1
|
Zarza X, Shabala L, Fujita M, Shabala S, Haring MA, Tiburcio AF, Munnik T. Extracellular Spermine Triggers a Rapid Intracellular Phosphatidic Acid Response in Arabidopsis, Involving PLDδ Activation and Stimulating Ion Flux. FRONTIERS IN PLANT SCIENCE 2019; 10:601. [PMID: 31178874 PMCID: PMC6537886 DOI: 10.3389/fpls.2019.00601] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/24/2019] [Indexed: 05/19/2023]
Abstract
Polyamines, such as putrescine (Put), spermidine (Spd), and spermine (Spm), are low-molecular-weight polycationic molecules found in all living organisms. Despite the fact that they have been implicated in various important developmental and adaptative processes, their mode of action is still largely unclear. Here, we report that Put, Spd, and Spm trigger a rapid increase in the signaling lipid, phosphatidic acid (PA) in Arabidopsis seedlings but also mature leaves. Using time-course and dose-response experiments, Spm was found to be the most effective; promoting PA responses at physiological (low μM) concentrations. In seedlings, the increase of PA occurred mainly in the root and partly involved the plasma membrane polyamine-uptake transporter (PUT), RMV1. Using a differential 32Pi-labeling strategy combined with transphosphatidylation assays and T-DNA insertion mutants, we found that phospholipase D (PLD), and in particular PLDδ was the main contributor of the increase in PA. Measuring non-invasive ion fluxes (MIFE) across the root plasma membrane of wild type and pldδ-mutant seedlings, revealed that the formation of PA is linked to a gradual- and transient efflux of K+. Potential mechanisms of how PLDδ and the increase of PA are involved in polyamine function is discussed.
Collapse
Affiliation(s)
- Xavier Zarza
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Miki Fujita
- Gene Discovery Research Group, RIKEN Plant Science Center, Tsukuba, Japan
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Michel A. Haring
- Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Antonio F. Tiburcio
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Teun Munnik
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Teun Munnik,
| |
Collapse
|
2
|
Abstract
The prevalence of diabetes is increasing rapidly worldwide. A cardinal feature of most forms of diabetes is the lack of insulin-producing capability, due to the loss of insulin-producing β-cells, impaired glucose-sensitive insulin secretion from the β-cell, or a combination thereof, the reasons for which largely remain elusive. Reversible phosphorylation is an important and versatile mechanism for regulating the biological activity of many intracellular proteins, which, in turn, controls a variety of cellular functions. For instance, significant changes in protein kinase activities and in protein phosphorylation patterns occur subsequent to the stimulation of insulin release by glucose. Therefore, the molecular mechanisms regulating the phosphorylation of proteins involved in the insulin secretory process by the β-cell have been extensively investigated. However, far less is known about the role and regulation of protein dephosphorylation by various protein phosphatases. Herein, we review extant data implicating serine/threonine and tyrosine phosphatases in various aspects of healthy and diabetic islet biology, ranging from control of hormonal stimulus-secretion coupling to mitogenesis and apoptosis.
Collapse
Affiliation(s)
- Henrik Ortsäter
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, SwedenBiovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| | - Nina Grankvist
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| | - Richard E Honkanen
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| | - Åke Sjöholm
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, SwedenBiovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, SwedenBiovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| |
Collapse
|
3
|
Tersey SA, Colvin SC, Maier B, Mirmira RG. Protective effects of polyamine depletion in mouse models of type 1 diabetes: implications for therapy. Amino Acids 2014; 46:633-42. [PMID: 23846959 PMCID: PMC3888834 DOI: 10.1007/s00726-013-1560-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 07/03/2013] [Indexed: 01/08/2023]
Abstract
The underlying pathophysiology of type 1 diabetes involves autoimmune-mediated islet inflammation, leading to dysfunction and death of insulin-secreting islet β cells. Recent studies have shown that polyamines, which are essential for mRNA translation, cellular replication, and the formation of the hypusine modification of eIF5A may play an important role in the progression of cellular inflammation. To test a role for polyamines in type 1 diabetes pathogenesis, we administered the ornithine decarboxylase inhibitor difluoromethylornithine to two mouse models--the low-dose streptozotocin model and the NOD model--to deplete intracellular polyamines, and administered streptozotocin to a third model, which was haploinsufficient for the gene encoding the hypusination enzyme deoxyhypusine synthase. Subsequent development of diabetes and/or glucose intolerance was monitored. In the low-dose streptozotocin mouse model, continuous difluoromethylornithine administration dose-dependently reduced the incidence of hyperglycemia and led to the preservation of β cell area, whereas in the NOD mouse model of autoimmune diabetes difluoromethylornithine reduced diabetes incidence by 50%, preserved β cell area and insulin secretion, led to reductions in both islet inflammation and potentially diabetogenic Th17 cells in pancreatic lymph nodes. Difluoromethylornithine treatment reduced hypusinated eIF5A levels in both immune cells and islets. Animals haploinsufficient for the gene encoding deoxyhypusine synthase were partially protected from hyperglycemia induced by streptozotocin. Collectively, these studies suggest that interventions that interfere with polyamine biosynthesis and/or eIF5A hypusination may represent viable approaches in the treatment of diabetes.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Eflornithine/administration & dosage
- Female
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Oxidoreductases Acting on CH-NH Group Donors/deficiency
- Oxidoreductases Acting on CH-NH Group Donors/metabolism
- Peptide Initiation Factors/metabolism
- Polyamines/metabolism
- RNA-Binding Proteins/metabolism
- Streptozocin/administration & dosage
- Eukaryotic Translation Initiation Factor 5A
Collapse
Affiliation(s)
- Sarah A. Tersey
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Stephanie C. Colvin
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bernhard Maier
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Raghavendra G. Mirmira
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Departments of Medicine, Cellular and Integrative Physiology, and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
4
|
Lee NS, Rohan JG, Zitting M, Kamath S, Weitz A, Sipos A, Salvaterra PM, Hasegawa K, Pera M, Chow RH. A novel dual-color reporter for identifying insulin-producing beta-cells and classifying heterogeneity of insulinoma cell lines. PLoS One 2012; 7:e35521. [PMID: 22530041 PMCID: PMC3329476 DOI: 10.1371/journal.pone.0035521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/17/2012] [Indexed: 12/14/2022] Open
Abstract
Many research studies use immortalized cell lines as surrogates for primary beta- cells. We describe the production and use of a novel "indirect" dual-fluorescent reporter system that leads to mutually exclusive expression of EGFP in insulin-producing (INS(+)) beta-cells or mCherry in non-beta-cells. Our system uses the human insulin promoter to initiate a Cre-mediated shift in reporter color within a single transgene construct and is useful for FACS selection of cells from single cultures for further analysis. Application of our reporter to presumably clonal HIT-T15 insulinoma cells, as well as other presumably clonal lines, indicates that these cultures are in fact heterogeneous with respect to INS(+) phenotype. Our strategy could be easily applied to other cell- or tissue-specific promoters. We anticipate its utility for FACS purification of INS(+) and glucose-responsive beta-like-cells from primary human islet cell isolates or in vitro differentiated pluripotent stem cells.
