1
|
Waller AP, Wolfgang KJ, Pruner I, Stevenson ZS, Abdelghani E, Muralidharan K, Wilkie TK, Blissett AR, Calomeni EP, Vetter TA, Brodsky SV, Smoyer WE, Nieman MT, Kerlin BA. Prothrombin Knockdown Protects Podocytes and Reduces Proteinuria in Glomerular Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.20.544360. [PMID: 38464017 PMCID: PMC10925217 DOI: 10.1101/2023.06.20.544360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Chronic kidney disease (CKD) is a leading cause of death, and its progression is driven by glomerular podocyte injury and loss, manifesting as proteinuria. Proteinuria includes urinary loss of coagulation zymogens, cofactors, and inhibitors. Importantly, both CKD and proteinuria significantly increase the risk of thromboembolic disease. Prior studies demonstrated that anticoagulants reduced proteinuria in rats and that thrombin injured cultured podocytes. Herein we aimed to directly determine the influence of circulating prothrombin on glomerular pathobiology. We hypothesized that (pro)thrombin drives podocytopathy, podocytopenia, and proteinuria. Glomerular proteinuria was induced with puromycin aminonucleoside (PAN) in Wistar rats. Circulating prothrombin was either knocked down using a rat-specific antisense oligonucleotide or elevated by serial intravenous infusions of prothrombin protein, which are previously established methods to model hypo- (LoPT) and hyper-prothrombinemia (HiPT), respectively. After 10 days (peak proteinuria in this model) plasma prothrombin levels were determined, kidneys were examined for (pro)thrombin co-localization to podocytes, histology, and electron microscopy. Podocytopathy and podocytopenia were determined and proteinuria, and plasma albumin were measured. LoPT significantly reduced prothrombin colocalization to podocytes, podocytopathy, and proteinuria with improved plasma albumin. In contrast, HiPT significantly increased podocytopathy and proteinuria. Podocytopenia was significantly reduced in LoPT vs. HiPT rats. In summary, prothrombin knockdown ameliorated PAN-induced glomerular disease whereas hyper-prothrombinemia exacerbated disease. Thus, (pro)thrombin antagonism may be a viable strategy to simultaneously provide thromboprophylaxis and prevent podocytopathy-mediated CKD progression.
Collapse
|
2
|
Bhayana S, Dougherty JA, Kamigaki Y, Agrawal S, Wijeratne S, Fitch J, Waller AP, Wolfgang KJ, White P, Kerlin BA, Smoyer WE. Glucocorticoid- and pioglitazone-induced proteinuria reduction in experimental NS both correlate with glomerular ECM modulation. iScience 2024; 27:108631. [PMID: 38188512 PMCID: PMC10770536 DOI: 10.1016/j.isci.2023.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Idiopathic nephrotic syndrome (NS) is a common glomerular disease. Although glucocorticoids (GC) are the primary treatment, the PPARγ agonist pioglitazone (Pio) also reduces proteinuria in patients with NS and directly protects podocytes from injury. Because both drugs reduce proteinuria, we hypothesized these effects result from overlapping transcriptional patterns. Systems biology approaches compared glomerular transcriptomes from rats with PAN-induced NS treated with GC vs. Pio and identified 29 commonly regulated genes-of-interest, primarily involved in extracellular matrix (ECM) remodeling. Correlation with clinical idiopathic NS patient datasets confirmed glomerular ECM dysregulation as a potential mechanism of injury. Cellular deconvolution in silico revealed GC- and Pio-induced amelioration of altered genes primarily within podocytes and mesangial cells. While validation studies are indicated, these analyses identified molecular pathways involved in the early stages of NS (prior to scarring), suggesting that targeting glomerular ECM dysregulation may enable a future non-immunosuppressive approach for proteinuria reduction in idiopathic NS.
Collapse
Affiliation(s)
- Sagar Bhayana
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Julie A. Dougherty
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Yu Kamigaki
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Shipra Agrawal
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Saranga Wijeratne
- Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - James Fitch
- Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Amanda P. Waller
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Katelyn J. Wolfgang
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Peter White
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Bryce A. Kerlin
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - William E. Smoyer
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Chhuon C, Herrera-Marcos LV, Zhang SY, Charrière-Bertrand C, Jung V, Lipecka J, Savas B, Nasser N, Pawlak A, Boulmerka H, Audard V, Sahali D, Guerrera IC, Ollero M. Proteomics of Plasma and Plasma-Treated Podocytes: Application to Focal and Segmental Glomerulosclerosis. Int J Mol Sci 2023; 24:12124. [PMID: 37569500 PMCID: PMC10418338 DOI: 10.3390/ijms241512124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Focal and segmental glomerulosclerosis (FSGS) is a severe form of idiopathic nephrotic syndrome (INS), a glomerulopathy of presumably immune origin that is attributed to extrarenal pathogenic circulating factors. The recurrence of FSGS (rFSGS) after transplant occurs in 30% to 50% of cases. The direct analysis of patient plasma proteome has scarcely been addressed to date, mainly due to the methodological difficulties associated with plasma complexity and dynamic range. In this study, first, we compared different methods of plasma preparation, second, we compared the plasma proteomes of rFSGS and controls using two preparation methods, and third, we analyzed the early proximal signaling events in podocytes subjected to patient plasma, through a combination of phosphoproteomics and lipid-raft proteomics (raftomics). By combining immunodepletion and high pH fractionation, we performed a differential proteomic analysis of soluble plasma proteins and of extracellular vesicles (EV) obtained from healthy controls, non-INS patient controls, and rFSGS patients (n = 4). In both the soluble- and the EV-protein sets from the rFSGS patients, we found a statistically significant increase in a cluster of proteins involved in neutrophil degranulation. A group of lipid-binding proteins, generally associated with lipoproteins, was found to be decreased in the soluble set from the rFSGS patients. In addition, three amino acid transporters involved in mTORC1 activation were found to be significantly increased in the EV from the rFSGS. Next, we incubated human podocytes for 30 min with 10% plasma from both groups of patients. The phosphoproteomics and raftomics of the podocytes revealed profound differences in the proteins involved in the mTOR pathway, in autophagy, and in cytoskeleton organization. We analyzed the correlation between the abundance of plasma and plasma-regulated podocyte proteins. The observed changes highlight some of the mechanisms involved in FSGS recurrence and could be used as specific early markers of circulating-factor activity in podocytes.
Collapse
Affiliation(s)
- Cerina Chhuon
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Luis Vicente Herrera-Marcos
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Shao-Yu Zhang
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Cécile Charrière-Bertrand
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Vincent Jung
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Joanna Lipecka
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Berkan Savas
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Nour Nasser
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - André Pawlak
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Hocine Boulmerka
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Vincent Audard
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
- AP-HP, Hôpitaux Universitaires Henri Mondor, Service de Néphrologie, F-94010 Creteil, France
| | - Dil Sahali
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
- AP-HP, Hôpitaux Universitaires Henri Mondor, Service de Néphrologie, F-94010 Creteil, France
| | - Ida Chiara Guerrera
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Mario Ollero
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| |
Collapse
|
4
|
Wang HQ, Meng XY, Zhang JM, Chen JY, Zhang BH, Wu FX. Alterations of actin cytoskeleton and arterial protein level in patients with obstructive jaundice. Genet Mol Biol 2022; 45:e20210419. [PMID: 36098487 PMCID: PMC9469107 DOI: 10.1590/1678-4685-gmb-2021-0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/03/2022] [Indexed: 11/21/2022] Open
Abstract
Vascular hypo-responsiveness to vasopressors in patients with obstructive jaundice (OJ) is a common anesthetic event, which leads to perioperative complications and increased mortality. The cause of this clinical issue remains unclear. In this study, we estimated the actin cytoskeleton and arterial protein level in the artery of OJ patients by proteomic analysis. Ten patients with OJ due to bile duct diseases or pancreatic head carcinoma were enrolled, while another ten non-jaundice patients with chronic cholecystitis or liver hemangioma as the control group. Vascular reactivity to noradrenaline was measured before anesthesia on the day of surgery. Artery samples in adjacent tissues of removed tumor were collected and evaluated by 2-dimensional electrophoresis. Proteins with differential expression were detected by MALDI-TOF mass spectrometry with immunoblot confirmation. The results confirmed the phenomenon of vascular hypo-reactivity in OJ patients as suppressed aortic response to noradrenaline were existed in these patients. We also found that actin cytoskeleton and several actin-binding proteins were up- or down-regulated in the artery of OJ patients. These proteins changed in OJ patents might be the basic mechanism of vascular hypo-reactivity, further studies to uncover the role of these proteins in OJ is critical for clinical treatment of these patients.
