1
|
Kohlmaier B, Skok K, Lackner C, Haselrieder G, Müller T, Sailer S, Zschocke J, Keller MA, Knisely AS, Janecke AR. Steatotic liver disease associated with 2,4-dienoyl-CoA reductase 1 deficiency. Int J Obes (Lond) 2024:10.1038/s41366-024-01634-z. [PMID: 39277655 DOI: 10.1038/s41366-024-01634-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is considered multifactorial with a number of predisposing gene polymorphisms known. METHODS The occurrence of MASLD in 7 and 10 year old siblings, one without classical risk factors and one with type 2 diabetes suggested a monogenic etiology and prompted next-generation sequencing. Exome sequencing was performed in the proband, both parents and both siblings. The impact of a likely disease-causing DNA variant was assessed on the transcript and protein level. RESULTS Two siblings have hepatomegaly, elevated serum transaminase activity, and steatosis and harbor a homozygous DECR1 splice-site variant, c.330+3A>T. The variant caused DECR1 transcript decay. Immunostaining demonstrated lack of DECR1 in patient liver. CONCLUSIONS These patients may represent the first individuals with DECR1 deficiency, then defining within MASLD an autosomal-recessive entity, well corresponding to the reported steatotic liver disease in Decr1 knockout mice. DECR1 may need to be considered in the genetic work-up of MASLD.
Collapse
Affiliation(s)
- Benno Kohlmaier
- Department of General Paediatrics, Medical University of Graz, 8010, Graz, Austria
| | - Kristijan Skok
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
| | - Carolin Lackner
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
| | - Greta Haselrieder
- Department of Paediatrics I, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Thomas Müller
- Department of Paediatrics I, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Sabrina Sailer
- Institute of Human Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - A S Knisely
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010, Graz, Austria.
| | - Andreas R Janecke
- Department of Paediatrics I, Medical University of Innsbruck, 6020, Innsbruck, Austria.
- Institute of Human Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
2
|
Murray GC, Bais P, Hatton CL, Tadenev ALD, Hoffmann BR, Stodola TJ, Morelli KH, Pratt SL, Schroeder D, Doty R, Fiehn O, John SWM, Bult CJ, Cox GA, Burgess RW. Mouse models of NADK2 deficiency analyzed for metabolic and gene expression changes to elucidate pathophysiology. Hum Mol Genet 2022; 31:4055-4074. [PMID: 35796562 PMCID: PMC9703942 DOI: 10.1093/hmg/ddac151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
NADK2 encodes the mitochondrial form of nicotinamide adenine dinucleotide (NAD) kinase, which phosphorylates NAD. Rare recessive mutations in human NADK2 are associated with a syndromic neurological mitochondrial disease that includes metabolic changes, such as hyperlysinemia and 2,4 dienoyl CoA reductase (DECR) deficiency. However, the full pathophysiology resulting from NADK2 deficiency is not known. Here, we describe two chemically induced mouse mutations in Nadk2-S326L and S330P-which cause severe neuromuscular disease and shorten lifespan. The S330P allele was characterized in detail and shown to have marked denervation of neuromuscular junctions by 5 weeks of age and muscle atrophy by 11 weeks of age. Cerebellar Purkinje cells also showed progressive degeneration in this model. Transcriptome profiling on brain and muscle was performed at early and late disease stages. In addition, metabolomic profiling was performed on the brain, muscle, liver and spinal cord at the same ages and on plasma at 5 weeks. Combined transcriptomic and metabolomic analyses identified hyperlysinemia, DECR deficiency and generalized metabolic dysfunction in Nadk2 mutant mice, indicating relevance to the human disease. We compared findings from the Nadk model to equivalent RNA sequencing and metabolomic datasets from a mouse model of infantile neuroaxonal dystrophy, caused by recessive mutations in Pla2g6. This enabled us to identify disrupted biological processes that are common between these mouse models of neurological disease, as well as those processes that are gene-specific. These findings improve our understanding of the pathophysiology of neuromuscular diseases and describe mouse models that will be useful for future preclinical studies.
Collapse
Affiliation(s)
- G C Murray
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - P Bais
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
| | - C L Hatton
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
| | - A L D Tadenev
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
| | - B R Hoffmann
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
| | - T J Stodola
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
| | - K H Morelli
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - S L Pratt
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - D Schroeder
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
| | - R Doty
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
| | - O Fiehn
- West Coast Metabolomics Center, University of California Davis, 451 Health Science Dr., Davis, CA 95618, USA
| | - S W M John
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - C J Bult
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - G A Cox
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - R W Burgess
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
3
|
Liu S, Huang Q, Chen C, Song Y, Zhang X, Dong W, Zhang W, Zhao B, Nan B, Zhang J, Shen H, Guo X, Deng F. Joint effect of indoor size-fractioned particulate matters and black carbon on cardiopulmonary function and relevant metabolic mechanism: A panel study among school children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119533. [PMID: 35618146 DOI: 10.1016/j.envpol.2022.119533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/07/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Indoor particulate matter (PM) and black carbon (BC) are associated with adverse cardiopulmonary effect. However, the cumulative and interactive effects of the mixture of size-fractioned PMs and BC on cardiopulmonary function are not well understood, and the underlying biological mechanisms remain unclear. This repeated-measure study was conducted to assess the joint cardiopulmonary effect and metabolic mechanisms of multiple-size particles and BC among 46 children. PM0.5, PM1, PM2.5, PM5, PM10 and BC were monitored for 5 weekdays. Cardiorespiratory function measurements and urine samples collection were conducted three times. Untargeted-metabolomics and meet-in-metabolite approach were applied to mechanism investigation. Bayesian machine kernel regression was adopted to analyze associations among PMs, cardiopulmonary function and metabolites. Lung function and heart rate variability significantly decreased with the increased PMs and BC co-exposure (p < 0.05). The effective particles were BC, PM1-2.5 and PM0.5 in turn. No interaction effects of different particles on cardiopulmonary function were observed at different lag days. BC-related glucose and fatty acid increase, and PM1-2.5-related branched-chain amino acid degradation were primarily observed. Other metabolisms were successively disturbed. The greatest joint effects of PMs and BC on metabolism were mainly at lag0 and lag01 day. They occurred earlier than the strongest effects on cardiopulmonary function, which were at lag01 and lag02 day. BC, PM1-2.5 and PM0.5 were mainly associated with cardiorespiratory indices by disturbing amino acids, glucose, lipid, isoflavone and purine metabolism. Mitochondrial productivity and antioxidation reduction are pivotal to the relevant metabolic alterations. More attention should be paid to BC and smaller-size PMs to control indoor PM pollution and its adverse effect on children.
Collapse
Affiliation(s)
- Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Chen Chen
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, 100084, China
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Xi Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Wei Dong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Bin Zhao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, 100084, China
| | - Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.
| |
Collapse
|
4
|
Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schiöth HB. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev 2022; 74:506-551. [PMID: 35710135 DOI: 10.1124/pharmrev.121.000408] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal β -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.
Collapse
Affiliation(s)
- Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Janis Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Didi Nordberg
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Misty M Attwood
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Stefan Smesny
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Zumrut Duygu Sen
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - An Chi Guo
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Eponine Oler
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Siyang Tian
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Jiamin Zheng
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - David S Wishart
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Helgi B Schiöth
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| |
Collapse
|
5
|
Liu W, Wang X, Liu Y, Fang S, Wu Z, Han C, Shi W, Bao Y. Effects of early florfenicol exposure on glutathione signaling pathway and PPAR signaling pathway in chick liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113529. [PMID: 35487170 DOI: 10.1016/j.ecoenv.2022.113529] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Florfenicol (FFC) is a common antibiotic for animals. The nonstandard and excessive use of FFC can cause veterinary drug residues in animals, pollute soil and marine environment, and even threaten human health. Therefore, it is necessary to study the toxicity and side effects of FFC on animals. Our previous studies have proved that FFC can cause liver injury in chicks, but there are few in-depth studies on the mechanism of FFC causing liver injury at the level of signaling pathway in chicks. Therefore, transcriptome and proteome sequencing were performed and combined analysis was performed. Sequencing results showed that 1989 genes and 917 proteins were significantly changed in chick livers after FFC exposure. These genes and proteins are related to redox, glutathione transferase activity and lipid metabolism. There are 9 significantly different genes and 7 significantly different proteins in glutathione signaling pathway. Oxidative stress may occur in the liver of chicks through the change of activation state of glutathione signaling pathway. And there are 13 significantly different genes and 18 significantly different proteins in PPAR signaling pathway. The changes of PPAR signaling pathway may induce lipid metabolism disorder in liver. The verification results of qPCR and PRM were consistent with the sequencing results. We also detected GSH-Px, GSH, GST, TG, TC and ANDP levels in liver. These changes of biochemical indicators directly confirmed oxidative stress and lipid metabolism disorders were occurred in the livers of chicks treated by FFC. In conclusion, FFC could induce liver injury in chicks by regulating the expression levels of significantly different genes and proteins in glutathione signaling pathway and PPAR signaling pathway.
Collapse
Affiliation(s)
- Wei Liu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Ying Liu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Siyuan Fang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Zhanjun Wu
- Institute of Grain and Oil Crops of Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Chao Han
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding 071001, China.
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding 071001, China.
| |
Collapse
|
6
|
Ruiz-Sala P, Peña-Quintana L. Biochemical Markers for the Diagnosis of Mitochondrial Fatty Acid Oxidation Diseases. J Clin Med 2021; 10:jcm10214855. [PMID: 34768374 PMCID: PMC8584803 DOI: 10.3390/jcm10214855] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial fatty acid β-oxidation (FAO) contributes a large proportion to the body’s energy needs in fasting and in situations of metabolic stress. Most tissues use energy from fatty acids, particularly the heart, skeletal muscle and the liver. In the brain, ketone bodies formed from FAO in the liver are used as the main source of energy. The mitochondrial fatty acid oxidation disorders (FAODs), which include the carnitine system defects, constitute a group of diseases with several types and subtypes and with variable clinical spectrum and prognosis, from paucisymptomatic cases to more severe affectations, with a 5% rate of sudden death in childhood, and with fasting hypoketotic hypoglycemia frequently occurring. The implementation of newborn screening programs has resulted in new challenges in diagnosis, with the detection of new phenotypes as well as carriers and false positive cases. In this article, a review of the biochemical markers used for the diagnosis of FAODs is presented. The analysis of acylcarnitines by MS/MS contributes to improving the biochemical diagnosis, both in affected patients and in newborn screening, but acylglycines, organic acids, and other metabolites are also reported. Moreover, this review recommends caution, and outlines the differences in the interpretation of the biomarkers depending on age, clinical situation and types of samples or techniques.