Collapse
Affiliation(s)
- Nan Sook Lee
- Department of Physiology & Biophysics and Zilkha Neurogenetics Institute, University of Southern California, Los Angeles, California, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Oka T, Ohtani M, Suzuki JI. [Identification of novel molecules regulating differentiation and hormone secretion and clarification of their functional mechanisms in pancreatic endocrine cells]. YAKUGAKU ZASSHI 2010; 130:377-88. [PMID: 20190522 DOI: 10.1248/yakushi.130.377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to find novel bioactive molecules regulating differentiation and hormone secretion of pancreatic endocrine cells, the effects of various substances including purinergic receptor agonists and inhibitors of polyamine biosynthesis were examined in pancreatic islets and several pancreatic cell lines. The nicotinic alpha3beta4 receptor was found to be present and capable of increasing cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) and insulin secretion in mouse pancreatic Beta-TC6 cells. Activation of both nicotinic and muscarinic M(3)/M(4) receptors resulted in reduction of insulin release when compared with stimulation of muscarinic receptor alone in Beta-TC6 cells. In mouse islets, purinergic P2Y(1) and P2Y(6) receptors, which are coupled to Gq proteins, were expressed and appeared to regulate insulin secretion through Ca(2+) mobilization from intracellular stores. Similar results were observed in Beta-TC6 cells. Spermidine, one of polyamines, was found to modulate insulin synthesis and [Ca(2+)](i) in Beta-TC6 cells by use of a specific spermidine synthesis inhibitor, trans-4-methylcyclohexylamine (MCHA). Antizyme, which binds to ornithine decarboxylase (ODC) and thereby reduces the cellular polyamine level, was found to be necessary for conversion of ASPC-1 cells, a pancreatic ductal tumor cell line, into alpha-cells forming the islet-like structure and expressing glucagon gene. These findings help advance our understanding of the complex mechanisms involved in the regulation of pancreatic endocrine cell function and develop new therapeutic agents in diabetes mellitus.
Collapse
Affiliation(s)
- Takami Oka
- Research Institute of Pharmaceutical Sciences, Musashino University, Japan.
| | | | | |
Collapse
|
6
|
Lehtihet M, Webb DL, Honkanen RE, Sjöholm A. Glutamate inhibits protein phosphatases and promotes insulin exocytosis in pancreatic β-cells. Biochem Biophys Res Commun 2005; 328:601-7. [PMID: 15694391 DOI: 10.1016/j.bbrc.2005.01.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2004] [Indexed: 11/24/2022]
Abstract
In human type 2 diabetes mellitus, loss of glucose-sensitive insulin secretion from the pancreatic beta-cell is an early pathogenetic event, but the mechanisms involved in glucose sensing are poorly understood. A messenger role has been postulated for L-glutamate in linking glucose stimulation to sustained insulin exocytosis in the beta-cell, but the precise nature by which L-glutamate controls insulin secretion remains elusive. Effects of L-glutamate on the activities of ser/thr protein phosphatases (PPase) and Ca(2+)-regulated insulin exocytosis in INS-1E cells were investigated. Glucose increases L-glutamate contents and promotes insulin secretion from INS-1E cells. L-glutamate also dose-dependently inhibits PPase enzyme activities analogous to the specific PPase inhibitor, okadaic acid. L-glutamate and okadaic acid directly and non-additively promote insulin exocytosis from permeabilized INS-1E cells in a Ca(2+)-independent manner. Thus, an increase in phosphorylation state, through inhibition of protein dephosphorylation by glucose-derived L-glutamate, may be a novel regulatory mechanism linking glucose sensing to sustained insulin exocytosis.
Collapse
Affiliation(s)
- Mikael Lehtihet
- Karolinska Institutet, Department of Internal Medicine, Stockholm South Hospital, SE-118 83 Stockholm, Sweden
| | | | | | | |
Collapse
|
7
|
Lehtihet M, Honkanen RE, Sjöholm A. Inositol hexakisphosphate and sulfonylureas regulate β-cell protein phosphatases. Biochem Biophys Res Commun 2004; 316:893-7. [PMID: 15033485 DOI: 10.1016/j.bbrc.2004.02.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Indexed: 10/26/2022]
Abstract
In human type 2 diabetes, loss of glucose-stimulated insulin exocytosis from the pancreatic beta-cell is an early pathogenetic event. Mechanisms controlling insulin exocytosis are, however, not fully understood. We show here that inositol hexakisphosphate (InsP(6)), whose concentration transiently increases upon glucose stimulation, dose-dependently and differentially inhibits enzyme activities of ser/thr protein phosphatases in physiologically relevant concentrations. None of the hypoglycemic sulfonylureas tested affected protein phosphatase-1 or -2A activity at clinically relevant concentrations in these cells. Thus, an increase in cellular phosphorylation state, through inhibition of protein dephosphorylation by InsP(6), may be a novel regulatory mechanism linking glucose-stimulated polyphosphoinositide formation to insulin exocytosis in insulin-secreting cells.
