1
|
Luo M, He N, Xu Q, Wen Z, Wang Z, Zhao J, Liu Y. Roles of prostaglandins in immunosuppression. Clin Immunol 2024; 265:110298. [PMID: 38909972 DOI: 10.1016/j.clim.2024.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Prostaglandins (PGs) play a crucial and multifaceted role in various physiological processes such as intercellular signaling, inflammation regulation, neurotransmission, vasodilation, vasoconstriction, and reproductive functions. The diversity and biological significance of these effects are contingent upon the specific types or subtypes of PGs, with each PG playing a crucial role in distinct physiological and pathological processes. Particularly within the immune system, PGs are essential in modulating the function of immune cells and the magnitude and orientation of immune responses. Hence, a comprehensive comprehension of the functions PG signaling pathways in immunosuppressive regulation holds substantial clinical relevance for disease prevention and treatment strategies. The manuscript provides a review of recent developments in PG signaling in immunosuppressive regulation. Furthermore, the potential clinical applications of PGs in immunosuppression are also discussed. While research into the immunosuppressive effects of PGs required further exploration, targeted therapies against their immunosuppressive pathways might open new avenues for disease prevention and treatment.
Collapse
Affiliation(s)
- Minjie Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Nina He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Zhongchi Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Ziqin Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| |
Collapse
|
2
|
Abbey CA, Duran CL, Chen Z, Chen Y, Roy S, Coffell A, Sveeggen TM, Chakraborty S, Wells GB, Chang J, Bayless KJ. Identification of New Markers of Angiogenic Sprouting Using Transcriptomics: New Role for RND3. Arterioscler Thromb Vasc Biol 2024; 44:e145-e167. [PMID: 38482696 PMCID: PMC11043006 DOI: 10.1161/atvbaha.123.320599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND New blood vessel formation requires endothelial cells to transition from a quiescent to an invasive phenotype. Transcriptional changes are vital for this switch, but a comprehensive genome-wide approach focused exclusively on endothelial cell sprout initiation has not been reported. METHODS Using a model of human endothelial cell sprout initiation, we developed a protocol to physically separate cells that initiate the process of new blood vessel formation (invading cells) from noninvading cells. We used this model to perform multiple transcriptomics analyses from independent donors to monitor endothelial gene expression changes. RESULTS Single-cell population analyses, single-cell cluster analyses, and bulk RNA sequencing revealed common transcriptomic changes associated with invading cells. We also found that collagenase digestion used to isolate single cells upregulated the Fos proto-oncogene transcription factor. Exclusion of Fos proto-oncogene expressing cells revealed a gene signature consistent with activation of signal transduction, morphogenesis, and immune responses. Many of the genes were previously shown to regulate angiogenesis and included multiple tip cell markers. Upregulation of SNAI1 (snail family transcriptional repressor 1), PTGS2 (prostaglandin synthase 2), and JUNB (JunB proto-oncogene) protein expression was confirmed in invading cells, and silencing JunB and SNAI1 significantly reduced invasion responses. Separate studies investigated rounding 3, also known as RhoE, which has not yet been implicated in angiogenesis. Silencing rounding 3 reduced endothelial invasion distance as well as filopodia length, fitting with a pathfinding role for rounding 3 via regulation of filopodial extensions. Analysis of in vivo retinal angiogenesis in Rnd3 heterozygous mice confirmed a decrease in filopodial length compared with wild-type littermates. CONCLUSIONS Validation of multiple genes, including rounding 3, revealed a functional role for this gene signature early in the angiogenic process. This study expands the list of genes associated with the acquisition of a tip cell phenotype during endothelial cell sprout initiation.
Collapse
Affiliation(s)
- Colette A. Abbey
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Camille L. Duran
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Zhishi Chen
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Yanping Chen
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Sukanya Roy
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
| | - Ashley Coffell
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Timothy M. Sveeggen
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Sanjukta Chakraborty
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
| | - Gregg B. Wells
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, TX
| | - Jiang Chang
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Kayla J. Bayless
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| |
Collapse
|
3
|
Giunashvili N, Thomas JM, Schvarcz CA, Viana PHL, Aloss K, Bokhari SMZ, Koós Z, Bócsi D, Major E, Balogh A, Benyó Z, Hamar P. Enhancing therapeutic efficacy in triple-negative breast cancer and melanoma: synergistic effects of modulated electro-hyperthermia (mEHT) with NSAIDs especially COX-2 inhibition in in vivo models. Mol Oncol 2024; 18:1012-1030. [PMID: 38217262 PMCID: PMC10994232 DOI: 10.1002/1878-0261.13585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a leading cause of cancer mortality and lacks modern therapy options. Modulated electro-hyperthermia (mEHT) is an adjuvant therapy with demonstrated clinical efficacy for the treatment of various cancer types. In this study, we report that mEHT monotherapy stimulated interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) expression, and consequently cyclooxygenase 2 (COX-2), which may favor a cancer-promoting tumor microenvironment. Thus, we combined mEHT with nonsteroid anti-inflammatory drugs (NSAIDs): a nonselective aspirin, or the selective COX-2 inhibitor SC236, in vivo. We demonstrate that NSAIDs synergistically increased the effect of mEHT in the 4T1 TNBC model. Moreover, the strongest tumor destruction ratio was observed in the combination SC236 + mEHT groups. Tumor damage was accompanied by a significant increase in cleaved caspase-3, suggesting that apoptosis played an important role. IL-1β and COX-2 expression were significantly reduced by the combination therapies. In addition, a custom-made nanostring panel demonstrated significant upregulation of genes participating in the formation of the extracellular matrix. Similarly, in the B16F10 melanoma model, mEHT and aspirin synergistically reduced the number of melanoma nodules in the lungs. In conclusion, mEHT combined with a selective COX-2 inhibitor may offer a new therapeutic option in TNBC.
Collapse
Grants
- STIA-OTKA-2022 Semmelweis Science and Innovation Fund
- OTKA_ANN 110810 National Research, Development, and Innovation Office
- OTKA_SNN 114619 National Research, Development, and Innovation Office
- ÚNKP-23-3-II-SE-45 National Research, Development, and Innovation Office
- ÚNKP-23-4-I-SE-22 National Research, Development, and Innovation Office
- OTKA_K 145998 National Research, Development, and Innovation Office
- Tempus Foundation
- EFOP-3.6.3-VEKOP-16-2017-00009 Semmelweis Excellence 250+ Scholarship
Collapse
Affiliation(s)
- Nino Giunashvili
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
| | | | - Csaba András Schvarcz
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
- HUN‐REN‐SU Cerebrovascular and Neurocognitive Diseases Research GroupBudapestHungary
| | | | - Kenan Aloss
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
| | | | - Zoltán Koós
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
| | - Dániel Bócsi
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
| | - Enikő Major
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
- HUN‐REN‐SU Cerebrovascular and Neurocognitive Diseases Research GroupBudapestHungary
| | - Andrea Balogh
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
- HUN‐REN‐SU Cerebrovascular and Neurocognitive Diseases Research GroupBudapestHungary
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
| |
Collapse
|
4
|
de Souza RL, Opretzka LCF, de Morais MC, Melo CDO, de Oliveira BEG, de Sousa DP, Villarreal CF, Oliveira EE. Nanoemulsion Improves the Anti-Inflammatory Effect of Intraperitoneal and Oral Administration of Carvacryl Acetate. Pharmaceuticals (Basel) 2023; 17:17. [PMID: 38276002 PMCID: PMC10821396 DOI: 10.3390/ph17010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Carvacryl acetate (CA) is a monoterpene obtained from carvacrol, which exhibits anti-inflammatory activity. However, its low solubility in aqueous media limits its application and bioavailability. Herein, we aimed to develop a carvacryl acetate nanoemulsion (CANE) and assess its anti-inflammatory potential in preclinical trials. The optimized nanoemulsion was produced by ultrasound, and stability parameters were characterized for 90 days using dynamic light scattering after hydrophilic-lipophilic balance (HLB) assessment. To evaluate anti-inflammatory activity, a complete Freund's adjuvant-induced inflammation model was established. Paw edema was measured, and local interleukin (IL)-1β levels were quantified using ELISA. Toxicity was assessed based on behavioral changes and biochemical assays. The optimized nanoemulsion contained 3% CA, 9% surfactants (HLB 9), and 88% water and exhibited good stability over 90 days, with no signs of toxicity. The release study revealed that CANE followed zero-order kinetics. Dose-response curves for CA were generated for intraperitoneal and oral administration, demonstrating anti-inflammatory effects by both routes; however, efficacy was lower when administered orally. Furthermore, CANE showed improved anti-inflammatory activity when compared with free oil, particularly when administered orally. Moreover, daily treatment with CANE did not induce behavioral or biochemical alterations. Overall, these findings indicate that nanoemulsification can enhance the anti-inflammatory properties of CA by oral administration.
Collapse
Affiliation(s)
- Rafael Limongi de Souza
- Laboratory of Synthesis and Drug Delivery, State University of Paraíba, Rua Horácio Trajano, SN, João Pessoa 58071-160, PB, Brazil
| | - Luíza Carolina França Opretzka
- Laboratório de Farmacologia e Terapêutica Experimental, Faculdade de Farmácia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 147, Ondina, Salvador 40170-115, BA, Brazil (C.F.V.)
| | - Mayara Castro de Morais
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil (D.P.d.S.)
| | - Camila de Oliveira Melo
- Laboratory of Synthesis and Drug Delivery, State University of Paraíba, Rua Horácio Trajano, SN, João Pessoa 58071-160, PB, Brazil
| | | | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil (D.P.d.S.)
| | - Cristiane Flora Villarreal
- Laboratório de Farmacologia e Terapêutica Experimental, Faculdade de Farmácia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 147, Ondina, Salvador 40170-115, BA, Brazil (C.F.V.)
| | - Elquio Eleamen Oliveira
- Laboratory of Synthesis and Drug Delivery, State University of Paraíba, Rua Horácio Trajano, SN, João Pessoa 58071-160, PB, Brazil
| |
Collapse
|
5
|
Malik MNH, Tahir MN, Alsahli TG, Tusher MMH, Alzarea SI, Alsuwayt B, Jahan S, Gomaa HAM, Shaker ME, Ali M, Anjum I, Khan MT, Roman M, Shabbir R. Geraniol Suppresses Oxidative Stress, Inflammation, and Interstitial Collagenase to Protect against Inflammatory Arthritis. ACS OMEGA 2023; 8:37128-37139. [PMID: 37841186 PMCID: PMC10568708 DOI: 10.1021/acsomega.3c04684] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Geraniol (GER) is a plant-derived acyclic isoprenoid monoterpene that has displayed anti-inflammatory effects in numerous in vivo and in vitro models. This study was therefore designed to evaluate the antiarthritic potential of GER in complete Freund's adjuvant (CFA)-induced inflammatory arthritis (IA) model in rats. IA was induced by intraplantar injection of CFA (0.1 mL), and a week after CFA administration, rats were treated with various doses of methotrexate (MTX; 1 mg/kg) or GER (25, 50, and 100 mg/kg). Treatments were given on every alternate day, and animals were sacrificed on the 35th day. Paw volume, histopathological, hematological, radiographic, and qPCR analyses were performed to analyze the severity of the disease. GER significantly reduced paw edema after 35 days of treatment, and these results were comparable to the MTX-treated group. GER-treated animals displayed a perfect joint structure with minimal inflammation and no signs of cartilage or bone damage. Moreover, GER restored red blood cell and hemoglobin levels, normalized erythrocyte sedimentation rate, platelet, and c-reactive protein values, and also attenuated the levels of rheumatoid factor. RT-qPCR analysis demonstrated that GER decreased mRNA expression of pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta. GER also down-regulated the transcript levels of cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-1, prostaglandin D2 synthase, and interstitial collagenase (MMP-1). Molecular docking of GER with COX-2, TNF-α, and MMP-1 also revealed that the antiarthritic effects of GER could be due to its direct interactions with these mediators. Based on our findings, it is conceivable that the antiarthritic effects of GER could be attributed to downregulation of pro-inflammatory mediators and protease like MMP-1.