Collapse
Affiliation(s)
- Pedro Ruiz-Sala
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma Madrid, CIBERER, IDIPAZ, 28049 Madrid, Spain;
| | - Luis Peña-Quintana
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Mother and Child Insular University Hospital Complex, Asociación Canaria para la Investigación Pediátrica (ACIP), CIBEROBN, University Institute for Research in Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
- Correspondence:
| |
Collapse
|
7
|
Nassar ZD, Mah CY, Dehairs J, Burvenich IJG, Irani S, Centenera MM, Helm M, Shrestha RK, Moldovan M, Don AS, Holst J, Scott AM, Horvath LG, Lynn DJ, Selth LA, Hoy AJ, Swinnen JV, Butler LM. Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis. eLife 2020; 9:e54166. [PMID: 32686647 PMCID: PMC7386908 DOI: 10.7554/elife.54166] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/16/2020] [Indexed: 12/27/2022] Open
Abstract
Fatty acid β-oxidation (FAO) is the main bioenergetic pathway in human prostate cancer (PCa) and a promising novel therapeutic vulnerability. Here we demonstrate therapeutic efficacy of targeting FAO in clinical prostate tumors cultured ex vivo, and identify DECR1, encoding the rate-limiting enzyme for oxidation of polyunsaturated fatty acids (PUFAs), as robustly overexpressed in PCa tissues and associated with shorter relapse-free survival. DECR1 is a negatively-regulated androgen receptor (AR) target gene and, therefore, may promote PCa cell survival and resistance to AR targeting therapeutics. DECR1 knockdown selectively inhibited β-oxidation of PUFAs, inhibited proliferation and migration of PCa cells, including treatment resistant lines, and suppressed tumor cell proliferation and metastasis in mouse xenograft models. Mechanistically, targeting of DECR1 caused cellular accumulation of PUFAs, enhanced mitochondrial oxidative stress and lipid peroxidation, and induced ferroptosis. These findings implicate PUFA oxidation via DECR1 as an unexplored facet of FAO that promotes survival of PCa cells.
Collapse
Grants
- Early Career Fellowship,1138648 National Health and Medical Research Council
- Project Grants C16/15/073 and C32/17/052 KU Leuven
- Future Fellowship,FT130101004 Australian Research Council
- Beat Cancer Fellowship,PRF1117 Cancer Council South Australia
- Revolutionary Team Award,MRTA3 Movember Foundation
- Project Grant,1121057 National Health and Medical Research Council
- Project Grant,1100626 National Health and Medical Research Council
- Fellowship,1084178 National Health and Medical Research Council
- Young Investigator Award,YI 1417 Prostate Cancer Foundation of Australia
- Project Grant,1164798 Cure Cancer Australia Foundation
- Group Leader Award EMBL Australia
- Robinson Fellowship University of Sydney
- Project Grants G.0841.15 and G.0C22.19N Fonds Wetenschappelijk Onderzoek
- 1138648 National Health and Medical Research Council
- 1121057 National Health and Medical Research Council
- 1100626 National Health and Medical Research Council
- 1084178 National Health and Medical Research Council
- YI 1417 Prostate Cancer Foundation of Australia
- 1164798 Cure Cancer Australia Foundation
- FT130101004 Australian Research Council
- PRF1117 Cancer Council South Australia
- MRTA3 Movember Foundation
- Freemasons Foundation Centre for Men's Health, University of Adelaide
Collapse
Affiliation(s)
- Zeyad D Nassar
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Chui Yan Mah
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Jonas Dehairs
- KU Leuven- University of Leuven, LKI- Leuven Cancer Institute, Department of Oncology, Laboratory of Lipid Metabolism and CancerLeuvenBelgium
| | - Ingrid JG Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe UniversityMelbourneAustralia
| | - Swati Irani
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Margaret M Centenera
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Madison Helm
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Raj K Shrestha
- Dame Roma Mitchell Cancer Research Laboratories, University of AdelaideAdelaideAustralia
| | - Max Moldovan
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Anthony S Don
- NHMRC Clinical Trials Centre, and Centenary Institute, The University of SydneyCamperdownAustralia
| | - Jeff Holst
- Translational Cancer Metabolism Laboratory, School of Medical Sciences and Prince of Wales Clinical School, UNSW SydneySydneyAustralia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe UniversityMelbourneAustralia
| | - Lisa G Horvath
- Garvan Institute of Medical Research, NSW 2010; University of Sydney, NSW 2006; and University of New South WalesDarlinghurstAustralia
| | - David J Lynn
- South Australian Health and Medical Research InstituteAdelaideAustralia
- College of Medicine and Public Health, Flinders UniversityBedford ParkAustralia
| | - Luke A Selth
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- Dame Roma Mitchell Cancer Research Laboratories, University of AdelaideAdelaideAustralia
- College of Medicine and Public Health, Flinders UniversityBedford ParkAustralia
| | - Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of SydneyCamperdownAustralia
| | - Johannes V Swinnen
- KU Leuven- University of Leuven, LKI- Leuven Cancer Institute, Department of Oncology, Laboratory of Lipid Metabolism and CancerLeuvenBelgium
| | - Lisa M Butler
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| |
Collapse
|
8
|
Simond AM, Muller WJ. In vivo modeling of the EGFR family in breast cancer progression and therapeutic approaches. Adv Cancer Res 2020; 147:189-228. [PMID: 32593401 DOI: 10.1016/bs.acr.2020.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Modeling breast cancer through the generation of genetically engineered mouse models (GEMMs) has become the gold standard in the study of human breast cancer. Notably, the in vivo modeling of the epidermal growth factor receptor (EGFR) family has been key to the development of therapeutics and has helped better understand the signaling pathways involved in cancer initiation, progression and metastasis. The HER2/ErbB2 receptor is a member of the EGFR family and 20% of breast cancers are found to belong in the HER2-positive histological subtype. Historical and more recent advances in the field have shaped our understanding of HER2-positive breast cancer signaling and therapeutic approaches.
Collapse
Affiliation(s)
- Alexandra M Simond
- Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada; Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Leishmania Encodes a Bacterium-like 2,4-Dienoyl-Coenzyme A Reductase That Is Required for Fatty Acid β-Oxidation and Intracellular Parasite Survival. mBio 2020; 11:mBio.01057-20. [PMID: 32487758 PMCID: PMC7267886 DOI: 10.1128/mbio.01057-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Leishmania spp. are protozoan parasites that cause a spectrum of important diseases in humans. These parasites develop as extracellular promastigotes in the digestive tract of their insect vectors and as obligate intracellular amastigotes that infect macrophages and other phagocytic cells in their vertebrate hosts. Promastigote-to-amastigote differentiation is associated with marked changes in metabolism, including the upregulation of enzymes involved in fatty acid β-oxidation, which may reflect adaptation to the intracellular niche. Here, we have investigated the function of one of these enzymes, a putative 2,4-dienoyl-coenzyme A (CoA) reductase (DECR), which is specifically required for the β-oxidation of polyunsaturated fatty acids. The Leishmania DECR shows close homology to bacterial DECR proteins, suggesting that it was acquired by lateral gene transfer. It is present in other trypanosomatids that have obligate intracellular stages (i.e., Trypanosoma cruzi and Angomonas) but is absent from dixenous parasites with an exclusively extracellular lifestyle (i.e., Trypanosoma brucei). A DECR-green fluorescent protein (GFP) fusion protein was localized to the mitochondrion in both promastigote and amastigote stages, and the levels of expression increased in the latter stages. A Leishmania major Δdecr null mutant was unable to catabolize unsaturated fatty acids and accumulated the intermediate 2,4-decadienoyl-CoA, confirming DECR's role in β-oxidation. Strikingly, the L. major Δdecr mutant was unable to survive in macrophages and was avirulent in BALB/c mice. These findings suggest that β-oxidation of polyunsaturated fatty acids is essential for intracellular parasite survival and that the bacterial origin of key enzymes in this pathway could be exploited in developing new therapies.IMPORTANCE The Trypanosomatidae are protozoan parasites that infect insects, plants, and animals and have evolved complex monoxenous (single host) and dixenous (two hosts) lifestyles. A number of species of Trypanosomatidae, including Leishmania spp., have evolved the capacity to survive within intracellular niches in vertebrate hosts. The adaptations, metabolic and other, that are associated with development of intracellular lifestyles remain poorly defined. We show that genomes of Leishmania and Trypanosomatidae that can survive intracellularly encode a 2,4-dienoyl-CoA reductase that is involved in catabolism of a subclass of fatty acids. The trypanosomatid enzyme shows closest similarity to the corresponding bacterial enzymes and is located in the mitochondrion and essential for intracellular growth of Leishmania The findings suggest that acquisition of this gene by lateral gene transfer from bacteria by ancestral monoxenous Trypanosomatidae likely contributed to the development of a dixenous lifestyle of these parasites.
Collapse
|
10
|
Liu S, Huang Q, Wu Y, Song Y, Dong W, Chu M, Yang D, Zhang X, Zhang J, Chen C, Zhao B, Shen H, Guo X, Deng F. Metabolic linkages between indoor negative air ions, particulate matter and cardiorespiratory function: A randomized, double-blind crossover study among children. ENVIRONMENT INTERNATIONAL 2020; 138:105663. [PMID: 32203810 DOI: 10.1016/j.envint.2020.105663] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Ionization air purifiers, which purify particulate matter (PM) by producing vast number of negative air ions (NAI), are widely used. Recent study implied that ionization air purification could bring respiratory benefits but deterioration of heart rate variability (HRV). However, its underlying molecular mechanisms remain unclear. OBJECTIVES To explore the molecular linkages between indoor NAI, decreased PM and the cardiorespiratory effect after purification. METHODS Urine samples were collected from 44 healthy children three times of each study period (real and sham purification) in an existing randomized, double-blind crossover study. Ultra-high performance liquid chromatography/mass spectrometry was conducted in metabolomics analysis, the associations between indoor NAI, decreased PM and the cardiorespiratory function were investigated via the meet-in-metabolite approach (MIMA) based on statistical and metabolic pathway analysis. Mixed-effect models were used to establish associations between exposure, health parameters and metabolites. RESULTS Twenty-eight and fourteen metabolites were identified with significant correlations to NAI and PM, respectively. Besides, eight and eighteen metabolites were separately associated with respiratory function and HRV. The increased NAI and decreased PM improved respiratory function mainly with eight pathways, promoting energy production, anti-inflammation and anti-oxidation capacity. Decreased PM ameliorated HRV with six main pathways, increasing energy production and anti-inflammation capacity while increased NAI deteriorated HRV with five main pathways, lowering energy generation and anti-oxidation capacity. CONCLUSIONS Increased NAI and decreased PM ameliorated respiratory function by increasing energy production, improving anti-inflammation and anti-oxidation capacity. Decreased PM improved cardiac autonomic function by increasing energy production and anti-inflammation capacity, while these benefits were overcast by massive NAI via lowering energy generation and anti-oxidation capacity with different metabolic pathways.
