1
|
The Molecular Interaction of Collagen with Cell Receptors for Biological Function. Polymers (Basel) 2022; 14:polym14050876. [PMID: 35267698 PMCID: PMC8912536 DOI: 10.3390/polym14050876] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/25/2023] Open
Abstract
Collagen, an extracellular protein, covers the entire human body and has several important biological functions in normal physiology. Recently, collagen from non-human sources has attracted attention for therapeutic management and biomedical applications. In this regard, both land-based animals such as cow, pig, chicken, camel, and sheep, and marine-based resources such as fish, octopus, starfish, sea-cucumber, and jellyfish are widely used for collagen extraction. The extracted collagen is transformed into collagen peptides, hydrolysates, films, hydrogels, scaffolds, sponges and 3D matrix for food and biomedical applications. In addition, many strategic ideas are continuously emerging to develop innovative advanced collagen biomaterials. For this purpose, it is important to understand the fundamental perception of how collagen communicates with receptors of biological cells to trigger cell signaling pathways. Therefore, this review discloses the molecular interaction of collagen with cell receptor molecules to carry out cellular signaling in biological pathways. By understanding the actual mechanism, this review opens up several new concepts to carry out next level research in collagen biomaterials.
Collapse
|
2
|
Combined Therapy with Traditional Chinese Medicine and Antiplatelet Drugs for Ischemic Heart Disease: Mechanism, Efficacy, and Safety. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9956248. [PMID: 34745309 PMCID: PMC8566037 DOI: 10.1155/2021/9956248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023]
Abstract
Ischemic heart disease is a significant risk factor that threatens human health, and antiplatelet drugs are routinely used to treat cases in clinical settings. Chinese medicine for promoting blood circulation and removing blood stasis (PBCRBSCM) can often be combined with antiplatelet drugs to treat ischemic heart disease. PBCRBSCM can inhibit platelet adhesion, activation, and aggregation; moreover, PBCRBSCM in combination with antiplatelet drugs exerts antiplatelet effects. The mechanism is related to several factors, including the inhibition of platelet activation and aggregation, improvement of the hemodynamic status and coagulation function, and correction of metabolism and inflammation. PBCRBSCM can also regulate the absorption and metabolism of conventional antiplatelet drugs and protect the gastric mucosal epithelial cells against damage induced by conventional antiplatelet drugs. Randomized controlled trials have confirmed that PBCRBSCM preparations and the active ingredients in these preparations can reduce resistance to aspirin and clopidogrel so that the combination of these drugs can exert their antiplatelet effects. In the perioperative treatment of patients with stable angina pectoris, unstable angina pectoris, and acute coronary syndrome undergoing percutaneous coronary intervention therapy, preparations of the active ingredients of PBCRBSCM combined with antiplatelet drugs and other conventional Western medicine treatments have been proven effective. The efficacy and safety of such combinations have also been extensively verified. Considerable progress has been made to understand the antiplatelet mechanism of PBCRBSCM. However, most clinical studies had problems, such as limited sample size and inappropriate research design, which has limited the translational use of PBCRBSCM in antiplatelet therapy. A large-scale, multicenter, randomized controlled study with cardiovascular events as the endpoint is still to be conducted to provide evidence for the combined application of PBCRBSCM and antiplatelet drugs in the prevention and treatment of ischemic heart disease.
Collapse
|
3
|
Wadey K, Lopes J, Bendeck M, George S. Role of smooth muscle cells in coronary artery bypass grafting failure. Cardiovasc Res 2019; 114:601-610. [PMID: 29373656 DOI: 10.1093/cvr/cvy021] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/22/2018] [Indexed: 01/30/2023] Open
Abstract
Atherosclerosis is the underlying pathology of many cardiovascular diseases. The formation and rupture of atherosclerotic plaques in the coronary arteries results in angina and myocardial infarction. Venous coronary artery bypass grafts are designed to reduce the consequences of atherosclerosis in the coronary arteries by diverting blood flow around the atherosclerotic plaques. However, vein grafts suffer a high failure rate due to intimal thickening that occurs as a result of vascular cell injury and activation and can act as 'a soil' for subsequent atherosclerotic plaque formation. A clinically-proven method for the reduction of vein graft intimal thickening and subsequent major adverse clinical events is currently not available. Consequently, a greater understanding of the underlying mechanisms of intimal thickening may be beneficial for the design of future therapies for vein graft failure. Vein grafting induces inflammation and endothelial cell damage and dysfunction, that promotes vascular smooth muscle cell (VSMC) migration, and proliferation. Injury to the wall of the vein as a result of grafting leads to the production of chemoattractants, remodelling of the extracellular matrix and cell-cell contacts; which all contribute to the induction of VSMC migration and proliferation. This review focuses on the role of altered behaviour of VSMCs in the vein graft and some of the factors which critically lead to intimal thickening that pre-disposes the vein graft to further atherosclerosis and re-occurrence of symptoms in the patient.
Collapse
Affiliation(s)
- Kerry Wadey
- Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Joshua Lopes
- Translational Biology and Engineering Program, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Michelle Bendeck
- Translational Biology and Engineering Program, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Sarah George
- Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| |
Collapse
|
4
|
Contribution of collagen adhesion receptors to tissue fibrosis. Cell Tissue Res 2016; 365:521-38. [DOI: 10.1007/s00441-016-2440-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023]
|
5
|
Bi JJ, Yi L. Effects of integrins and integrin αvβ3 inhibitor on angiogenesis in cerebral ischemic stroke. ACTA ACUST UNITED AC 2014; 34:299-305. [PMID: 24939290 DOI: 10.1007/s11596-014-1274-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 03/26/2014] [Indexed: 12/31/2022]
Abstract
Integrins such as αvβ3, α5β1 play a key role in angiogenesis regulation, invasion and metastasis, inflammation, wound healing, etc. The up-regulation of integrin αvβ3 after cerebral ischemic stroke can promote angiogenesis, which in turn improves functional recovery. In addition, the integrin αvβ3 inhibitor can block the blood-brain barrier (BBB) leakage induced by vascular endothelial growth factor (VEGF) and also can reduce inflammatory reaction, decrease the deposition of fibrinogen. Other studies showed that integrin αvβ3 is not essential in revascularization. Therefore, the effect of integrin αvβ3 in the whole process of brain function recovery merits further study.
Collapse
Affiliation(s)
- Jia-Jia Bi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Li Yi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
6
|
Bolás G, de Rezende FF, Lorente C, Sanz L, Eble JA, Calvete JJ. Inhibitory effects of recombinant RTS-jerdostatin on integrin α1β1 function during adhesion, migration and proliferation of rat aortic smooth muscle cells and angiogenesis. Toxicon 2014; 79:45-54. [PMID: 24418176 DOI: 10.1016/j.toxicon.2013.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/22/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
Abstract
Jerdostatin, a short RTS-disintegrin cloned from venom gland mRNA of Protobothrops jerdonii, selectively blocks the adhesion of α1β1 integrin to collagen IV. Integrin α1β1 is highly expressed in smooth muscle cells (SMC) surrounding small blood vessels and vascular endothelial cells. Vascular SMC adhesion, migration and proliferation are important processes during normal vascular development. Using recombinant jerdostatin we have investigated the role of the α1β1 integrin on the adhesion of vascular SMC to collagen IV, and the potential relevance of blocking this crucial component of focal adhesions as an anti-angiogenic strategy. Our results show that jerdostatin does not interact with canonical collagen-binding site on the isolated A-domain of the α1 integrin subunit. r-Jerdostatin inhibited the adhesion of RASMCs to immobilized CB3 fragment in a dose-dependent manner, triggering to round-up, retraction, and finally detachment of the cells. r-Jerdostatin did not affect the adhesion of human SMCs to CB3, presumably because the high expression of α2β1 integrin compensated for α1β1 integrin blockage by jerdostatin. r-Jerdostatin dose-dependently inhibited α1β1 integrin-dependent HUVEC tube formation. However, VEGF-driven tube formation in the matrigel assay was only completely abolished when binding of integrin α2β1 to collagen was also inhibited by the C-type lectin-like rhodocetin. As a whole, our work emphasizes the relevance of using specific inhibitors for dissecting the role of α1β1 integrin in physiological and pathological conditions.
Collapse
Affiliation(s)
- Gema Bolás
- Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Flávia Figueiredo de Rezende
- Institute for Physiological Chemistry and Pathobiochemistry, University of Muenster, Waldeyerstr. 15, 48149 Muenster, Germany
| | | | - Libia Sanz
- Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Johannes A Eble
- Institute for Physiological Chemistry and Pathobiochemistry, University of Muenster, Waldeyerstr. 15, 48149 Muenster, Germany
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain.
| |
Collapse
|
7
|
Abstract
Integrin α1β1 is widely expressed in mesenchyme and the immune system, as well as a minority of epithelial tissues. Signaling through α1 contributes to the regulation of extracellular matrix composition, in addition to supplying in some tissues a proliferative and survival signal that appears to be unique among the collagen binding integrins. α1 provides a tissue retention function for cells of the immune system including monocytes and T cells, where it also contributes to their long-term survival, providing for peripheral T cell memory, and contributing to diseases of autoimmunity. The viability of α1 null mice, as well as the generation of therapeutic monoclonal antibodies against this molecule, have enabled studies of the role of α1 in a wide range of pathophysiological circumstances. The immune functions of α1 make it a rational therapeutic target.
Collapse
|
8
|
Vaiyapuri S, Hutchinson EG, Ali MS, Dannoura A, Stanley RG, Harrison RA, Bicknell AB, Gibbins JM. Rhinocetin, a venom-derived integrin-specific antagonist inhibits collagen-induced platelet and endothelial cell functions. J Biol Chem 2012; 287:26235-44. [PMID: 22689571 PMCID: PMC3406708 DOI: 10.1074/jbc.m112.381483] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Snaclecs are small non-enzymatic proteins present in viper venoms reported to modulate hemostasis of victims through effects on platelets, vascular endothelial, and smooth muscle cells. In this study, we have isolated and functionally characterized a snaclec that we named "rhinocetin" from the venom of West African gaboon viper, Bitis gabonica rhinoceros. Rhinocetin was shown to comprise α and β chains with the molecular masses of 13.5 and 13 kDa, respectively. Sequence and immunoblot analysis of rhinocetin confirmed this to be a novel snaclec. Rhinocetin inhibited collagen-stimulated activation of human platelets in a dose-dependent manner but displayed no inhibitory effects on glycoprotein VI (collagen receptor) selective agonist, CRP-XL-, ADP-, or thrombin-induced platelet activation. Rhinocetin antagonized the binding of monoclonal antibodies against the α2 subunit of integrin α2β1 to platelets and coimmunoprecipitation analysis confirmed integrin α2β1 as a target for this venom protein. Rhinocetin inhibited a range of collagen-induced platelet functions such as fibrinogen binding, calcium mobilization, granule secretion, aggregation, and thrombus formation. It also inhibited integrin α2β1-dependent functions of human endothelial cells. Together, our data suggest rhinocetin to be a modulator of integrin α2β1 function and thus may provide valuable insights into the role of this integrin in physiological and pathophysiological scenarios, including hemostasis, thrombosis, and envenomation.