Collapse
Affiliation(s)
- Muhammad Nasir Hayat Malik
- Faculty
of Pharmacy, Capital University of Science
and Technology (CUST), Islamabad 44000, Pakistan
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | | | - Tariq G. Alsahli
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Md. Mahedi Hassan Tusher
- Department
of Pharmacology, Faculty of Basic Sciences, Bangladesh University of Health Sciences, Dhaka 1216, Bangladesh
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Bader Alsuwayt
- Department
of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Shah Jahan
- Department
of Immunology, University of Health Sciences, Lahore 54000, Pakistan
| | - Hesham A. M. Gomaa
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Mohamed E. Shaker
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Muhammad Ali
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Irfan Anjum
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
- Shifa
College of Pharmaceutical Sciences,Shifa
Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Muhammad Tariq Khan
- Faculty
of Pharmacy, Capital University of Science
and Technology (CUST), Islamabad 44000, Pakistan
| | - Muhammad Roman
- Department
of Microbiology, University of Health Sciences, Lahore 54000, Pakistan
| | - Ramla Shabbir
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| |
Collapse
|
6
|
Yang Q, Zhao Y, Li N, Wu JL, Huang X, Zhang M, Bian X, Zhu YZ. Identification of polyunsaturated fatty acids as potential biomarkers of osteoarthritis after sodium hyaluronate and mesenchymal stem cell treatment through metabolomics. Front Pharmacol 2023; 14:1224239. [PMID: 37649888 PMCID: PMC10462907 DOI: 10.3389/fphar.2023.1224239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction: Osteoarthritis (OA) is a prevalent joint disorder worldwide. Sodium hyaluronate (SH) and mesenchymal stem cells (MSCs) are promising therapeutic strategies for OA. Previous studies showed they could improve knee function and clinical symptoms of OA. However, the mechanism of the therapeutic effects on the improvement of OA has not been clearly explained. Methods: In our study, we used a technique called 5-(diisopropylamino)amylamine derivatization liquid chromatography coupled with mass spectrometry to find the metabolites in OA synovial fluid under different treatments. Results and Discussion: After looking into the metabolomics, we discovered that SH and MSC treatment led to the downregulation of ω-6 polyunsaturated fatty acids (PUFAs) and the upregulation of ω-3 PUFAs. Significantly, the contents of 5(S)-HETE, PGA2, PGB2, and PGJ2 were lower in the MSC group than in the SH group after quantification using 5-(diisopropylamino)amylamine derivatization-UHPLC-QQQ-MS. This is the first report on the relationship of 11(S)-HETE, PGA2, PGB2, PGF2β, 11β-PGF2α, and DK-PGE2 with OA. Moreover, the correlation analysis of metabolites and inflammation factors showed the positive association of ω-6 PUFAs with pro-inflammation cytokines, and of ω-3 PUFAs with anti-inflammation cytokines. Our results indicated the therapeutic effect of SH and MSCs in patients with OA. In addition, this reliable metabolic approach could uncover novel biomarkers to treat OA.
Collapse
Affiliation(s)
- Qinyan Yang
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Liver Transplant Center and HBP Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiran Zhao
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Na Li
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Jian-Lin Wu
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Xiaolun Huang
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Liver Transplant Center and HBP Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mei Zhang
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Xiqing Bian
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yi-Zhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
7
|
Deng Y, Peng D, Yang C, Zhao L, Li J, Lu L, Zhu X, Li S, Aschner M, Jiang Y. Preventive treatment with sodium para-aminosalicylic acid inhibits manganese-induced apoptosis and inflammation via the MAPK pathway in rat thalamus. Drug Chem Toxicol 2023; 46:59-68. [PMID: 34875954 DOI: 10.1080/01480545.2021.2008127] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Excessive exposure to manganese (Mn) may lead to neurotoxicity, referred to as manganism. In several studies, sodium para-aminosalicylic acid (PAS-Na) has shown efficacy against Mn-induced neurodegeneration by attenuating the neuroinflammatory response. The present study investigated the effect of Mn on inflammation and apoptosis in the rat thalamus, as well as the underlying mechanism of the PAS-Na protective effect. The study consisted of sub-acute (Mn treatment for 4 weeks) and sub-chronic (Mn and PAS-Na treatment for 8 weeks) experiments. In the sub-chronic experiments, pro-inflammatory cytokines, namely tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and cyclooxygenase 2 (COX-2) were significantly increased in the Mn-exposed group compared to the control II. PAS-Na treatment led to a significant reduction in the Mn-induced neuroinflammation by inhibiting IL-1β and COX-2 mRNA expression and reducing IL-1β secretion and JNK/p38 MAPK pathway activity. Furthermore, immunohistochemical analysis showed that the expression of caspase-3 was significantly increased in both the sub-acute and sub-chronic experimental paradigms concomitant with a significant decrease in B-cell lymphoma 2 (Bcl-2) in the thalamus of Mn-treated rats. PAS-Na also decreased the expression levels of several apoptotic markers downstream of the MAPK pathway, including Bcl-2/Bax and caspase-3, while up-regulating anti-apoptotic Bcl-2 proteins. In conclusion, Mn exposure led to inflammation in the rat thalamus concomitant with apoptosis, which was mediated via the MAPK signaling pathway. PAS-Na treatment antagonized effectively Mn-induced neurotoxicity by inhibiting the MAPK activity in the same brain region.
Collapse
Affiliation(s)
- Yue Deng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Dongjie Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Chun Yang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Lin Zhao
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Junyan Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Lili Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Xiaojuan Zhu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Shaojun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | | | - Yueming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Dey R, Dey S, Samadder A, Saxena AK, Nandi S. Natural Inhibitors against Potential Targets of Cyclooxygenase, Lipoxygenase and Leukotrienes. Comb Chem High Throughput Screen 2022; 25:2341-2357. [PMID: 34533441 DOI: 10.2174/1386207325666210917111847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Cyclooxygenase (COX) and Lipoxygenase (LOX) enzymes catalyze the production of pain mediators like Prostaglandins (PGs) and Leukotrienes (LTs), respectively from arachidonic acid. INTRODUCTION The COX and LOX enzyme modulators are responsible for the major PGs and LTs mediated complications like asthma, osteoarthritis, rheumatoid arthritis, cancer, Alzheimer's disease, neuropathy and Cardiovascular Syndromes (CVS). Many synthetic Nonsteroidal Anti- Inflammatory Drugs (NSAIDs) used in the treatment have serious side effects like nausea, vomiting, hyperacidity, gastrointestinal ulcers, CVS, etc. Methods: The natural inhibitors of pain mediators have great acceptance worldwide due to fewer side effects on long-term uses. The present review is an extensive study of the advantages of plantbased vs synthetic inhibitors. RESULTS These natural COX and LOX inhibitors control inflammatory response without causing side-effect-related complicacy. CONCLUSION Therefore, the natural COX and LOX inhibitors may be used as alternative medicines for the management of pain and inflammation due to their less toxicity and resistivity.
Collapse
Affiliation(s)
- Rishita Dey
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sudatta Dey
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Anil Kumar Saxena
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713, India
| |
Collapse
|
9
|
Coras R, Murillo-Saich JD, Singh AG, Kavanaugh A, Guma M. Lipidomic Profiling in Synovial Tissue. Front Med (Lausanne) 2022; 9:857135. [PMID: 35492314 PMCID: PMC9051397 DOI: 10.3389/fmed.2022.857135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The analysis of synovial tissue offers the potential for the comprehensive characterization of cell types involved in arthritis pathogenesis. The studies performed to date in synovial tissue have made it possible to define synovial pathotypes, which relate to disease severity and response to treatment. Lipidomics is the branch of metabolomics that allows the quantification and identification of lipids in different biological samples. Studies in animal models of arthritis and in serum/plasma from patients with arthritis suggest the involvement of different types of lipids (glycerophospholipids, glycerolipids, sphingolipids, oxylipins, fatty acids) in the pathogenesis of arthritis. We reviewed studies that quantified lipids in different types of tissues and their relationship with inflammation. We propose that combining lipidomics with currently used “omics” techniques can improve the information obtained from the analysis of synovial tissue, for a better understanding of pathogenesis and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Roxana Coras
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Jessica D. Murillo-Saich
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Abha G. Singh
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Arthur Kavanaugh
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Monica Guma
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
- San Diego VA Healthcare Service, San Diego, CA, United States
- *Correspondence: Monica Guma
| |
Collapse
|
10
|
Robinson G, Pineda-Torra I, Ciurtin C, Jury EC. Lipid metabolism in autoimmune rheumatic disease: implications for modern and conventional therapies. J Clin Invest 2022; 132:e148552. [PMID: 35040437 PMCID: PMC8759788 DOI: 10.1172/jci148552] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Suppressing inflammation has been the primary focus of therapies in autoimmune rheumatic diseases (AIRDs), including rheumatoid arthritis and systemic lupus erythematosus. However, conventional therapies with low target specificity can have effects on cell metabolism that are less predictable. A key example is lipid metabolism; current therapies can improve or exacerbate dyslipidemia. Many conventional drugs also require in vivo metabolism for their conversion into therapeutically beneficial products; however, drug metabolism often involves the additional formation of toxic by-products, and rates of drug metabolism can be heterogeneous between patients. New therapeutic technologies and research have highlighted alternative metabolic pathways that can be more specifically targeted to reduce inflammation but also to prevent undesirable off-target metabolic consequences of conventional antiinflammatory therapies. This Review highlights the role of lipid metabolism in inflammation and in the mechanisms of action of AIRD therapeutics. Opportunities for cotherapies targeting lipid metabolism that could reduce immunometabolic complications and potential increased cardiovascular disease risk in patients with AIRDs are discussed.
Collapse
Affiliation(s)
- George Robinson
- Centre for Rheumatology Research
- Centre for Adolescent Rheumatology Research, and
| | - Ines Pineda-Torra
- Centre for Cardiometabolic and Vascular Science, Division of Medicine, University College London, London, United Kingdom
| | - Coziana Ciurtin
- Centre for Rheumatology Research
- Centre for Adolescent Rheumatology Research, and
| | | |
Collapse
|
11
|
Li Z, Ma D, Peng L, Li Y, Liao Z, Yu T. Compatibility of Achyranthes bidentata components in reducing inflammatory response through Arachidonic acid pathway for treatment of Osteoarthritis. Bioengineered 2022; 13:1746-1757. [PMID: 35001833 PMCID: PMC8805818 DOI: 10.1080/21655979.2021.2020394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Achyranthes bidentate is a common traditional Chinese medicine (TCM) used in treating osteoarthritis (OA). The compatibility between effective components has now become a breakthrough in understanding the mechanism of TCM. This study aimed at determining the optimal compatibility and possible mechanism of Achyranthes bidentate for OA treatment. Results showed that the adhesion score of the OA group is higher than NC group, and showed a trend of down-regulation in the intervention group. The CHI3L1 and IL-1β in joint fluid of the OA group was significantly increased compared to the sham operation group (NC group). Group G, I, and L exhibited significantly down-regulated CHI3L1, while groups C, F, I, K, and L exhibited reduced IL-1β. Joint adhesion, damage in cartilage, and synovial tissue was found in the OA model, cartilage tissue was found recovered in groups I, J, and L, and synovial tissue was recovered in group G, I, and L. Thus, group I and L were chosen for metabolite analysis, and indole-3-propionic acid was slightly up-regulated, while koeiginequinone A, prostaglandin H2, and 1-hydroxy-3-methoxy-10-methylacridonew were down-regulated in group I and L. According to functional analysis, the arachidonic acid (AA) metabolic pathway is enriched. Down-regulated expression of vital proteins in the AA metabolism pathway, such as PGE2 and COX2 in group I and L were verified. In conclusion, Hydroxyecdysone, Oleanolic acid, Achyranthes bidentata polysaccharide at a compatibility of 0.03-μg/mg, 2.0-μg/mg, 20.0-μg/mg or 0.03-μg/mg, 2.0-μg/mg, 10.0-μg/mg, respectively, may be the optimal compatibility of Achyranthes bidentate.
Collapse
Affiliation(s)
- Zanzhu Li
- Master Bailing Liu's Tianchi Traumatology Inheritance Studio, Shenzhen Bailin Chinese Traditional Orthopaedic Hospital, Shenzhen, China
| | - Dujun Ma
- Orthopedics Department, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Liping Peng
- Orthopedics Department, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Yuan Li
- Traditional Chinese Medicine Department, The Second People's Hospital of Futian District, Shenzhen, China
| | - Zhouwei Liao
- Orthopedics Department, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Tian Yu
- Orthopedics Department, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
12
|
Borodin SV, Ostapchenko DI, Korotkyi OН, Dvorshchenko KO. INDICATORS OF THE OXIDANT-ANTIOXIDANT SYSTEM IN THE SYNOVIAL FLUID OF PATIENTS WITH OSTEOARTHRITIS AFTER SARS-CoV2 INFECTION. BULLETIN OF PROBLEMS BIOLOGY AND MEDICINE 2022. [DOI: 10.29254/2077-4214-2022-4-167-125-130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Borodin S, Korotkyi O, Huet A, Dvorshchenko K. PEROXIDATION IN THE SYNOVIAL FLUID OF PATIENTS WITH OSTEOARTHRITIS AFTER SARS-CoV 2-INFECTION. BULLETIN OF TARAS SHEVCHENKO NATIONAL UNIVERSITY OF KYIV. SERIES: BIOLOGY 2022. [DOI: 10.17721/1728.2748.2022.90.5-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The 2019 coronavirus disease (Coronavirus disease 2019, COVID-19) poses a great threat to the health of people in all countries of the world. Infection with SARS-CoV-2 (Severe acute respiratory syndrome-related coronavirus 2) is a respiratory disease characterized by the development of severe life-threatening complications. COVID-19 is more likely to be severe and sometimes fatal, especially in older people with co-morbidities. A topical issue is predicting the course of chronic diseases in people who have contracted a coronavirus infection. An increasing number of cases of arthritis associated with COVID-19 have been reported in the literature, making this condition worthy of further study. It is known that the development of osteoarthritis is associated with oxidative stress and excessive production of reactive oxygen species. Lipid peroxidation products can serve as a marker of the intensity of free radical processes. The aim of the study was to determine the concentration of lipid peroxidation products in the synovial fluid of patients with osteoarthritis after SARS-CoV2 infection. All study participants were divided into two groups. The first group (n=22) is patients with osteoarthritis of knee joints II-III degree. The second group (n=14) is patients with osteoarthritis of the knee joints II-III degree, who suffered a mild and moderate form of COVID-19 6-9 months ago. In the conducted studies, the products of lipid peroxidation in the synovial fluid of patients of all research groups were evaluated.The content of diene conjugates was determined in the heptane-isopropanol extract by the spectrophotometric method, Schiff bases by the fluorimetric method. The content of TBA-active products was determined by the reaction with thiobarbituric acid (TBA). The processing of the research results was carried out using generally accepted methods of variational statistics. It was established that in the synovial fluid of patients with osteoarthritis of the knee joints who contracted COVID-19, the concentration of lipid peroxidation products increases compared to the group of patients with osteoarthritis (diene conjugates – by 1.7 times, TBА-active compounds – by 1,5 times, Schiff bases – 1.3 times). The detected changes indicate a violation of the oxidative-antioxidant balance. This indicates the prevalence of free radical processes and the development of oxidative stress directly in the joint. The results obtained by us indicate that patients with osteoarthritis may develop more severe joint damage and complications after infection with COVID-19.