Collapse
Affiliation(s)
- Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yan Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Wei Dong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Mengtian Chu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Xi Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jie Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chen Chen
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Bin Zhao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
11
|
Feng R, Sun G, Zhang Y, Sun Q, Ju L, Sun C, Wang C. Short-term high-fat diet exacerbates insulin resistance and glycolipid metabolism disorders in young obese men with hyperlipidemia, as determined by metabolomics analysis using ultra-HPLC-quadrupole time-of-flight mass spectrometry. J Diabetes 2019; 11:148-160. [PMID: 30058212 DOI: 10.1111/1753-0407.12828] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The prevalence of obesity is increasing rapidly worldwide, and dietary intake is strongly associated with obesity-related chronic diseases. However, key metabolic perturbations in obese young men with hyperlipidemia after high-fat diet (HFD) intervention are not yet clear, and remain to be determined. The aim of this study was to investigate the effects of a short-term HFD on glycolipid metabolism, insulin resistance (IR), and urinary metabolomic profiling in young obese men with hyperlipidemia. METHODS Sixty young men (19-25 years; 30 normal weight, 30 obese with hyperlipidemia) were enrolled in the study. Differences in metabolomic profiling of urine between normal-weight and obese young men before and after 3 days intake of the HFD were investigated using ultra-HPLC-quadrupole time-of-flight mass spectrometry. RESULTS After the HFD intervention, total cholesterol (TC), low-density lipoprotein cholesterol, fasting plasma glucose, insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) were significantly increased and high-density lipoprotein cholesterol was significantly decreased in obese men, but only TC was significantly increased in normal-weight subjects. Based on metabolic differences, normal-weight and obese men, and obese men before and after the HFD intervention could be separated into distinct clusters. Seventeen major metabolites were identified that were associated with type 2 diabetes mellitus, glycolipid metabolism and IR; the changes in these metabolites suggest metabolic changes in young obese males after short-term HFD intake. CONCLUSIONS The findings of this study may contribute to increased understanding of the early biological adaptations of obesity with hyperlipidemia to HFD for the early prevention and control of diabetes and IR.
Collapse
Affiliation(s)
- Rennan Feng
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Guozhang Sun
- Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin, China
| | - Yunbo Zhang
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Qintong Sun
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Liyan Ju
- Department of Laboratory, Harbin Center for Disease Control and Prevention, Harbin, China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Cheng Wang
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Pomerantz DJ, Ferdinandusse S, Cogan J, Cooper DN, Reimschisel T, Robertson A, Bican A, McGregor T, Gauthier J, Millington DS, Andrae JLW, Tschannen MR, Helbling DC, Demos WM, Denis S, Wanders RJA, Newman JN, Hamid R, Phillips JA. Clinical heterogeneity of mitochondrial NAD kinase deficiency caused by a NADK2 start loss variant. Am J Med Genet A 2018; 176:692-698. [PMID: 29388319 PMCID: PMC6185736 DOI: 10.1002/ajmg.a.38602] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 11/12/2022]
Abstract
Mitochondrial NAD kinase deficiency (NADK2D, OMIM #615787) is a rare autosomal recessive disorder of NADPH biosynthesis that can cause hyperlysinemia and dienoyl-CoA reductase deficiency (DECRD, OMIM #616034). NADK2 deficiency has been reported in only three unrelated patients. Two had severe, unremitting disease; one died at 4 months and the other at 5 years of age. The third was a 10 year old female with CNS anomalies, ataxia, and incoordination. In two cases mutations in NADK2 have been demonstrated. Here, we report the fourth known case, a 15 year old female with normal intelligence and a mild clinical and biochemical phenotype presumably without DECRD. Her clinical symptoms, which are now stable, became evident at the age of 9 with the onset of decreased visual acuity, bilateral optic atrophy, nystagmus, episodic lower extremity weakness, peripheral neuropathy, and gait abnormalities. Plasma amino acid levels were within normal limits except for mean lysine and proline levels that were 3.7 and 2.5 times the upper limits of normal. Whole exome sequencing (WES) revealed homozygosity for a g.36241900 A>G p. Met1Val start loss mutation in the primary NADK2 transcript (NM_001085411.1) encoding the 442 amino acid isoform. This presumed hypomorphic mutation has not been previously reported and is absent from the v1000GP, EVS, and ExAC databases. Our patient's normal intelligence and stable disease expands the clinical heterogeneity and the prognosis associated with NADK2 deficiency. Our findings also clarify the mechanism underlying NADK2 deficiency and suggest that this disease should be ruled out in cases of hyperlysinemia, especially those with visual loss, and neurological phenotypes.
Collapse
Affiliation(s)
- Daniel J. Pomerantz
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Joy Cogan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David N. Cooper
- Institute of Medical Genetics, School of Medicine, Heath Park, Cardiff University, Cardiff, United Kingdom
| | - Tyler Reimschisel
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Amy Robertson
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna Bican
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tracy McGregor
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jackie Gauthier
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David S. Millington
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | - Simone Denis
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Ronald J. A. Wanders
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - John N. Newman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rizwan Hamid
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John A. Phillips
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | | |
Collapse
|
13
|
Abstract
SIGNIFICANCE Pyridine dinucleotides, nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), were discovered more than 100 years ago as necessary cofactors for fermentation in yeast extracts. Since that time, these molecules have been recognized as fundamental players in a variety of cellular processes, including energy metabolism, redox homeostasis, cellular signaling, and gene transcription, among many others. Given their critical role as mediators of cellular responses to metabolic perturbations, it is unsurprising that dysregulation of NAD and NADP metabolism has been associated with the pathobiology of many chronic human diseases. Recent Advances: A biochemistry renaissance in biomedical research, with its increasing focus on the metabolic pathobiology of human disease, has reignited interest in pyridine dinucleotides, which has led to new insights into the cell biology of NAD(P) metabolism, including its cellular pharmacokinetics, biosynthesis, subcellular localization, and regulation. This review highlights these advances to illustrate the importance of NAD(P) metabolism in the molecular pathogenesis of disease. CRITICAL ISSUES Perturbations of NAD(H) and NADP(H) are a prominent feature of human disease; however, fundamental questions regarding the regulation of the absolute levels of these cofactors and the key determinants of their redox ratios remain. Moreover, an integrated topological model of NAD(P) biology that combines the metabolic and other roles remains elusive. FUTURE DIRECTIONS As the complex regulatory network of NAD(P) metabolism becomes illuminated, sophisticated new approaches to manipulating these pathways in specific organs, cells, or organelles will be developed to target the underlying pathogenic mechanisms of disease, opening doors for the next generation of redox-based, metabolism-targeted therapies. Antioxid. Redox Signal. 28, 180-212.
Collapse
Affiliation(s)
- Joshua P Fessel
- 1 Department of Medicine, Vanderbilt University , Nashville, Tennessee
| | - William M Oldham
- 2 Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts.,3 Department of Medicine, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
14
|
Zhang K, Kim H, Fu Z, Qiu Y, Yang Z, Wang J, Zhang D, Tong X, Yin L, Li J, Wu J, Qi NR, Houten SM, Zhang R. Deficiency of the Mitochondrial NAD Kinase Causes Stress-Induced Hepatic Steatosis in Mice. Gastroenterology 2018; 154:224-237. [PMID: 28923496 PMCID: PMC5742027 DOI: 10.1053/j.gastro.2017.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 08/31/2017] [Accepted: 09/10/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The mitochondrial nicotinamide adenine dinucleotide (NAD) kinase (NADK2, also called MNADK) catalyzes phosphorylation of NAD to yield NADP. Little is known about the functions of mitochondrial NADP and MNADK in liver physiology and pathology. We investigated the effects of reduced mitochondrial NADP by deleting MNADK in mice. METHODS We generated MNADK knockout (KO) mice on a C57BL/6NTac background; mice with a wild-type Mnadk gene were used as controls. Some mice were placed on an atherogenic high-fat diet (16% fat, 41% carbohydrate, and 1.25% cholesterol supplemented with 0.5% sodium cholate) or given methotrexate intraperitoneally. We measured rates of fatty acid oxidation in primary hepatocytes using radiolabeled palmitate and in mice using indirect calorimetry. We measured levels of reactive oxygen species in mouse livers and primary hepatocytes. Metabolomic analyses were used to quantify serum metabolites, such as amino acids and acylcarnitines. RESULTS The KO mice had metabolic features of MNADK-deficient patients, such as increased serum concentrations of lysine and C10:2 carnitine. When placed on the atherogenic high-fat diet, the KO mice developed features of nonalcoholic fatty liver disease and had increased levels of reactive oxygen species in livers and primary hepatocytes, compared with control mice. During fasting, the KO mice had a defect in fatty acid oxidation. MNADK deficiency reduced the activation of cAMP-responsive element binding protein-hepatocyte specific and peroxisome proliferator-activated receptor alpha, which are transcriptional activators that mediate the fasting response. The activity of mitochondrial sirtuins was reduced in livers of the KO mice. Methotrexate inhibited the catalytic activity of MNADK in hepatocytes and in livers in mice with methotrexate injection. In mice given injections of methotrexate, supplementation of a diet with nicotinamide riboside, an NAD precursor, replenished hepatic NADP and protected the mice from hepatotoxicity, based on markers such as increased level of serum alanine aminotransferase. CONCLUSION MNADK facilitates fatty acid oxidation, counteracts oxidative damage, maintains mitochondrial sirtuin activity, and prevents metabolic stress-induced non-alcoholic fatty liver disease in mice.
Collapse
Affiliation(s)
- Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan; Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan.
| | - Hyunbae Kim
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zhiyao Fu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yining Qiu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zhao Yang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jiemei Wang
- College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Xin Tong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jing Li
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Jianmei Wu
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Nathan R. Qi
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sander M. Houten
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ren Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan.
| |
Collapse
|
15
|
Tort F, Ugarteburu O, Torres MA, García-Villoria J, Girós M, Ruiz A, Ribes A. Lysine Restriction and Pyridoxal Phosphate Administration in a NADK2 Patient. Pediatrics 2016; 138:peds.2015-4534. [PMID: 27940755 DOI: 10.1542/peds.2015-4534] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2016] [Indexed: 11/24/2022] Open
Abstract
We report the case of a 10-year-old Spanish girl with mutations in NADK2 Prenatal central nervous system abnormalities showed ventriculomegaly, colpocephaly, and hypoplasia of the corpus callosum. At birth, axial hypotonia, uncoordinated movements, microcephaly, and generalized cerebellar atrophy were detected. Metabolic investigations revealed high lysine, lactate, and pipecolic acid levels in blood and cerebrospinal fluid. Pyruvate carboxylase and pyruvate dehydrogenase activity in fibroblasts were normal. Beginning at birth she received biotin, thiamine, and carnitine supplementation. A lysine-restricted diet was started when she was 1 month old. Because pipecolic acid was high, pyridoxine was added to treatment. At 3 years old, astatic myoclonic epilepsy appeared, with no response to levetiracetam. We switched pyridoxine to pyridoxal phosphate, with electroclinical improvement. Because the activity of mitochondrial respiratory chain complexes III and IV was slightly low in muscle, other cofactors such as ubidecarenone, idebenone, vitamin E, and creatine were added to the treatment. At 8 years old, plasma acylcarnitine testing was performed, and high levels of 2-trans, 4-cis-decadienoylcarnitine were found. Whole exome sequencing identified a homozygous splice site mutation in NADK2 (c.956+6T>C; p.Trp319Cysfs*21). This substitution generates exon skipping, leading to a truncated protein. In fact, NADK2 messenger RNA and the corresponding protein were almost absent. Now, at 10 years of age she presents with ataxia and incoordination. She has oromotor dysphasia but is able to understand fluid language and is a very friendly girl. We hypothesize that the patient's clinical improvement could be due to her lysine-restricted diet together with cofactors and pyridoxal phosphate administration.
