1
|
Murugan R, Selvam M, Haridevamuthu B, Ashok K, Chagaleti BK, Priya D, Rajagopal R, Alfarhan A, Kumaradoss KM, Arockiaraj J. 1,5- diaryl pyrazole-loaded chitosan nanoparticles as COX-2 inhibitors, mitigate neoplastic growth by regulating NF-κB pathway in-vivo zebrafish model. Int J Biol Macromol 2024; 283:137599. [PMID: 39542324 DOI: 10.1016/j.ijbiomac.2024.137599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) have been researched for their capacity to reduce cancer incidence, primarily due to their COX-2 inhibition properties. However, concerns have arisen regarding the precision of their targeting abilities. Nanoparticle approaches are revolutionizing cancer treatment by enabling targeted drug delivery, which enhances the efficacy and reduces the toxicity of chemotherapy. Particularly, chitosan-based nanoparticles are noteworthy for their biocompatibility, biodegradability, and ability to improve drug delivery. In this study, we synthesized folic acid-conjugated, 1,5-diaryl pyrazole-loaded chitosan (FA-CS-DP) nanoparticles using the ionic gelation method. The bioavailability and anti-neoplastic effects in a 7,12-dimethylbenzanthracene (DMBA)-exposed zebrafish model was investigated. MTT assay showed dose-dependent cytotoxicity of FA-CS-DP nanoparticles against MCF-7 breast cancer. The nanoparticles showed no toxicity to zebrafish embryos up to 100 μg/mL. The nanoparticle reduced oxidative stress and enhanced apoptosis in zebrafish exposed to DMBA. The morphological examination suggests that tumor growth was prevented in the zebrafish's surface and internal regions. The gene expression analysis confirmed the decrease in the expression of anti-inflammatory genes, such as cox-2 and nf-κb, and apoptosis inhibitor genes, such as bcl-2 and mdm2. By regulating the anti-inflammatory and apoptosis inhibitor genes, FA-CS-DP nanoparticle prevents neoplastic growth in the zebrafish model.
Collapse
Affiliation(s)
- Raghul Murugan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, Tamil Nadu, India
| | - Madesh Selvam
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Kumar Ashok
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Bharath Kumar Chagaleti
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM, College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - D Priya
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM, College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kathiravan Muthu Kumaradoss
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM, College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
2
|
Sipilä LJ, Katainen R, Aavikko M, Ravantti J, Donner I, Lehtonen R, Leivo I, Wolff H, Holmila R, Husgafvel-Pursiainen K, Aaltonen LA. Genome-wide somatic mutation analysis of sinonasal adenocarcinoma with and without wood dust exposure. Genes Environ 2024; 46:12. [PMID: 38711096 PMCID: PMC11071320 DOI: 10.1186/s41021-024-00306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Sinonasal adenocarcinoma is a rare cancer, encompassing two different entities, the intestinal-type sinonasal adenocarcinoma (ITAC) and the non-intestinal-type sinonasal adenocarcinoma (non-ITAC). Occurrence of ITAC is strongly associated with exposure to hardwood dusts. In countries with predominant exposure to softwood dust the occurrence of sinonasal adenocarcinomas is lower and the relative amount of non-ITACs to ITACs is higher. The molecular mechanisms behind the tumorigenic effects of wood dust remain largely unknown. METHODS We carried out whole-genome sequencing of formalin-fixed paraffin-embedded (FFPE) samples of sinonasal adenocarcinomas from ten wood dust-exposed and six non-exposed individuals, with partial tobacco exposure data. Sequences were analyzed for the presence of mutational signatures matching COSMIC database signatures. Driver mutations and CN variant regions were characterized. RESULTS Mutation burden was higher in samples of wood dust-exposed patients (p = 0.016). Reactive oxygen species (ROS) damage-related mutational signatures were almost exclusively identified in ITAC subtype samples (p = 0.00055). Tobacco smoke mutational signatures were observed in samples of patients with tobacco exposure or missing information, but not in samples from non-exposed patients. A tetraploidy copy number (CN) signature was enriched in ITAC subtype (p = 0.042). CN variation included recurrent gains in COSMIC Cancer Gene Census genes TERT, SDHA, RAC1, ETV1, PCM1, and MYC. Pathogenic variants were observed most frequently in TP53, NF1, CHD2, BRAF, APC, and LRP1B. Driver mutations and copy number gains did not segregate by subtype. CONCLUSIONS Our analysis identified distinct mutational characteristics in ITAC and non-ITAC. Mutational signature analysis may eventually become useful for documentation of occupation-related cancer, while the exact mechanisms behind wood dust-driven carcinogenesis remain elusive. The presence of homologous recombination deficiency signatures implies a novel opportunity for treatment, but further studies are needed.
Collapse
Affiliation(s)
- Lauri J Sipilä
- Department of Medical and Clinical Genetics, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland
- Finnish Cancer Registry, Unioninkatu 22, Helsinki, 00130, Finland
| | - Riku Katainen
- Department of Medical and Clinical Genetics, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mervi Aavikko
- Department of Medical and Clinical Genetics, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Janne Ravantti
- Department of Medical and Clinical Genetics, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, FI-00014, Finland
| | - Iikki Donner
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, Helsinki, 00014, Finland
| | - Rainer Lehtonen
- Department of Medical and Clinical Genetics, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland
| | - Ilmo Leivo
- Institute of Biomedicine, Pathology, University of Turku, Kiinamyllynkatu 10, Turku, D 5035, 20520, Finland
- Turku University Central Hospital, Turku, 20521, Finland
| | - Henrik Wolff
- Finnish Institute of Occupational Health, PB 40, Helsinki, 00251, Finland
- Department of Pathology, University of Helsinki, PB 20, Helsinki, 00014, Finland
| | - Reetta Holmila
- Finnish Institute of Occupational Health, PB 40, Helsinki, 00251, Finland
| | | | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland.
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland.
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 141 83, Sweden.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, 00290, Finland.
| |
Collapse
|
3
|
Mafra JCM, Boechat N, Teixeira GP, Faria RX. Synthetic molecules as P2X7 receptor antagonists: A medicinal chemistry update focusing the therapy of inflammatory diseases. Eur J Pharmacol 2023; 957:175999. [PMID: 37619787 DOI: 10.1016/j.ejphar.2023.175999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Stimulation of the P2X7 receptor by extracellular adenosine 5'-triphosphate induces a series of responses in the organism, exceptionally protein cascades related to the proinflammatory process. This has made P2X7 a target for research on inflammatory diseases such as rheumatoid arthritis. Thus, the incessant search for new prototypes that aim to antagonize the action of P2X7 has been remarkable in recent decades, a factor that has already led to numerous clinical studies in humans. In this review, we present the key molecules developed over the years with potential inhibition of P2X7 and inflammation. In addition, an update with newly developed chemical classes with promising activity and results in clinical studies for human pathologies focusing on P2X7 inhibition.
Collapse
Affiliation(s)
- João Carlos Martins Mafra
- Laboratório de Síntese de Fármacos (LASFAR) - Farmanguinhos - Fiocruz Brazil; Instituto Federal do Rio de Janeiro - IFRJ, Rio de Janeiro, Brazil.
| | - Nubia Boechat
- Laboratório de Síntese de Fármacos (LASFAR) - Farmanguinhos - Fiocruz Brazil.
| | - Guilherme Pegas Teixeira
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz (IOC), Rio de Janeiro Fiocruz Brazil.
| | - Robson Xavier Faria
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz (IOC), Rio de Janeiro Fiocruz Brazil.
| |
Collapse
|
4
|
Kumareswaran A, Ekeuku SO, Mohamed N, Muhammad N, Hanafiah A, Pang KL, Wong SK, Chew DCH, Chin KY. The Effects of Tocotrienol on Gut Microbiota: A Scoping Review. Life (Basel) 2023; 13:1882. [PMID: 37763286 PMCID: PMC10532613 DOI: 10.3390/life13091882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Gut dysbiosis has been associated with many chronic diseases, such as obesity, inflammatory bowel disease, and cancer. Gut dysbiosis triggers these diseases through the activation of the immune system by the endotoxins produced by gut microbiota, which leads to systemic inflammation. In addition to pre-/pro-/postbiotics, many natural products can restore healthy gut microbiota composition. Tocotrienol, which is a subfamily of vitamin E, has been demonstrated to have such effects. This scoping review presents an overview of the effects of tocotrienol on gut microbiota according to the existing scientific literature. A literature search to identify relevant studies was conducted using PubMed, Scopus, and Web of Science. Only original research articles which aligned with the review's objective were examined. Six relevant studies investigating the effects of tocotrienol on gut microbiota were included. All of the studies used animal models to demonstrate that tocotrienol altered the gut microbiota composition, but none demonstrated the mechanism by which this occurred. The studies induced diseases known to be associated with gut dysbiosis in rats. Tocotrienol partially restored the gut microbiota compositions of the diseased rats so that they resembled those of the healthy rats. Tocotrienol also demonstrated strong anti-inflammatory effects in these animals. In conclusion, tocotrienol could exert anti-inflammatory effects by suppressing inflammation directly or partially by altering the gut microbiota composition, thus achieving its therapeutic effects.
Collapse
Affiliation(s)
- Aswini Kumareswaran
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia; (A.K.); (N.M.); (N.M.); (S.K.W.)
| | - Sophia Ogechi Ekeuku
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia;
| | - Norazlina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia; (A.K.); (N.M.); (N.M.); (S.K.W.)
| | - Norliza Muhammad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia; (A.K.); (N.M.); (N.M.); (S.K.W.)
| | - Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia;
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, Iskandar Puteri 79200, Malaysia;
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia; (A.K.); (N.M.); (N.M.); (S.K.W.)
| | - Deborah Chia Hsin Chew
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia;
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia; (A.K.); (N.M.); (N.M.); (S.K.W.)
| |
Collapse
|
5
|
Nango H, Tsuruta K, Miyagishi H, Aono Y, Saigusa T, Kosuge Y. Update on the pathological roles of prostaglandin E 2 in neurodegeneration in amyotrophic lateral sclerosis. Transl Neurodegener 2023; 12:32. [PMID: 37337289 DOI: 10.1186/s40035-023-00366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective degeneration of upper and lower motor neurons. The pathogenesis of ALS remains largely unknown; however, inflammation of the spinal cord is a focus of ALS research and an important pathogenic process in ALS. Prostaglandin E2 (PGE2) is a major lipid mediator generated by the arachidonic-acid cascade and is abundant at inflammatory sites. PGE2 levels are increased in the postmortem spinal cords of ALS patients and in ALS model mice. Beneficial therapeutic effects have been obtained in ALS model mice using cyclooxygenase-2 inhibitors to inhibit the biosynthesis of PGE2, but the usefulness of this inhibitor has not yet been proven in clinical trials. In this review, we present current evidence on the involvement of PGE2 in the progression of ALS and discuss the potential of microsomal prostaglandin E synthase (mPGES) and the prostaglandin receptor E-prostanoid (EP) 2 as therapeutic targets for ALS. Signaling pathways involving prostaglandin receptors mediate toxic effects in the central nervous system. In some situations, however, the receptors mediate neuroprotective effects. Our recent studies demonstrated that levels of mPGES-1, which catalyzes the final step of PGE2 biosynthesis, are increased at the early-symptomatic stage in the spinal cords of transgenic ALS model mice carrying the G93A variant of superoxide dismutase-1. In addition, in an experimental motor-neuron model used in studies of ALS, PGE2 induces the production of reactive oxygen species and subsequent caspase-3-dependent cytotoxicity through activation of the EP2 receptor. Moreover, this PGE2-induced EP2 up-regulation in motor neurons plays a role in the death of motor neurons in ALS model mice. Further understanding of the pathophysiological role of PGE2 in neurodegeneration may provide new insights to guide the development of novel therapies for ALS.