Collapse
|
14
|
Walters M, Skovgaard K, Andersen PH, Heegaard PMH, Jacobsen S. Dynamics of local gene regulations in synovial fluid leukocytes from horses with lipopolysaccharide-induced arthritis. Vet Immunol Immunopathol 2021; 241:110325. [PMID: 34562797 DOI: 10.1016/j.vetimm.2021.110325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 01/15/2023]
Abstract
The role of resident cells such a synoviocytes and chondrocytes in intra-articular inflammation is well-characterized, however the in vivo gene expression patterns of cells (predominantly leukocytes) in the synovial fluid (SF) of an inflamed joint have never previously been investigated. The aim of this study was to investigate gene expression in SF leukocytes from the inflamed joint cavity after intra-articular lipopolysaccharide (LPS) injection in horses to improve our understanding of the temporal regulation of the intra-articular inflammatory response. Gene expression was investigated in SF samples available from six horses 2, 4, 8 16 and 24 h after experimental induction of inflammation in the radiocarpal joint by lipopolysaccharide (LPS) injection. Leukocytic expression of 43 inflammation-related genes was studied using microfluidic high throughput qPCR (Fluidigm®). Expression of 26 genes changed significantly over the 24 h study period, including pro- and anti-inflammatory genes such as interleukin (IL)1, IL6, tumor necrosis factor (TNF), cyclooxygenase 2 (COX2), IL1 receptor antagonist (IL1RN), IL10, and superoxide dismutase 2 (SOD2), chemokine genes, apoptosis-related genes, and genes related to cartilage turnover (matrix metalloproteinase 8 and tissue inhibitor of metalloproteinase 1). The inflammatory responses appeared to be regulated, as an early increase (at 2 h) in expression of the pro-inflammatory genes IL1, IL6, TNF and COX2 was rapidly followed by increased expression (at 4 h) of several anti-inflammatory genes (IL10, IL1RN and SOD2). Similarly, both pro- and anti-apoptotic gene expression as well as expression of chondrodegenerative and chondroprotective genes were activated in SF leukocytes. Thus, the inflammatory response in leukocytes infiltrating the joint in the acute stage of arthritis was well orchestrated in this single-hit LPS-induced arthritis model. This study is the first to describe gene expression patterns in SF-derived leukocytes in vivo during severe joint inflammation, and the results thus expand our knowledge of basic inflammatory mechanisms in the early local response in an inflamed joint.
Collapse
Affiliation(s)
- Marie Walters
- Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, DK- 2630, Taastrup, Copenhagen, Denmark.
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark.
| | - Pia Haubro Andersen
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 750-04, Uppsala, Sweden.
| | - Peter M H Heegaard
- Department of Health Technology, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark.
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, DK- 2630, Taastrup, Copenhagen, Denmark.
| |
Collapse
|
15
|
Li S, Li R, Xu YX, Baak JPA, Gao JH, Shu JQ, Jing LJ, Meng XL, Wen CB, Gan YX, Zheng SC, Zeng Y. Traditional Chinese Medicine Aconiti Radix Cocta Improves Rheumatoid Arthritis via Suppressing COX-1 and COX-2. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5523870. [PMID: 34539799 PMCID: PMC8443343 DOI: 10.1155/2021/5523870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/17/2021] [Accepted: 08/15/2021] [Indexed: 01/21/2023]
Abstract
According to Traditional Chinese Medicine (TCM), Aconiti Radix Cocta (AC) is clinically employed to expel wind, remove dampness, and relieve pain. We evaluated the antirheumatoid arthritis (RA) activities and underlying mechanisms of AC. The chemical constituents of AC were analyzed by high-performance liquid chromatography (HPLC) using three reference compounds (benzoylaconitine, benzoylmesaconine, and benzoylhypacoitine). The anti-RA effects of AC were evaluated in adjuvant-induced arthritis (AIA) rats by hind paw volume and histopathological analysis. The effects of AC on inflammatory cytokines (IL-1β and IL-17A) were determined by enzyme-linked immunosorbent assay. The regulation of cyclooxygenases (COX-1 and/or COX-2) was determined by Western blot and real-time quantitative reverse transcription polymerase chain reaction analyses. AC significantly reduced paw swelling, attenuated the inflammation and bone destruction in joint tissues, and reduced IL-1β and IL-17A in the serum. Moreover, AC downregulated the expression of COX-1 and COX-2 in the synovial tissues. We also identified that AC possesses significant anti-RA activities on AIA, which may be ascribed to the regulation of inflammatory cytokines IL-1β and IL-17, as well as to the inhibition of arachidonic acid signaling pathways. Our findings provide theoretical support for AC as an effective nature-derived therapeutic agent for RA treatment.
Collapse
Affiliation(s)
- Shuang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ya-Xin Xu
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jan P. A. Baak
- Department of Pathology, and Department of Research,, Stavanger University Hospital, Dr. Jan Baak AS, Risavegen 66, Stavanger 4056, Norway
| | - Ji-Hai Gao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jian-Qin Shu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li-Jia Jing
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xian-Li Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chuan-Biao Wen
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yan-Xiong Gan
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shi-Chao Zheng
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yong Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
16
|
Archambault AS, Zaid Y, Rakotoarivelo V, Turcotte C, Doré É, Dubuc I, Martin C, Flamand O, Amar Y, Cheikh A, Fares H, El Hassani A, Tijani Y, Côté A, Laviolette M, Boilard É, Flamand L, Flamand N. High levels of eicosanoids and docosanoids in the lungs of intubated COVID-19 patients. FASEB J 2021; 35:e21666. [PMID: 34033145 PMCID: PMC8206770 DOI: 10.1096/fj.202100540r] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 is responsible for coronavirus disease 2019 (COVID-19). While COVID-19 is often benign, a subset of patients develops severe multilobar pneumonia that can progress to an acute respiratory distress syndrome. There is no cure for severe COVID-19 and few treatments significantly improved clinical outcome. Dexamethasone and possibly aspirin, which directly/indirectly target the biosynthesis/effects of numerous lipid mediators are among those options. Our objective was to define if severe COVID-19 patients were characterized by increased bioactive lipids modulating lung inflammation. A targeted lipidomic analysis of bronchoalveolar lavages (BALs) by tandem mass spectrometry was done on 25 healthy controls and 33 COVID-19 patients requiring mechanical ventilation. BALs from severe COVID-19 patients were characterized by increased fatty acids and inflammatory lipid mediators. There was a predominance of thromboxane and prostaglandins. Leukotrienes were also increased, notably LTB4 , LTE4 , and eoxin E4 . Monohydroxylated 15-lipoxygenase metabolites derived from linoleate, arachidonate, eicosapentaenoate, and docosahexaenoate were also increased. Finally yet importantly, specialized pro-resolving mediators, notably lipoxin A4 and the D-series resolvins, were also increased, underscoring that the lipid mediator storm occurring in severe COVID-19 involves pro- and anti-inflammatory lipids. Our data unmask the lipid mediator storm occurring in the lungs of patients afflicted with severe COVID-19. We discuss which clinically available drugs could be helpful at modulating the lipidome we observed in the hope of minimizing the deleterious effects of pro-inflammatory lipids and enhancing the effects of anti-inflammatory and/or pro-resolving lipid mediators.
Collapse
Affiliation(s)
- Anne-Sophie Archambault
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada.,Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC, Canada
| | - Younes Zaid
- Biology Department, Faculty of Sciences, Mohammed V University, Rabat, Morocco.,Cheikh Zaïd Hospital, Abulcasis University of Health Sciences, Rabat, Morocco
| | - Volatiana Rakotoarivelo
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada.,Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC, Canada
| | - Caroline Turcotte
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada.,Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC, Canada
| | - Étienne Doré
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC, Canada.,Centre de Recherche Arthrite, Université Laval, Québec, QC, Canada
| | - Isabelle Dubuc
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Cyril Martin
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada.,Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC, Canada
| | - Olivier Flamand
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Youssef Amar
- Moroccan Foundation for Advanced Science, Innovation & Research (MAScIR), Rabat, Morocco
| | - Amine Cheikh
- Cheikh Zaïd Hospital, Abulcasis University of Health Sciences, Rabat, Morocco
| | - Hakima Fares
- Cheikh Zaïd Hospital, Abulcasis University of Health Sciences, Rabat, Morocco
| | - Amine El Hassani
- Cheikh Zaïd Hospital, Abulcasis University of Health Sciences, Rabat, Morocco
| | - Youssef Tijani
- Faculty of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Andréanne Côté
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada
| | - Michel Laviolette
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada
| | - Éric Boilard
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC, Canada.,Centre de Recherche Arthrite, Université Laval, Québec, QC, Canada.,Département de Microbiologie-Infectiologie et d'immunologie, Université Laval, Québec, QC, Canada
| | - Louis Flamand
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC, Canada.,Département de Microbiologie-Infectiologie et d'immunologie, Université Laval, Québec, QC, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada.,Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC, Canada
| |
Collapse
|
17
|
3-B-RUT, a derivative of RUT, protected against alcohol-induced liver injury by attenuating inflammation and oxidative stress. Int Immunopharmacol 2021; 95:107471. [PMID: 33756231 DOI: 10.1016/j.intimp.2021.107471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/25/2022]
Abstract
Alcoholic liver disease (ALD) is the most common chronic liver disease worldwide. Currently, there is no definitive treatment for alcohol-induced liver injury (ALI). Inflammatory response and oxidative stress play a crucial role in ALI. Cyclooxygenase 2 (COX-2) can be induced by inflammation and it has been reported that the enhanced expression of COX-2 in alcoholic liver injury. Rutaecarpine (RUT) was extracted from evodia rutaecarpa. RUT has a wide range of pharmacological activities. In order to increase its anti-inflammatory activity, our group introduced sulfonyl group to synthesized the 3-[2-(trifluoromethoxy)benzenesulfonamide]-rutaecarpine (3-B-RUT). In this study, we explored the protective effect of 3-B-RUT on alcoholic liver injury in vivo and in vitro and preliminarily explore its mechanism. Mice ALI model was established according to the chronic-plus-binge ethanol model. Results showed that 3-B-RUT (20 μg/kg) attenuated alcohol-induced liver injury and suppressed liver inflammation and oxidative stress, and the effect was comparable to RUT (20 mg/kg). In vitro results are consistent with in vivo results. Mechanistically, the 3-B-RUT might suppress inflammatory response and oxidative stress by regulating activation of NF-κB/COX-2 pathway. In summary, 3-B-RUT, a derivative of RUT, may be a promising clinical candidate for ALI treatment.
Collapse
|
18
|
Djuretić J, Dimitrijević M, Stojanović M, Stevuljević JK, Hamblin MR, Micov A, Stepanović-Petrović R, Leposavić G. Infrared radiation from cage bedding moderates rat inflammatory and autoimmune responses in collagen-induced arthritis. Sci Rep 2021; 11:2882. [PMID: 33536461 PMCID: PMC7858598 DOI: 10.1038/s41598-021-81999-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 01/04/2021] [Indexed: 11/08/2022] Open
Abstract
The development of collagen type II (CII)-induced arthritis (CIA), a model of rheumatoid arthritis, in rats housed in cages with bedding composed of Celliant fibres containing ceramic particles, which absorb body heat and re-emit the energy back to the body in the form of infrared radiation (+IRF rats), and those housed in cages with standard wooden shaving bedding (-IRF control rats) was examined. The appearance of the first signs of CIA was postponed, while the disease was milder (judging by the arthritic score, paw volume, and burrowing behaviour) in +IRF compared with -IRF rats. This correlated with a lower magnitude of serum anti-CII IgG antibody levels in +IRF rats, and lower production level of IL-17, the Th17 signature cytokine, in cultures of their paws. This could be partly ascribed to impaired migration of antigen-loaded CD11b + dendritic cells and their positioning within lymph nodes in +IRF rats reflecting diminished lymph node expression of CCL19 /CCL21. Additionally, as confirmed in rats with carrageenan-induced paw inflammation (CIPI), the infrared radiation from Celliant fibres, independently from immunomodulatory effects, exerted anti-inflammatory effects (judging by a shift in pro-inflammatory mediator to anti-inflammatory/immunoregulatory mediator ratio towards the latter in paw cultures) and ameliorated burrowing behaviour in CIA rats.
