1
|
Ribeiro JC, Rodrigues BC, Bernardino RL, Alves MG, Oliveira PF. The interactome of cystic fibrosis transmembrane conductance regulator and its role in male fertility: A critical review. J Cell Physiol 2024:e31422. [PMID: 39324358 DOI: 10.1002/jcp.31422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic adenosine monophosphate (cAMP)-regulated chloride and bicarbonate ion channel found in many human cells. Its unique biochemical characteristics and role as a member of the adenosine triphosphate (ATP)-binding cassette transporters superfamily are pivotal for the transport of several substrates across cellular membranes. CFTR is known to interact, physically and functionally, with several other cellular proteins. Hence, its properties are essential for moving various substances across cell membranes and ensuring correct cell functioning. Genetic mutations or environmental factors may disrupt CFTR's function resulting in different possible phenotypes due to gene variations that affect not only CFTR's function, localization, and processing within cells, but also those of its interactors. This has been reported as an underlying cause of various diseases, including cystic fibrosis. The severe clinical implications of cystic fibrosis have driven intense research into the role of CFTR in lung function but its significance to fertility, particularly in men, has been comparatively understudied. However, ongoing and more recent research into CFTR and its interacting proteins in the testis or specific testicular cells is beginning to shed light on this field. Herein, we provide a comprehensive and up-to-date overview of the CFTR, its interactome, and its crucial role in male reproduction, highlighting recent discoveries and advancements in understanding the molecular mechanisms involved. The comprehension of these complex interactions may pave the way for potential therapeutic approaches to improve fertility of men suffering from alterations in the function of CFTR.
Collapse
Affiliation(s)
- João C Ribeiro
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Bernardo C Rodrigues
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Raquel L Bernardino
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Marco G Alves
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), Aveiro, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
2
|
ZHANG QY, GUO Y, JIANG XL, LIU X, ZHAO SG, ZHOU XL, YANG ZW. Intestinal Cckbr-specific knockout mouse as a novel model of salt-sensitive hypertension via sodium over-absorption. J Geriatr Cardiol 2023; 20:538-547. [PMID: 37576480 PMCID: PMC10412539 DOI: 10.26599/1671-5411.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
OBJECTIVES To investigate the value of CCKBRfl/fl villin-Cre mice as a mouse model of salt-sensitive hypertension (SSH). METHODS In the first part, 2-month-old CCKBRfl/fl villin-Cre mice (CKO) and control CCKBRfl/fl mice (WT) were fed with normal diet (0.4% NaCl) or high salt diet (4% NaCl), separately for 6 weeks. In the rescue study, one week of hydrochlorothiazide or saline injection were treated with the CKO mice fed high salt diet. The blood pressure, biochemical indexes, and the expression of small intestinal sodium transporters (NHE3, NKCC1, eNaC) was detected. The organ injury markers (MMP2/MMP9) and the histopathological changes of kidneys were observed, whereas the changes of duodenal sodium absorption were detected by small intestinal perfusion in vivo. RESULTS The CCKBRfl/fl villin-Cre mice with high salt intake exhibited high blood pressure, increased duodenal sodium absorption and urinary sodium excretion, and with renal injury. The protein expression of NHE3, NKCC1 and eNaC were also significant increase in the intestine of CKO-HS mice. Treatment with hydrochlorothiazide remarkably attenuated the elevated blood pressure by high salt absorption in the CCKBRfl/fl villin-Cre mice, but no significant histopathological changes were observed. CONCLUSIONS These results support a crucial role of intestinal Cckbr deficiency on SSH development and the diuretic antihypertension effect in CCKBRfl/fl villin-Cre mice. The CCKBRfl/fl villin-Cre mice with the high salt intake may serve as a stable model of salt-sensitive hypertensive induced by sodium overloading.
Collapse
Affiliation(s)
- Qiong-Yu ZHANG
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan GUO
- Emergency Department, Taihe County People’s Hospital, Taihe County, Anhui Province, China
| | - Xiao-Liang JIANG
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical Collage (PUMC), Beijing, China
| | - Xing LIU
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical Collage (PUMC), Beijing, China
| | - Shu-Guang ZHAO
- Emergency Department, Taihe County People’s Hospital, Taihe County, Anhui Province, China
| | - Xian-Liang ZHOU
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Wei YANG
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical Collage (PUMC), Beijing, China
| |
Collapse
|
3
|
Hempstock W, Nagata N, Ishizuka N, Hayashi H. The effect of claudin-15 deletion on cationic selectivity and transport in paracellular pathways of the cecum and large intestine. Sci Rep 2023; 13:6799. [PMID: 37100833 PMCID: PMC10133298 DOI: 10.1038/s41598-023-33431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
The large intestine plays a pivotal role in water and electrolyte balance. Paracellular transport may play a role in ion transport mechanisms in the cecum and large intestine; however, these molecular mechanisms and their physiological roles have not been fully studied. Claudin-15 forms a cation channel in tight junctions in the small intestine, but its role in the cecum and large intestine has not been investigated. This study aimed to explore the physiological role of claudin-15 in the cecum and large intestine using claudin-15 (Cldn15) KO mice. Electrical conductance, short-circuit current, Na+ flux, and dilution potential were assessed in isolated tissue preparations mounted in Ussing chambers. The induced short-circuit current of short-chain fatty acids, which are fermentative products in the intestinal tract, was also measured. Compared to wild type mice, the electrical conductance and paracellular Na+ flux was decreased in the cecum, but not the middle large intestine, while in both the cecum and the middle large intestine, paracellular Na+ permeability was decreased in Cldn15 KO mice. These results suggest that claudin-15 is responsible for Na+ permeability in the tight junctions of the cecum and large intestine and decreased Na+ permeability in the cecum may cause impaired absorption function.
Collapse
Affiliation(s)
- Wendy Hempstock
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
- Department of Nursing, School of Nursing, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Nozomi Nagata
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Noriko Ishizuka
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Hisayoshi Hayashi
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan.
| |
Collapse
|
4
|
Jiang X, Liu Y, Zhang XY, Liu X, Liu X, Wu X, Jose PA, Duan S, Xu FJ, Yang Z. Intestinal Gastrin/CCKBR (Cholecystokinin B Receptor) Ameliorates Salt-Sensitive Hypertension by Inhibiting Intestinal Na +/H + Exchanger 3 Activity Through a PKC (Protein Kinase C)-Mediated NHERF1 and NHERF2 Pathway. Hypertension 2022; 79:1668-1679. [PMID: 35674015 PMCID: PMC9278716 DOI: 10.1161/hypertensionaha.121.18791] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The present study directly tested the crucial role of intestinal gastrin/CCKBR (cholecystokinin B receptor) in the treatment of salt-sensitive hypertension. Methods: Adult intestine-specific Cckbr-knockout mice (Cckbrfl/flvillin-Cre) and Dahl salt-sensitive rats were studied on the effect of high salt intake (8% NaCl, 6–7 weeks) on intestinal Na+/H+ exchanger 3 expression, urine sodium concentration, and blood pressure. High-salt diet increased urine sodium concentration and systolic blood pressure to a greater extent in Cckbrfl/flvillin-Cre mice and Dahl salt-sensitive rats than their respective controls, Cckbrfl/flvillin mice and SS13BN rats. We constructed gastrin-SiO2 microspheres to enable gastrin to stimulate specifically and selectively intestinal CCKBR without its absorption into the circulation. Results: Gastrin-SiO2 microspheres treatment prevented the high salt-induced hypertension and increase in urine Na concentration by inhibiting intestinal Na+/H+ exchanger 3 trafficking and activity, increasing stool sodium without inducing diarrhea. Gastrin-mediated inhibition of intestinal Na+/H+ exchanger 3 activity, related to a PKC (protein kinase C)-mediated activation of NHERF1 and NHERF2. Conclusions: These results support a crucial role of intestinal gastrin/CCKBR in decreasing intestinal sodium absorption and keeping the blood pressure in the normal range. The gastrointestinal administration of gastrin-SiO2 microspheres is a promising and safe strategy to treat salt-sensitive hypertension without side effects.
Collapse
Affiliation(s)
- Xiaoliang Jiang
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, P.R. China (X.J., Y.L., Xue Liu, Xing Liu, X.W., Z.Y.)
| | - Yunpeng Liu
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, P.R. China (X.J., Y.L., Xue Liu, Xing Liu, X.W., Z.Y.)
| | - Xin-Yang Zhang
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, P.R. China (X.-Y.Z., S.D., F.-J.X.)
| | - Xue Liu
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, P.R. China (X.J., Y.L., Xue Liu, Xing Liu, X.W., Z.Y.)
| | - Xing Liu
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, P.R. China (X.J., Y.L., Xue Liu, Xing Liu, X.W., Z.Y.)
| | - Xianxian Wu
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, P.R. China (X.J., Y.L., Xue Liu, Xing Liu, X.W., Z.Y.)
| | - Pedro A Jose
- Department of Pharmacology and Physiology (P.A.J.), The George Washington University School of Medicine and Health Sciences, Washington, DC.,Division of Kidney Diseases and Hypertension, Department of Medicine (P.A.J.), The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Shun Duan
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, P.R. China (X.-Y.Z., S.D., F.-J.X.)
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, P.R. China (X.-Y.Z., S.D., F.-J.X.)
| | - Zhiwei Yang
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, P.R. China (X.J., Y.L., Xue Liu, Xing Liu, X.W., Z.Y.)
| |
Collapse
|
5
|
Nikolovska K, Seidler UE, Stock C. The Role of Plasma Membrane Sodium/Hydrogen Exchangers in Gastrointestinal Functions: Proliferation and Differentiation, Fluid/Electrolyte Transport and Barrier Integrity. Front Physiol 2022; 13:899286. [PMID: 35665228 PMCID: PMC9159811 DOI: 10.3389/fphys.2022.899286] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
The five plasma membrane Na+/H+ exchanger (NHE) isoforms in the gastrointestinal tract are characterized by distinct cellular localization, tissue distribution, inhibitor sensitivities, and physiological regulation. NHE1 (Slc9a1) is ubiquitously expressed along the gastrointestinal tract in the basolateral membrane of enterocytes, but so far, an exclusive role for NHE1 in enterocyte physiology has remained elusive. NHE2 (Slc9a2) and NHE8 (Slc9a8) are apically expressed isoforms with ubiquitous distribution along the colonic crypt axis. They are involved in pHi regulation of intestinal epithelial cells. Combined use of a knockout mouse model, intestinal organoid technology, and specific inhibitors revealed previously unrecognized actions of NHE2 and NHE8 in enterocyte proliferation and differentiation. NHE3 (Slc9a3), expressed in the apical membrane of differentiated intestinal epithelial cells, functions as the predominant nutrient-independent Na+ absorptive mechanism in the gut. The new selective NHE3 inhibitor (Tenapanor) allowed discovery of novel pathophysiological and drug-targetable NHE3 functions in cystic-fibrosis associated intestinal obstructions. NHE4, expressed in the basolateral membrane of parietal cells, is essential for parietal cell integrity and acid secretory function, through its role in cell volume regulation. This review focuses on the expression, regulation and activity of the five plasma membrane Na+/H+ exchangers in the gastrointestinal tract, emphasizing their role in maintaining intestinal homeostasis, or their impact on disease pathogenesis. We point to major open questions in identifying NHE interacting partners in central cellular pathways and processes and the necessity of determining their physiological role in a system where their endogenous expression/activity is maintained, such as organoids derived from different parts of the gastrointestinal tract.
Collapse
|
6
|
Takemura M, Tanaka Y, Inoue K, Tamai I, Shirasaka Y. Influence of osmolality on gastrointestinal fluid volume and drug absorption: potential impact on oral salt supplementation. J Pharm Health Care Sci 2021; 7:29. [PMID: 34465382 PMCID: PMC8408929 DOI: 10.1186/s40780-021-00212-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/10/2021] [Indexed: 12/04/2022] Open
Abstract
Background The syndrome of inappropriate secretion of antidiuretic hormone (SIADH) is the most frequent cause of hyponatremia in patients with cerebrovascular disease, and is often treated with oral salt tablets. However, we have shown that osmolality-dependent variations in gastrointestinal (GI) fluid volume can alter the concentration of a poorly permeable drug in the GI tract, potentially affecting its absorption. Here, we examined the effect of ingestion of hyperosmotic solution (10% NaCl) on drug concentration and absorption in the GI tract. Methods The effects of osmolality on luminal fluid volume and drug absorption in rat intestine (jejunum, ileum and colon) were examined by means of an in situ closed loop method using fluorescein isothiocyanate-dextran 4000 (FD-4) and atenolol. In vivo absorption in rats was determined by measuring the plasma concentration after oral administration of the test compounds dissolved in purified water or hyperosmotic solution (10% NaCl). Results Administration of hyperosmotic solution directly into the GI tract significantly increased the GI fluid volume, owing to secretion of water into the lumen. After administration in hyperosmotic solution, the luminal concentration of non-permeable FD-4 was significantly lower than the initial dosing concentration, whereas after administration in purified water, the luminal concentration exceeded the initial concentration. The fraction absorbed of atenolol was markedly lower after administration in hyperosmotic solution than after administration in purified water. An in vivo pharmacokinetic study in rats was consistent with these findings. Conclusions Administration of hyperosmotic NaCl solution increased GI fluid volume and reduced the plasma level of orally administered atenolol. This may imply that oral salt tablets used to treat hyponatremia in SIADH patients could decrease the intestinal absorption of concomitantly administered drugs, resulting in lower plasma exposure.