Collapse
Affiliation(s)
- Sakthivel Vaiyapuri
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading RG6 6UB, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Rhee EJ, Nallamshetty S, Plutzky J. Retinoid metabolism and its effects on the vasculature. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:230-40. [PMID: 21810483 DOI: 10.1016/j.bbalip.2011.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/15/2011] [Accepted: 07/06/2011] [Indexed: 12/16/2022]
Abstract
Retinoids, the metabolically-active structural derivatives of vitamin A, are critical signaling molecules in many fundamental biological processes including cell survival, proliferation and differentiation. Emerging evidence, both clinical and molecular, implicates retinoids in atherosclerosis and other vasculoproliferative disorders such as restenosis. Although the data from clinical trials examining effect of vitamin A and vitamin precursors on cardiac events have been contradictory, this data does suggest that retinoids do influence fundamental processes relevant to atherosclerosis. Preclinical animal model and cellular studies support these concepts. Retinoids exhibit complex effects on proliferation, growth, differentiation and migration of vascular smooth muscle cells (VSMC), including responses to injury and atherosclerosis. Retinoids also appear to exert important inhibitory effects on thrombosis and inflammatory responses relevant to atherogenesis. Recent studies suggest retinoids may also be involved in vascular calcification and endothelial function, for example, by modulating nitric oxide pathways. In addition, established retinoid effects on lipid metabolism and adipogenesis may indirectly influence inflammation and atherosclerosis. Collectively, these observations underscore the scope and complexity of retinoid effects relevant to vascular disease. Additional studies are needed to elucidate how context and metabolite-specific retinoid effects affect atherosclerosis. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Eun-Jung Rhee
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
10
|
Forte A, Della Corte A, De Feo M, Cerasuolo F, Cipollaro M. Role of myofibroblasts in vascular remodelling: focus on restenosis and aneurysm. Cardiovasc Res 2010; 88:395-405. [PMID: 20621923 DOI: 10.1093/cvr/cvq224] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Myofibroblasts (MFs) are contractile cells deriving from a multiplicity of resident cells and/or circulating progenitors that are known to play a key role in wound healing. They were first discovered and analysed in the early 1970s in granulation tissue. Since their first identification, the role of MF and their mechanisms of differentiation have been highlighted in a number of diseases, including organ fibrosis and tumours, with particular attention devoted to the liver, kidney, and pulmonary fibrosis. The aim of this review is to summarize the current evidence for the role played by MFs in two frequent vascular diseases related to the remodelling of the vascular wall: the different forms of arterial restenosis and the most common forms of thoracic aortic aneurysm. The in-depth knowledge of the molecular pathways involved in MF differentiation, contraction, and survival/apoptosis could contribute to the identification of novel therapeutic strategies for anti-fibrotic and anti-remodelling therapy of vascular diseases in which these cells are involved.
Collapse
Affiliation(s)
- Amalia Forte
- Department of Experimental Medicine, Excellence Research Centre for Cardiovascular Diseases, Second University of Naples, Via L. De Crecchio, 7, 80138 Naples, Italy.
| | | | | | | | | |
Collapse
|
11
|
Lei F, Zhu D, Sun J, Dong Z. Effects of minimal persistent inflammation on nasal mucosa of experimental allergic rhinitis. Am J Rhinol Allergy 2010; 24:e23-8. [PMID: 20109315 DOI: 10.2500/ajra.2010.24.3414] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Minimal persistent inflammation (MPI) is considered another piece of the complex puzzle of allergic inflammation. Although some studies regarding MPI have been reported, no study has evaluated the effects of MPI on the structure changes at the site of allergic reaction. This study investigates whether long-time MPI during allergic rhinitis (AR) results in some features of tissue remodeling in the nasal mucosa. METHODS An animal model of MPI was developed by repeated nasal challenge with low concentration of ovalbumin (OVA) in sensitized guinea pigs. The models were assessed by allergic symptom after antigen challenge, eosinophil infiltration in the nasal mucosa, and intercellular adhesion molecule (ICAM) 1 expression on nasal epithelial cells. The histopathological changes in nasal mucosa were determined by Alcian blue-periodic acid-Schiff and Masson's trichrome staining. The expression of transforming growth factor (TGF) beta(1) and matrix metalloproteinase (MMP) 9 was examined by immunofluorescence under a confocal laser scan microscope. RESULTS When sensitized animals were challenged with the low concentration of 0.01% OVA, the symptom of sneezing disappeared, but there were still mild eosinophils infiltration and weak ICAM-1 expression, which indicated the success of MPI models. Moreover, the number of goblet cells and the percentage area of collagen deposition were both mildly increased. The expression of MMP-9 and TGF-beta(1) was also weakly elevated. CONCLUSION We have successfully established MPI models and proved long-time MPI may result in mild features of remodeling in the nasal mucosa, which provide new insights into the unexpected potential effects of MPI on the structural changes.
Collapse
Affiliation(s)
- Fei Lei
- Department of Otorhinolaryngology-Head and Neck Surgery, China-Japan Union Hospital, Bethune Faculty of Medicine, Jilin University, Changchun, China
| | | | | | | |
Collapse
|
12
|
Adiguzel E, Ahmad PJ, Franco C, Bendeck MP. Collagens in the progression and complications of atherosclerosis. Vasc Med 2009; 14:73-89. [PMID: 19144782 DOI: 10.1177/1358863x08094801] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Collagens constitute a major portion of the extracellular matrix in the atherosclerotic plaque, where they contribute to the strength and integrity of the fibrous cap, and also modulate cellular responses via specific receptors and signaling pathways. This review focuses on the diverse roles that collagens play in atherosclerosis; regulating the infiltration and differentiation of smooth muscle cells and macrophages; controlling matrix remodeling through feedback signaling to proteinases; and influencing the development of atherosclerotic complications such as plaque rupture, aneurysm formation and calcification. Expanding our understanding of the pathways involved in cell-matrix interactions will provide new therapeutic targets and strategies for the diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Eser Adiguzel
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
13
|
Jayawarna V, Richardson SM, Hirst AR, Hodson NW, Saiani A, Gough JE, Ulijn RV. Introducing chemical functionality in Fmoc-peptide gels for cell culture. Acta Biomater 2009; 5:934-43. [PMID: 19249724 DOI: 10.1016/j.actbio.2009.01.006] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 12/23/2008] [Accepted: 01/07/2009] [Indexed: 10/25/2022]
Abstract
Aromatic short peptide derivatives, i.e. peptides modified with aromatic groups such as 9-fluorenylmethoxycarbonyl (Fmoc), can self-assemble into self-supporting hydrogels. These hydrogels have some similarities to extracellular matrices due to their high hydration, relative stiffness and nanofibrous architecture. We previously demonstrated that Fmoc-diphenylalanine (Fmoc-F(2)) provides a suitable matrix for two-dimensional (2D) or three-dimensional (3D) culture of primary bovine chondrocytes. In this paper we investigate whether the introduction of chemical functionality, such as NH(2), COOH or OH, enhances compatibility with different cell types. A series of hydrogel compositions consisting of combinations of Fmoc-F(2) and n-protected Fmoc amino acids, lysine (K, with side chain R=(CH(2))(4)NH(2)), glutamic acid (D, with side chain R=CH(2)COOH), and serine (S, with side chain R=CH(2)OH) were studied. All compositions produced fibrous scaffolds with fibre diameters in the range of 32-65 nm as assessed by cryo-scanning electron microscopy and atomic force microscopy. Fourier transform infrared spectroscopy analysis suggested that peptide segments adopt a predominantly antiparallel beta-sheet conformation. Oscillatory rheology results show that all four hydrogels have mechanical profiles of soft viscoelastic materials with elastic moduli dependent on the chemical composition, ranging from 502 Pa (Fmoc-F(2)/D) to 21.2 KPa (Fmoc-F(2)). All gels supported the viability of bovine chondrocytes as assessed by a live-dead staining assay. Fmoc-F(2)/S and Fmoc-F(2)/D hydrogels in addition supported viability for human dermal fibroblasts (HDF) while Fmoc-F(2)/S hydrogel was the only gel type that supported viability for all three cell types tested. Fmoc-F(2)/S was therefore investigated further by studying cell proliferation, cytoskeletal organization and histological analysis in 2D culture. In addition, the Fmoc-F(2)/S gel was shown to support retention of cell morphology in 3D culture of bovine chondrocytes. These results demonstrate that introduction of chemical functionality into Fmoc-peptide scaffolds may provide gels with tunable chemical and mechanical properties for in vitro cell culture.
Collapse
|
14
|
Chung CH, Lin KT, Chang CH, Peng HC, Huang TF. The integrin alpha2beta1 agonist, aggretin, promotes proliferation and migration of VSMC through NF-kB translocation and PDGF production. Br J Pharmacol 2009; 156:846-56. [PMID: 19239475 DOI: 10.1111/j.1476-5381.2008.00095.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE During the development of atherosclerotic plaques, vascular smooth muscle cells (VSMCs) migrate from the media to the intima through the basement membrane and interstitial collagenous matrix, and proliferate to form neointima. Here, we investigate the mechanism of VSMC migration and proliferation caused by aggretin, a snake venom integrin alpha2beta1 agonist. EXPERIMENTAL APPROACH Cultures of rat and human VSMCs were treated with aggretin and the signal transduction pathways induced by this agonist were examined by Western blotting, immunoprecipitation and electrophoretic mobility shift assay techniques. KEY RESULTS Aggretin-induced VSMC proliferation was blocked by a monoclonal antibody (mAb) against integrin alpha2 (AII2E10) or against the platelet-derived growth factor receptor (PDGFR)-beta. Proliferation was also blocked by inhibition of the tyrosine kinase Src with PP2, phospholipase C (PLC) with U73122, extracellular signal-regulated kinase (ERK) with PD98059 or nuclear factor-kappa B (NF-kB) activation with pyrrolidine dithiocarbamate (PDTC). VSMC migration towards immobilized aggretin was increased in a modified Boyden chamber and this effect was blocked by alpha2beta1-Src-PLC-MAPK axis inhibitors, but not by PDTC, PDGFR-beta mAb, or a phosphoinositide-3 kinase inhibitor, LY294002. Aggretin stimulated the phosphorylation of PDGFR-beta, Src and ERK in a time-dependent manner. NF-kB translocation and platelet-derived growth factor (PDGF)-BB production were also observed. The ERK activation, NF-kB translocation and PDGF-BB production were blocked by PP2, U73122 and PD98059. CONCLUSIONS AND IMPLICATIONS Aggretin induces VSMC proliferation and migration mainly through binding to integrin alpha2beta1, and subsequently activates Src, PLC and ERK pathways, inducing NF-kB activation and PDGF production.
