; however, this study suggests that from term neonates and older a faster onset Johnson model with a lower fraction at birth may be close to this. For inclusion in other PBPK models, independent verification will be needed to confirm these results. Further research is needed in this area both in terms of age-related changes in midazolam and similar drug bioavailability and intestinal CYP3A4 ontogeny.
Collapse
Affiliation(s)
| | - Hannah K. Batchelor
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| | - Jan Goelen
- Centre for Neonatal and Paediatric Infection, Antimicrobial Resistance Research Group, St George'sUniversity of LondonLondonUK
| | - Richard D. Horniblow
- School of Biomedical Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | | |
Collapse
|
2
|
Uga M, Kaneko I, Shiozaki Y, Koike M, Tsugawa N, Jurutka PW, Miyamoto KI, Segawa H. The Role of Intestinal Cytochrome P450s in Vitamin D Metabolism. Biomolecules 2024; 14:717. [PMID: 38927120 PMCID: PMC11201832 DOI: 10.3390/biom14060717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Vitamin D hydroxylation in the liver/kidney results in conversion to its physiologically active form of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. 1,25(OH)2D3 controls gene expression through the nuclear vitamin D receptor (VDR) mainly expressed in intestinal epithelial cells. Cytochrome P450 (CYP) 24A1 is a catabolic enzyme expressed in the kidneys. Interestingly, a recently identified mutation in another CYP enzyme, CYP3A4 (gain-of-function), caused type III vitamin D-dependent rickets. CYP3A are also expressed in the intestine, but their hydroxylation activities towards vitamin D substrates are unknown. We evaluated CYP3A or CYP24A1 activities on vitamin D action in cultured cells. In addition, we examined the expression level and regulation of CYP enzymes in intestines from mice. The expression of CYP3A or CYP24A1 significantly reduced 1,25(OH)2D3-VDRE activity. Moreover, in mice, Cyp24a1 mRNA was significantly induced by 1,25(OH)2D3 in the intestine, but a mature form (approximately 55 kDa protein) was also expressed in mitochondria and induced by 1,25(OH)2D3, and this mitochondrial enzyme appears to hydroxylate 25OHD3 to 24,25(OH)2D3. Thus, CYP3A or CYP24A1 could locally attenuate 25OHD3 or 1,25(OH)2D3 action, and we suggest the small intestine is both a vitamin D target tissue, as well as a newly recognized vitamin D-metabolizing tissue.
Collapse
Affiliation(s)
- Minori Uga
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Ichiro Kaneko
- Research Institute for Food and Nutritional Sciences, School of Human Science and Environment, University of Hyogo, Hyogo 670-0092, Japan
| | - Yuji Shiozaki
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Megumi Koike
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Naoko Tsugawa
- Faculty of Nutrition, Kobe Gakuin University, Hyogo 651-2180, Japan
| | - Peter W. Jurutka
- Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
- College of Medicine, The University of Arizona, Phoenix, AZ 85004, USA
| | - Ken-Ichi Miyamoto
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
- Graduate School of Agriculture, Ryukoku University, Shiga 520-2194, Japan
| | - Hiroko Segawa
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| |
Collapse
|
3
|
Wimalawansa SJ. Physiology of Vitamin D-Focusing on Disease Prevention. Nutrients 2024; 16:1666. [PMID: 38892599 PMCID: PMC11174958 DOI: 10.3390/nu16111666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Vitamin D is a crucial micronutrient, critical to human health, and influences many physiological processes. Oral and skin-derived vitamin D is hydroxylated to form calcifediol (25(OH)D) in the liver, then to 1,25(OH)2D (calcitriol) in the kidney. Alongside the parathyroid hormone, calcitriol regulates neuro-musculoskeletal activities by tightly controlling blood-ionized calcium concentrations through intestinal calcium absorption, renal tubular reabsorption, and skeletal mineralization. Beyond its classical roles, evidence underscores the impact of vitamin D on the prevention and reduction of the severity of diverse conditions such as cardiovascular and metabolic diseases, autoimmune disorders, infection, and cancer. Peripheral target cells, like immune cells, obtain vitamin D and 25(OH)D through concentration-dependent diffusion from the circulation. Calcitriol is synthesized intracellularly in these cells from these precursors, which is crucial for their protective physiological actions. Its deficiency exacerbates inflammation, oxidative stress, and increased susceptibility to metabolic disorders and infections; deficiency also causes premature deaths. Thus, maintaining optimal serum levels above 40 ng/mL is vital for health and disease prevention. However, achieving it requires several times more than the government's recommended vitamin D doses. Despite extensive published research, recommended daily intake and therapeutic serum 25(OH)D concentrations have lagged and are outdated, preventing people from benefiting. Evidence suggests that maintaining the 25(OH)D concentrations above 40 ng/mL with a range of 40-80 ng/mL in the population is optimal for disease prevention and reducing morbidities and mortality without adverse effects. The recommendation for individuals is to maintain serum 25(OH)D concentrations above 50 ng/mL (125 nmol/L) for optimal clinical outcomes. Insights from metabolomics, transcriptomics, and epigenetics offer promise for better clinical outcomes from vitamin D sufficiency. Given its broader positive impact on human health with minimal cost and little adverse effects, proactively integrating vitamin D assessment and supplementation into clinical practice promises significant benefits, including reduced healthcare costs. This review synthesized recent novel findings related to the physiology of vitamin D that have significant implications for disease prevention.
Collapse
|
4
|
Abdel-Megied AM, Kovalenko S, Elbarbry FA, Piponski M, Oleshchuk O, El Deeb S, Magdy G, Belal F, Grochovuy T, Logoyda L. LC-MS/MS bioanalytical method for the quantitative analysis of nifedipine, bisoprolol, and captopril in human plasma: Application to pharmacokinetic studies. Biomed Chromatogr 2023; 37:e5664. [PMID: 37114598 DOI: 10.1002/bmc.5664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/10/2023] [Accepted: 04/23/2023] [Indexed: 04/29/2023]
Abstract
In this study, the development and validation of an accurate and highly sensitive LC-MS/MS method were performed for the estimation of nifedipine, bisoprolol and captopril in real human plasma. Liquid-liquid extraction using tert-butyl methyl ether was efficiently applied for extraction of the analytes from plasma samples. The chromatographic separation was carried out using an isocratic elution mode on the X-terra MS C18 column (4.6 × 50 mm, 3.5 μm). The mobile phase consisted of methanol-0.1% formic acid (95:5, v/v) for determination of nifedipine and bisoprolol and acetonitrile-0.1% formic acid (70:30, v/v) for determination of captopril with a flow rate of 0.5 ml/min. Acceptable results regarding the different validation characteristics of the analytes were obtained in accordance with US Food and Drug Administration recommendations for bioanalytical methods. The developed approach was linear over concentration ranges of 0.5-130.0, 50.0-4,500.0 and 0.3-30.0 ng/ml for nifedipine, captopril and bisoprolol, respectively. The method revealed a sufficient lower limit of quantification in the range of 0.3-50.0 ng/ml, as well as high recovery percentages, indicating high bioanalytical applicability. The proposed method was efficiently applied to a pharmacokinetic evaluation of a fixed-dose combination of the analytes in healthy male volunteers.
Collapse
Affiliation(s)
- Ahmed M Abdel-Megied
- Department of Pharmaceutical Sciences, Notre Dame of Maryland University, School of Pharmacy, Baltimore, Maryland, USA
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | | - Fawzy A Elbarbry
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon, USA
| | - Marjan Piponski
- Quality Control Department, Replek Farm Ltd., Skopje, Republic of North Macedonia
| | - Oleksandra Oleshchuk
- Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Fathalla Belal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Taras Grochovuy
- Department of Pharmacy Management, Economics and Technology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Liliya Logoyda
- Department of Pharmaceutical Chemistry, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| |
Collapse
|
5
|
Alaei M, Nazari SE, Pourali G, Asadnia A, Moetamani-Ahmadi M, Fiuji H, Tanzadehpanah H, Asgharzadeh F, Babaei F, Khojasteh-Leylakoohi F, Saeed Gataa I, Ali Kiani M, Ferns GA, Lam AKY, Hassanian SM, Khazaei M, Giovannetti E, Avan A. Therapeutic Potential of Targeting the Cytochrome P450 Enzymes Using Lopinavir/Ritonavir in Colorectal Cancer: A Study in Monolayers, Spheroids and In Vivo Models. Cancers (Basel) 2023; 15:3939. [PMID: 37568755 PMCID: PMC10417395 DOI: 10.3390/cancers15153939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Cytochrome P450 (CYP450) enzyme has been shown to be expressed in colorectal cancer (CRC) and its dysregulation is linked to tumor progression and a poor prognosis. Here we investigated the therapeutic potential of targeting CYP450 using lopinavir/ritonavir in CRC. The integrative systems biology method and RNAseq were utilized to investigate the differential levels of genes associated with patients with colorectal cancer. The antiproliferative activity of lopinavir/ritonavir was evaluated in both monolayer and 3-dimensional (3D) models, followed by wound-healing assays. The effectiveness of targeting CYP450 was examined in a mouse model, followed by histopathological analysis, biochemical tests (MDA, SOD, thiol, and CAT), and RT-PCR. The data of dysregulation expressed genes (DEG) revealed 1268 upregulated and 1074 down-regulated genes in CRC. Among the top-score genes and dysregulated pathways, CYPs were detected and associated with poor prognosis of patients with CRC. Inhibition of CYP450 reduced cell proliferation via modulating survivin, Chop, CYP13a, and induction of cell death, as detected by AnnexinV/PI staining. This agent suppressed the migratory behaviors of cells by induction of E-cadherin. Moreover, lopinavir/ritonavir suppressed tumor growth and fibrosis, which correlated with a reduction in SOD/thiol levels and increased MDA levels. Our findings illustrated the therapeutic potential of targeting the CYP450 using lopinavir/ritonavir in colorectal cancer, supporting future investigations on this novel therapeutic approach for the treatment of CRC.
Collapse
Affiliation(s)
- Maryam Alaei
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (M.A.); (S.M.H.)
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (S.E.N.); (G.P.); (A.A.); (M.M.-A.); (H.T.); (F.A.); (F.B.); (F.K.-L.); (M.K.)
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (H.F.); (M.A.K.)
| | - Seyedeh Elnaz Nazari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (S.E.N.); (G.P.); (A.A.); (M.M.-A.); (H.T.); (F.A.); (F.B.); (F.K.-L.); (M.K.)