Collapse
Affiliation(s)
- Miyuki Takemura
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.,School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Yuki Tanaka
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Katsuhisa Inoue
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Ikumi Tamai
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan. .,School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.
| |
Collapse
|
7
|
Chaimana R, Teerapornpuntakit J, Jantarajit W, Lertsuwan K, Krungchanuchat S, Panupinthu N, Krishnamra N, Charoenphandhu N. CFTR-mediated anion secretion in parathyroid hormone-treated Caco-2 cells is associated with PKA and PI3K phosphorylation but not intracellular pH changes or Na +/K +-ATPase abundance. Biochem Biophys Rep 2021; 27:101054. [PMID: 34189282 PMCID: PMC8220001 DOI: 10.1016/j.bbrep.2021.101054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Parathyroid hormone (PTH) has previously been shown to enhance the transepithelial secretion of Cl− and HCO3− across the intestinal epithelia including Caco-2 monolayer, but the underlying cellular mechanisms are not completely understood. Herein, we identified the major signaling pathways that possibly mediated the PTH action to its known target anion channel, i.e., cystic fibrosis transmembrane conductance regulator anion channel (CFTR). Specifically, PTH was able to induce phosphorylation of protein kinase A and phosphoinositide 3-kinase. Since the apical HCO3− efflux through CFTR often required the intracellular H+/HCO3− production and/or the Na+-dependent basolateral HCO3− uptake, the intracellular pH (pHi) balance might be disturbed, especially as a consequence of increased endogenous H+ and HCO3− production. However, measurement of pHi by a pH-sensitive dye suggested that the PTH-exposed Caco-2 cells were able to maintain normal pH despite robust HCO3− transport. In addition, although the plasma membrane Na+/K+-ATPase (NKA) is normally essential for basolateral HCO3− uptake and other transporters (e.g., NHE1), PTH did not induce insertion of new NKA molecules into the basolateral membrane as determined by membrane protein biotinylation technique. Thus, together with our previous data, we concluded that the PTH action on Caco-2 cells is dependent on PKA and PI3K with no detectable change in pHi or NKA abundance on cell membrane. Intestinal epithelial-like Caco-2 cells expressed CFTR and PTH1R. PTH increased anion transport across Caco-2 monolayer as suggested by Vt change. PTH induced phosphorylation of PKA and PI3K in Caco-2 cells. Intracellular pH was unaltered despite the presence of PTH-induced HCO3− efflux. PTH did not change Na+/K+-ATPase abundance in the plasma membrane.
Collapse
Affiliation(s)
- Rattana Chaimana
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Walailak Jantarajit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kornkamon Lertsuwan
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Saowalak Krungchanuchat
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nattapon Panupinthu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nateetip Krishnamra
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
8
|
Mamic P, Chaikijurajai T, Tang WHW. Gut microbiome - A potential mediator of pathogenesis in heart failure and its comorbidities: State-of-the-art review. J Mol Cell Cardiol 2020; 152:105-117. [PMID: 33307092 DOI: 10.1016/j.yjmcc.2020.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
Gut microbiome (GMB) has been increasingly recognized as a contributor to development and progression of heart failure (HF), immune-mediated subtypes of cardiomyopathy (myocarditis and anthracycline-induced cardiotoxicity), response to certain cardiovascular drugs, and HF-related comorbidities, such as chronic kidney disease, cardiorenal syndrome, insulin resistance, malnutrition, and cardiac cachexia. Gut microbiome is also responsible for the "gut hypothesis" of HF, which explains the adverse effects of gut barrier dysfunction and translocation of GMB on the progression of HF. Furthermore, accumulating evidence has suggested that gut microbial metabolites, including short chain fatty acids, trimethylamine N-oxide (TMAO), amino acid metabolites, and bile acids, are mechanistically linked to pathogenesis of HF, and could, therefore, serve as potential therapeutic targets for HF. Even though there are a variety of proposed therapeutic approaches, such as dietary modifications, prebiotics, probiotics, TMAO synthesis inhibitors, and fecal microbial transplant, targeting GMB in HF is still in its infancy and, indeed, requires further preclinical and clinical evidence. In this review, we aim to highlight the role gut microbiome plays in HF pathophysiology and its potential as a novel therapeutic target in HF.
Collapse
Affiliation(s)
- Petra Mamic
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, Stanford, CA, United States of America
| | - Thanat Chaikijurajai
- Kaufman Center for Heart Failure Treatment and Recovery, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - W H Wilson Tang
- Kaufman Center for Heart Failure Treatment and Recovery, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, United States of America.
| |
Collapse
|
9
|
Górriz JL, Navarro-González JF, Ortiz A, Vergara A, Nuñez J, Jacobs-Cachá C, Martínez-Castelao A, Soler MJ. Sodium-glucose cotransporter 2 inhibition: towards an indication to treat diabetic kidney disease. Nephrol Dial Transplant 2020; 35:i13-i23. [PMID: 32003834 PMCID: PMC6993197 DOI: 10.1093/ndt/gfz237] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Indexed: 12/19/2022] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have clearly demonstrated their beneficial effect in diabetic kidney disease (DKD) on top of the standard of care [blood glucose control, renin–angiotensin system blockade, smoking cessation and blood pressure (BP) control], even in patients with overt DKD. However, the indication of this drug class is still blood glucose lowering in type 2 diabetic patients with estimated glomerular filtration rate >45 mL/min/1.73 m2. Based on the new evidence, several scientific societies have emphasized the preferential prescription of SGLT2i for patients at risk of heart failure or kidney disease, but still within the limits set by health authorities. A rapid positioning of both the European Medicines Agency and the US Food and Drug Administration will allow patients with overt DKD to benefit from SGLT2i. Clinical experience suggests that SGLT2i safety management may in part mirror renin–angiotensin blockade safety management in patients with overt DKD. This review focuses on the rationale for an indication of SGTL2i in DKD. We further propose clinical steps for maximizing the safety of SGLT2i in DKD patients on other antidiabetic, BP or diuretic medication.
Collapse
Affiliation(s)
- Jose Luis Górriz
- Hospital Clínico Universitario de Valencia, Universitat de València, INCLIVA, GEENDIAB, Valencia, Spain.,REDINREN, Madrid, Spain
| | - Juan F Navarro-González
- REDINREN, Madrid, Spain.,Unidad de Investigación y Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, GEENDIAB, Santa Cruz de Tenerife, Spain
| | - Alberto Ortiz
- REDINREN, Madrid, Spain.,IIS-Fundación Jimenez Diaz UAM and School of Medicine, UAM, GEENDIAB, Madrid, Spain
| | - Ander Vergara
- Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), GEENDIAB, Barcelona, Spain
| | - Julio Nuñez
- Department of Cardiology, Hospital Clínico Universitario de Valencia, Universitat de Valencia, INCLIVA, Valencia, Spain.,CIBER Cardiovascular
| | - Conxita Jacobs-Cachá
- Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), GEENDIAB, Barcelona, Spain
| | | | - Maria Jose Soler
- REDINREN, Madrid, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), GEENDIAB, Barcelona, Spain
| |
Collapse
|
10
|
Enns CB, Keith BA, Challa N, Harding JCS, Loewen ME. Impairment of electroneutral Na + transport and associated downregulation of NHE3 contributes to the development of diarrhea following in vivo challenge with Brachyspira spp. Am J Physiol Gastrointest Liver Physiol 2020; 318:G288-G297. [PMID: 31760765 PMCID: PMC7052572 DOI: 10.1152/ajpgi.00011.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effect of Brachyspira hyodysenteriae and Brachyspira hampsonii spirochetosis on Na+ transport was assessed in the colon to determine its contribution to diarrheal disease in pigs following experimental infection. Electrogenic and electroneutral Na+ absorption was assessed in Ussing chambers by radiolabeled 22Na flux and pharmacological inhibitory studies. Basal radiolabeled 22Na flux experiments revealed that mucosal-to-serosal flux (Jms) was significantly impaired in B. hyodysenteriae and B. hampsonii-diseased pigs. Inhibition of epithelial sodium channel via amiloride did not significantly reduce electrogenic short-circuit current (Isc) in the proximal, apex, and distal colonic segments of diseased pigs over control pigs, suggesting that a loss of electroneutral Na+ absorption is responsible for diarrheal development. These findings were further supported by significant downregulation of Na+/H+ exchanger (NHE1, NHE2, and NHE3) mRNA expression in the proximal, apex, and distal colonic segments paired with decreased protein expression of the critical NHE3 isoform. The decrease in NHE3 mRNA expression appears not to be attributed to the host's cytokine response as human IL-1α did not modify NHE3 mRNA expression in Caco-2 cells. However, a whole cell B. hampsonii lysate significantly downregulated NHE3 mRNA expression and significantly increased p38 phosphorylation in Caco-2 cells. Together these findings provide a likely mechanism for the spirochete-induced malabsorptive diarrhea, indicated by a decrease in electroneutral Na+ absorption in the porcine colon due to Brachyspira's ability to inhibit NHE3 transcription, resulting in diarrheal disease.NEW & NOTEWORTHY This research demonstrates that diarrheal disease caused by two infectious spirochete spp. is a result of impaired electroneutral Na+ absorption via Na+/H+ exchanger 3 (NHE3) in the porcine colon. Our findings suggest that the decrease in NHE3 mRNA and protein is not likely a result of the host's cytokine response. Rather, it appears that these two Brachyspira spp. directly inhibit the transcription and translation of NHE3, resulting in the development of diarrhea.
Collapse
Affiliation(s)
- Cole B. Enns
- 1Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Brandon A. Keith
- 1Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Nitin Challa
- 1Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John C. S. Harding
- 2Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Matthew E. Loewen
- 1Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
11
|
The role of splanchnic congestion and the intestinal microenvironment in the pathogenesis of advanced heart failure. Curr Opin Support Palliat Care 2019; 13:24-30. [PMID: 30640740 DOI: 10.1097/spc.0000000000000414] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Right-sided heart failure, which is often present in the setting of advanced heart failure, is associated with cardiac cachexia, the cardiorenal syndrome, and adverse outcomes. Improved understanding of venous congestion of the splanchnic circulation, which may play a key role in the pathogenesis of right-sided heart failure, could lead to novel therapeutics to ameliorate heart failure. Here we provide an overview of right-sided heart failure, splanchnic hemodynamics, fluid homeostasis, and the intestinal microenvironment. We review recent literature to describe pathophysiologic mechanisms and possible therapeutics. RECENT FINDINGS Several possible mechanisms centered around upregulation of sodium-hydrogen exchanger-3 (NHE3) may form a causal link between right ventricular dysfunction, splanchnic congestion, and worsening heart failure. These include an anaerobic environment in enterocytes, resulting in reduced intracellular pH; increased sodium absorption by the gut via NHE3; decreased pH at the intestinal brush border thus altering the gut microbiome profile; increased bacterial synthesis of trimethylamine N-oxide; and decreased bacterial synthesis of short-chain fatty acids causing abnormal intestinal barrier function. SUMMARY Splanchnic congestion in the setting of right-sided heart failure may serve an important role in the pathogenesis of advanced heart failure, and further exploration of these mechanisms may lead to new therapeutic advances.
Collapse
|
12
|
Rao MC. Physiology of Electrolyte Transport in the Gut: Implications for Disease. Compr Physiol 2019; 9:947-1023. [PMID: 31187895 DOI: 10.1002/cphy.c180011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We now have an increased understanding of the genetics, cell biology, and physiology of electrolyte transport processes in the mammalian intestine, due to the availability of sophisticated methodologies ranging from genome wide association studies to CRISPR-CAS technology, stem cell-derived organoids, 3D microscopy, electron cryomicroscopy, single cell RNA sequencing, transgenic methodologies, and tools to manipulate cellular processes at a molecular level. This knowledge has simultaneously underscored the complexity of biological systems and the interdependence of multiple regulatory systems. In addition to the plethora of mammalian neurohumoral factors and their cross talk, advances in pyrosequencing and metagenomic analyses have highlighted the relevance of the microbiome to intestinal regulation. This article provides an overview of our current understanding of electrolyte transport processes in the small and large intestine, their regulation in health and how dysregulation at multiple levels can result in disease. Intestinal electrolyte transport is a balance of ion secretory and ion absorptive processes, all exquisitely dependent on the basolateral Na+ /K+ ATPase; when this balance goes awry, it can result in diarrhea or in constipation. The key transporters involved in secretion are the apical membrane Cl- channels and the basolateral Na+ -K+ -2Cl- cotransporter, NKCC1 and K+ channels. Absorption chiefly involves apical membrane Na+ /H+ exchangers and Cl- /HCO3 - exchangers in the small intestine and proximal colon and Na+ channels in the distal colon. Key examples of our current understanding of infectious, inflammatory, and genetic diarrheal diseases and of constipation are provided. © 2019 American Physiological Society. Compr Physiol 9:947-1023, 2019.