Collapse
Affiliation(s)
- Ching-Hu Chung
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
15
|
Loufrani L, Retailleau K, Bocquet A, Dumont O, Danker K, Louis H, Lacolley P, Henrion D. Key role of α1β1-integrin in the activation of PI3-kinase-Akt by flow (shear stress) in resistance arteries. Am J Physiol Heart Circ Physiol 2008; 294:H1906-13. [DOI: 10.1152/ajpheart.00966.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resistance arteries are the site of the earliest manifestations of many cardiovascular and metabolic diseases. Flow (shear stress) is the main physiological stimulus for the endothelium through the activation of vasodilatory pathways generating flow-mediated dilation (FMD). The role of FMD in local blood flow control and angiogenesis is well established, and alterations in FMD are early markers of cardiovascular disorders. α1-Integrin, which has a role in angiogenesis, could be involved in FMD. FMD was studied in mesenteric resistance arteries (MRA) isolated in arteriographs. The role of α1-integrins in FMD was tested with selective antibodies and mice lacking the gene encoding for α1-integrins. Both anti-α1blocking antibodies and genetic deficiency in α1-integrin in mice (α1−/−) inhibited FMD without affecting receptor-mediated (acetylcholine) endothelium-dependent dilation or endothelium-independent dilation (sodium nitroprusside). Similarly, vasoconstrictor tone (myogenic tone and phenylephrine-induced contraction) was not affected. In MRA phosphorylated Akt and phosphatidylinositol 3-kinase (PI3-kinase) were significantly lower in α1−/−mice than in α1+/+mice, although total Akt and endothelial nitric oxide synthase (eNOS) were not affected. Pharmacological blockade of PI3-kinase-Akt pathway with LY-294002 inhibited FMD. This inhibitory effect of LY-294002 was significantly lower in α1−/−mice than in α1+/+mice. Thus α1-integrin has a key role in flow (shear stress)-dependent vasodilation in resistance arteries by transmitting the signal to eNOS through activation of PI3-kinase and Akt. Because of the central role of flow (shear stress) activation of the endothelium in vascular disorders, this finding opens new perspectives in the pathophysiology of the microcirculation and provides new therapeutic targets.
Collapse
|
16
|
Young EF, Marcantonio EE. A novel subcellular collagen organization process visualized by total internal reflection fluorescence microscopy. ACTA ACUST UNITED AC 2008; 14:169-80. [PMID: 18163228 DOI: 10.1080/15419060701755552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The alpha1beta1 and alpha2beta1 integrins belong to a family of cell-surface molecules involved in structural contacts and signal-transduction events across the cell membrane. Employing two-dimensional substrates coated with fluorescently labeled type I collagen, we have discovered a novel subcellular matrix remodeling event that is particular to cells that express the fibrillar collagen receptor alpha2beta1. Cells expressing alpha1beta1 also perform this collagen organization process, but less proficiently. This work will provide a basis for subsequent studies of cell-mediated collagen fibril assembly.
Collapse
Affiliation(s)
- Erik F Young
- Department of Pathology & Cell Biology, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
17
|
Vitamin A: a drug for prevention of restenosis/reocclusion after percutaneous coronary intervention? Clin Sci (Lond) 2008; 114:19-25. [PMID: 18047466 DOI: 10.1042/cs20070090] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The re-establishment of adequate blood flow in a vessel with a reduced lumen due to an atherosclerotic plaque by percutaneous vascular intervention is a well established procedure. However, the long-term outcome of such interventions is negatively influenced by the development of intimal hyperplasia/restenosis. Although extensively researched, this still represents a significant clinical problem. Retinoids, i.e. natural and synthetic derivates of vitamin A, represent a potential therapeutic compound, since they have been shown to influence the vast majority of processes that ultimately lead to reocclusion of the injured vessel. Retinoids exert their effects at the transcriptional level through their nuclear receptors. Targeting multiple processes, i.e. proliferation, migration, extracellular matrix composition and cell differentiation, as well as coagulation/fibrinolysis, should increase their future role in the prevention of restenosis. The purpose of this review is to summarize the diverse effects of retinoids on pathobiological and biological processes activated at sites of vascular injury with particular emphasis on intimal hyperplasia/restenosis after endovascular interventions.
Collapse
|
18
|
Sadeghi MM, Esmailzadeh L, Zhang J, Guo X, Asadi A, Krassilnikova S, Fassaei HR, Luo G, Al-Lamki RSM, Takahashi T, Tellides G, Bender JR, Rodriguez ER. ESDN is a marker of vascular remodeling and regulator of cell proliferation in graft arteriosclerosis. Am J Transplant 2007; 7:2098-105. [PMID: 17697260 DOI: 10.1111/j.1600-6143.2007.01919.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Vascular remodeling is a common feature of many vasculopathies, including graft arteriosclerosis (GA). We investigated whether endothelial and smooth muscle cell-derived neuropilin-like protein (ESDN) is a marker of vascular remodeling in GA. Immunostaining of human coronary arteries demonstrated high levels of ESDN in GA, but not in normal arteries. In a model of GA, where a segment of human coronary is transplanted into a severe combined immunodeficient mouse, followed by allogeneic human peripheral blood mononuclear cell (PBMC) reconstitution, ESDN was minimally expressed in transplanted human arteries in the absence of reconstitution. By 2 weeks following PBMC reconstitution, at a time corresponding to maximal vascular cell proliferation, high levels of ESDN were detected in the transplanted arteries. Similarly, injury-induced vascular remodeling in apoE(-/-) mice was associated with early and transient ESDN upregulation, in parallel with cell proliferation. In vascular smooth muscle cell (VSMC) cultures, ESDN expression was significantly higher in proliferating, as compared to growth-arrested cells. ESDN overexpression in VSMC led to a decline in growth curves, while ESDN knock down had the opposite effect. We conclude that ESDN is a marker of vascular remodeling and regulator of VSMC proliferation. ESDN may serve as a therapeutic or diagnostic target for GA.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- Cell Proliferation
- Cells, Cultured
- Coronary Artery Disease/genetics
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/pathology
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Coronary Vessels/transplantation
- Disease Models, Animal
- Humans
- Immunohistochemistry
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Mice
- Mice, SCID
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/transplantation
- RNA/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Tissue Transplantation
- Transplantation, Homologous
- Up-Regulation
Collapse
Affiliation(s)
- M M Sadeghi
- Raymond and Beverly Sackler Cardiovascular Molecular Imaging Laboratory, Yale University School of Medicine, New Haven, CT, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gilchrist CL, Chen J, Richardson WJ, Loeser RF, Setton LA. Functional integrin subunits regulating cell-matrix interactions in the intervertebral disc. J Orthop Res 2007; 25:829-40. [PMID: 17318895 DOI: 10.1002/jor.20343] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cellular interactions with the extracellular matrix are key factors regulating cell survival, differentiation, and response to environmental stimuli in cartilagenous tissues. Much is known about the extracellular matrix proteins in the intervertebral disc (IVD) and their variations with region, age, or degenerative state of the tissue. In contrast, little is known of the integrin cell surface receptors that directly bind to and interact with these matrix proteins in the IVD. In almost all tissues, these integrin-mediated cell-matrix interactions are important for transducing environmental cues arising from mechanical stimuli, matrix degradation fragments, and cytokines into intracellular signals. In this study, cells from the nucleus pulposus and anulus fibrosus regions of porcine IVDs were analyzed via flow cytometry to quantify integrin expression levels upon isolation and after monolayer culture. Assays of cell attachment to collagens, fibronectin, and laminin were performed after functional blocking of select integrin subunits to evaluate the role of specific integrins in cell attachment. In situ distribution and co-localization of integrins and laminin were also characterized. Results identify integrin receptors critical for IVD cell interactions with collagens (alpha1beta1) and fibronectin (alpha5beta1). Additionally, dramatic differences in cell-laminin interactions were observed between cells of the nucleus and anulus regions, including differences in alpha6 integrin expression, cell adhesion to laminin, and in situ pericellular environments. These findings suggest laminin-cell interactions may be important and unique to the nucleus pulposus region of the IVD. The results of this study provide new information on functional cell-matrix interactions in tissues of the IVD.
Collapse
|
20
|
Ferri N, Colombo G, Ferrandi C, Raines EW, Levkau B, Corsini A. Simvastatin reduces MMP1 expression in human smooth muscle cells cultured on polymerized collagen by inhibiting Rac1 activation. Arterioscler Thromb Vasc Biol 2007; 27:1043-9. [PMID: 17303772 DOI: 10.1161/atvbaha.107.139881] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Activation of collagen receptors expressed by smooth muscle cells induces matrix metalloproteinase (MMP) expression. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have been shown to interfere with integrin signaling, but their effects on collagen receptor-mediated MMP expression have not been investigated. METHODS AND RESULTS In the present study, we show that simvastatin (3 micromol/L) reduces MMP1 expression and secretion in human smooth muscle cells cultured on polymerized type I collagen by 39.9+/-11.2% and 36.0+/-2.3%, respectively. Reduced MMP1 protein levels correlate with a similar decrease in MMP1 promoter activity (-33.0+/-8.9%), MMP1 mRNA levels (-37.8+/-10.5%), and attenuation of smooth muscle cell collagen degradation (-34.2+/-6.1%). Mevalonate, and the isoprenoid derivative geranylgeraniol, precursors of geranylgeranylated proteins, completely prevent the inhibitory effect of simvastatin on MMP1. Moreover, the protein geranylgeranyltransferase inhibitor GGTI-286 significantly decreases MMP1 expression. Retroviral overexpression of dominant-negative mutants of geranylgeranylated Rac1 lead to a reduction of MMP1 protein (-50.4+/-5.4%) and mRNA levels (-97.9+/-1.0%), and knockdown of Rac1 by small interfering RNA downregulates MMP1 expression. Finally, simvastatin reduces GTP-bound Rac1 expression levels in smooth muscle cells cultured on polymerized collagen. CONCLUSIONS These results demonstrate that simvastatin, by inhibiting Rac1 activity, reduces MMP1 expression and collagen degradation in human smooth muscle cells.
Collapse
MESH Headings
- Cells, Cultured
- Collagen/pharmacology
- Gene Expression/drug effects
- Humans
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Infant, Newborn
- Leucine/analogs & derivatives
- Leucine/pharmacology
- Matrix Metalloproteinase 1/biosynthesis
- Matrix Metalloproteinase 1/genetics
- Matrix Metalloproteinase Inhibitors
- Mevalonic Acid/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Polymerase Chain Reaction
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Simvastatin/pharmacology
- rac1 GTP-Binding Protein/antagonists & inhibitors
- rac1 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Nicola Ferri
- Department of Pharmacological Sciences, University of Milan, Milano, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
Vanderslice P, Woodside DG. Integrin antagonists as therapeutics for inflammatory diseases. Expert Opin Investig Drugs 2006; 15:1235-55. [PMID: 16989599 DOI: 10.1517/13543784.15.10.1235] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Integrins are a family of heterodimeric cell surface receptors that mediate adhesion events crucial to cellular migration, proliferation and activation. Although critical to a normal immune response, integrins can also facilitate the progression of many inflammatory and autoimmune disorders. As such, they have attracted the attention of the pharmaceutical industry. Several humanised monoclonal antibodies directed against integrin targets have proven to be successful in clinical trials and have been approved for use in humans. This has not only resulted in effective therapies for patients, but also has provided important proof-of-concept studies for the development of small-molecule antagonists. This review focuses on those integrin subclasses that are being evaluated for their potential role in pulmonary, dermatological, gastrointestinal or rheumatic diseases. These include the alpha4 and beta2 integrins, as well as an emerging group of targets from the collagen-binding family of integrins. Interfering with integrin signalling pathways represents a future area of interest. The rationale for pursuing these targets, as well as the drugs presently under development, are discussed.