Collapse
Affiliation(s)
- Hiroshi Nango
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Komugi Tsuruta
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Hiroko Miyagishi
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Yuri Aono
- Department of Pharmacology, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo-Shi, Chiba, 271-8587, Japan
| | - Tadashi Saigusa
- Department of Pharmacology, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo-Shi, Chiba, 271-8587, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan.
| |
Collapse
|
6
|
Mladenov M, Lubomirov L, Grisk O, Avtanski D, Mitrokhin V, Sazdova I, Keremidarska-Markova M, Danailova Y, Nikolaev G, Konakchieva R, Gagov H. Oxidative Stress, Reductive Stress and Antioxidants in Vascular Pathogenesis and Aging. Antioxidants (Basel) 2023; 12:1126. [PMID: 37237992 PMCID: PMC10215600 DOI: 10.3390/antiox12051126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/22/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
This review is focused on the mechanisms that regulate health, disease and aging redox status, the signal pathways that counteract oxidative and reductive stress, the role of food components and additives with antioxidant properties (curcumin, polyphenols, vitamins, carotenoids, flavonoids, etc.), and the role of the hormones irisin and melatonin in the redox homeostasis of animal and human cells. The correlations between the deviation from optimal redox conditions and inflammation, allergic, aging and autoimmune responses are discussed. Special attention is given to the vascular system, kidney, liver and brain oxidative stress processes. The role of hydrogen peroxide as an intracellular and paracrine signal molecule is also reviewed. The cyanotoxins β-N-methylamino-l-alanine (BMAA), cylindrospermopsin, microcystins and nodularins are introduced as potentially dangerous food and environment pro-oxidants.
Collapse
Affiliation(s)
- Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, “Ss. Cyril and Methodius” University, P.O. Box 162, 1000 Skopje, North Macedonia;
| | - Lubomir Lubomirov
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (L.L.); (O.G.)
| | - Olaf Grisk
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (L.L.); (O.G.)
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10003, USA;
| | - Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, 1 Ostrovityanova Street, 117997 Moscow, Russia;
| | - Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (I.S.); (M.K.-M.); (Y.D.)
| | - Milena Keremidarska-Markova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (I.S.); (M.K.-M.); (Y.D.)
| | - Yana Danailova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (I.S.); (M.K.-M.); (Y.D.)
| | - Georgi Nikolaev
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (G.N.); (R.K.)
| | - Rossitza Konakchieva
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (G.N.); (R.K.)
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (I.S.); (M.K.-M.); (Y.D.)
| |
Collapse
|
7
|
Wilson SM, Oba PM, Applegate CC, Koziol SA, Panasevich MR, Norton SA, Swanson KS. Effects of a Saccharomyces cerevisiae fermentation product-supplemented diet on fecal characteristics, oxidative stress, and blood gene expression of adult dogs undergoing transport stress. J Anim Sci 2023; 101:skac378. [PMID: 36373401 PMCID: PMC9838799 DOI: 10.1093/jas/skac378] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Previously, a Saccharomyces cerevisiae fermentation product (SCFP) was shown to positively alter fecal microbiota, fecal metabolites, oxidative stress, and circulating immune cell function of adult dogs. The objective of this study was to measure the effects of SCFP on fecal characteristics, serum oxidative stress biomarkers, and whole blood gene expression of dogs undergoing transport stress. Sixteen adult pointer dogs [8M, 8F; mean age = 6.7 ± 2.1 yr; mean body weight (BW) = 25.5 ± 3.9 kg] were used in a randomized crossover design study. All dogs were fed a control diet for 4 wk, then randomly assigned to a control or SCFP-supplemented diet (formulated to include approximately 0.13% of the active SCFP ingredient) and fed to maintain BW for 11 wk. A 6-wk washout preceded the second 11-wk experimental period with dogs receiving opposite treatments. After 11 wk, fresh fecal and blood samples were collected before and after transport in a van for 45 min. Change from baseline data (i.e., before and after transport) were analyzed using the Mixed Models procedure of SAS 9.4, with P < 0.05 being significant and P < 0.10 being trends. Change in serum malondialdehyde concentrations increased (P < 0.05) and serum 8-isoprostane concentrations tended to increase (P < 0.10) in dogs fed SCFP, but decreased (P < 0.05) in control dogs after transport. Other serum markers were unaffected by diet during transport stress. Fecal dry matter percentage tended to be affected (P < 0.10) by diet during transport stress, being reduced in control dogs, but stable in dogs fed SCFP. Other fecal characteristics were unaffected by diet during transport stress. Genes associated with activation of innate immunity were impacted by diet in response to transport stress, with blood cyclooxygenase-2 and malondialdehyde mRNA expression being increased (P < 0.05) in control dogs, but stable or decreased in dogs fed SCFP. Expression of other genes was unaffected by diet during transport stress. These data suggest that the benefits of feeding a SCFP during transport stress may be mediated through suppression of innate immune cell activation.
Collapse
Affiliation(s)
- Sofia M Wilson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Catherine C Applegate
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- The Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Samantha A Koziol
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Tan C, Yan Q, Ma Y, Fang J, Yang Y. Recognizing the role of the vagus nerve in depression from microbiota-gut brain axis. Front Neurol 2022; 13:1015175. [PMID: 36438957 PMCID: PMC9685564 DOI: 10.3389/fneur.2022.1015175] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/12/2022] [Indexed: 08/08/2023] Open
Abstract
Depression is a worldwide disease causing severe disability, morbidity, and mortality. Despite abundant studies, the precise mechanisms underlying the pathophysiology of depression remain elusive. Recently, cumulate research suggests that a disturbance of microbiota-gut-brain axis may play a vital role in the etiology of depression while correcting this disturbance could alleviate depression symptoms. The vagus nerve, linking brain and gut through its afferent and efferent branches, is a critical route in the bidirectional communication of this axis. Directly or indirectly, the vagus afferent fibers can sense and relay gut microbiota signals to the brain and induce brain disorders including depression. Also, brain changes in response to stress may result in gut hyperpermeability and inflammation mediating by the vagal efferents, which may be detrimental to depression. Notably, vagus nerve stimulation owns an anti-inflammatory effect and was proved for depression treatment. Nevertheless, depression was accompanied by a low vagal tone, which may derive from response to stress and contribute to pathogenesis of depression. In this review, we aim to explore the role of the vagus nerve in depression from the perspective of the microbiota-gut-brain axis, highlighting the relationship among the vagal tone, the gut hyperpermeability, inflammation, and depression.
Collapse
Affiliation(s)
- Chaoren Tan
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, China
| | - Qiqi Yan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Science, Beijing, China
| | - Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongsheng Yang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
9
|
Bergandi L, Apprato G, Silvagno F. Antioxidant and Anti-Inflammatory Activity of Combined Phycocyanin and Palmitoylethanolamide in Human Lung and Prostate Epithelial Cells. Antioxidants (Basel) 2022; 11:antiox11020201. [PMID: 35204084 PMCID: PMC8868053 DOI: 10.3390/antiox11020201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
Inflammation involving the innate and adaptive immune systems is a normal response to infection; however, when allowed to continue unchecked, inflammation may result in several pathologies. Natural molecules with antioxidant properties can target the key players of inflammation and exert beneficial health effects. In this study, human normal bronchial (Beas-2B) and prostate (HPrEpiC) epithelial cell lines were exposed to infectious stimulation and treated with phycocyanin (PC) and palmitoylethanolamide (PEA), with the aim of demonstrating the enhanced antioxidant and anti-inflammatory properties of the combination. The cotreatment protected from cytotoxicity and greatly abated both the production of radical oxygen species (ROS) and the transcription of several inflammatory cytokines. Oxidative stress and inflammation were curtailed by affecting three main pathways: (1) inhibition of cyclooxygenase-2 enzyme and consequent decrease of signaling generating ROS; (2) increased synthesis of glutathione and therefore strengthening of the natural antioxidant defenses of the cells; (3) decreased infection-driven mitochondrial respiratory burst which generates oxidative stress. Based on the mounting interest in using nutraceuticals as adjuvants in the clinical practice, the present study unveils new mechanisms of action and enhanced efficacy of PC and PEA, supporting the possible exploitation of this combination in human disorders.
Collapse
|
10
|
Lyu L, Wang R, Wen H, Li Y, Li J, Wang X, Yao Y, Li J, Qi X. Cyclooxygenases of ovoviviparous black rockfish (Sebastes schlegelii): Cloning, tissue distribution and potential role in mating and parturition. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110677. [PMID: 34653596 DOI: 10.1016/j.cbpb.2021.110677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/19/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023]
Abstract
Prostaglandins are a series of unsaturated fatty acids that play critical roles in regulating reproductive events. The prostaglandins endoperoxide H synthases-1/2 (PGHS-1/2; also named cyclooxygenases-1/2, COX-1/2) catalyse the commitment step in prostaglandin synthesis. However, the of the cox genes in teleosts, especially ovoviviparous teleosts, is still unclear. The aim of the present study was to determine the potential role of cox genes in mating and parturition behaviour using black rockfish (Sebastes schlegelii) as a model species. Two transcripts, cox1 and cox2, were cloned. The phylogenetic analysis results revealed that both cox genes were closely related to mammalian coxs. qPCR analyses of their tissue distribution showed that cox1 was mainly expressed in the heart in both sexes, while cox2 was mainly expressed in the testis and ovary. Detection of cox expression in samples from reproductive-related stages further showed that both cox genes may play important roles in mating and parturition processes. In situ hybridization further detected positive cox mRNA signals in the testis and ovary, where they are known to be involved in mating and parturition behaviour. These data suggest that cox1 and cox2 are crucial in inducing mating, gonad regeneration and parturition behaviour.
Collapse
Affiliation(s)
- Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Ru Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jianshuang Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xiaojie Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yijia Yao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jifang Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
11
|
Suagee-Bedore JK, Shen Y, Porr S, Girard ID, Bennett-Wimbush K, Wagner AL. Impacts of DigestaWell NRG Supplementation on Post Exercise Muscle Soreness in Unconditioned Horses, a Pilot Study. J Equine Vet Sci 2021; 101:103455. [PMID: 33993938 DOI: 10.1016/j.jevs.2021.103455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Exercising horses are commonly plagued by muscle fatigue and soreness, which can result in reduced performance ability. In the present study, ten unconditioned horses were fed 200g per day DigestaWell NRG, a commercial dietary supplement containing Yucca schidigera and Trigonella foenum-graecum, two herbs shown in other species to reduce post-exercise muscle pain and soreness. A control, unsupplemented group contained ten horses of similar age, breed, and gender. Horses completed a 50 minutes, ridden standardized exercise test of moderate intensity immediately prior to (Period1) and after 28 days of supplementation (Period2). Muscle soreness and tightness were evaluated 24 hours prior to and after each exercise test and used to determine the percent increase in post-exercise muscle soreness and tightness. Blood samples were collected before, and at 10 and 30 minutes, and 1, 4, and 24 hours post exercise. Plasma was analyzed for glucose, lactate, non-esterified fatty acid, tumor necrosis factor-α, and interleukin-1β concentrations. Data were analyzed by repeated measures ANOVA using SAS Enterprise Guide v. 7.1. No changes in plasma parameters were indicated between periods for unsupplemented horses (P > 0.1) during Period2, excepting glucose, which was greater during Period2 (P = 0.018). Supplemented horses had lesser concentrations of tumor necrosis factor-α (P = 0.016) and lactate (P = 0.058) during Period2 than during Period1. During Period2, supplemented horses experienced a smaller percent increase in post exercise muscle soreness (P = 0.031). DigestaWell NRG supplementation may benefit unconditioned horses undergoing moderate intensity exercise through reducing lactate production and inflammation.