Collapse
Affiliation(s)
- Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
13
|
SLC9A3 Affects Vas Deferens Development and Associates with Taiwanese Congenital Bilateral Absence of the Vas Deferens. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3562719. [PMID: 30956978 PMCID: PMC6431446 DOI: 10.1155/2019/3562719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/06/2019] [Accepted: 02/03/2019] [Indexed: 12/21/2022]
Abstract
Background The pathophysiology of Taiwanese congenital bilateral absence of the vas deferens (CBAVD) is different from that in Caucasians. In particular, major cystic fibrosis transmembrane conductance regulator (CFTR) mutations and cystic fibrosis are absent in the former. Instead, deficiency in solute carrier family 9 sodium/hydrogen exchanger isoform 3 (SLC9A3) may play a role by generating obstructive azoospermia and degraded epithelial structure in the reproductive tract. Objectives The objective of the study was to test whether SLC9A3 variants cause Taiwanese CBAVD. Materials and Methods Six-month-old Slc9a3 -/-male mice were used to evaluate the effect of long-term SLC9A3 loss on the reproductive system. A case-control cohort of 29 men with CBAVD and 32 fertile men were genotyped for SLC9A3 variants. Results SLC9A3 was expressed and localized in the apical border of the epithelium of human vas deferens and glandular epithelium of the seminal vesicle. SLC9A3 deficiency specifically induces atrophy of vas deferens and unfolding of seminal vesicle mucosa in mice. Loss of SLC9A3 increased the incidence of CBAVD in humans from 3.1% to 37.9% (p < 0.001). Up to 75.9% of CBAVD patients carry at least one variant in either SLC9A3 or CFTR. Discussion Our findings build upon previous data associated with CBAVD pathogenesis. Here, we now report for the first time an association between CBAVD and loss of SLC9A3 and propose that specific defects in the reproductive duct due to SLC9A3 variants drive CBAVD development. Conclusion The data implicate loss of SLC9A3 as a basis of Taiwanese CBAVD and highlight SLC9A3 function in reproduction.
Collapse
|
14
|
The role of SLC9A3 in Taiwanese patients with congenital bilateral absence of vas deferens (CBAVD). J Formos Med Assoc 2019; 118:1576-1583. [PMID: 30797621 DOI: 10.1016/j.jfma.2019.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/29/2018] [Accepted: 01/29/2019] [Indexed: 02/05/2023] Open
Abstract
Congenital bilateral absence of vas deferens (CBAVD) is a special entity in obstructive azoospermia. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are involved in Taiwanese CBAVD but most heterozygous 5T variant. The solute carrier family 9 isoform 3 (SLC9A3) is the Na+/H+ exchanger, which interacts with CFTR and regulates the Ca2+ homeostasis. Loss of SLC9A3 decreases CFTR protein and causes obstructive azoospermia in mice. It also causes mal-reabsorption by the efferent tubules, which leads to the obstructive phenomenon and eventually results in testicular atrophy. In 6-month old SLC9A3 deficiency mice, the atrophy of their vas deferens and seminal vesicles become more prominent. Decreases of CFTR expression in the reproductive organ in the SLC9A3 deficient (-/-) mice prove the interaction between CFTR and SLC9A3 in the reproductive tract. Most of Taiwanese CBAVD have at least one variant of SLC9A3 deletion and CFTR IVS8-5T, which co-contribute to Taiwanese CBAVD. The report indicates SLC9A3 deficiency can reverse the pathological changes in the gastrointestinal tract of CF mice. Further research can explore the definite mechanism of SLC9A3 and its role interacting with CFTR in different organ systems, which can contribute to novel treatment for the patients with cystic fibrosis and CBAVD.
Collapse
|
15
|
Saurette M, Alexander RT. Intestinal phosphate absorption: The paracellular pathway predominates? Exp Biol Med (Maywood) 2019; 244:646-654. [PMID: 30764666 DOI: 10.1177/1535370219831220] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
IMPACT STATEMENT This review summarizes the work on transcellular intestinal phosphate absorption, arguing why this pathway is not the predominant pathway in humans consuming a "Western" diet. We then highlight the recent evidence which is strongly consistent with paracellular intestinal phosphate absorption mediating the bulk of intestinal phosphate absorption in humans.
Collapse
Affiliation(s)
- Matthew Saurette
- 1 Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada.,2 The Women's & Children's Health Research Institute, Edmonton, Alberta T6G 1C9, Canada
| | - R Todd Alexander
- 1 Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada.,2 The Women's & Children's Health Research Institute, Edmonton, Alberta T6G 1C9, Canada.,3 Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| |
Collapse
|
16
|
Ishizuka N, Nakayama M, Watanabe M, Tajima H, Yamauchi Y, Ikari A, Hayashi H. Luminal Na + homeostasis has an important role in intestinal peptide absorption in vivo. Am J Physiol Gastrointest Liver Physiol 2018; 315:G799-G809. [PMID: 30138575 DOI: 10.1152/ajpgi.00099.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal cell line studies indicated luminal Na+ homeostasis is essential for proton-coupled peptide absorption, because the driving force of PepT1 activity is supported by the apical Na+/H+ exchanger NHE3. However, there is no direct evidence demonstrating the importance of in vivo luminal Na+ for peptide absorption in animal experiments. To investigate the relationship between luminal Na+ homeostasis and peptide absorption, we took advantage of claudin 15-deficient (cldn15-/-) mice, whereby Na+ homeostasis is disrupted. We quantitatively assessed the intestinal segment responsible for peptide absorption using radiolabeled nonhydrolyzable dipeptide (glycylsarcosine, Gly-Sar) and nonabsorbable fluid phase marker polyethylene glycol (PEG) 4000 in vivo. In wild-type (WT) mice, the concentration ratio of Gly-Sar to PEG 4000 decreased in the upper jejunum, suggesting the upper jejunum is responsible for peptide absorption. Gly-Sar absorption was decreased in the jejunum of cldn15-/- mice. To elucidate the mechanism underlining these impairments, a Gly-Sar-induced short-circuit ( Isc) current was measured. In WT mice, increments of Gly-Sar-induced Isc were inhibited by the luminal application of a NHE3-specific inhibitor S3226 in a dose-dependent fashion. In contrast to in vivo experiments, robust Gly-Sar-induced Isc increments were observed in the jejunal mucosa of cldn15-/- mice. Gly-Sar-induced Isc was inhibited by S3226 or a reduction of luminal Na+ concentration, which mimics low luminal Na+ concentrations in vivo . Our study demonstrates that luminal Na+ homeostasis is important for peptide absorption in native epithelia and that there is a cooperative functional relationship between PepT1 and NHE3. NEW & NOTEWORTHY Our study is the first to demonstrate that luminal Na+ homeostasis is important for proton-coupled peptide absorption in in vivo animal experiments.
Collapse
Affiliation(s)
- Noriko Ishizuka
- Laboratory of Physiology School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka , Japan
| | - Michiko Nakayama
- Laboratory of Physiology School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka , Japan
| | - Miki Watanabe
- Laboratory of Physiology School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka , Japan
| | - Haruna Tajima
- Laboratory of Physiology School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka , Japan
| | - Yuri Yamauchi
- Laboratory of Physiology School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka , Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University , Gifu , Japan
| | - Hisayoshi Hayashi
- Laboratory of Physiology School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka , Japan
| |
Collapse
|
17
|
McHugh DR, Cotton CU, Moss FJ, Vitko M, Valerio DM, Kelley TJ, Hao S, Jafri A, Drumm ML, Boron WF, Stern RC, McBennett K, Hodges CA. Linaclotide improves gastrointestinal transit in cystic fibrosis mice by inhibiting sodium/hydrogen exchanger 3. Am J Physiol Gastrointest Liver Physiol 2018; 315:G868-G878. [PMID: 30118317 PMCID: PMC9925117 DOI: 10.1152/ajpgi.00261.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastrointestinal dysfunction in cystic fibrosis (CF) is a prominent source of pain among patients with CF. Linaclotide, a guanylate cyclase C (GCC) receptor agonist, is a US Food and Drug Administration-approved drug prescribed for chronic constipation but has not been widely used in CF, as the cystic fibrosis transmembrane conductance regulator (CFTR) is the main mechanism of action. However, anecdotal clinical evidence suggests that linaclotide may be effective for treating some gastrointestinal symptoms in CF. The goal of this study was to determine the effectiveness and mechanism of linaclotide in treating CF gastrointestinal disorders using CF mouse models. Intestinal transit, chloride secretion, and intestinal lumen fluidity were assessed in wild-type and CF mouse models in response to linaclotide. CFTR and sodium/hydrogen exchanger 3 (NHE3) response to linaclotide was also evaluated. Linaclotide treatment improved intestinal transit in mice carrying either F508del or null Cftr mutations but did not induce detectable Cl- secretion. Linaclotide increased fluid retention and fluidity of CF intestinal contents, suggesting inhibition of fluid absorption. Targeted inhibition of sodium absorption by the NHE3 inhibitor tenapanor produced improvements in gastrointestinal transit similar to those produced by linaclotide treatment, suggesting that inhibition of fluid absorption by linaclotide contributes to improved gastrointestinal transit in CF. Our results demonstrate that linaclotide improves gastrointestinal transit in CF mouse models by increasing luminal fluidity through inhibiting NHE3-mediated sodium absorption. Further studies are necessary to assess whether linaclotide could improve CF intestinal pathologies in patients. GCC signaling and NHE3 inhibition may be therapeutic targets for CF intestinal manifestations. NEW & NOTEWORTHY Linaclotide's primary mechanism of action in alleviating chronic constipation is through cystic fibrosis transmembrane conductance regulator (CFTR), negating its use in patients with cystic fibrosis (CF). For the first time, our findings suggest that in the absence of CFTR, linaclotide can improve fluidity of the intestinal lumen through the inhibition of sodium/hydrogen exchanger 3. These findings suggest that linaclotide could improve CF intestinal pathologies in patients.
Collapse
Affiliation(s)
- Daniel R. McHugh
- 1Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Calvin U. Cotton
- 2Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio,3Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Fraser J. Moss
- 2Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Megan Vitko
- 1Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Dana M. Valerio
- 3Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Thomas J. Kelley
- 3Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio,4Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Shuyu Hao
- 1Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Anjum Jafri
- 3Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Mitchell L. Drumm
- 1Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio,3Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Walter F. Boron
- 2Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio,5Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio,6Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Robert C. Stern
- 3Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio,7Rainbow Babies and Children’s Hospital, Cleveland, Ohio
| | - Kimberly McBennett
- 3Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio,7Rainbow Babies and Children’s Hospital, Cleveland, Ohio
| | - Craig A. Hodges
- 1Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio,3Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
18
|
Xu H, Ghishan FK, Kiela PR. SLC9 Gene Family: Function, Expression, and Regulation. Compr Physiol 2018; 8:555-583. [PMID: 29687889 DOI: 10.1002/cphy.c170027] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Slc9 family of Na+ /H+ exchangers (NHEs) plays a critical role in electroneutral exchange of Na+ and H+ in the mammalian intestine as well as other absorptive and secretory epithelia of digestive organs. These transport proteins contribute to the transepithelial Na+ and water absorption, intracellular pH and cellular volume regulation as well as the electrolyte, acid-base, and fluid volume homeostasis at the systemic level. They also influence the function of other membrane transport mechanisms, affect cellular proliferation and apoptosis as well as cell migration, adherence to the extracellular matrix, and tissue repair. Additionally, they modulate the extracellular milieu to facilitate other nutrient absorption and to regulate the intestinal microbial microenvironment. Na+ /H+ exchange is inhibited in selected gastrointestinal diseases, either by intrinsic factors (e.g., bile acids, inflammatory mediators) or infectious agents and associated bacterial toxins. Disrupted NHE activity may contribute not only to local and systemic electrolyte imbalance but also to the disease severity via multiple mechanisms. In this review, we describe the cation proton antiporter superfamily of Na+ /H+ exchangers with a particular emphasis on the eight SLC9A isoforms found in the digestive tract, followed by a more integrative description in their roles in each of the digestive organs. We discuss regulatory mechanisms that determine the function of Na+ /H+ exchangers as pertinent to the digestive tract, their regulation in pathological states of the digestive organs, and reciprocally, the contribution of dysregulated Na+ /H+ exchange to the disease pathogenesis and progression. © 2018 American Physiological Society. Compr Physiol 8:555-583, 2018.