Collapse
Affiliation(s)
- Peter Vanderslice
- Encysive Pharmaceuticals, Department of Drug Discovery, Biological Sciences, 7000 Fannin, 19th Floor, Houston, TX 77030, USA.
| | | |
Collapse
|
22
|
Bhargava MM, Hidaka C, Hannafin JA, Doty S, Warren RF. Effects of hepatocyte growth factor and platelet-derived growth factor on the repair of meniscal defects in vitro. In Vitro Cell Dev Biol Anim 2006; 41:305-10. [PMID: 16409118 DOI: 10.1290/0503018.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Injuries to the avascular region of the meniscus occur frequently and may be difficult to repair. This study was designed to determine whether growth factors could diffuse from a collagen sponge or a collagen gel into meniscal tissue and stimulate healing of defects using an in vitro model. The diffusion of platelet-derived growth factor (PDGF) from the collagen carriers into the medium was rapid with approximately 50% being released from the collagen sponge within the first hour. After 5 d of incubation, 8% of the PDGF was present in the meniscus, 11% in the collagen sponge, and 62% had been released into the medium. Similar results were obtained when a collagen gel was used as a carrier. Histological evaluation of the meniscal explants after 2 wk in culture revealed extensive proteoglycan staining in the areas surrounding defects treated with either hepatocyte growth factor (HGF) or PDGF compared with controls without growth factor. The HGF-PDGF treatment resulted in alignment and migration of meniscal cells toward the defect, which was not observed in untreated controls. At 3-7 d, increased number of cells were observed in defects treated with collagen gels (but not the sponge) with PDGF-HGF. At 4 wk, combined HGF-PDGF treatment resulted in the formation of tissue with birefringence by polarized microscopy, suggestive of organized collagen. The data suggest that use of specific PDGF-HGF may enhance the repair of meniscal injuries.
Collapse
Affiliation(s)
- Madhu M Bhargava
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021, USA.
| | | | | | | | | |
Collapse
|
23
|
Umesh A, Thompson MA, Chini EN, Yip KP, Sham JSK. Integrin ligands mobilize Ca2+ from ryanodine receptor-gated stores and lysosome-related acidic organelles in pulmonary arterial smooth muscle cells. J Biol Chem 2006; 281:34312-23. [PMID: 16963791 DOI: 10.1074/jbc.m606765200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular matrix (ECM) protein receptors, or integrins, participate in vascular remodeling and the systemic myogenic response. Synthetic ligands and ECM fragments regulate the vascular smooth muscle cell contractile state by altering intracellular Ca2+ levels ([Ca2+]i). Information on the Ca2+ effect of integrins in vascular smooth muscle cells is limited, but nonexistent in pulmonary arterial smooth muscle cells (PASMCs). We therefore characterized integrin expression in endothelium-denuded pulmonary arteries, and explored [Ca2+]i mobilization pathways induced by soluble ligands in rat PASMCs. Reverse transcriptase-PCR showed mRNA expression of integrins alpha1, alpha2, alpha3, alpha4, alpha5, alpha7, alpha8, alpha(v), beta1, beta3, and beta4, and immunoblots of alpha5, alpha(v), beta1, and beta3 confirmed protein expression. Exposure of PASMCs to integrin-binding peptides (0.5 mM) containing the arginine-glycine-aspartate (RGD) motif elicited [Ca2+]i responses with an order of potency of GRGDNP > GRGDSP > GRGDTP = cyclo-RGD. Pharmacological analysis revealed that the GRGDSP-induced Ca2+ response was unrelated to Ca2+ influx and the inositol triphosphate receptor-gated Ca2+ store, but partially blocked by ryanodine or inhibition of lysosome-related acidic organelles with bafilomycin A1. Simultaneous inhibition of both pathways was necessary to abolish the response. GRGDSP treatment increased cyclic ADP-ribose, the endogenous activator of ryanodine receptors, by 70%. GRGDSP also rapidly reduced Lysotracker Red accumulation, confirming direct modulation of acidic organelles. These data are the first demonstration of integrin-mediated Ca2+ regulation in PASMCs. The presence of an array of integrins, and activation of ryanodine-sensitive Ca2+ stores and lysosome-like organelles by GRGDSP suggest important roles for integrin-dependent Ca2+ signaling in regulating PASMC function.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Calcium/metabolism
- Calcium Signaling
- Cells, Cultured
- Fluorescence
- Integrins/metabolism
- Ligands
- Lysosomes/metabolism
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Oligopeptides/pharmacology
- Organelles/metabolism
- Peptide Fragments/pharmacology
- Protein Binding
- Pulmonary Artery/cytology
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction
- Ryanodine/pharmacology
- Ryanodine Receptor Calcium Release Channel/metabolism
Collapse
Affiliation(s)
- Anita Umesh
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Asthma is a chronic inflammatory disease involving many different cell types and cellular elements. Evidence suggests that, in the long term, this inflammation leads to remodeling of the airways, airflow obstruction, and the bronchial hyperreactivity symptoms of asthma, and is present even in patients with intermittent disease. Patients with allergic asthma and those with seasonal allergic rhinitis are believed to have minimal persistent inflammation, and the two diseases often occur together. Early intervention with inhaled corticosteroids (ICS) is believed to modify the disease process and may limit long-term remodeling. ICS remain the cornerstone and "gold standard" of treatment for asthma.
Collapse
Affiliation(s)
- G Walter Canonica
- Allergy and Respiratory Diseases, DIMI, Department of Internal Medicine, University of Genoa, Genoa, Italy.
| |
Collapse
|
25
|
Kauffmann SØ, Thomsen AR, Christensen JP. Role of very late antigen-1 in T-cell-mediated immunity to systemic viral infection. Scand J Immunol 2006; 63:290-8. [PMID: 16623929 DOI: 10.1111/j.1365-3083.2006.01744.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The T-cell response to lymphocytic choriomeningitis virus was studied in mice lacking very late antigen-1 (VLA-1). The generation of virus-specific effector T cells was unimpaired in VLA-1(-/-) mice. In the memory phase, VLA-1 deficiency did not influence the number of memory CD8(+) T cells or their distribution between lymphoid and nonlymphoid organs. Regarding a functional role of VLA-1, we found that intracerebral infection of both VLA-1(-/-) and wild-type (wt) mice resulted in lethal T-cell-mediated meningitis, and quantitative and qualitative analyses of the cellular exudate did not reveal any significant differences between the two strains. Expression of VLA-1 was also found to be redundant regarding the ability of effector T cells to eliminate virus from internal organs of i.v. infected mice. Using delayed-type hypersensitivity (DTH) assays to evaluate subdermal CD8(+) T-cell-mediated inflammation, no significant influence of VLA-1 was found either in the primary response or in the memory phase. However, alpha-VLA-4 antibody reduced the DTH-like reaction in VLA-1(-/-) mice to a higher degree than in wt mice, suggesting a synergistic effect of blocking both integrins. Taken together, the current findings indicate that the expression of VLA-1 is not pivotal for T-cell-mediated antiviral immunity to a systemic infection.
Collapse
Affiliation(s)
- S Ø Kauffmann
- Institute of Medical Microbiology and Immunology, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
26
|
Henshaw DR, Attia E, Bhargava M, Hannafin JA. Canine ACL fibroblast integrin expression and cell alignment in response to cyclic tensile strain in three-dimensional collagen gels. J Orthop Res 2006; 24:481-90. [PMID: 16453340 DOI: 10.1002/jor.20050] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue-engineered ligament substitutes have the potential to become an alternative graft source for ligament reconstruction. If this approach is to become viable, one must first understand and define the mechanisms responsible for creation, maintenance, and remodeling of the native anterior cruciate ligament. It is well accepted that mechanical load alters fibroblast phenotypic expression in a variety of cell sources; however, the mechanosensitive pathways responsible for alteration in matrix production, remodeling, and alignment are unknown. We hypothesize that cell surface integrins play a role in this mechanotransduction process, and as such respond to application of cyclic tensile load. Linear 3D collagen gels containing canine ACL fibroblasts were created in Flexercell Tissue-Train Culture Plates. Gels were untethered (control), tethered without external strain (tethered), or tethered and exposed to 2.5% cyclic strain for 2 h per day for 4 days (strain). Quantitation of alpha1, alpha5, and beta1 integrin subunit was performed using flow cytometry. Cell and matrix alignment was studied using light, polarized light, and fluorescent microscopy. Expression of alpha5 and beta1 integrin subunits was increased significantly in fibroblasts in tethered and strained 3D collagen gels compared with the control, unloaded constructs (p < 0.05). These integrins are known to function as mechanotransducers in other tissues, implicating a similar role in mechanotransduction in ACL fibroblasts. Histologic analysis of the tethered and strained gels demonstrated a linear arrangement of cells and parallel collagen fibril architecture. In contrast, cell distribution and collagen alignment were disorganized in the control, unloaded gels. The alignment of cells and collagen in the 3D gels parallel to applied strain is similar to the in vivo state. These data add to our understanding of the behavior of ACL fibroblasts in vitro. The ability to manipulate signal transduction pathways may enhance our ability to engineer implantable ACL grafts or to modify ACL healing response.
Collapse
Affiliation(s)
- D Ross Henshaw
- Laboratory for Soft Tissue Research, Sports Medicine and Shoulder Service, The Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021, USA
| | | | | | | |
Collapse
|
27
|
Hannafin JA, Attia EA, Henshaw R, Warren RF, Bhargava MM. Effect of cyclic strain and plating matrix on cell proliferation and integrin expression by ligament fibroblasts. J Orthop Res 2006; 24:149-58. [PMID: 16435352 DOI: 10.1002/jor.20018] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The role of cell surface integrins in cell migration, proliferation, and attachment to matrix molecules is well known. Integrin-matrix interactions have been implicated in mechanotransduction and load transmission from the outside to the inside of the cell. In this study, the effect of cyclic strain on the cell proliferation, attachment, and expression of integrin subunits beta1, beta3, and alpha5 was determined in anterior cruciate ligament (ACL) and medial collateral ligament (MCL) fibroblasts grown on polystyrene, Type I collagen, laminin, elastin, and fibronectin. ACL fibroblast proliferation was not affected by growth substrate whereas MCL cells reached confluence more rapidly on fibronectin compared with collagen or polystyrene. Exposure to 5% cyclic strain resulted in a significant decrease in ACL and MCL fibroblast proliferation on fibronectin and Type I collagen. MCL cells showed a greater strain-dependent inhibition of cells grown on a fibronectin substrate than those grown on collagen. This matrix-dependent effect of strain on cell proliferation was not seen with ACL cells. Attachment of ACL and MCL fibroblasts was stronger to fibronectin compared with Type I collagen, laminin, and polystyrene. In the absence of applied load, the expression of beta1, beta3, and alpha5 subunits was not substrate dependent and the expression of beta1 and alpha5 integrin subunits was higher in MCL cells than ACL cells on all substrates. In contrast, the expression of beta3 integrin subunit was higher in ACL cells than MCL cells. In response to 5% strain, beta1, and alpha5 expression increased in all fibroblasts with MCL cells having a higher magnitude of expression. beta3 expression showed a 90% increase in response to load when grown on laminin for both MCL and ACL fibroblasts and demonstrated no change in expression on Type I collagen or fibronectin. The duration of applied strain from 2 versus 22 h had no effect on cell proliferation or integrin expression.