Collapse
Affiliation(s)
- Mikael Lehtihet
- Karolinska Institutet, Department of Internal Medicine, Stockholm South Hospital, SE-118 83 Stockholm, Sweden
| | | | | |
Collapse
|
8
|
Cheng SX, Geibel JP, Hebert SC. Extracellular polyamines regulate fluid secretion in rat colonic crypts via the extracellular calcium-sensing receptor. Gastroenterology 2004; 126:148-58. [PMID: 14699496 DOI: 10.1053/j.gastro.2003.10.064] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Polyamines are essential for the normal postnatal development, maintenance, and function of gastrointestinal epithelia. The extracellular Ca(2+) (Ca(2+)(o)/nutrient)-sensing receptor is expressed on both luminal and basolateral membranes of colonocytes, and, in other cell systems, this receptor has been shown to respond to polyamines. Thus, the Ca(2+)-sensing receptor could provide a mechanism for modulation of colonocyte function by dietary and systemic extracellular polyamines. In the present study, we investigated the interaction of polyamines, particularly spermine, and extracellular Ca(2+) on second messenger generation by, and on function of, rat distal colonic crypts. METHODS Calcium-sensing receptor activation was assessed in colonic epithelial cells and intact crypts freshly isolated from distal colon by monitoring intracellular IP(3) and Ca(2+) accumulation using radioimmunoassay and Fluo-3 fluorometry, respectively. Interactions of extracellular Ca(2+) and spermine on regulation of both basal and forskolin-stimulated fluid transport were measured in crypts microperfused in vitro. RESULTS Polyamine (spermine > spermidine > putrescine)-mediated enhancement of intracellular D-myo-inositol 1,4,5-trisphosphate (IP(3)) and Ca(2+) accumulation required extracellular Ca(2+), and the EC(50) for extracellular Ca(2+)-mediated activation of the calcium-sensing receptor was reduced by polyamines. Extracellular spermine modulated both basal and forskolin-stimulated fluid secretion in perfused colonic crypts, and the EC(50) for spermine-induced reduction in forskolin-stimulated fluid secretion was inversely dependent on extracellular Ca(2+) (Ca(2+)(o)). CONCLUSIONS The interactions of extracellular Ca(2+) and polyamines on second messenger accumulation and fluid secretion support a role for the luminal and basolateral calcium-sensing receptors in mediating some of the effects of polyamines on distal colonic epithelial cells.
Collapse
Affiliation(s)
- Sam X Cheng
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
9
|
Nilsson BO, Gomez MF, Swärd K, Hellstrand P. Regulation of Ca2+ channel and phosphatase activities by polyamines in intestinal and vascular smooth muscle--implications for cellular growth and contractility. ACTA PHYSIOLOGICA SCANDINAVICA 2002; 176:33-41. [PMID: 12193217 DOI: 10.1046/j.1365-201x.2002.01013.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polyamines added extracellularly to intestinal and vascular smooth muscle cells cause relaxation through inhibition of Ca2+ channel activity. Intracellularly applied polyamines also affect Ca2+ channel properties. Polyamines do not readily pass over the plasma membrane because of their positive charges but in permeabilized smooth muscle preparations they have free access to the cytoplasm. In this system they increase sensitivity of the contractile machinery to Ca2+ through inhibition of myosin phosphatase activity. The magnitude of Ca2+ channel and phosphatase inhibition depends on the number of positive charges on the polyamine molecule. Polyamines have an obligatory, but yet undefined, role in regulation of cell growth and proliferation. Several groups of protein kinases, such as tyrosine and mitogen activated protein (MAP)-kinases transmit the growth signal from the plasma membrane to the cell nucleus where mitosis and protein synthesis are initiated. The data reviewed here show that polyamines may affect such signal transmission via inhibition of phosphatase activity.
Collapse
Affiliation(s)
- B-O Nilsson
- Department of Physiological Sciences, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
10
|
Sjöholm A, Berggren PO, Honkanen RE. Effects of second messengers on serine/threonine protein phosphatases in insulin-secreting cells. Biochem Biophys Res Commun 2001; 283:364-8. [PMID: 11327709 DOI: 10.1006/bbrc.2001.4789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reversible protein phosphorylation is an important and versatile mechanism by which cells transduce external signals into biological responses. Cellular levels of protein phosphorylation are determined by the balanced actions of both protein kinases and protein phosphatases (PPases). Compared with protein kinases, however, serine/threonine PPases have received less attention. In the present study, the effects of certain insulin secretagogues and intracellular second messengers, known to stimulate or inhibit insulin secretion, on the activities of cation-independent serine/threonine PPases were investigated in insulin-secreting RINm5F insulinoma cells. Raising cellular cAMP through adenylyl cyclase activation and phosphodiesterase inhibition in intact cells, evoked inhibitory effects on PPase activities. The addition of a nitric oxide donor, cyclic nucleotides, or proinflammatory prostaglandins to RINm5F cell homogenates at widely different concentrations did not affect type-1 or -2A PPase activities. Phosphatidyl serine seemingly activated PPase-1, while inactivating PPase-2A. A protein kinase C-activating phorbol ester produced the opposite results when added to RINm5F cell homogenates. These studies suggest that several known intracellular second messengers are without effect on beta-cell PPase activities. However, phosphatidyl serine and protein kinase C activation, whose activity is transiently increased by glucose, may promote insulin release through PPase inactivation, likely contributing to the increase in phosphorylation state that occurs after stimulation of insulin release. Thus, inhibition of protein dephosphorylation may be a novel regulatory mechanism, assisting in activation of the stimulus-secretion coupling in insulin-producing cells.