Collapse
Affiliation(s)
- Hua Xu
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Fayez K Ghishan
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Pawel R Kiela
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA.,Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
19
|
Visceral Congestion in Heart Failure: Right Ventricular Dysfunction, Splanchnic Hemodynamics, and the Intestinal Microenvironment. Curr Heart Fail Rep 2018; 14:519-528. [PMID: 29075956 DOI: 10.1007/s11897-017-0370-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Visceral venous congestion of the gut may play a key role in the pathogenesis of right-sided heart failure (HF) and cardiorenal syndromes. Here, we review the role of right ventricular (RV) dysfunction, visceral congestion, splanchnic hemodynamics, and the intestinal microenvironment in the setting of right-sided HF. We review recent literature on this topic, outline possible mechanisms of disease pathogenesis, and discuss potential therapeutics. RECENT FINDINGS There are several mechanisms linking RV-gut interactions via visceral venous congestion which could result in (1) hypoxia and acidosis in enterocytes, which may lead to enhanced sodium-hydrogen exchanger 3 (NHE3) expression with increased sodium and fluid retention; (2) decreased luminal pH in the intestines, which could lead to alteration of the gut microbiome which could increase gut permeability and inflammation; (3) alteration of renal hemodynamics with triggering of the cardiorenal syndrome; and (4) altered phosphate metabolism resulting in increased pulmonary artery stiffening, thereby increasing RV afterload. A wide variety of therapeutic interventions that act on the RV, pulmonary vasculature, intestinal microenvironment, and the kidney could alter these pathways and should be tested in patients with right-sided HF. The RV-gut axis is an important aspect of HF pathogenesis that deserves more attention. Modulation of the pathways interconnecting the right heart, visceral congestion, and the intestinal microenvironment could be a novel avenue of intervention for right-sided HF.
Collapse
|
20
|
Xiong R, Li W, Li Y, Zheng K, Zhang T, Gao M, Li Y, Hu L, Hu C. Er Shen Wan extract reduces diarrhea and regulates AQP 4 and NHE 3 in a rat model of spleen-kidney Yang deficiency-induced diarrhea. Biomed Pharmacother 2018; 98:834-846. [PMID: 29571254 DOI: 10.1016/j.biopha.2018.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Er Shen Wan (ESW), a traditional Chinese medicinal formula comprised of Psoraleae Fructus (Babchi seeds, from Psoralea corylifolia Linn.) and Myristicae Semen (Nutmeg, from Myristica fragrans Houtt.), is widely used to treat spleen-kidney Yang deficiency (SKYD)-induced diarrhea. Previous studies have demonstrated preliminarily that the petroleum ether extract of ESW (ESWP) exhibits significant anti-diarrheal activity. The present study aimed to evaluate the anti-diarrhea activity of ESWP and to explore the underlying mechanisms with respect to fluid metabolism in a rat model of SKYD-induced diarrhea. MATERIALS AND METHODS A high-performance liquid chromatography-diode array detector (HPLC-DAD) approach was developed and validated for qualitative and quantitative analyses of the main constituents of ESWP. SKYD model rats were established and treated with an effective dose (3.5?g/kg) of the extract for two weeks. Anti-diarrheal activity and stool properties were observed. After the experiment, the appearance and histology of the intestines were evaluated. Serum levels of neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP) were also determined. Furthermore, to characterize the regulation of aquaporin-4 (AQP 4) and Na+/H+ exchanger isoform 3 (NHE 3) in the colon, quantitative real-time RT-PCR (qRT-PCR), immunohistochemistry (IHC) and Western blotting (WB) were employed to detect mRNA and protein expression levels. RESULTS In the rat models, oral ESWP administration significantly reduced the diarrhea score and the number and weight of wet stools. Jejunal and ileac histological damage was impeded, and the histology score decreased. Serum VIP levels were significantly decreased, in contrast to NPY levels. In addition, AQP 4 and NHE 3 expression levels increased significantly. CONCLUSIONS These results showed that ESWP's anti-diarrheal effect might at least partially involve the regulation of hormones intimately involved in maintaining fluid and electrolyte levels, as well as by increasing AQP 4 and NHE 3 expression levels and enhancing the absorption of Na+ and water.
Collapse
Affiliation(s)
- Rui Xiong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China
| | - Wenbing Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China; Sichuan Neo-Green Pharmaceutical Technology Development Co., Ltd., Chengdu, 610081, PR China
| | - Yidan Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China
| | - Kaixuan Zheng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China
| | - Tingting Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China
| | - Mingyang Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China
| | - Yun Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China; College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, PR China
| | - Lin Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China
| | - Changjiang Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China; Sichuan Neo-Green Pharmaceutical Technology Development Co., Ltd., Chengdu, 610081, PR China.
| |
Collapse
|
21
|
Wang YY, Chiang HS, Cheng CY, Wu YN, Lin YC, Liu HC, Tsai WK, Chen YL, Lin YH. SLC9A3 Protein Is Critical for Acrosomal Formation in Postmeiotic Male Germ Cells. Int J Mol Sci 2017; 19:ijms19010103. [PMID: 29286340 PMCID: PMC5796053 DOI: 10.3390/ijms19010103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 01/07/2023] Open
Abstract
Solute carrier family 9 isoform 3 (SLC9A3), a Na+/H+ exchanger, regulates the transepithelial absorption of Na+ and water and is primarily expressed on the apical membranes of the intestinal epithelium, renal proximal tubule, epididymis, and vas deferens. Loss of the Slc9a3 allele in mice enhances intestinal fluid and causes diarrhoea as a consequence of diminished Na+ and HCO3− absorption. Hence, the loss also causes male infertility and reveals the abnormal dilated lumen of the rete testis and calcification in efferent ductules. However, whether loss of Slc9a3 alleles also disrupts mammalian spermatogenesis remains unknown. First, through immunoblotting, we determined that SLC9A3 is highly expressed in the murine testis compared with the small intestine, epididymis, and vas deferens. During murine spermatogenesis, SLC9A3 is specifically expressed in the acrosome region of round, elongating, and elongated spermatids through immunostaining. Furthermore, SLC9A3 signals are enriched in the acrosome of mature sperm isolated from the vas deferens. In Slc9a3 knockout (KO) mice, compared with the same-aged controls, the number of spermatids on the testicular section of the mice progressively worsened in mice aged 20, 35, and 60 days. Sperm isolated from the epididymis of Slc9a3 KO mice revealed severe acrosomal defects. Our data indicated that SLC9A3 has a vital role in acrosomal formation during spermiogenesis.
Collapse
Affiliation(s)
- Ya-Yun Wang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Han-Sun Chiang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Chiao-Yin Cheng
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Yi-No Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Yung-Chih Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Hsuan-Che Liu
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Wei-Kung Tsai
- Department of Urology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| | - Yen-Lin Chen
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan.
- Department of Pathology, Cardinal Tien Hospital, New Taipei City 242, Taiwan.
| | - Ying-Hung Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| |
Collapse
|
22
|
Wang YY, Lin YH, Wu YN, Chen YL, Lin YC, Cheng CY, Chiang HS. Loss of SLC9A3 decreases CFTR protein and causes obstructed azoospermia in mice. PLoS Genet 2017; 13:e1006715. [PMID: 28384194 PMCID: PMC5398719 DOI: 10.1371/journal.pgen.1006715] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/20/2017] [Accepted: 03/24/2017] [Indexed: 01/21/2023] Open
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF) and are associated with congenital bilateral absence of the vas deferens (CBAVD), which is the major cause of infertility in male patients with CF. However, most Taiwanese patients with CBAVD do not carry major CFTR mutations. Some patients have a single copy deletion of the solute carrier family 9 isoform 3 (SLC9A3) gene. SLC9A3 is a Na+/H+ exchanger, and depleted Slc9a3 in male mice causes infertility due to the abnormal dilated lumen of the rete testis and efferent ductules. Furthermore, SLC9A3 interacts with CFTR in the pancreatic duct and functions as a genetic modifier of CF. However, SLC9A3 function and its relation to CFTR expression in the male reproductive tract in vivo remain elusive. In the present study, we found that CFTR expression was dramatically decreased in the epididymis and vas deferens of Slc9a3 knockout mice. Adult Slc9a3-/- mice showed not only significantly decreased epididymis and vas deferens weight but also increased testis weight. Furthermore, Slc9a3-/- mice developed obstructive azoospermia because of abnormal abundant secretions and calcification in the lumen of the reproductive tract. Ultrastructural analysis of the epithelium in Slc9a3–/–epididymis and vas deferens displayed disorganized and reduced number of stereocilia and numerous secretory apparatuses. Our data revealed that interdependence between SLC9A3 and CFTR is critical for maintaining a precise microenvironment in the epithelial cytoarchitecture of the male reproductive tract. The Slc9a3-deficient mice with impaired male excurrent ducts in this study provide proof for our clinical findings that some Taiwanese of CBAVD carry SLC9A3 deletion but without major CFTR mutations. Cystic fibrosis (CF) is the most common inherited life-threatening disease in Caucasians. The most well-known cause of CF is a genetic defect in CFTR, an apical membrane chloride and bicarbonate channel. The symptoms of CF include defects in the respiratory, digestive, and male reproductive systems. Most male patients with CF are infertile due to congenital bilateral absence of the vas deferens (CBAVD), which leads to obstructive azoospermia. Nevertheless, Taiwanese patients with CBAVD do not carry the common mutations of CFTR found in Caucasians. We have identified a potential candidate, SLC9A3, of which a single copy is lost in Taiwanese patients with CBAVD. In addition to the previously reported role of SLC9A3 in the digestive system and efferent ductules, we now report that the SLC9A3 deficiency causes obstructive azoospermia and impairs the epithelial structure of the reproductive tract. Loss of SLC9A3 also leads to dramatic reduced expression of CFTR in the reproductive tract. We suggest that the interplay between SLC9A3 and CFTR is responsible for CF-related infertility. Thus, we have characterized a potential critical player in the pathogenesis of CBAVD and provide a new diagnostic candidate for Asian patients with CBAVD.
Collapse
Affiliation(s)
- Ya-Yun Wang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ying-Hung Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yi-No Wu
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yen-Lin Chen
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Pathology, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Yung-Chih Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chiao-Yin Cheng
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Han-Sun Chiang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Urology, Taipei Medical University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
23
|
Dominguez Rieg JA, de la Mora Chavez S, Rieg T. Novel developments in differentiating the role of renal and intestinal sodium hydrogen exchanger 3. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1186-R1191. [PMID: 27733387 DOI: 10.1152/ajpregu.00372.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/22/2016] [Accepted: 10/05/2016] [Indexed: 11/22/2022]
Abstract
The Na+/H+ exchanger isoform 3 (NHE3) facilitates Na+ absorption and H+ secretion and is expressed in the intestine, proximal tubule, and thick ascending limb of the kidney. While the function of NHE3 for Na+ and [Formula: see text](re)absorption has been defined using conventional NHE3 knockout mice (NHE3-/-), the recent generation of conditional NHE3 knockout mice started to give critical new insight into the role of this protein by allowing for temporal and spatial control of NHE3 expression. For example, in contrast to NHE3-/- mice, knockout of NHE3 in the S1 and S2 segments of the proximal tubule or along the entire tubule/collecting duct does not cause any lethality. Nonabsorbable NHE3 inhibitors have been developed, and preclinical as well as clinical trials indicate possible pharmacological use in fluid overload, hypertension, chronic kidney disease, hyperphosphatemia, and constipation. Some of the therapeutic considerations seem to be directly related to the pharmacodynamic properties of these drugs; however, little is known about the effects of these nonabsorbable NHE3 inhibitors on intestinal phosphate transport and the mechanisms so far remain elusive. This review focuses on novel findings of NHE3 in the intestine and the kidney as well as novel drug developments targeting NHE3.
Collapse
Affiliation(s)
- Jessica A Dominguez Rieg
- Department of Basic Sciences, Bastyr University California, San Diego, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | | | - Timo Rieg
- Veterans Affairs San Diego Healthcare System, San Diego, California; and .,Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
24
|
Shawki A, Engevik MA, Kim RS, Knight PB, Baik RA, Anthony SR, Worrell RT, Shull GE, Mackenzie B. Intestinal brush-border Na+/H+ exchanger-3 drives H+-coupled iron absorption in the mouse. Am J Physiol Gastrointest Liver Physiol 2016; 311:G423-30. [PMID: 27390324 PMCID: PMC5076011 DOI: 10.1152/ajpgi.00167.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/29/2016] [Indexed: 01/31/2023]
Abstract
Divalent metal-ion transporter-1 (DMT1), the principal mechanism by which nonheme iron is taken up at the intestinal brush border, is energized by the H(+)-electrochemical potential gradient. The provenance of the H(+) gradient in vivo is unknown, so we have explored a role for brush-border Na(+)/H(+) exchanger (NHE) isoforms by examining iron homeostasis and intestinal iron handling in mice lacking NHE2 or NHE3. We observed modestly depleted liver iron stores in NHE2-null (NHE2(-/-)) mice stressed on a low-iron diet but no change in hematological or blood iron variables or the expression of genes associated with iron metabolism compared with wild-type mice. Ablation of NHE3 strongly depleted liver iron stores, regardless of diet. We observed decreases in blood iron variables but no overt anemia in NHE3-null (NHE3(-/-)) mice on a low-iron diet. Intestinal expression of DMT1, the apical surface ferrireductase cytochrome b reductase-1, and the basolateral iron exporter ferroportin was upregulated in NHE3(-/-) mice, and expression of liver Hamp1 (hepcidin) was suppressed compared with wild-type mice. Absorption of (59)Fe from an oral dose was substantially impaired in NHE3(-/-) compared with wild-type mice. Our data point to an important role for NHE3 in generating the H(+) gradient that drives DMT1-mediated iron uptake at the intestinal brush border.