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (S.E.N.); (G.P.); (A.A.); (M.M.-A.); (H.T.); (F.A.); (F.B.); (F.K.-L.); (M.K.)
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (H.F.); (M.A.K.)
| | - AliReza Asadnia
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (S.E.N.); (G.P.); (A.A.); (M.M.-A.); (H.T.); (F.A.); (F.B.); (F.K.-L.); (M.K.)
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (H.F.); (M.A.K.)
| | - Mehrdad Moetamani-Ahmadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (S.E.N.); (G.P.); (A.A.); (M.M.-A.); (H.T.); (F.A.); (F.B.); (F.K.-L.); (M.K.)
| | - Hamid Fiuji
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (H.F.); (M.A.K.)
| | - Hamid Tanzadehpanah
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (S.E.N.); (G.P.); (A.A.); (M.M.-A.); (H.T.); (F.A.); (F.B.); (F.K.-L.); (M.K.)
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad 91779-49367, Iran
| | - Fereshteh Asgharzadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (S.E.N.); (G.P.); (A.A.); (M.M.-A.); (H.T.); (F.A.); (F.B.); (F.K.-L.); (M.K.)
| | - Fatemeh Babaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (S.E.N.); (G.P.); (A.A.); (M.M.-A.); (H.T.); (F.A.); (F.B.); (F.K.-L.); (M.K.)
| | - Fatemeh Khojasteh-Leylakoohi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (S.E.N.); (G.P.); (A.A.); (M.M.-A.); (H.T.); (F.A.); (F.B.); (F.K.-L.); (M.K.)
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (H.F.); (M.A.K.)
| | | | - Mohammad Ali Kiani
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (H.F.); (M.A.K.)
| | - Gordon A. Ferns
- Department of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK;
| | - Alfred King-yin Lam
- Pathology, School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (M.A.); (S.M.H.)
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (S.E.N.); (G.P.); (A.A.); (M.M.-A.); (H.T.); (F.A.); (F.B.); (F.K.-L.); (M.K.)
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (H.F.); (M.A.K.)
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (S.E.N.); (G.P.); (A.A.); (M.M.-A.); (H.T.); (F.A.); (F.B.); (F.K.-L.); (M.K.)
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (H.F.); (M.A.K.)
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), 1081 HV Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per La Scienza, 56124 Pisa, Italy
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (S.E.N.); (G.P.); (A.A.); (M.M.-A.); (H.T.); (F.A.); (F.B.); (F.K.-L.); (M.K.)
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq;
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
6
|
Liu L, Liu Y, Zhou X, Xu Z, Zhang Y, Ji L, Hong C, Li C. Analyzing the metabolic fate of oral administration drugs: A review and state-of-the-art roadmap. Front Pharmacol 2022; 13:962718. [PMID: 36278150 PMCID: PMC9585159 DOI: 10.3389/fphar.2022.962718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The key orally delivered drug metabolism processes are reviewed to aid the assessment of the current in vivo/vitro experimental systems applicability for evaluating drug metabolism and the interaction potential. Orally administration is the most commonly used state-of-the-art road for drug delivery due to its ease of administration, high patient compliance and cost-effectiveness. Roles of gut metabolic enzymes and microbiota in drug metabolism and absorption suggest that the gut is an important site for drug metabolism, while the liver has long been recognized as the principal organ responsible for drugs or other substances metabolism. In this contribution, we explore various experimental models from their development to the application for studying oral drugs metabolism of and summarized advantages and disadvantages. Undoubtedly, understanding the possible metabolic mechanism of drugs in vivo and evaluating the procedure with relevant models is of great significance for screening potential clinical drugs. With the increasing popularity and prevalence of orally delivered drugs, sophisticated experimental models with higher predictive capacity for the metabolism of oral drugs used in current preclinical studies will be needed. Collectively, the review seeks to provide a comprehensive roadmap for researchers in related fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
7
|
Akter R, Afrose A, Sharmin S, Rezwan R, Rahman MR, Neelotpol S. A comprehensive look into the association of vitamin D levels and vitamin D receptor gene polymorphism with obesity in children. Biomed Pharmacother 2022; 153:113285. [PMID: 35728355 DOI: 10.1016/j.biopha.2022.113285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022] Open
Abstract
Childhood obesity accounts for several psychosocial and clinical consequences. Psychosocial consequences include lower self-esteem, social isolation, poor academic achievement, peer problems, and depression, whereas clinical consequences are cardiovascular diseases, type 2 diabetes, dyslipidemia, cancer, autoimmune diseases, girls early polycystic ovarian syndrome (PCOS), asthma, bone deformities, etc. A growing number of studies have uncovered the association of childhood obesity and its consequences with vitamin-D (vit-D) deficiency and vitamin-D receptor (VDR) gene polymorphisms such as single nucleotide polymorphisms (SNPs), e.g., TaqI, BsmI, ApaI, FokI, and Cdx2. Considering the impact of vit-D deficiency and VDR gene polymorphisms, identifying associated factors and risk groups linked to lower serum vit-D levels and prevention of obesity-related syndromes in children is of utmost importance. Previously published review articles mainly focused on the association of vit-D deficiency with obesity or other non-communicable diseases in children. The nature of the correlation between vit-D deficiency and VDR gene polymorphisms with obesity in children is yet to be clarified. Therefore, this review attempts to delineate the association of obesity with these two factors by identifying the molecular mechanism of the relationship.
Collapse
Affiliation(s)
- Raushanara Akter
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Afrina Afrose
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Shahana Sharmin
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Rifat Rezwan
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Md Rashidur Rahman
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | | |
Collapse
|
8
|
Grangeon A, Clermont V, Barama A, Gaudette F, Turgeon J, Michaud V. Determination of CYP450 Expression Levels in the Human Small Intestine by Mass Spectrometry-Based Targeted Proteomics. Int J Mol Sci 2021; 22:ijms222312791. [PMID: 34884595 PMCID: PMC8657875 DOI: 10.3390/ijms222312791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
The human small intestine can be involved in the first-pass metabolism of drugs. Under this condition, members of the CYP450 superfamily are expected to contribute to drug presystemic biotransformation. The aim of this study was to quantify protein expression levels of 16 major CYP450 isoforms in tissue obtained from nine human organ donors in seven subsections of the small intestine, i.e., duodenum (one section, N = 7 tissue samples), jejunum (three subsections (proximal, mid and distal), N = 9 tissue samples) and ileum (three subsections, (proximal, mid and distal), N = 9 tissue samples), using liquid chromatography tandem mass spectrometry (LC-MS/MS) based targeted proteomics. CYP450 absolute protein expression levels were compared to mRNA levels and enzyme activities by using established probe drugs. Proteins corresponding to seven of sixteen potential CYP450 isoforms were detected and quantified in various sections of the small intestine: CYP2C9, CYP2C19, CYP2D6, CYP2J2, CYP3A4, CYP3A5 and CYP4F2. Wide inter-subject variability was observed, especially for CYP2D6. CYP2C9 (p = 0.004) and CYP2C19 (p = 0.005) expression levels decreased along the small intestine. From the duodenum to the ileum, CYP2J2 (p = 0.001) increased, and a trend was observed for CYP3A5 (p = 0.13). CYP3A4 expression was higher in the jejunum than in the ileum (p = 0.03), while CYP4F2 expression was lower in the duodenum compared to the jejunum and the ileum (p = 0.005). CYP450 protein levels were better correlated with specific isoform activities than with mRNA levels. This study provides new data on absolute CYP450 quantification in human small intestine that could improve physiologically based pharmacokinetic models. These data could better inform drug absorption profiles while considering the regional expression of CYP450 isoforms.
Collapse
Affiliation(s)
- Alexia Grangeon
- CRCHUM, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, 900 St. Denis Street, Montreal, QC H2X 0A9, Canada; (A.G.); (V.C.); (F.G.)
| | - Valérie Clermont
- CRCHUM, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, 900 St. Denis Street, Montreal, QC H2X 0A9, Canada; (A.G.); (V.C.); (F.G.)
| | - Azemi Barama
- CHUM, Centre Hospitalier de l’Université de Montréal, 1000 St. Denis Street, Montreal, QC H2X 0C1, Canada;
| | - Fleur Gaudette
- CRCHUM, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, 900 St. Denis Street, Montreal, QC H2X 0A9, Canada; (A.G.); (V.C.); (F.G.)
| | - Jacques Turgeon
- Faculty of Pharmacy, Université de Montréal, 2940 Chemin de la Polytechnique, Montreal, QC H3T 1J4, Canada; or
- Precision Pharmacotherapy Research and Development Institute, Tabula Rasa HealthCare, 13485 Veterans Way, Orlando, FL 32827, USA
| | - Veronique Michaud
- CRCHUM, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, 900 St. Denis Street, Montreal, QC H2X 0A9, Canada; (A.G.); (V.C.); (F.G.)
- Faculty of Pharmacy, Université de Montréal, 2940 Chemin de la Polytechnique, Montreal, QC H3T 1J4, Canada; or
- Precision Pharmacotherapy Research and Development Institute, Tabula Rasa HealthCare, 13485 Veterans Way, Orlando, FL 32827, USA
- Correspondence: or
| |
Collapse
|
9
|
Wakeman M. A Literature Review of the Potential Impact of Medication on Vitamin D Status. Risk Manag Healthc Policy 2021; 14:3357-3381. [PMID: 34421316 PMCID: PMC8373308 DOI: 10.2147/rmhp.s316897] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/12/2021] [Indexed: 12/23/2022] Open
Abstract
In recent years, there has been a significant increase in media coverage of the putative actions of vitamin D as well as the possible health benefits that supplementation might deliver. However, the potential effect that medications may have on the vitamin D status is rarely taken into consideration. This literature review was undertaken to assess the degree to which vitamin D status may be affected by medication. Electronic databases were searched to identify literature relating to this subject, and study characteristics and conclusions were scrutinized for evidence of potential associations. The following groups of drugs were identified in one or more studies to affect vitamin D status in some way: anti-epileptics, laxatives, metformin, loop diuretics, angiotensin-converting enzyme inhibitors, thiazide diuretics, statins, calcium channel blockers, antagonists of vitamin K, platelet aggregation inhibitors, digoxin, potassium-sparing diuretics, benzodiazepines, antidepressants, proton pump inhibitors, histamine H2-receptor antagonists, bile acid sequestrants, corticosteroids, antimicrobials, sulphonamides and urea derivatives, lipase inhibitors, hydroxychloroquine, highly active antiretroviral agents, and certain chemotherapeutic agents. Given that the quality of the data is heterogeneous, newer, more robustly designed studies are required to better define likely interactions between vitamin D and medications. This is especially so for cytochrome P450 3A4 enzyme (CYP3A4)-metabolized medications. Nevertheless, this review suggests that providers of health care ought to be alert to the potential of vitamin D depletions induced by medications, especially in elderly people exposed to multiple-drug therapy, and to provide supplementation if required.