Collapse
Affiliation(s)
- A Sjöholm
- Cancer Research Center of Hawaii, Molecular Oncology Program, University of Hawaii at Manoa, Honolulu 96813-2424, USA.
| | | | | |
Collapse
|
11
|
Sjöholm A, Berggren PO, Cooney RV. gamma-tocopherol partially protects insulin-secreting cells against functional inhibition by nitric oxide. Biochem Biophys Res Commun 2000; 277:334-40. [PMID: 11032727 DOI: 10.1006/bbrc.2000.3650] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Preceding the onset of type 1 diabetes mellitus, pancreatic islets are infiltrated by macrophages secreting interleukin-1beta (IL-1beta) which induces beta-cell apoptosis and exerts inhibitory actions on islet beta-cell insulin secretion. IL-1beta seems to act chiefly through induction of nitric oxide (NO) synthesis. Hence, IL-1beta and NO have been implicated as key effector molecules in type 1 diabetes mellitus. In this paper, the influence of endogenously produced and exogenously delivered NO on the regulation of cell proliferation, cell viability and discrete parts of the stimulus-secretion coupling in insulin-secreting RINm5F cells was investigated. Because vitamin E may delay diabetes onset in animal models, we also investigated whether tocopherols may protect beta-cells from the suppressive actions of IL-1 and NO in vitro. To this end, the impact of NO on insulin secretory responses to activation of phospholipase C (by carbamylcholine), protein kinase C (by phorbol ester), adenylyl cyclase (by forskolin), and Ca(2+) influx through voltage-activated Ca(2+) channels (by K(+)-induced depolarization) was monitored in culture after treatment with IL-1beta or by co-incubation with the NO donor spermine-NONOate. It was found that cell proliferation, viability, insulin production and the stimulation of insulin release evoked by carbamylcholine and phorbol ester were impeded by IL-1beta or spermine-NONOate, whereas the hormone output by the other secretagogues was not altered by NO. Pretreatment with gamma-tocopherol (but not alpha-tocopherol) afforded a partial protection against the inhibitory effects of NO, whereas specifically inhibiting inducible NO synthase with N-nitro-L-arginine completely reversed the IL-1beta effects. In contrast, inhibiting guanylyl cyclase with ODQ (1H-[1,2, 4]oxadiazolo[4,3-alpha]-quinoxaline-1-one) or blocking low voltage-activated Ca(2+) channels with NiCl(2) failed to influence the actions of NO. In conclusion, our data show that NO inhibits growth and insulin secretion in RINm5F cells, and that gamma-tocopherol may partially prevent this. The results suggest that phospholipase C or protein kinase C may be targeted by NO. In contrast, cGMP or low voltage-activated Ca(2+) channels appear not to mediate the toxicity of NO in these cells. These adverse effects of NO on the beta-cell, and the protection by gamma-tocopherol, may be of importance for the development of the impaired insulin secretion characterizing type 1 diabetes mellitus, and offer possibilities for intervention in this process.
Collapse
Affiliation(s)
- A Sjöholm
- Cancer Research Center of Hawaii, Molecular Carcinogenesis Program, University of Hawaii at Manoa, 1236 Lauhala Street, Honolulu, Hawaii, 96813-2424, USA.
| | | | | |
Collapse
|
12
|
Cibulsky SM, Sather WA. The EEEE locus is the sole high-affinity Ca(2+) binding structure in the pore of a voltage-gated Ca(2+) channel: block by ca(2+) entering from the intracellular pore entrance. J Gen Physiol 2000; 116:349-62. [PMID: 10962013 PMCID: PMC2233694 DOI: 10.1085/jgp.116.3.349] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Selective permeability in voltage-gated Ca(2+) channels is dependent upon a quartet of pore-localized glutamate residues (EEEE locus). The EEEE locus is widely believed to comprise the sole high-affinity Ca(2+) binding site in the pore, which represents an overturning of earlier models that had postulated two high-affinity Ca(2+) binding sites. The current view is based on site-directed mutagenesis work in which Ca(2+) binding affinity was attenuated by single and double substitutions in the EEEE locus, and eliminated by quadruple alanine (AAAA), glutamine (QQQQ), or aspartate (DDDD) substitutions. However, interpretation of the mutagenesis work can be criticized on the grounds that EEEE locus mutations may have additionally disrupted the integrity of a second, non-EEEE locus high-affinity site, and that such a second site may have remained undetected because the mutated pore was probed only from the extracellular pore entrance. Here, we describe the results of experiments designed to test the strength of these criticisms of the single high-affinity locus model of selective permeability in Ca(2+) channels. First, substituted-cysteine accessibility experiments indicate that pore structure in the vicinity of the EEEE locus is not extensively disrupted as a consequence of the quadruple AAAA mutations, suggesting in turn that the quadruple mutations do not distort pore structure to such an extent that a second high affinity site would likely be destroyed. Second, the postulated second high-affinity site was not detected by probing from the intracellularly oriented pore entrance of AAAA and QQQQ mutants. Using inside-out patches, we found that, whereas micromolar Ca(2+) produced substantial block of outward Li(+) current in wild-type channels, internal Ca(2+) concentrations up to 1 mM did not produce detectable block of outward Li(+) current in the AAAA or QQQQ mutants. These results indicate that the EEEE locus is indeed the sole high-affinity Ca(2+) binding locus in the pore of voltage-gated Ca(2+) channels.