Collapse
Affiliation(s)
- Frederic Tort
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain; and
| | - Olatz Ugarteburu
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain; and
| | | | - Judit García-Villoria
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain; and
| | - Marisa Girós
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain; and
| | - Angeles Ruiz
- Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Antonia Ribes
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain; and
| |
Collapse
|
16
|
Roifman M, Choufani S, Turinsky AL, Drewlo S, Keating S, Brudno M, Kingdom J, Weksberg R. Genome-wide placental DNA methylation analysis of severely growth-discordant monochorionic twins reveals novel epigenetic targets for intrauterine growth restriction. Clin Epigenetics 2016; 8:70. [PMID: 27330572 PMCID: PMC4915063 DOI: 10.1186/s13148-016-0238-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/12/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR), which refers to reduced fetal growth in the context of placental insufficiency, is etiologically heterogeneous. IUGR is associated not only with perinatal morbidity and mortality but also with adult-onset disorders, such as cardiovascular disease and diabetes, posing a major health burden. Placental epigenetic dysregulation has been proposed as one mechanism that causes IUGR; however, the spectrum of epigenetic pathophysiological mechanisms leading to IUGR remains to be elucidated. Monozygotic monochorionic twins are particularly affected by IUGR, in the setting of severe discordant growth. Because monozygotic twins have the same genotype at conception and a shared maternal environment, they provide an ideal model system for studying epigenetic dysregulation of the placenta. RESULTS We compared genome-wide placental DNA methylation patterns of severely growth-discordant twins to identify novel candidate genes for IUGR. Snap-frozen placental samples for eight severely growth-discordant monozygotic monochorionic twin pairs were obtained at delivery from each twin. A high-resolution DNA methylation array platform was used to identify methylation differences between IUGR and normal twins. Our analysis revealed differentially methylated regions in the promoters of eight genes: DECR1, ZNF300, DNAJA4, CCL28, LEPR, HSPA1A/L, GSTO1, and GNE. The largest methylation differences between the two groups were in the promoters of DECR1 and ZNF300. The significance of these group differences was independently validated by bisulfite pyrosequencing, implicating aberrations in fatty acid beta oxidation and transcriptional regulation, respectively. Further analysis of the array data identified methylation changes most prominently affecting the Wnt and cadherin pathways in the IUGR cohort. CONCLUSIONS Our results suggest that IUGR in monozygotic twins is associated with impairments in lipid metabolism and transcriptional regulation as well as cadherin and Wnt signaling. We show that monozygotic monochorionic twins discordant for growth provide a useful model to study one type of the epigenetic placental dysregulation that drives IUGR.
Collapse
Affiliation(s)
- Maian Roifman
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario Canada ; Department of Paediatrics, University of Toronto, Toronto, Ontario Canada ; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario Canada ; The Prenatal and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, Ontario Canada
| | - Sanaa Choufani
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Andrei L Turinsky
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario Canada ; Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Sascha Drewlo
- C.S. Mott Center for Human Growth and Development, Wayne State School of Medicine, Wayne State University, Detroit, MI USA
| | - Sarah Keating
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, Ontario Canada ; Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario Canada
| | - Michael Brudno
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario Canada ; Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario Canada ; Department of Computer Science, University of Toronto, Toronto, Ontario Canada
| | - John Kingdom
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario Canada ; Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario Canada
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario Canada ; Department of Paediatrics, University of Toronto, Toronto, Ontario Canada ; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario Canada ; Institute of Medical Science, University of Toronto, Toronto, Ontario Canada
| |
Collapse
|
17
|
Davoli R, Fontanesi L, Braglia S, Nisi I, Scotti E, Buttazzoni L, Russo V. Investigation of SNPs in theATP1A2, CA3andDECR1genes mapped to porcine chromosome 4: analysis in groups of pigs divergent for meat production and quality traits. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2006.249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Houten SM, Violante S, Ventura FV, Wanders RJA. The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders. Annu Rev Physiol 2015; 78:23-44. [PMID: 26474213 DOI: 10.1146/annurev-physiol-021115-105045] [Citation(s) in RCA: 489] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondrial fatty acid β-oxidation (FAO) is the major pathway for the degradation of fatty acids and is essential for maintaining energy homeostasis in the human body. Fatty acids are a crucial energy source in the postabsorptive and fasted states when glucose supply is limiting. But even when glucose is abundantly available, FAO is a main energy source for the heart, skeletal muscle, and kidney. A series of enzymes, transporters, and other facilitating proteins are involved in FAO. Recessively inherited defects are known for most of the genes encoding these proteins. The clinical presentation of these disorders may include hypoketotic hypoglycemia, (cardio)myopathy, arrhythmia, and rhabdomyolysis and illustrates the importance of FAO during fasting and in hepatic and (cardio)muscular function. In this review, we present the current state of knowledge on the biochemistry and physiological functions of FAO and discuss the pathophysiological processes associated with FAO disorders.
Collapse
Affiliation(s)
- Sander M Houten
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; ,
| | - Sara Violante
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; ,
| | - Fatima V Ventura
- Metabolism and Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences, iMed.ULisboa, 1649-003 Lisboa, Portugal; .,Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, University of Amsterdam, 1100 DE Amsterdam, The Netherlands; .,Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
19
|
Houten SM, Denis S, Te Brinke H, Jongejan A, van Kampen AHC, Bradley EJ, Baas F, Hennekam RCM, Millington DS, Young SP, Frazier DM, Gucsavas-Calikoglu M, Wanders RJA. Mitochondrial NADP(H) deficiency due to a mutation in NADK2 causes dienoyl-CoA reductase deficiency with hyperlysinemia. Hum Mol Genet 2014; 23:5009-16. [PMID: 24847004 DOI: 10.1093/hmg/ddu218] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dienoyl-CoA reductase (DECR) deficiency with hyperlysinemia is a rare disorder affecting the metabolism of polyunsaturated fatty acids and lysine. The molecular basis of this condition is currently unknown. We describe a new case with failure to thrive, developmental delay, lactic acidosis and severe encephalopathy suggestive of a mitochondrial disorder. Exome sequencing revealed a causal mutation in NADK2. NADK2 encodes the mitochondrial NAD kinase, which is crucial for NADP biosynthesis evidenced by decreased mitochondrial NADP(H) levels in patient fibroblasts. DECR and also the first step in lysine degradation are performed by NADP-dependent oxidoreductases explaining their in vivo deficiency. DECR activity was also deficient in lysates of patient fibroblasts and could only be rescued by transfecting patient cells with functional NADK2. Thus NADPH is not only crucial as a cosubstrate, but can also act as a molecular chaperone that activates and stabilizes enzymes. In addition to polyunsaturated fatty acid oxidation and lysine degradation, NADPH also plays a role in various other mitochondrial processes. We found decreased oxygen consumption and increased extracellular acidification in patient fibroblasts, which may explain why the disease course is consistent with clinical criteria for a mitochondrial disorder. We conclude that DECR deficiency with hyperlysinemia is caused by mitochondrial NADP(H) deficiency due to a mutation in NADK2.
Collapse
Affiliation(s)
- Sander M Houten
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| | - Simone Denis
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases
| | - Heleen Te Brinke
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases
| | - Aldo Jongejan
- Bioinformatics Laboratory, Clinical Epidemiology, Biostatistics and Bioinformatics and
| | - Antoine H C van Kampen
- Bioinformatics Laboratory, Clinical Epidemiology, Biostatistics and Bioinformatics and Biosystems Data Analysis Group, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Edward J Bradley
- Department of Genome Analysis, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Frank Baas
- Department of Genome Analysis, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | - David S Millington
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Sarah P Young
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Dianne M Frazier
- Division of Genetics and Metabolism, Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Muge Gucsavas-Calikoglu
- Division of Genetics and Metabolism, Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Ronald J A Wanders
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital
| |
Collapse
|
20
|
Abstract
Recognition of fatty acid oxidation (FAO) disorders is important for the pediatric neurologist as they present with a spectrum of clinical disorders, including progressive lipid storage myopathy, recurrent myoglobinuria, neuropathy, progressive cardiomyopathy, recurrent hypoglycemic hypoketotic encephalopathy or Reye-like syndrome, seizures, and mental retardation. They constitute a critical group of diseases because they are potentially rapidly fatal and a source of major morbidity. There is frequently a family history of sudden infant death syndrome in siblings. Early recognition and prompt institution of therapy and appropriate preventive measures, and in certain cases specific therapy, may be life-saving and may significantly decrease long-term morbidity, particularly with respect to CNS sequelae. All currently known conditions are inherited as autosomal recessive traits. There are now at least 25 enzymes and specific transport proteins in the β-oxidation pathway and 18 have been associated with human disease. The most common defect is medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, which had an incidence of 1 in 8930 live births in one series. The identification of serum acylcarnitines by electrospray ionization-tandem mass spectrometry of dried blood spots on filter paper in newborn screening programs has significantly enhanced the early recognition of these disorders.
Collapse
Affiliation(s)
- Ingrid Tein
- Neurometabolic Clinic and Research Laboratory, Division of Neurology and Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Canada.
| |
Collapse
|
21
|
Goetzman ES. Modeling Disorders of Fatty Acid Metabolism in the Mouse. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:389-417. [DOI: 10.1016/b978-0-12-384878-9.00010-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Kim EJ, Kim E, Kwon EY, Jang HS, Hur CG, Choi MS. Network analysis of hepatic genes responded to high-fat diet in C57BL/6J mice: nutrigenomics data mining from recent research findings. J Med Food 2010; 13:743-56. [PMID: 20553184 DOI: 10.1089/jmf.2009.1350] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Obesity and its associated complications, including diabetes, dyslipidemia, atherosclerosis, and some cancers, have been a global health problem with a rapid increase of the obese population. In this study, we selected 31 obesity candidate genes in the liver of high-fat-induced obese C57BL/6J mice through investigation of literature search and analyzed functional protein-protein interaction of the genes using the STRING database. Most of the obesity candidate genes were closely connected through lipid metabolism, and in particular acyl-coenzyme A oxidase 1 appeared to be a core obesity gene. Overall, genes involved in fatty acid beta-oxidation, fatty acid synthesis, and gluconeogenesis were up-regulated, and genes involved in sterol biosynthesis, insulin signaling, and oxidative stress defense system were down-regulated with a high-fat diet. Future identification of core obesity genes and their functional targets is expected to provide a new way to prevent obesity by phytochemicals or functional foods on the basis of food and nutritional genomics.