Collapse
Affiliation(s)
- Ali Shawki
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio; Systems Biology and Physiology Program, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Melinda A Engevik
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio; Systems Biology and Physiology Program, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Robert S Kim
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Patrick B Knight
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Rusty A Baik
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sarah R Anthony
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Roger T Worrell
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio; Systems Biology and Physiology Program, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Gary E Shull
- Systems Biology and Physiology Program, University of Cincinnati College of Medicine, Cincinnati, Ohio; and Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Bryan Mackenzie
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio; Systems Biology and Physiology Program, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| |
Collapse
|
25
|
Jakab RL, Collaco AM, Ameen NA. Characterization of CFTR High Expresser cells in the intestine. Am J Physiol Gastrointest Liver Physiol 2013; 305:G453-65. [PMID: 23868408 PMCID: PMC3761243 DOI: 10.1152/ajpgi.00094.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The CFTR High Expresser (CHE) cells express eightfold higher levels of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel compared with neighboring enterocytes and were first identified by our laboratory (Ameen et al., Gastroenterology 108: 1016, 1995). We used double-label immunofluorescence microscopy to further study these enigmatic epithelial cells in rat intestine in vivo or ex vivo. CHE cells were found in duodenum, most frequent in proximal jejunum, and absent in ileum and colon. CFTR abundance increased in CHE cells along the crypt-villus axis. The basolateral Na(+)K(+)Cl(-) cotransporter NKCC1, a key transporter involved in Cl(-) secretion, was detected at similar levels in CHE cells and neighboring enterocytes at steady state. Microvilli appeared shorter in CHE cells, with low levels of Myosin 1a, a villus enterocyte-specific motor that retains sucrase/isomaltase in the brush-border membrane (BBM). CHE cells lacked alkaline phosphatase and absorptive villus enterocyte BBM proteins, including Na(+)H(+) exchanger NHE3, Cl(-)/HCO3(-) exchanger SLC26A6 (putative anion exchanger 1), and sucrase/isomaltase. High levels of the vacuolar-ATPase proton pump were observed in the apical domain of CHE cells. Levels of the NHE regulatory factor NHERF1, Na-K-ATPase, and Syntaxin 3 were similar to that of neighboring enterocytes. cAMP or acetylcholine stimulation robustly increased apical CFTR and basolateral NKCC1 disproportionately in CHE cells relative to neighboring enterocytes. These data strongly argue for a specialized role of CHE cells in Cl(-)-mediated "high-volume" fluid secretion on the villi of the proximal small intestine.
Collapse
Affiliation(s)
- Robert L. Jakab
- Departments of 1Pediatrics/Gastroenterology and Hepatology, and
| | - Anne M. Collaco
- Departments of 1Pediatrics/Gastroenterology and Hepatology, and
| | - Nadia A. Ameen
- Departments of 1Pediatrics/Gastroenterology and Hepatology, and ,2Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
26
|
Di Sole F, Vadnagara K, Moe OW, Babich V. Calcineurin homologous protein: a multifunctional Ca2+-binding protein family. Am J Physiol Renal Physiol 2012; 303:F165-79. [PMID: 22189947 PMCID: PMC3404583 DOI: 10.1152/ajprenal.00628.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 05/17/2012] [Indexed: 12/13/2022] Open
Abstract
The calcineurin homologous protein (CHP) belongs to an evolutionarily conserved Ca(2+)-binding protein subfamily. The CHP subfamily is composed of CHP1, CHP2, and CHP3, which in vertebrates share significant homology at the protein level with each other and between other Ca(2+)-binding proteins. The CHP structure consists of two globular domains containing from one to four EF-hand structural motifs (calcium-binding regions composed of two helixes, E and F, joined by a loop), the myristoylation, and nuclear export signals. These structural features are essential for the function of the three members of the CHP subfamily. Indeed, CHP1-CHP3 have multiple and diverse essential functions, ranging from the regulation of the plasma membrane Na(+)/H(+) exchanger protein function, to carrier vesicle trafficking and gene transcription. The diverse functions attributed to the CHP subfamily rendered an understanding of its action highly complex and often controversial. This review provides a comprehensive and organized examination of the properties and physiological roles of the CHP subfamily with a view to revealing a link between CHP diverse functions.
Collapse
Affiliation(s)
- Francesca Di Sole
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-8885, USA.
| | | | | | | |
Collapse
|
27
|
Soleimani M, Alborzi P. The role of salt in the pathogenesis of fructose-induced hypertension. Int J Nephrol 2011; 2011:392708. [PMID: 21789281 PMCID: PMC3140039 DOI: 10.4061/2011/392708] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/14/2011] [Accepted: 04/30/2011] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome, as manifested by visceral obesity, hypertension, insulin resistance, and dyslipidemia, is reaching epidemic proportions in the Western World, specifically the United States. Epidemiologic studies suggest that the increased prevalence of metabolic syndrome directly correlates with an increase in the consumption of fructose, mainly in the form of high-fructose corn syrup. This inexpensive alternative to traditional sugar has been increasingly utilized by the food industry as a sweetener since the 1960s. While augmented caloric intake and sedentary lifestyles play important roles in the increasing prevalence of obesity, the pathogenesis of hypertension in metabolic syndrome remains controversial. One intriguing observation points to the role of salt in fructose-induced hypertension. Recent studies in rodents demonstrate that increased dietary fructose intake stimulates salt absorption in the small intestine and kidney tubules, resulting in a state of salt overload, thus setting in motion a cascade of events that will lead to hypertension. These studies point to a novel interaction between the fructose-absorbing transporter, Glut5, and the salt transporters, NHE3 and PAT1, in the intestine and kidney proximal tubule. This paper will focus on synergistic roles of fructose and salt in the pathogenesis of hypertension resulting from salt overload.
Collapse
Affiliation(s)
- Manoocher Soleimani
- The Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, 231 Albert Sabin Way, MSB 6312, Cincinnati, OH 45267-0585, USA
| | | |
Collapse
|
28
|
Abstract
The worldwide increase in the incidence of metabolic syndrome correlates with marked increase in total fructose intake in the form of high-fructose corn syrup, beverage and table sugar. Increased dietary fructose intake in rodents has been shown to recapitulate many aspects of metabolic syndrome by causing hypertension, insulin resistance and hyperlipidaemia. Recent studies demonstrated that increased dietary fructose intake stimulates salt absorption in the small intestine and kidney tubules, resulting in a state of salt overload and thus causing hypertension. The absorption of salt (sodium and chloride) in the small intestine is predominantly mediated via the chloride/base exchangers DRA (Down Regulated in Adenoma) (SLC26A3) and PAT1 (Putative Anion Transporter 1) (SLC26A6), and the Na(+) /H(+) exchanger NHE3 (Sodium Hydrogen Exchanger3) (SLC9A3). PAT1 and NHE3 also co-localize on the apical membrane of kidney proximal tubule. Luminal fructose stimulated salt absorption in the jejunum and kidney tubules, responses that were significantly diminished in PAT1 null mice. These studies further demonstrated that Glut5 (SLC2A5) is the major fructose-absorbing transporter in the small intestine (and kidney proximal tubule) and plays an essential role in the systemic homeostasis of fructose. Increased dietary fructose intake for several weeks upregulated the expression of NHE3, PAT1 and Glut5 in the intestine and resulted in hypertension in wild-type mice, a response that was almost abolished in PAT1 null mice and abrogated in Glut5 null mice. This article will discuss the interaction of Glut5 with salt-absorbing transporters and review the role of dietary fructose in enhanced salt absorption in intestine and kidney as it relates to the pathogenesis of hypertension in metabolic syndrome.
Collapse
Affiliation(s)
- M Soleimani
- Center on Genetics of Transport and Epithelial Biology, Department of Medicine, University of Cincinnati, OH 45267-0585, USA.
| |
Collapse
|
29
|
Jakab RL, Collaco AM, Ameen NA. Physiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt-villus axis in the intestine. Am J Physiol Gastrointest Liver Physiol 2011; 300:G82-98. [PMID: 21030607 PMCID: PMC3025502 DOI: 10.1152/ajpgi.00245.2010] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/27/2010] [Indexed: 01/31/2023]
Abstract
We examined the cell-specific subcellular expression patterns for sodium- and potassium-coupled chloride (NaK2Cl) cotransporter 1 (NKCC1), Na(+) bicarbonate cotransporter (NBCe1), cystic fibrosis transmembrane conductance regulator (CFTR), and Na(+)/H(+) exchanger 3 (NHE3) to understand the functional plasticity and synchronization of ion transport functions along the crypt-villus axis and its relevance to intestinal disease. In the unstimulated intestine, all small intestinal villus enterocytes coexpressed apical CFTR and NHE3, basolateral NBCe1, and mostly intracellular NKCC1. All (crypt and villus) goblet cells strongly expressed basolateral NKCC1 (at approximately three-fold higher levels than villus enterocytes), but no CFTR, NBCe1, or NHE3. Lower crypt cells coexpressed apical CFTR and basolateral NKCC1, but no NHE3 or NBCe1 (except NBCe1-expressing proximal colonic crypts). CFTR, NBCe1, and NKCC1 colocalized with markers of early and recycling endosomes, implicating endocytic recycling in cell-specific anion transport. Brunner's glands of the proximal duodenum coexpressed high levels of apical/subapical CFTR and basolateral NKCC1, but very low levels of NBCe1, consistent with secretion of Cl(-)-enriched fluid into the crypt. The cholinergic agonist carbachol rapidly (within 10 min) reduced cell volume along the entire crypt/villus axis and promoted NHE3 internalization into early endosomes. In contrast, carbachol induced membrane recruitment of NKCC1 and CFTR in all crypt and villus enterocytes, NKCC1 in all goblet cells, and NBCe1 in all villus enterocytes. These observations support regulated vesicle traffic in Cl(-) secretion by goblet cells and Cl(-) and HCO(3)(-) secretion by villus enterocytes during the transient phase of cholinergic stimulation. Overall, the carbachol-induced membrane trafficking profile of the four ion transporters supports functional plasticity of the small intestinal villus epithelium that enables it to conduct both absorptive and secretory functions.
Collapse
Affiliation(s)
- Robert L Jakab
- Department of Pediatrics/Gastroenterology and Hepatology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
30
|
Toxin mediated diarrhea in the 21 century: the pathophysiology of intestinal ion transport in the course of ETEC, V. cholerae and rotavirus infection. Toxins (Basel) 2010; 2:2132-57. [PMID: 22069677 PMCID: PMC3153279 DOI: 10.3390/toxins2082132] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 08/09/2010] [Indexed: 12/31/2022] Open
Abstract
An estimated 4 billion episodes of diarrhea occur each year. As a result, 2–3 million children and 0.5–1 million adults succumb to the consequences of this major healthcare concern. The majority of these deaths can be attributed to toxin mediated diarrhea by infectious agents, such as E. coli, V. cholerae or Rotavirus. Our understanding of the pathophysiological processes underlying these infectious diseases has notably improved over the last years. This review will focus on the cellular mechanism of action of the most common enterotoxins and the latest specific therapeutic approaches that have been developed to contain their lethal effects.
Collapse
|
31
|
Talbot C, Lytle C. Segregation of Na/H exchanger-3 and Cl/HCO3 exchanger SLC26A3 (DRA) in rodent cecum and colon. Am J Physiol Gastrointest Liver Physiol 2010; 299:G358-67. [PMID: 20466943 DOI: 10.1152/ajpgi.00151.2010] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The colon is believed to absorb NaCl via the coupled operation of apical Na/H exchanger-3 (NHE3) and Cl/HCO(3) exchanger SLC26A3 (DRA). Efficient coupling requires that NHE3 and DRA operate in close proximity within common luminal and cytosolic microenvironments. Thus we examined whether these proteins coexist along the apical margin of surface enterocytes by quantitative immunofluorescence microscopy in consecutive colon segments from nonfasted mice and rats. The cecocolonic profiles of NHE3 and DRA expression were roughly inverse; NHE3 was highest in proximal colon (PC) and negligible in distal colon, whereas DRA was absent in early PC and highest in the late midcolon, and DRA was prominent in the cecum whereas NHE3 was not. NHE3 and DRA coexisted only in the middle third of the colon. The consequences of unpaired NHE3/DRA expression on mucosal surface (subscript MS) pH and Na(+) concentration ([Na(+)]) were assessed in nonfasted rats in situ using miniature electrodes. In the cecum, where only DRA is expressed, pH(MS) was approximately 7.5, markedly higher than underlaying stool (6.3), consistent with net HCO(3)(-) secretion. In the early PC, where NHE3 is not expressed with DRA, pH(MS) was acidic (6.2), consistent with unopposed H(+) secretion. [Na(+)](MS) was approximately 60 mM in the cecum, decreased along the PC to approximately 20 mM, and declined further to approximately 10 mM distally. Cl(-) was secreted into the PC, then reabsorbed distally. Our results suggest a model in which 1) unpaired DRA activity in the cecum maintains an alkaline mucosal surface that could neutralize fermentative H(+); 2) unpaired NHE3 activity in the early PC preserves an acidic mucosal surface that could energize short-chain fatty acid absorption; and 3) coupled NHE3/DRA activities in the midcolon allow for vigorous NaCl absorption at a neutral pH(MS).