Collapse
Affiliation(s)
- Hong-Qian Wang
- Naval Medical University, Shanghai Eastern Hepatobiliary Surgery Hospital, Department of Critical Care Medicine, Shanghai, China
- First Medical University, Shandong Provincial Hospital Affiliated to Shandong Jinan, Department of Anesthesiology, Shandong, China
| | - Xiao-Yan Meng
- Naval Medical University, Shanghai Eastern Hepatobiliary Surgery Hospital, Department of Critical Care Medicine, Shanghai, China
| | - Jin-Min Zhang
- Naval Medical University, Shanghai Eastern Hepatobiliary Surgery Hospital, Department of Critical Care Medicine, Shanghai, China
| | - Jia-Ying Chen
- Naval Medical University, Shanghai Eastern Hepatobiliary Surgery Hospital, Department of Anesthesiology, Shanghai, China
| | - Bao-Hua Zhang
- Naval Medical University, The Eastern Hepatobiliary Surgery Hospital, Department of Biliary Tract Surgery, Shanghai, China
| | - Fei-Xiang Wu
- Naval Medical University, Shanghai Eastern Hepatobiliary Surgery Hospital, Department of Critical Care Medicine, Shanghai, China
| |
Collapse
|
5
|
Ali Alghamdi M, Benabdelkamel H, Masood A, Saheb Sharif-Askari N, Hachim MY, Alsheikh H, Hamad MH, Salih MA, Bashiri FA, Alhasan K, Kashour T, Guatibonza Moreno P, Schröder S, Karageorgou V, Bertoli-Avella AM, Alkhalidi H, Jamjoom DZ, Alorainy IA, Alfadda AA, Halwani R. Genomic, Proteomic, and Phenotypic Spectrum of Novel O-Sialoglycoprotein Endopeptidase Variant in Four Affected Individuals With Galloway-Mowat Syndrome. Front Genet 2022; 13:806190. [PMID: 35812735 PMCID: PMC9259880 DOI: 10.3389/fgene.2022.806190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/16/2022] [Indexed: 11/15/2022] Open
Abstract
Galloway-Mowat syndrome is a rare autosomal recessive disease characterized by a unique combination of renal and neurological manifestations, including early-onset steroid-resistant nephrotic syndrome, microcephaly, psychomotor delay, and gyral abnormalities of the brain. Most patients die during early childhood. Here, we identified a novel homozygous O-sialoglycoprotein endopeptidase (OSGEP) variant, NM_017807.3:c.973C>G (p.Arg325Gly), in four affected individuals in an extended consanguineous family from Saudi Arabia. We have described the detailed clinical characterization, brain imaging results, and muscle biopsy findings. The described phenotype varied from embryonic lethality to early pregnancy loss or death at the age of 9. Renal disease is often the cause of death. Protein modeling of this OSGEP variant confirmed its pathogenicity. In addition, proteomic analysis of the affected patients proposed a link between the KEOPS complex function and human pathology and suggested potential pathogenic mechanisms.
Collapse
Affiliation(s)
- Malak Ali Alghamdi
- Pediatric Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Medical Genetics Division, Department of Pediatrics, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Malak Ali Alghamdi,
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Mahmood Y. Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Hamad Alsheikh
- Neurology Division, Department of Pediatrics, King Saud University, Riyadh, Saudi Arabia
| | - Muddathir H. Hamad
- Neurology Division, Department of Pediatrics, King Saud University, Riyadh, Saudi Arabia
| | - Mustafa A. Salih
- Pediatric Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Fahad A. Bashiri
- Pediatric Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Neurology Division, Department of Pediatrics, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Alhasan
- Pediatric Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Nephology Division, Department of Pediatrics, King Saud University, Riyadh, Saudi Arabia
- Pediatric Kidney Transplant Division,Organ Transplant Center, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Tarek Kashour
- Cardiology Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | - Hisham Alkhalidi
- Pathology Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Dima Z. Jamjoom
- Radiology and Medical Imaging Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim A. Alorainy
- Radiology and Medical Imaging Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Assim A. Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh, Saudi Arabia
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Rabih Halwani
- Department of Clinical Sciences, College of Medicine, Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
6
|
Chebotareva N, Bobkova I, Lysenko L, Moiseev S. Urinary Markers of Podocyte Dysfunction in Chronic Glomerulonephritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1306:81-99. [PMID: 33959907 DOI: 10.1007/978-3-030-63908-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic glomerulonephritis (CGN) is a disease with a steady progressive course that involves the development of nephrosclerosis, which is especially evident in clinical courses with incidences of high proteinuria (PU). Currently, proteinuria is considered the main laboratory feature (sign) of CGN activity and progression because proteinuria is closely related to the process of tubulointerstitial fibrosis, which is correlated with the grade of renal insufficiency. The injury to podocytes, which are key components of the filtration barrier, plays a central role in proteinuria development. The detachment of podocytes from the glomerular basement membrane leading to podocytopenia is suggested to induce glomerulosclerosis and hyalinosis with obliteration of capillary loops and the progression of chronic kidney disease. Urinary markers of podocyte dysfunction could serve as useful tools while monitoring the activity and prognosis of CGN. In this chapter, the most important mechanisms of podocyte loss and urinary markers of this process are discussed.
Collapse
Affiliation(s)
- Natalia Chebotareva
- Tareev Clinic, Department of Nephrology, Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Irina Bobkova
- Tareev Clinic, Department of Nephrology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Lidia Lysenko
- Tareev Clinic, Department of Nephrology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sergey Moiseev
- Tareev Clinic, Department of Nephrology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
7
|
Serum Heat Shock Protein Levels in IgA Nephropathy. IRANIAN JOURNAL OF PEDIATRICS 2018. [DOI: 10.5812/ijp.3432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Taurine Supplementation Alleviates Puromycin Aminonucleoside Damage by Modulating Endoplasmic Reticulum Stress and Mitochondrial-Related Apoptosis in Rat Kidney. Nutrients 2018; 10:nu10060689. [PMID: 29843457 PMCID: PMC6024760 DOI: 10.3390/nu10060689] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022] Open
Abstract
Taurine (TAU) is a sulfur-containing beta amino acid that is not involved in protein composition and anabolism, conditionally essential in mammals provided through diet. Growing evidence supports a protective role of TAU supply in osmoregulation, calcium flux, and reduction of inflammation and oxidant damage in renal diseases like diabetes. Endoplasmic reticulum (ER) stress, due to abnormal proteostasis, is a contributor to nephrotic syndrome and related renal damage. Here, we investigated the effect of dietary TAU (1.5% in drinking water for 15 days) in an established rat model that mimics human minimal change nephrosis, consisting of a single puromycin aminonucleoside (PAN) injection (intraperitoneally 15 mg/100 g body weight), with sacrifice after eight days. TAU limited proteinuria and podocytes foot processes effacement, and balanced slit diaphragm nephrin and glomerular claudin 1 expressions. In cortical proximal tubules, TAU improved lysosomal density, ER perimeter, restored proper ER-mitochondria tethering and mitochondrial cristae, and decreased inflammation. Remarkably, TAU downregulated glomerular ER stress markers (GRP78, GRP94), pro-apoptotic C/EBP homologous protein, activated caspase 3, tubular caspase1, and mitochondrial chaperone GRP75, but maintained anti-apoptotic HSP25. In conclusion, TAU, by targeting upstream ER stress separate from mitochondria dysfunctions at crucial renal sites, might be a promising dietary supplement in the treatment of the drug-resistant nephrotic syndrome.