Collapse
Affiliation(s)
- Michael Wakeman
- Faculty of Health and Wellbeing, University of Sunderland, Sunderland, SR1 3SD, UK
| |
Collapse
|
10
|
Evaluation of 1β-Hydroxylation of Deoxycholic Acid as a Non-Invasive Urinary Biomarker of CYP3A Activity in the Assessment of Inhibition-Based Drug-Drug Interaction in Healthy Volunteers. J Pers Med 2021; 11:jpm11060457. [PMID: 34073662 DOI: 10.3390/jpm11060457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, we aimed to evaluate the utility of endogenous 1β-hydroxy-deoxycholic acid/total deoxycholic acid ratio (1β-OH-DCA/ToDCA) in spot urine as a surrogate marker of cytochrome P450 3A (CYP3A) activity in the assessment inhibition-based drug-drug interactions in healthy volunteers. This was accomplished through an open-label, three-treatment parallel-arm study in healthy male volunteers from Zimbabwe. Each group received itraconazole (ITZ; 100 mg once daily; n = 10), fluconazole (FKZ; 50 mg once daily; n = 9), or alprazolam (APZ; 1 mg once daily; n = 8) orally. Midazolam (MDZ), dosed orally and intravenously, was used as a comparator to validate the exploratory measures of CYP3A activity and the effects of known inhibitors. Urinary metabolic ratios of 1β-OH-DCA/ToDCA before and after CYP3A inhibitor treatment showed a similar magnitude of inhibitory effects of the three treatments as that measured by oral MDZ clearance. The maximum inhibition effect of a 75% reduction in the 1β-OH-DCA/ToDCA ratio compared to the baseline was achieved in the ITZ group following six once-daily doses of 100 mg. The correlations of the two markers for CYP3A inhibitor treatment were significant (rs = 0.53, p < 0.01). The half-life of urinary endogenous 1β-OH-DCA/ToDCA was estimated as four days. These results suggested that 1β-OH-DCA/ToDCA in spot urine is a promising convenient, non-invasive, sensitive, and relatively quickly responsive endogenous biomarker that can be used for CYP3A inhibition-based drug-drug interaction in clinical studies.
Collapse
|
11
|
Pidkovka N, Rachkevych O, Belkhiri A. Extrahepatic cytochrome P450 epoxygenases: pathophysiology and clinical significance in human gastrointestinal cancers. Oncotarget 2021; 12:379-391. [PMID: 33659048 PMCID: PMC7899545 DOI: 10.18632/oncotarget.27893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/01/2021] [Indexed: 12/29/2022] Open
Abstract
Cytochrome P450 (CYP) epoxygenases, a multi-gene superfamily of heme-containing enzymes, are commonly known to metabolize endogenous arachidonic acid (AA) to epoxyeicosatrienoic acids (EETs). The role of CYPs is mostly studied in liver drugs metabolism, cardiac pathophysiology, and hypertension fields. Particularly, the biological functions of these enzymes have increasingly attracted a growing interest in cancer biology. Most published studies on CYPs in cancer have been limited to their role as drug metabolizing systems. The activity of these enzymes may affect drug pharmacokinetics and bioavailability as well as exogenous compounds turnover. Some CYP isoforms are selectively highly expressed in tumors, suggesting a potential mechanistic role in promoting resistance to chemotherapy. Majority of drugs elicit their effects in extrahepatic tissues whereby their metabolism can significantly determine treatment outcome. Nonetheless, the role of extrahepatic CYPs is not fully understood and targeting these enzymes as effective anti-cancer therapies are yet to be developed. This review article summarizes an up-to-date body of information from published studies on CYP enzymes expression levels and pathophysiological functions in human normal and malignant gastrointestinal (GI) tract tissues. Specifically, we reviewed and discussed the current research initiatives by emphasizing on the clinical significance and the pathological implication of CYPs in GI malignancies of esophagus, stomach, and colon.
Collapse
Affiliation(s)
| | - Olena Rachkevych
- Department of Obstetrics and Gynecology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
12
|
O'Gallagher K, Borg Cardona S, Hill C, Al-Saedi A, Shahed F, Floyd CN, McNeill K, Mills CE, Webb AJ. Grapefruit juice enhances the systolic blood pressure-lowering effects of dietary nitrate-containing beetroot juice. Br J Clin Pharmacol 2021; 87:577-587. [PMID: 32520418 DOI: 10.1111/bcp.14420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 01/07/2023] Open
Abstract
AIMS Dietary nitrate from sources such as beetroot juice lowers blood pressure (BP) via the nitrate-nitrite-nitric oxide (NO) pathway. However, NO and nitrite are inactivated via reoxidation to nitrate, potentially limiting their activity. Cytochrome P450-3A4 inhibition with troleandomycin prevents nitrite re-oxidation to nitrate in rodent liver. Grapefruit juice contains the CYP3A4 inhibitor furanocoumarin. We therefore hypothesized that grapefruit juice would enhance BP-lowering with beetroot juice by maintaining circulating [nitrite]. METHODS We performed a randomized, placebo-controlled, 7-hour crossover study in 11 healthy volunteers, attending on 3 occasions, receiving: a 70-mL shot of active beetroot juice (Beet-It) and either (i) 250 mL grapefruit juice (Active Beet+GFJ), or (ii) 250 mL water (Buxton, Active Beet+H2 O); or (iii) Placebo Beet+GFJ. RESULTS The addition of grapefruit juice to active beetroot juice lowered systolic BP (SBP): Active Beet+GFJ vs Active Beet+H2 O (P = .02), and pulse pressure, PP (P = .0003). Peak mean differences in SBP and PP were seen at T = 5 hours: -3.3 mmHg (95% confidence interval [CI] -6.43 to -0.15) and at T = 2.5 hours: -4.2 mmHg (95% CI -0.3 to -8.2), respectively. Contrary to the hypothesis, plasma [nitrite] was lower with Active Beet+GFJ vs Active Beet+H2 O (P = .006), as was salivary nitrite production (P = .002) and saliva volume (-0.34 mL/min [95% CI -0.05 to -0.68]). The taste score of Beet+GFJ was 1.4/10 points higher than Beet+H2 O (P = .03). CONCLUSION Grapefruit juice enhanced beetroot juice's effect on lowering SBP and PP despite decreasing plasma [nitrite]. Besides suggesting more complex mechanisms, there is potential for maximising the clinical benefit of dietary nitrate and targeting isolated systolic hypertension.
Collapse
Affiliation(s)
- Kevin O'Gallagher
- School of Cardiovascular Medicine and Sciences, Department of Clinical Pharmacology, King's College London British Heart Foundation Centre of Research Excellence, London, UK
- Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Sarah Borg Cardona
- School of Cardiovascular Medicine and Sciences, Department of Clinical Pharmacology, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Callum Hill
- School of Cardiovascular Medicine and Sciences, Department of Clinical Pharmacology, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Ali Al-Saedi
- School of Cardiovascular Medicine and Sciences, Department of Clinical Pharmacology, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Fawzia Shahed
- School of Cardiovascular Medicine and Sciences, Department of Clinical Pharmacology, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Christopher N Floyd
- School of Cardiovascular Medicine and Sciences, Department of Clinical Pharmacology, King's College London British Heart Foundation Centre of Research Excellence, London, UK
- Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Karen McNeill
- School of Cardiovascular Medicine and Sciences, Department of Clinical Pharmacology, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Charlotte E Mills
- Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Department of Nutritional Sciences, School of Life Course Sciences, King's College London, UK
- Current institution: Food and Nutritional Sciences, University of Reading, England, UK
| | - Andrew J Webb
- School of Cardiovascular Medicine and Sciences, Department of Clinical Pharmacology, King's College London British Heart Foundation Centre of Research Excellence, London, UK
- Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Chaturvedi S, Verma A, Saharan VA. Lipid Drug Carriers for Cancer Therapeutics: An Insight into Lymphatic Targeting, P-gp, CYP3A4 Modulation and Bioavailability Enhancement. Adv Pharm Bull 2020; 10:524-541. [PMID: 33072532 PMCID: PMC7539309 DOI: 10.34172/apb.2020.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
In the treatment of cancer, chemotherapy plays an important role though the efficacy of anti-cancer drug administered orally is limited, due to their poor solubility in physiological medium, inability to cross biological membrane, high Para-glycoprotein (P-gp) mediated drug efflux, and pre-systemic metabolism. These all factors cumulatively reduce drug exposure at the target site leading to multidrug resistance (MDR). Lipid based carriers systems has been explored to overcome solubility and permeability related issues of anti-cancer drugs. The lipid based formulations have also been reported to circumvent the effect of P-gp and CYP3A4. Further long chain triglycerides (LCT) has shown their ability to access Lymphatic route over Medium Chain Triglycerides, as the former has been extensively used for targeting anti-cancer drugs at proliferating cells through lymphatic route. Therefore this review tries to reflect the usefulness of lipid based drug carriers systems (viz. liposome, solid lipid nanoparticle, nano-lipid carriers, self-emulsifying, lipidic pro-drugs) in targeting lymphatic system and overcoming issues related to solubility and permeability of anti-cancer drugs. Moreover, we have also tried to reflect how critically lipid based carriers are important in maximizing therapeutic safety and efficacy of anti-cancer drugs.