Collapse
Affiliation(s)
- Jasmina Djuretić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Marija Stojanović
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Jelena Kotur Stevuljević
- Department of Biochemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Ana Micov
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Radica Stepanović-Petrović
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia.
| |
Collapse
|
19
|
Hosny EN, Elhadidy ME, Sawie HG, Kilany A, Khadrawy YA. Effect of frankincense oil on the neurochemical changes induced in rat model of status epilepticus. CLINICAL PHYTOSCIENCE 2020. [DOI: 10.1186/s40816-019-0139-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The current objective is to evaluate the effect of frankincense oil on the convulsions and the associated neurochemical alterations produced in pilocarpine-induced status epilepticus rat model.
Methods
Rats were divided randomly into: control, status epilepticus rat model and rat model of status epilepticus pretreated with frankincense oil daily for 5 days before pilocarpine treatment. On the fifth day, after pilocarpine injection, rats were observed to evaluate the severity of seizures for 2 h. The oxidative stress parameters malondialdehyde, reduced glutathione and nitric oxide, the proinflammatory cytokines interleukin-6 and interleukin-1β and acetylcholinesterase were determined in the cortex, hippocampus and striatum. Dopamine, norepinephrine and serotonin were measured in the cortex and striatum.
Results
The status epilepticus model exhibited repetitive seizures in the form of generalized tonic- clonic convulsions after 30 min. of pilocarpine injection. This was associated with a significant increase in the levels of malondialdehyde and nitric oxide and a significant decrease in reduced glutathione in the three regions. A significant increase was also observed in interleukin-1β, interleukin-6 and acetylcholinesterase. In the cortex and striatum, a significant decrease was recorded in monoamine levels. Pretreatment of rat model of status epilepticus with frankincense oil decreased the severity of seizures that appeared in the form of tremors and facial automatisms and prevented the increase in malondialdehyde, nitric oxide, interleukin-1β, interleukin-6 and acetylcholinesterase and the decrease in reduced glutathione induced by pilocarpine in the studied brain regions. Frankincense oil failed to restore the decreased level of cortical serotonin and dopamine. In the striatum, frankincense oil improved the levels of serotonin and norepinephrine but failed to restore the decreased dopamine levels.
Conclusion
It is clear from the present results that frankincense oil reduced the severity of seizures induced by pilocarpine. This could be mediated by its potent antioxidant and anti-inflammatory effects.
Collapse
|
20
|
PET measurement of cyclooxygenase-2 using a novel radioligand: upregulation in primate neuroinflammation and first-in-human study. J Neuroinflammation 2020; 17:140. [PMID: 32359360 PMCID: PMC7195739 DOI: 10.1186/s12974-020-01804-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
Background Cyclooxygenase-2 (COX-2), which is rapidly upregulated by inflammation, is a key enzyme catalyzing the rate-limiting step in the synthesis of several inflammatory prostanoids. Successful positron emission tomography (PET) radioligand imaging of COX-2 in vivo could be a potentially powerful tool for assessing inflammatory response in the brain and periphery. To date, however, the development of PET radioligands for COX-2 has had limited success. Methods The novel PET tracer [11C]MC1 was used to examine COX-2 expression [1] in the brains of four rhesus macaques at baseline and after injection of the inflammogen lipopolysaccharide (LPS) into the right putamen, and [2] in the joints of two human participants with rheumatoid arthritis and two healthy individuals. In the primate study, two monkeys had one LPS injection, and two monkeys had a second injection 33 and 44 days, respectively, after the first LPS injection. As a comparator, COX-1 expression was measured using [11C]PS13. Results COX-2 binding, expressed as the ratio of specific to nondisplaceable uptake (BPND) of [11C]MC1, increased on day 1 post-LPS injection; no such increase in COX-1 expression, measured using [11C]PS13, was observed. The day after the second LPS injection, a brain lesion (~ 0.5 cm in diameter) with high COX-2 density and high BPND (1.8) was observed. Postmortem brain analysis at the gene transcript or protein level confirmed in vivo PET results. An incidental finding in an unrelated monkey found a line of COX-2 positivity along an incision in skull muscle, demonstrating that [11C]MC1 can localize inflammation peripheral to the brain. In patients with rheumatoid arthritis, [11C]MC1 successfully imaged upregulated COX-2 in the arthritic hand and shoulder and apparently in the brain. Uptake was blocked by celecoxib, a COX-2 preferential inhibitor. Conclusions Taken together, these results indicate that [11C]MC1 can image and quantify COX-2 upregulation in both monkey brain after LPS-induced neuroinflammation and in human peripheral tissue with inflammation. Trial registration ClinicalTrials.gov NCT03912428. Registered April 11, 2019.
Collapse
|
21
|
Takizawa T, Qin T, Lopes de Morais A, Sugimoto K, Chung JY, Morsett L, Mulder I, Fischer P, Suzuki T, Anzabi M, Böhm M, Qu WS, Yanagisawa T, Hickman S, Khoury JE, Whalen MJ, Harriott AM, Chung DY, Ayata C. Non-invasively triggered spreading depolarizations induce a rapid pro-inflammatory response in cerebral cortex. J Cereb Blood Flow Metab 2020; 40:1117-1131. [PMID: 31242047 PMCID: PMC7181092 DOI: 10.1177/0271678x19859381] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cortical spreading depolarization (CSD) induces pro-inflammatory gene expression in brain tissue. However, previous studies assessing the relationship between CSD and inflammation have used invasive methods that directly trigger inflammation. To eliminate the injury confounder, we induced CSDs non-invasively through intact skull using optogenetics in Thy1-channelrhodopsin-2 transgenic mice. We corroborated our findings by minimally invasive KCl-induced CSDs through thinned skull. Six CSDs induced over 1 h dramatically increased cortical interleukin-1β (IL-1β), chemokine (C-C motif) ligand 2 (CCL2), and tumor necrosis factor-α (TNF-α) mRNA expression peaking around 1, 2 and 4 h, respectively. Interleukin-6 (IL-6) and intercellular adhesion molecule-1 (ICAM-1) were only modestly elevated. A single CSD also increased IL-1β, CCL2, and TNF-α, and revealed an ultra-early IL-1β response within 10 min. The response was blunted in IL-1 receptor-1 knockout mice, implicating IL-1β as an upstream mediator, and suppressed by dexamethasone, but not ibuprofen. CSD did not alter systemic inflammatory indices. In summary, this is the first report of pro-inflammatory gene expression after non-invasively induced CSDs. Altogether, our data provide novel insights into the role of CSD-induced neuroinflammation in migraine headache pathogenesis and have implications for the inflammatory processes in acute brain injury where numerous CSDs occur for days.
Collapse
Affiliation(s)
- Tsubasa Takizawa
- Neurovascular Research Laboratory,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
Charlestown, MA, USA
| | - Tao Qin
- Neurovascular Research Laboratory,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
Charlestown, MA, USA
| | - Andreia Lopes de Morais
- Neurovascular Research Laboratory,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
Charlestown, MA, USA
| | - Kazutaka Sugimoto
- Neurovascular Research Laboratory,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
Charlestown, MA, USA
| | - Joon Yong Chung
- Neuroscience Center, Massachusetts
General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Pediatrics, Massachusetts
General Hospital, Harvard Medical School, Boston, MA, USA
| | - Liza Morsett
- Center for Immunology & Inflammatory
Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA,
USA
| | - Inge Mulder
- Neurovascular Research Laboratory,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
Charlestown, MA, USA
| | - Paul Fischer
- Neurovascular Research Laboratory,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
Charlestown, MA, USA
- Department of Neurology, Charité –
Universitätsmedizin Berlin, Berlin, Germany
| | - Tomoaki Suzuki
- Neurovascular Research Laboratory,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
Charlestown, MA, USA
| | - Maryam Anzabi
- Neurovascular Research Laboratory,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
Charlestown, MA, USA
| | - Maximilian Böhm
- Neurovascular Research Laboratory,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
Charlestown, MA, USA
- Department of Neurology, Charité –
Universitätsmedizin Berlin, Berlin, Germany
| | - Wen-sheng Qu
- Neurovascular Research Laboratory,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
Charlestown, MA, USA
| | - Takeshi Yanagisawa
- Neurovascular Research Laboratory,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
Charlestown, MA, USA
| | - Suzanne Hickman
- Center for Immunology & Inflammatory
Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA,
USA
| | - Joseph El Khoury
- Center for Immunology & Inflammatory
Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA,
USA
| | - Michael J Whalen
- Neuroscience Center, Massachusetts
General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Pediatrics, Massachusetts
General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea M Harriott
- Neurovascular Research Laboratory,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
Charlestown, MA, USA
- Department of Neurology, Massachusetts
General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Y Chung
- Neurovascular Research Laboratory,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
Charlestown, MA, USA
- Department of Neurology, Massachusetts
General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cenk Ayata
- Neurovascular Research Laboratory,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
Charlestown, MA, USA
- Department of Neurology, Massachusetts
General Hospital, Harvard Medical School, Boston, MA, USA
- Cenk Ayata, Massachusetts General Hospital,
149 13th Street, 6403, Charlestown, MA 02129, USA.
| |
Collapse
|
22
|
Park TY, Oh HC, Fogel EL, Lehman GA. Prevention of post-endoscopic retrograde cholangiopancreatography pancreatitis with rectal non-steroidal anti-inflammatory drugs. Korean J Intern Med 2020; 35:535-543. [PMID: 32392660 PMCID: PMC7214369 DOI: 10.3904/kjim.2020.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/25/2020] [Indexed: 12/29/2022] Open
Abstract
Acute pancreatitis is the most common and feared adverse event associated with performance of endoscopic retrograde cholangiopancreatography (ERCP). Unremitting effort has been made for over 40 years to minimize the frequency and severity of this complication. Recently, the use of rectal non-steroidal anti-inflammatory drugs (NSAIDs) have opened a new era for its prevention. This review focuses on the role of NSAIDs in pancreatitis, the pharmacokinetics of these agents, and summarizes the results of clinical trials with rectal NSAIDs alone and combination regimens in the prevention of post-ERCP pancreatitis.
Collapse
Affiliation(s)
- Tae Young Park
- Department of Internal Medicine, Inje University Seoul Paik Hospital, Seoul, Korea
| | - Hyoung-Chul Oh
- Division of Gastroenterology, Chung-Ang University College of Medicine, Seoul, Korea
- Correspondence to Hyoung-Chul Oh, M.D. Division of Gastroenterology, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea Tel: +82-2-6299-3149 Fax: +82-2-6299-3119 E-mail:
| | - Evan L. Fogel
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Glen A. Lehman
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
23
|
Venkatesh HN, Ravish H, Wilma Delphine Silvia CR, Srinivas H. Molecular Signature of the Immune Response to Yoga Therapy in Stress-related Chronic Disease Conditions: An Insight. Int J Yoga 2020; 13:9-17. [PMID: 32030016 PMCID: PMC6937878 DOI: 10.4103/ijoy.ijoy_82_18] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The world Health Organization defines health as complete well-being in terms of physical, mental and social, and not merely the absence of disease. To attain this, individual should adapt and self-mange the social, physical and emotional challenges of life. Exposure to chronic stress due to urbanization, work stress, nuclear family, pollution, unhealthy food habits, lifestyle, accidental death in the family, and natural calamities are the triggering factors, leading to hormonal imbalance and inflammation in the tissue. The relationship between stress and illness is complex; all chronic illnesses such as cardiovascular disease and asthma have their root in chronic stress attributed by inflammation. In recent times, yoga therapy has emerged as an important complementary alternative medicine for many human diseases. Yoga therapy has a positive impact on mind and body; it acts by incorporating appropriate breathing techniques and mindfulness to attain conscious direction of our awareness of the present moment by meditation, which helps achieve harmony between the body and mind. Studies have also demonstrated the important regulatory effects of yoga therapy on brain structure and functions. Despite these advances, the cellular and molecular mechanisms by which yoga therapy renders its beneficial effects are inadequately known. A growing body of evidence suggests that yoga therapy has immunomodulatory effects. However, the precise mechanistic basis has not been addressed empirically. In this review, we have attempted to highlight the effect of yoga therapy on immune system functioning with an aim to identify important immunological signatures that index the effect of yoga therapy. Toward this, we have summarized the available scientific evidence showing positive impacts of yoga therapy. Finally, we have emphasized the efficacy of yoga in improving physical and mental well-being. Yoga has been a part of Indian culture and tradition for long; now, the time has come to scientifically validate this and implement this as an alternative treatment method for stress-related chronic disease.