Collapse
Affiliation(s)
| | | | - Shea Porr
- Murray State University, Murray, KY.
| | - Ivan D Girard
- Probiotech International, St-Hyacinthe, Quebec, Canada.
| | | | | |
Collapse
|
12
|
Yamaguchi M, Fukasawa S. Is Inflammation a Friend or Foe for Orthodontic Treatment?: Inflammation in Orthodontically Induced Inflammatory Root Resorption and Accelerating Tooth Movement. Int J Mol Sci 2021; 22:2388. [PMID: 33673606 PMCID: PMC7957544 DOI: 10.3390/ijms22052388] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
The aim of this paper is to provide a review on the role of inflammation in orthodontically induced inflammatory root resorption (OIIRR) and accelerating orthodontic tooth movement (AOTM) in orthodontic treatment. Orthodontic tooth movement (OTM) is stimulated by remodeling of the periodontal ligament (PDL) and alveolar bone. These remodeling activities and tooth displacement are involved in the occurrence of an inflammatory process in the periodontium, in response to orthodontic forces. Inflammatory mediators such as prostaglandins (PGs), interleukins (Ils; IL-1, -6, -17), the tumor necrosis factor (TNF)-α superfamily, and receptor activator of nuclear factor (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) are increased in the PDL during OTM. OIIRR is one of the accidental symptoms, and inflammatory mediators have been detected in resorbed roots, PDL, and alveolar bone exposed to heavy orthodontic force. Therefore, these inflammatory mediators are involved with the occurrence of OIIRR during orthodontic tooth movement. On the contrary, regional accelerating phenomenon (RAP) occurs after fractures and surgery such as osteotomies or bone grafting, and bone healing is accelerated by increasing osteoclasts and osteoblasts. Recently, tooth movement after surgical procedures such as corticotomy, corticision, piezocision, and micro-osteoperforation might be accelerated by RAP, which increases the bone metabolism. Therefore, inflammation may be involved in accelerated OTM (AOTM). The knowledge of inflammation during orthodontic treatment could be used in preventing OIIRR and AOTM.
Collapse
Affiliation(s)
- Masaru Yamaguchi
- Ginza Orthodontic Clinic, Ginza Granvia 6F, 3-3-14 Ginza, Chuo-ku, Tokyo 104-0061, Japan;
| | | |
Collapse
|
13
|
Genomic instability in chronic obstructive pulmonary disease and lung cancer: A systematic review and meta-analysis of studies using the micronucleus assay. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108344. [PMID: 34083053 DOI: 10.1016/j.mrrev.2020.108344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022]
Abstract
Respiratory tissues are highly susceptible to diseases due to the constant exposure to physical and chemical airborne pollutants. Chronic obstructive pulmonary disease (COPD) and lung cancer are among the most common causes of serious illness and death worldwide. The inflammatory environment associated with these respiratory diseases has long been accepted as the major player in the development of airway abnormalities. The presence and relevance of DNA damage and genomic instability makes the micronucleus assay a suitable candidate to quantitatively estimate these early pathogenetic events. A systematic review and meta-analysis were planned to determine underlying common mechanisms that can explain the relationships between COPD and lung cancer. A total of 17 studies from Jan 1999 to Dec 2019 comparing micronucleus frequency in patients affected by respiratory diseases vs healthy controls were analysed. Our results confirmed the presence of significant association between MN frequency and the diseases investigated, and suggested a circle of events linking inflammation induced oxidative stress to the risk of disease through genomic instability and hypoxia. Therefore, using non-invasive, robust and cost effective genomic instability assays such as the micronucleus assay, would allow us to capture unique phenotypic and biological changes that would allow the identification of subjects at high risk of developing lung diseases and improve early detection strategies.
Collapse
|
14
|
Haesen S, Cöl Ü, Schurgers W, Evens L, Verboven M, Driesen RB, Bronckaers A, Lambrichts I, Deluyker D, Bito V. Glycolaldehyde-modified proteins cause adverse functional and structural aortic remodeling leading to cardiac pressure overload. Sci Rep 2020; 10:12220. [PMID: 32699285 PMCID: PMC7376068 DOI: 10.1038/s41598-020-68974-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Growing evidence supports the role of advanced glycation end products (AGEs) in the development of diabetic vascular complications and cardiovascular diseases (CVDs). We have shown that high-molecular-weight AGEs (HMW-AGEs), present in our Western diet, impair cardiac function. Whether HMW-AGEs affect vascular function remains unknown. In this study, we aimed to investigate the impact of chronic HMW-AGEs exposure on vascular function and structure. Adult male Sprague Dawley rats were daily injected with HMW-AGEs or control solution for 6 weeks. HMW-AGEs animals showed intracardiac pressure overload, characterized by increased systolic and mean pressures. The contraction response to PE was increased in aortic rings from the HMW-AGEs group. Relaxation in response to ACh, but not SNP, was impaired by HMW-AGEs. This was associated with reduced plasma cyclic GMP levels. SOD restored ACh-induced relaxation of HMW-AGEs animals to control levels, accompanied by a reduced half-maximal effective dose (EC50). Finally, collagen deposition and intima-media thickness of the aortic vessel wall were increased with HMW-AGEs. Our data demonstrate that chronic HMW-AGEs exposure causes adverse vascular remodelling. This is characterised by disturbed vasomotor function due to increased oxidative stress and structural changes in the aorta, suggesting an important contribution of HMW-AGEs in the development of CVDs.
Collapse
Affiliation(s)
- Sibren Haesen
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Ümare Cöl
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Wouter Schurgers
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Lize Evens
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Maxim Verboven
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Ronald B Driesen
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Dorien Deluyker
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Virginie Bito
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium.
| |
Collapse
|
15
|
Guo Y, Du X, Bian Y, Wang S. Chronic unpredictable stress-induced reproductive deficits were prevented by probiotics. Reprod Biol 2020; 20:175-183. [PMID: 32265160 DOI: 10.1016/j.repbio.2020.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 12/26/2022]
Abstract
Stress can induce reproductive deficits by activating the HPA and causing oxidative stress. Some studies have indicated that the neurologic diseases or disorders induced by stress could be relieved by probiotics. Whether chronic unpredictable stress (CUS)-induced reproductive deficits could be prevented by probiotics is unclear. The present experiment was designed to evaluate the effects of L. rhamnosus Gorbach-Goldin (LGG) on CUS-induced reproductive deficits. Kunming mice were divided into control, stress, and LGG groups randomly. The mice in stress and LGG groups were exposed to CUS for 40days, in the meantime, the mice in LGG group were orally administered with LGG suspension at a dose of 0.3 mL/mouse (1×1010 cells/mL), and the mice in control and stress groups were orally administered with volume-equivalent sterile saline once a day. The results showed that the CUS-induced the sperm deficits including the count, motility, morphology, ultrastructure, DNA integrity, and chromatin condensation were protected by oral administration of LGG. In addition, the change of testosterone level induced by CUS was prevented by up-regulating the expressions of StAR and P450scc in the testes. Moreover, LGG could increase the activities of catalase, glutathione peroxidase, and superoxide dismutase significantly, and decrease the levels of oxidative products malondialdehyde and protein carbonyls significantly, as well as the levels of cyclooxygenase 2, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, to block the CUS-induced inflammatory response and the oxidative stress. The results indicated that the CUS-induced male reproductive deficits could be prevented by oral administration of LGG.
Collapse
Affiliation(s)
- Yang Guo
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoxia Du
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yanqing Bian
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Shusong Wang
- Key Laboratory of Family Planning and Reproductive Genetics, National Health and Family Planning Commission, Shijiazhuang, 050071, China.
| |
Collapse
|
16
|
Mittra I, Pal K, Pancholi N, Tidke P, Siddiqui S, Rane B, D’souza J, Shaikh A, Parab S, Shinde S, Jadhav V, Shende S, Raghuram GV. Cell-free chromatin particles released from dying host cells are global instigators of endotoxin sepsis in mice. PLoS One 2020; 15:e0229017. [PMID: 32130239 PMCID: PMC7055819 DOI: 10.1371/journal.pone.0229017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/28/2020] [Indexed: 12/29/2022] Open
Abstract
We have earlier reported that cell-free chromatin (cfCh) particles that are released from dying cells, or those that circulate blood, can readily enter into healthy cells, illegitimately integrate into their genomes and induce dsDNA breaks, apoptosis and intense activation of inflammatory cytokines. We hypothesized that sepsis is caused by cfCh released from dying host cells following microbial infection leading to bystander host cell apoptosis and inflammation which are perpetuated in a vicious cycle with release of more cfCh from dying host cells. To test this hypothesis we used three cfCh inactivating agents namely 1) anti-histone antibody complexed nanoparticles which inactivate cfCh by binding to histones; 2) DNase I which inactivates cfCh by degrading its DNA component, and 3) a novel pro-oxidant combination of Resveratrol and Copper which, like DNase I, inactivates cfCh by degrading its DNA component. Female C57 BL/6 mice, 6–8 weeks old, were administered a single i.p. injection of LPS at a dose of 10 mg/Kg or 20 mg/Kg with or without concurrent treatment with the above cfCh inactivating agents. Administration of cfCh inactivating agents concurrently with LPS resulted in prevention of following pathological parameters: 1) release of cfCh in extra-cellular spaces of brain, lung and heart and in circulation; 2) release of inflammatory cytokines in circulation; 3) activation of DNA damage, apoptosis and inflammation in cells of thymus, spleen and in PBMCs; 4) DNA damage, apoptosis and inflammation in cells of lung, liver, heart, brain, kidney and small intestine; 5) liver and kidney dysfunction and elevation of serum lactate; 6) coagulopathy, fibrinolysis and thrombocytopenia; 7) lethality. We conclude that cfCh that are released from dying host cells in response to bacterial endotoxin represents a global instigator of sepsis. cfCh inactivation may provide a novel approach to management of sepsis in humans.