Collapse
Affiliation(s)
- Jo A Hannafin
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, 535 E. 70th Street, New York, New York 10021, USA.
| | | | | | | | | |
Collapse
|
28
|
Orlandi A, Ferlosio A, Gabbiani G, Spagnoli LG, Ehrlich PH. Phenotypic heterogeneity influences the behavior of rat aortic smooth muscle cells in collagen lattice. Exp Cell Res 2005; 311:317-27. [PMID: 16263112 DOI: 10.1016/j.yexcr.2005.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2005] [Revised: 09/16/2005] [Accepted: 10/13/2005] [Indexed: 01/12/2023]
Abstract
Phenotypic modulation of vascular smooth muscle cells (SMCs) in atherosclerosis and restenosis involves responses to the surrounding microenvironment. SMCs obtained by enzymatic digestion from tunica media of newborn, young adult (YA) and old rats and from the thickened intima (TI) and underlying media of young adult rat aortas 15 days after ballooning were entrapped in floating populated collagen lattice (PCL). TI-SMCs elongated but were poor at PCL contraction and remodeling and expressed less alpha2 integrin compared to other SMCs that appeared more dendritic. During early phases of PCL contraction, SMCs showed a marked decrease in the expression of alpha-smooth muscle actin and myosin. SMCs other than TI-SMCs required 7 days to re-express alpha-smooth muscle actin and myosin. Only TI-SMCs in PCL were able to divide in 48 h, with a greater proportion in S and G2-M cell cycle phases compared to other SMCs. Anti-alpha2 integrin antibody markedly inhibited contraction but not proliferation in YA-SMC-PLCs; anti-alpha1 and anti-alpha2 integrin antibodies induced a similar slight inhibition in TI-SMC-PCLs. Finally, TI-SMCs rapidly migrated from PCL on plastic reacquiring their epithelioid phenotype. Heterogeneity in proliferation and cytoskeleton as well the capacity to remodel the extracellular matrix are maintained, when SMCs are suspended in PCLs.
Collapse
Affiliation(s)
- Augusto Orlandi
- Anatomic Pathology, Dept. of Biopathology and Image Diagnostics, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| | | | | | | | | |
Collapse
|
29
|
Adiguzel E, Hou G, Mulholland D, Hopfer U, Fukai N, Olsen B, Bendeck M. Migration and growth are attenuated in vascular smooth muscle cells with type VIII collagen-null alleles. Arterioscler Thromb Vasc Biol 2005; 26:56-61. [PMID: 16269661 DOI: 10.1161/01.atv.0000194155.96456.b7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Type VIII collagen is upregulated after vascular injury and in atherosclerosis. However, the role of type VIII collagen endogenously expressed by smooth muscle cells (SMCs) and in the context of the vascular matrix microenvironment, which is rich in type I collagen, is not known. To address this, we have compared aortic SMCs from wild-type (WT) mice to SMCs from type VIII collagen-deficient (KO) mice when plated on type I collagen. METHODS AND RESULTS Type VIII collagen was upregulated after wounding of WT SMCs. KO SMCs exhibited greater adhesion to type I collagen than WT SMCs (optical density [OD595]=0.458+/-0.044 versus 0.193+/-0.071). By contrast, the WT SMCs spread more (389+/-75% versus 108+/-14% increase in cell area), migrated further (total distance 80.6+/-6.2 microm versus 64.2+/-4.4 microm), and exhibited increased [3H]-thymidine uptake (160,000+/-22,300 versus 63,100+/-12,100 counts per minute) when compared with KO SMCs. Gelatin zymograms showed that WT SMCs expressed latent matrix metalloproteinase 2, whereas KO SMCs did not. Addition of exogenous type VIII collagen returned levels of KO SMC adhesion (OD595=0.316+/-0.038), migration (79.5+/-5.8 microm), and latent matrix metalloproteinase 2 expression to levels comparable to WT SMCs. CONCLUSIONS This study suggests that SMCs can modify the matrix microenvironment by producing type VIII collagen, using it to overlay type I collagen, and generating a substrate favorable for migration.
Collapse
Affiliation(s)
- Eser Adiguzel
- Department of Laboratory Medicine, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Chamoux E, Otis M, Gallo-Payet N. A connection between extracellular matrix and hormonal signals during the development of the human fetal adrenal gland. Braz J Med Biol Res 2005; 38:1495-503. [PMID: 16172742 DOI: 10.1590/s0100-879x2005001000006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human adrenal cortex, involved in adaptive responses to stress, body homeostasis and secondary sexual characters, emerges from a tightly regulated development of a zone-specific secretion pattern during fetal life. Its development during fetal life is critical for the well being of pregnancy, the initiation of delivery, and even for an adequate adaptation to extra-uterine life. As early as from the sixth week of pregnancy, the fetal adrenal gland is characterized by a highly proliferative zone at the periphery, a concentric migration accompanied by cell differentiation (cortisol secretion) and apoptosis in the central androgen-secreting fetal zone. After birth, a strong reorganization occurs in the adrenal gland so that it better fulfills the newborn's needs, with aldosterone production in the external zona glomerulosa, cortisol secretion in the zona fasciculata and androgens in the central zona reticularis. In addition to the major hormonal stimuli provided by angiotensin II and adrenocorticotropin, we have tested for some years the hypotheses that such plasticity may be under the control of the extracellular matrix. A growing number of data have been harvested during the last years, in particular about extracellular matrix expression and its putative role in the development of the human adrenal cortex. Laminin, collagen and fibronectin have been shown to play important roles not only in the plasticity of the adrenal cortex, but also in cell responsiveness to hormones, thus clarifying some of the unexplained observations that used to feed controversies.
Collapse
Affiliation(s)
- E Chamoux
- CRRI, Centre de Recherches, Centre Hospitalier, Université Laval, Québec, Canada.
| | | | | |
Collapse
|
31
|
Ben-Horin S, Bank I. The role of very late antigen-1 in immune-mediated inflammation. Clin Immunol 2004; 113:119-29. [PMID: 15451466 DOI: 10.1016/j.clim.2004.06.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Accepted: 06/21/2004] [Indexed: 12/26/2022]
Abstract
The alpha1beta1 integrin, also known as "very late antigen" (VLA)-1, is normally expressed on mesenchymal cells, some epithelial cells, activated T cells, and macrophages, and interacts, via the I-domain of the extracellular domain of the alpha1 subunit, with collagen molecules in the extracellular matrix (ECM). By "outside-in" transmembranal signaling to the interior of the cell, it mediates adhesion, migration, proliferation, remodeling of the ECM, and cytokine secretion by endothelial cells, mesangial cells, fibroblasts, and immunocytes. Importantly, its expressions and functions are enhanced by inflammatory cytokines including interferon (IFN)gamma and tumor necrosis factor (TNF)alpha, thus augmenting angiogenesis and fibrosis linked, in particular, to inflammation. Moreover, within the immune system, VLA-1 marks effector memory CD4+ and CD8+ T cells that are retained in extralymphatic tissues by interactions of the integrin with collagen and produce high levels of IFNgamma. Thus, immune-mediated inflammation in vivo is inhibited by blockade of the VLA-1-collagen interaction in experimental animal models of arthritis, colitis, nephritis, and graft versus host disease (GVHD), suggesting that inhibiting the interaction of the alpha1 I-domain with its ligands or modulating "outside-in" signaling by VLA-1 would be a useful approach in the human diseases simulated by these experimental models.
Collapse
Affiliation(s)
- Shomron Ben-Horin
- Laboratory for Immunoregulation, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | | |
Collapse
|
32
|
Kondo S, Kagami S, Urushihara M, Kitamura A, Shimizu M, Strutz F, Müller GA, Kuroda Y. Transforming growth factor-β1 stimulates collagen matrix remodeling through increased adhesive and contractive potential by human renal fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1693:91-100. [PMID: 15313011 DOI: 10.1016/j.bbamcr.2004.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Accepted: 05/10/2004] [Indexed: 10/26/2022]
Abstract
Renal tubulointerstitial fibrosis is the common final pathway leading to end-stage renal failure. Tubulointerstitial fibrosis is characterized by fibroblast proliferation and excessive matrix accumulation. Transforming growth factor-beta1 (TGF-beta1) has been implicated in the development of renal fibrosis accompanied by alpha-smooth muscle actin (alpha-SMA) expression in renal fibroblasts. To investigate the molecular and cellular mechanisms involved in tubulointerstitial fibrosis, we examined the effect of TGF-beta1 on collagen type I (collagen) gel contraction, an in vitro model of scar collagen remodeling. TGF-beta1 enhanced collagen gel contraction by human renal fibroblasts in a dose- and time-dependent manner. Function-blocking anti-alpha1 or anti-alpha2 integrin subunit antibodies significantly suppressed TGF-beta1-stimulated collagen gel contraction. Scanning electron microscopy showed that TGF-beta1 enhanced the formation of the collagen fibrils by cell attachment to collagen via alpha1beta1 and alpha2beta1 integrins. Flow cytometry and cell adhesion analyses revealed that the stimulation of renal fibroblasts with TGF-beta1 enhanced cell adhesion to collagen via the increased expression of alpha1 and alpha2 integrin subunits within collagen gels. Fibroblast migration to collagen was not up-regulated by TGF-beta1. Furthermore, TGF-beta1 increased the expression of a putative contractile protein, alpha-SMA, by human renal fibroblasts in collagen gels. These results suggest that TGF-beta1 stimulates fibroblast-collagen matrix remodeling by increasing both integrin-mediated cell attachment to collagen and alpha-SMA expression, thereby contributing to pathological tubulointerstitial collagen matrix reorganization in renal fibrosis.