Collapse
Affiliation(s)
- H N Venkatesh
- Department of Human Genetics, NIMHANS, Bangalore, India
| | - H Ravish
- Department of Neurochemistry, NIMHANS, Bangalore, India
| | - C R Wilma Delphine Silvia
- Department of Biochemistry, Bowring and Lady Curzon Medical College and Research Institute, Bangalore, India
| | - H Srinivas
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
24
|
Abstract
While glucocorticoids have been used for over 50 years to treat rheumatoid and osteoarthritis pain, the prescription of glucocorticoids remains controversial because of potentially harmful side effects at the molecular, cellular and tissue levels. One member of the glucocorticoid family, dexamethasone (DEX) has recently been demonstrated to rescue cartilage matrix loss and chondrocyte viability in animal studies and cartilage explant models of tissue injury and post-traumatic osteoarthritis, suggesting the possibility of DEX as a disease-modifying drug if used appropriately. However, the literature on the effects of DEX on cartilage reveals conflicting results on the drug's safety, depending on the dose and duration of DEX exposure as well as the model system used. Overall, DEX has been shown to protect against arthritis-related changes in cartilage structure and function, including matrix loss, inflammation and cartilage viability. These beneficial effects are not always observed in model systems using initially healthy cartilage or isolated chondrocytes, where many studies have reported significant increases in chondrocyte apoptosis. It is crucially important to understand under what conditions DEX may be beneficial or harmful to cartilage and other joint tissues and to determine potential for safe use of this glucocorticoid in the clinic as a disease-modifying drug.
Collapse
Affiliation(s)
- R. Black
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - A. J. Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA,Address for correspondence: Prof. Al Grodzinsky, MIT, Centre for Biomedical Engineering, 500 Technology Square, Cambridge, MA, 02139, USA.
| |
Collapse
|
25
|
Zhang C, Wang L, Li T, Mao W, Liu B, Cao J. EP2/4 Receptors Promote the Synthesis of PGE 2 Increasing Tissue Damage in Bovine Endometrial Explants Induced by Escherichia coli. J Pharmacol Exp Ther 2019; 372:175-184. [PMID: 31732699 DOI: 10.1124/jpet.119.262444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
The bovine uterine is easily contaminated with bacteria during coitus or parturition. A previous study suggested that prostaglandin E2 (PGE2) promoted Escherichia coli-infected bovine endometrial tissue inflammatory damage via cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1). However, it remains unclear which PGE2 receptors regulate the proinflammatory effect of PGE2 In this study, we evaluated the effect of PGE2 and its mediated receptors on E. coli-infected endometrium explants isolated from the bovine uterus. The E. coli-infected bovine endometrial explants were cultured in vitro, and the study used EP2/4 receptor agonists to investigate the responses of COX-2, mPGES-1, PGE2, proinflammatory factors, and damage-associated molecular patterns (DAMPs). The expression of COX-2, mPGES-1, PGE2, proinflammatory factors, and DAMPs was significantly increased after infection with E. coli; however, the high expression levels caused by E. coli were reduced following treatment with COX-2 and mPGES-1 inhibitors. In addition, the expression levels of COX-2, mPGES-1, PGE2, proinflammatory factors, and DAMPs were higher in treatment with EP2/4 receptor agonists in E. coli-infected endometrium explants, and their promotable effects were effectively blocked by EP2/4 receptor antagonists. These findings provide evidence that PGE2 may promote the progress of inflammation in endometrial explants infected with E. coli in bovines. Furthermore, EP2/4 may be involved in a positive feedback loop for COX-2 and mPGES-1 expression, and this may be responsible for the proinflammatory reaction of PGE2 in E. coli-infected uteri of bovines. SIGNIFICANCE STATEMENT: PGE2 promoted E. coli-infected bovine endometrial tissue damage via COX-2 and mPGES-1. However, this proinflammatory effect of PGE2 depends on which receptors are affected by PGE2, and this remains unclear. In this study, it was investigated that EP2 and EP4 may be involved in a positive feedback loop for COX-2 and mPGES-1 expression, and this may be responsible for the proinflammatory reaction of PGE2 in E. coli-infected uteri of bovines.
Collapse
Affiliation(s)
- Chao Zhang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine (C.Z., L.W., T.L., W.M., B.L., J.C.), and Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture (C.Z., L.W., T.L., W.M., B.L., J.C.), Inner Mongolia Agricultural University, Huhhot, China
| | - Lingrui Wang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine (C.Z., L.W., T.L., W.M., B.L., J.C.), and Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture (C.Z., L.W., T.L., W.M., B.L., J.C.), Inner Mongolia Agricultural University, Huhhot, China
| | - Tingting Li
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine (C.Z., L.W., T.L., W.M., B.L., J.C.), and Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture (C.Z., L.W., T.L., W.M., B.L., J.C.), Inner Mongolia Agricultural University, Huhhot, China
| | - Wei Mao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine (C.Z., L.W., T.L., W.M., B.L., J.C.), and Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture (C.Z., L.W., T.L., W.M., B.L., J.C.), Inner Mongolia Agricultural University, Huhhot, China
| | - Bo Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine (C.Z., L.W., T.L., W.M., B.L., J.C.), and Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture (C.Z., L.W., T.L., W.M., B.L., J.C.), Inner Mongolia Agricultural University, Huhhot, China
| | - Jinshan Cao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine (C.Z., L.W., T.L., W.M., B.L., J.C.), and Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture (C.Z., L.W., T.L., W.M., B.L., J.C.), Inner Mongolia Agricultural University, Huhhot, China
| |
Collapse
|
26
|
Yu HH, Lin Y, Zeng R, Li X, Zhang T, Tasneem S, Chen C, Qiu YX, Li B, Liao J, Wang YH, Cai X, Wang W. Analgesic and anti-inflammatory effects and molecular mechanisms of Kadsura heteroclita stems, an anti-arthritic Chinese Tujia ethnomedicinal herb. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111902. [PMID: 31018145 DOI: 10.1016/j.jep.2019.111902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by failure of spontaneous resolution of inflammation. The stem of Kadsura heteroclite (KHS) is a well-known anti-arthritic Tujia ethnomedicinal plant, which named Xuetong in folk, has long been used for the prevention and treatment of rheumatic and arthritic diseases. AIM OF THE STUDY The analgesic and anti-inflammatory effects and the potential mechanisms behind such effects of KHS would be investigated by using different animal models. MATERIALS AND METHODS The abdominal writhing episodes of mice induced by intraperitoneal injection of acetic acid and the tail-flick response induced by radiant heat stimulation were used to evaluate the analgesic effect of KHS. The number of abdominal writhing episodes of mice and the latency of tail-flick in rats were measured and recorded. In acute inflammatory models, the ear edema of mice was induced by applying xylene on the ear surface, while the paw edema of male and female rats was induced by subcutaneous injection of carrageenan into the right hind paws of animals. The carrageenan-induced paw swelling in rats were selected as an anti-acute inflammatory mechanism of KHS. Serum levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor (TNF-α) were measured by ELISA, and protein expression of cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were detected by Western blot. RESULTS The maximal tolerated single dose of KHS was determined to be 26 g/kg in both sexes of mice. Pharmacological studies showed that KHS at the dose of 200 mg/kg significantly prolonged the reaction time of rats to radiant heat stimulation and suppressed abdominal writhing episodes of mice induced by intraperitoneal injection of acetic acid. KHS at the dose of 200, 400, and 800 mg/kg, showed dose-dependent inhibition of xylene-induced ear swelling in mice. KHS at the dose of 100, 200, 400, and 800 mg/kg demonstrated dose- and time-dependent suppression of paw edema induced by subcutaneous injection of carrageenan in both all rats. Mechanistic studies revealed that the anti-inflammatory effect of KHS was associated with inhibition of the production of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α and effectively decreased the expression of COX and iNOS proteins in the carrageenan-injected rat serum, paw tissues and inflammatory exudates. The positive reference drug, rotundine at a dosage of 100 mg/kg and indomethacin at a dosage of 10 mg/kg were used in both mice and rat models. CONCLUSION These results suggested that KHS has significant effects on analgesia and anti-inflammation with decreasing the pro-inflammation cytokines of IL-1β, IL-6, and TNF-α and inhibiting the proteins expression of COX-2 and iNOS.
Collapse
Affiliation(s)
- Huang-He Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Ye Lin
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Rong Zeng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Xin Li
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Ting Zhang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Shumaila Tasneem
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Cong Chen
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yi-Xing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Jin Liao
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yu-Hong Wang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
27
|
Li Y, Zou L, Li T, Lai D, Wu Y, Qin S. Mogroside V inhibits LPS-induced COX-2 expression/ROS production and overexpression of HO-1 by blocking phosphorylation of AKT1 in RAW264.7 cells. Acta Biochim Biophys Sin (Shanghai) 2019; 51:365-374. [PMID: 30877761 DOI: 10.1093/abbs/gmz014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/14/2022] Open
Abstract
Momordica grosvenori is a valuable edible plant with medicinal purposes, and it is widely used in medicated diets and traditional Chinese medicine in Asia. Mogroside V (MV), the main bioactive component from M. grosvenori, is commonly used as a natural sweetener. M. grosvenori extracts have been reported to exert potent anti-inflammatory property, however the underlying molecular mechanism still remains unknown. In the present study, the biological effect of MV in inflammation was investigated in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The ELISA and western blot analysis results showed that MV significantly inhibited LPS-induced prostaglandin E2 (PGE2) production and cyclooxygenase-2 (COX-2) expression. MV markedly decreased the phosphorylation of IκB-α, increased IκB-α, and reduced nuclear p-65 and C/EBPδ. Furthermore, MV attenuated LPS-induced phosphorylation of MAPKs and AKT1, and only the phosphorylation status of AKT1 was found to be consistent with the expression trend of COX-2. Moreover, MV reduced ROS level and restored overexpressed HO-1 and AP-1 to basal level, which can be markedly reversed by AKT1 inhibitor LY294002. These results revealed that AKT1 plays a key role in LPS-induced COX-2 expression, and acts as a mediator to keep the redox balance in LPS-stimulated RAW264.7 cells. MV exerts anti-inflammatory property by blocking AKT1-mediated NF-κB and C/EBPδ activation, ROS generation and AP-1/ HO-1 expression. Therefore, the present study indicated that MV has a significant chemopreventive effect on the inflammatory lesions and suggested that AKT1 is a potential specific target of MV for relieving inflammation.
Collapse
Affiliation(s)
- Yong Li
- Core Research Program 1515, Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Luyan Zou
- Core Research Program 1515, Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Tao Li
- Core Research Program 1515, Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Dengni Lai
- Core Research Program 1515, Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yanyang Wu
- Core Research Program 1515, Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Si Qin
- Core Research Program 1515, Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
- The United Graduate School of Agricultural Sciences, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima, Japan
| |
Collapse
|
28
|
Chawla P, Kalra S, Kumar R, Singh R, Saraf SK. Novel 2-(substituted phenyl Imino)-5-benzylidene-4-thiazolidinones as possible non-ulcerogenic tri-action drug candidates: synthesis, characterization, biological evaluation And docking studies. Med Chem Res 2019. [DOI: 10.1007/s00044-018-02288-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Ganesh T, Banik A, Dingledine R, Wang W, Amaradhi R. Peripherally Restricted, Highly Potent, Selective, Aqueous-Soluble EP2 Antagonist with Anti-Inflammatory Properties. Mol Pharm 2018; 15:5809-5817. [PMID: 30398879 DOI: 10.1021/acs.molpharmaceut.8b00764] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The prostaglandin E2 receptor, EP2, plays an important role in physiology and in a variety of pathological conditions. Studies indicate that EP2 is pro-inflammatory in chronic peripheral and central nervous system disease and cancer models. Thus, targeting the EP2 receptor with small molecules could be a therapeutic strategy for treating inflammatory diseases and cancer. We recently reported a novel class of competitive antagonists of the EP2 receptor. However, earlier leads displayed low selectivity against the DP1 prostanoid receptor, moderate plasma half-life, and low aqueous solubility, which renders them suboptimal for testing in animal models of disease. We now report a novel compound TG8-69, which has suitable drug-like properties. We present synthesis, lead-optimization studies, pharmacological characterization, and anti-inflammatory properties of this compound that support its use in chronic peripheral inflammatory diseases, including rheumatoid arthritis, endometriosis, and cancer, in which EP2 appears to play a pathogenic role.