Collapse
Affiliation(s)
- Indraneel Mittra
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
- * E-mail:
| | - Kavita Pal
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Namrata Pancholi
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Pritishkumar Tidke
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Sophiya Siddiqui
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Bhagyeshri Rane
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Jenevieve D’souza
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Alfina Shaikh
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Saili Parab
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Sushma Shinde
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Vishal Jadhav
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Soniya Shende
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Gorantla V. Raghuram
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| |
Collapse
|
17
|
Rocha L, Frías‐Soria CL, Ortiz JG, Auzmendi J, Lazarowski A. Is cannabidiol a drug acting on unconventional targets to control drug-resistant epilepsy? Epilepsia Open 2020; 5:36-49. [PMID: 32140642 PMCID: PMC7049809 DOI: 10.1002/epi4.12376] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Cannabis has been considered as a therapeutic strategy to control intractable epilepsy. Several cannabis components, especially cannabidiol (CBD), induce antiseizure effects. However, additional information is necessary to identify the types of epilepsies that can be controlled by these components and the mechanisms involved in these effects. This review presents a summary of the discussion carried out during the 2nd Latin American Workshop on Neurobiology of Epilepsy entitled "Cannabinoid and epilepsy: myths and realities." This event was carried out during the 10th Latin American Epilepsy Congress in San José de Costa Rica (September 28, 2018). The review focuses to discuss the use of CBD as a new therapeutic strategy to control drug-resistant epilepsy. It also indicates the necessity to consider the evaluation of unconventional targets such as P-glycoprotein, to explain the effects of CBD in drug-resistant epilepsy.
Collapse
Affiliation(s)
- Luisa Rocha
- Departamento de FarmacobiologíaCentro de Investigación y de Estudios AvanzadosMéxico CityMéxico
| | | | - José G. Ortiz
- Department of Pharmacology and ToxicologySchool of MedicineUniversity of Puerto RicoSan JuanPuerto Rico
| | - Jerónimo Auzmendi
- Departamento de Bioquímica ClínicaFacultad de Farmacia y BioquímicaInstituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC)Universidad de Buenos AiresBuenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Alberto Lazarowski
- Departamento de Bioquímica ClínicaFacultad de Farmacia y BioquímicaInstituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC)Universidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
18
|
Ramakrishnan AM, Kumar P, Chatterjee S, Sankaranarayanan K. Differential expression of CRAC channel in alloxan induced Diabetic BALB/c mice. Immunopharmacol Immunotoxicol 2020; 42:48-55. [PMID: 31983259 DOI: 10.1080/08923973.2020.1716788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objectives: CRAC (Calcium Release Activated Calcium) channel is one of the most important channels regulating calcium influx and has been involved in many autoimmune diseases. The contribution of CRAC channel in the pathogenesis of Type 1 Diabetes (T1D) has not been described much. Thus, we aimed to study the expression of CRAC channel and inflammatory cytokines like IL-1β (Interleukin -1β) and TNF-α (Tumor Necrosis Factor-α) in the spleen-derived cytotoxic T cells, Bone marrow monocytes (BMM) and macrophages differentiated from BMM in the alloxan induced T1D mice.Materials and methods: BALB/c mice treated with alloxan and vehicle control for 12 and 24 h. Spleen derived T cells; Bone marrow derived monocytes were isolated from the control and diabetic BALB/c mice as well as macrophages differentiated from the control and diabetic BMM.Results: We observed increased expression of CRAC channel components like STIM1 (Stromal Interaction Molecule), ORAI1 and ORAI2 and inflammatory cytokines like IL-1β and TNF-α in the spleen derived cytotoxic T cells and Macrophages differentiated from BMM as well as the downregulated expression of the same and CRAC channel in BMM of 12 and 24 h alloxan induced BALB/c mice.Conclusions: This study suggests that differential expression of CRAC channel correlated with the expression of inflammatory cytokines, thus CRAC channel might be responsible for the increased production of inflammatory cytokines in the alloxan induced T1D mice.
Collapse
Affiliation(s)
| | - Pavitra Kumar
- Vascular Biology laboratory, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India
| | - Suvro Chatterjee
- Vascular Biology laboratory, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India
| | - Kavitha Sankaranarayanan
- Ion Channel Biology Laboratory, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India
| |
Collapse
|
19
|
Qian F, Misra S, Prabhu KS. Selenium and selenoproteins in prostanoid metabolism and immunity. Crit Rev Biochem Mol Biol 2019; 54:484-516. [PMID: 31996052 PMCID: PMC7122104 DOI: 10.1080/10409238.2020.1717430] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is an essential trace element that functions in the form of the 21st amino acid, selenocysteine (Sec) in a defined set of proteins. Se deficiency is associated with pathological conditions in humans and animals, where incorporation of Sec into selenoproteins is reduced along with their expression and catalytic activity. Supplementation of Se-deficient population with Se has shown health benefits suggesting the importance of Se in physiology. An interesting paradigm to explain, in part, the health benefits of Se stems from the observations that selenoprotein-dependent modulation of inflammation and efficient resolution of inflammation relies on mechanisms involving a group of bioactive lipid mediators, prostanoids, which orchestrate a concerted action toward maintenance and restoration of homeostatic immune responses. Such an effect involves the interaction of various immune cells with these lipid mediators where cellular redox gatekeeper functions of selenoproteins further aid in not only dampening inflammation, but also initiating an effective and active resolution process. Here we have summarized the current literature on the multifaceted roles of Se/selenoproteins in the regulation of these bioactive lipid mediators and their immunomodulatory effects.
Collapse
Affiliation(s)
- Fenghua Qian
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences and The Penn State Cancer Institute, The Pennsylvania State University, University Park, PA. 16802, USA
| | - Sougat Misra
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences and The Penn State Cancer Institute, The Pennsylvania State University, University Park, PA. 16802, USA
| | - K. Sandeep Prabhu
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences and The Penn State Cancer Institute, The Pennsylvania State University, University Park, PA. 16802, USA
| |
Collapse
|
20
|
Nam Y, Kim JH, Konkit M, Kim W. Hepatoprotective effects of Lactococcus chungangensis CAU 1447 in alcoholic liver disease. J Dairy Sci 2019; 102:10737-10747. [PMID: 31521345 DOI: 10.3168/jds.2019-16891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/25/2019] [Indexed: 12/12/2022]
Abstract
Alcoholic liver disease (ALD) is correlated with alcohol consumption, and ALD progression depends on various factors. Some lactic acid bacteria (LAB) are beneficial for mitigating ALD. However, the valuable effects of LAB-derived dairy products remain unclear. Here, we evaluated the effects of Lactococcus chungangensis CAU 1447 dry cells (CAU 1447) and cream cheese derived from CAU 1447 on ALD progression following long-term alcohol consumption in rats. Oral administration of CAU 1447 and CAU 1447 cream cheese significantly reduced alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, and triglyceride levels. We found that CAU 1447 and CAU 1447 cream cheese downregulated mRNA encoding various cytokines and antioxidative factors in the liver. Oral CAU 1447 cream cheese administration increased short-chain fatty acid, butyrate, and acetate levels in feces. Thus, administration of CAU 1447 and CAU 1447 cream cheese induced hepatoprotective effects, indicating potential applications as a supplement for ALD mitigation.
Collapse
Affiliation(s)
- YoHan Nam
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Jong-Hwa Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Maytiya Konkit
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea.
| |
Collapse
|
21
|
Huang XL, Wei XC, Guo LQ, Zhao L, Chen XH, Cui YD, Yuan J, Chen DF, Zhang J. The therapeutic effects of Jaceosidin on lipopolysaccharide-induced acute lung injury in mice. J Pharmacol Sci 2019; 140:228-235. [DOI: 10.1016/j.jphs.2019.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 12/18/2022] Open
|
22
|
Khan A, Ali T, Rehman SU, Khan MS, Alam SI, Ikram M, Muhammad T, Saeed K, Badshah H, Kim MO. Neuroprotective Effect of Quercetin Against the Detrimental Effects of LPS in the Adult Mouse Brain. Front Pharmacol 2018; 9:1383. [PMID: 30618732 PMCID: PMC6297180 DOI: 10.3389/fphar.2018.01383] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic neuroinflammation is responsible for multiple neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Lipopolysaccharide (LPS) is an essential component of the gram-negative bacterial cell wall and acts as a potent stimulator of neuroinflammation that mediates neurodegeneration. Quercetin is a natural flavonoid that is abundantly found in fruits and vegetables and has been shown to possess multiple forms of desirable biological activity including anti-inflammatory and antioxidant properties. This study aimed to evaluate the neuroprotective effect of quercetin against the detrimental effects of LPS, such as neuroinflammation-mediated neurodegeneration and synaptic/memory dysfunction, in adult mice. LPS [0.25 mg/kg/day, intraperitoneally (I.P.) injections for 1 week]-induced glial activation causes the secretion of cytokines/chemokines and other inflammatory mediators, which further activate the mitochondrial apoptotic pathway and neuronal degeneration. Compared to LPS alone, quercetin (30 mg/kg/day, I.P.) for 2 weeks (1 week prior to the LPS and 1 week cotreated with LPS) significantly reduced activated gliosis and various inflammatory markers and prevented neuroinflammation in the cortex and hippocampus of adult mice. Furthermore, quercetin rescued the mitochondrial apoptotic pathway and neuronal degeneration by regulating Bax/Bcl2, and decreasing activated cytochrome c, caspase-3 activity and cleaving PARP-1 in the cortical and hippocampal regions of the mouse brain. The quercetin treatment significantly reversed the LPS-induced synaptic loss in the cortex and hippocampus of the adult mouse brain and improved the memory performance of the LPS-treated mice. In summary, our results demonstrate that natural flavonoids such as quercetin can be beneficial against LPS-induced neurotoxicity in adult mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
23
|
Chen CF, Su CH, Lai MN, Ng LT. Differences in water soluble non-digestible polysaccharides and anti-inflammatory activities of fruiting bodies from two cultivated Xylaria nigripes strains. Int J Biol Macromol 2018; 116:728-734. [DOI: 10.1016/j.ijbiomac.2018.05.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 01/06/2023]
|
24
|
Hao W, Qi T, Pan L, Wang R, Zhu B, Aguilera-Aguirre L, Radak Z, Hazra TK, Vlahopoulos SA, Bacsi A, Brasier AR, Ba X, Boldogh I. Effects of the stimuli-dependent enrichment of 8-oxoguanine DNA glycosylase1 on chromatinized DNA. Redox Biol 2018; 18:43-53. [PMID: 29940424 PMCID: PMC6019822 DOI: 10.1016/j.redox.2018.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/16/2022] Open
Abstract
8-Oxoguanine DNA glycosylase 1 (OGG1) initiates the base excision repair pathway by removing one of the most abundant DNA lesions, 8-oxo-7,8-dihydroguanine (8-oxoG). Recent data showed that 8-oxoG not only is a pro-mutagenic genomic base lesion, but also functions as an epigenetic mark and that consequently OGG1 acquire distinct roles in modulation of gene expression. In support, lack of functional OGG1 in Ogg1-/- mice led to an altered expression of genes including those responsible for the aberrant innate and adaptive immune responses and susceptibility to metabolic disorders. Therefore, the present study examined stimulus-driven OGG1-DNA interactions at whole genome level using chromatin immunoprecipitation (ChIP)-coupled sequencing, and the roles of OGG1 enriched on the genome were validated by molecular and system-level approaches. Results showed that signaling levels of cellular ROS generated by TNFα, induced enrichment of OGG1 at specific sites of chromatinized DNA, primarily in the regulatory regions of genes. OGG1-ChIP-ed genes are associated with important cellular and biological processes and OGG1 enrichment was limited to a time scale required for immediate cellular responses. Prevention of OGG1-DNA interactions by siRNA depletion led to modulation of NF-κB's DNA occupancy and differential expression of genes. Taken together these data show TNFα-ROS-driven enrichment of OGG1 at gene regulatory regions in the chromatinized DNA, which is a prerequisite to modulation of gene expression for prompt cellular responses to oxidant stress.