Collapse
|
9
|
Jakhotia S, Sivaprasad M, Shalini T, Reddy PY, Viswanath K, Jakhotia K, Sahay R, Sahay M, Reddy GB. Circulating levels of Hsp27 in microvascular complications of diabetes: Prospects as a biomarker of diabetic nephropathy. J Diabetes Complications 2018; 32:221-225. [PMID: 29175119 DOI: 10.1016/j.jdiacomp.2017.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
AIM Heat shock protein 27 (Hsp27) is a small heat shock protein known to protect the cells from apoptosis under stress. In the present study, we determined the plasma Hsp27 levels in type 2 diabetes subjects without and with microvascular complications- diabetic retinopathy (DRe), diabetic nephropathy (DNe), and diabetic neuropathy (DNu) to understand if it could serve as a marker for these complications. METHODS This is a hospital-based case-control study with 754 subjects including 247 controls, 195 subjects with diabetes, 123 with DRe, 80 with DNe and 109 with DNu. Plasma Hsp27 levels were measured by ELISA. RESULTS The mean plasma Hsp27 was higher in the DNe group (631.5±355.2) compared to the control (496.55±308.54), diabetes (523.41±371.01), DRe (494.60±391.48) and DNu (455.21±319.74) groups with a p-value of 0.018. Receiver operating characteristic (ROC) curve analysis of Hsp27 in DNe group showed an area under the curve (AUC) of 0.617. Spearman correlation analysis shows a positive correlation of plasma Hsp27 with serum creatinine (p=0.053, r-value 0.083). Gender, age and BMI did not affect the plasma Hsp27 levels. CONCLUSION The plasma Hsp27 levels in the DNe group are higher compared to the control and other complications, thereby it could be explored to be used as a potential biomarker of DNe.
Collapse
Affiliation(s)
- Sneha Jakhotia
- Biochemistry, National Institute of Nutrition, Hyderabad, India
| | | | - Tattari Shalini
- Biochemistry, National Institute of Nutrition, Hyderabad, India
| | | | | | | | - Rakesh Sahay
- Osmania Medical College and General Hospital, Hyderabad, India
| | - Manisha Sahay
- Osmania Medical College and General Hospital, Hyderabad, India
| | | |
Collapse
|
10
|
Heat Shock Proteins in Vascular Diabetic Complications: Review and Future Perspective. Int J Mol Sci 2017; 18:ijms18122709. [PMID: 29240668 PMCID: PMC5751310 DOI: 10.3390/ijms18122709] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 01/22/2023] Open
Abstract
Heat shock proteins (HSPs) are a large family of proteins highly conserved throughout evolution because of their unique cytoprotective properties. Besides assisting protein refolding and regulating proteostasis under stressful conditions, HSPs also play an important role in protecting cells from oxidative stress, inflammation, and apoptosis. Therefore, HSPs are crucial in counteracting the deleterious effects of hyperglycemia in target organs of diabetes vascular complications. Changes in HSP expression have been demonstrated in diabetic complications and functionally related to hyperglycemia-induced cell injury. Moreover, associations between diabetic complications and altered circulating levels of both HSPs and anti-HSPs have been shown in clinical studies. HSPs thus represent an exciting therapeutic opportunity and might also be valuable as clinical biomarkers. However, this field of research is still in its infancy and further studies in both experimental diabetes and humans are required to gain a full understanding of HSP relevance. In this review, we summarize current knowledge and discuss future perspective.
Collapse
|
11
|
Sharma R, Waller AP, Agrawal S, Wolfgang KJ, Luu H, Shahzad K, Isermann B, Smoyer WE, Nieman MT, Kerlin BA. Thrombin-Induced Podocyte Injury Is Protease-Activated Receptor Dependent. J Am Soc Nephrol 2017; 28:2618-2630. [PMID: 28424276 PMCID: PMC5576925 DOI: 10.1681/asn.2016070789] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 03/16/2017] [Indexed: 12/29/2022] Open
Abstract
Nephrotic syndrome is characterized by massive proteinuria and injury of specialized glomerular epithelial cells called podocytes. Studies have shown that, whereas low-concentration thrombin may be cytoprotective, higher thrombin concentrations may contribute to podocyte injury. We and others have demonstrated that ex vivo plasma thrombin generation is enhanced during nephrosis, suggesting that thrombin may contribute to nephrotic progression. Moreover, nonspecific thrombin inhibition has been shown to decrease proteinuria in nephrotic animal models. We thus hypothesized that thrombin contributes to podocyte injury in a protease-activated receptor-specific manner during nephrosis. Here, we show that specific inhibition of thrombin with hirudin reduced proteinuria in two rat nephrosis models, and thrombin colocalized with a podocyte-specific marker in rat glomeruli. Furthermore, flow cytometry immunophenotyping revealed that rat podocytes express the protease-activated receptor family of coagulation receptors in vivo High-concentration thrombin directly injured conditionally immortalized human and rat podocytes. Using receptor-blocking antibodies and activation peptides, we determined that thrombin-mediated injury depended upon interactions between protease-activated receptor 3 and protease-activated receptor 4 in human podocytes, and between protease-activated receptor 1 and protease-activated receptor 4 in rat podocytes. Proximity ligation and coimmunoprecipitation assays confirmed thrombin-dependent interactions between human protease-activated receptor 3 and protease-activated receptor 4, and between rat protease-activated receptor 1 and protease-activated receptor 4 in cultured podocytes. Collectively, these data implicate thrombinuria as a contributor to podocyte injury during nephrosis, and suggest that thrombin and/or podocyte-expressed thrombin receptors may be novel therapeutic targets for nephrotic syndrome.
Collapse
Affiliation(s)
- Ruchika Sharma
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
- Division of Hematology, Oncology, and BMT, and
| | - Amanda P Waller
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
| | - Shipra Agrawal
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
| | - Katelyn J Wolfgang
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
| | - Hiep Luu
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
- Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Khurrum Shahzad
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University, Magdeburg, Germany
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan; and
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University, Magdeburg, Germany
| | - William E Smoyer
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
- Division of Nephrology, Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Marvin T Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Bryce A Kerlin
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital,
- Division of Hematology, Oncology, and BMT, and
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
12
|
Chebotareva N, Bobkova I, Shilov E. Heat shock proteins and kidney disease: perspectives of HSP therapy. Cell Stress Chaperones 2017; 22:319-343. [PMID: 28409327 PMCID: PMC5425374 DOI: 10.1007/s12192-017-0790-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/11/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022] Open
Abstract
Heat shock proteins (HSPs) mediate a diverse range of cellular functions, prominently including folding and regulatory processes of cellular repair. A major property of these remarkable proteins, dependent on intracellular or extracellular location, is their capacity for immunoregulation that optimizes immune activity while avoiding hyperactivated inflammation. In this review, recent investigations are described, which examine roles of HSPs in protection of kidney tissue from various traumatic influences and demonstrate their potential for clinical management of nephritic disease. The HSP70 class is particularly attractive in this respect due to its multiple protective effects. The review also summarizes current understanding of HSP bioactivity in the pathophysiology of various kidney diseases, including acute kidney injury, diabetic nephropathy, chronic glomerulonephritis, and lupus nephritis-along with other promising strategies for their remediation, such as DNA vaccination.
Collapse
Affiliation(s)
- Natalia Chebotareva
- I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya st., Moscow, Russia, 119992.
| | - Irina Bobkova
- I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya st., Moscow, Russia, 119992
| | - Evgeniy Shilov
- I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya st., Moscow, Russia, 119992
| |
Collapse
|
13
|
Sreedharan R, Van Why SK. Heat shock proteins in the kidney. Pediatr Nephrol 2016; 31:1561-70. [PMID: 26913726 DOI: 10.1007/s00467-015-3297-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 12/15/2022]
Abstract
Heat shock proteins (Hsps) are essential to cell survival through their function as protein chaperones. The role they play in kidney health and disease is varied. Hsp induction may be either beneficial or detrimental to the kidney, depending on the specific Hsp, type of cell, and context. This review addresses the role of Hsps in the kidney, including during development, as osmoprotectants, and in various kidney disease models. Heat shock transcription factor, activated by a stress on renal cells, induces Hsp elaboration and separately regulates immune responses that can contribute to renal injury. Induced Hsps in the intracellular compartment are mostly beneficial in the kidney by stabilizing and restoring cell architecture and function through acting as protein chaperones. Intracellular Hsps also inhibit apoptosis and facilitate cell proliferation, preserving renal tubule viability after acute injury, but enhancing progression of cystic kidney disease and malignancy. Induced Hsps in the extracellular compartment, either circulating or located on outer cell membranes, are mainly detrimental through enhancing inflammation pathways to injury. Correctly harnessing these stress proteins promises the opportunity to alter the course of acute and chronic kidney disease.