Collapse
Affiliation(s)
- Shashank Chaturvedi
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anurag Verma
- Department of Pharmaceutics, School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Vikas Anand Saharan
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| |
Collapse
|
14
|
Fatunde OA, Brown SA. The Role of CYP450 Drug Metabolism in Precision Cardio-Oncology. Int J Mol Sci 2020; 21:E604. [PMID: 31963461 PMCID: PMC7014347 DOI: 10.3390/ijms21020604] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
As many novel cancer therapies continue to emerge, the field of Cardio-Oncology (or onco-cardiology) has become crucial to prevent, monitor and treat cancer therapy-related cardiovascular toxicity. Furthermore, given the narrow therapeutic window of most cancer therapies, drug-drug interactions are prevalent in the cancer population. Consequently, there is an increased risk of affecting drug efficacy or predisposing individual patients to adverse side effects. Here we review the role of cytochrome P450 (CYP450) enzymes in the field of Cardio-Oncology. We highlight the importance of cardiac medications in preventive Cardio-Oncology for high-risk patients or in the management of cardiotoxicities during or following cancer treatment. Common interactions between Oncology and Cardiology drugs are catalogued, emphasizing the impact of differential metabolism of each substrate drug on unpredictable drug bioavailability and consequent inter-individual variability in treatment response or development of cardiovascular toxicity. This inter-individual variability in bioavailability and subsequent response can be further enhanced by genomic variants in CYP450, or by modifications of CYP450 gene, RNA or protein expression or function in various 'omics' related to precision medicine. Thus, we advocate for an individualized approach to each patient by a multidisciplinary team with clinical pharmacists evaluating a treatment plan tailored to a practice of precision Cardio-Oncology. This review may increase awareness of these key concepts in the rapidly evolving field of Cardio-Oncology.
Collapse
Affiliation(s)
- Olubadewa A. Fatunde
- Department of Medicine, University of Texas Health Science Center at Tyler–CHRISTUS Good Shepherd Medical Center, Longview, TX 75601, USA
| | - Sherry-Ann Brown
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Generation of Human iPSC-Derived Intestinal Epithelial Cell Monolayers by CDX2 Transduction. Cell Mol Gastroenterol Hepatol 2019; 8:513-526. [PMID: 31228606 PMCID: PMC6722387 DOI: 10.1016/j.jcmgh.2019.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS To develop an effective and safe orally administered drug, it is important to predict its intestinal absorption rate, intestinal first-pass effect, and drug-drug interactions of orally administered drugs. However, there is no existing model to comprehensively predict the intestinal pharmacokinetics and drug-response of orally administered drugs. In this study, we attempted to generate homogenous and functional intestinal epithelial cells from human induced pluripotent stem (iPS) cells for pharmaceutical research. METHODS We generated almost-homogenous Villin- and zonula occludens-1 (ZO1)-positive intestinal epithelial cells by caudal-related homeobox transcription factor 2 (CDX2) transduction into human iPS cell-derived intestinal progenitor cells. RESULTS The drug absorption rates in human iPS cell-derived intestinal epithelial cell monolayers (iPS-IECM) were highly correlated with those in humans (R2=0.91). The expression levels of cytochrome P450 (CYP) 3A4, a dominant drug-metabolizing enzyme in the small intestine, in human iPS-IECM were similar to those in human small intestine in vivo. In addition, intestinal availability in human iPS-IECM (the fraction passing the gut wall: Fg=0.73) was more similar to that in the human small intestine in vivo (Fg=0.57) than to that in Caco-2 cells (Fg=0.99), a human colorectal adenocarcinoma cell line. Moreover, the drug-drug interaction and drug-food interaction could be observed by using our human iPS-IECM in the presence of an inducer and inhibitor of CYP3A4, i.e., rifampicin and grape fruit juice, respectively. CONCLUSION Taking these results together, we succeeded in generating the human iPS-IECM that can be applied to various intestinal pharmacokinetics and drug-response tests of orally administered drugs.
Collapse
|
16
|
Zhao C, Ying Z, Hao D, Zhang W, Ying X, Yang G. Investigating the bioavailabilities of olerciamide A via the rat's hepatic, gastric and intestinal first-pass effect models. Biopharm Drug Dispos 2019; 40:112-120. [PMID: 30739353 DOI: 10.1002/bdd.2175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/04/2018] [Accepted: 01/26/2019] [Indexed: 12/13/2022]
Abstract
Olerciamide A (OA) is a new alkaloid isolated from Portulaca oleracea L. that has been proved to possess a low bioavailability (F) after oral administration in rats in our previous study. Hence, to clarify the reasons for its low bioavailability, hepatic, gastric and intestinal first-pass effect models were established, and a rapid, sensitive UHPLC method was validated and applied for the determination after dosing via the femoral, portal, gastric and intestinal routes. As inhibitors of CYP3A and P-gp, verapamil, midazolam and borneol in low and high dose groups were selected to improve the low bioavailability of olerciamide A. Moreover, a rectal administration method was also carried out to improve the bioavailability of olerciamide A. The results showed that the bioavailability of olerciamide A using hepatic, gastric and intestinal routes were 92.16%, 84.88% and 5.76%, respectively. The areas under the plasma concentration-time curve from zero to infinity (AUC0 → ∞ ) were increased a little after being dosed with 10 and 30 mg/kg verapamil (p > 0.05), but markedly increased after being dosed with 0.4 and 1.2 mg/kg midazolam as well as 8 and 24 mg/kg borneol (p < 0.05). Besides, the AUC0 → ∞ values after the lower and upper rectal administrations were separately similar to the intravenous and intraportal administrations. Our study showed that the intestinal first-pass effect mainly contributed to the low bioavailability of olerciamide A in rats due to it being a substrate of CYP3A and P-gp as well as to its poor intestinal absorption.
Collapse
Affiliation(s)
- Chengcheng Zhao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, 116600, Dalian, China
| | - Zheming Ying
- School of the First Clinic, Liaoning University of Traditional Chinese Medicine, 110032, Shenyang, China
| | - Dong Hao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, 116600, Dalian, China
| | - Wenjie Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, 116600, Dalian, China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, 116600, Dalian, China
| | - Guanlin Yang
- School of the First Clinic, Liaoning University of Traditional Chinese Medicine, 110032, Shenyang, China
| |
Collapse
|
17
|
Daniel E, Digweed D, Quirke J, Voet B, Ross RJ, Davies M. Hydrocortisone Granules Are Bioequivalent When Sprinkled Onto Food or Given Directly on the Tongue. J Endocr Soc 2019; 3:847-856. [PMID: 30993254 PMCID: PMC6457279 DOI: 10.1210/js.2018-00380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/22/2019] [Indexed: 12/02/2022] Open
Abstract
Background Immediate-release hydrocortisone granules in capsules for opening in pediatric-appropriate doses have recently been licensed for children with adrenal insufficiency. This study evaluated the bioavailability of hydrocortisone granules administered as sprinkles onto soft food and yogurt compared with direct administration to the back of the tongue. Methods Randomized, 3-period crossover study in 18 dexamethasone-suppressed healthy men. In each period, the fasted participants received 5 mg hydrocortisone granules either directly to the back of the tongue or sprinkled onto soft food (applesauce), or yogurt, followed by 240 mL of water. Serum cortisol was measured by liquid chromatography tandem mass spectometry. Results The cortisol geometric mean maximum concentration (Cmax) and area under the curve (AUC) for direct administration, sprinkles onto yogurt, and sprinkles onto soft food were: Cmax 428, 426, 427 nmol/L and AUC0-inf 859, 886, 844 h × nmol/L, and AUC0-t 853, 882, 838 h × nmol/L respectively. The 90% CI for the ratios of Cmax, AUC0-inf and AUC0-t for administration with soft food or yogurt to direct administration were well within the bioequivalent range, 80% to 125%. Median time to Cmax (Tmax) was similar between methods of administration: 0.63 hours administered directly, 0.75 hours on soft food and 0.75 hours on yogurt. No adverse events occurred during the study. Conclusions Hydrocortisone granules administered as sprinkles onto soft food or yogurt but not mixed with these foods are bioequivalent to those administered directly to the back of the tongue. Carers, parents, or patients may choose to administer hydrocortisone granules either directly or sprinkled onto soft food or yogurt.
Collapse
Affiliation(s)
- Eleni Daniel
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Dena Digweed
- Diurnal Ltd, Cardiff Medicentre, Cardiff, United Kingdom
| | - Jo Quirke
- Diurnal Ltd, Cardiff Medicentre, Cardiff, United Kingdom
| | - Bernard Voet
- Diurnal Ltd, Cardiff Medicentre, Cardiff, United Kingdom
| | - Richard J Ross
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Madhu Davies
- Diurnal Ltd, Cardiff Medicentre, Cardiff, United Kingdom
| |
Collapse
|
18
|
Xie Y, Dilibero D, Chang DH. Review of Major Drug-Drug Interactions in Thoracic Transplantation. CURRENT TRANSPLANTATION REPORTS 2018. [DOI: 10.1007/s40472-018-0200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Dalwadi DA, Ozuna L, Harvey BH, Viljoen M, Schetz JA. Adverse Neuropsychiatric Events and Recreational Use of Efavirenz and Other HIV-1 Antiretroviral Drugs. Pharmacol Rev 2018; 70:684-711. [DOI: 10.1124/pr.117.013706] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
20
|
Li Y, Zhang B, Liu M, Zhang X, Shi D, Guo L, Duan J, Zhou X, Zhu H, Zhang Q. Further Study of Influence of Panax notoginseng on Intestinal Absorption Characteristics of Triptolide and Tripterine in Rats with Tripterygium wilfordii. Pharmacogn Mag 2018; 14:95-102. [PMID: 29576708 PMCID: PMC5858250 DOI: 10.4103/pm.pm_67_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/03/2017] [Indexed: 12/05/2022] Open
Abstract
Background: Tripterygium wilfordii (TW) is widely employed to treat rheumatoid arthritis and autoimmune disorders clinically, which, however, accompany with disturbing hepatotoxicity and nephrotoxicity. The previous research showed that Panax notoginseng (PN) compatibly and significantly reduces the TW-induced hepatotoxicity. Objective: To explore the underlying mechanism, the present study was designed to reveal the influence of PN on the intestinal absorption process of TW-derived active components in rat. Materials and Methods: An in situ single-pass intestinal perfusion technique was established and preformed to obtain the perfusate samples of triptolide (TP), tripterine (TE), TW extract, and TW-PN extract. A rapid and sensitive ultra-performance liquid-chromatography tandem mass spectrometry method was subsequently developed and validated to determine the concentrations of TP and TE in the perfusate samples. Then, the absorption parameters, effective permeability, absorption rate constant, and percentage of 10 cm intestinal absorption were calculated strictly. Results: The final data indicated that both TP and TE have no special absorption site in the intestine and are primarily absorbed in a passive manner. Otherwise, the absorption of TP was decreased from compatibility of PN, but the absorption of TE was enhanced. Conclusion: The absorption reduction of TP and absorption elevation of TE from TW initiated by the combination of PN are contributed to attenuate the toxicity and reinforce the therapeutic efficacy of TW. It is practically reasonable of usage of TW compatibility with PN clinically. SUMMARY Panax notoginseng (PN) regulated the absorption process of Tripterygium wilfordii (TW) in intestine Both triptolide (TP) and tripterine (TE), two typical components of TW, have no special absorption site in the intestine and are primarily absorbed in a passive manner PN decreased the absorption of TP and enhanced the absorption of TE in the intestine.