Collapse
Affiliation(s)
- Shuji Kondo
- Department of Pediatrics, School of Medicine, University of Tokushima, Kuramoto-cho-3-chome, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Hofmann CS, Sullivan CP, Jiang HY, Stone PJ, Toselli P, Reis ED, Chereshnev I, Schreiber BM, Sonenshein GE. B-Myb represses vascular smooth muscle cell collagen gene expression and inhibits neointima formation after arterial injury. Arterioscler Thromb Vasc Biol 2004; 24:1608-13. [PMID: 15256398 DOI: 10.1161/01.atv.0000139010.71779.f3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The function of B-Myb, a negative regulator of vascular smooth muscle cell (SMC) matrix gene transcription, was analyzed in the vasculature. METHODS AND RESULTS Mice were generated in which the human B-myb gene was driven by the basal cytomegalovirus promoter, and 3 founders were identified. Mice appeared to develop normally, and human B-myb was expressed in the aortas. Total B-Myb levels were elevated in aortas of adult transgenic versus wild-type (WT) animals and varied inversely with alpha1(I) collagen mRNA expression. However, neonatal WT and transgenic aortas displayed comparable levels of alpha1(I) collagen mRNA, likely resulting from elevated levels of cyclin A, which ablated repression by B-Myb. Aortic SMCs from adult transgenic animals displayed decreased alpha1(I) collagen mRNA levels. To examine the role of B-Myb after vascular injury, animals were subjected to femoral artery denudation, which induces SMC-rich lesion formation. A dramatic reduction in neointima formation and lumenal narrowing was observed in arteries of B-myb transgenic versus WT mice 4 weeks after injury. CONCLUSIONS Data indicate that B-Myb, which inhibits matrix gene expression in the adult vessel wall, reduces neointima formation after vascular injury. To analyze B-Myb function in the vasculature, mice overexpressing B-myb were generated. Neonates displayed normal alpha1(I) collagen mRNA levels, whereas adults expressed decreased collagen mRNA in aortas and isolated vascular SMCs. On femoral artery denudation, neointima formation was dramatically reduced in B-myb transgenic mice.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Aorta/metabolism
- Cell Cycle Proteins/biosynthesis
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/physiology
- Collagen/biosynthesis
- Collagen/genetics
- Cyclin A/biosynthesis
- Cyclin A/genetics
- Cytomegalovirus/genetics
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Female
- Femoral Artery/injuries
- Femoral Artery/metabolism
- Femoral Artery/pathology
- Gene Expression Regulation
- Humans
- Male
- Mice
- Mice, Transgenic
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Trans-Activators/physiology
- Transgenes
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Claudia S Hofmann
- Department of Biochemistry, Boston University School of Medicine, 715 Albany St, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Jokinen J, Dadu E, Nykvist P, Käpylä J, White DJ, Ivaska J, Vehviläinen P, Reunanen H, Larjava H, Häkkinen L, Heino J. Integrin-mediated cell adhesion to type I collagen fibrils. J Biol Chem 2004; 279:31956-63. [PMID: 15145957 DOI: 10.1074/jbc.m401409200] [Citation(s) in RCA: 272] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the integrin family, the collagen receptors form a structurally and functionally distinct subgroup. Two members of this subgroup, alpha(1)beta(1) and alpha(2)beta(1) integrins, are known to bind to monomeric form of type I collagen. However, in tissues type I collagen monomers are organized into large fibrils immediately after they are released from cells. Here, we studied collagen fibril recognition by integrins. By an immunoelectron microscopy method we showed that integrin alpha(2)I domain is able to bind to classical D-banded type I collagen fibrils. However, according to the solid phase binding assay, the collagen fibril formation appeared to reduce integrin alpha(1)I and alpha(2)I domain avidity to collagen and to lower the number of putative alphaI domain binding sites on it. Respectively, cellular alpha(1)beta(1) integrin was able to mediate cell spreading significantly better on monomeric than on fibrillar type I collagen matrix, whereas alpha(2)beta(1) integrin appeared still to facilitate both cell spreading on fibrillar type I collagen matrix and also the contraction of fibrillar type I collagen gel. Additionally, alpha(2)beta(1) integrin promoted the integrin-mediated formation of long cellular projections typically induced by fibrillar collagen. Thus, these findings suggest that alpha(2)beta(1) integrin is a functional cellular receptor for type I collagen fibrils, whereas alpha(1)beta(1) integrin may only effectively bind type I collagen monomers. Furthermore, when the effect of soluble alphaI domains on type I collagen fibril formation was tested in vitro, the observations suggest that integrin type collagen receptors might guide or even promote pericellular collagen fibrillogenesis.
Collapse
Affiliation(s)
- Johanna Jokinen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Järveläinen H, Vernon RB, Gooden MD, Francki A, Lara S, Johnson PY, Kinsella MG, Sage EH, Wight TN. Overexpression of Decorin by Rat Arterial Smooth Muscle Cells Enhances Contraction of Type I Collagen In Vitro. Arterioscler Thromb Vasc Biol 2004; 24:67-72. [PMID: 14615389 DOI: 10.1161/01.atv.0000107026.98626.3b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Overexpression of decorin reduces neointimal thickening in balloon-injured carotid arteries of rats by decreasing the volume of neointimal extracellular matrix (ECM). We examined the hypothesis that decorin regulates ECM volume by stimulating cell-mediated contraction of collagen-rich ECMs. METHODS AND RESULTS Rat arterial smooth muscle cells (ASMCs) transduced with bovine decorin cDNA by retroviral transfection (LDSN) exhibited enhanced contraction of collagen gels in vitro when compared with vector-only transduced (LXSN) cells. Addition of recombinant decorin to LXSN or LDSN cells did not stimulate contraction of collagen gels. Enhanced contraction of collagen by LDSN cells was unaffected by the metalloproteinase inhibitor GM6001. LDSN cells exhibited increased expression of type I collagen mRNA when compared with that of LXSN cells. Correspondingly, collagen gel contraction by LDSN cells was reduced by inhibition of collagen synthesis by 3,4-l-dehydroproline (L-DHP). Antibodies to alpha1beta1-integrin, but not to alpha2beta1-integrin, blocked collagen contraction by both LXSN and LDSN cells. However, LXSN and LDSN cells expressed similar levels of alpha1- and beta1-integrin mRNAs. CONCLUSIONS Decorin synthesized de novo by ASMCs increases type I collagen synthesis and enhances contraction of collagen gels. Regulated synthesis of decorin may be a useful therapeutic approach to reduce ECM volume in vascular disease.
Collapse
|
36
|
Andreasen SØ, Thomsen AR, Koteliansky VE, Novobrantseva TI, Sprague AG, de Fougerolles AR, Christensen JP. Expression and functional importance of collagen-binding integrins, alpha 1 beta 1 and alpha 2 beta 1, on virus-activated T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2804-11. [PMID: 12960301 DOI: 10.4049/jimmunol.171.6.2804] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Adhesive interactions are crucial to cell migration into inflammatory sites. Using murine lymphocytic choriomeningitis virus as an Ag model system, we have investigated expression and function of collagen-binding integrins, alpha(1)beta(1) and alpha(2)beta(1), on activated and memory T cells. Using this system and MHC tetramers to define Ag-specific T cells, we demonstrate that contrary to being VLAs, expression of alpha(1)beta(1) and alpha(2)beta(1) can be rapidly induced on acutely activated T cells, that expression of alpha(1)beta(1) remains elevated on memory T cells, and that expression of alpha(1)beta(1) parallels that of viral-specific effector CD8(+) T cells (defined by tetramer and IFN-gamma staining). In an adoptive transfer model, mAb-mediated blockade of these integrins on activated effector and memory T cells inhibited Ag-specific delayed-type hypersensitivity responses; similar decreased responses were seen upon transfer of alpha(1)-deficient activated/memory T cells. Thus, expression of alpha(1)beta(1) and alpha(2)beta(1) integrins on activated T cells is directly functionally important for generation of inflammatory responses within tissues. Finally, the inhibitory effect of alpha(1)beta(1) blockade on the delayed-type hypersensitivity response could be bypassed by direct injection of Ag-specific T cells to inflammatory sites, demonstrating for the first time in vivo that collagen-binding integrins are involved in leukocyte migration into tissues.
Collapse
Affiliation(s)
- Susanne Ø Andreasen
- Institute of Medical Microbiology and Immunology, Panum Institute, Copenhagen, Denmark. Biogen, Cambridge, MA 02142, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Deschaseaux F, Gindraux F, Saadi R, Obert L, Chalmers D, Herve P. Direct selection of human bone marrow mesenchymal stem cells using an anti-CD49a antibody reveals their CD45med,low phenotype. Br J Haematol 2003; 122:506-17. [PMID: 12877680 DOI: 10.1046/j.1365-2141.2003.04469.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human bone marrow mesenchymal stem cells (MSC) generate, via a fibroblast colony-forming unit (CFU-F), osteo-chondroblastic cells as well as adipocytes and stromacytes. To date, these stem cells are isolated indirectly using a cell culture method and phenotyped as CD45 negative while the in vivo counterparts are undetermined. Our aim was to develop a direct selection method and to determine the phenotype of the MSC isolated in this way. Mesenchymal cells were selected with anti-CD49a and/or anti-CD45 antibodies using either flow cytometry or a magnetic beads method. All CFU-F were always detected in the small population of CD49a-positive cells. These CFU retained their differentiation potential and gave rise to osteo-chondroblastic cells, adipocytes and stromacytes. Phenotypic studies on uncultured cells revealed a CD45med,low, CD34low, HLA-II- cell population. Flow cytometry cell sorting showed that MSC with CFU-F potential were obtained only from a CD49a+/CD45med,low population. In addition, when cultured, they clearly became CD45-, CD34-, HLA-II-, CD49a+. These results confirmed that MSC can be directly selected easily from human bone marrow using magnetic beads without altering their differentiation potential. These cells expressed mildly the haematopoietic marker CD45, which was dramatically downregulated by in vitro culture. The expression of CD45 coupled to CD49a thus enabled direct selection of the MSC.
Collapse
|
38
|
Ferri N, Garton KJ, Raines EW. An NF-kappaB-dependent transcriptional program is required for collagen remodeling by human smooth muscle cells. J Biol Chem 2003; 278:19757-64. [PMID: 12649281 DOI: 10.1074/jbc.m212714200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although remodeling of vessels can dramatically alter lumen diameter and clinical sequelae, the molecular mechanisms regulating extracellular matrix turnover and remodeling are still not well understood. To investigate these processes in human smooth muscle, we have compared their culture on monomer and polymerized collagen gels, conditions that mimic some of the features of injured and normal vessels, respectively. We show that culture on polymerized, but not monomer, collagen leads to the activation of the transcription factor NF-kappaB through phosphorylation and degradation of its inhibitor, IkappaBalpha. Coincident with NF-kappaB activation, expression of MMP1, MMP2, and alpha2 integrin increases on polymerized collagen. Specific inhibition of NF-kappaB by retroviral overexpression of wild-type IkappaBalpha or phosphorylation-resistant, IkappaBalpha-stabilized mutant (IkappaBalphaSer32,36/Ala) reverses the increases in MMP1 and alpha2beta1 on polymerized collagen and decreases collagen gel contraction and degradation. However, forced overexpression of alpha2beta1 integrin or MMP1 in smooth muscle cells expressing IkappaBalphaSer32,36/Ala rescues their ability to contract collagen gels. Thus, polymerized collagen induces NF-kappaB-dependent expression of MMP1 and alpha2beta1 integrin, that are required for smooth muscle extracellular matrix remodeling.