Collapse
Affiliation(s)
- Rajasree Sreedharan
- Pediatrics, Nephrology, Medical College of Wisconsin, 999 N. 92nd St., Suite C510, Milwaukee, WI, 53226, USA
| | - Scott K Van Why
- Pediatrics, Nephrology, Medical College of Wisconsin, 999 N. 92nd St., Suite C510, Milwaukee, WI, 53226, USA.
| |
Collapse
|
14
|
Agrawal S, Chanley MA, Westbrook D, Nie X, Kitao T, Guess AJ, Benndorf R, Hidalgo G, Smoyer WE. Pioglitazone Enhances the Beneficial Effects of Glucocorticoids in Experimental Nephrotic Syndrome. Sci Rep 2016; 6:24392. [PMID: 27142691 PMCID: PMC4855145 DOI: 10.1038/srep24392] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/21/2016] [Indexed: 12/25/2022] Open
Abstract
Glucocorticoids are the primary therapy for nephrotic syndrome (NS), but have serious side effects and are ineffective in ~20-50% of patients. Thiazolidinediones have recently been suggested to be renoprotective, and to modulate podocyte glucocorticoid-mediated nuclear receptor signaling. We hypothesized that thiazolidinediones could enhance glucocorticoid efficacy in NS. We found that puromycin aminonucleoside-induced proteinuria in rats was significantly reduced by both high-dose glucocorticoids (79%) and pioglitazone (61%), but not low-dose glucocorticoids (25%). Remarkably, pioglitazone + low-dose glucocorticoids also reduced proteinuria (63%) comparably to high-dose glucocorticoids, whereas pioglitazone + high-dose glucocorticoids reduced proteinuria to almost control levels (97%). Molecular analysis revealed that both glucocorticoids and pioglitazone enhanced glomerular synaptopodin and nephrin expression, and reduced COX-2 expression, after injury. Furthermore, the glomerular phosphorylation of glucocorticoid receptor and Akt, but not PPARγ, correlated with treatment-induced reductions in proteinuria. Notably, clinical translation of these findings to a child with refractory NS by the addition of pioglitazone to the treatment correlated with marked reductions in both proteinuria (80%) and overall immunosuppression (64%). These findings together suggest that repurposing pioglitazone could potentially enhance the proteinuria-reducing effects of glucocorticoids during NS treatment.
Collapse
Affiliation(s)
- S Agrawal
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - M A Chanley
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - D Westbrook
- James and Connie Maynard Children's Hospital, Greenville, NC, USA
| | - X Nie
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - T Kitao
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - A J Guess
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - R Benndorf
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - G Hidalgo
- James and Connie Maynard Children's Hospital, Greenville, NC, USA.,Department of Pediatrics, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - W E Smoyer
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
15
|
He FF, Chen S, Su H, Meng XF, Zhang C. Actin-associated Proteins in the Pathogenesis of Podocyte Injury. Curr Genomics 2014; 14:477-84. [PMID: 24396279 PMCID: PMC3867723 DOI: 10.2174/13892029113146660014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 02/07/2023] Open
Abstract
Podocytes have a complex cellular architecture with interdigitating processes maintained by a precise organization of actin filaments. The actin-based foot processes of podocytes and the interposed slit diaphragm form the final barrier to proteinuria. The function of podocytes is largely based on the maintenance of the normal foot process structure with actin cytoskeleton. Cytoskeletal dynamics play important roles during normal podocyte development, in maintenance of the healthy glomerular filtration barrier, and in the pathogenesis of glomerular diseases. In this review, we focused on recent findings on the mechanisms of organization and reorganization of these actin-related molecules in the pathogenesis of podocyte injury and potential therapeutics targeting the regulation of actin cytoskeleton in podocytopathies.
Collapse
Affiliation(s)
- Fang-Fang He
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shan Chen
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xian-Fang Meng
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
16
|
Carlsen I, Nilsson L, Frøkiaer J, Nørregaard R. Changes in phosphorylated heat-shock protein 27 in response to acute ureteral obstruction in rats. Acta Physiol (Oxf) 2013; 209:167-78. [PMID: 23834360 DOI: 10.1111/apha.12135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/18/2012] [Accepted: 06/05/2013] [Indexed: 12/19/2022]
Abstract
AIM In vivo, renal medullary interstitial cells (RMICs) and collecting duct principal cells (mpkCCD cells) are subjected to inflammatory, oxidative and mechanical stress as a result of unilateral ureteral obstruction (UUO). Because heat-shock protein (HSP) 27 and HSP70 are induced by cellular stresses and play a role in cytoprotection, we hypothesized that HSP27 and HSP70 are increased in rats subjected to acute UUO and in RMICs and mpkCCD cells exposed to inflammatory, oxidative or mechanical stress. METHODS Rats were subjected to acute UUO for 6 h and 12 h. To examine the expression of HSP27, phosphorylated HSP27 (pHSP27) and HSP70 in response to inflammatory, oxidative and mechanical stress in vitro, we exposed RMICs and mpkCCD cells to interleukin 1β (IL-1β), hydrogen peroxide (H2 O2 ), and stretch stimulation over time. RESULTS The phosphorylated form of HSP27 (pHSP27) was increased in the renal inner medulla (IM) after 6-h and 12-h UUO, while HSP27 and HSP70 were unchanged. Furthermore, after 6 h and 12 h of UUO, the expression of inflammatory (IL-1β) and oxidative [haem oxygenase 1 (HO-1)] markers was induced. Exposure to inflammatory, oxidative and mechanical stress changed HSP27 and pHSP27 expression in RMICs but not in mpkCCD cells, while HSP70 was not affected by any of the stress conditions. Exposure of RMICs to oxidative and mechanical stress induced HSP27 phosphorylation via a p38-dependent mechanism. CONCLUSION These data demonstrate that, in response to acute UUO, different forms of cellular stresses modulate HSP27 expression and phosphorylation in RMICs. This may affect the ability of renal cells to mount an effective cytoprotective response.
Collapse
Affiliation(s)
- I Carlsen
- The Water and Salt Research Center, Aarhus University, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University Hospital-Skejby, Aarhus, Denmark
| | | | | | | |
Collapse
|
17
|
HSP27/HSPB1 as an adaptive podocyte antiapoptotic protein activated by high glucose and angiotensin II. J Transl Med 2012; 92:32-45. [PMID: 21931298 DOI: 10.1038/labinvest.2011.138] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Apoptosis is a driving force of diabetic end-organ damage, including diabetic nephropathy (DN). However, the mechanisms that modulate diabetes-induced cell death are not fully understood. Heat shock protein 27 (HSP27/HSPB1) is a cell stress protein that regulates apoptosis in extrarenal cells and is expressed by podocytes exposed to toxins causing nephrotic syndrome. We investigated the regulation of HSPB1 expression and its function in podocytes exposed to factors contributing to DN, such as high glucose and angiotensin (Ang) II. HSPB1 expression was assessed in renal biopsies from patients with DN, minimal change disease or focal segmental glomerulosclerosis (FSGS), in a rat model of diabetes induced by streptozotocin (STZ) and in Ang II-infused rats. The regulation of HSPB1 was studied in cultured human podocytes and the function of HSPB1 expressed in response to pathophysiologically relevant stimuli was explored by short interfering RNA knockdown. Total kidney HSPB1 mRNA and protein expression was increased in rats with STZ-induced diabetes and in rats infused with Ang II. Upregulation of HSPB1 protein was confirmed in isolated diabetic glomeruli. Immunohistochemistry showed increased glomerular expression of HSPB1 in both models and localized glomerular HSPB1 to podocytes. HSPB1 protein was increased in glomerular podocytes from patients with DN or FSGS. In cultured human podocytes HSPB1 mRNA and protein expression was upregulated by high glucose concentrations and Ang II. High glucose, but not Ang II, promoted podocyte apoptosis. HSPB1 short interfering RNA (siRNA) targeting increased apoptosis in a high-glucose milieu and sensitized to Ang II or TGFβ1-induced apoptosis by promoting caspase activation. In conclusion, both high glucose and Ang II contribute to HSPB1 upregulation. HSPB1 upregulation allows podocytes to better withstand an adverse high-glucose or Ang II-rich environment, such as can be found in DN.