Collapse
Affiliation(s)
- Wenjing Hao
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Tianyang Qi
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ruoxi Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Bing Zhu
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Leopoldo Aguilera-Aguirre
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Zsolt Radak
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Tapas K Hazra
- Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Spiros A Vlahopoulos
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Attila Bacsi
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Allan R Brasier
- Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Xueqing Ba
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| |
Collapse
|
25
|
The Potential Health Benefits of Noni Juice: A Review of Human Intervention Studies. Foods 2018; 7:foods7040058. [PMID: 29641454 PMCID: PMC5920423 DOI: 10.3390/foods7040058] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 01/22/2023] Open
Abstract
Noni juice is a globally popular health beverage originating in the tropics. Traditional Tahitian healers believe the noni plant to be useful for a wide range of maladies, and noni juice consumers throughout the world have similar perceptions. Nevertheless, human clinical trials are necessary for a precise understanding of what the health benefits of noni juice are. A review of published human intervention studies suggests that noni juice may provide protection against tobacco smoke-induced DNA damage, blood lipid and homocysteine elevation as well as systemic inflammation. Human intervention studies also indicate that noni juice may improve joint health, increase physical endurance, increase immune activity, inhibit glycation of proteins, aid weight management, help maintain bone health in women, help maintain normal blood pressure, and improve gum health. Further, these studies point to notable antioxidant activity in noni juice, more so than other fruit juices which served as trial placebos. It is this antioxidant effect and its interaction with the immune system and inflammation pathways that may account for many of the observed health benefits of noni juice. However, the existing evidence does have some limitations as far as its general application to noni juice products; all the peer-reviewed human interventions studies to date have involved only one source of French Polynesian noni juice. Geographical factors and variations in processing methods are known to produce commercial noni juice products with divergent phytochemical and nutrient compositions. Therefore, other sources of noni products may have different toxicological and pharmacological profiles.
Collapse
|
26
|
Rizzetti DA, da Silva TM, Escobar AG, Piagette J, Peçanha FM, Vassallo DV, Alonso MJ, Salaices M, Wiggers GA. Mercury-induced vascular dysfunction is mediated by angiotensin II AT-1 receptor upregulation. ENVIRONMENTAL RESEARCH 2018; 162:287-296. [PMID: 29407760 DOI: 10.1016/j.envres.2018.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/17/2018] [Accepted: 01/20/2018] [Indexed: 06/07/2023]
Abstract
Low doses of mercury (Hg) promote deleterious effects on cardiovascular system, but the mechanisms implicated remain unclear. This study analyzed whether angiotensin II AT-1 receptors are involved in the vascular dysfunction caused by chronic exposure to low HgCl2 doses. For this, rats were divided into four groups and untreated (saline by im injections and tap water by gavage) or treated for 30 days as follows: Mercury (HgCl2im, first dose of 4.6 µg kg-1 and subsequent doses of 0.07 µg kg-1 day-1, and tap water by gavage); Losartan (saline im and losartan, 15 mg kg-1 day-1, by gavage); Losartan-Mercury (HgCl2im and Losartan by gavage). Systolic blood pressure was measured by tail plethysmography, vascular reactivity in aorta by isolated organ bath, oxidative stress by measuring the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and antioxidant capacity (FRAP) and protein expression of AT-1 receptors by Western Blot. As results, co-treatment with losartan prevented the increased aortic vasoconstrictor responses to phenylephrine (Phe), the involvement of ROS and prostanoids on the response to Phe and the reduced negative endothelial modulation by nitric oxide on these responses. Moreover, this co-treatment avoided the increase in plasmatic and vascular oxidative stress and AT-1 protein expression in aorta. In conclusion, these results suggest that AT-1 receptors upregulation might play a key role in the vascular damage induced by Hg exposure by increasing oxidative stress and probably by reducing NO bioavailability.
Collapse
Affiliation(s)
- Danize A Rizzetti
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Taiz M da Silva
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Alyne G Escobar
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Janaina Piagette
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Franck M Peçanha
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Dalton V Vassallo
- Cardiac Electromechanical and Vascular Reactivity Laboratory, Universidade Federal do Espírito Santo, Marechal Campos, 1468 Vitória, Espírito Santo, Brazil
| | - Maria J Alonso
- Department of Basic Health Sciences, Universidad Rey Juan Carlos, C/ Atenas s/n, Alcorcón, Spain
| | - Mercedes Salaices
- Department of Pharmacology, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, Madrid, Spain
| | - Giulia A Wiggers
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil.
| |
Collapse
|
27
|
Ferrando B, Gomez-Cabrera MC, Salvador-Pascual A, Puchades C, Derbré F, Gratas-Delamarche A, Laparre L, Olaso-Gonzalez G, Cerda M, Viosca E, Alabajos A, Sebastiá V, Alberich-Bayarri A, García-Castro F, Viña J. Allopurinol partially prevents disuse muscle atrophy in mice and humans. Sci Rep 2018; 8:3549. [PMID: 29476130 PMCID: PMC5824846 DOI: 10.1038/s41598-018-21552-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 02/07/2018] [Indexed: 12/31/2022] Open
Abstract
Disuse muscle wasting will likely affect everyone in his or her lifetime in response to pathologies such as joint immobilization, inactivity or bed rest. There are no good therapies to treat it. We previously found that allopurinol, a drug widely used to treat gout, protects muscle damage after exhaustive exercise and results in functional gains in old individuals. Thus, we decided to test its effect in the prevention of soleus muscle atrophy after two weeks of hindlimb unloading in mice, and lower leg immobilization following ankle sprain in humans (EudraCT: 2011-003541-17). Our results show that allopurinol partially protects against muscle atrophy in both mice and humans. The protective effect of allopurinol is similar to that of resistance exercise which is the best-known way to prevent muscle mass loss in disuse human models. We report that allopurinol protects against the loss of muscle mass by inhibiting the expression of ubiquitin ligases. Our results suggest that the ubiquitin-proteasome pathway is an appropriate therapeutic target to inhibit muscle wasting and emphasizes the role of allopurinol as a non-hormonal intervention to treat disuse muscle atrophy.
Collapse
Affiliation(s)
- Beatriz Ferrando
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain.
| | - Andrea Salvador-Pascual
- Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Carlos Puchades
- Servicio de Oncología Médica, Hospital La Fe, Valencia, Spain
| | - Frederic Derbré
- Laboratory of Movement Sport and Health Sciences (M2S), University Rennes 2-ENS, Rennes, France
| | | | - Ludovic Laparre
- Laboratory of Movement Sport and Health Sciences (M2S), University Rennes 2-ENS, Rennes, France
| | - Gloria Olaso-Gonzalez
- Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Miguel Cerda
- Department of Pathology, University of Valencia, Valencia, Spain
| | - Enrique Viosca
- Servicio de Medicina Física y Rehabilitación, Hospital La Fe, Valencia, Spain
| | - Ana Alabajos
- Servicio de Medicina Física y Rehabilitación, Hospital La Fe, Valencia, Spain
| | - Vicente Sebastiá
- Clinica Ypsilon de medicina física y rehabilitación, Valencia, Spain
| | - Angel Alberich-Bayarri
- GIBI 230 (Biomedical Imaging Research Group), La Fe Health Research Institute, Valencia, Spain.,QUIBIM SL, Valencia, Spain
| | | | - Jose Viña
- Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| |
Collapse
|
28
|
Ren Y, Stankovic KM. The Role of Tumor Necrosis Factor Alpha (TNFα)in Hearing Loss and Vestibular Schwannomas. CURRENT OTORHINOLARYNGOLOGY REPORTS 2018; 6:15-23. [PMID: 31485383 DOI: 10.1007/s40136-018-0186-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose of review The aim of this review is to highlight relevant literature on the role of tumor necrosis factor alpha (TNFα) in sensorineural hearing loss (SNHL) and vestibular schwannomas (VS). Recent Findings A comprehensive review of publically available databases including PubMed was performed. The mechanism by which hearing loss occurs in VS is still unknown and likely multifactorial. Genetic differences between VSs and tumor secreted proteins may be responsible, at least in part, for VS-associated SNHL. TNFα has pleotropic roles in promoting inflammation, maintaining cellular homeostasis, inducing apoptosis, and mediating ototoxicity in patients with sporadic VS. TNFα-targeted therapies have shown efficacy in both animal models of sensorineural hearing loss and clinical trials in patients with immune-mediated hearing loss. Efforts are underway to develop novel nanotechnology-based methods to target TNFα and other pathogenic molecules in VS. Summary Development of molecularly targeted therapies against TNFα represents an important area of research in ameliorating VS-associated hearing loss.
Collapse
Affiliation(s)
- Yin Ren
- Department of Otolaryngology, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Konstantina M Stankovic
- Department of Otolaryngology, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.,Eaton Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA.,Harvard Program in Speech and Hearing Bioscience and Technology, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
29
|
Cholia RP, Kumari S, Kumar S, Kaur M, Kaur M, Kumar R, Dhiman M, Mantha AK. An in vitro study ascertaining the role of H 2O 2 and glucose oxidase in modulation of antioxidant potential and cancer cell survival mechanisms in glioblastoma U-87 MG cells. Metab Brain Dis 2017; 32:1705-1716. [PMID: 28676971 DOI: 10.1007/s11011-017-0057-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022]
Abstract
Glial cells protect themselves from the elevated reactive oxygen species (ROS) via developing unusual mechanisms to maintain the genomic stability, and reprogramming of the cellular antioxidant system to cope with the adverse effects. In the present study non-cytotoxic dose of oxidants, H2O2 (100 μM) and GO (10 μU/ml) was used to induce moderate oxidative stress via generating ROS in human glioblastoma cell line U-87 MG cells, which showed a marked increase in the antioxidant capacity as studied by measuring the modulation in expression levels and activities of superoxide dismutase (SOD1 and SOD2) and catalase (CAT) enzymes, and the GSH content. However, pretreatment (3 h) of Curcumin and Quercetin (10 μM) followed by the treatment of oxidants enhanced the cell survival, and the levels/activities of the antioxidants studied. Oxidative stress also resulted in an increase in the nitrite levels in the culture supernatants, and further analysis by immunocytochemistry showed an increase in iNOS expression. In addition, phytochemical pretreatment decreased the nitrite level in the culture supernatants of oxidatively stressed U-87 MG cells. Elevated ROS also increased the expression of COX-2 and APE1 enzymes and pretreatment of Curcumin and Quercetin decreased COX-2 expression and increased APE1 expression in the oxidatively stressed U-87 MG cells. The immunocytochemistry also indicates for APE1 enhanced stress-dependent subcellular localization to the nuclear compartment, which advocates for enhanced DNA repair and redox functions of APE1 towards survival of U-87 MG cells. It can be concluded that intracellular oxidants activate the key enzymes involved in antioxidant mechanisms, NO-dependent survival mechanisms, and also in the DNA repair pathways for glial cell survival in oxidative-stress micro-environment.