Collapse
|
32
|
Mechanisms of the regulation of the intestinal Na+/H+ exchanger NHE3. J Biomed Biotechnol 2010; 2010:238080. [PMID: 20011065 PMCID: PMC2789519 DOI: 10.1155/2010/238080] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 09/11/2009] [Indexed: 01/25/2023] Open
Abstract
A major of Na+ absorptive process in the proximal part of intestine and kidney is electroneutral exchange of Na+ and H+ by Na+/H+ exchanger type 3 (NHE3). During the past decade, significant advance has been achieved in the mechanisms of NHE3 regulation. A bulk of the current knowledge on Na+/H+ exchanger regulation is based on heterologous expression of mammalian Na+/H+ exchangers in Na+/H+ exchanger deficient fibroblasts, renal epithelial, and intestinal epithelial cells. Based on the reductionist's approach, an understanding of NHE3 regulation has been greatly advanced. More recently, confirmations of in vitro studies have been made using animals deficient in one or more proteins but in some cases unexpected findings have emerged. The purpose of this paper is to provide a brief overview of recent progress in the regulation and functions of NHE3 present in the luminal membrane of the intestinal tract.
Collapse
|
33
|
Poetsch M, Nottebaum BJ, Wingenfeld L, Frede S, Vennemann M, Bajanowski T. Impact of sodium/proton exchanger 3 gene variants on sudden infant death syndrome. J Pediatr 2010; 156:44-48.e1. [PMID: 19772970 DOI: 10.1016/j.jpeds.2009.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 05/21/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To determine the contribution of variations in the sodium/proton exchanger 3 (NHE3) gene in sudden infant death syndrome (SIDS). STUDY DESIGN Variations in the exons and promoter of the NHE3 gene were analyzed with direct sequencing analysis and mini sequencing (SNaPshot analysis) in 251 cases of SIDS, plus 50 infant control subjects who had died of other causes, and 170 healthy adults. RESULTS The C2405T variant (exon 16) and 2 polymorphisms in the promoter (G1131A and C1197T) were encountered significantly more frequently in cases of SIDS than in control subjects. At least 1 of these 3 variants was detected in 49% of SIDS cases, but only in 30% of control subjects. CONCLUSIONS Our findings suggest the involvement of polymorphisms in the NHE3 gene and promoter in cases of SIDS, which may result in an overexpression of NHE3 in the medulla oblongata and which possibly leads to a disturbance in breathing control. Furthermore, our results underline the heterogeneous character of SIDS.
Collapse
Affiliation(s)
- Micaela Poetsch
- Institute of Forensic Medicine, University Hospital Essen, Essen, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Musch MW, Arvans DL, Paris H, Chang EB. Alpha2-adrenergic receptors attenuate secretagogue-induced endocytosis and promote exocytosis of intestinal NHE2 and NHE3. J Pharmacol Exp Ther 2009; 330:818-25. [PMID: 19556451 DOI: 10.1124/jpet.109.151910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adrenergic agonists, through activation of intestinal epithelial alpha2-adrenergic receptors (alpha2AR), inhibit electrolyte secretion and promote absorption. The mechanisms of action to promote basal Na(+) absorption and inhibit stimulated secretion are not understood completely. The effects of alpha2-agonists on Na(+) transport were studied in a cell line, Caco2-3B, derived from the Caco2 cell line engineered to permanently express human alpha2A-adrenergic receptors. Serosal, but not mucosal, addition of the alpha2AR agonist N-(2,6-dichlorophenyl)-4,5-dihydro-1H-imidazol-2-amine (clonidine) increased Caco2-3B apical (22)Na(+) uptake, an effect not seen in the Caco2 parent line that lacks alpha2AR expression. This effect was blocked by the alpha2AR antagonist 17alpha-yohmban-16alpha-carboxylic acid methyl ester (yohimbine). Increased Na(+) uptake was paralleled by increased apical surface abundance of the sodium/hydrogen exchangers NHE2 and NHE3. No changes in total cell NHE2 and NHE3 expression were observed. Clonidine also inhibited both cAMP and Ca(2+)-induced decreases in apical Na(+) uptake and apical membrane NHE2 and NHE3 endocytosis stimulated by these agents. alpha2AR actions were mediated via stimulation of phospholipase C, and metabolism of arachidonic acid by an epoxygenase activity followed epidermal growth factor release and activation of the epidermal growth factor receptor, resulting in phosphatidylinositol-3-kinase and Akt stimulation. In summary, activation of intestinal epithelial alpha2AR significantly blocks the inhibition of apical Na(+) transporters by cAMP- and Ca(2+)-mediated pathways and also directly increases apical sodium/hydrogen exchange activities. By both blocking electrolyte secretion and promoting absorption, alpha2-agonists could be potent antidiarrheal agents that could directly counteract the actions of toxigenic pathogens and other secretagogues causing secretory diarrhea.
Collapse
Affiliation(s)
- Mark W Musch
- Martin Boyer Laboratories, University of Chicago, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
35
|
Abstract
The Ussing chamber provides a physiological system to measure the transport of ions, nutrients, and drugs across various epithelial tissues. One of the most studied epithelia is the intestine, which has provided several landmark discoveries regarding the mechanisms of ion transport processes. Adaptation of this method to mouse intestine adds the dimension of investigating genetic loss or gain of function as a means to identify proteins or processes affecting transepithelial transport. In this review, the principles underlying the use of Ussing chambers are outlined including limitations and advantages of the technique. With an emphasis on mouse intestinal preparations, the review covers chamber design, commercial equipment sources, tissue preparation, step-by-step instruction for operation, troubleshooting, and examples of interpretation difficulties. Specialized uses of the Ussing chamber such as the pH stat technique to measure transepithelial bicarbonate secretion and isotopic flux methods to measure net secretion or absorption of substrates are discussed in detail, and examples are given for the adaptation of Ussing chamber principles to other measurement systems. The purpose of the review is to provide a practical guide for investigators who are new to the Ussing chamber method.
Collapse
Affiliation(s)
- Lane L. Clarke
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
36
|
Mizobuchi M, Towler D, Slatopolsky E. Vascular calcification: the killer of patients with chronic kidney disease. J Am Soc Nephrol 2009; 20:1453-64. [PMID: 19478096 DOI: 10.1681/asn.2008070692] [Citation(s) in RCA: 386] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular complications are the leading cause of death in patients with chronic kidney disease (CKD). Vascular calcification is a common complication in CKD, and investigators have demonstrated that the extent and histoanatomic type of vascular calcification are predictors of subsequent vascular mortality. Although research efforts in the past decade have greatly improved our knowledge of the multiple factors and mechanisms involved in vascular calcification in patients with kidney disease, many questions remain unanswered. No longer can we accept the concept that vascular calcification in CKD is a passive process resulting from an elevated calcium-phosphate product. Rather, as a result of the metabolic insults of diabetes, dyslipidemia, oxidative stress, uremia, and hyperphosphatemia, "osteoblast-like" cells form in the vessel wall. These mineralizing cells as well as the recruitment of undifferentiated progenitors to the osteochondrocyte lineage play a critical role in the calcification process. Important transcription factors such as Msx 2, osterix, and RUNX2 are crucial in the programming of osteogenesis. Thus, the simultaneous increase in arterial osteochondrocytic programs and reduction in active cellular defense mechanisms creates the "perfect storm" of vascular calcification seen in ESRD. Innovative clinical studies addressing the combined use of inhibitors that work on vascular calcification through distinct molecular mechanisms, such as fetuin-A, osteopontin, and bone morphogenic protein 7, among others, will be necessary to reduce significantly the accrual of vascular calcifications and cardiovascular mortality in kidney disease. In addition, the roles of oxidative stress and inflammation on the fate of smooth muscle vascular cells and their function deserve further translational investigation.
Collapse
Affiliation(s)
- Masahide Mizobuchi
- Department of Medicine, Renal Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
37
|
Lam TI, Wise PM, O'Donnell ME. Cerebral microvascular endothelial cell Na/H exchange: evidence for the presence of NHE1 and NHE2 isoforms and regulation by arginine vasopressin. Am J Physiol Cell Physiol 2009; 297:C278-89. [PMID: 19458287 DOI: 10.1152/ajpcell.00093.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Blood-brain barrier (BBB) Na transporters are essential for brain water and electrolyte homeostasis. However, they also contribute to edema formation during the early hours of ischemic stroke by increased transport of Na from blood into brain across an intact BBB. We previously showed that a luminal BBB Na-K-Cl cotransporter is stimulated by hypoxia, aglycemia, and AVP and that inhibition of the cotransporter by intravenous bumetanide significantly reduces edema and infarct in the rat middle cerebral artery occlusion (MCAO) model of stroke. More recently, we found evidence that intravenous cariporide (HOE-642), a highly potent Na/H exchange inhibitor, also reduces brain edema after MCAO. The present study was conducted to investigate which Na/H exchange protein isoforms are present in BBB endothelial cells and to evaluate the effects of ischemic factors on BBB Na/H exchange activity. Western blot analysis of bovine cerebral microvascular endothelial cells (CMEC) and immunoelectron microscopy of perfusion-fixed rat brain revealed that Na/H exchanger isoforms 1 and 2 (NHE1 and NHE2) are present in BBB endothelial cells. Using microspectrofluorometry and the pH-sensitive dye BCECF, we found that hypoxia (2% O(2), 30 min), aglycemia (30 min), and AVP (1-200 nM, 5 min) significantly increased CMEC Na/H exchange activity, assessed as Na-dependent, HOE-642-sensitive H(+) flux. We found that AVP stimulation of CMEC Na/H exchange activity is dependent on intracellular Ca concentration and is blocked by V(1), but not V(2), vasopressin receptor antagonists. Our findings support the hypothesis that a BBB Na/H exchanger, possibly NHE1 and/or NHE2, is stimulated during ischemia to participate in cerebral edema formation.
Collapse
Affiliation(s)
- Tina I Lam
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
38
|
Musch MW, Li YC, Chang EB. Angiotensin II directly regulates intestinal epithelial NHE3 in Caco2BBE cells. BMC PHYSIOLOGY 2009; 9:5. [PMID: 19338654 PMCID: PMC2669048 DOI: 10.1186/1472-6793-9-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 04/01/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Angiotensin II (AII) effects on intestinal Na+ transport may be multifactorial. To determine if AII might have a direct effect on intestinal epithelial Na+ transport, we investigated its actions on Na+ transport in human intestinal epithelial Caco2BBE cells. RESULTS AII increased apical (brush border) sodium-hydrogen exchanger (NHE)-3, but not NHE2, activity within one hour. Similarly, only apical membrane NHE3 abundance increased at 1-2 hours without any change in total NHE3 protein abundance. From 4-48 hours, AII stimulated progressively larger increases in apical NHE3 activity and surface abundance, which was associated with increases in NHE3 protein expression. At 4-24 hours, NHE3 mRNA increases over baseline expression, suggesting increased gene transcription. This was supported by AII induced increases in rat NHE3 gene promoter-reporter activity. AII induction of NHE3 was blocked by the AII type I receptor antagonist losartan. Acute changes in AII-induced increases in NHE3 exocytosis were blocked by a phospholipase C inhibitor, an arachidonic acid cytochrome P450 epoxygenase inhibitor, as well as phosphatidylinositol 3 kinase (PI3K) inhibitors and Akt inhibitor, partially blocked by a metalloproteinase inhibitor and an EGF (epidermal growth factor) receptor kinase inhibitor, but not affected by an inhibitor of MEK-1 (MAPKK-1, mitogen activated protein kinase kinase-1). CONCLUSION We conclude that angiotensin II has a direct role in regulating intestinal fluid and electrolyte absorption which may contribute to its overall effects in regulation systemic volume and blood pressure. AII activates several key signaling pathways that induce acute and chronic changes in NHE3 membrane trafficking and gene transcription.