Collapse
|
18
|
Kostenko S, Moens U. Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cell Mol Life Sci 2009; 66:3289-307. [PMID: 19593530 PMCID: PMC11115724 DOI: 10.1007/s00018-009-0086-3] [Citation(s) in RCA: 276] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/22/2009] [Accepted: 06/23/2009] [Indexed: 10/20/2022]
Abstract
The small heat shock protein Hsp27 or its murine homologue Hsp25 acts as an ATP-independent chaperone in protein folding, but is also implicated in architecture of the cytoskeleton, cell migration, metabolism, cell survival, growth/differentiation, mRNA stabilization, and tumor progression. A variety of stimuli induce phosphorylation of serine residues 15, 78, and 82 in Hsp27 and serines 15 and 86 in Hsp25. This post-translational modification affects some of the cellular functions of Hsp25/27. As a consequence of the functional importance of Hsp25/27 phosphorylation, aberrant Hsp27 phosphorylation has been linked to several clinical conditions. This review focuses on the different Hsp25/27 kinases and phosphatases that regulate the phosphorylation pattern of Hsp25/27, and discusses the recent findings of the biological implications of these phosphorylation events in physiological and pathological processes. Novel therapeutic strategies aimed at restoring anomalous Hsp27 phosphorylation in human diseases will be presented.
Collapse
Affiliation(s)
- Sergiy Kostenko
- Department of Microbiology and Virology, Faculty of Medicine, University of Tromsø, 9037 Tromsø, Norway
| | - Ugo Moens
- Department of Microbiology and Virology, Faculty of Medicine, University of Tromsø, 9037 Tromsø, Norway
| |
Collapse
|
19
|
Barutta F, Pinach S, Giunti S, Vittone F, Forbes JM, Chiarle R, Arnstein M, Perin PC, Camussi G, Cooper ME, Gruden G. Heat shock protein expression in diabetic nephropathy. Am J Physiol Renal Physiol 2008; 295:F1817-24. [PMID: 18922888 DOI: 10.1152/ajprenal.90234.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Heat shock protein (HSP) HSP27, HSP60, HSP70, and HSP90 are induced by cellular stresses and play a key role in cytoprotection. Both hyperglycemia and glomerular hypertension are crucial determinants in the pathogenesis of diabetic nephropathy and impose cellular stresses on renal target cells. We studied both the expression and the phosphorylation state of HSP27, HSP60, HSP70, and HSP90 in vivo in rats made diabetic with streptozotocin and in vitro in mesangial cells and podocytes exposed to either high glucose or mechanical stretch. Diabetic and control animals were studied 4, 12, and 24 wk after the onset of diabetes. Immunohistochemical analysis revealed an overexpression of HSP25, HSP60, and HSP72 in the diabetic outer medulla, whereas no differences were seen in the glomeruli. Similarly, exposure neither to high glucose nor to stretch altered HSP expression in mesangial cells and podocytes. By contrast, the phosphorylated form of HSP27 was enhanced in the glomerular podocytes of diabetic animals, and in vitro exposure of podocytes to stretch induced HSP27 phosphorylation via a P38-dependent mechanism. In conclusion, diabetes and diabetes-related insults differentially modulate HSP27, HSP60, and HSP70 expression/phosphorylation in the glomeruli and in the medulla, and this may affect the ability of renal cells to mount an effective cytoprotective response.
Collapse
Affiliation(s)
- Federica Barutta
- Dept. of Internal Medicine, Univ. of Turin, Corso AM Dogliotti 14. Turin, 10126, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Triptolide protects podocytes from puromycin aminonucleoside induced injury in vivo and in vitro. Kidney Int 2008; 74:596-612. [DOI: 10.1038/ki.2008.203] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
ASANUMA KATSUHIKO, YANAGIDA-ASANUMA ETSUKO, TAKAGI MIYUKI, KODAMA FUMIKO, TOMINO YASUHIKO. The role of podocytes in proteinuria. Nephrology (Carlton) 2007; 12 Suppl 3:S15-20. [DOI: 10.1111/j.1440-1797.2007.00876.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Dai T, Natarajan R, Nast CC, LaPage J, Chuang P, Sim J, Tong L, Chamberlin M, Wang S, Adler SG. Glucose and diabetes: effects on podocyte and glomerular p38MAPK, heat shock protein 25, and actin cytoskeleton. Kidney Int 2006; 69:806-14. [PMID: 16421517 DOI: 10.1038/sj.ki.5000033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphorylated p38 (pp38) mitogen-activated protein kinase (MAPK) regulates heat shock protein 25 (HSP25), stabilizing fibrillar actin (FA) and preventing cleavage to G-actin (GA). Cultured podocytes (Pods) were exposed to glucose (5.5-50 mM)+/-p38MAPK inhibitor SB202190 (SB) or control SB202474 to assess the effects on FA/GA and Pod structure. The relationship of p38MAPK with in vivo Pod structure and albuminuria (Ualb) was assessed in rats with streptozotocin (SZ)-induced diabetes (DM) for 1 week, 1 month, and 4 months. High glucose induced concentration-dependent increases in pp38MAPK and phosphorylated HSP25 (pHSP25) maintained actin cytoskeleton. Inhibition by SB diminished pp38MAPK and pHSP25, decreased FA/GA, and altered FA and GA immunohistochemical appearance. In SZ-DM, glomerular pp38MAPK and biphosphorylated HSP25 were increased after 1 week, declining at 1 month, and at or below C values at 4 months. Glomerular FA/GA in DM was normal at 1 week, declining at 1 month, and low at 4 months. Ualb/creatinine was similar in DM vs C at 1 week, and increased at 1 and 4 months. Morphometry demonstrated progressively diminishing slit pore density in DM over time, denoting evolving effacement. There were strong correlations between slit membrane density and both glomerular biphosphorylated HSP25 and ln Ualb/cr ratio. The data suggest that increased pp38MAPK and pHSP25 comprise an acute adaptation to glycemic stress. Later depletion of DM may contribute to Pod structural alterations and Ualb.
Collapse
Affiliation(s)
- T Dai
- Harbor-UCLA Los Angeles Biomedical Research Institute, 1124 West Carson Street, Torrance, CA 90502, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Glucose and diabetes: Effects on podocyte and glomerular p38 MAPK, heat-shock protein 25, and actin cytoskeleton. Kidney Int 2006. [DOI: 10.1038/sj.ki.5000200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Ransom RF, Lam NG, Hallett MA, Atkinson SJ, Smoyer WE. Glucocorticoids protect and enhance recovery of cultured murine podocytes via actin filament stabilization. Kidney Int 2006; 68:2473-83. [PMID: 16316324 DOI: 10.1111/j.1523-1755.2005.00723.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Nephrotic syndrome is a common kidney disease in both children and adults that is characterized by dramatic structural changes in the actin-rich foot processes of glomerular podocytes. Although glucocorticoids are the primary treatment for nephrotic syndrome, neither the target cell nor mechanism of action of glucocorticoids in nephrotic syndrome is known. For the last 30 years glucocorticoids have been presumed to act by reducing the release of soluble mediators of disease by circulating lymphocytes. In contrast, we hypothesized that glucocorticoids exert their beneficial effects in nephrotic syndrome by direct action on podocytes. METHODS Cultured murine podocytes were treated with glucocorticoids in the presence and absence of mifepristone (to inhibit glucocorticoid-induced transcriptional activation) and challenged using our previously reported in vitro model of puromycin aminonucleoside (PAN)-induced podocyte injury, as well as by direct disruption of actin filaments with latrunculin and cytochalasin. Cell viability, actin filament distribution, total polymerized actin content, and actin-regulating guanine triphosphatase (GTPase) activities were measured. RESULTS We demonstrated that treatment of cultured murine podocytes with the glucocorticoid dexamethasone both protected and enhanced recovery from PAN-induced injury. Dexamethasone also increased total cellular polymerized actin, stabilized actin filaments against disruption by PAN, latrunculin, or cytochalasin, and induced a significant increase in the activity of the actin-regulating GTPase RhoA. CONCLUSION These data suggest that, contrary to the current therapeutic paradigm, the beneficial effects of glucocorticoids in nephrotic syndrome may result, at least in part, from direct effects on podocytes leading to enhanced actin filament stability.