Collapse
Affiliation(s)
- Ravi P Cholia
- Center for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, 151 001, India
| | - Sanju Kumari
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Saurabh Kumar
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Manpreet Kaur
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Manbir Kaur
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Raj Kumar
- Center for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Center for Biochemistry and Microbial Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anil K Mantha
- Center for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, 151 001, India.
| |
Collapse
|
30
|
Begum R, Sheliya MA, Mir SR, Singh E, Sharma M. Inhibition of proinflammatory mediators by coumaroyl lupendioic acid, a new lupane-type triterpene from Careya arborea, on inflammation-induced animal model. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:376-392. [PMID: 28502905 DOI: 10.1016/j.jep.2017.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/28/2017] [Accepted: 05/10/2017] [Indexed: 01/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Careya arborea Roxb. (Lecythidaceae) is a large tree found throughout India in deciduous forests and grasslands. C. arborea is traditionally used in tumors, inflammation, anthelmintic, bronchitis, epileptic fits, astringents, antidote to snake-venom, skin disease, diarrhea, dysentery with bloody stools, dyspepsia, ulcer, tooth ache, and ear pain. AIM OF THE STUDY In our previous work, the methanolic extract of Careya arborea stem bark showed significant anti-inflammatory activity. As a continuity of that work, this study aimed at the isolation and evaluation of the anti-inflammatory effect of coumaroyl lupendioic acid, a new lupane-type triterpene from Careya arborea stem bark. Further, to give an insight into the underlying mechanism of action of the compound on the modulation of proinflammatory mediators. MATERIALS AND METHODS Methanolic extract of Careya arborea stem bark was suspended in water, and sequentially fractionated with n-hexane and ethyl acetate. Further ethyl acetate fraction was subjected to medium pressure liquid chromatography (MPLC) to isolate the active molecules. The isolated compounds were characterized by the various spectral techniques namely UV, IR, 1H NMR, 13C NMR, DEPT, 1H-1H COSY, HMBC and Mass spectral techniques. In vitro COX-1 and COX-2 enzyme inhibition assays using human whole blood was performed to investigate the inhibitory effect of the isolated compounds. The resulted potent COX-2 inhibitor of the isolated constituents compound 5, designated as coumaroyl lupendioic acid (CLA), was investigated in carrageenan induced inflammation and its effect was also compared with betulinic acid (BA) at the doses of 10 and 20mgkg-1, p.o. using indomethacin and celecoxib (10 and 20mgkg-1, p.o., respectively) as reference drugs. The effect of CLA on the production of NO, MPO, PGE2, TNF-α, IL-1β and IL-6 were assessed. In addition, the histopathology and immunohistochemistry (NF-ҡB, COX-2 and TNF-α protein expression) in paw tissues were also carried out. RESULTS The chromatographic fractionation of the methanolic extract resulted in isolation of six new derivatives of lupane type triterpenes for the first time from the stem bark of C. arborea; 3β-hydroxy-lup-5,20 (29),21-trien-28-oic acid (Compound 1), 1, 3, 13, 16-tetrahydroxy-lup-9(11), 20(29)-diene-28-oic acid (Compound 2), 1, 7-di hydroxy betulinic acid (Compound 3), 3β-O-dihydrocinnamyl betulinic acid (Compound 4), 3β-O-trans-coumaryl-lup-6, 9(11), 20(29)-triene-27, 28-dioic acid (Compound 5), 16β-hydroxy-2, 3-seco-lup-5, 20(29)-dien-2, 3, 28-trioic acid (Compound 6). Among the all isolated compounds 3β-O-trans-coumaryl-lup-6, 9(11), 20(29)-triene-27, 28-olioic acid designated as coumaroyl lupendioic acid (CLA) showed higher COX-2 selectivity which is comparable to reference drug (celecoxib). CLA significantly reduced carrageenan induced inflammation whereas CLA revealed greater effect as compared to BA at the similar corresponding doses. Moreover, CLA significantly inhibited pro-inflammatory mediators elevated by carrageenan. CLA also preserved the tissue architecture as evidenced by the histopathology. Furthermore, immunohistochemical studies revealed that CLA significantly down regulated NF-ҡB, COX-2 and TNF-α protein expression. CONCLUSION The study gives an insight into the molecular mechanisms of coumaroyl lupendioic acid and suggests that the down-regulations of proinflammatory mediators provide credence to the ethno botanical use of the plant in the management of inflammation.
Collapse
Affiliation(s)
- Rayhana Begum
- Department of Pharmacy, Primeasia University, Dhaka, Bangladesh
| | - Manjur Ali Sheliya
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | - Showkat R Mir
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | - Ekta Singh
- National Institute for Stroke and Applied Neuroscience, Auckland University of Technology, Auckland, New Zealand
| | - Manju Sharma
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India.
| |
Collapse
|
31
|
Rezapour-Firouzi S. Herbal Oil Supplement With Hot-Nature Diet for Multiple Sclerosis. NUTRITION AND LIFESTYLE IN NEUROLOGICAL AUTOIMMUNE DISEASES 2017:229-245. [DOI: 10.1016/b978-0-12-805298-3.00024-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
32
|
Antioxidant and anti-inflammatory role of zingerone in ethanol-induced hepatotoxicity. Mol Cell Biochem 2016; 421:169-81. [DOI: 10.1007/s11010-016-2798-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/12/2016] [Indexed: 01/01/2023]
|
33
|
Abstract
The molecular and cellular basis of inflammation has become a topic of great interest of late because of the association between mechanisms of inflammation and risk for cancer. Inflammatory-mediated events, such as the production of reactive oxygen species (ROS), the activation of growth factors (for wound repair), and the altering of signal-transduction processes to activate cell-proliferation (to replace necrotic/apoptotic tissue cells), events that also can occur independently of inflammation, are all considered to be components of risk for a variety of cancers. Using scar cancer of the lung as an example, mechanisms of inflammation associated with recurring infections with Mycobacterium tuberculosisare discussed in the context that they may, in fact, be the major or sole cause of a cancer. Production of ROS, prostaglandins, leukotrienes, and cytokines in pulmonary tissues is greatly enhanced due to a cell-mediated immune response against macrophages infected with M. tuberculosis. These responses lead to the extensive fibrosis associated with recurring infections, possibly leading to decreased clearance of lymph and lymph-associated particles from the infected region. They also will enhance rates of cell division by inhibiting synthesis of P21, leading to enhanced progression from G0 arrest to G1 phase, from G1 to Sphase, and from G2 to M phase of the cell cycle. By increasing rates of oxidative DNA damage and inhibiting apoptosis by enhancing synthesis of BCL-2, mutagenesis of progeny cells is enhanced, and these effects coupled with enhanced angiogenesis stimulated by COX-2 products lead to an environment that is highly conducive to tumorigenesis. Based on the evidence, it appears that but for an inflammatory response to recurring infections, some cases of scar cancer would not exist. By making appropriate lifestyle and dietary changes, a variety of anti-inflammatory effects can be produced, which should attenuate inflammation-induced risk for cancer.
Collapse
|
34
|
Tamma G, Valenti G. Evaluating the Oxidative Stress in Renal Diseases: What Is the Role for S-Glutathionylation? Antioxid Redox Signal 2016; 25:147-64. [PMID: 26972776 DOI: 10.1089/ars.2016.6656] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) have long been considered as toxic derivatives of aerobic metabolism displaying a harmful effect to living cells. Deregulation of redox homeostasis and production of excessive free radicals may contribute to the pathogenesis of kidney diseases. In line, oxidative stress increases in patients with renal dysfunctions due to a general increase of ROS paralleled by impaired antioxidant ability. RECENT ADVANCES Emerging evidence revealed that physiologically, ROS can act as signaling molecules interplaying with several transduction pathways such as proliferation, differentiation, and apoptosis. ROS can exert signaling functions by modulating, at different layers, protein oxidation since proteins have "cysteine switches" that can be reversibly reduced or oxidized, supporting the dynamic signaling regulation function. In this scenario, S-glutathionylation is a posttranslational modification involved in oxidative cellular response. CRITICAL ISSUES Although it is widely accepted that renal dysfunctions are often associated with altered redox signaling, the relative role of S-glutathionylation on the pathogenesis of specific renal diseases remains unclear and needs further investigations. In this review, we discuss the impact of ROS in renal health and diseases and the role of selective S-glutathionylation proteins potentially relevant to renal physiology. FUTURE DIRECTIONS The paucity of studies linking the reversible protein glutathionylation with specific renal disorders remains unmet. The growing number of S-glutathionylated proteins indicates that this is a fascinating area of research. In this respect, further studies on the association of reversible glutathionylation with renal diseases, characterized by oxidative stress, may be useful to develop new pharmacological molecules targeting protein S-glutathionylation. Antioxid. Redox Signal. 25, 147-164.
Collapse
Affiliation(s)
- Grazia Tamma
- 1 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy .,2 Istituto Nazionale di Biostrutture e Biosistemi (I.N.B.B.) , Rome, Italy
| | - Giovanna Valenti
- 1 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy .,2 Istituto Nazionale di Biostrutture e Biosistemi (I.N.B.B.) , Rome, Italy .,3 Centro di Eccellenza di Genomica in campo Biomedico ed Agrario (CEGBA) , Bari, Italy
| |
Collapse
|
35
|
Kongseng S, Yoovathaworn K, Wongprasert K, Chunhabundit R, Sukwong P, Pissuwan D. Cytotoxic and inflammatory responses of TiO2 nanoparticles on human peripheral blood mononuclear cells. J Appl Toxicol 2016; 36:1364-73. [PMID: 27225715 DOI: 10.1002/jat.3342] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 12/27/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 -NPs) have been widely used in many applications. Owing to their nanoscale size, interactions between cells and NPs have been expansively investigated. With the health concerns raised regarding the adverse effects of these interactions, closer examination of whether TiO2 -NPs can induce toxicity towards human cells is greatly needed. Therefore, in this study, we investigated the cytotoxicity of TiO2 -NPs towards human blood cells (peripheral blood mononuclear cells [PBMCs]) in serum-free medium, for which there is little information regarding the cytotoxic effects of TiO2 -NPs. Our results provide evidence that PBMCs treated with TiO2 -NPs (at concentrations ≥25 μg ml(-1) ) for 24 h significantly reduced cell viability and significantly increased production of toxic mediators such as reactive oxygen species and inflammatory response cytokines such as interleukin-6 and tumor necrosis factor-α (P < 0.05). Cell apoptosis induction also occurred at these concentrations. Significant expressions of cyclooxygenase-2 and interleukin-1β were also observed in PBMCs treated with TiO2 -NPs at concentrations ≥125 μg ml(-1) . Our data presented here clearly indicate that the concentration of TiO2 -NPs (at size ~26.4 ± 1.2 nm) applied to human blood cells has a strong impact on cytotoxic induction. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Supunsa Kongseng
- Toxicology Graduate Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Krongtong Yoovathaworn
- Toxicology Graduate Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Rodjana Chunhabundit
- Graduate Program in Nutrition, Faculty of Medicine at Ramathibodi Hospital, Mahidol University, Bangkok
| | - Patinya Sukwong
- Toxicology Graduate Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Dakrong Pissuwan
- Toxicology Graduate Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, Faculty of Science, Mahidol University, Bangkok.,Materials Science and Engineering Graduate Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
36
|
Woo SM, Lee WK, Min KJ, Kim DE, Park SH, Nam SI, Kwon TK. Rottlerin induces cyclooxygenase-2 upregulation through an ATF4 and reactive oxygen species-independent pathway in HEI-OC1 cells. Mol Med Rep 2016; 14:845-50. [PMID: 27222046 DOI: 10.3892/mmr.2016.5320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 04/29/2016] [Indexed: 11/06/2022] Open
Abstract
Hearing loss can be caused by infection, inflammation, loud noise and ototoxic drugs. The induction of cyclooxygenase-2 (COX‑2) expression is an important event during the cellular inflammatory response. The present study investigated the effect of rottlerin on CO-2 mRNA and protein expression in HEI-OC1 cells. Cell viability was determined using an MTT assay. Western blotting was used to examine the expression of COX‑2, endoplasmic reticulum stress-associated transcription factors and activation of the MAPK pathway. ROS was measured using the fluorescent probe 2', 7'-dichlorodihydrofluorescein diacetate. Treatment with the natural protein kinase C δ inhibitor, rottlerin, was shown to increase COX‑2 expression at the protein and mRNA levels in a dose‑dependent manner. Rottlerin was shown to induce increased reactive oxygen species (ROS) generation, however, ROS were not critical for rottlerin‑induced upregulation of COX‑2 expression in HEI‑OC1 cells. In addition, rottlerin was shown to increase the phosphorylation of p38 mitogen-activated protein kinase (MAPK). The pharmacological inhibition of p38MAPK and suppression of activating transcription factor 4 (an ER stress‑associated transcription factor) expression by small interfering RNA inhibited rottlerin-induced COX‑2 upregulation. Furthermore, COX‑2 expression levels were increased further when cells were treated with rottlerin and interleukin‑1β or protein kinase C activator, PMA. In conclusion, the results of the present study demonstrated that rottlerin is a novel inducer of COX‑2 expression and identified the mechanisms involved in this process. Rottlerin may be considered a potential activator of repair and remodeling.