Collapse
Affiliation(s)
- Thota Ganesh
- Department of Pharmacology, School of Medicine , Emory University , 1510 Clifton Rd , Atlanta , Georgia 30322 , United States
| | - Avijit Banik
- Department of Pharmacology, School of Medicine , Emory University , 1510 Clifton Rd , Atlanta , Georgia 30322 , United States
| | - Ray Dingledine
- Department of Pharmacology, School of Medicine , Emory University , 1510 Clifton Rd , Atlanta , Georgia 30322 , United States
| | - Wenyi Wang
- Department of Pharmacology, School of Medicine , Emory University , 1510 Clifton Rd , Atlanta , Georgia 30322 , United States
| | - Radhika Amaradhi
- Department of Pharmacology, School of Medicine , Emory University , 1510 Clifton Rd , Atlanta , Georgia 30322 , United States
| |
Collapse
|
30
|
Xu J, Cao L, Suo Y, Xu X, Sun H, Xu S, Zhu X, Yu H, Cao W. Chitosan-microcapsulated insulin alleviates mesenteric microcirculation dysfunction via modulating COX-2 and VCAM-1 expression in rats with diabetes mellitus. Int J Nanomedicine 2018; 13:6829-6837. [PMID: 30498345 PMCID: PMC6207390 DOI: 10.2147/ijn.s174030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background The study of the experiment was to display the therapeutic function of insulin-loaded chitosan (insulin/chitosan) on mesenteric microcirculation via down-regulating cyclooxygenase-2 (COX-2) and vascular cell adhesion molecule (VCAM-1) expressions in rats with diabetes mellitus (DM) as compared to free insulin. Methods Diabetic rats were administrated with 24 U/kg insulin or 120 U/kg insulin/chitosan compounds. The blood and mesenteriums were collected, blood glucose levels, arteriole velocity, arteriole diameter, venular diameter, and hemodiapedesis were measured, and COX-2, VCAM-1 expressions were measured in mesenteriums tissues. Results Both insulin and insulin/chitosan administration decreased blood glucose and improved the state of mesenteric microcirculation through down-regulating COX-2 and VCAM-1 expressions as compared to DM groups, while insulin/chitosan remarkably augmented this functions. Conclusion Chitosan-microcapsulated insulin alleviates mesenteric microcirculation dysfunction via modulating COX-2 and VCAM-1 expressions in rats with DM.
Collapse
Affiliation(s)
- Jun Xu
- Department of Emergency Medicine, The First Hospital of Jiaxing, Jiaxing 314001, Zhejiang Province, China,
| | - Lijun Cao
- Department of Emergency Medicine, The First Hospital of Jiaxing, Jiaxing 314001, Zhejiang Province, China,
| | - Yuan Suo
- Department of Emergency Medicine, The First Hospital of Jiaxing, Jiaxing 314001, Zhejiang Province, China,
| | - Xiaoqin Xu
- Department of Emergency Medicine, The First Hospital of Jiaxing, Jiaxing 314001, Zhejiang Province, China,
| | - Hui Sun
- Department of Emergency Medicine, The First Hospital of Jiaxing, Jiaxing 314001, Zhejiang Province, China,
| | - Songao Xu
- Department of Emergency Medicine, The First Hospital of Jiaxing, Jiaxing 314001, Zhejiang Province, China,
| | - Xiangyun Zhu
- Department of Emergency Medicine, The First Hospital of Jiaxing, Jiaxing 314001, Zhejiang Province, China,
| | - Huijie Yu
- Department of Emergency Medicine, The First Hospital of Jiaxing, Jiaxing 314001, Zhejiang Province, China,
| | - Weizhong Cao
- Department of Emergency Medicine, The First Hospital of Jiaxing, Jiaxing 314001, Zhejiang Province, China,
| |
Collapse
|
31
|
Pectin, beta-cyclodextrin, chitosan and albumin based gastroprotective systems for piroxicam maleate: Synthesis, characterization and biological evaluation. Int J Biol Macromol 2018; 122:127-136. [PMID: 30340003 DOI: 10.1016/j.ijbiomac.2018.10.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 11/23/2022]
Abstract
In order to optimize drug action, new drug formulations have been developed based upon the prodrug approach. This study was inspired by the increasing interest in the field of macromolecular prodrugs and Piroxicam maleate was used as a model drug. A total of five prodrugs were synthesized using beta cyclodextrin, chitosan, pectin, egg albumin, bovine serum albumin. The synthesized conjugates were characterized on the basis of UV, IR and NMR techniques. In-vitro hydrolysis studies were carried out at pH 1.2, pH 7.4, pH 9.0 and in 80% human plasma followed by in-vivo evaluation of analgesic, anti-inflammatory and anti-ulcerogenic potential. The extent of hydrolysis was found to be proportional to increase in pH. Beta cyclodextrin conjugate was found to possess significant analgesic activity whereas chitosan conjugate was found to be the best anti-inflammatory. Pectin conjugate provided maximum protection against ulcers.
Collapse
|
32
|
Cecchinato V, D'Agostino G, Raeli L, Nerviani A, Schiraldi M, Danelon G, Manzo A, Thelen M, Ciurea A, Bianchi ME, Rubartelli A, Pitzalis C, Uguccioni M. Redox-Mediated Mechanisms Fuel Monocyte Responses to CXCL12/HMGB1 in Active Rheumatoid Arthritis. Front Immunol 2018; 9:2118. [PMID: 30283452 PMCID: PMC6157448 DOI: 10.3389/fimmu.2018.02118] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/28/2018] [Indexed: 12/26/2022] Open
Abstract
Chemokine synergy-inducing molecules are emerging as regulating factors in cell migration. The alarmin HMGB1, in its reduced form, can complex with CXCL12 enhancing its activity on monocytes via the chemokine receptor CXCR4, while the form containing a disulfide bond, by binding to TLR2 or TLR4, initiates a cascade of events leading to production of cytokines and chemokines. So far, the possibility that the CXCL12/HMGB1 heterocomplex could be maintained in chronic inflammation was debated, due to the release of reactive oxygen species. Therefore, we have assessed if the heterocomplex could remain active in Rheumatoid Arthritis (RA) and its relevance in the disease assessment. Monocytes from RA patients with active disease require a low concentration of HMGB1 to enhance CXCL12-induced migration, in comparison to monocytes from patients in clinical remission or healthy donors. The activity of the heterocomplex depends on disease activity, on the COX2 and JAK/STAT pathways, and is determined by the redox potential of the microenvironment. In RA, the presence of an active thioredoxin system correlates with the enhanced cell migration, and with the presence of the heterocomplex in the synovial fluid. The present study highlights how, in an unbalanced microenvironment, the activity of the thioredoxin system plays a crucial role in sustaining inflammation. Prostaglandin E2 stimulation of monocytes from healthy donors is sufficient to recapitulate the response observed in patients with active RA. The activation of mechanisms counteracting the oxidative stress in the extracellular compartment preserves HMGB1 in its reduced form, and contributes to fuel the influx of inflammatory cells. Targeting the heterocomplex formation and its activity could thus be an additional tool for dampening the inflammation sustained by cell recruitment, for those patients with chronic inflammatory conditions who poorly respond to current therapies.
Collapse
Affiliation(s)
- Valentina Cecchinato
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Gianluca D'Agostino
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Lorenzo Raeli
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Alessandra Nerviani
- Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Milena Schiraldi
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Gabriela Danelon
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Antonio Manzo
- Division of Rheumatology, Rheumatology and Translational Immunology Research Laboratories (LaRIT), IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | - Marcus Thelen
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Adrian Ciurea
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Marco E Bianchi
- San Raffaele University and Scientific Institute, Milan, Italy
| | - Anna Rubartelli
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Costantino Pitzalis
- Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Mariagrazia Uguccioni
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
33
|
Makanjuola SBL, Ogundaini AO, Ajonuma LC, Dosunmu A. Apigenin and apigeninidin isolates from the
Sorghum bicolor
leaf targets inflammation via cyclo‐oxygenase‐2 and prostaglandin‐E
2
blockade. Int J Rheum Dis 2018; 21:1487-1495. [DOI: 10.1111/1756-185x.13355] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 06/19/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Samira B. L. Makanjuola
- Department of Pharmacology Therapeutics & Toxicology Lagos State University College of Medicine Lagos Nigeria
| | - Abiodun O. Ogundaini
- Department of Pharmaceutical Chemistry Obafemi Awolowo University Ile‐Ife Nigeria
| | - Louis C. Ajonuma
- Department of Physiology Lagos State University College of Medicine Lagos Nigeria
| | - Adedoyin Dosunmu
- Department of Hematology and Blood Transfusion Lagos State University College of Medicine Lagos Nigeria
| |
Collapse
|
34
|
Kim MJ, Shrestha SS, Cortes M, Singh P, Morse C, Liow JS, Gladding RL, Brouwer C, Henry K, Gallagher E, Tye GL, Zoghbi SS, Fujita M, Pike VW, Innis RB. Evaluation of Two Potent and Selective PET Radioligands to Image COX-1 and COX-2 in Rhesus Monkeys. J Nucl Med 2018; 59:1907-1912. [PMID: 29959215 DOI: 10.2967/jnumed.118.211144] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022] Open
Abstract
This study assessed whether the newly developed PET radioligands 11C-PS13 and 11C-MC1 could image constitutive levels of cyclooxygenase (COX)-1 and COX-2, respectively, in rhesus monkeys. Methods: After intravenous injection of either radioligand, 24 whole-body PET scans were performed. To measure enzyme-specific uptake, scans of the 2 radioligands were also performed after administration of a nonradioactive drug preferential for either COX-1 or COX-2. Concurrent venous samples were obtained to measure parent radioligand concentrations. SUVs were calculated from 10 to 90 min. Results: 11C-PS13 showed specific uptake in most organs, including spleen, gastrointestinal tract, kidneys, and brain, which was blocked by COX-1, but not COX-2, preferential inhibitors. Specific uptake of 11C-MC1 was not observed in any organ except the ovaries and possibly kidneys. Conclusion: The findings suggest that 11C-PS13 has adequate signal in monkeys to justify its extension to human subjects. In contrast, 11C-MC1 is unlikely to show significant signal in healthy humans, though it may be able to do so in inflammatory conditions.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Stal S Shrestha
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Michelle Cortes
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Prachi Singh
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Cheryl Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Robert L Gladding
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Chad Brouwer
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Katharine Henry
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Evan Gallagher
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - George L Tye
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Masahiro Fujita
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
35
|
Abstract
Orthodontic tooth movement is accompanied by inflammatory responses in the periodontal ligament. Chemical mediators such as interleukin-1β have key roles in nociception around teeth. Such nociceptive inputs to the periodontal ligament continue for several days and potentially induce plastic changes in higher brain regions, including the cerebral cortex. This review summarizes research on orthodontic treatment-induced modulation of neural activities in the central nervous system. Furthermore, we describe our recent findings on the spatiotemporal effects of orthodontic treatment in the somatosensory and insular cortices.
Collapse
Affiliation(s)
- Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry.,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry.,Molecular Imaging Research Center, RIKEN
| | - Eri Horinuki
- Department of Pharmacology, Nihon University School of Dentistry.,Department of Orthodontics, Nihon University School of Dentistry
| |
Collapse
|
36
|
Suknuntha K, Yubolphan R, Krueaprasertkul K, Srihirun S, Sibmooh N, Vivithanaporn P. Leukotriene Receptor Antagonists Inhibit Mitogenic Activity in Triple Negative Breast Cancer Cells. Asian Pac J Cancer Prev 2018; 19:833-837. [PMID: 29582642 PMCID: PMC5980863 DOI: 10.22034/apjcp.2018.19.3.833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2017] [Indexed: 11/27/2022] Open
Abstract
Despite a discovery of hormonal pathways regulating breast cancer, a definitive cure for the disease requires further identification of alternative targets that provide a hormone-independent support. Apart from their role in inflammatory diseases, cysteinyl leukotriene (CysLT) receptor antagonists (LTRAs) decrease the risk of lung cancer in asthma patients and inhibit tumor progression in several malignancies. In the present study, we evaluate the effects of two chemically different, clinically relevant LTRAs (montelukast and zafirlukast) in a triple negative breast cancer cell line, MDAMB- 231. We found that these two LTRAs reduced breast cancer cell viability in a dose-dependent manner with the 50% inhibitory concentration (IC50) between 5-10 μM. Although both LTRAs have several pharmacological properties in common, we noticed that montelukast mainly induced apoptosis, while zafirlukast mainly exerted its action on cell cycle. However, the precise mechanisms responsible for such different effects remain unclear. In summary, our results suggest that CysLT plays a role in proliferation and survivability of breast cancer cells in the absence of hormonal stimuli.
Collapse
Affiliation(s)
- Kran Suknuntha
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ruedeemars Yubolphan
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Sirada Srihirun
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nathawut Sibmooh
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pornpun Vivithanaporn
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
37
|
Kaempferol targeting on the fibroblast growth factor receptor 3-ribosomal S6 kinase 2 signaling axis prevents the development of rheumatoid arthritis. Cell Death Dis 2018. [PMID: 29540697 PMCID: PMC5851988 DOI: 10.1038/s41419-018-0433-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory disease that mainly affects the synovial joints. Although involvement of the fibroblast growth factor (FGF) signaling pathway has been suggested as an important modulator in RA development, no clear evidence has been provided. In this study, we found that synovial fluid basic FGF (bFGF) concentration was significantly higher in RA than in osteoarthritis (OA) patients. bFGF stimulates proliferation and migration of human fibroblast-like synoviocytes (FLSs) by activation of the bFGF-FGF receptor 3 (FGFR3)-ribosomal S6 kinase 2 (RSK2) signaling axis. Moreover, a molecular docking study revealed that kaempferol inhibited FGFR3 activity by binding to the active pocket of the FGFR3 kinase domain. Kaempferol forms hydrogen bonds with the FGFR3 backbone oxygen of Glu555 and Ala558 and the side chain of Lys508. Notably, the inhibition of bFGF-FGFR3-RSK2 signaling by kaempferol suppresses the proliferation and migration of RA FLSs and the release of activated T-cell-mediated inflammatory cytokines, such as IL-17, IL-21, and TNF-α. We further found that activated phospho-FGFR3 and -RSK2 were more highly observed in RA than in OA synovium. The hyperplastic lining and sublining lymphoid aggregate layers of RA synovium showed p-RSK2-expressing CD68+ macrophages with high frequency, while pRSK2-expressing CD4+ T-cells was observed at a lower frequency. Notably, kaempferol administration in collagen-induced arthritis mice relieved the frequency and severity of arthritis. Kaempferol reduced osteoclast differentiation in vitro and in vivo relative to the controls and was associated with the inhibition of osteoclast markers, such as tartrate-resistant acid phosphatase, integrin β3, and MMP9. Conclusively, our data suggest that bFGF-induced FGFR3-RSK2 signaling may play a critical role during the initiation and progression of RA in terms of FLS proliferation and enhanced osteoclastogenesis, and that kaempferol may be effective as a new treatment for RA.