Collapse
Affiliation(s)
- Eun Jung Kim
- Department of Food Science and Nutrition, Food and Nutritional Genomics Research Center, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | |
Collapse
|
23
|
Miinalainen IJ, Schmitz W, Huotari A, Autio KJ, Soininen R, Ver Loren van Themaat E, Baes M, Herzig KH, Conzelmann E, Hiltunen JK. Mitochondrial 2,4-dienoyl-CoA reductase deficiency in mice results in severe hypoglycemia with stress intolerance and unimpaired ketogenesis. PLoS Genet 2009; 5:e1000543. [PMID: 19578400 PMCID: PMC2697383 DOI: 10.1371/journal.pgen.1000543] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 06/01/2009] [Indexed: 12/31/2022] Open
Abstract
The mitochondrial β-oxidation system is one of the central metabolic pathways of energy metabolism in mammals. Enzyme defects in this pathway cause fatty acid oxidation disorders. To elucidate the role of 2,4-dienoyl-CoA reductase (DECR) as an auxiliary enzyme in the mitochondrial β-oxidation of unsaturated fatty acids, we created a DECR–deficient mouse line. In Decr−/− mice, the mitochondrial β-oxidation of unsaturated fatty acids with double bonds is expected to halt at the level of trans-2, cis/trans-4-dienoyl-CoA intermediates. In line with this expectation, fasted Decr−/− mice displayed increased serum acylcarnitines, especially decadienoylcarnitine, a product of the incomplete oxidation of linoleic acid (C18:2), urinary excretion of unsaturated dicarboxylic acids, and hepatic steatosis, wherein unsaturated fatty acids accumulate in liver triacylglycerols. Metabolically challenged Decr−/− mice turned on ketogenesis, but unexpectedly developed hypoglycemia. Induced expression of peroxisomal β-oxidation and microsomal ω-oxidation enzymes reflect the increased lipid load, whereas reduced mRNA levels of PGC-1α and CREB, as well as enzymes in the gluconeogenetic pathway, can contribute to stress-induced hypoglycemia. Furthermore, the thermogenic response was perturbed, as demonstrated by intolerance to acute cold exposure. This study highlights the necessity of DECR and the breakdown of unsaturated fatty acids in the transition of intermediary metabolism from the fed to the fasted state. Fatty acids released from triacylglycerols or obtained from the diet serve as a main energy provider to the heart and skeletal muscle, and when carbohydrates are scarce, fatty acids provide energy for the whole organism. Inherited disorders of mitochondrial β-oxidation are among the most common inborn errors of metabolism affecting infants and children. Under normal conditions, patients are usually asymptomatic; but when challenged with metabolic stress, severe phenotypes arise. Here we describe the generation of a mouse model in which the total degradation of unsaturated fatty acids is prevented by disruption of an auxiliary enzyme of β-oxidation. Although degradation of saturated fatty acids proceeds normally, the phenotype presented here is in many ways similar to mouse models of the disrupted classical β-oxidation pathway, but with additional unique features. The null mutant mice are asymptomatic until exposed to fasting, during which they switch on ketogenesis, but simultaneously develop hypoglycemia. A number of human patients suffer from idiopathic hypoglycemia (hypoglycemia of unknown cause). Our mouse model links this disease state to a specific defect in the breakdown of polyunsaturated fatty acids. Furthermore, it shows that degradation of unsaturated fatty acids is essential for balanced fatty acid and energy metabolism, as well as adaptation to metabolic stress.
Collapse
Affiliation(s)
- Ilkka J. Miinalainen
- Department of Biochemistry and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Werner Schmitz
- Theodor-Boveri-Institut für Biowissenschaften (Biozentrum) der Universität Würzburg, Würzburg, Germany
| | - Anne Huotari
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Kaija J. Autio
- Department of Biochemistry and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Raija Soininen
- Department of Medical Biochemistry and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Emiel Ver Loren van Themaat
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Karl-Heinz Herzig
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
- Department of Internal Medicine, Kuopio and Institute of Biomedicine, Division of Physiology and Biocenter of Oulu, Oulu University Medical School, Oulu, Finland
| | - Ernst Conzelmann
- Theodor-Boveri-Institut für Biowissenschaften (Biozentrum) der Universität Würzburg, Würzburg, Germany
| | - J. Kalervo Hiltunen
- Department of Biochemistry and Biocenter Oulu, University of Oulu, Oulu, Finland
- * E-mail:
| |
Collapse
|
24
|
|
25
|
Abstract
Inherited defects in mitochondrial fatty-acid beta-oxidation comprise a group of at least 12 diseases characterized by distinct enzyme or transporter deficiencies. Most of these diseases have a variable age of onset and clinical severity. Symptoms are often episodic and associated with mild viral illness, physiologic stress, or prolonged exercise that overwhelms the ability of mitochondria to oxidize fatty acids. Depending on the specific genetic defect, patients develop fasting hypoketotic hypoglycemia, cardiomyopathy, rhabdomyolysis, liver dysfunction, or sudden death. Neuropathy and pigmentary retinopathy are seen in some of the diseases. The diagnosis is based on finding an accumulation of specific biochemical markers such as acylcarnitine metabolites in blood and urinary dicarboxylic acids and acylglycines. Confirmatory testing requires enzymatic studies and DNA analysis. Therapeutic approaches are generally effective in preventing severe symptomatic episodes, including sudden death. Newborn screening for fatty-acid oxidation disorders promises to identify many affected patients before the onset of symptoms.
Collapse
Affiliation(s)
- Michelle Kompare
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | |
Collapse
|
26
|
Amills M, Vidal O, Varona L, Tomàs A, Gil M, Sànchez A, Noguera JL. Polymorphism of the pig 2,4-dienoyl CoA reductase 1 gene (DECR1) and its association with carcass and meat quality traits. J Anim Sci 2007; 83:493-8. [PMID: 15705744 DOI: 10.2527/2005.833493x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We characterized the nearly complete coding sequence of the pig 2,4-dienoyl CoA reductase 1 (DECR1) gene, which encodes an enzyme involved in the beta-oxidation of polyunsaturated fatty enoyl-CoA esters and maps on a linoleic QTL located on Chromosome 4. Sequencing of a 937-bp fragment encompassing exons 2 and 10 revealed the existence of two missense SNP at exon 2 (C181 --> G181) and exon 5 (C458 -->G458). These two SNP are associated with Val (C) --> Leu (G) and Ser (C) --> Thr (G) conservative AA replacements at positions 61 and 153 of the DECR1 protein, respectively. Moreover, DECR1 genotyping in a representative sample of 184 pigs from the Large White, Pietrain, Iberian, Duroc, and Landrace breeds demonstrated the existence of disequilibrium linkage between these two SNP (Haplotype 1: C181C458; Haplotype 2: G181G458). An association analysis between DECR1 genotype and growth, carcass, and meat quality traits in a highly selected Landrace population (n = 470) revealed differences among genotypes for isocitrate dehydrogenase activity (highest posterior density [HPD] of 90%), longissimus thoracis pH (HPD of 95%), lightness (HPD of 90 to 95%), and redness (HPD of 95%). Because these associations were not consistently found in the three available genotype comparisons, we believe that exon 2 and 5 polymorphisms at the DECR1 gene might be in linkage disequilibrium with the true causal mutation influencing isocitrate dehydrogenase activity and muscle color and pH.
Collapse
Affiliation(s)
- M Amills
- Departament de Ciéncia Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| | | | | | | | | | | | | |
Collapse
|
27
|
Ursini-Siegel J, Rajput AB, Lu H, Sanguin-Gendreau V, Zuo D, Papavasiliou V, Lavoie C, Turpin J, Cianflone K, Huntsman DG, Muller WJ. Elevated expression of DecR1 impairs ErbB2/Neu-induced mammary tumor development. Mol Cell Biol 2007; 27:6361-71. [PMID: 17636013 PMCID: PMC2099621 DOI: 10.1128/mcb.00686-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tumor cells utilize glucose as a primary energy source and require ongoing lipid biosynthesis for growth. Expression of DecR1, an auxiliary enzyme in the fatty acid beta-oxidation pathway, is significantly diminished in numerous spontaneous mammary tumor models and in primary human breast cancer. Moreover, ectopic expression of DecR1 in ErbB2/Neu-induced mammary tumor cells is sufficient to reduce levels of ErbB2/Neu expression and impair mammary tumor outgrowth. This correlates with a decreased proliferative index and reduced rates of de novo fatty acid synthesis in DecR1-expressing breast cancer cells. Although DecR1 expression does not affect glucose uptake in ErbB2/Neu-transformed cells, sustained expression of DecR1 protects mammary tumor cells from apoptotic cell death following glucose withdrawal. Moreover, expression of catalytically impaired DecR1 mutants in Neu-transformed breast cancer cells restored Neu expression levels and increased mammary tumorigenesis in vivo. These results argue that DecR1 is sufficient to limit breast cancer cell proliferation through its ability to limit the extent of oncogene expression and reduce steady-state levels of de novo fatty acid synthesis. Furthermore, DecR1-mediated suppression of tumorigenesis can be uncoupled from its effects on Neu expression. Thus, while downregulation of Neu expression may contribute to DecR1-mediated tumor suppression in certain cell types, this is not an obligate event in all Neu-transformed breast cancer cells.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Transformed
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic
- Fatty Acids/biosynthesis
- Female
- Fluorescent Antibody Technique, Direct
- Glucose/metabolism
- Humans
- Kinetics
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Nude
- Mice, Transgenic
- Models, Biological
- Mutation
- Neoplasm Transplantation
- Rats
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/physiology
- Receptors, Tumor Necrosis Factor, Member 10c/genetics
- Receptors, Tumor Necrosis Factor, Member 10c/metabolism
- Transplantation, Homologous
Collapse
|
28
|
Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK. Peroxisomal beta-oxidation--a metabolic pathway with multiple functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1413-26. [PMID: 17028011 DOI: 10.1016/j.bbamcr.2006.08.034] [Citation(s) in RCA: 333] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 08/21/2006] [Accepted: 08/23/2006] [Indexed: 12/15/2022]
Abstract
Fatty acid degradation in most organisms occurs primarily via the beta-oxidation cycle. In mammals, beta-oxidation occurs in both mitochondria and peroxisomes, whereas plants and most fungi harbor the beta-oxidation cycle only in the peroxisomes. Although several of the enzymes participating in this pathway in both organelles are similar, some distinct physiological roles have been uncovered. Recent advances in the structural elucidation of numerous mammalian and yeast enzymes involved in beta-oxidation have shed light on the basis of the substrate specificity for several of them. Of particular interest is the structural organization and function of the type 1 and 2 multifunctional enzyme (MFE-1 and MFE-2), two enzymes evolutionarily distant yet catalyzing the same overall enzymatic reactions but via opposite stereochemistry. New data on the physiological roles of the various enzymes participating in beta-oxidation have been gathered through the analysis of knockout mutants in plants, yeast and animals, as well as by the use of polyhydroxyalkanoate synthesis from beta-oxidation intermediates as a tool to study carbon flux through the pathway. In plants, both forward and reverse genetics performed on the model plant Arabidopsis thaliana have revealed novel roles for beta-oxidation in the germination process that is independent of the generation of carbohydrates for growth, as well as in embryo and flower development, and the generation of the phytohormone indole-3-acetic acid and the signal molecule jasmonic acid.