Collapse
Affiliation(s)
- Nicola Ferri
- Department of Pathology, University of Washington School of Medicine, Seattle 98104, USA
| | | | | |
Collapse
|
39
|
Krieglstein CF, Cerwinka WH, Sprague AG, Laroux FS, Grisham MB, Koteliansky VE, Senninger N, Granger DN, de Fougerolles AR. Collagen-binding integrin alpha1beta1 regulates intestinal inflammation in experimental colitis. J Clin Invest 2003. [PMID: 12488427 DOI: 10.1172/jci200215256] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Central to inflammatory responses are the integrin-mediated adhesive interactions of cells with their ECM-rich environment. We investigated the role of the collagen-binding integrin alpha(1)beta(1) in intestinal inflammation using the mouse model of colitis induced by dextran sodium sulfate (DSS). mAb's directed against murine alpha(1) were found to significantly attenuate inflammation and injury in DSS-treated wild-type mice; similar protection was seen in mice deficient for alpha(1)beta(1) integrin. Blockade or loss of alpha(1)beta(1) was also associated with decreased mucosal inflammatory cell infiltrate and cytokine production. Importantly, we demonstrated that development and alpha(1)-mediated inhibition of DSS-induced colitis occurred independently of lymphocytes (Rag-2(-/-) mice), and identified the monocyte as a key alpha(1)beta(1)-expressing cell type involved in the development of colitis in this model. In response to DSS, both alpha(1) deficiency and anti-alpha(1) mAb treatment significantly reduced monocyte accumulation and activation within the lamina propria. In summary, the data demonstrate that engagement of leukocyte-associated alpha(1)beta(1) receptors with ECM plays a pivotal role in mediating intestinal inflammation via promotion of monocyte movement and/or activation within the inflamed interstitium. Therapeutic strategies designed to disrupt such interactions may prove beneficial in treating intestinal inflammation.
Collapse
Affiliation(s)
- Christian F Krieglstein
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Krieglstein CF, Cerwinka WH, Sprague AG, Laroux FS, Grisham MB, Koteliansky VE, Senninger N, Granger DN, de Fougerolles AR. Collagen-binding integrin alpha1beta1 regulates intestinal inflammation in experimental colitis. J Clin Invest 2002; 110:1773-82. [PMID: 12488427 PMCID: PMC151649 DOI: 10.1172/jci15256] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Central to inflammatory responses are the integrin-mediated adhesive interactions of cells with their ECM-rich environment. We investigated the role of the collagen-binding integrin alpha(1)beta(1) in intestinal inflammation using the mouse model of colitis induced by dextran sodium sulfate (DSS). mAb's directed against murine alpha(1) were found to significantly attenuate inflammation and injury in DSS-treated wild-type mice; similar protection was seen in mice deficient for alpha(1)beta(1) integrin. Blockade or loss of alpha(1)beta(1) was also associated with decreased mucosal inflammatory cell infiltrate and cytokine production. Importantly, we demonstrated that development and alpha(1)-mediated inhibition of DSS-induced colitis occurred independently of lymphocytes (Rag-2(-/-) mice), and identified the monocyte as a key alpha(1)beta(1)-expressing cell type involved in the development of colitis in this model. In response to DSS, both alpha(1) deficiency and anti-alpha(1) mAb treatment significantly reduced monocyte accumulation and activation within the lamina propria. In summary, the data demonstrate that engagement of leukocyte-associated alpha(1)beta(1) receptors with ECM plays a pivotal role in mediating intestinal inflammation via promotion of monocyte movement and/or activation within the inflamed interstitium. Therapeutic strategies designed to disrupt such interactions may prove beneficial in treating intestinal inflammation.
Collapse
Affiliation(s)
- Christian F Krieglstein
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kitamura A, Kagami S, Urushihara M, Kondo S, Yoshizumi M, Tamaki T, Kuroda Y. Endothelin-1 is a potent stimulator of alpha1beta1 integrin-mediated collagen matrix remodeling by rat mesangial cells. Biochem Biophys Res Commun 2002; 299:555-61. [PMID: 12459174 DOI: 10.1016/s0006-291x(02)02693-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Endothelin-1 (ET) is known to stimulate mesangial cell (MC) proliferation, extracellular matrix (ECM) synthesis, and thereby contribute to the progression of glomerulonephritis (GN). To clarify the molecular and cellular mechanisms of how ET is involved in the development of glomerular sclerosis, we investigated the influence of ET on the MC-alpha1beta1 integrin-mediated collagen matrix reorganization using a collagen gel contraction assay. ET enhanced MC-alpha1beta1 integrin-mediated gel contraction in a dose-dependent manner. Addition of the endothelin A (ETA) receptor antagonist, BQ123, into collagen gels abolished ET-induced gel contraction by MC. Cell behavior involved in ET-induced gel contraction was investigated in combination with function-blocking anti-alpha1-integrin antibody. Migration and adhesion assays revealed that ET stimulated alpha1beta1 integrin-mediated MC migration but did not influence cell adhesion to type I collagen (collagen I). Integrin-function blocking studies using anti-alpha1 integrin antibody indicated that MC-alpha1beta1 integrin is required not only for collagen-dependent migration, but also for gel contraction. Zymography showed that ET increased MC matrix metalloproteinase-2 (MMP-2) activity in a dose-dependent manner during MC-induced gel contraction process. Finally, flow cytometry analysis indicated that ET did not affect the cell surface expression of the MC-alpha1beta1 integrin within the collagen gel. These data suggested that ET promotes collagen matrix reorganization through the enhancement of MC-alpha1beta1 integrin-dependent migration and MMP-2 activity. We therefore conclude that ET is a potential molecule inducing pathological collagen matrix remodeling observed in progressive GN.
Collapse
Affiliation(s)
- A Kitamura
- Department of Pediatrics, School of Medicine, University of Tokushima, Kuramoto-cho-3-chome, Tokushima 770-8504, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Fiorucci S, Mencarelli A, Palazzetti B, Sprague AG, Distrutti E, Morelli A, Novobrantseva TI, Cirino G, Koteliansky VE, de Fougerolles AR. Importance of innate immunity and collagen binding integrin alpha1beta1 in TNBS-induced colitis. Immunity 2002; 17:769-80. [PMID: 12479823 DOI: 10.1016/s1074-7613(02)00476-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammation occurs in the context of integrin-mediated adhesive interactions of cells with their extracellular matrix environment. We investigated the role of the collagen binding integrin alpha1beta1 in a model of colitis. alpha1beta1 was expressed on lamina propria T cells and monocytes during disease. Both alpha1 deficiency and anti-alpha1 mAb treatment (prophylactic and therapeutic) protected against colitis. In vivo alpha1beta1 blockade improved macroscopic and histologic scores, decreased inflammatory cytokine production, and profoundly affected the ability of lamina propria mononuclear cells to proliferate and produce IFN-gamma in vitro. Development and alpha1-mediated inhibition of colitis can be lymphocyte independent, suggesting that activated monocytes also represent a key alpha1beta1-expressing cell type involved in colitis. These results underscore the importance of innate immunity and, specifically, of leukocyte/matrix interactions in regulating local inflammatory responses.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Clinica di Gastroenterologia ed Endoscopia Digestiva, Dipartimento di Medicina Clinica, Patologia Università di Perugia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Moulin V, Plamondon M. Differential expression of collagen integrin receptor on fetal vs. adult skin fibroblasts: implication in wound contraction during healing. Br J Dermatol 2002; 147:886-92. [PMID: 12410697 DOI: 10.1046/j.1365-2133.2002.04975.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Fetal skin wound healing is characterized by an absence of contraction and scar formation, two important observations associated with adult healing often leading to pathological problems. OBJECTIVES We have studied the capacity of adult and fetal human skin fibroblasts to contract collagen gels, collagen being the major structural component of dermal matrix. METHODS In parallel with collagen gel contraction studies, we have used fluorescence-activated cell sorter analysis to study the levels of collagen receptors expressed at the surface of fibroblasts derived from fetal or adult skin samples. RESULTS Strong differences were detected between freshly isolated fetal and adult fibroblasts. Fetal fibroblasts had a very low capacity to contract collagen gel, whereas adult cells significantly contracted gels in the same conditions. The expression of alpha1, alpha2 and alpha3 integrin subunits was also significantly different depending of the donor age: alpha1 and alpha3 integrin subunit expression was lower in fetal cells compared with adult cells, whereas alpha2 integrin subunit expression was higher. When grown in monolayers, adult cells showed rapid changes in their contractile capacity and integrin expression while fetal cells were only affected after several passages. CONCLUSIONS These observations indicate that intrinsic differences between fetal and adult fibroblasts can strongly influence the quality of wound repair.
Collapse
Affiliation(s)
- V Moulin
- Laboratoire d'organogenèse expérimentale (LOEX), Hôpital Saint-Sacrement du Centre Hospitalier Affilié Universitaire de Québec and Surgery Department, Laval University, Québec, Canada G1S 4L8.
| | | |
Collapse
|
44
|
Cook HT, Khan SB, Allen A, Bhangal G, Smith J, Lobb RR, Pusey CD. Treatment with an antibody to VLA-1 integrin reduces glomerular and tubulointerstitial scarring in a rat model of crescentic glomerulonephritis. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1265-72. [PMID: 12368200 PMCID: PMC1867275 DOI: 10.1016/s0002-9440(10)64403-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The alpha 1 beta 1 integrin (VLA-1) is a major collagen/laminin receptor that regulates fibroblast proliferation and mesangial cell migration and cell contraction. We have examined the effect of an antibody to VLA-1 in crescentic glomerulonephritis. Nephrotoxic nephritis was induced in Wistar-Kyoto rats and rats were given monoclonal antibody to VLA-1 (Ha31/8), 2.5 mg/kg, on alternate days. Antibodies were given from day -1 to day 10 or from day 14 to day 28. Treatment from day -1 to day 10, during the early inflammatory phase of nephrotoxic nephritis, had no effect on albuminuria or glomerular crescent formation. In the delayed treatment experiment, all rats developed florid crescentic glomerulonephritis, and control rats showed marked glomerular and tubulointerstitial scarring at day 32. VLA-1 expression, by immunohistochemistry, was increased in glomeruli and around tubules. Proteinuria did not differ between groups. In anti-VLA-1-treated rats, serum creatinine was significantly lower at day 32 (P = 0.002) and renal survival was significantly better (P = 0.045). Both glomerular and interstitial scarring were significantly less at day 32 in rats given anti-VLA-1 (P = 0.002). Deposition of ED(A) fibronectin, a marker of new matrix synthesis, and of type IV collagen, were reduced in glomeruli and interstitium in anti-VLA-1-treated animals (P = 0.0006). Expression of alpha-smooth muscle actin, a marker of myofibroblasts, showed no significant difference. Expression of matrix metalloproteinase-9 was increased in the glomeruli of rats treated with anti-VLA-1. We conclude that VLA-1 mediates both glomerular and interstitial fibrosis in crescentic glomerulonephritis and that neutralization of VLA-1, which enhanced expression of matrix metalloproteinase-9, is a possible therapeutic strategy in progressive renal scarring.