Collapse
|
38
|
Flórez‐Grau G, Cabezón R, Borgman KJE, España C, Lozano JJ, Garcia‐Parajo MF, Benítez‐Ribas D. Up‐regulation of EP
2
and EP
3
receptors in human tolerogenic dendritic cells boosts the immunosuppressive activity of PGE
2. J Leukoc Biol 2017. [DOI: 10.1189/jlb.2a1216-526r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Georgina Flórez‐Grau
- Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Raquel Cabezón
- Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Kyra J. E. Borgman
- ICFO‐Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carolina España
- Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Jose Lozano
- Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Maria F. Garcia‐Parajo
- ICFO‐Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology, Barcelona, Spain
- Insititució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Daniel Benítez‐Ribas
- Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Immunology, Hospital Clinic de Barcelona, Barcelona, Spain
| |
Collapse
|
39
|
Synovial cellular and molecular markers in rheumatoid arthritis. Semin Immunopathol 2017; 39:385-393. [PMID: 28497350 DOI: 10.1007/s00281-017-0631-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023]
Abstract
The profound alterations in the structure, cellular composition, and function of synovial tissue in rheumatoid arthritis (RA) are the basis for the persistent inflammation and cumulative joint destruction that are hallmarks of this disease. In RA, the synovium develops characteristics of a tertiary lymphoid organ, with extensive infiltration of lymphocytes and myeloid cells. Concurrently, the fibroblast-like synoviocytes undergo massive hyperplasia and acquire a tissue-invasive phenotype. In this review, we summarize key components of these processes, focusing on recently-described roles of selected molecular markers of these cellular components of RA synovitis.
Collapse
|
40
|
Shabbir A, Shahzad M, Ali A, Zia-Ur-Rehman M. Discovery of New Benzothiazine Derivative as Modulator of Pro- and Anti-inflammatory Cytokines in Rheumatoid Arthritis. Inflammation 2017; 39:1918-1929. [PMID: 27561645 DOI: 10.1007/s10753-016-0427-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The anti-inflammatory activities of benzothiazine and pyrazole derivatives are well documented. A series of novel N'-arylmethylidene-2-(3,4-dimethyl-5,5-dioxidopyrazolo(4,3 c)(1,2) benzothiazin-2(4H)yl) acetohydrazide compounds were previously synthesized by combining benzothiazine and pyrazole moieties into a single nucleus. The current study investigates the anti-arthritic potential of 3-ethoxy-4-hydroxyphenyl derivative (EHP) and its possible mechanism in arthritic rat model. Sprague-Dawley rats were induced rheumatoid arthritis with Freund's complete adjuvant and treated with EHP and piroxicam. At the end of the study, arthritic score was calculated, and ankle joint histopathology was performed using hematoxylin and eosin staining. Real-time reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to determine mRNA expression and protein levels of various inflammatory markers, respectively. In vitro concanavalin A (ConA)-stimulated splenocyte proliferation was measured. Serum levels of C-reactive protein (CRP), urea, creatinine, aspartate aminotransferase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP) were also determined. EHP significantly attenuated macroscopic arthritic score, joint histopathological lesions, and CRP levels. Treatment with EHP significantly reduced pro-inflammatory tissue necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-кB), interleukin-17 (IL-17), and prostaglandin-E2 (PGE2) levels and increased the levels of anti-inflammatory interleukin-4 (IL-4) and interleukin-10 (IL-10). ConA-stimulated splenocyte proliferation was also significantly suppressed by treatment with EHP. Normalizing all hematological markers and ALP levels, EHP did not display any sign of nephrotoxicity and hepatotoxicity as determined by urea, creatinine, ALT, and AST levels. In conclusion, EHP possesses significant anti-arthritic property which may be attributed to its anti-inflammatory and immunomodulatory effects.
Collapse
Affiliation(s)
- Arham Shabbir
- Department of Pharmacology, University of Health Sciences, Khayabaan e Jamia, Lahore, Punjab, Pakistan
- Pharmacology section, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Khayabaan e Jamia, Lahore, Punjab, Pakistan.
| | - Akbar Ali
- Department of Pharmacology, University of Health Sciences, Khayabaan e Jamia, Lahore, Punjab, Pakistan
- College of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Muhammad Zia-Ur-Rehman
- Applied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpur Road, Lahore, 54600, Pakistan
| |
Collapse
|
41
|
Biological activity evaluation and molecular docking study of chromone derivatives as cyclooxygenase-2 inhibitors. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1786-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Lymphadenectomy promotes tumor growth and cancer cell dissemination in the spontaneous RET mouse model of human uveal melanoma. Oncotarget 2016; 6:44806-18. [PMID: 26575174 PMCID: PMC4792593 DOI: 10.18632/oncotarget.6326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/23/2015] [Indexed: 01/01/2023] Open
Abstract
Resection of infiltrated tumor-draining lymph nodes (TDLNs) is a standard practice for the treatment of several cancers including breast cancer and melanoma. However, many randomized prospective trials have failed to show convincing clinical benefits associated with LN removal and the role of TDLNs in cancer dissemination is poorly understood. Here, we found in a well-characterized spontaneous mouse model of uveal melanoma that the growth of the primary tumor was accompanied by increased lymphangiogenesis and cancer cell colonization in the LNs draining the eyes. But, unexpectedly, early resection of the TDLNs increased the growth of the primary tumor and associated blood vessels as well as promoted cancer cell survival and dissemination. These effects were accompanied by increased tumor cell proliferation and expression of phosphorylated AKT. Topical application of a broad anti-inflammatory agent, Tobradex, or an oral treatment with cyclooxygenase-2 specific inhibitor, Celecoxib, reversed tumor progression observed after complete lymphadenectomy. Our study confirms the importance of tumor homeostasis in cancer progression by showing the enhancing effects of TDLN removal on tumor growth and cancer cell dissemination, and suggests that TDLN resection may only be beneficial if used in combination with anti-inflammatory drugs such as Tobradex and Celecoxib.
Collapse
|
43
|
Drake RAR, Leith JL, Almahasneh F, Martindale J, Wilson AW, Lumb B, Donaldson LF. Periaqueductal Grey EP3 Receptors Facilitate Spinal Nociception in Arthritic Secondary Hypersensitivity. J Neurosci 2016; 36:9026-40. [PMID: 27581447 PMCID: PMC5005717 DOI: 10.1523/jneurosci.4393-15.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 06/17/2016] [Accepted: 06/22/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Descending controls on spinal nociceptive processing play a pivotal role in shaping the pain experience after tissue injury. Secondary hypersensitivity develops within undamaged tissue adjacent and distant to damaged sites. Spinal neuronal pools innervating regions of secondary hypersensitivity are dominated by descending facilitation that amplifies spinal inputs from unsensitized peripheral nociceptors. Cyclooxygenase-prostaglandin (PG) E2 signaling within the ventrolateral periaqueductal gray (vlPAG) is pronociceptive in naive and acutely inflamed animals, but its contributions in more prolonged inflammation and, importantly, secondary hypersensitivity remain unknown. In naive rats, PG EP3 receptor (EP3R) antagonism in vlPAG modulated noxious withdrawal reflex (EMG) thresholds to preferential C-nociceptor, but not A-nociceptor, activation and raised thermal withdrawal thresholds in awake animals. In rats with inflammatory arthritis, secondary mechanical and thermal hypersensitivity of the hindpaw developed and was associated with spinal sensitization to A-nociceptor inputs alone. In arthritic rats, blockade of vlPAG EP3R raised EMG thresholds to C-nociceptor activation in the area of secondary hypersensitivity to a degree equivalent to that evoked by the same manipulation in naive rats. Importantly, vlPAG EP3R blockade also affected responses to A-nociceptor activation, but only in arthritic animals. We conclude that vlPAG EP3R activity exerts an equivalent facilitation on the spinal processing of C-nociceptor inputs in naive and arthritic animals, but gains in effects on spinal A-nociceptor processing from a region of secondary hypersensitivity. Therefore, the spinal sensitization to A-nociceptor inputs associated with secondary hypersensitivity is likely to be at least partly dependent on descending prostanergic facilitation from the vlPAG. SIGNIFICANCE STATEMENT After tissue damage, sensitivity to painful stimulation develops in undamaged areas (secondary hypersensitivity). This is found in many painful conditions, particularly arthritis. The periaqueductal gray (PAG) is an important center that controls spinal nociceptive processing, on which secondary hypersensitivity depends. Prostaglandins (PGs) are mediators of inflammation with pronociceptive actions within the PAG under normal conditions. We find that secondary hindpaw hypersensitivity in arthritic rats results from spinal sensitization to peripheral A-nociceptor inputs. In the PAG of arthritic, but not naive, rats, there is enhanced control of spinal A-nociceptor processing through PG EP3 receptors. The descending facilitatory actions of intra-PAG PGs play a direct and central role in the maintenance of inflammatory secondary hypersensitivity, particularly relating to the processing of A-fiber nociceptive information.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Area Under Curve
- Arthritis/chemically induced
- Arthritis/complications
- Disease Models, Animal
- Freund's Adjuvant/toxicity
- Hyperalgesia/physiopathology
- Ketoprofen/pharmacology
- Male
- Nerve Fibers, Myelinated/physiology
- Nerve Fibers, Unmyelinated/physiology
- Neurons/drug effects
- Nitriles/pharmacology
- Nociception/drug effects
- Nociception/physiology
- Pain Measurement/methods
- Pain Threshold/physiology
- Periaqueductal Gray/drug effects
- Periaqueductal Gray/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Prostaglandin E, EP3 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Statistics, Nonparametric
- Sulfonamides/pharmacology
- Time Factors
Collapse
Affiliation(s)
- R A R Drake
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - J L Leith
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - F Almahasneh
- Arthritis Research UK Pain Centre and School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom, and
| | - J Martindale
- Neurosciences CEDD, GlaxoSmithKline, Harlow CM19 5AW, United Kingdom
| | - A W Wilson
- Neurosciences CEDD, GlaxoSmithKline, Harlow CM19 5AW, United Kingdom
| | - B Lumb
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - L F Donaldson
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom, Arthritis Research UK Pain Centre and School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom, and
| |
Collapse
|
44
|
Kosik-Bogacka DI, Baranowska-Bosiacka I, Kolasa-Wołosiuk A, Lanocha-Arendarczyk N, Gutowska I, Korbecki J, Namięta H, Rotter I. The inflammatory effect of infection with Hymenolepis diminuta via the increased expression and activity of COX-1 and COX-2 in the rat jejunum and colon. Exp Parasitol 2016; 169:69-76. [PMID: 27466058 DOI: 10.1016/j.exppara.2016.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 01/10/2023]
Abstract
The aim of this study was to determine whether Hymenolepis diminuta may affect the expression and activity of cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-2), resulting in the altered levels of their main products - prostaglandins (PGE2) and thromboxane B2 (TXB2). The study used the same experimental model as in our previous studies in which we had observed changes in the transepithelial ion transport, tight junctions and in the indicators of oxidative stress, in both small and large intestines of rats infected with H. diminuta. In this paper, we investigated not only the site of immediate presence of the tapeworm (jejunum), but also a distant site (colon). Inflammation related to H. diminuta infection is associated with the increased expression and activation of cyclooxygenase (COX), enzyme responsible for the synthesis of PGE2 and TXB2, local hormones contributing to the enhanced inflammatory reaction in the jejunum and colon in the infected rats. The increased COX expression and activity is probably caused by the increased levels of free radicals and the weakening of the host's antioxidant defense induced by the presence of the parasite. Our immunohistochemical analysis showed that H. diminuta infection affected not only the intensity of the immunodetection of COX but also the enzyme protein localization within intestinal epithelial cells - from the entire cytoplasm to apical/basal regions of cells, or even to the nucleus.