Collapse
Affiliation(s)
- Richard F Ransom
- Pediatric Nephrology Division, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
25
|
Pandey D, Goyal P, Bamburg JR, Siess W. Regulation of LIM-kinase 1 and cofilin in thrombin-stimulated platelets. Blood 2005; 107:575-83. [PMID: 16219803 PMCID: PMC1895613 DOI: 10.1182/blood-2004-11-4377] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cofilin is a regulator of actin filament dynamics. We studied whether during platelet activation Rho kinase stimulates LIM kinase (LIMK) leading to subsequent phosphorylation and inactivation of cofilin. Platelet shape change and aggregation/secretion were induced by low and high concentrations of thrombin, respectively. We found that during these platelet responses Rho kinase activation was responsible for mediating rapid Thr508 phosphorylation and activation of LIMK-1 and for the F-actin increase during shape change and, in part, during secretion. Surprisingly, during shape change cofilin phosphorylation was unaltered, and during aggregation/secretion cofilin was first rapidly dephosphorylated by an okadaic acid-insensitive phosphatase and then slowly rephosphorylated by LIMK-1. LIMK-1 phosphorylation and cofilin dephosphorylation and rephosphorylation during aggregation were independent of integrin alpha(IIb)beta(3) engagement. Cofilin phosphorylation did not regulate cofilin association with F-actin and was unrelated to the F-actin increase in thrombin-activated platelets. Our study identifies LIMK-1 as being activated by Rho kinase in thrombin-stimulated platelets. Two counteracting pathways, a cofilin phosphatase and LIMK-1, are activated during platelet aggregation/secretion regulating cofilin phosphorylation sequentially and independently of integrin alpha(IIb)beta(3) engagement. Rho kinase-mediated F-actin increase during platelet shape change and secretion involves a mechanism other than LIMK-1-mediated cofilin phosphorylation, raising the possibility of another LIMK substrate regulating platelet actin assembly.
Collapse
Affiliation(s)
- Dharmendra Pandey
- Institute for Prevention of Cardiovascular Diseases, University of Munich, Germany
| | | | | | | |
Collapse
|
26
|
Hirano S, Sun X, DeGuzman CA, Ransom RF, McLeish KR, Smoyer WE, Shelden EA, Welsh MJ, Benndorf R. p38 MAPK/HSP25 signaling mediates cadmium-induced contraction of mesangial cells and renal glomeruli. Am J Physiol Renal Physiol 2005; 288:F1133-43. [PMID: 15687248 DOI: 10.1152/ajprenal.00210.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The environmental pollutant cadmium affects human health, with the kidney being a primary target. In addition to proximal tubules, glomeruli and their contractile mesangial cells have also been identified as targets of cadmium nephrotoxicity. Glomerular contraction is thought to contribute to reduced glomerular filtration, a characteristic of cadmium nephrotoxicity. Because p38 MAPK/HSP25 signaling has been implicated in smooth muscle contraction, we examined its role in cadmium-induced contraction of mesangial cells. We report that exposure of mesangial cells to cadmium resulted in 1) cell contraction, 2) activation of MAP kinases, 3) increased HSP25 phosphorylation coincident with p38 MAP kinase activation, 4) sequential phosphorylation of the two phosphorylation sites of mouse HSP25 with Ser15 being phosphorylated before Ser86, 5) reduction of oligomeric size of HSP25, and 6) association of HSP25 with microfilaments. Exposure of isolated rat glomeruli to cadmium also resulted in contraction and increased HSP25 phosphorylation. The cadmium-induced responses were inhibited by the specific p38 MAP kinase inhibitor SB-203580, and cadmium-induced phosphorylation of HSP25 was inhibited by expression of a dominant-negative p38 MAP kinase mutant. These findings tentatively suggest that cadmium-induced nephrotoxicity results, in part, from glomerular contraction due to p38 MAP kinase/HSP25 signaling-dependent contraction of mesangial cells. With regard to the cellular action of HSP25, these data support a change in paradigm: in addition to its well-established cytoprotective function, HSP25 may also be involved in processes that ultimately lead to adverse effects, as is observed in the response of mesangial cells to cadmium.
Collapse
Affiliation(s)
- Sahoko Hirano
- Dept. of Cell and Developmental Biology, Univ. of Michigan Medical School, 1335 Catherine St., Ann Arbor, MI 48109-0616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yoshida Y, Miyazaki K, Kamiie J, Sato M, Okuizumi S, Kenmochi A, Kamijo K, Nabetani T, Tsugita A, Xu B, Zhang Y, Yaoita E, Osawa T, Yamamoto T. Two-dimensional electrophoretic profiling of normal human kidney glomerulus proteome and construction of an extensible markup language (XML)-based database. Proteomics 2005; 5:1083-96. [PMID: 15668994 DOI: 10.1002/pmic.200401075] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To contribute to physiology and pathophysiology of the glomerulus of human kidney, we have launched a proteomic study of human glomerulus, and compiled a profile of proteins expressed in the glomerulus of normal human kidney by two-dimensional gel electrophoresis (2-DE) and identification with matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and/or liquid chromatography-tandem mass spectrometry (LC-MS/MS). Kidney cortices with normal appearance were obtained from patients under surgical nephrectomy due to renal tumor, and glomeruli were highly purified by a standard sieving method followed by picking-up under a phase-contrast microscope. The glomerular proteins were separated by 2-DE with 24 cm immobilized pH gradient strips in the 3-10 range in the first dimension and 26 x 20 cm sodium dodecyl sulfate polyacrylamide electrophoresis gels of 12.5% in the second dimension. Gels were silver-stained, and valid spots were processed for identification through an integrated robotic system that consisted of a spot picker, an in-gel digester, and a MALDI-TOF MS and / or a LC-MS/MS. From 2-DE gel images of glomeruli of four subjects with no apparent pathologic manifestations, a synthetic gel image of normal glomerular proteins was created. The synthetic gel image contained 1713 valid spots, of which 1559 spots were commonly observed in the respective 2-DE gels. Among the 1559 spots, 347 protein spots, representing 212 proteins, have so far been identified, and used for the construction of an extensible markup language (XML)-based database. The database is deposited on a web site (http://www.sw.nec.co.jp/bio/rd/hgldb/index.html) in a form accessible to researchers to contribute to proteomic studies of human glomerulus in health and disease.
Collapse
Affiliation(s)
- Yutaka Yoshida
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Nephrin, podocin and alpha-actinin are all involved in proteinuria, but it is unclear which molecular event plays a crucial role during the development of proteinuria. Immunofluorescence staining and real-time quantitative polymerase chain reaction were used to study the glomerular expression of these molecules in puromycin aminonucleoside (PAN) nephrosis. Morphometric methods were applied to evaluate the podocyte foot process (FP) morphology. Two days after PAN injection, nephrin and podocin staining became discontinuous, podocin intensity decreased and FP swelled. Nephrin protein and mRNA decreased at day 5. Both podocin and nephrin intensity decreased dramatically when heavy proteinuria occurred, but nephrin mRNA was regained. When proteinuria disappeared, podocin recovered whereas nephrin did not (P = 0.02); alpha-actinin intensity increased (P = 0.009) and the distribution changed. The podocyte FP volume density correlated negatively with nephrin (r = -0.78, P = 0.0001) and podocin immunofluorescence intensity (r = -0.76, P = 0.0001). We conclude that, before the onset of proteinuria, the first response was the nephrin and podocin distribution change, podocin protein decrease and swollen FP; the podocin quantitative change was earlier than nephrin. Podocin and nephrin distribution and the protein level was associated with proteinuria more closely than their mRNA level. The delayed alpha-actinin induction might be a reparative response.