Abbreviations used: 10 cm% ABS: percentage of 10 cm intestinal absorption, DMARDs: Disease-modifying antirheumatic drugs, GU: Glycyrrhiza uralensis, Ka: Absorption rate constant, NSAIDs: Nonsteroidal anti-inflammatory drugs, Peff: Effective permeability, PN: Panax notoginseng, QC: Quality control, RA: Rheumatoid arthritis, RG: Rehmannia glutinosa, SPIP: Single-pass intestinal perfusion, TE: Tripterine, TP: Triptolide, TW: Tripterygium wilfordii, UPLC-MS/MS: Ultra-performance liquid-chromatography tandem mass spectrometry.
Collapse
Affiliation(s)
- Yiqun Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Benyong Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengzhu Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinlong Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Donglei Shi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liwei Guo
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xueping Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huaxu Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qichun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
21
|
Satoh D, Abe S, Kobayashi K, Nakajima Y, Oshimura M, Kazuki Y. Human and mouse artificial chromosome technologies for studies of pharmacokinetics and toxicokinetics. Drug Metab Pharmacokinet 2018; 33:17-30. [DOI: 10.1016/j.dmpk.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/29/2017] [Accepted: 12/21/2017] [Indexed: 12/27/2022]
|
22
|
Kim J, Park SH, Do KH, Kim D, Moon Y. Interference with mutagenic aflatoxin B1-induced checkpoints through antagonistic action of ochratoxin A in intestinal cancer cells: a molecular explanation on potential risk of crosstalk between carcinogens. Oncotarget 2018; 7:39627-39639. [PMID: 27119350 PMCID: PMC5129958 DOI: 10.18632/oncotarget.8914] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/05/2016] [Indexed: 12/16/2022] Open
Abstract
Foodborne aflatoxin B1 (AFB1) and ochratoxin A (OTA) cause genotoxic injury and subsequent tumor formation. As a biomarker of oncogenic stimulation by genotoxic mycotoxins, p53-triggered Mdm2 was assessed in intestinal cancer cells. AFB1 increased Mdm2 reporter expression in a dose-dependent manner. However, this was strongly antagonized by OTA treatment. As a positive transcription factor of Mdm2 expression, p53 levels were also increased by AFB1 alone and reduced by OTA. With marginal cell death responses, AFB1 induced p53-mediated S phase arrest and cell cycle-regulating target genes, which was completely suppressed by OTA. Although enterocyte-dominant CYP3A5 counteracted AFB1-induced DNA damage, expression of CYP3A5 was decreased by OTA or AFB1. Instead, OTA enhanced expression of another metabolic inactivating enzyme CYP3A4, attenuation of formation of AFB1-DNA adduct and p53-mediated cell cycle checking responses to the mutagens. Finally, the growth of intestinal cancer cells exposed to the mycotoxin mixture significantly exceeded the expected growth calculated from that of cells treated with each mycotoxin. Although AFB1-induced mutagen formation was decreased by OTA, interference with checkpoints through antagonistic action of OTA may contribute to the survival of tumor cells with deleterious mutations by genotoxic mycotoxins, potently increasing the risk of carcinogenesis.
Collapse
Affiliation(s)
- Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan, South Korea
| | - Seong-Hwan Park
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan, South Korea
| | - Kee Hun Do
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan, South Korea
| | - Dongwook Kim
- National Institute of Animal Science, RDA, Wanju, South Korea
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan, South Korea.,Research Institute for Basic Sciences and Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Pusan, South Korea
| |
Collapse
|
23
|
Kosaka M, Kosugi Y, Hirabayashi H. Risk Assessment Using Cytochrome P450 Time-Dependent Inhibition Assays at Single Time and Concentration in the Early Stage of Drug Discovery. J Pharm Sci 2017; 106:2839-2846. [DOI: 10.1016/j.xphs.2017.04.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 02/07/2023]
|
24
|
Oh ES, Choi C, Kim CO, Kim KH, Kim YN, Kim SJ, Park MS. Effects of clarithromycin on the pharmacokinetics of evogliptin in healthy volunteers. J Clin Pharm Ther 2017; 42:689-694. [DOI: 10.1111/jcpt.12604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/03/2017] [Indexed: 12/29/2022]
Affiliation(s)
- E. S. Oh
- Department of Pharmaceutical Medicine and Regulatory Sciences; Colleges of Medicine and Pharmacy; Yonsei University; Incheon Korea
| | - C. Choi
- Department of Clinical Pharmacology and Pediatrics; Severance Hospital; Yonsei University College of Medicine; Seoul Korea
| | - C. O. Kim
- Department of Clinical Pharmacology and Pediatrics; Severance Hospital; Yonsei University College of Medicine; Seoul Korea
| | - K. H. Kim
- Department of Pharmaceutical Medicine and Regulatory Sciences; Colleges of Medicine and Pharmacy; Yonsei University; Incheon Korea
| | - Y. N. Kim
- Department of Clinical Pharmacology and Pediatrics; Severance Hospital; Yonsei University College of Medicine; Seoul Korea
| | - S. J. Kim
- Department of Clinical Development; Dong-A ST Co., Ltd.; Seoul Korea
| | - M. S. Park
- Department of Pharmaceutical Medicine and Regulatory Sciences; Colleges of Medicine and Pharmacy; Yonsei University; Incheon Korea
- Department of Clinical Pharmacology and Pediatrics; Severance Hospital; Yonsei University College of Medicine; Seoul Korea
| |
Collapse
|
25
|
Mi J, Zhao M, Yang S, Jia Y, Wang Y, Wang B, Jin J, Wang X, Xiao Q, Hu J, Li Y. Identification of cytochrome P450 isoforms involved in the metabolism of Syl930, a selective S1PR 1 agonist acting as a potential therapeutic agent for autoimmune encephalitis. Drug Metab Pharmacokinet 2017; 32:53-60. [DOI: 10.1016/j.dmpk.2016.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
|
26
|
Cytochrome P450 and P-Glycoprotein-Mediated Interactions Involving African Herbs Indicated for Common Noncommunicable Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2582463. [PMID: 28250793 PMCID: PMC5307007 DOI: 10.1155/2017/2582463] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/26/2016] [Accepted: 01/04/2017] [Indexed: 12/26/2022]
Abstract
Herbal remedies are regularly used to complement conventional therapies in the treatment of various illnesses in Africa. This may be because they are relatively cheap and easily accessible and are believed by many to be safe, cause fewer side effects, and are less likely to cause dependency. On the contrary, many herbs have been shown to alter the pharmacokinetics of coadministered allopathic medicines and can either synergize or antagonize therapeutic effects as well as altering the toxicity profiles of these drugs. Current disease burden data point towards epidemiological transitions characterised by increasing urbanization and changing lifestyles, risk factors for chronic diseases like hypertension, diabetes, and cancer which often present as multimorbidities. As a result, we highlight African herb-drug interactions (HDIs) modulated via cytochrome P450 enzyme family (CYP) and P-glycoprotein (P-gp) and the consequences thereof in relation to antihypertensive, antidiabetic, and anticancer drugs. CYPs are enzymes which account for to up to 70% of drug metabolism while P-gp is an efflux pump that extrudes drug substrates out of cells. Consequently, regulation of the relative activity of both CYP and P-gp by African herbs influences the effective drug concentration at the site of action and modifies therapeutic outcomes.
Collapse
|
27
|
Effects of Hypericum perforatum hydroalcoholic extract, hypericin, and hyperforin on cytotoxicity and CYP3A4 mRNA expression in hepatic cell lines: a comparative study. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1702-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Chen R, Li L, Shen C, Huang C, Ma T, Meng X, Qian Z, Li Y, Li J. Intestinal transport of HDND-7, a novel hesperetin derivative, in in vitro MDCK cell and in situ single-pass intestinal perfusion models. Xenobiotica 2016; 47:719-730. [PMID: 27535101 DOI: 10.1080/00498254.2016.1214987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. Hesperetin (HDND) possesses extensive bioactivities, however, its poor solubility and low bioavailability limit its application. HDND-7, a derivative of HDND, has better solubility and high bioavailability. In this study, we investigated the intestinal absorption mechanisms of HDND-7. 2. MDCK cells were used to examine the transport mechanisms of HDND-7 in vitro, and a rat in situ intestinal perfusion model was used to characterize the absorption of HDND-7. The concentration of HDND-7 was determined by HPLC. 3. In MDCK cells, HDND-7 was effectively absorbed in a concentration-dependent manner in both directions. Moreover, HDND-7 showed pH-dependent and TEER-independent transport in both directions. The transport of HDND-7 was significantly reduced at 4 °C or in the presence of NaN3. Furthermore, the efflux of HDND-7 was apparently reduced in the presence of MRP2 inhibitors MK-571 or probenecid. However, P-gp inhibitor verapamil had no effect on the transport of HDND-7. The in situ intestinal perfusion study indicated HDND-7 was well-absorbed in four intestinal segments. Furthermore, MRP2 inhibitors may slightly increase the absorption of HDND-7 in jejunum. 4. In summary, all results indicated that HDND-7 might be absorbed mainly by passive diffusion via transcellular pathway, MRP2 but P-gp may participate in the efflux of HDND-7.