Collapse
Affiliation(s)
- Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 700712, Republic of Korea
| | - Woo Keun Lee
- Department of Otolaryngology, School of Medicine, Keimyung University, Daegu 700712, Republic of Korea
| | - Kyoung-Jin Min
- Department of Immunology, School of Medicine, Keimyung University, Daegu 700712, Republic of Korea
| | - Dong Eun Kim
- Department of Otolaryngology, School of Medicine, Keimyung University, Daegu 700712, Republic of Korea
| | - Soon Hyung Park
- Department of Otolaryngology, School of Medicine, Keimyung University, Daegu 700712, Republic of Korea
| | - Sung Il Nam
- Department of Otolaryngology, School of Medicine, Keimyung University, Daegu 700712, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 700712, Republic of Korea
| |
Collapse
|
37
|
Heller S, Cable C, Penrose H, Makboul R, Biswas D, Cabe M, Crawford SE, Savkovic SD. Intestinal inflammation requires FOXO3 and prostaglandin E2-dependent lipogenesis and elevated lipid droplets. Am J Physiol Gastrointest Liver Physiol 2016; 310:G844-54. [PMID: 26968210 PMCID: PMC4895869 DOI: 10.1152/ajpgi.00407.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/07/2016] [Indexed: 01/31/2023]
Abstract
Intestinal inflammation has been recently characterized by the dysregulation of lipids as metabolic and energy sources, revealing a novel feature of its pathophysiology. Because intracellular lipids, stored in dynamic lipid droplets (LDs), provide energy for cellular needs, we investigated whether they play a role in intestinal inflammation. In the inflamed intestine of mice, elevated LDs were found in colonic and infiltrating immune cells as shown by staining for the LD coat protein PLIN2 and for lipids with BODIPY. In colonic cells, TNF stimulated LD increases by receptor signaling rely on phosphatidylinositol 3-kinase activation. Downstream, TNF triggered a negative regulatory loop between LDs and the transcription factor FOXO3. This was shown in the colon of Foxo3-deficient mice, where elevation in PLIN2 and lipids were further facilitated by inflammation and were more prominent relative to wild-type, whereas, in colonic cells, inhibition of lipogenesis blocked the TNF-mediated loss of FOXO3. Furthermore, blockade of PGE2 synthesis abrogated TNF-stimulated increases in LDs and FOXO3 inactivation. We found in colonic tissue of Foxo3-deficient mice higher levels of cyclooxygenase-2, a mediator of prostaglandin E2 (PGE2) synthesis, supporting involvement of PGE2 in the LD-FOXO3 regulatory loop. Ultimately, TNF-stimulated lipogenesis leading to elevated LDs facilitated NF-κB-mediated increases in IL-8 protein, which is associated with the surface of LDs found in the lumina of the endoplasmic reticulum and Golgi apparatus. This novel immunometabolic mechanism of colonic inflammation involving elevated LDs could provide opportunities for new treatment options.
Collapse
Affiliation(s)
- Sandra Heller
- 1Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, Louisiana;
| | - Chloe Cable
- 1Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, Louisiana;
| | - Harrison Penrose
- 1Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, Louisiana;
| | - Rania Makboul
- 1Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, Louisiana; ,3Pathology Department, Assiut University, Assiut, Egypt
| | - Debjani Biswas
- 1Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, Louisiana;
| | - Maleen Cabe
- 1Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, Louisiana;
| | - Susan E. Crawford
- 2Department of Pathology, St. Louis University, St Louis, Missouri; and
| | - Suzana D. Savkovic
- 1Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, Louisiana;
| |
Collapse
|
38
|
Al-Harbi NO, Imam F, Al-Harbi MM, Ansari MA, Zoheir KMA, Korashy HM, Sayed-Ahmed MM, Attia SM, Shabanah OA, Ahmad SF. Dexamethasone Attenuates LPS-induced Acute Lung Injury through Inhibition of NF-κB, COX-2, and Pro-inflammatory Mediators. Immunol Invest 2016; 45:349-69. [DOI: 10.3109/08820139.2016.1157814] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Goulopoulou S, Wenceslau CF, McCarthy CG, Matsumoto T, Webb RC. Exposure to stimulatory CpG oligonucleotides during gestation induces maternal hypertension and excess vasoconstriction in pregnant rats. Am J Physiol Heart Circ Physiol 2016; 310:H1015-25. [PMID: 26873968 PMCID: PMC11961075 DOI: 10.1152/ajpheart.00834.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/02/2016] [Indexed: 01/17/2023]
Abstract
Bacterial infections increase risk for pregnancy complications, such as preeclampsia and preterm birth. Unmethylated CpG DNA sequences are present in bacterial DNA and have immunostimulatory effects. Maternal exposure to CpG DNA induces fetal demise and craniofacial malformations; however, the effects of CpG DNA on maternal cardiovascular health have not been examined. We tested the hypothesis that exposure to synthetic CpG oligonucleotides (ODNs) during gestation would increase blood pressure and cause vascular dysfunction in pregnant rats. Pregnant and nonpregnant female rats were treated with CpG ODN (ODN 2395) or saline (Veh) starting on gestational day 14or corresponding day for the nonpregnant groups. Exposure to CpG ODN increased systolic blood pressure in pregnant (Veh: 121 ± 2 mmHg vs. ODN 2395: 134 ± 2 mmHg,P< 0.05) but not in nonpregnant rats (Veh: 111 ± 2 mmHg vs. ODN 2395: 108 ± 5 mmHg,P> 0.05). Mesenteric resistance arteries from pregnant CpG ODN-treated rats had increased contractile responses to U46619 [thromboxane A2(TxA2) mimetic] compared with arteries from vehicle-treated rats [Emax(%KCl), Veh: 87 ± 4 vs. ODN 2395: 104 ± 4,P< 0.05]. Nitric oxide synthase (NOS) inhibition increased contractile responses to U46619, and CpG ODN treatment abolished this effect in arteries from pregnant ODN 2395-treated rats. CpG ODN potentiated the involvement of cyclooxygenase (COX) to U46619-induced contractions. In conclusion, exposure to CpG ODN during gestation induces maternal hypertension, augments resistance artery contraction, increases the involvement of COX-dependent mechanisms and reduces the contribution of NOS-dependent mechanisms to TxA2-induced contractions in mesenteric resistance arteries.
Collapse
Affiliation(s)
- Styliani Goulopoulou
- Institute for Cardiovascular and Metabolic Diseases, Department of Obstetrics and Gynecology, University of North Texas Health Science Center, Fort Worth, Texas;
| | | | | | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - R Clinton Webb
- Department of Physiology, Augusta University, Augusta, Georgia; and
| |
Collapse
|
40
|
Seo HR, Choi MJ, Choi JM, Ko JC, Ko JY, Cho EJ. Malvidin Protects WI-38 Human Fibroblast Cells Against Stress-induced Premature Senescence. J Cancer Prev 2016; 21:32-40. [PMID: 27051647 PMCID: PMC4819664 DOI: 10.15430/jcp.2016.21.1.32] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/15/2016] [Accepted: 02/15/2016] [Indexed: 11/06/2022] Open
Abstract
Background: Malvidin is one of the most abundant components in red wines and black rice. The effects of malvidin on aging and lifespan under oxidative stress have not been fully understood. This study focused on the anti-aging effect of malvidin on stress-induced premature senescence (SIPS) in WI-38 human lung-derived diploid fibroblasts. Methods: In order to determine the viability of WI-38 cells, MTT assay was conducted, and malondialdehyde level was determined using thiobarbituric acid-reactive substance assay. Protein expression of inflammation-related factors was also evaluated by Western blot analysis. Results: Acute and chronic oxidative stress via hydrogen peroxide (H2O2) treatment led to SIPS in WI-38 cells, which showed decreased cell viability, increased lipid peroxidation, and a shortened lifespan in comparison with non-H2O2-treated WI-38 cells. However, malvidin treatment significantly attenuated H2O2-induced oxidative stress by inhibiting lipid peroxidation and increasing cell viability. Furthermore, the lifespan of WI-38 cells was prolonged by malvidin treatment. In addition, malvidin downregulated the expression of oxidative stress-related proteins, including NF-κB, COX-2, and inducible nitric oxide synthase. Furthermore, protein expression levels of p53, p21, and Bax were also regulated by malvidin treatment in WI-38 cells undergoing SIPS. Conclusions: Malvidin may potentially inhibit the aging process by controlling oxidative stress.