Collapse
Affiliation(s)
- D I Kosik-Bogacka
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Szczecin, Poland.
| | - I Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - A Kolasa-Wołosiuk
- Department of Histology and Embryology, Pomeranian Medical University, Szczecin, Poland
| | - N Lanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Szczecin, Poland
| | - I Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - J Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - H Namięta
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Szczecin, Poland
| | - I Rotter
- Independent Laboratory of Medical Rehabilitation, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
45
|
Lee CM, Gupta S, Wang J, Johnson EM, Crofford LJ, Marshall JC, Kapoor M, Hu J. Epithelium-specific Ets transcription factor-1 acts as a negative regulator of cyclooxygenase-2 in human rheumatoid arthritis synovial fibroblasts. Cell Biosci 2016; 6:43. [PMID: 27313839 PMCID: PMC4910355 DOI: 10.1186/s13578-016-0105-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/25/2016] [Indexed: 01/21/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is characterized by excessive synovial inflammation. Cyclooxygenase-2 (COX-2) is an enzyme that catalyzes the conversion of arachidonic acid (AA) into prostaglandins. Epithelium-specific Ets transcription factor-1 (ESE-1) was previously demonstrated to upregulate COX-2 in co-operation with nuclear factor kappa B (NFκB) in macrophages and chondrocytes. However, the role of ESE-1 in RA pathology has remained unclear. In this study, we aimed to elucidate the relationship between ESE-1 and COX-2 in RA synovial fibroblasts (RASFs) using a HD-Ad-mediated knockdown approach. Results ESE-1 and COX-2 were induced by IL-1β in RASFs that corresponded with an increase in PGE2. Endogenous levels of ESE-1 and COX-2 in human RASFs were analyzed by RT-qPCR and Western blot, and PGE2 was quantified using competitive ELISA. Interestingly, knockdown of ESE-1 using helper-dependent adenovirus (HD-Ad) led to a significant upregulation of COX-2 at a later phase of IL-1β stimulation. Examination of ESE-1 intracellular localization by nuclear fractionation revealed that ESE-1 was localized in the nucleus, occupying disparate cellular compartments to NFκB when COX-2 was increased. To confirm the ESE-1-COX-2 relationship in other cellular systems, COX-2 was also measured in SW982 synovial sarcoma cell line and ESE-1 knockout (KO) murine macrophages. Similarly, knockdown of ESE-1 transcriptionally upregulated COX-2 in SW982 and ESE-1 KO murine macrophages, suggesting that ESE-1 may be involved in the resolution of inflammation. Conclusion ESE-1 acts as a negative regulator of COX-2 in human RASFs and its effect on COX-2 is NFκB-independent. Electronic supplementary material The online version of this article (doi:10.1186/s13578-016-0105-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chan-Mi Lee
- SickKids Research Institute, Program in Physiology and Experimental Medicine, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 9th floor, 686 Bay Street, Toronto, ON M5G 0A4 Canada ; Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8 Canada
| | - Sahil Gupta
- The Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1T8 Canada ; Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8 Canada
| | - Jiafeng Wang
- The Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1T8 Canada ; Department of Anesthesiology and Intensive Care, The Second Military Medical University, Changhai Hospital, Shanghai, 200433 China
| | - Elizabeth M Johnson
- Department of Medicine, Division of Rheumatology and Immunology, School of Medicine, Vanderbilt University, 1161 21st Ave S, MCN T-3113, Nashville, TN 37232 USA
| | - Leslie J Crofford
- Department of Medicine, Division of Rheumatology and Immunology, School of Medicine, Vanderbilt University, 1161 21st Ave S, MCN T-3113, Nashville, TN 37232 USA
| | - John C Marshall
- The Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1T8 Canada ; Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8 Canada ; Department of Surgery, St. Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, ON M5B 1W8 Canada
| | - Mohit Kapoor
- Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8 Canada ; Division of Genetics and Development, Toronto Western Research Institute, Toronto Western Hospital, University Health Network (UHN), 60 Leonard Avenue, Toronto, ON M5T 2S8 Canada
| | - Jim Hu
- SickKids Research Institute, Program in Physiology and Experimental Medicine, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 9th floor, 686 Bay Street, Toronto, ON M5G 0A4 Canada ; Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8 Canada ; Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
46
|
Bakr RB, Azouz AA, Abdellatif KRA. Synthesis, cyclooxygenase inhibition, anti-inflammatory evaluation and ulcerogenic liability of new 1-phenylpyrazolo[3,4-d]pyrimidine derivatives. J Enzyme Inhib Med Chem 2016; 31:6-12. [DOI: 10.1080/14756366.2016.1186018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Rania B. Bakr
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef, Egypt, and
| | - Amany A. Azouz
- Department of Pharmacology and Toxicology, Beni-Suef University, Beni-Suef, Egypt
| | | |
Collapse
|
47
|
Wang H, Dong BW, Zheng ZH, Wu ZB, Li W, Ding J. Metastasis-associated protein 1 (MTA1) signaling in rheumatoid synovium: Regulation of inflammatory response and cytokine-mediated production of prostaglandin E2 (PGE2). Biochem Biophys Res Commun 2016; 473:442-8. [PMID: 26970310 DOI: 10.1016/j.bbrc.2016.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 01/13/2023]
Abstract
Abnormal perpetual inflammatory response and sequential cytokine-induced prostaglandin E2 (PGE2) play important roles in the pathogenesis of rheumatoid arthritis (RA). The underlying regulatory mechanism, however, remain largely unknown. Here, we discovered that expression level of Metastasis associated protein 1 (MTA1), an important chromatin modifier that plays a critical role in transcriptional regulation by modifying DNA accessibility for cofactors, was upregulated in human rheumatoid synovial tissues. Furthermore, a knockdown of MTA1 by siRNA in the human fibroblast-like synovial cell line MH7A was found to impair the 4-hydroxynonenal (4-HNE)-induced transcriptional expression levels of certain proinflammatory cytokines including IL-1β, TNF-α and IL-6. Moreover, endogenous MTA1 was required for the cytokines-induced PGE2 synthesis by rheumatoid synoviocytes. Collectively, the coordinated existence of MTA1 inside distinct cascade loops points to its indispensable role in the modulation of the integrated cytokine network along the pathogenesis of RA. Further exploration of the functional details of this master transcriptional regulator should be an attractive strategy to identify novel therapeutic target for RA and warrants execution.
Collapse
Affiliation(s)
- Hui Wang
- Department of Medical Psychology, Fourth Military Medical University, Xi'an, 710032, China
| | - Bing-Wei Dong
- Department of Pathology, Xian Yang Central Hospital, Xian Yang, 712000, China
| | - Zhao-Hui Zheng
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhen-Biao Wu
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Li
- Department of Histology and Embryology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jin Ding
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
48
|
Jeong SJ, Kim OS, Yoo SR, Seo CS, Kim Y, Shin HK. Anti‑inflammatory and antioxidant activity of the traditional herbal formula Gwakhyangjeonggi‑san via enhancement of heme oxygenase‑1 expression in RAW264.7 macrophages. Mol Med Rep 2016; 13:4365-71. [PMID: 27052497 DOI: 10.3892/mmr.2016.5084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 12/21/2015] [Indexed: 12/27/2022] Open
Abstract
Gwakhyangjeonggi‑san (GHJGS) is a mixture of herbal plants, including Agastache rugosa, Perilla frutescens, Angelica dahurica, Areca catechu, Poria cocos, Magnolia officinalis, Atractylodes macrocephala, Citrus reticulata, Pinellia ternata, Platycodon grandiflorum, Glycyrrhiza uralensis, Ziziphus jujuba and Zingiber officinale. GHJGS has been used for treating diarrhea‑predominant irritable bowel syndrome in traditional Korean medicine. In the present study, the anti‑inflammatory and antioxidant effects of GHJGS were investigated using the RAW 264.7 murine macrophage cell line. GHJGS significantly reduced production of the proinflammatory cytokines, tumor necrosis factor‑α, interleukin‑6 and prostaglandin E2 in lipopolysaccharide (LPS)‑stimulated macrophages. GHJGS markedly suppressed LPS‑induced phosphorylation of mitogen‑activated protein kinases, whereas it had no effect on nuclear factor‑κB activation. Furthermore, GHJGS enhanced expression of heme oxygenase‑1 and prevented the generation of reactive oxygen species in RAW 264.7 cells. These results indicate that GHJGS is a viable therapeutic agent against inflammation and oxidative stress‑associated disorders.
Collapse
Affiliation(s)
- Soo-Jin Jeong
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Ohn-Soon Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Sae-Rom Yoo
- K‑herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Chungcheong 34054, Republic of Korea
| | - Chang-Seob Seo
- K‑herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Chungcheong 34054, Republic of Korea
| | - Yeji Kim
- K‑herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Chungcheong 34054, Republic of Korea
| | - Hyeun-Kyoo Shin
- K‑herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Chungcheong 34054, Republic of Korea
| |
Collapse
|
49
|
Horinuki E, Yamamoto K, Shimizu N, Koshikawa N, Kobayashi M. Sequential Changes in Cortical Excitation during Orthodontic Treatment. J Dent Res 2016; 95:897-905. [DOI: 10.1177/0022034516641276] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cortical excitation responding to periodontal ligament (PDL) stimulation is observed in the rat primary somatosensory (S1), secondary somatosensory, and insular oral region of the cortex (S2/IOR), which are considered to process somatosensation, including nociception. Our previous studies have demonstrated that excitatory propagation induced by PDL stimulation is facilitated in S1 and S2/IOR 1 d after experimental tooth movement (ETM), and tetanic stimulation of IOR induces long-term potentiation of cortical excitatory propagation consistently. These findings raise the possibility that ETM induces neuroplastic changes, and as a result, facilitation of cortical excitation would be sustained for weeks. However, no information is available about the temporal profiles of the facilitated cortical responses. We estimated PDL stimulation-induced cortical excitatory propagation in S1 and S2/IOR of rats by optical imaging 1 to 7 d after ETM of the maxillary first molar. ETM models showed facilitated cortical excitatory propagation in comparison with controls and sham groups 1 d after ETM, but the facilitation gradually recovered to the control level 3 to 7 d after ETM. Sham groups that received wire fixation without orthodontic force tended to enhance cortical responses, although the differences between controls and sham groups were almost insignificant. We also examined the relationship between cortical responses and expression of inflammatory cytokines, interleukin (IL)–1β and tumor necrosis factor (TNF)–α, in PDL of the first molar. The peak amplitude of optical signals responding to PDL stimulation tended to be increased in parallel to the number of IL-1β and TNF-α immunopositive cells, suggesting that, at least in part, the enhancement of cortical responses is induced by PDL inflammation. These findings suggest that ETM-induced facilitation of cortical excitatory propagation responding to PDL stimulation 1 d after ETM recovers to the control level within a week. The time course of the facilitated cortical responses is comparable to that of pain and discomfort induced by clinical orthodontic treatments.
Collapse
Affiliation(s)
- E. Horinuki
- Department of Pharmacology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
- Department of Orthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - K. Yamamoto
- Department of Pharmacology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - N. Shimizu
- Department of Orthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - N. Koshikawa
- Department of Pharmacology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - M. Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
- Molecular Imaging Research Center, RIKEN, Chuo-ku, Kobe, Japan
| |
Collapse
|
50
|
Yoo SR, Seo CS, Lee NR, Shin HK, Jeong SJ. Phytochemical Analysis on Quantification and the Inhibitory Effects on Inflammatory Responses from the Fruit of Xanthii fructus. Pharmacogn Mag 2016; 11:S585-91. [PMID: 27013799 PMCID: PMC4787093 DOI: 10.4103/0973-1296.172966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective: Xanthii fructus (Compositae) is a traditional herbal medicine used for treating headache, toothache, pruritus, empyema, and rhinitis. In this study of the quality control of X. fructus, we performed simultaneous analysis of nine marker compounds: Protocatechuic acid (1), chlorogenic acid (2), caffeic acid (3), 4,5-dicaffeoylquinic acid (4), ferulic acid (5), 3,5-dicaffeoylquinic acid (6), 1,3-dicaffeoylquinic acid (7), 1,4-dicaffeoylquinic acid (8), and 4,5-dicaffeoylquinic acid (9). Materials and Methods: Nine components were separated using reversed-phase SunFire™ C18 analytical column and analyzed using high-performance liquid chromatography. We examined the biological effects of the nine marker compounds by determining their anti-inflammatory activities in the murine macrophage cell line RAW 264.7. Results: Among the nine marker compounds, eight significantly inhibited lipopolysaccharide (LPS)-stimulated tumor necrosis factor-alpha (TNF-α) production. 1, 3, 5 had significant inhibitory effects on LPS-induced prostaglandin E2 (PGE2) production in RAW 264.7 cells. None of the tested marker compounds had a significant effect on interleukin-6 production in LPS-treated RAW 264.7 cells. Our data demonstrated that each marker compound from X. fructus exerts anti-inflammatory activity by targeting different inflammation-related pathways such as the TNF-α or PGE2 pathway. Conclusion: Further experiments using in vitro and in vivo models are needed to identify the mechanisms responsible for the anti-inflammatory properties of each marker compound. SUMMARY Simultaneous analysis of nine phenylpropanoids in the Xanthii fructus was established using HPLC-PDA system. 1,4-dicaffeoylquinic acid significantly inhibited LPS-stimulated TNF-a production. Protocatechuic acid, caffeic acid and ferulic acid had significant inhibitory effects on LPS-induced PGE2 production in RAW 264.7 cells.
Collapse
Affiliation(s)
- Sae-Rom Yoo
- K-herb Research Center, Daejeon, Republic of Korea
| | | | - Na-Ri Lee
- K-herb Research Center, Daejeon, Republic of Korea
| | | | - Soo-Jin Jeong
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea; Korean Medicine Life Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|