Collapse
Affiliation(s)
- H Terence Cook
- Department of Histopathology, Division of Medicine, Faculty of Medicine, Imperial College, Hammersmith Campus, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
45
|
Gullberg DE, Lundgren-Akerlund E. Collagen-binding I domain integrins--what do they do? PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 2002; 37:3-54. [PMID: 11876085 DOI: 10.1016/s0079-6336(02)80008-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Collagens are the most abundant proteins in the mammalian body and it is well recognized that collagens fulfill an important structural role in the extracellular matrix in a number of tissues. Inactivation of the collagen alpha 1(I) gene in mice results in embryonic lethality and collagen mutations in humans cause defects leading to disease. Integrins constitute a major group of receptors for extracellular matrix components, including collagens. Currently four collagen-binding I domain-containing integrins are known, namely alpha 1 beta 1, alpha 2 beta 1, alpha 10 beta 1 and alpha 11 beta 1. Unlike the undisputed role of collagens as structural elements, the biological importance of integrin mediated cell-collagen interactions is far from clear. This is in part due to the limited information available on the most recent additions of the integrin family, alpha 10 beta 1 and alpha 11 beta 1. Future studies using gene inactivation of individual and multiple integrin genes will allow testing of the hypothesis that collagen-binding integrins have redundant functions but will also shed light on their importance in pathological conditions. In this review we will describe what is currently known about the collagen-binding integrins and discuss their biological functions.
Collapse
Affiliation(s)
- Donald E Gullberg
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Box 582, Uppsala University, S-75123 Uppsala, Sweden.
| | | |
Collapse
|
46
|
Kagami S, Urushihara M, Kondo S, Hayashi T, Yamano H, Löster K, Vossmeyer D, Reutter W, Kuroda Y. Effects of anti-alpha1 integrin subunit antibody on anti-Thy-1 glomerulonephritis. J Transl Med 2002; 82:1219-27. [PMID: 12218083 DOI: 10.1097/01.lab.0000027835.77351.bf] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
alpha1beta1 integrin is a potential collagen-binding extracellular matrix receptor that mediates collagen-dependent cell adhesion, proliferation, migration, and collagen matrix assembly and thereby may participate in the wound healing and pathologic scarring observed in some damaged organs. To clarify the role of alpha1beta1 integrin predominantly expressed on the mesangial cell (MC) surface in nephritic glomeruli, we investigated the involvement of MC-alpha1beta1 integrin in rat anti-Thy-1 glomerulonephritis (GN) by administering function-blocking monoclonal mouse anti-rat alpha1 integrin subunit antibody (anti-alpha1 Ab). Assay of collagen types I and IV mixed gel contraction, an in vitro model of pathologic collagen matrix remodeling, with function-blocking anti-alpha1 Ab and anti-beta1 Ab, revealed that collagen I and IV matrix reorganization is mediated by MC-alpha1beta1 integrin. In addition, conditioned medium from isolated Day 3 anti-Thy-1 nephritic glomeruli showed increased activity of MC-alpha1beta1 integrin-induced mixed collagen gel contraction as compared with that from isolated normal rat glomeruli. Treatment of Day 3 conditioned medium with anti-platelet-derived growth factor-BB antibody significantly inhibited conditioned media-induced gel contraction, whereas treatment with anti-transforming growth factor-beta antibody did not have a significant effect. Rats that received anti-alpha1 Ab from the left renal artery 3 days after anti-Thy-1 GN induction showed significant decreases of glomerular hypercellularity and mesangial matrix accumulation, including collagen I and IV in the left kidney, compared with those rats in which the left kidney received control mouse IgG1. These results suggest that MC-alpha1beta1 integrin is an important extracellular matrix receptor mediating mesangial remodeling characterized by MC proliferation and mesangial matrix reorganization in anti-Thy-1 GN. Platelet-derived growth factor-BB may be involved in early collagen matrix reorganization leading to pathologic mesangial remodeling in this GN model.
Collapse
Affiliation(s)
- Shoji Kagami
- Department of Pediatrics, School of Medicine, University of Tokushima, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nony PA, Schnellmann RG. Interactions between collagen IV and collagen-binding integrins in renal cell repair after sublethal injury. Mol Pharmacol 2001; 60:1226-34. [PMID: 11723229 DOI: 10.1124/mol.60.6.1226] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies demonstrate that collagen IV selectively promotes the repair of physiological processes in sublethally injured renal proximal tubular cells (RPTC). We sought to further define the mechanisms of cell repair by measuring the effects of toxicant injury and stimulation of repair by L-ascorbic acid-2-phosphate (AscP), exogenous collagen IV, or function-stimulating integrin antibodies on the expression and subcellular localization of collagen-binding integrins (CBI) in RPTC. Expression of CBI subunits alpha1, alpha2, and beta1 in RPTC was not altered on day 1 after sublethal injury by S-(1,2-dichlorovinyl)-L-cysteine (DCVC). On day 6, expression of alpha1 and beta1 subunits remained unchanged, whereas a 2.2-fold increase in alpha2 expression was evident in injured RPTC. CBI localization in control RPTC was limited exclusively to the basal membrane. On day 1 after injury, RPTC exhibited a marked inhibition of active Na(+) transport and a loss of cell polarity characterized by a decrease in basal CBI localization and the appearance of CBI on the apical membrane. On day 6 after injury, RPTC still exhibited marked inhibition of active Na(+) transport and localization of CBI to the apical membrane. However, DCVC-injured RPTC cultured in pharmacological concentrations of AscP (500 microM) or exogenous collagen IV (50 microg/ml) exhibited an increase in active Na(+) transport, relocalization of CBI to the basal membrane, and the disappearance of CBI from the apical membrane on day 6. Function-stimulating antibodies to CBI beta1 did not promote basal relocalization of CBI despite stimulating the repair of Na(+)/K(+)-ATPase activity on day 6 after injury. These data demonstrate that DCVC disrupts integrin localization and that physiological repair stimulated by AscP or collagen IV is associated with the basal relocalization of CBI in DCVC-injured RPTC. These data also suggest that CBI-mediated repair of physiological functions may occur independently of integrin relocalization.
Collapse
Affiliation(s)
- P A Nony
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | |
Collapse
|
48
|
Tiger CF, Fougerousse F, Grundström G, Velling T, Gullberg D. alpha11beta1 integrin is a receptor for interstitial collagens involved in cell migration and collagen reorganization on mesenchymal nonmuscle cells. Dev Biol 2001; 237:116-29. [PMID: 11518510 DOI: 10.1006/dbio.2001.0363] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
alpha11beta1 integrin constitutes a recent addition to the integrin family. Here, we present the first in vivo analysis of alpha11 protein and mRNA distribution during human embryonic development. alpha11 protein and mRNA were present in various mesenchymal cells around the cartilage anlage in the developing skeleton in a pattern similar to that described for the transcription factor scleraxis. alpha11 was also expressed by mesenchymal cells in intervertebral discs and in keratocytes in cornea, two sites with highly organized collagen networks. Neither alpha11 mRNA nor alpha11 protein could be detected in myogenic cells in human embryos. The described expression pattern is compatible with alpha11beta1 functioning as a receptor for interstitial collagens in vivo. To test this hypothesis in vitro, full-length human alpha11 cDNA was stably transfected into the mouse satellite cell line C2C12, lacking endogenous collagen receptors. alpha11beta1 mediated cell adhesion to collagens I and IV (with a preference for collagen I) and formed focal contacts on collagens. In addition, alpha11beta1 mediated contraction of fibrillar collagen gels in a manner similar to alpha2beta1, and supported migration on collagen I in response to chemotactic stimuli. Our data support a role for alpha11beta1 as a receptor for interstitial collagens on mesenchymally derived cells and suggest a multifunctional role of alpha11beta1 in the recognition and organization of interstitial collagen matrices during development.
Collapse
Affiliation(s)
- C F Tiger
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, S-75124, Sweden
| | | | | | | | | |
Collapse
|
49
|
Klekotka PA, Santoro SA, Wang H, Zutter MM. Specific residues within the alpha 2 integrin subunit cytoplasmic domain regulate migration and cell cycle progression via distinct MAPK pathways. J Biol Chem 2001; 276:32353-61. [PMID: 11418614 DOI: 10.1074/jbc.m101921200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha(2) integrin subunit cytoplasmic domain is necessary for epidermal growth factor (EGF)-stimulated chemotactic migration and insulin-dependent entry into S-phase of mammary epithelial cells adherent to type I collagen. Truncation mutants revealed that the seven amino acids, KYEKMTK, in addition to the GFFKR motif were sufficient for these functions. Mutation of tyrosine 1134 to alanine inhibited the ability of the cells to phosphorylate p38 MAPK and to migrate in response to EGF but had only a modest effect on the ability of the cells to induce sustained phosphorylation of the ERK MAPK, to up-regulate cyclin E and cdk2 expression, and to enter S-phase when adherent to type I collagen. Conversely, mutation of the lysine 1136 inhibited the ability of the cells to increase cyclin E and cdk2 expression, to maintain long term phosphorylation of the ERK MAPK, and to enter S-phase but had no effect on the ability of the cells to phosphorylate the p38 MAPK or to migrate on type I collagen in response to EGF. Methionine 1137 was essential for both migration and entry into S-phase. Thus, distinctly different structural elements of the alpha(2) integrin cytoplasmic domain are required to engage the signaling pathways leading to cell migration or cell cycle progression.
Collapse
Affiliation(s)
- P A Klekotka
- Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
50
|
Kagami S, Urushihara M, Kondo S, Löster K, Reutter W, Tamaki T, Yoshizumi M, Kuroda Y. Requirement for tyrosine kinase-ERK1/2 signaling in alpha 1 beta 1 integrin-mediated collagen matrix remodeling by rat mesangial cells. Exp Cell Res 2001; 268:274-83. [PMID: 11478853 DOI: 10.1006/excr.2001.5279] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abnormal mesangial extracellular matrix remodeling by mesangial cells (MCs) is the hallmark of progressive glomerulonephritis (GN). We recently showed, using a type I collagen gel contraction assay, that alpha 1 beta 1 integrin-dependent MC adhesion and migration are necessary cell behaviors for collagen matrix remodeling. To further determine the mechanism of alpha 1 beta 1 integrin-mediated collagen remodeling, we studied the signaling pathways of MCs that participate in the regulation of collagen gel contraction. Immunoprecipitation and phosphotyrosine detection revealed that gel contraction is associated with the enhanced activity and phosphorylation of ERK1/2 by MCs. The tyrosine kinase inhibitors herbimycin and genistein inhibited collagen gel contraction dose dependently. Furthermore, targeting ERK1/2 activity with a MEK inhibitor, PD98059, and antisense ERK1/2 hindered gel contraction in a dose-dependent manner. Similar inhibitory effects on gel contraction and ERK1/2 phosphorylation were observed when MC-mediated gel contraction was performed in the presence of function-blocking anti-alpha1 or anti-beta1 integrin antibodies. However, cell adhesion and migration assays indicated that PD98059 and antisense ERK1/2 blocked alpha 1 beta 1 integrin-dependent MC migration, but did not interfere with collagen adhesion, although there was a marked decrease in ERK1/2 phosphorylation and ERK1/2 protein expression in cell adhesion on type I collagen. None of the above could affect membrane expression of alpha 1 beta 1 integrin. These results suggested that ERK1/2 activation is critical for the alpha 1 beta 1 integrin-dependent MC migration necessary for collagen matrix reorganization. We therefore conclude that ERK1/2 may serve as a possible target for pharmacological inhibition of pathological collagen matrix formation in GN.
Collapse
Affiliation(s)
- S Kagami
- Department of Pediatrics, School of Medicine, University of Tokushima, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | | | |
Collapse
|