Collapse
Affiliation(s)
- Hye Rin Seo
- Department of Food Science and Nutrition, Pusan National University, Busan, Rural Development Administration, Miryang, Korea
| | - Mi Jin Choi
- Department of Food Science and Nutrition, Pusan National University, Busan, Rural Development Administration, Miryang, Korea
| | - Ji Myung Choi
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Korea
| | - Jong Cheol Ko
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Korea
| | - Jee Yeon Ko
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan, Rural Development Administration, Miryang, Korea
| |
Collapse
|
41
|
Ribeiro D, Freitas M, Tomé SM, Silva AMS, Laufer S, Lima JLFC, Fernandes E. Flavonoids inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood. Inflammation 2015; 38:858-70. [PMID: 25139581 DOI: 10.1007/s10753-014-9995-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cyclooxygenase 2 (COX-2) and the production of cytokines/chemokines are important targets for the modulation of the inflammatory response. Although a large variety of inhibitors of these pathways have been commercialized, some of those inhibitors present severe side effects, governing the search for new molecules, as alternative anti-inflammatory agents. This study was undertaken to study an hitherto not evaluated group of flavonoids, concerning its capacity to inhibit COX-1 and COX-2 enzymes, as well as to inhibit the production of the cytokines and a chemokine, in a complex matrix involved in the systemic inflammatory process, the blood, aiming the establishment of a structure-activity relationship. The results obtained reveal promising flavonoids for the modulation of the inflammatory process, namely the ones presenting a catechol group in B ring, as some flavonoids were able to simultaneously inhibit the production of inflammatory prostaglandin E2 and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Daniela Ribeiro
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira n 228, 4050-313, Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
42
|
Santiago RF, de Brito TV, Dias JM, Dias GJ, da Cruz JS, Batista JA, Silva RO, Souza MHLP, de Albuquerque Ribeiro R, Gutierrez SJC, Freitas RM, Medeiros JVR, dos Reis Barbosa AL. Riparin B, a Synthetic Compound Analogue of Riparin, Inhibits the Systemic Inflammatory Response and Oxidative Stress in Mice. Inflammation 2015; 38:2203-15. [DOI: 10.1007/s10753-015-0203-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Nicotine-induced cellular stresses and autophagy in human cancer colon cells: A supportive effect on cell homeostasis via up-regulation of Cox-2 and PGE(2) production. Int J Biochem Cell Biol 2015; 65:239-56. [PMID: 26100595 DOI: 10.1016/j.biocel.2015.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 05/28/2015] [Accepted: 06/12/2015] [Indexed: 12/12/2022]
Abstract
Nicotine, one of the active components in cigarette smoke, has been described to contribute to the protective effect of smoking in ulcerative colitis (UC) patients. Furthermore, the nicotinic acetylcholine receptor α7 subunit (α7nAChR) expressed on immune cells, is an essential regulator of inflammation. As intestinal epithelial cells also express α7nAChR, we investigated how nicotine could participate in the homeostasis of intestinal epithelial cells. First, using the human adenocarcinoma cell line HT-29, we revealed that nicotine, which triggers an influx of extracellular Ca(2+) following α7nAChR stimulation, induces mitochondrial reactive oxygen species (ROS) production associated with a disruption of the mitochondrial membrane potential and endoplasmic reticulum stress. This results in caspase-3 activation, which in turn induces apoptosis. Additionally, we have shown that nicotine induces a PI3-K dependent up-regulation of cyclooxygenase-2 (Cox-2) expression and prostaglandin E2 (PGE2) production. In this context, we suggest that this key mediator participates in the cytoprotective effects of nicotine against apoptosis by stimulating autophagy in colon cancer cells. Our results provide new insight into one potential mechanism by which nicotine could protect from UC and suggest an anti-inflammatory role for the cholinergic pathway at the epithelial cell level.
Collapse
|
44
|
Anderson G, Maes M. The gut–brain axis: The role of melatonin in linking psychiatric, inflammatory and neurodegenerative conditions. ADVANCES IN INTEGRATIVE MEDICINE 2015. [DOI: 10.1016/j.aimed.2014.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Remote activation of the Wnt/β-catenin signalling pathway using functionalised magnetic particles. PLoS One 2015; 10:e0121761. [PMID: 25781466 PMCID: PMC4363733 DOI: 10.1371/journal.pone.0121761] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 02/11/2015] [Indexed: 01/12/2023] Open
Abstract
Wnt signalling pathways play crucial roles in developmental biology, stem cell fate and tissue patterning and have become an attractive therapeutic target in the fields of tissue engineering and regenerative medicine. Wnt signalling has also been shown to play a role in human Mesenchymal Stem Cell (hMSC) fate, which have shown potential as a cell therapy in bone and cartilage tissue engineering. Previous work has shown that biocompatible magnetic nanoparticles (MNP) can be used to stimulate specific mechanosensitive membrane receptors and ion channels in vitro and in vivo. Using this strategy, we determined the effects of mechano-stimulation of the Wnt Frizzled receptor on Wnt pathway activation in hMSC. Frizzled receptors were tagged using anti-Frizzled functionalised MNP (Fz-MNP). A commercially available oscillating magnetic bioreactor (MICA Biosystems) was used to mechanically stimulate Frizzled receptors remotely. Our results demonstrate that Fz-MNP can activate Wnt/β-catenin signalling at key checkpoints in the signalling pathway. Immunocytochemistry indicated nuclear localisation of the Wnt intracellular messenger β-catenin after treatment with Fz-MNP. A Wnt signalling TCF/LEF responsive luciferase reporter transfected into hMSC was used to assess terminal signal activation at the nucleus. We observed an increase in reporter activity after treatment with Fz-MNP and this effect was enhanced after mechano-stimulation using the magnetic array. Western blot analysis was used to probe the mechanism of signalling activation and indicated that Fz-MNP signal through an LRP independent mechanism. Finally, the gene expression profiles of stress response genes were found to be similar when cells were treated with recombinant Wnt-3A or Fz-MNP. This study provides proof of principle that Wnt signalling and Frizzled receptors are mechanosensitive and can be remotely activated in vitro. Using magnetic nanoparticle technology it may be possible to modulate Wnt signalling pathways and thus control stem cell fate for therapeutic purposes.
Collapse
|
46
|
Simões MR, Aguado A, Fiorim J, Silveira EA, Azevedo BF, Toscano CM, Zhenyukh O, Briones AM, Alonso MJ, Vassallo DV, Salaices M. MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways. Toxicol Appl Pharmacol 2015; 283:127-38. [DOI: 10.1016/j.taap.2015.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/21/2014] [Accepted: 01/06/2015] [Indexed: 12/24/2022]
|
47
|
Kubat NJ, Moffett J, Fray LM. Effect of pulsed electromagnetic field treatment on programmed resolution of inflammation pathway markers in human cells in culture. J Inflamm Res 2015; 8:59-69. [PMID: 25759595 PMCID: PMC4346366 DOI: 10.2147/jir.s78631] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inflammation is a complex process involving distinct but overlapping biochemical and molecular events that are highly regulated. Pulsed electromagnetic field (PEMF) therapy is increasingly used to treat pain and edema associated with inflammation following surgery involving soft tissue. However, the molecular and cellular effects of PEMF therapy on pathways involved in the resolution of inflammation are poorly understood. Using cell culture lines relevant to trauma-induced inflammation of the skin (human dermal fibroblasts, human epidermal keratinocytes, and human mononuclear cells), we investigated the effect of PEMF on gene expression involved in the acute and resolution phases of inflammation. We found that PEMF treatment was followed by changes in the relative amount of messenger (m)RNAs encoding enzymes involved in heme catabolism and removal of reactive oxygen species, including an increase in heme oxygenase 1 and superoxide dismutase 3 mRNAs, in all cell types examined 2 hours after PEMF treatment. A relative increase in mRNAs encoding enzymes involved in lipid mediator biosynthesis was also observed, including an increase in arachidonate 12- and 15-lipoxygenase mRNAs in dermal fibroblasts and epidermal keratinocytes, respectively. The relative amount of both of these lipoxygenase mRNAs was elevated in mononuclear cells following PEMF treatment relative to nontreated cells. PEMF treatment was also followed by changes in the mRNA levels of several cytokines. A decrease in the relative amount of interleukin 1 beta mRNA was observed in mononuclear cells, similar to that previously reported for epidermal keratinocytes and dermal fibroblasts. Based on our results, we propose a model in which PEMF therapy may promote chronic inflammation resolution by mediating gene expression changes important for inhibiting and resolving inflammation.
Collapse
Affiliation(s)
| | - John Moffett
- Life Science Department, Regenesis Biomedical, Inc., Scottsdale, AZ, USA
| | - Linley M Fray
- Life Science Department, Regenesis Biomedical, Inc., Scottsdale, AZ, USA
| |
Collapse
|
48
|
Role of COX-2/mPGES-1/prostaglandin E2 cascade in kidney injury. Mediators Inflamm 2015; 2015:147894. [PMID: 25729216 PMCID: PMC4333324 DOI: 10.1155/2015/147894] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/19/2015] [Indexed: 12/26/2022] Open
Abstract
COX-2/mPGES-1/PGE2 cascade plays critical roles in modulating many physiological and pathological actions in different organs. In the kidney, this cascade is of high importance in regulating fluid metabolism, blood pressure, and renal hemodynamics. Under some disease conditions, this cascade displays various actions in response to the different pathological insults. In the present review, the roles of this cascade in the pathogenesis of kidney injuries including diabetic and nondiabetic kidney diseases and acute kidney injuries were introduced and discussed. The new insights from this review not only increase the understanding of the pathological role of the COX-2/mPGES-1/PGE2 pathway in kidney injuries, but also shed new light on the innovation of the strategies for the treatment of kidney diseases.
Collapse
|
49
|
Protective effects of the flavonoid hesperidin methyl chalcone in inflammation and pain in mice: Role of TRPV1, oxidative stress, cytokines and NF-κB. Chem Biol Interact 2015; 228:88-99. [DOI: 10.1016/j.cbi.2015.01.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/11/2014] [Accepted: 01/07/2015] [Indexed: 12/22/2022]
|
50
|
Hayashi G, Shen Y, Pedersen TL, Newman JW, Pook M, Cortopassi G. Frataxin deficiency increases cyclooxygenase 2 and prostaglandins in cell and animal models of Friedreich's ataxia. Hum Mol Genet 2014; 23:6838-47. [PMID: 25104852 PMCID: PMC4245045 DOI: 10.1093/hmg/ddu407] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/02/2014] [Accepted: 08/04/2014] [Indexed: 12/12/2022] Open
Abstract
An inherited deficiency of the mitochondrial protein frataxin causes Friedreich's ataxia (FRDA); the mechanism by which this deficiency triggers neuro- and cardio-degeneration is unclear. Microarrays of neural tissue of animal models of the disease showed decreases in antioxidant genes, and increases in inflammatory genes. Cyclooxygenase (COX)-derived oxylipins are important mediators of inflammation. We measured oxylipin levels using tandem mass spectrometry and ELISAs in multiple cell and animal models of FRDA. Mass spectrometry revealed increases in concentrations of prostaglandins, thromboxane B2, 15-HETE and 11-HETE in cerebellar samples of knockin knockout mice. One possible explanation for the elevated oxylipins is that frataxin deficiency results in increased COX activity. While constitutive COX1 was unchanged, inducible COX2 expression was elevated over 1.35-fold (P < 0.05) in two Friedreich's mouse models and Friedreich's lymphocytes. Consistent with higher COX2 expression, its activity was also increased by 58% over controls. COX2 expression is driven by multiple transcription factors, including activator protein 1 and cAMP response element-binding protein, both of which were elevated over 1.52-fold in cerebella. Taken together, the results support the hypothesis that reduced expression of frataxin leads to elevation of COX2-mediated oxylipin synthesis stimulated by increases in transcription factors that respond to increased reactive oxygen species. These findings support a neuroinflammatory mechanism in FRDA, which has both pathomechanistic and therapeutic implications.
Collapse
Affiliation(s)
| | - Yan Shen
- Department of Molecular Biosciences and
| | - Theresa L Pedersen
- USDA, ARS, Western Human Nutrition Research Center, 430 West Health Sciences Dr, Davis, CA 95616, USA
| | - John W Newman
- Department of Nutrition, University of California, Davis, CA 95616, USA USDA, ARS, Western Human Nutrition Research Center, 430 West Health Sciences Dr, Davis, CA 95616, USA West Coast Metabolomics Center, University of California Davis Genome Center, Davis, CA 95616, USA and
| | - Mark Pook
- Department of Biosciences, Brunel University, Uxbridge, Middlesex, UK
| | | |
Collapse
|