Collapse
Affiliation(s)
- Yves Poirier
- Department of Plant Molecular Biology, Biophore, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
29
|
Yu W, Chu X, Chen G, Li D. Studies of human mitochondrial 2,4-dienoyl-CoA reductase. Arch Biochem Biophys 2005; 434:195-200. [PMID: 15629123 DOI: 10.1016/j.abb.2004.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Revised: 10/18/2004] [Indexed: 10/26/2022]
Abstract
Mitochondrial 2,4-dienoyl-CoA reductase is a key enzyme for the beta-oxidation of unsaturated fatty acids. Sequence alignment indicates that there are five highly conserved acidic residues, one of which might act as a proton donor. We constructed five mutant expression plasmids of human mitochondrial 2,4-dienoyl-CoA reductase using site-directed mutagenesis. Mutant proteins were overexpressed in Escherichia coli and purified with a nickel metal affinity column. Studies of these mutant proteins were carried out, and the proton donor is likely to be E276. Three substrate analogs were synthesized and characterized. Two analogs, 2-fluoro-2,4-octadienoyl-CoA and 5-methyl-2,4-hexadienoyl-CoA, were substrates of the enzyme. Another analog, 3-furan-2-yl-acrylyl-CoA, was not a substrate, but a competitive inhibitor of the enzyme. These studies increased our understanding of human mitochondrial 2,4-dienoyl-CoA reductase.
Collapse
Affiliation(s)
- Wenhua Yu
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, PR China
| | | | | | | |
Collapse
|
30
|
Alphey MS, Yu W, Byres E, Li D, Hunter WN. Structure and Reactivity of Human Mitochondrial 2,4-Dienoyl-CoA Reductase. J Biol Chem 2005; 280:3068-77. [PMID: 15531764 DOI: 10.1074/jbc.m411069200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fatty acid catabolism by beta-oxidation mainly occurs in mitochondria and to a lesser degree in peroxisomes. Poly-unsaturated fatty acids are problematic for beta-oxidation, because the enzymes directly involved are unable to process all the different double bond conformations and combinations that occur naturally. In mammals, three accessory proteins circumvent this problem by catalyzing specific isomerization and reduction reactions. Central to this process is the NADPH-dependent 2,4-dienoyl-CoA reductase. We present high resolution crystal structures of human mitochondrial 2,4-dienoyl-CoA reductase in binary complex with cofactor, and the ternary complex with NADP(+) and substrate trans-2,trans-4-dienoyl-CoA at 2.1 and 1.75 A resolution, respectively. The enzyme, a homotetramer, is a short-chain dehydrogenase/reductase with a distinctive catalytic center. Close structural similarity between the binary and ternary complexes suggests an absence of large conformational changes during binding and processing of substrate. The site of catalysis is relatively open and placed beside a flexible loop thereby allowing the enzyme to accommodate and process a wide range of fatty acids. Seven single mutants were constructed, by site-directed mutagenesis, to investigate the function of selected residues in the active site thought likely to either contribute to the architecture of the active site or to catalysis. The mutant proteins were overexpressed, purified to homogeneity, and then characterized. The structural and kinetic data are consistent and support a mechanism that derives one reducing equivalent from the cofactor, and one from solvent. Key to the acquisition of a solvent-derived proton is the orientation of substrate and stabilization of a dienolate intermediate by Tyr-199, Asn-148, and the oxidized nicotinamide.
Collapse
Affiliation(s)
- Magnus S Alphey
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | | | | | | | | |
Collapse
|
31
|
Chu X, Yu W, Chen G, Li D. Expression, purification, and characterization of His-tagged human mitochondrial 2,4-dienoyl-CoA reductase. Protein Expr Purif 2003; 31:292-7. [PMID: 14550650 DOI: 10.1016/s1046-5928(03)00191-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mitochondrial 2,4-dienoyl-CoA reductase is a key enzyme for the beta-oxidation of unsaturated fatty acids. The cDNA of the full-length human mitochondrial 2,4-dienoyl-CoA reductase was previously cloned as pUC18::DECR. PCR methodologies were used to subclone the genes encoding various truncated human mitochondrial 2,4-dienoyl-CoA reductases from pUC18::DECR with primers that were designed to add six continuous histidine codons to the 3' or 5' primer. The PCR products were inserted into pLM1 expression vectors and overexpressed in Escherichia coli. A highly active truncated soluble protein was expressed and purified with a nickel HiTrap chelating metal affinity column to apparent homogeneity based on Coomassie blue-stained SDS-PAGE. The molecular weight of the protein subunit was 34 kDa. The purified protein is highly stable at room temperature, which makes it potentially valuable for protein crystallization. KM of 26.5 +/- 3.8 microM for 2,4-hexadienoyl-CoA, KM of 6.22 +/- 2.0 microM for 2,4-decadienoyl-CoA, and KM of 60.5 +/- 19.7 microM for NADPH, as well as Vmax of 7.78 +/- 1.08 micromol/min/mg for 2,4-hexadienoyl-CoA and Vmax of 0.74 +/- 0.07 micromol/min/mg for 2,4-decadienoyl-CoA were determined on kinetic study of the purified protein. The one-step purification of the highly active human mitochondrial 2,4-dienoyl-CoA reductase will greatly facilitate further investigation of this enzyme through site-directed mutagenesis and enzyme catalyzed reactions with substrate analogs as well as protein crystallization for solving its three-dimensional structure.
Collapse
Affiliation(s)
- Xiusheng Chu
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, PR China
| | | | | | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW At least 22 different inborn errors of metabolism affecting beta-oxidation in skeletal muscle and other tissues have been identified in the past 30 years. Early diagnosis and therapeutic diets offer the best chance for normal growth and development in most patients. RECENT FINDINGS Clinical heterogeneity has become the hallmark of defects in beta-oxidation. In many cases a correct diagnosis will only be made if these disorders are specifically considered and appropriate studies are obtained, since screening tests which detect other inborn errors of metabolism are often normal in patients with beta-oxidation defects. Dietary management provides the only opportunity for therapy in many cases, including carbohydrate supplements intended to provide more extended delivery of glucose to the bloodstream. Use of a novel odd chain fat supplement as an alternative fuel source in long chain fat metabolism defects offers promise of alleviating muscular symptoms not well controlled by diet. The introduction of expanded newborn screening will lead to the recognition of an increasing number of individuals with these disorders, placing greater demand for services on practitioners knowledgeable in their therapy. Study of the clinical outcome in these patients will provide a better understanding of defects of beta-oxidation. SUMMARY Clinical symptoms, diagnostic testing, and issues of newborn screening for this important group of disorders are discussed.
Collapse
Affiliation(s)
- Jerry Vockley
- Department of Medical Genetics and Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
33
|
Petriv OI, Pilgrim DB, Rachubinski RA, Titorenko VI. RNA interference of peroxisome-related genes in C. elegans: a new model for human peroxisomal disorders. Physiol Genomics 2002; 10:79-91. [PMID: 12181365 DOI: 10.1152/physiolgenomics.00044.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RNA-mediated interference (RNAi) for the posttranscriptional silencing of genes was used to evaluate the importance of various peroxisomal enzymes and peroxins for the development of Caenorhabditis elegans and to compare the roles of these proteins in the nematode to their roles in yeasts and humans. The nematode counterparts of the human ATP-binding cassette half-transporters, the enzymes alkyldihydroxyacetonephosphate synthase and Delta(3,5)-Delta (2,4)-dienoyl-CoA isomerase, the receptors for peroxisomal membrane and matrix proteins (Pex19p and Pex5p), and components of the docking and translocation machineries for matrix proteins (Pex13p and Pex12p) are essential for the development of C. elegans. Unexpectedly, RNAi silencing of the acyl-CoA synthetase-mediated activation of fatty acids, the alpha- and beta-oxidation of fatty acids, the intraperoxisomal decomposition of hydrogen peroxide, and the peroxins Pex1p, Pex2p, and Pex6p had no apparent effect on C. elegans development. The described analysis of functional gene knockouts through RNAi provides a basis for the use of C. elegans as a valuable model system with which to study the molecular and physiological defects underlying the human peroxisomal disorders.
Collapse
Affiliation(s)
- Oleh I Petriv
- Department of Cell Biology, University of Alberta, Edmonton T6G 2H7, Canada
| | | | | | | |
Collapse
|
34
|
Abstract
Genetic disorders of mitochondrial fatty acid beta-oxidation have been recognized within the last 20 years as important causes of morbidity and mortality, highlighting the physiological significance of fatty acids as an energy source. Although the mammalian mitochondrial fatty acid-oxidizing system was recognized at the beginning of the last century, our understanding of its exact nature remains incomplete, and new components are being identified frequently. Originally described as a four-step enzymatic process located exclusively in the mitochondrial matrix, we now recognize that long-chain-specific enzymes are bound to the inner mitochondrial membrane, and some enzymes are expressed in a tissue-specific manner. Much of our new knowledge of fatty acid metabolism has come from the study of patients who were diagnosed with single-gene autosomal recessive defects, a situation that seems to be further evolving with the emergence of phenotypes determined by combinations of multiple genetic and environmental factors. This review addresses the normal process of mitochondrial fatty acid beta-oxidation and discusses the clinical, metabolic, and molecular aspects of more than 20 known inherited diseases of this pathway that have been described to date.
Collapse
Affiliation(s)
- Piero Rinaldo
- Department of Laboratory Medicine and Pathology, Mayo Clinic and Foundation, Biochemical Genetics Laboratory, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
35
|
Davoli R, Fontanesi L, Braglia S, Russo V. A missense mutation in the porcine mitochondrial 2,4-dienoyl CoA reductase 1 (DECR1) gene and linkage mapping of this locus to chromosome 4. Anim Genet 2002; 33:73-5. [PMID: 11849143 DOI: 10.1046/j.1365-2052.2002.0742b.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- R Davoli
- DIPROVAL - Sezione di Allevamenti Zootecnici, Faculty of Agriculture, University of Bologna, Via F.lli Rosselli 107, Villa Levi - Coviolo, Reggio Emilia, Italy.
| | | | | | | |
Collapse
|
36
|
Gurvitz A, Langer S, Piskacek M, Hamilton B, Ruis H, Hartig A. Predicting the function and subcellular location of Caenorhabditis elegans proteins similar to Saccharomyces cerevisiae beta-oxidation enzymes. Yeast 2000. [PMID: 11025529 DOI: 10.1002/1097-0061(20000930)17:3<188::aid-yea27>3.3.co;2-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
The role of peroxisomal processes in the maintenance of neurons has not been thoroughly investigated. We propose using Caenorhabditis elegans as a model organism for studying the molecular basis underlying neurodegeneration in certain human peroxisomal disorders, e.g. Zellweger syndrome, since the nematode neural network is well characterized and relatively simple in function. Here we have identified C. elegans PEX-5 (C34C6.6) representing the receptor for peroxisomal targeting signal type 1 (PTS1), defective in patients with such disorders. PEX-5 interacted strongly in a two-hybrid assay with Gal4p-SKL, and a screen using PEX-5 identified interaction partners that were predominantly terminated with PTS1 or its variants. A list of C. elegans proteins with similarities to well-characterized yeast beta-oxidation enzymes was compiled by homology probing. The possible subcellular localization of these orthologues was predicted using an algorithm based on trafficking signals. Examining the C termini of selected nematode proteins for PTS1 function substantiated predictions made regarding the proteins' peroxisomal location. It is concluded that the eukaryotic PEX5-dependent route for importing PTS1-containing proteins into peroxisomes is conserved in nematodes. C. elegans might emerge as an attractive model system for studying the importance of peroxisomes and affiliated processes in neurodegeneration, and also for studying a beta-oxidation process that is potentially compartmentalized in both mitochondria and peroxisomes.