Collapse
Affiliation(s)
- Susan M. Cibulsky
- Department of Pharmacology and Neuroscience Center, University of Colorado Health Sciences Center, Denver, Colorado 80262
| | - William A. Sather
- Department of Pharmacology and Neuroscience Center, University of Colorado Health Sciences Center, Denver, Colorado 80262
| |
Collapse
|
13
|
Iwakura T, Fujimoto S, Kagimoto S, Inada A, Kubota A, Someya Y, Ihara Y, Yamada Y, Seino Y. Sustained enhancement of Ca(2+) influx by glibenclamide induces apoptosis in RINm5F cells. Biochem Biophys Res Commun 2000; 271:422-8. [PMID: 10799313 DOI: 10.1006/bbrc.2000.2616] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytosolic Ca(2+) elevations are known to be involved in triggering apoptosis in many tissues, but the effect of sustained enhancement of Ca(2+) influx on apoptosis in beta cells remains unknown. We have found that the viability of RINm5F cells is decreased dose-dependently by continuous exposure to glibenclamide at concentrations from 10(-7) to 10(-4) M, and that this effect is partially ameliorated by pretreatment with cycloheximide. Electrophoresis of the cells exposed to glibenclamide revealed ladder-like fragmentation characteristic of apoptosis, and which also is suppressed by cycloheximide pretreatment. By using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining, we detected increased DNA fragmentation in the nuclei of the cells exposed to glibenclamide, and staining with Hoechst 33342 and propidium iodide showed a dose-dependent increase in the number of cells with the chromatin condensation and fragmentation in their nuclei that is characteristic of apoptosis. The effects of glibenclamide on cell viability and apoptotic cell death were partially inhibited by treatment with Ca(2+) channel blocker, and by reducing the extracellular Ca(2+) concentration during glibenclamide exposure, suggesting that they may be derived from increased Ca(2+) influx. Furthermore, only the percentage of apoptotic cells, and not that of necrotic cells, increased with the increasing intracellular Ca(2+) concentration during glibenclamide exposure. In conclusion, we have demonstrated that the sustained enhancement of Ca(2+) influx caused by glibenclamide exposure can induce apoptotic cell death in a pure beta cell line.
Collapse
Affiliation(s)
- T Iwakura
- Department of Metabolism and Clinical Nutrition, Kyoto University, Kyoto, 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Reversible protein phosphorylation is an important mechanism by which cells transduce external signals into biologic responses. Levels of protein phosphorylation are determined by the balanced actions of both protein kinases and protein phosphatases (PPases). However, compared with protein kinases, regulation of PPases has been relatively neglected. The insulin secretagogue L-arginine, an immediate metabolic precursor to polyamines, causes a rapid and transient decrease in PPase-1 activity in insulin-secreting RINm5F cells. We here show that polyamines dose-dependently suppress PPase-1-like activity when added to RINm5F cell homogenates at physiologic concentrations (spermine > spermidine > putrescine), while having minor and inconsistent effects on PPase-2A-like activity. The IC50 value for spermine on PPase-1-like activity was approximately 4 mM. The inhibitory effect was reproduced and of comparable magnitude on purified PPases types 1 and 2A. On the other hand, when endogenous polyamine pools were exhausted by 4 days of exposure to the specific L-ornithine decarboxylase inhibitor DL-alpha-difluoromethylornithine, there was an increase in PPase-2A-like activity. Quantitative Western analysis revealed that the amount of PPase-2A protein did not change after this treatment. It is concluded that polyamines cause time-and concentration-dependent inhibitory effects on RINm5F cell PPase activities, which may contribute to the increase in phosphorylation state that occurs after secretory stimulation.
Collapse
Affiliation(s)
- A Sjöholm
- Department of Molecular Medicine, The Rolf Luft Center for Diabetes Research, Karolinska Institute, Karolinska Hospital, Stockholm, Sweden.
| | | |
Collapse
|
15
|
Sjöholm A, Kindmark H. Short- and long-term effects of beta-cellulin and transforming growth factor-alpha on beta-cell function in cultured fetal rat pancreatic islets. Endocrine 1999; 11:189-93. [PMID: 10709767 DOI: 10.1385/endo:11:2:189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The polypeptide beta-cellulin, identified in conditioned media from insulinoma cell cultures and produced by pancreatic islet cells, was recently identified as a possible autocrine growth factor for the pancreatic islet beta-cell. In this study, we investigated the short- and long-term actions of beta-cellulin, and the structurally related transforming growth factor-alpha (TGF-alpha), on beta-cell function in fetal rat pancreatic islets in vitro. We found that neither beta-cellulin nor TGF-alpha (10 nM each), in contrast to glucose (20 mM), acutely influenced beta-cell levels of cytosolic-free Ca2+. Additionally, whereas glucose markedly increased short-term (60-min) insulin release, neither beta-cellulin nor TGF-alpha (10 nM each) influenced the rate of hormone secretion at basal (3 mM) or stimulatory (20 mM) concentrations of glucose. Likewise, long-term (24-h) exposure of islets to a high glucose concentration significantly augmented the secretion of insulin. This effect was slightly potentiated by TGF-alpha (10 nM), but not beta-cellulin (10 nM), at high (but not low) glucose concentrations. Conversely, the islet insulin content was not significantly affected by beta-cellulin or TGF-alpha at any glucose concentration tested. We conclude that, although beta-cellulin is produced by islet cells, the peptide does not seem to be of importance for the regulation of insulin production by isolated pancreatic beta-cells.
Collapse
Affiliation(s)
- A Sjöholm
- Department of Molecular Medicine (L6:01B), Karolinska Institute, Karolinska Hospital, Stockholm, Sweden.
| | | |
Collapse
|
16
|
Vliagoftis H, Mak L, Boucher W, Theoharides TC. Dual effect of spermine on mast cell secretion exhibits different calcium and temperature requirements. INTERNATIONAL JOURNAL OF IMMUNOPHARMACOLOGY 1999; 21:547-59. [PMID: 10501624 DOI: 10.1016/s0192-0561(99)00031-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mast cells release many biologically active molecules upon stimulation by a variety of molecules such as immunoglobulin E (IgE) and specific antigen, anaphylatoxins, as well as a number of cationic compounds which include drugs, kinins and neuropeptides. The effect of the naturally occurring polyamine spermine was studied because, even though it is polycationic, it has been implicated in the modulation of secretory processes in a variety of cells. In particular, it was previously shown that oxidation products of spermine inhibit mast cell secretion. High concentrations of spermine (5 x 10(-3) M) added at 37 degrees C induced mast cell secretion that had similar characteristics with that triggered by compound 48/80 (48/80). However, spermine inhibited mast cell secretion in a dose-dependent manner as long as it was added at 4-10 degrees C for at least 10 min in the absence of Ca++ before warming the cells to 37 degrees C and triggering them with 48/80. These findings were true both for purified rat peritoneal mast cells and for rat skin mast cells in situ. Addition of calcium after the cells had been warmed to 37 degrees C could not reverse this inhibition. The inhibition seen when spermine was added at 4 degrees C was, however, overcome if phorbol myristate acetate (PMA) or NaF, which activate PKC and G proteins respectively, were added to mast cells at 37 degrees C together with Ca++. These results indicate that polyamines could be important modulators of the activation state of mast cells and might help further define the biochemical events involved in mast cell secretion.