Collapse
Affiliation(s)
- Ruonan Chen
- a School of Pharmacy, Anhui Medical University , Hefei , China
| | - Lan Li
- a School of Pharmacy, Anhui Medical University , Hefei , China
| | - Chenlin Shen
- a School of Pharmacy, Anhui Medical University , Hefei , China
| | - Cheng Huang
- a School of Pharmacy, Anhui Medical University , Hefei , China
| | - Taotao Ma
- a School of Pharmacy, Anhui Medical University , Hefei , China
| | - Xiaoming Meng
- a School of Pharmacy, Anhui Medical University , Hefei , China
| | - Zhengyue Qian
- a School of Pharmacy, Anhui Medical University , Hefei , China
| | - Yangyang Li
- a School of Pharmacy, Anhui Medical University , Hefei , China
| | - Jun Li
- a School of Pharmacy, Anhui Medical University , Hefei , China
| |
Collapse
|
29
|
Black BT, Soden SE, Kearns GL, Jones BL. Clinical and Pharmacologic Considerations for Guanfacine Use in Very Young Children. J Child Adolesc Psychopharmacol 2016; 26:498-504. [PMID: 26894823 DOI: 10.1089/cap.2014.0159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Guanfacine, in the immediate release form, remains a commonly used medication for the treatment of clinically significant hyperactivity, impulsivity, or disruptive behaviors. This article reviews the available literature regarding guanfacine use in very young children (<6 years of age), and explores some of the factors that may uniquely impact the clinical pharmacology of guanfacine in very young children and that deserve consideration when it is used in this patient population. METHODS The authors performed electronic literature searches in PubMed through October 2015 using the terms attention-deficit/hyperactivity disorder, guanfacine, and alpha agonists. We also performed an informal review of the literature and used selected articles from relevant reference lists. The result was a broad, qualitative review of the literature, with a focus on specific factors regarding guanfacine use in very young children. RESULTS Despite the fact that guanfacine is commonly used in very young children, there is a paucity of published studies that looked specifically at its use in this population. In reviewing the pharmacology of guanfacine, there are specific factors that may play a unique role in its disposition in very young children. CONCLUSIONS Guanfacine is an important medication option in very young children; however, there is a significant pharmacologic "information gap," and further research is needed to help establish appropriate, safe, and effective dosing of guanfacine in this population.
Collapse
Affiliation(s)
- Benjamin T Black
- 1 Division of Developmental & Behavioral Sciences, Children's Mercy Hospital , Kansas City, Missouri
| | - Sarah E Soden
- 1 Division of Developmental & Behavioral Sciences, Children's Mercy Hospital , Kansas City, Missouri
| | - Gregory L Kearns
- 1 Division of Developmental & Behavioral Sciences, Children's Mercy Hospital , Kansas City, Missouri.,2 Arkansas Children's Hospital Research Institute , Arkansas Children's Hospital, Little Rock, Arkansas
| | - Bridgette L Jones
- 3 Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy Hospital , Kansas City, Missouri
| |
Collapse
|
30
|
Peters SA, Jones CR, Ungell AL, Hatley OJD. Predicting Drug Extraction in the Human Gut Wall: Assessing Contributions from Drug Metabolizing Enzymes and Transporter Proteins using Preclinical Models. Clin Pharmacokinet 2016; 55:673-96. [PMID: 26895020 PMCID: PMC4875961 DOI: 10.1007/s40262-015-0351-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intestinal metabolism can limit oral bioavailability of drugs and increase the risk of drug interactions. It is therefore important to be able to predict and quantify it in drug discovery and early development. In recent years, a plethora of models-in vivo, in situ and in vitro-have been discussed in the literature. The primary objective of this review is to summarize the current knowledge in the quantitative prediction of gut-wall metabolism. As well as discussing the successes of current models for intestinal metabolism, the challenges in the establishment of good preclinical models are highlighted, including species differences in the isoforms; regional abundances and activities of drug metabolizing enzymes; the interplay of enzyme-transporter proteins; and lack of knowledge on enzyme abundances and availability of empirical scaling factors. Due to its broad specificity and high abundance in the intestine, CYP3A is the enzyme that is frequently implicated in human gut metabolism and is therefore the major focus of this review. A strategy to assess the impact of gut wall metabolism on oral bioavailability during drug discovery and early development phases is presented. Current gaps in the mechanistic understanding and the prediction of gut metabolism are highlighted, with suggestions on how they can be overcome in the future.
Collapse
Affiliation(s)
- Sheila Annie Peters
- Translational Quantitative Pharmacology, BioPharma, R&D Global Early Development, Merck KGaA, Frankfurter Str. 250, F130/005, 64293, Darmstadt, Germany.
| | | | - Anna-Lena Ungell
- Investigative ADME, Non-Clinical Development, UCB New Medicines, BioPharma SPRL, Braine l'Alleud, Belgium
| | - Oliver J D Hatley
- Simcyp Limited (A Certara Company), Blades Enterprise Centre, Sheffield, UK
| |
Collapse
|
31
|
Cheng CYS, Slominski AT, Tuckey RC. Hydroxylation of 20-hydroxyvitamin D3 by human CYP3A4. J Steroid Biochem Mol Biol 2016; 159:131-41. [PMID: 26970587 PMCID: PMC4821771 DOI: 10.1016/j.jsbmb.2016.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/16/2016] [Accepted: 03/07/2016] [Indexed: 01/08/2023]
Abstract
20S-Hydroxyvitamin D3 [20(OH)D3] is the biologically active major product of the action of CYP11A1 on vitamin D3 and is present in human plasma. 20(OH)D3 displays similar therapeutic properties to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], but without causing hypercalcaemia and therefore has potential for development as a therapeutic drug. CYP24A1, the kidney mitochondrial P450 involved in inactivation of 1,25(OH)2D3, can hydroxylate 20(OH)D3 at C24 and C25, with the products displaying more potent inhibition of melanoma cell proliferation than 20(OH)D3. CYP3A4 is the major drug-metabolising P450 in liver endoplasmic reticulum and can metabolise other active forms of vitamin D, so we examined its ability to metabolise 20(OH)D3. We found that CYP3A4 metabolises 20(OH)D3 to three major products, 20,24R-dihydroxyvitamin D3 [20,24R(OH)2D3], 20,24S-dihydroxyvitamin D3 [20,24S(OH)2D3] and 20,25-dihydroxyvitamin D3 [20,25(OH)2D3]. 20,24R(OH)2D3 and 20,24S(OH)2D3, but not 20,25(OH)2D3, were further metabolised to trihydroxyvitamin D3 products by CYP3A4 but with low catalytic efficiency. The same three primary products, 20,24R(OH)2D3, 20,24S(OH)2D3 and 20,25(OH)2D3, were observed for the metabolism of 20(OH)D3 by human liver microsomes, in which CYP3A4 is a major CYP isoform present. Addition of CYP3A family-specific inhibitors, troleandomycin and azamulin, almost completely inhibited production of 20,24R(OH)2D3, 20,24S(OH)2D3 and 20,25(OH)2D3 by human liver microsomes, further supporting that CYP3A4 plays the major role in 20(OH)D3 metabolism by microsomes. Since both 20,24R(OH)2D3 and 20,25(OH)2D3 have previously been shown to display enhanced biological activity in inhibiting melanoma cell proliferation, our results show that CYP3A4 further activates, rather than inactivates, 20(OH)D3.
Collapse
Affiliation(s)
- Chloe Y S Cheng
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, AL, USA; VA Medical Center, Birmingham, AL, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
32
|
|
33
|
Karlgren M, Bergström CAS. How Physicochemical Properties of Drugs Affect Their Metabolism and Clearance. NEW HORIZONS IN PREDICTIVE DRUG METABOLISM AND PHARMACOKINETICS 2015. [DOI: 10.1039/9781782622376-00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this chapter the transport proteins and enzymes of importance for drug clearance are discussed. The primary organ for drug metabolism is the liver and to reach the intracellular compartment of hepatocytes, orally administered drugs must cross both the intestinal wall and the cell membrane of the liver cells. Transport proteins present in the cellular membrane may facilitate or hinder the compounds crossing these cellular barriers and hence will influence to what extent compounds will reach the enzymes. Here, the enzymes and transport proteins of importance for drug clearance are discussed. The molecular features of importance for drug interactions with transport proteins and enzymes are analyzed and the possibility to predict molecular features vulnerable to enzymatic degradation is discussed. From detailed analysis of the current literature it is concluded that for interaction, both with transport proteins and enzymes, lipophilicity plays a major role. In addition to this property, molecular properties such as hydrogen bond acceptors and donors, charge, aromaticity and molecular size can be used to distinguish between routes of clearance.
Collapse
Affiliation(s)
- Maria Karlgren
- Department of Pharmacy, Uppsala University Biomedical Centre P.O. Box 580, Husargatan 3 SE-75123 Uppsala Sweden
| | - Christel A. S. Bergström
- Department of Pharmacy, Uppsala University Biomedical Centre P.O. Box 580, Husargatan 3 SE-75123 Uppsala Sweden
| |
Collapse
|
34
|
Miller DA, Keen JM, Brough C, Ellenberger DJ, Cisneros M, Williams RO, McGinity JW. Bioavailability enhancement of a BCS IV compound via an amorphous combination product containing ritonavir. J Pharm Pharmacol 2015; 68:678-91. [DOI: 10.1111/jphp.12478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/28/2015] [Indexed: 12/29/2022]
Abstract
Abstract
Objectives
To evaluate the effect of ritonavir (RTV) co-administration on the bioavailability of an amorphous dispersion of acetyl-11-keto-beta-boswellic acid (AKBA) and to develop a pharmaceutically acceptable AKBA–RTV combination tablet.
Methods
A pharmacokinetic (PK) study in rats was conducted to evaluate the influence of RTV co-administration on the oral bioavailability of an AKBA amorphous dispersion. KinetiSol was utilized to enable production of an improved RTV formulation that facilitated the development of an AKBA–RTV combination tablet. Following in-vitro characterization, the PK performance of the tablets was evaluated in male beagles.
Key findings
Co-administration of RTV increased oral absorption of AKBA by about fourfold over the AKBA dispersion alone and approximately 24-fold over the pure compound. The improved RTV amorphous dispersion exhibited similar purity and neutral-phase dissolution to Norvir. The AKBA–RTV combination tablets yielded a substantial increase in AKBA's bioavailability in dogs.
Conclusions
Oral absorption of AKBA is substantially limited by intestinal CYP3A activity and poor aqueous solubility. Consequently, AKBA's oral bioavailability is maximized by administration from a supersaturating formulation in conjunction with a CYP3A inhibitor. The AKBA–RTV combination tablet presented herein represents a breakthrough in the oral delivery of the compound facilitating future use as a drug therapy for broad spectrum cancer treatment.