Collapse
Affiliation(s)
- A Gurvitz
- Institut für Biochemie und Molekulare Zellbiologie der Universität Wien and Ludwig Boltzmann Forschungsstelle für Biochemie, Vienna Biocenter, Dr Bohrgasse 9, A-1030 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
37
|
Novikov DK, Koivuranta KT, Helander HM, Filppula SA, Yagi AI, Qin YM, Hiltunen KJ. Enzymology of beta-oxidation of (poly)unsaturated fatty acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 466:301-9. [PMID: 10709656 DOI: 10.1007/0-306-46818-2_34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
38
|
Hiltunen JK, Qin Y. beta-oxidation - strategies for the metabolism of a wide variety of acyl-CoA esters. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1484:117-28. [PMID: 10760462 DOI: 10.1016/s1388-1981(00)00013-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Living organisms are exposed to a number of different fatty acids and their various derivatives arising either via endogenous synthesis or from exogenous sources. These hydrophobic compounds can play specific metabolic, structural or endocrinic functions in the organisms before their elimination, which can be metabolism to CO(2) or to more polar lipid metabolites allowing their excretion. Quantitatively, one of the major pathways metabolizing fatty acids is beta-oxidation, which consists of a set of four reactions operating at the carbons 2 or 3 of acyl-CoA esters and shortening of the acyl-chain. To allow the beta-oxidation of acyl groups with various steric variants to proceed, different strategies have been developed. These strategies include evolution of beta-oxidation enzymes as paralogues showing specificity with respect to either chain-length or modified acyl-chain, metabolic compartmentalization in eukaryotic cells, controlling of substrate transport across membranes, development of auxiliary enzyme systems, acquisition of enzymes with adaptive active sites and recruiting and optimizing enzymes from non-homologous sources allowing them to catalyze a parallel set of reactions with different substrate specificities.
Collapse
Affiliation(s)
- J K Hiltunen
- Biocenter Oulu and Department of Biochemistry, University of Oulu, P. O. FIN-90014, Oulun yliopisto, Finland.
| | | |
Collapse
|
39
|
Abstract
Inborn errors of the mitochondrial beta-oxidation of long-chain fatty acids represent an evolving field of inherited metabolic disease. Fatty acid oxidation defects demonstrate an abnormal response to the process of fasting adaptation and affect those tissues that utilize fatty acids as an energy source. These tissues include cardiac and skeletal muscle and liver. Muscle directly uses fatty acids as an energy source whilst hepatic metabolism of fatty acids is mostly directed toward the synthesis of ketone bodies for energy utilization by tissues such as brain. The clinical phenotypes of fatty acid oxidation disorders include disease of one or more of these fatty acid-metabolizing tissues. In this review, we provide an overview of the pathway, discuss the disorders that are well established, and describe recent advances in the field. Currently available diagnostic procedures are critically evaluated.
Collapse
Affiliation(s)
- M J Bennett
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas 75235, USA.
| | | | | |
Collapse
|
40
|
Gurvitz A, Langer S, Piskacek M, Hamilton B, Ruis H, Hartig A. Predicting the function and subcellular location of Caenorhabditis elegans proteins similar to Saccharomyces cerevisiae beta-oxidation enzymes. Yeast 2000; 17. [PMID: 11025529 PMCID: PMC2448379 DOI: 10.1002/1097-0061(20000930)17:3<188::aid-yea27>3.0.co;2-e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The role of peroxisomal processes in the maintenance of neurons has not been thoroughly investigated. We propose using Caenorhabditis elegans as a model organism for studying the molecular basis underlying neurodegeneration in certain human peroxisomal disorders, e.g. Zellweger syndrome, since the nematode neural network is well characterized and relatively simple in function. Here we have identified C. elegans PEX-5 (C34C6.6) representing the receptor for peroxisomal targeting signal type 1 (PTS1), defective in patients with such disorders. PEX-5 interacted strongly in a two-hybrid assay with Gal4p-SKL, and a screen using PEX-5 identified interaction partners that were predominantly terminated with PTS1 or its variants. A list of C. elegans proteins with similarities to well-characterized yeast beta-oxidation enzymes was compiled by homology probing. The possible subcellular localization of these orthologues was predicted using an algorithm based on trafficking signals. Examining the C termini of selected nematode proteins for PTS1 function substantiated predictions made regarding the proteins' peroxisomal location. It is concluded that the eukaryotic PEX5-dependent route for importing PTS1-containing proteins into peroxisomes is conserved in nematodes. C. elegans might emerge as an attractive model system for studying the importance of peroxisomes and affiliated processes in neurodegeneration, and also for studying a beta-oxidation process that is potentially compartmentalized in both mitochondria and peroxisomes.
Collapse
Affiliation(s)
- Aner Gurvitz
- Institut für Biochemie und Molekulare Zellbiologie der Universität Wien and Ludwig Boltzmann Forschungsstelle für BiochemieVienna BiocenterDr Bohrgasse 9ViennaA-1030Austria,Institute of Biochemistry and Molecular Cell BiologyUniversity of ViennaVienna Biocenter, Dr Bohrgasse 9ViennaA-1030Austria
| | - Sigrid Langer
- Institut für Biochemie und Molekulare Zellbiologie der Universität Wien and Ludwig Boltzmann Forschungsstelle für BiochemieVienna BiocenterDr Bohrgasse 9ViennaA-1030Austria
| | - Martin Piskacek
- Institut für Biochemie und Molekulare Zellbiologie der Universität Wien and Ludwig Boltzmann Forschungsstelle für BiochemieVienna BiocenterDr Bohrgasse 9ViennaA-1030Austria
| | - Barbara Hamilton
- Institut für Biochemie und Molekulare Zellbiologie der Universität Wien and Ludwig Boltzmann Forschungsstelle für BiochemieVienna BiocenterDr Bohrgasse 9ViennaA-1030Austria
| | - Helmut Ruis
- Institut für Biochemie und Molekulare Zellbiologie der Universität Wien and Ludwig Boltzmann Forschungsstelle für BiochemieVienna BiocenterDr Bohrgasse 9ViennaA-1030Austria
| | - Andreas Hartig
- Institut für Biochemie und Molekulare Zellbiologie der Universität Wien and Ludwig Boltzmann Forschungsstelle für BiochemieVienna BiocenterDr Bohrgasse 9ViennaA-1030Austria
| |
Collapse
|
41
|
Gurvitz A, Langer S, Piskacek M, Hamilton B, Ruis H, Hartig A. Predicting the function and subcellular location of Caenorhabditis elegans proteins similar to Saccharomyces cerevisiae beta-oxidation enzymes. Yeast 2000; 17:188-200. [PMID: 11025529 PMCID: PMC2448379 DOI: 10.1002/1097-0061(20000930)17:3<188::aid-yea27>3.0.co;2-e] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The role of peroxisomal processes in the maintenance of neurons has not been thoroughly investigated. We propose using Caenorhabditis elegans as a model organism for studying the molecular basis underlying neurodegeneration in certain human peroxisomal disorders, e.g. Zellweger syndrome, since the nematode neural network is well characterized and relatively simple in function. Here we have identified C. elegans PEX-5 (C34C6.6) representing the receptor for peroxisomal targeting signal type 1 (PTS1), defective in patients with such disorders. PEX-5 interacted strongly in a two-hybrid assay with Gal4p-SKL, and a screen using PEX-5 identified interaction partners that were predominantly terminated with PTS1 or its variants. A list of C. elegans proteins with similarities to well-characterized yeast beta-oxidation enzymes was compiled by homology probing. The possible subcellular localization of these orthologues was predicted using an algorithm based on trafficking signals. Examining the C termini of selected nematode proteins for PTS1 function substantiated predictions made regarding the proteins' peroxisomal location. It is concluded that the eukaryotic PEX5-dependent route for importing PTS1-containing proteins into peroxisomes is conserved in nematodes. C. elegans might emerge as an attractive model system for studying the importance of peroxisomes and affiliated processes in neurodegeneration, and also for studying a beta-oxidation process that is potentially compartmentalized in both mitochondria and peroxisomes.
Collapse
Affiliation(s)
- A Gurvitz
- Institut für Biochemie und Molekulare Zellbiologie der Universität Wien and Ludwig Boltzmann Forschungsstelle für Biochemie, Vienna Biocenter, Dr Bohrgasse 9, A-1030 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
42
|
Gurvitz A, Wabnegger L, Yagi AI, Binder M, Hartig A, Ruis H, Hamilton B, Dawes IW, Hiltunen JK, Rottensteiner H. Function of human mitochondrial 2,4-dienoyl-CoA reductase and rat monofunctional Delta3-Delta2-enoyl-CoA isomerase in beta-oxidation of unsaturated fatty acids. Biochem J 1999; 344 Pt 3:903-14. [PMID: 10585880 PMCID: PMC1220715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Human 2,4-dienoyl-CoA reductase (2,4-reductase; DECR) and rat monofunctional Delta(3)-Delta(2)-enoyl-CoA isomerase (rat 3, 2-isomerase; ECI) are thought to be mitochondrial auxiliary enzymes involved in the beta-oxidation of unsaturated fatty acids. However, their function during this process has not been demonstrated. Although they lack obvious peroxisomal targeting signals (PTSs), both proteins have been suggested previously to also occur in the mammalian peroxisomal compartment. The putative function and peroxisomal location of the two mammalian proteins can be examined in yeast, since beta-oxidation of unsaturated fatty acids is a compartmentalized process in Saccharomyces cerevisiae requiring peroxisomal 2,4-dienoyl-CoA reductase (Sps19p) and peroxisomal 3, 2-isomerase (Eci1p). A yeast sps19Delta mutant expressing human 2, 4-reductase ending with the native C-terminus could not grow on petroselinic acid [cis-C(18:1(6))] medium but could grow when the protein was extended with a PTS tripeptide, SKL (Ser-Lys-Leu). We therefore reason that the human protein is a physiological 2, 4-reductase but that it is probably not peroxisomal. Rat 3, 2-isomerase expressed in a yeast eci1Delta strain was able to re-establish growth on oleic acid [cis-C(18:1(9))] medium irrespective of an SKL extension. Since we had shown that Delta(2,4) double bonds could not be metabolized extra-peroxisomally to restore growth of the sps19Delta strain, we postulate that rat 3,2-isomerase acted on the Delta(3) unsaturated metabolite of oleic acid by replacing the mutant's missing activity from within the peroxisomes. Immunoblotting of fractionated yeast cells expressing rat 3, 2-isomerase in combination with electron microscopy supported our proposal that the protein functioned in peroxisomes. The results presented here shed new light on the function and location of human mitochondrial 2,4-reductase and rat monofunctional 3,2-isomerase.