Collapse
Affiliation(s)
- Mark W Musch
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
39
|
Bradford EM, Sartor MA, Gawenis LR, Clarke LL, Shull GE. Reduced NHE3-mediated Na+ absorption increases survival and decreases the incidence of intestinal obstructions in cystic fibrosis mice. Am J Physiol Gastrointest Liver Physiol 2009; 296:G886-98. [PMID: 19164484 PMCID: PMC2670667 DOI: 10.1152/ajpgi.90520.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In cystic fibrosis, impaired secretion resulting from loss of activity of the cystic fibrosis transmembrane conductance regulator (CFTR) causes dehydration of intestinal contents and life-threatening obstructions. Conversely, impaired absorption resulting from loss of the NHE3 Na+/H+ exchanger causes increased fluidity of the intestinal contents and diarrhea. To test the hypothesis that reduced NHE3-mediated absorption could increase survival and prevent some of the intestinal pathologies of cystic fibrosis, Cftr/Nhe3 double heterozygous mice were mated and their offspring analyzed. Cftr-null mice lacking one or both copies of the NHE3 gene exhibited increased fluidity of their intestinal contents, which prevented the formation of obstructions and increased survival. Goblet cell hyperplasia was eliminated, but not the accumulation of Paneth cell granules or increased cell proliferation in the crypts. Microarray analysis of small intestine RNA from Cftr-null, NHE3-null, and double-null mice all revealed downregulation of genes involved in xenobiotic metabolism, including a cohort of genes involved in glutathione metabolism. Expression of energy metabolism genes was altered, but there were no changes in genes involved in inflammation. Total intracellular glutathione was increased in the jejunum of all of the mutants and the ratio of reduced to oxidized glutathione was reduced in Cftr-null mutants, indicating that CFTR deficiency affects intestinal glutathione metabolism. The data establish a major role for NHE3 in regulating the fluidity of the intestinal contents and show that reduced NHE3-mediated absorption reverses some of the intestinal pathologies of cystic fibrosis, thus suggesting that it may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Emily M. Bradford
- Department of Molecular Genetics, Biochemistry and Microbiology and Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Physiology, University of Utah, Salt Lake City, Utah; and Dalton Cardiovascular Research Center and the Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Maureen A. Sartor
- Department of Molecular Genetics, Biochemistry and Microbiology and Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Physiology, University of Utah, Salt Lake City, Utah; and Dalton Cardiovascular Research Center and the Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Lara R. Gawenis
- Department of Molecular Genetics, Biochemistry and Microbiology and Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Physiology, University of Utah, Salt Lake City, Utah; and Dalton Cardiovascular Research Center and the Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Lane L. Clarke
- Department of Molecular Genetics, Biochemistry and Microbiology and Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Physiology, University of Utah, Salt Lake City, Utah; and Dalton Cardiovascular Research Center and the Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Gary E. Shull
- Department of Molecular Genetics, Biochemistry and Microbiology and Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Physiology, University of Utah, Salt Lake City, Utah; and Dalton Cardiovascular Research Center and the Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
40
|
Walker NM, Simpson JE, Brazill JM, Gill RK, Dudeja PK, Schweinfest CW, Clarke LL. Role of down-regulated in adenoma anion exchanger in HCO3- secretion across murine duodenum. Gastroenterology 2009; 136:893-901. [PMID: 19121635 PMCID: PMC2694732 DOI: 10.1053/j.gastro.2008.11.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 10/17/2008] [Accepted: 11/06/2008] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS The current model of duodenal HCO(3)(-) secretion proposes that basal secretion results from Cl(-)/HCO(3)(-) exchange, whereas cyclic adenosine monophosphate (cAMP)-stimulated secretion depends on a cystic fibrosis transmembrane conductance regulator channel (Cftr)-mediated HCO(3)(-) conductance. However, discrepancies in applying the model suggest that Cl(-)/HCO(3)(-) exchange also contributes to cAMP-stimulated secretion. Of 2 candidate Cl(-)/HCO(3)(-) exchangers, studies of putative anion transporter-1 knockout (KO) mice find little contribution of putative anion transporter-1 to basal or cAMP-stimulated secretion. Therefore, the role of down-regulated in adenoma (Dra) in duodenal HCO(3)(-) secretion was investigated using DraKO mice. METHODS Duodenal HCO(3)(-) secretion was measured by pH stat in Ussing chambers. Apical membrane Cl(-)/HCO(3)(-) exchange was measured by microfluorometry of intracellular pH in intact villous epithelium. Dra expression was assessed by immunofluorescence. RESULTS Basal HCO(3)(-) secretion was reduced approximately 55%-60% in the DraKO duodenum. cAMP-stimulated HCO(3)(-) secretion was reduced approximately 50%, but short-circuit current was unchanged, indicating normal Cftr activity. Microfluorimetry of villi demonstrated that Dra is the dominant Cl(-)/HCO(3)(-) exchanger in the lower villous epithelium. Dra expression increased from villous tip to crypt. DraKO and wild-type villi also demonstrated regulation of apical Na(+)/H(+) exchange by Cftr-dependent cell shrinkage during luminal Cl(-) substitution. CONCLUSIONS In murine duodenum, Dra Cl(-)/HCO(3)(-) exchange is concentrated in the lower crypt-villus axis where it is subject to Cftr regulation. Dra activity contributes most basal HCO(3)(-) secretion and approximately 50% of cAMP-stimulated HCO(3)(-) secretion. Dra Cl(-)/HCO(3)(-) exchange should be considered in efforts to normalize HCO(3)(-) secretion in duodenal disorders such as ulcer disease and cystic fibrosis.
Collapse
Affiliation(s)
- Nancy M. Walker
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Janet E. Simpson
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Jennifer M. Brazill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Ravinder K. Gill
- Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL
| | - Pradeep K. Dudeja
- Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL
| | | | - Lane L. Clarke
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
41
|
Sullivan S, Alex P, Dassopoulos T, Zachos NC, Iacobuzio-Donahue C, Donowitz M, Brant SR, Cuffari C, Harris ML, Datta LW, Conklin A, Chen Y, Li X. Downregulation of sodium transporters and NHERF proteins in IBD patients and mouse colitis models: potential contributors to IBD-associated diarrhea. Inflamm Bowel Dis 2009; 15:261-74. [PMID: 18942765 PMCID: PMC2627787 DOI: 10.1002/ibd.20743] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND One of the most common symptoms among patients with inflammatory bowel disease (IBD) is diarrhea, which is thought to be contributed by changes in electrolyte transport associated with intestinal inflammation. This study was designed to test the hypothesis that intestinal Na(+)-related transporters/channels and their regulatory proteins may be downregulated as a potential contributor to IBD-associated diarrhea. METHODS SDS-PAGE and Western blotting and/or confocal immunomicroscopy were used to examine the expression of Na(+)/H(+)-exchangers 1-3 (NHE1-3), epithelial Na(+) channel (ENaC), Na(+)/K(+)-ATPase, the intracellular Cl(-) channel 5 (ClC-5), and NHE3 regulatory factors (NHERF1,2) in ileal and colonic pinch biopsies from IBD patients and noninflammatory controls, as well as from colonic mucosa of dextran sodium sulfate (DSS)- and TNBS-induced acute murine IBD models. RESULTS NHE1,3 (but not NHE2), beta-ENaC, Na(+)/K(+)-ATPase-alpha, ClC-5, and NHERF1 were all downregulated in sigmoid mucosal biopsies from most cases of active UC and/or CD compared to controls. NHE3 was also decreased in ileal mucosal biopsies of active CD, as well as in approximately 50% of sigmoid biopsies from inactive UC or CD. Importantly, similar downregulation of NHE1,3, beta-ENaC, and NHERF1,2 was also observed in the mouse colon (but not ileum) of DSS- and TNBS-induced colitis. CONCLUSIONS IBD-associated diarrhea may be due to a coordinated downregulation of multiple Na(+) transporter and related regulatory proteins, including NHE1,3, Na(+)/K(+)-ATPase, and ENaC, as well as NHERF1,2, and ClC-5, all of which are involved directly or indirectly in intestinal Na(+) absorption.
Collapse
Affiliation(s)
- Sean Sullivan
- GI Division/Dept of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205,Dept of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Philip Alex
- GI Division/Dept of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | - Nicholas C. Zachos
- GI Division/Dept of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | - Mark Donowitz
- GI Division/Dept of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Steven R. Brant
- GI Division/Dept of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Carmen Cuffari
- Dept of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Mary L. Harris
- GI Division/Dept of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Lisa Wu Datta
- GI Division/Dept of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - aurie Conklin
- GI Division/Dept of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205,Dept of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yueping Chen
- GI Division/Dept of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Xuhang Li
- GI Division/Dept of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205,Address correspondence to: Xuhang Li, Ph.D. 720 Rutland Ave, 918 Ross Research Bldg GI Division, Department of Medicine Johns Hopkins University School of Medicine Baltimore, MD 21205 Tel. 443-287-4804 Fax. 410-955-9677 E-mail:
| |
Collapse
|
42
|
Musch MW, Arvans DL, Wu GD, Chang EB. Functional coupling of the downregulated in adenoma Cl-/base exchanger DRA and the apical Na+/H+ exchangers NHE2 and NHE3. Am J Physiol Gastrointest Liver Physiol 2009; 296:G202-10. [PMID: 19056765 PMCID: PMC2643907 DOI: 10.1152/ajpgi.90350.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Non-nutrient-dependent salt absorption across the brush-border membrane of intestinal epithelial cells is primarily mediated by coupled apical Na(+)/H(+) (aNHE) and anion exchange transport, with the latter suspected of being mediated by DRA (downregulated in adenoma; SLC26A3) that is defective in congenital chloridorrhea. To investigate DRA in greater detail and determine whether DRA and NHE activities can be coupled, we measured (22)Na(+) and (36)Cl(-) uptake in Caco2BBE colon cells infected with the tet-off-inducible DRA transgene. Under basal conditions, DRA activity was low in normal and infected Caco2BBE cells in the presence of tetracycline, whereas NHE activities could be easily detected. When apical NHE activity was increased by transfection or serum-induced expression of the aNHE isoforms NHE2 and NHE3, increased (36)Cl(-) uptake was observed. Inhibition of DRA activity by niflumic acid was greater than that by DIDS as well as by the NHE inhibitor dimethylamiloride and the carbonic anhydrase inhibitor methazolamide. DRA activity was largely aNHE-dependent, whereas a component of DRA-independent aNHE uptake continued to be observed. Coupled aNHE and DRA activities were inhibited by increased cellular cAMP and calcium and were associated with synaptotagmin I-dependent, clathrin-mediated endocytosis. In summary, these data support the role of DRA in electroneutral NaCl absorption involving functional coupling of Cl(-)/base exchange and apical NHE.
Collapse
Affiliation(s)
- Mark W. Musch
- Department of Medicine, University of Chicago, Chicago, Illinois; and Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Donna L. Arvans
- Department of Medicine, University of Chicago, Chicago, Illinois; and Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gary D. Wu
- Department of Medicine, University of Chicago, Chicago, Illinois; and Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eugene B. Chang
- Department of Medicine, University of Chicago, Chicago, Illinois; and Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
Reduced NHE3-mediated Na+ absorption increases survival and decreases the incidence of intestinal obstructions in cystic fibrosis mice. Am J Physiol Gastrointest Liver Physiol 2009. [PMID: 19164484 DOI: 10.1152/ajpgi.90520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
In cystic fibrosis, impaired secretion resulting from loss of activity of the cystic fibrosis transmembrane conductance regulator (CFTR) causes dehydration of intestinal contents and life-threatening obstructions. Conversely, impaired absorption resulting from loss of the NHE3 Na+/H+ exchanger causes increased fluidity of the intestinal contents and diarrhea. To test the hypothesis that reduced NHE3-mediated absorption could increase survival and prevent some of the intestinal pathologies of cystic fibrosis, Cftr/Nhe3 double heterozygous mice were mated and their offspring analyzed. Cftr-null mice lacking one or both copies of the NHE3 gene exhibited increased fluidity of their intestinal contents, which prevented the formation of obstructions and increased survival. Goblet cell hyperplasia was eliminated, but not the accumulation of Paneth cell granules or increased cell proliferation in the crypts. Microarray analysis of small intestine RNA from Cftr-null, NHE3-null, and double-null mice all revealed downregulation of genes involved in xenobiotic metabolism, including a cohort of genes involved in glutathione metabolism. Expression of energy metabolism genes was altered, but there were no changes in genes involved in inflammation. Total intracellular glutathione was increased in the jejunum of all of the mutants and the ratio of reduced to oxidized glutathione was reduced in Cftr-null mutants, indicating that CFTR deficiency affects intestinal glutathione metabolism. The data establish a major role for NHE3 in regulating the fluidity of the intestinal contents and show that reduced NHE3-mediated absorption reverses some of the intestinal pathologies of cystic fibrosis, thus suggesting that it may serve as a potential therapeutic target.