Collapse
Affiliation(s)
- H Vliagoftis
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA, USA
| | | | | | | |
Collapse
|
17
|
Sjöholm A. Aspects of novel sites of regulation of the insulin stimulus-secretion coupling in normal and diabetic pancreatic islets. Endocrine 1998; 9:1-13. [PMID: 9798725 DOI: 10.1385/endo:9:1:1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/1997] [Accepted: 02/12/1998] [Indexed: 11/11/2022]
Abstract
Noninsulin-dependent diabetes mellitus (NIDDM), a major health care problem in the Western world, is a disease typified by a relative deficiency of insulin, leading to vast derangements in glucose and lipid homeostasis with disastrous vascular complications. Despite immense research efforts aimed at a clear understanding of the etiology of this complex disease, the molecular mechanisms causing the disorder still remain elusive. This article reviews extant data from recent publications implicating novel signal transduction pathways as important regulators of the insulin stimulus-secretion coupling in the pancreatic beta-cell. The significance of nitric oxide and serine/threonine protein phosphatases, and their inactivation by insulin secretagogues, glucose metabolites, ATP, GTP, glutamate, and inositol hexaphosphate in this arena is scrutinized. Additionally, also presented is the growing concept that an important signal for insulin secretion may reside in the inextricable interplay between glucose and lipid metabolism, specifically the generation of malonyl-CoA, which inhibits carnitine palmitoyltransferase 1 with the attendant accumulation of long-chain acyl CoA esters. Moreover, attention is directed towards novel intracellular actions of hypoglycemic sulfonylureas in the beta-cell. Finally, the importance of "lipotoxicity" and aberrations in glucose uptake and metabolism in beta-cell dysfunction is given consideration. Future research efforts should aim at further characterization of effects of second messengers on protein phosphorylation elements in beta-cells. Additionally, long-term regulation by glucose and the diabetic state (e.g., fatty acids and ketones) on beta-cell protein phosphatases, pyruvate dehydrogenase, and carnitine palmitoyltransferase 1 needs to be explored in greater depth. Clearly, the detrimental impact of diabetic hyperlipidemia on beta-cell function has been a relatively neglected area, but futu re pharmacological approaches directed at preventing lipotoxicity may prove beneficial in the treatment of diabetes.
Collapse
Affiliation(s)
- A Sjöholm
- Department of Molecular Medicine, Karolinska Institute, Karolinska Hospital, Stockholm, Sweden
| |
Collapse
|
18
|
Sjöholm A. Effects of secretagogues on insulin biosynthesis and secretion in polyamine-depleted pancreatic beta-cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C1105-10. [PMID: 8928738 DOI: 10.1152/ajpcell.1996.270.4.c1105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To extend previous observations on the importance of polyamines for glucose-stimulated insulinogenesis (N. Welsh and A Sjöholm. Polyamines and insulin production in isolated mouse pancreatic islets. Biochem. J. 252: 701-707, 1988), the impact of other secretagogues on insulin secretion of islets partially depleted in polyamines by selective inhibitors of L-ornithine decarboxylase and S-adenosyl-L-methionine decarboxylase was monitored. Glucose-sensitive, but not basal, insulin release was partially abolished in polyamine-deficient islets. Qualitatively similar impairments in insulin secretion were recorded when such islets were stimulated with nonglucidic nutrients (alpha-ketoisocaproic acid + L-glutamine), a cationic amino acid (L-arginine), activators of phospholipase C (carbachol) or protein kinase C (12-O-tetradecanoylphorbol 13-acetate), an adenosine 1', 5'-cyclic monophosphate-raising agent (forskolin), or a hypoglycemic sulfonylurea (glibenclamide). Additionally, glucose-responsive (pro)insulin biosynthesis was preferentially impeded in polyamine-deficient islets. It is concluded that polyamines act as permissive or stimulatory factors in insulin production and release. In addition, they seemingly do not act in an inhibitory manner on phospholipase C, protein kinase C, or Ca2+ flux into these islets, in contrast to reports in which insulinoma and other cells were used.
Collapse
Affiliation(s)
- A Sjöholm
- Department of Molecular Medicine, Karolinska Hospital, Stockholm, Sweden
| |
Collapse
|
19
|
Kowluru A, Seavey SE, Rhodes CJ, Metz SA. A novel regulatory mechanism for trimeric GTP-binding proteins in the membrane and secretory granule fractions of human and rodent beta cells. Biochem J 1996; 313 ( Pt 1):97-107. [PMID: 8546716 PMCID: PMC1216915 DOI: 10.1042/bj3130097] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently we described roles for heterotrimeric and low-molecular-mass GTP-binding proteins in insulin release from normal rat islets. During these studies, we observed that a protein with an apparent molecular mass (37 kDa) similar to that of the beta subunit of trimeric GTP-binding proteins underwent phosphorylation in each of five classes of insulin-secreting cells. Incubation of the beta cell total membrane fraction or the isolated secretory granule fraction (but not the cytosolic fraction) with [gamma-32P]ATP or [gamma-32P]GTP resulted in the phosphorylation of this protein, which was selectively immunoprecipitated by an anti-serum directed against the common beta subunit of trimeric G-proteins. Disruption of the alpha beta gamma trimer (by pretreatment with either fluoroaluminate or guanosine 5'(-)[gamma-thio]triphosphate) prevented beta subunit phosphorylation. Based on differential sensitivities to pH, heat and the histidine-selective reagent diethyl pyrocarbonate (and reversal of the latter by hydroxylamine), the phosphorylated amino acid was presumptively identified as histidine. Incubation of pure beta subunit alone or in combination with the exogenous purified alpha subunit of transducin did not result in the phosphorylation of the beta subunit, but addition of the islet cell membrane fraction did support this event, suggesting that membrane localization (or a membrane-associated factor) is required for beta subunit phosphorylation. Incubation of phosphorylated beta subunit with G alpha.GDP accelerated the dephosphorylation of the beta subunit, accompanied by the formation of G alpha-GTP. Immunoblotting detected multiple alpha subunits (of Gi, G(o) and Gq) and at least one beta subunit in the secretory granule fraction of normal rat islets and insulinoma cells. These data describe a potential alternative mechanism for the activation of GTP-binding proteins in beta cells which contrasts with the classical receptor-agonist mechanism: G beta undergoes transient phosphorylation at a histidine residue by a GTP-specific protein kinase; this phosphate, in turn, may be transferred via a classical Ping-Pong mechanism to G alpha.GDP (inactive), yielding the active configuration G alpha.GTP in secretory granules (a strategic location to modulate exocytosis).