Collapse
Affiliation(s)
| | | | - Chris Brough
- DisperSol Technologies, Georgetown, TX, USA
- College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Daniel J Ellenberger
- DisperSol Technologies, Georgetown, TX, USA
- College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | | | - Robert O Williams
- College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - James W McGinity
- College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
35
|
Domitrović R, Potočnjak I. A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives. Arch Toxicol 2015; 90:39-79. [DOI: 10.1007/s00204-015-1580-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
|
36
|
Shi Y, Liu Y, Wei Z, Zhang Y, Zhang L, Jiang S, Xiong Y, Shen L, He L, Xing Q, Qin S. Hsa-miR-27a is involved in the regulation of CYP3A4 expression in human livers from Chinese Han population. Pharmacogenomics 2015; 16:1379-86. [DOI: 10.2217/pgs.15.82] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: The huge interindividual difference of CYP3A4 expression may contribute to the variability of drug response. Post-transcriptional regulation of CYP3A4 remains elusive although transcriptional regulation has been studied much more clearly. microRNAs (miRNAs) were reported to be one of factors to regulate the expression of CYP3A4 previously. Materials & methods: Based on the in silico prediction of 3′-UTR-bindind site of microRNA-27a (miR-27a), the transcriptional and post-transcriptional regulation of miR-27a were investigated through luciferase reporter assay, real-time PCR and immunoblot. Results: The significantly decrease of CYP3A4 3′-UTR-luciferase activity in human embryonic kidney 293 and Hep3B cells was detected after transfected with plasmid that expressed miRNA-27a in luciferase reporter assay. Correlation study was conducted in human livers (n = 26) and significant correlation has been discovered between miRNA-27a and CYP3A4 mRNA and protein level. Conclusion: Together, these findings suggest that miR-27a might be involved in the regulation of CYP3A4 gene expression.
Collapse
Affiliation(s)
- Ye Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
- Shanghai Genome Pilot Institutes for Genomics & Human Health, Shanghai 200030, PR China
| | - Yichen Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
- Shanghai Genome Pilot Institutes for Genomics & Human Health, Shanghai 200030, PR China
| | - Zhiyun Wei
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
- Shanghai Genome Pilot Institutes for Genomics & Human Health, Shanghai 200030, PR China
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| | - Yiting Zhang
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| | - Lirong Zhang
- Department of Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou 450052, PR China
| | - Songshan Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yuyu Xiong
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
- Shanghai Genome Pilot Institutes for Genomics & Human Health, Shanghai 200030, PR China
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
- Shanghai Genome Pilot Institutes for Genomics & Human Health, Shanghai 200030, PR China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
- Shanghai Genome Pilot Institutes for Genomics & Human Health, Shanghai 200030, PR China
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| | - Qinghe Xing
- Shanghai Genome Pilot Institutes for Genomics & Human Health, Shanghai 200030, PR China
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| | - Shengying Qin
- Shanghai Genome Pilot Institutes for Genomics & Human Health, Shanghai 200030, PR China
| |
Collapse
|
37
|
Subhani S, Jamil K. Molecular docking of chemotherapeutic agents to CYP3A4 in non-small cell lung cancer. Biomed Pharmacother 2015. [DOI: 10.1016/j.biopha.2015.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
38
|
No impact of vitamin D on the CYP3A biomarker 4β-hydroxycholesterol in patients with abnormal glucose regulation. PLoS One 2015; 10:e0121984. [PMID: 25835492 PMCID: PMC4383380 DOI: 10.1371/journal.pone.0121984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/04/2015] [Indexed: 01/21/2023] Open
Abstract
Purpose To investigate the effect of vitamin D3 on hepatic Cytochrome P450 enzyme (CYP) 3A4 in patients with abnormal glucose regulation using the endogenous marker 4β-hydroxycholesterol (4β-OHC):cholesterol ratio. Methods The present study took advantage of a trial primarily aiming to investigate the effect of vitamin D3 on beta cell function and insulin sensitivity in patients with abnormal glucose regulation. 44 subjects were randomized to receive vitamin D3, 30000 IU given orally once weekly or placebo for 8 weeks. The two sample t-test was used to test the means of the intra-individual differences of 4β-OHC:cholesterol ratio between the two groups. Results Mean (SD) 4β-OHC in the whole group of patients before and after the intervention was 26 (11) ng/ml and 26 (12). Mean (SD) 4β-OHC:cholesterol ratio in the whole group of patients before and after the intervention was 0.12 (0.046) and 0.13 (0.047). In the Vitamin D group mean (SD) serum 25-OH-vitamin D3 increased from 46 (16) to 85nM (13) during the corresponding time period. To investigate the impact of vitamin D3 on hepatic CYP3A4 we calculated the mean intra-individual differences in 4β-OHC:cholesterol ratio (delta 4β-OHC:cholesterol ratio) before versus after the intervention in the two treatment groups. The difference (95% CI) between delta 4β-OHC:cholesterol ratio in the control group and intervention group was -0.0010 (-0.0093, 0.0072), a difference being not statistically significant (p = 0.80). Conclusions We provide further evidence that vitamin D3 may not substantially affect hepatic CYP3A4. This does not exclude the possibility of an impact of intestinal first-pass metabolism of orally administered drugs which should be investigated. Trial Registration ClinicalTrials.gov NCT01497132
Collapse
|
39
|
Song W, Yu L, Peng Z. Targeted label-free approach for quantification of epoxide hydrolase and glutathione transferases in microsomes. Anal Biochem 2015; 478:8-13. [PMID: 25769418 DOI: 10.1016/j.ab.2015.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/24/2015] [Accepted: 03/02/2015] [Indexed: 11/29/2022]
Abstract
The aim of this study was to investigate the expression and organ distribution of cytochrome P450 (CYP450) enzymes, microsomal epoxide hydrolase (MEH), and microsomal glutathione-S-transferase (MGST 1, 2, 3) in human liver, lung, intestinal, and kidney microsomes by targeted peptide-based quantification using nano liquid chromatography-tandem multiple reaction monitoring (nano LC-MRM). Applying this method, we analyzed 16 human liver microsomes and pooled lung, kidney, and intestine microsomes. Nine of the CYP450s (CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5) could be quantified in liver. Except for CYP3A4 and 3A5 existing in intestine, other CYP450s had little content (<0.1 pmol/mg protein) in extrahepatic tissues. MEH and MGSTs could be quantified both in hepatic and in extrahepatic tissues. The highest concentrations of MEH and MGST 1, 2 were found in liver; conversely MGST 3 was abundant in human kidney and intestine compared to liver. The targeted proteomics assay described here can be broadly and efficiently utilized as a tool for investigating the targeted proteins. The method also provides novel CYP450s, MEH, and MGSTs expression data in human hepatic and extrahepatic tissues that will benefit rational approaches to evaluate metabolism in drug development.
Collapse
Affiliation(s)
- Wei Song
- Institute of Resource Biology and Biotechnology, Department of biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhihong Peng
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, Hubei University, Wuhan 430062, China.
| |
Collapse
|
40
|
Zhu HD, Gu N, Wang M, Kong HR, Zhou MT. Effects of capsicine on rat cytochrome P450 isoforms CYP1A2, CYP2C19, and CYP3A4. Drug Dev Ind Pharm 2015; 41:1824-8. [PMID: 25678312 DOI: 10.3109/03639045.2015.1011166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Due to the frequent consumption of capsaicin (CAP) and its current therapeutic application, the correct assessment of this compound is important from a public health standpoint. The purpose of this study was to find out whether CAP affects rat cytochrome P450 (CYP) enzymes (CYP1A2, CYP2C19, and CYP3A4) by using cocktail probe drugs in vivo. A cocktail solution at a dose of 5 mL/kg, which contained phenacetin (15 mg/kg), omeprazole (15 mg/kg), and midazolam (10 mg/kg), was given orally to rats treated for 7 d with oral administration of CAP. Blood samples were collected at a series of time-points and the concentrations of probe drugs in plasma were determined by HPLC-MS. The results showed that treatment with multiple doses of CAP had no significant effect on rat CYP1A2. However, CAP had a significant inhibitory effect on CYP2C19 and an inductive effect on CYP3A4. Therefore, caution is needed when CAP is co-administered with some CYP substrates clinically because of potential drug-CAP interactions.
Collapse
Affiliation(s)
- Hui-dan Zhu
- a The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Ni Gu
- a The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Meng Wang
- a The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Hong-ru Kong
- a The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Meng-tao Zhou
- a The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| |
Collapse
|
41
|
Khan S, Khan S, Baboota S, Ali J. Immunosuppressive drug therapy – biopharmaceutical challenges and remedies. Expert Opin Drug Deliv 2015; 12:1333-49. [DOI: 10.1517/17425247.2015.1005072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
42
|
Cherniakov I, Domb AJ, Hoffman A. Self-nano-emulsifying drug delivery systems: an update of the biopharmaceutical aspects. Expert Opin Drug Deliv 2015; 12:1121-33. [DOI: 10.1517/17425247.2015.999038] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Haider M, Mohamed M, Ali M. Formulation and In vitro/In vivo Evaluation of Buccoadhesive
Discs for Controlled Release of Calcium Channel Antagonist. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/ajdd.2014.210.231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Quantitative Assessment of Intestinal First-pass Metabolism of Oral Drugs Using Portal-vein Cannulated Rats. Pharm Res 2014; 32:604-16. [DOI: 10.1007/s11095-014-1489-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/15/2014] [Indexed: 01/09/2023]
|
45
|
Wanwimolruk S, Prachayasittikul V. Cytochrome P450 enzyme mediated herbal drug interactions (Part 1). EXCLI JOURNAL 2014; 13:347-91. [PMID: 26417265 PMCID: PMC4463967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 03/20/2014] [Indexed: 10/29/2022]
Abstract
It is well recognized that herbal supplements or herbal medicines are now commonly used. As many patients taking prescription medications are concomitantly using herbal supplements, there is considerable risk for adverse herbal drug interactions. Such interactions can enhance the risk for an individual patient, especially with regard to drugs with a narrow therapeutic index such as warfarin, cyclosporine A and digoxin. Herbal drug interactions can alter pharmacokinetic or/and pharmacodynamic properties of administered drugs. The most common pharmacokinetic interactions usually involve either the inhibition or induction of the metabolism of drugs catalyzed by the important enzymes, cytochrome P450 (CYP). The aim of the present article is to provide an updated review of clinically relevant metabolic CYP-mediated drug interactions between selected herbal supplements and prescription drugs. The commonly used herbal supplements selected include Echinacea, Ginkgo biloba, garlic, St. John's wort, goldenseal, and milk thistle. To date, several significant herbal drug interactions have their origins in the alteration of CYP enzyme activity by various phytochemicals. Numerous herbal drug interactions have been reported. Although the significance of many interactions is uncertain but several interactions, especially those with St. John's wort, may have critical clinical consequences. St. John's wort is a source of hyperforin, an active ingredient that has a strong affinity for the pregnane xenobiotic receptor (PXR). As a PXR ligand, hyperforin promotes expression of CYP3A4 enzymes in the small intestine and liver. This in turn causes induction of CYP3A4 and can reduce the oral bioavailability of many drugs making them less effective. The available evidence indicates that, at commonly recommended doses, other selected herbs including Echinacea, Ginkgo biloba, garlic, goldenseal and milk thistle do not act as potent or moderate inhibitors or inducers of CYP enzymes. A good knowledge of the mechanisms of herbal drug interactions is necessary for assessing and minimizing clinical risks. These processes help prediction of interactions between herbal supplements and prescription drugs. Healthcare professionals should remain vigilant for potential interactions between herbal supplements/medicines and prescription drugs, especially for drugs with a narrow therapeutic index are used.