Collapse
Affiliation(s)
- A Gurvitz
- Institut für Biochemie und Molekulare Zellbiologie der Universität Wien, Dr Bohrgasse 9, A-1030 Wien, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fillgrove KL, Anderson VE, Mizugaki M. Cloning, expression, and purification of the functional 2,4-dienoyl-CoA reductase from rat liver mitochondria. Protein Expr Purif 1999; 17:57-63. [PMID: 10497069 DOI: 10.1006/prep.1999.1101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mitochondrial 2,4-dienoyl-CoA reductase (EC 1.3.1.34) is an auxiliary enzyme for the beta-oxidation of unsaturated fatty acids. Import of this enzyme into the mitochondria requires a mitochondrial signal sequence at the amino terminus of the polypeptide chain which is processed/removed once inside the mitochondria. The cDNA of the full-length 2,4-dienoyl-CoA reductase was previously cloned as pRDR181. PCR methodologies were used to subclone the gene encoding the functional 2,4-dienoyl-CoA reductase from pRDR181. The PCR product was inserted into a pET15b expression vector and overexpressed in Escherichia coli. The soluble expressed protein can be separated into high- and low-activity fractions. The low-activity fraction can be converted to the high specific activity form by thermal annealing, suggesting it is a metastable misfolded form of the enzyme. Using ion-exchange and affinity chromatography, the enzyme has been purified to homogeneity and exhibits a single band on Coomassie blue-stained SDS-PAGE. The molecular mass of 32,413 Da determined by electrospray ionization-mass spectrometry indicates that the amino-terminal methionine had been removed. The Michaelis constants for trans-2, trans-4-hexadienoyl-CoA and NADPH were determined to be 0.46 and 2.5 microM, respectively; a turnover number of 2.1 s(-1) was calculated.
Collapse
Affiliation(s)
- K L Fillgrove
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935, USA
| | | | | |
Collapse
|
44
|
Geisbrecht BV, Liang X, Morrell JC, Schulz H, Gould SJ. The mouse gene PDCR encodes a peroxisomal delta(2), delta(4)-dienoyl-CoA reductase. J Biol Chem 1999; 274:25814-20. [PMID: 10464321 DOI: 10.1074/jbc.274.36.25814] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we describe the identification and characterization of a novel mouse gene, PDCR, that encodes a peroxisomal Delta(2), Delta(4)-dienoyl-CoA reductase. The mouse PDCR cDNA contains an 892-base pair open reading frame and is predicted to encode a 292-amino acid protein with a deduced molecular mass of 31,298 Da that terminates in a consensus type-1 peroxisomal targeting signal. Purified recombinant PDCR protein was generated from Escherichia coli and catalyzed the NADPH-dependent reduction of Delta(2)-trans, Delta(4)-trans-decadienoyl-CoA with a specific activity of 20 units/mg. Enzymatic characterization followed by high pressure liquid chromatography analysis of the products revealed that PDCR converted Delta(2)-trans,Delta(4)-trans-decadienoyl-CoA to a Delta(3)-enoyl-CoA but not to a Delta(2)-enoyl-CoA. Kinetic analyses demonstrated that PDCR is active on a broad range of Delta(2), Delta(4)-dienoyl-CoAs. Although the observed substrate preference was to Delta(2)-trans,Delta(4)-trans-decadienoyl-CoA, PDCR was also active on a C(22) substrate with multiple unsaturations, a result consistent with the role of peroxisomes in the oxidation of complex, very long chain, polyunsaturated fatty acids. The presence of a type-1 peroxisomal targeting signal Ala-Lys-Leu-COOH at the C terminus of PDCR suggested that this protein may be peroxisomal. We observed that tagged PDCR was efficiently transported to the peroxisome lumen in normal human fibroblasts but not in cells derived from a Zellweger syndrome patient with a specific defect in peroxisomal matrix protein import. We conclude that this protein resides within the peroxisome matrix and therefore represents the first mammalian peroxisomal Delta(2),Delta(4)-dienoyl-CoA reductase to be characterized at the molecular level.
Collapse
Affiliation(s)
- B V Geisbrecht
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
45
|
Fransen M, Van Veldhoven PP, Subramani S. Identification of peroxisomal proteins by using M13 phage protein VI phage display: molecular evidence that mammalian peroxisomes contain a 2,4-dienoyl-CoA reductase. Biochem J 1999; 340 ( Pt 2):561-8. [PMID: 10333503 PMCID: PMC1220285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
To elucidate unknown mammalian peroxisomal enzymes and functions, we subjected M13 phage expressing fusions between the gene encoding protein VI and a rat liver cDNA library to an immunoaffinity selection process in vitro (biopanning) with the use of antibodies raised against peroxisomal subfractions. In an initial series of biopanning experiments, four different cDNA clones were obtained. These cDNA species encoded two previously identified peroxisomal enzymes, catalase and urate oxidase, and two novel proteins that contained a C-terminal peroxisomal targeting signal (PTS1). A primary structure analysis of these novel proteins revealed that one, ending in the tripeptide AKL, is homologous to the yeast peroxisomal 2,4-dienoyl-CoA reductase (EC 1.3.1.34; DCR), an enzyme required for the degradation of unsaturated fatty acids, and that the other, ending in the tripeptide SRL, is a putative member of the short-chain dehydrogenase/reductase (SDR) family, with three isoforms. Green fluorescent protein (GFP) fusions encoding GFP-DCR-AKL, GFP-DCR, GFP-SDR-SRL and GFP-SDR were expressed in mammalian cells. The analysis of the subcellular location of the recombinant fusion proteins confirmed the peroxisomal localization of GFP-DCR-AKL and GFP-SDR-SRL, as well as the functionality of the PTS1. That the AKL protein is indeed an NADPH-dependent DCR was demonstrated by showing DCR activity of the bacterially expressed protein. These results demonstrate at the molecular level that mammalian peroxisomes do indeed contain a DCR. In addition, the results presented here indicate that the protein VI display system is suitable for the isolation of rare cDNA clones from cDNA libraries and that this technology facilitates the identification of novel peroxisomal proteins.
Collapse
Affiliation(s)
- M Fransen
- Department of Biology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0322, USA
| | | | | |
Collapse
|
46
|
DiRusso CC, Black PN, Weimar JD. Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria. Prog Lipid Res 1999; 38:129-97. [PMID: 10396600 DOI: 10.1016/s0163-7827(98)00022-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- C C DiRusso
- Department of Biochemistry and Molecular Biology, Albany Medical College, New York, USA.
| | | | | |
Collapse
|
47
|
Affiliation(s)
- P T Ozand
- Departments of Pediatrics and Biological and Medical Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
48
|
Filppula SA, Yagi AI, Kilpeläinen SH, Novikov D, FitzPatrick DR, Vihinen M, Valle D, Hiltunen JK. Delta3,5-delta2,4-dienoyl-CoA isomerase from rat liver. Molecular characterization. J Biol Chem 1998; 273:349-55. [PMID: 9417087 DOI: 10.1074/jbc.273.1.349] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
rECH1, a recently identified rat cDNA (FitzPatrick, D. R., Germain-Lee, E., and Valle, D. (1995) Genomics 27, 457-466) encodes a polypeptide belonging to the hydratase/isomerase superfamily. We modeled the structure of rECH1 based on rat mitochondrial 2-enoyl-CoA hydratase 1. The model predicts that rECH1p has the hydratase fold in the core domain and two domains for interaction with other subunits. When we incubated 3,5,8,11, 14-eicosapentaenoyl-CoA with purified rECH1p, the spectral data suggested a switching of the double bonds from the Delta3-Delta5 to the Delta2-Delta4 positions. This was confirmed by demonstrating that the product was a valid substrate for 2,4-dienoyl-CoA reductase. These results indicate that rECH1p is Delta3,5-Delta2,4-dienoyl-CoA isomerase. Subcellular fractionation and immunoelectron microscopy using antibodies to a synthetic polypeptide derived from the C terminus of rECH1p showed that rECH1p is located in the matrix of both mitochondria and peroxisomes in rat liver. Consistent with these observations, the 36,000-Da rECH1p has a potential N-terminal mitochondrial targeting signal as well as a C-terminal peroxisomal targeting signal type 1. Transport of the protein into the mitochondria with cleavage of the targeting signal results in a mature mitochondrial form with a molecular mass of 32,000 Da; transport to peroxisomes yields a protein of 36,000 Da.
Collapse
Affiliation(s)
- S A Filppula
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Linnanmaa, FIN-90570 Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Helander HM, Koivuranta KT, Horelli-Kuitunen N, Palvimo JJ, Palotie A, Hiltunen JK. Molecular cloning and characterization of the human mitochondrial 2,4-dienoyl-CoA reductase gene (DECR). Genomics 1997; 46:112-9. [PMID: 9403065 DOI: 10.1006/geno.1997.5004] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
2,4-Dienoyl-CoA reductase (EC 1.3.1.34) is an auxiliary enzyme of beta-oxidation, and it participates in the metabolism of unsaturated fatty enoyl-CoA esters having double bonds in both even- and odd-numbered positions. In this article we describe the molecular cloning of the human gene for the 120-kDa isoform of mitochondrial 2,4-dienoyl-CoA reductase (DECR). The gene is approximately 30 kb and comprises 10 exons varying in size from 79 to 203 bp and 9 introns whose sizes vary from 95 bp to about 10 kb. The 5' UTR and 3' UTR are included in exons 1 and 10, respectively. The promoter region contains putative binding sites for several transcription factors, e.g., Sp1, AP-2, AP-4, and C/EBP, but no TATA box was found. Primer extension analysis and 5' RACE-PCR revealed variability in the length of the 5'-UTR, the longest being 72 bp. Through the use of FISH analysis on metaphase chromosomes with a genomic fragment of 2,4-dienoyl-CoA reductase, the gene was assigned to the chromosomal band 8q21.3.
Collapse
|
50
|
Gurvitz A, Rottensteiner H, Kilpeläinen SH, Hartig A, Hiltunen JK, Binder M, Dawes IW, Hamilton B. The Saccharomyces cerevisiae peroxisomal 2,4-dienoyl-CoA reductase is encoded by the oleate-inducible gene SPS19. J Biol Chem 1997; 272:22140-7. [PMID: 9268358 DOI: 10.1074/jbc.272.35.22140] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
beta-Oxidation is compartmentalized in mammals into both mitochondria and peroxisomes. Fatty acids with double bonds at even-numbered positions require for their degradation the auxiliary enzyme 2,4-dienoyl-CoA reductase, and at least three isoforms, two mitochondrial and one peroxisomal, exist in the rat. The Saccharomyces cerevisiae Sps19p is 34% similar to the human and rat mitochondrial reductases, and an SPS19 deleted strain was unable to utilize petroselineate (cis-C18:1(6)) as the sole carbon source, but remained viable on oleate (cis-C18:1(9)). Sps19p was purified to homogeneity from oleate-induced cells and the homodimeric enzyme (native molecular weight 69,000) converted 2,4-hexadienoyl-CoA into 3-hexenoyl-CoA in an NADPH-dependent manner and therefore contained 2,4-dienoyl-CoA reductase activity. Antibodies raised against Sps19p decorated the peroxisomal matrix of oleate-induced cells. SPS19 shares with the sporulation-specific SPS18 a common promoter region that contains an oleate response element. This element unidirectionally regulates transcription of the reductase and is sufficient for oleate induction of a promoterless CYC1-lacZ reporter gene. SPS19 is dispensable for growth and sporulation on solid acetate and oleate media, but is essential for these processes to occur on petroselineate.
Collapse
Affiliation(s)
- A Gurvitz
- School of Biochemistry and Molecular Genetics, University of New South Wales, Sydney NSW 2052, Australia
| | | | | | | | | | | | | | | |
Collapse
|