Collapse
|
44
|
Down-regulated in adenoma Cl/HCO3 exchanger couples with Na/H exchanger 3 for NaCl absorption in murine small intestine. Gastroenterology 2008; 135:1645-1653.e3. [PMID: 18930060 PMCID: PMC2673535 DOI: 10.1053/j.gastro.2008.07.083] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 07/31/2008] [Accepted: 07/31/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Electroneutral NaCl absorption across small intestine contributes importantly to systemic fluid balance. Disturbances in this process occur in both obstructive and diarrheal diseases, eg, cystic fibrosis, secretory diarrhea. NaCl absorption involves coupling of Cl(-)/HCO(3)(-) exchanger(s) primarily with Na(+)/H(+) exchanger 3 (Nhe3) at the apical membrane of intestinal epithelia. Identity of the coupling Cl(-)/HCO(3)(-) exchanger(s) was investigated using mice with gene-targeted knockout (KO) of Cl(-)/HCO(3)(-) exchangers: Slc26a3, down-regulated in adenoma (Dra) or Slc26a6, putative anion transporter-1 (Pat-1). METHODS Intracellular pH (pH(i)) of intact jejunal villous epithelium was measured by ratiometric microfluoroscopy. Ussing chambers were used to measure transepithelial (22)Na(36)Cl flux across murine jejunum, a site of electroneutral NaCl absorption. Expression was estimated using immunofluorescence and quantitative polymerase chain reaction. RESULTS Basal pH(i) of DraKO epithelium, but not Pat-1KO epithelium, was alkaline, whereas pH(i) in the Nhe3KO was acidic relative to wild-type. Altered pH(i) was associated with robust Na(+)/H(+) and Cl(-)/HCO(3)(-) exchange activity in the DraKO and Nhe3KO villous epithelium, respectively. Contrary to genetic ablation, pharmacologic inhibition of Nhe3 in wild-type did not alter pH(i) but coordinately inhibited Dra. Flux studies revealed that Cl(-) absorption was essentially abolished (>80%) in the DraKO and little changed (<20%) in the Pat-1KO jejunum. Net Na(+) absorption was unaffected. Immunofluorescence demonstrated modest Dra expression in the jejunum relative to large intestine. Functional and expression studies did not indicate compensatory changes in relevant transporters. CONCLUSIONS These studies provide functional evidence that Dra is the major Cl(-)/HCO(3)(-) exchanger coupled with Nhe3 for electroneutral NaCl absorption across mammalian small intestine.
Collapse
|
45
|
Musch MW, Lucioni A, Chang EB. Aldosterone regulation of intestinal Na absorption involves SGK-mediated changes in NHE3 and Na+ pump activity. Am J Physiol Gastrointest Liver Physiol 2008; 295:G909-19. [PMID: 18801914 PMCID: PMC2584825 DOI: 10.1152/ajpgi.90312.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aldosterone-induced intestinal Na(+) absorption is mediated by increased activities of apical membrane Na(+)/H(+) exchange (aNHE3) and basolateral membrane Na(+)-K(+)-ATPase (BLM-Na(+)-K(+)-ATPase) activities. Because the processes coordinating these events were not well understood, we investigated human intestinal Caco-2BBE cells where aldosterone increases within 2-4 h of aNHE3 and alpha-subunit of BLM-Na(+)-K(+)-ATPase, but not total abundance of these proteins. Although aldosterone activated Akt2 and serum glucorticoid kinase-1 (SGK-1), the latter through stimulation of phosphatidylinositol 3-kinase (PI3K), only the SGK-1 pathway mediated its effects on Na(+)-K(+)-ATPase. Ouabain inhibition of the early increase in aldosterone-induced Na(+)-K(+)-ATPase activation blocked most of the apical NHE3 insertion, possibly by inhibiting Na(+)-K(+)-ATPase-induced changes in intracellular sodium concentration ([Na](i)). Over the next 6-48 h, further increases in aNHE3 and BLM-Na(+)-K(+)-ATPase activity and total protein expression were observed to be largely mediated by aldosterone-activated SGK-1 pathway. Aldosterone-induced increases in NHE3 mRNA, for instance, could be inhibited by RNA silencing of SGK-1, but not Akt2. Additionally, aldosterone-induced increases in NHE3 promoter activity were blocked by silencing SGK-1 as well as pharmacological inhibition of PI3K. In conclusion, aldosterone-stimulated intestinal Na(+) absorption involves two phases. The first phase involves stimulation of PI3K, which increases SGK-dependent insertion and function of BLM-Na(+)-K(+)-ATPase and subsequent increased membrane insertion of aNHE3. The latter may be caused by Na(+)-K(+)-ATPase-induced changes in [Na] or transcellular Na flux. The second phase involves SGK-dependent increases in total NHE3 and Na(+)-K(+)-ATPase protein expression and activities. The coordination of apical and BLM transporters after aldosterone stimulation is therefore a complex process that requires multiple time- and interdependent cellular processes.
Collapse
Affiliation(s)
- Mark W. Musch
- The Martin Boyer Laboratories, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Alvaro Lucioni
- The Martin Boyer Laboratories, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Eugene B. Chang
- The Martin Boyer Laboratories, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
46
|
Kong J, Zhang Z, Li D, Wong KE, Zhang Y, Szeto FL, Musch MW, Li YC. Loss of vitamin D receptor produces polyuria by increasing thirst. J Am Soc Nephrol 2008; 19:2396-405. [PMID: 18832438 DOI: 10.1681/asn.2008010011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Vitamin D receptor (VDR)-null mice develop polyuria, but the underlying mechanism remains unknown. In this study, we investigated the relationship between vitamin D and homeostasis of water and electrolytes. VDR-null mice had polyuria, but the urine osmolarity was normal as a result of high salt excretion. The urinary responses to water restriction and to vasopressin were similar between wild-type and VDR-null mice, suggesting intact fluid-handling capacity in VDR-null mice. Compared with wild-type mice, however, renin and angiotensin II were dramatically upregulated in the kidney and brain of VDR-null mice, leading to a marked increase in water intake and salt appetite. Angiotensin II-mediated upregulation of intestinal NHE3 expression partially explained the increased salt absorption and excretion in VDR-null mice. In the brain of VDR-null mice, expression of c-Fos, which is known to associate with increased water intake, was increased in the hypothalamic paraventricular nucleus and the subfornical organ. Treatment with an angiotensin II type 1 receptor antagonist normalized water intake, urinary volume, and c-Fos expression in VDR-null mice. Furthermore, despite a salt-deficient diet to reduce intestinal salt absorption, VDR-null mice still maintained the increased water intake and urinary output. Together, these data indicate that the polyuria observed in VDR-null mice is not caused by impaired renal fluid handling or increased intestinal salt absorption but rather is the result of increased water intake induced by the increase in systemic and brain angiotensin II.
Collapse
Affiliation(s)
- Juan Kong
- Department of Medicine and Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kanaan A, Douglas RM, Alper SL, Boron WF, Haddad GG. Effect of chronic elevated carbon dioxide on the expression of acid-base transporters in the neonatal and adult mouse. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1294-302. [PMID: 17652362 DOI: 10.1152/ajpregu.00261.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several pulmonary and neurological conditions, both in the newborn and adult, result in hypercapnia. This leads to disturbances in normal pH homeostasis. Most mammalian cells maintain tight control of intracellular pH (pHi) using a group of transmembrane proteins that specialize in acid-base transport. These acid-base transporters are important in adjusting pHiduring acidosis arising from hypoventilation. We hypothesized that exposure to chronic hypercapnia induces changes in the expression of acid-base transporters. Neonatal and adult CD-1 mice were exposed to either 8% or 12% CO2for 2 wk. We used Western blot analysis of membrane protein fractions from heart, kidney, and various brain regions to study the response of specific acid-base transporters to CO2. Chronic CO2increased the expression of the sodium hydrogen exchanger 1 (NHE1) and electroneutral sodium bicarbonate cotransporter (NBCn1) in the cerebral cortex, heart, and kidney of neonatal but not adult mice. CO2increased the expression of electrogenic NBC (NBCe1) in the neonatal but not the adult mouse heart and kidney. Hypercapnia decreased the expression of anion exchanger 3 (AE3) in both the neonatal and adult brain but increased AE3 expression in the neonatal heart. We conclude that: 1) chronic hypercapnia increases the expression of the acid extruders NHE1, NBCe1 and NBCn1 and decreases the expression of the acid loader AE3, possibly improving the capacity of the cell to maintain pHiin the face of acidosis; and 2) the heterogeneous response of tissues to hypercapnia depends on the level of CO2and development.
Collapse
Affiliation(s)
- Amjad Kanaan
- Department of Pediatrics, Section of Respiratory Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
48
|
Kiela PR, Kuscuoglu N, Midura AJ, Midura-Kiela MT, Larmonier CB, Lipko M, Ghishan FK. Molecular mechanism of rat NHE3 gene promoter regulation by sodium butyrate. Am J Physiol Cell Physiol 2007; 293:C64-74. [PMID: 17344314 DOI: 10.1152/ajpcell.00277.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sodium butyrate (NaB) stimulates sodium and water absorption by inducing colonic Na+/H+exchange. NaB induces Na+/H+exchanger (NHE)3 activity and protein and mRNA expression both in vivo and in vitro. Our previously published observations indicated that this induction is Ser/Thr kinase dependent and that NaB-responsive elements were localized within −320/−34 bp of the rat NHE3 promoter. Here we further delineate the mechanism of NaB-mediated NHE3 gene transcription. Transient and stable transfection of Caco-2 cells with NHE3 gene reporter constructs identified Sp binding site SpB at position −58/−55 nt as critical for NaB-mediated induction. Gel mobility shift (GMSA) and DNA affinity precipitation assays indicated NaB-induced binding of Sp3 and decreased binding of Sp1 to SpB element. While no changes in expression of Sp1 or Sp3 were noted, NaB induced phosphorylation of Sp1 and acetylation of Sp3. Sp3 was a more potent inducer of NHE3 gene transcription, which suggested that change in balance, favoring binding of Sp3 to the SpB site, would result in significant increase in NHE3 promoter activity. Small interfering RNA studies in Caco-2 cells and data from NaB-treated SL2 cells used as a reconstitution model confirmed this hypothesis. In addition to the SpB site, which played a permissive role, an upstream novel butyrate response element located at −196/−175 nt was necessary for maximal induction. GMSA identified a protein-DNA complex with a −196/−175 nt probe; this interaction was not affected by NaB treatment, thus suggesting that in response to NaB Sp3 binding to site SpB precedes and results in recruitment of the putative factor to this upstream site.
Collapse
Affiliation(s)
- Pawel R Kiela
- Dept. of Pediatrics, Steele Children's Research Center, University of Arizona Health Sciences Center, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
NHE3 is the brush-border (BB) Na+/H+exchanger of small intestine, colon, and renal proximal tubule which is involved in large amounts of neutral Na+absorption. NHE3 is a highly regulated transporter, being both stimulated and inhibited by signaling that mimics the postprandial state. It also undergoes downregulation in diarrheal diseases as well as changes in renal disorders. For this regulation, NHE3 exists in large, multiprotein complexes in which it associates with at least nine other proteins. This review deals with short-term regulation of NHE3 and the identity and function of its recognized interacting partners and the multiprotein complexes in which NHE3 functions.
Collapse
Affiliation(s)
- Mark Donowitz
- Department of Medicine, GI Division, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
50
|
Gens JS, Dou H, Tackett L, Kong SS, Chu S, Montrose MH. Different ionic conditions prompt NHE2 and NHE3 translocation to the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1023-35. [PMID: 17303069 PMCID: PMC1974857 DOI: 10.1016/j.bbamem.2007.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 12/31/2006] [Accepted: 01/04/2007] [Indexed: 11/29/2022]
Abstract
We tested whether NHE3 and NHE2 Na(+)/H(+) exchanger isoforms were recruited to the plasma membrane (PM) in response to changes in ion homeostasis. NHE2-CFP or NHE3-CFP fusion proteins were functional Na(+)/H(+) exchangers when transiently expressed in NHE-deficient PS120 fibroblasts. Confocal morphometry of cells whose PM was labeled with FM4-64 measured the fractional amount of fusion protein at the cell surface. In resting cells, 10-20% of CFP fluorescence was at PM and stable over time. A protocol commonly used to activate the Na(+)/H(+) exchange function (NH(4)-prepulse acid load sustained in Na(+)-free medium), increased PM percentages of PM NHE3-CFP and NHE2-CFP. Separation of cellular acidification from Na(+) removal revealed that only NHE3-CFP translocated when medium Na(+) was removed, and only NHE2-CFP translocated when the cell was acidified. NHE2/NHE3 chimeric proteins demonstrate that the Na(+)-removal response element resides predominantly in the NHE3 cytoplasmic tail and is distinct from the acidification response sequence of NHE2.
Collapse
Affiliation(s)
- J. Scott Gens
- Biocomplexity Institute, Indiana University, Bloomington, Indiana, 47405
| | - Hongwei Dou
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Lixuan Tackett
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120
| | - Shen-Shen Kong
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120
| | - Shaoyou Chu
- Eli Lilly and Company, Indianapolis, Indiana, 46225
| | - Marshall H. Montrose
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120
- Corresponding Author: Marshall H. Montrose, Mail address: Department of Molecular and Cellular Physiology, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, Telephone number: (513)-558-5636, FAX number: (513)-558-5738, E-mail:
| |
Collapse
|