Collapse
Affiliation(s)
- Na Guan
- Department of Pediatrics, Peking University First Hospital, Beijing, PR China
| | | | | | | | | |
Collapse
|
29
|
Aoudjit L, Stanciu M, Li H, Lemay S, Takano T. p38 mitogen-activated protein kinase protects glomerular epithelial cells from complement-mediated cell injury. Am J Physiol Renal Physiol 2003; 285:F765-74. [PMID: 12837681 DOI: 10.1152/ajprenal.00100.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the passive Heymann nephritis (PHN) model of rat membranous nephropathy, complement C5b-9 causes sublytic injury of glomerular epithelial cells (GEC). We previously showed that sublytic concentration of C5b-9 triggers a variety of biological events in GEC. In the current study, we demonstrate that complement activates p38 MAPK in GEC and address the role of p38 in complement-mediated cell injury. When cultured rat GEC were stimulated with complement, p38 kinase activity and phosphorylation were increased by approximately 2.4-fold, compared with control. Treatment with p38 inhibitors significantly augmented complement-mediated cytotoxicity. In contrast, when the constitutively active mutant of transforming growth factor-beta-activated kinase 1 (TAK1), a kinase upstream of p38, was expressed in GEC in an inducible manner, cytotoxicity was significantly reduced, compared with uninduced cells. p38 inhibitors abolished the protective effect of TAK1 expression. By analogy to cultured cells, p38 activity was also increased in glomeruli from rats with PHN and treatment with the p38 inhibitor FR-167653 increased proteinuria. Complement induced phosphorylation of MAPK-associated protein kinase-2 (MAPKAPK-2), a kinase downstream of p38 in GEC. Heat shock protein (HSP27) is a cytoskeleton-interacting substrate of MAPKAPK-2. Overexpression of the wild-type HSP27, but not a non-phosphorylatable mutant, markedly reduced complement-mediated GEC injury. In summary, complement activates p38 MAPK in GEC in vitro and in glomeruli from rats with PHN. The activation of p38 MAPK appears to be cytoprotective for GEC against complement-mediated GEC injury. Phosphorylation of HSP27 may mediate this cytoprotection.
Collapse
Affiliation(s)
- Lamine Aoudjit
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada H3A 2B4
| | | | | | | | | |
Collapse
|
30
|
Bodmer D, Schepens M, Eleveld MJ, Schoenmakers EFPM, Geurts van Kessel A. Disruption of a novel gene, DIRC3, and expression of DIRC3-HSPBAP1 fusion transcripts in a case of familial renal cell cancer and t(2;3)(q35;q21). Genes Chromosomes Cancer 2003; 38:107-16. [PMID: 12939738 DOI: 10.1002/gcc.10243] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Previously, we identified a family with renal cell cancer and a t(2;3)(q35;q21). Positional cloning of the chromosome 3 breakpoint led to the identification of a novel gene, DIRC2, that spans this breakpoint. Here we have characterized the chromosome 2 breakpoint in detail and found that another novel gene, designated DIRC3, spans this breakpoint. In addition, we found that the first two exons of DIRC3 can splice to the second exon of HSPBAP1, a JmjC-Hsp27 domain gene that maps proximal to the breakpoint on chromosome 3. This splice results in the formation of DIRC3-HSPBAP1 fusion transcripts. We propose that these fusion transcripts may affect normal HSPBAP1 function and concomitant chromatin remodeling and/or stress response signals within t(2;3)(q35;q21)-positive kidney cells. As a consequence, familial renal cell cancer may develop.
Collapse
MESH Headings
- Adult
- Animals
- CHO Cells
- Carcinoma, Renal Cell/genetics
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Cell Line
- Cell Line, Transformed
- Chromosome Breakage/genetics
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 3/genetics
- Cricetinae
- Genetic Carrier Screening
- Humans
- Kidney Neoplasms/genetics
- Middle Aged
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Oncogene Proteins, Fusion/biosynthesis
- Oncogene Proteins, Fusion/genetics
- RNA, Long Noncoding
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- Daniëlle Bodmer
- Department of Human Genetics, University Medical Center Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
31
|
Vallés P, Jorro F, Carrizo L, Manucha W, Oliva J, Cuello-Carrión FD, Ciocca DR. Heat shock proteins HSP27 and HSP70 in unilateral obstructed kidneys. Pediatr Nephrol 2003; 18:527-35. [PMID: 12698327 DOI: 10.1007/s00467-003-1096-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2002] [Revised: 11/26/2002] [Accepted: 12/03/2002] [Indexed: 11/28/2022]
Abstract
Unilateral ureteropelvic junction obstruction (UPJO), a condition involving injury to the kidney, leads to vasoconstriction, macrophage infiltration, oxidative stress, and tubulointerstitial fibrosis. In the present study we analyzed in 22 children, the impact of UPJO on expression of HSP27 and HSP70 and related the changes to renal function and duration of obstruction. Kidney function was evaluated, and renal biopsies were obtained for immunohistochemical and western blot analyses at the time of surgery. Kidney tissue from 5 children of similar age, removed because of various malignancies, was used as control. Increased HSP27, with an expression pattern related to the duration of the obstruction, was noted in proximal tubules (PTs), cortical collecting ducts (CCDs), and medullary collecting ducts. Strong HSP27 staining in cytoplasm and nuclei of these segments appeared in children with kidney obstruction for 2.1+/-0.41 years. HSP70 showed a close spatial expression pattern with that of HSP27. The increased staining of HSP70 in PTs and CCDs was related to the decreased glomerular filtration rate. The constitutive/cognate form of HSP70 (HSC72) was absent. These results support the concept that HSP27 and HSP70 are involved in the adaptive response of the human kidney to congenital UPJO.
Collapse
Affiliation(s)
- Patricia Vallés
- Department of Physiopathology, Medical School, National University of Cuyo, Centro Universitario 5500, Mendoza, Argentina.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Glomerular podocytes are highly specialized cells with a complex cytoarchitecture. Their most prominent features are interdigitated foot processes with filtration slits in between. These are bridged by the slit diaphragm, which plays a major role in establishing the selective permeability of the glomerular filtration barrier. Injury to podocytes leads to proteinuria, a hallmark of most glomerular diseases. New technical approaches have led to a considerable increase in our understanding of podocyte biology including protein inventory, composition and arrangement of the cytoskeleton, receptor equipment, and signaling pathways involved in the control of ultrafiltration. Moreover, disturbances of podocyte architecture resulting in the retraction of foot processes and proteinuria appear to be a common theme in the progression of acquired glomerular disease. In hereditary nephrotic syndromes identified over the last 2 years, all mutated gene products were localized in podocytes. This review integrates our recent physiological and molecular understanding of the role of podocytes during the maintenance and failure of the glomerular filtration barrier.
Collapse
Affiliation(s)
- Hermann Pavenstädt
- Division of Nephrology, Department of Medicine, University Hospital Freiburg, Freiburg, Germany.
| | | | | |
Collapse
|
33
|
Yaoita E, Yao J, Yoshida Y, Morioka T, Nameta M, Takata T, Kamiie JI, Fujinaka H, Oite T, Yamamoto T. Up-regulation of connexin43 in glomerular podocytes in response to injury. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1597-606. [PMID: 12414508 PMCID: PMC1850784 DOI: 10.1016/s0002-9440(10)64438-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Podocyte injury or podocyte loss in the renal glomerulus has been proposed as the crucial mechanism in the development of focal segmental glomerulosclerosis. However, it is poorly understood how podocytes respond to injury. In this study, glomerular expression of connexin43 (Cx43) gap junction protein was examined at both protein and transcript levels in an experimental model of podocyte injury, puromycin aminonucleoside (PAN) nephrosis. A striking increase in the number of immunoreactive dots with anti-Cx43 antibody was demonstrated along the glomerular capillary wall in the early to nephrotic stage of PAN nephrosis. The conspicuous change was not detected in the other areas including the mesangium and Bowman's capsule. Immunoelectron microscopy showed that the immunogold particles for Cx43 along the capillary wall were localized predominantly at the cell-cell contact sites of podocytes. Consistently, Western blotting and ribonuclease protection assay revealed a distinct increase of Cx43 protein, phosphorylation, and transcript in glomeruli during PAN nephrosis. The changes were detected by 6 hours after PAN injection. These findings indicate that the increase of Cx43 expression is one of the earliest responses that have ever been reported in podocyte injury. To show the presence of functional gap junctional intercellular communication (GJIC) in podocytes, GJIC was assessed in podocytes in the primary culture by transfer of fluorescent dye, Lucifer yellow, after a single-cell microinjection. Diffusion of the dye into adjacent cells was observed frequently in the cultured podocytes, but scarcely in cultured parietal epithelial cells of Bowman's capsule, which was compatible with their Cx43 staining. Thus, it is concluded that Cx43-mediated GJIC is present between podocytes, suggesting that podocytes may respond to injury as an integrated epithelium on a glomerulus rather than individually as a separate cell.