Collapse
Affiliation(s)
- Sompon Wanwimolruk
- Center for Innovation Development and Technology Transfer, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand,*To whom correspondence should be addressed: Sompon Wanwimolruk, Center for Innovation Development and Technology Transfer, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand, Tel.: +66 2 441 4370, Fax: +66 2 441 4380, E-mail:
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
46
|
Wei Z, Jiang S, Zhang Y, Wang X, Peng X, Meng C, Liu Y, Wang H, Guo L, Qin S, He L, Shao F, Zhang L, Xing Q. The effect of microRNAs in the regulation of human CYP3A4: a systematic study using a mathematical model. Sci Rep 2014; 4:4283. [PMID: 24594634 PMCID: PMC3942699 DOI: 10.1038/srep04283] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/17/2014] [Indexed: 12/26/2022] Open
Abstract
CYP3A4 metabolizes more than 50% of the drugs on the market. The large inter-individual differences of CYP3A4 expression may contribute to the variability of human drug responses. Post-transcriptional regulation of CYP3A4 is poorly understood, whereas transcriptional regulation has been studied much more thoroughly. In this study, we used multiple software programs to predict miRNAs that might bind to CYP3A4 and identified 112 potentially functional miRNAs. Then a luciferase reporter system was used to assess the effect of the overexpression of each potentially functional miRNA in HEK 293T cells. Fourteen miRNAs that significantly decreased reporter activity were measured in human liver samples (N = 27) as candidate miRNAs. To establish a more effective way to analyze in vivo data for miRNA candidates, the relationship between functional miRNA and target mRNA was modeled mathematically. Taking advantage of this model, we found that hsa-miR-577, hsa-miR-1, hsa-miR-532-3p and hsa-miR-627 could significantly downregulate the translation efficiency of CYP3A4 mRNA in liver. This study used in silico, in vitro and in vivo methods to progressively screen functional miRNAs for CYP3A4 and to enhance our understanding of molecular events underlying the large inter-individual differences of CYP3A4 expression in human populations.
Collapse
Affiliation(s)
- Zhiyun Wei
- 1] Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China [2]
| | - Songshan Jiang
- 1] State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China [2]
| | - Yiting Zhang
- 1] Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China [2] Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Xiaofei Wang
- Department of Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou 450052, PR China
| | - Xueling Peng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Chunjie Meng
- 1] Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China [2] Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Yichen Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Honglian Wang
- 1] Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China [2] Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Luo Guo
- 1] Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China [2] Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Shengying Qin
- 1] Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China [2] Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Lin He
- 1] Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China [2] Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Fengmin Shao
- Department of Urology, People's Hospital of Henan Province, Zhengzhou 450003, PR China
| | - Lirong Zhang
- Department of Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou 450052, PR China
| | - Qinghe Xing
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| |
Collapse
|
47
|
Xu M, Ju W, Hao H, Wang G, Li P. Cytochrome P450 2J2: distribution, function, regulation, genetic polymorphisms and clinical significance. Drug Metab Rev 2014; 45:311-52. [PMID: 23865864 DOI: 10.3109/03602532.2013.806537] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytochrome P450 2J2 (CYP2J2) is an enzyme mainly found in human extrahepatic tissues, with predominant expression in the cardiovascular systems and lower levels in the intestine, kidney, lung, pancreas, brain, liver, etc. During the past 15 years, CYP2J2 has attracted much attention for its epoxygenase activity in arachidonic acid (AA) metabolism. It converts AA to four epoxyeicosatrienoic acids (EETs) that have various biological effects, especially in the cardiovascular systems. In recent publications, CYP2J2 is shown highly expressed in various human tumor cells, and its EET metabolites are demonstrated to implicate in the pathologic development of human cancers. CYP2J2 is also a human CYP that involved in phase I xenobiotics metabolism. Antihistamine drugs and many other compounds were identified as the substrates of CYP2J2, and studies have demonstrated that these substrates have a broad structural diversity. CYP2J2 is found not readily induced by known P450 inducers; however, its expression could be regulated in some pathological conditions, might through the activator protein-1(AP-1), the AP-1-like element and microRNA let-7b. Several genetic mutations in the CYP2J2 gene have been identified in humans, and some of them have been shown to have potential associations with some diseases. With the increasing awareness of its roles in cancer disease and drug metabolism, studies about CYP2J2 are still going on, and various inhibitors of CYP2J2 have been determined. Further studies are needed to delineate the roles of CYP2J2 in disease pathology, drug development and clinical practice.
Collapse
Affiliation(s)
- Meijuan Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | | | | | | | | |
Collapse
|
48
|
Yadav V, Gaisford S, Merchant HA, Basit AW. Colonic bacterial metabolism of corticosteroids. Int J Pharm 2013; 457:268-74. [DOI: 10.1016/j.ijpharm.2013.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/12/2013] [Accepted: 09/15/2013] [Indexed: 12/31/2022]
|
49
|
Singh R, Panduri J, Kumar D, Kumar D, Chandsana H, Ramakrishna R, Bhatta RS. Evaluation of memory enhancing clinically available standardized extract of Bacopa monniera on P-glycoprotein and cytochrome P450 3A in Sprague-Dawley rats. PLoS One 2013; 8:e72517. [PMID: 24015255 PMCID: PMC3756011 DOI: 10.1371/journal.pone.0072517] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 07/10/2013] [Indexed: 11/18/2022] Open
Abstract
Bacopa monniera is a traditional Ayurvedic herbal medicine used to treat various mental ailments from ancient times. Recently, chemically standardized alcoholic extract of Bacopa monniera (BM) has been developed and currently available as over the counter herbal remedy for memory enhancement in children and adults. However, the consumption of herbal drugs has been reported to alter the expression of drug metabolizing enzymes and membrane transporters. Present study in male Sprague-Dawley rat was performed to evaluate the effect of memory enhancing standardized extract of BM on hepatic and intestinal cytochrome P450 3A and P-glycoprotein expression and activity. The BM (31 mg/kg/day) was orally administered for one week in BM pre-treated group while the control group received the same amount of vehicle for the same time period. The BM treatment decreased the cytochrome P450 3A (CYP3A) mediated testosterone 6β-hydroxylation activity of the liver and intestine by 2 and 1.5 fold, respectively compared to vehicle treated control. Similarly pretreatment with BM extract decreased the expression of intestinal P-glycoprotein (Pgp) as confirmed by Western blot analysis but did not alter the expression of hepatic Pgp. To investigate whether this BM pretreatment mediated decrease in activity of CYP3A and Pgp would account for the alteration of respective substrate or not, pharmacokinetic study with carbamazepine and digoxin was performed in BM pre-treated rats and vehicle treated rats. Carbamazepine and digoxin were used as CYP3A and Pgp probe drugs, respectively. Significant increase in AUC and Cmax of carbamazepine (4 and 1.8 fold) and digoxin (1.3 and 1.2 fold), respectively following the BM pre-treatment confirmed the down regulation of CYP3A and Pgp.
Collapse
Affiliation(s)
- Rajbir Singh
- Pharmacokinetics and Metabolism Division. CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Jagadeesh Panduri
- National Institute of Pharmaceutical Education and Research, Raibarelly, Uttar Pradesh, India
| | - Devendra Kumar
- Pharmacokinetics and Metabolism Division. CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Deepak Kumar
- Pharmacokinetics and Metabolism Division. CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Hardik Chandsana
- Pharmacokinetics and Metabolism Division. CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Rachumallu Ramakrishna
- Pharmacokinetics and Metabolism Division. CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Rabi Sankar Bhatta
- Pharmacokinetics and Metabolism Division. CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
50
|
Pyrosequencing to identify homogeneous phenomenon when using recipients/donors with different CYP3A5*3 genotypes in living donor liver transplantation. PLoS One 2013; 8:e71314. [PMID: 23951129 PMCID: PMC3738598 DOI: 10.1371/journal.pone.0071314] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/26/2013] [Indexed: 01/10/2023] Open
Abstract
This study used pyrosequencing to determine the proportional distribution of CYP3A5*3 genotypes to further confirm the homogeneous phenomenon that is observed when recipients and donors in living donor liver transplantation (LDLT) have a different single nucleotide polymorphism (SNP) genotype. We enrolled 42 recipient/living donor pairs and the SNPs of CYP3A5*3 were identified by polymerase chain reaction-restriction fragment length polymorphism. We performed 120 liver graft biopsies as part of clinical investigations after LDLT. Pyrosequencing of the CYP3A5*3 SNPs revealed that among the 16 recipients with the G/G genotype, 94.68% had the G and 5.32% the A allele. Among the 14 recipients with the A/G genotype, 78.08% had the G and 21.92% the A allele, and among the 12 recipients with the A/A genotype, 18.45% had the G and 81.55% the A allele. Among the 12 donors with the G/G genotype, 93.85% had the G and 6.14% the A allele. Among the 26 donors with the A/G genotype, 75.73% had the G and 24.27% the A allele, and among the 4 donors with the A/A genotype, 11.09% had the G and 88.91% the A allele. There were a total of 120 liver graft biopsy samples; among the 37 recipients with the G/G genotype, 89.74% had the G and 10.26% the A allele, among the 70 recipients with the A/G genotype, 71.57% had the G and 28.43% the A allele, and among the 13 recipients with the A/A genotype, 48.25% had the G and 51.75% the A allele. The proportional distribution of G and A alleles of the CYP3A5*3 SNP between recipients/donors and liver grafts after LDLT was significantly different (p<0.001). Pyrosequencing was useful in identifying detailed proportional changes of the CYP3A5*3 SNP allele distribution, and to confirm the homogeneous phenomenon when recipients and donors in LDLT have a different genotype.
Collapse
|