Collapse
Affiliation(s)
- A Kowluru
- Department of Medicine, University of Wisconsin School of Medicine, Madison 53705, USA
| | | | | | | |
Collapse
|
20
|
Seiler N, Hardy A, Moulinoux JP. Aminoglycosides and polyamines: targets and effects in the mammalian organism of two important groups of natural aliphatic polycations. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1996; 46:183-241. [PMID: 8754206 DOI: 10.1007/978-3-0348-8996-4_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- N Seiler
- Groupe de Recherche en Thérapeutique Anticancereuse URA CNRS 1529 DRED 1266, Faculté de Médecine, Université de Rennes, France
| | | | | |
Collapse
|
21
|
Poulin R, Pegg AE. Stable intracellular acidification upon polyamine depletion induced by alpha-difluoromethylornithine or N1,N12-bis(ethyl)spermine in L1210 leukaemia cells. Biochem J 1995; 312 ( Pt 3):749-56. [PMID: 8554515 PMCID: PMC1136177 DOI: 10.1042/bj3120749] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Polyamines play major roles in ionic and osmotic regulation, but their exact involvement in specific ion transport processes is poorly defined. Treatment of L1210 mouse leukaemia cells with either 5 mM alpha-difluoromethylornithine (DFMO), a suicide substrate of ornithine decarboxylase, or 25 microM N1,N12-bis(ethyl)spermine (BE-3-4-3), a dysfunctional polyamine analogue, caused a stable decreased in intracellular pH (pHi) by 0.1-0.4 unit from steady-state control values between 7.4 and 7.6, as measured either by partition of a weak acid or with a fluorescent pH-sensitive probe. This effect was not related to cell growth status or differences in metabolic acid generation, and was observed in either the presence or absence of HCO3-. Exogenous spermidine (10-25 microM) or putrescine (25-50 microM) fully reversed DFMO- or BE-3-4-3-induced acidification within 2 and 8 h respectively. Recovery of pHi in L1210 cells after a nigericin- or NH4(+)-mediated acid load in HCO3(-)-free buffers was mediated by Na+/H+ antiporter activity, in addition to a minor Na(+)-independent and amiloride-insensitive pathway. Decreased steady-state pHi was maintained in polyamine-depleted L1210 cells after recovery from acid stress. Moreover, the pHi-dependence of the rate of Na(+)-dependent H+ extrusion after an acid stress was altered by DFMO and BE-3-4-3, resulting in a set-point which was lower by 0.25-0.30 pH unit in polyamine-depleted cells. On the other hand, neither the rate nor the magnitude of Na+/H(+)-exchanger-mediated alkalinization induced by hypertonic shock was decreased by polyamine depletion. Thus polyamine depletion induces a persistent defect in pHi homeostasis which is due, at least in part, to a stable decrease in the pHi set-point of the Na+/H+ exchanger.
Collapse
Affiliation(s)
- R Poulin
- Laboratory of Molecular Endocrinology, Laval University Medical Research Center, Ste, Foy, Que, Canada
| | | |
Collapse
|
22
|
Gomez M, Hellstrand P. Effects of polyamines on voltage-activated calcium channels in guinea-pig intestinal smooth muscle. Pflugers Arch 1995; 430:501-7. [PMID: 7491276 DOI: 10.1007/bf00373886] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Effects of polyamines on the spontaneous mechanical and electrical activity of guinea-pig intestinal smooth muscle were studied. Spermine and spermidine inhibited action potential generation and contractions, while putrescine had no effect. Single smooth muscle cells were isolated from the longitudinal muscle layer of the guinea-pig ileum. Whole-cell voltage-clamp experiments were carried out to investigate the effects of polyamines on current through voltage-activated Ca2+ channels. Spermine and spermidine (0.1-1 mM) reduced the inward current in a concentration-dependent manner. Spermine blocked current activated by the dihydropyridine agonist BAY K 8644 (1 microM), whereas no additional inhibition by spermine was seen after blockage of dihydropyridine-sensitive channels by nifedipine (0.1 microM). Inhibition by spermine or spermidine did not shift the peak of the current voltage relation of the inward current. Steady-state activation and inactivation relationships were not affected and thus the amplitude, but not the voltage dependence, of the window current responsible for Ca2+ inflow during sustained depolarization was affected. Putrescine (1 mM) had no significant effect on the inward current. These results suggest that spermine and spermidine inhibit contraction in spontaneously active intestinal smooth muscle by inhibiting Ca2+ current responsible for generation of action potentials.
Collapse
Affiliation(s)
- M Gomez
- Department of Physiology and Biophysics, University of Lund, Sweden
| | | |
Collapse
|
23
|
Rustenbeck I, Löptien D, Lenzen S. Degradation of dansyl polyamines on high-performance thin-layer chromatographic plates. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1995; 667:185-7. [PMID: 7663683 DOI: 10.1016/0378-4347(94)00596-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Using high-performance thin-layer chromatography with in situ quantitation to measure dansylated polyamines in the range of 1-20 pmol, we found that dansylated polyamines apparently react with the silica gel of the plates. The fluorescence of the dansyl polyamines diminished with increase in the time interval between application of a sample to the plate and start of the chromatographic separation. Conversely, the fluorescence at the site of application increased with the length of the time interval, indicating the formation of polar reaction products. If this reaction is not accounted for, considerable errors in quantitation of dansyl polyamines may occur.
Collapse
Affiliation(s)
- I Rustenbeck
- Institute of Pharmacology and Toxicology, University of Göttingen, Germany
| | | | | |
Collapse
|
24
|
Sjöholm A. Regulation of insulinoma cell proliferation and insulin accumulation by peptides and second messengers. Ups J Med Sci 1995; 100:201-16. [PMID: 8808183 DOI: 10.3109/03009739509178906] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The regulation of clonal rat insulinoma (RINm5F) cell proliferation and hormone accumulation was investigated with the aim of identifying putative compounds capable of inducing differentiation, i.e. decreased growth and increased insulin accumulation, by the tumor cells. In particular, interest was focused on the role of a number of peptides as well as pharmacological probes modulating various signal transduction systems and which have been shown to regulate normal beta-cell proliferation and insulin accumulation. Growth hormone stimulated insulin accumulation and inhibited DNA synthesis, whereas galanin and insulin-like growth factor I caused a moderate suppression of insulin accumulation but did not affect proliferation, while epidermal growth factor, transforming growth factor beta, platelet-derived growth factor, acidic and basic fibroblast growth factor, bradykinin and somatostatin were virtually inactive on all parameters tested. Exogenous prostaglandins E2 and F1 alpha were inactive, while the cycloxygenase inhibitor indomethacin slightly suppressed insulin accumulation. The cytokine IL-1 beta caused a significant decrease in both beta-cell mitogenesis and insulin accumulation, effects that were mediated through nitric oxide generation. The vitamin A derivative retinyl acetate slightly inhibited serum-stimulated DNA synthesis, but did not affect insulin accumulation. The vitamin E alpha-tocopherol significantly enhanced insulin release but did not affect mitogenesis. By contrast, gamma-tocopherol was inactive on both these parameters. The alpha-adrenergic agonist clonidine evoked a slight inhibition of serum-stimulated DNA synthesis, without influencing insulin accumulation, whereas phenylephrine did not affect any of these parameters. Carbamylcholine increased insulin accumulation, but not cell proliferation, whereas the adenylyl cyclase activator forskolin suppressed mitogenesis but did not affect insulin accumulation. Inhibition of protein kinase C with staurosporine or prolonged treatment with phorbol ester suppressed DNA synthesis, as did the tyrosine kinase inhibitor genistein. Stimulating Ca2+ influx by closing ATP-dependent K+ channels with glibenclamide enhanced DNA synthesis, while opening of these channels with diazoxide suppressed cell growth. Conversely, preventing Ca2+ influx by the Ca2+ channel antagonist D-600, chelating intracellular Ca2+ by fura-2 AM or inhibiting the Ca2+/calmodulin-dependent protein kinase by calmidazol resulted in a decreased DNA synthesis. On the other hand, uncontrolled influx or mobilization of Ca2+ by ionomycin or thapsigargin resulted in an arrested DNA synthesis. The present paper shows that RINm5F insulinoma cell proliferation and insulin accumulation can be modulated by various peptidergic and pharmacological agents regulating certain signal transduction pathways. However, mitogenesis in the insulinoma cells seemingly is controlled in a vastly different manner in comparison to that in normal beta-cells. The most spectacular finding in this screening study, i.e. that growth hormone, contrarily to its effect on normal beta-cells, suppresses insulinoma cell growth, merits further elucidation of the underlying mechanisms. Possibly the hormone might become of utility in a clinical setting in the treatment of patients with insulin-producing tumors.
Collapse
Affiliation(s)
- A Sjöholm
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, USA
| |
Collapse
|
25
|
Sjöholm A, Bucht E, Theodorsson E, Larsson R, Nygren P. Polyamines regulate human medullary thyroid carcinoma TT-cell proliferation and secretion of calcitonin and calcitonin gene-related peptide. Mol Cell Endocrinol 1994; 103:89-94. [PMID: 7958401 DOI: 10.1016/0303-7207(94)90073-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The significance of polyamines for the neoplastic proliferation and secretion of calcitonin (CT) and calcitonin-gene-related peptide (CGRP) by the human medullary thyroid carcinoma TT cell line was investigated. TT cells were cultured in vitro for 6 days with or without additions of pathway inhibitors of polyamine biosynthetic enzymes. Treatment of the cells with 1 mM of the specific L-ornithine decarboxylase (ODC) inhibitor DL-alpha-difluoromethylornithine (DFMO) resulted in a 97% decrease in ODC activity, lowered contents of putrescine (96%) and spermidine (85%) and cell proliferation rates (90%) along with a compensatory 15-fold increase in S-adenosyl-L-methionine decarboxylase (SAMDC) activity. DFMO treatment also led to a decrease in cellular content of CT (33%) and CGRP (26%), while the drug enhanced secretion of CT (31%) but depressed that of CGRP (26%), and elevated the ratio of CT to CGRP secreted into the medium by 74%. Ethylglyoxal bis(guanylhydrazone) (EGBG), a SAMDC inhibitor, at 100 microM evoked a similar reduction of cell proliferation and lowered the content of spermine by 81%. Furthermore, EGBG treatment caused a 34-fold increase in ODC activity and a subsequent 35-fold build-up of putrescine, but also seemed to stabilize SAMDC as evidenced by a highly enhanced SAMDC activity (approximately 200-fold) during enzyme assays in the absence of the inhibitor. EGBG exposure resulted in an increase in cellular CT content (110%) and secretion of the hormone (82%), while not affecting CGRP content or release.2+ EGBG effects were partially counteracted by DFMO.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Sjöholm
- Department of Molecular Medicine (L6:02), Karolinska Institute, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|