Collapse
Affiliation(s)
- Eishin Yaoita
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Davidson SM, Loones MT, Duverger O, Morange M. The developmental expression of small HSP. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 28:103-28. [PMID: 11908055 DOI: 10.1007/978-3-642-56348-5_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Sean M Davidson
- Unité de Génétique Moléculaire, Ecole normale supérieure, 46 rue d'Ulm, 75230 Paris, France
| | | | | | | |
Collapse
|
35
|
Abstract
Foot process effacement is the most characteristic change in podocyte structure under a wide variety of human and experimental glomerulopathies with heavy proteinuria. It consists of simplification and even total disappearance of the interdigitating foot process pattern, resulting in the formation of a diffuse cytoplasmic sheet along the glomerular basement membrane. Although abundant evidence related to structural changes in podocyte foot processes has been reported, cellular or molecular mechanisms that occur within podocytes during the development of foot process effacement remain unclear. This review summarizes recent advances concerning structural and functional aspects of foot process effacement in vivo. Following a description of the general morphology of foot process effacement, the role of the cytoskeleton and its related proteins in the effacement are discussed. Finally, the relevance of foot process effacement in glomerular function is considered.
Collapse
Affiliation(s)
- Isao Shirato
- Division of Nephrology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo 113-8421, Japan.
| |
Collapse
|
36
|
Abstract
The normal milieu of the kidney includes hypoxia, large osmotic fluxes, and an enormous amount of fluid/solute reabsorption. Renal adaptation to these conditions requires a host of molecular chaperones that stabilize protein conformation, target nascent proteins to their final intracellular destination, and prevent protein aggregation. Under physiologic or pharmacologic stress, inducible molecular chaperones provide additional mechanisms for repairing or degrading non-native proteins and for inhibiting stress-induced apoptosis. In contrast to intracellular chaperones, chaperones present on the cell surface regulate the immune system and have cytokine-like effects. A diverse range of chaperones and chaperone functions provide the renal cell with an armamentarium of responses to improve the chances of survival.
Collapse
Affiliation(s)
- Steven C Borkan
- Evans Biomedical Research Center, Boston Medical Center, Renal Section, 650 Albany Street, Boston, Massachusetts 02118-2518, USA.
| | | |
Collapse
|
37
|
Smoyer WE, Ransom RF. Hsp27 regulates podocyte cytoskeletal changes in an in vitro model of podocyte process retraction. FASEB J 2002; 16:315-26. [PMID: 11874981 DOI: 10.1096/fj.01-0681com] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nephrotic syndrome (NS) is characterized by structural changes in the actin-rich foot processes of glomerular podocytes. We previously identified high concentrations of the small heat shock protein hsp27 within podocytes as well as increased glomerular accumulation and phosphorylation of hsp27 in puromycin aminonucleoside (PAN) -induced experimental NS. Here we analyzed murine podocytes stably transfected with hsp27 sense, antisense, and vector control constructs using a newly developed in vitro PAN model system. Cell morphology and the microfilament structure of untreated sense and antisense transfectants were altered compared with controls. Vector cell survival, polymerized actin content, cell area, and hsp27 content increased after 1.25 microg/ml PAN treatment and decreased after 5.0 microg/ml treatment. In contrast, sense cells were unaffected by 1.25 microg/ml PAN treatment whereas antisense cells showed decreases or no changes in all parameters. Treatment of sense cells with 5.0 microg/ml PAN resulted in increased cell survival and cell area whereas antisense cells underwent significant decreases in all parameters. Hsp27 provided dramatic protection against PAN-induced microfilament disruption in sense > vector > antisense cells. We conclude that hsp27 is able to regulate both the morphological and actin cytoskeletal response of podocytes in an in vitro model of podocyte injury.
Collapse
Affiliation(s)
- William E Smoyer
- Pediatric Nephrology Division, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
38
|
Maizels ET, Mukherjee A, Sithanandam G, Peters CA, Cottom J, Mayo KE, Hunzicker-Dunn M. Developmental regulation of mitogen-activated protein kinase-activated kinases-2 and -3 (MAPKAPK-2/-3) in vivo during corpus luteum formation in the rat. Mol Endocrinol 2001; 15:716-33. [PMID: 11328854 DOI: 10.1210/mend.15.5.0634] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The current study investigates the activation in vivo and regulation of the expression of components of the p38 mitogen-activated protein kinase (MAPK) pathway during gonadotropin-induced formation and development of the rat corpus luteum, employing a sequential PMSG/human CG (hCG) treatment paradigm. We postulated that the p38 MAPK pathway could serve to promote phosphorylation of key substrates during luteal maturation, since maturing luteal cells, thought to be cAMP-nonresponsive, nevertheless maintain critical phosphoproteins. Both p38 MAPK and its upstream activator MAPK kinase-6 (MKK6) were found to be chronically activated during the luteal maturation phase, with activation detected by 24 h post hCG and maintained through 4 days post hCG. The p38 MAPK downstream protein kinase target termed MAPK-activated protein kinase-3 (MAPKAPK-3) was newly induced at both mRNA and protein levels during luteal formation and maturation, while mRNA and protein expression of the closely related MAPKAPK-2 diminished. Two potential substrates for MAPKAPKs, the small heat shock protein HSP-27 and the cAMP regulatory element binding protein CREB, were monitored in vivo for phosphorylation. HSP-27 phosphorylation was not modulated during luteal maturation. In contrast, we observed sustained luteal-phase CREB phosphorylation in vivo, consistent with upstream MKK6/p38 MAPK activation and MAPKAPK-3 induction. MAPKAPK-3-specific immune complex kinase assays provided direct evidence that MAPKAPK-3 was in an activated state during luteal maturation in vivo. Cellular inhibitor studies indicated that an intact p38 MAPK path was required for CREB phosphorylation in a cellular model of luteinization, as treatment of luteinized granulosa cells with the p38 MAPK inhibitor SB 203580 strongly inhibited CREB phosphorylation. Transient transfection studies provided direct evidence that MAPKAPK-3 was capable of signaling to activate CREB transcriptional activity, as assessed by means of GAL4-CREB fusion protein construct coexpressed with GAL4-luciferase reporter construct. Introduction of wild-type, but not kinase-dead mutant, MAPKAPK-3 cDNA, into a mouse ovarian cell line stimulated GAL4-CREB- dependent transcriptional activity approximately 3-fold. Thus MAPKAPK-3 is indeed uniquely poised to support luteal maturation through the phosphorylation and activation of the nuclear transcription factor CREB.
Collapse
Affiliation(s)
- E T Maizels
- Department of Cell and Molecular Biology, Northwestern University Medical School Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Beck FX, Neuhofer W, Müller E. Molecular chaperones in the kidney: distribution, putative roles, and regulation. Am J Physiol Renal Physiol 2000; 279:F203-15. [PMID: 10919839 DOI: 10.1152/ajprenal.2000.279.2.f203] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Molecular chaperones are intracellular proteins that prevent inappropriate intra- and intermolecular interactions of polypetide chains. A specific group of highly conserved molecular chaperones are the heat shock proteins (HSPs), many of which are constitutively expressed but most of which are inducible by diverse (in some cases specific) stress factors. HSPs, either alone or in cooperation with "partner" chaperones, are involved in cellular processes as disparate as correct folding and assembly of proteins, transport of proteins to specific intracellular locations, protein degradation, and preservation and restructuring of the cytoskeleton. The characteristic distribution of individual HSPs in the kidney, and their response to different challenges, suggests that a number of HSPs may fulfill specific, kidney-related functions. HSP72 and the osmotic stress protein 94 (Osp94) appear to participate in the adaptation of medullary cells to high extracellular salt and urea concentrations; the small HSPs (HSP25/27 and crystallins) may be involved in the function of mesangial cells and podocytes and contribute to the volume-regulatory remodeling of the cytoskeleton in medullary cells during changes in extracellular tonicity. HSP90 contributes critically to the maturation of steroid hormone receptors and may thus be a critical determinant of the aldosterone sensitivity of specific renal epithelial cells. Certain HSPs are also induced in various pathological states of the kidney. The observation that the expression of individual HSPs in specific kidney diseases often displays characteristic time courses and intrarenal distribution patterns supports the idea that HSPs are involved in the recovery but possibly also in the initiation and/or maintenance phases of these disturbances.
Collapse
Affiliation(s)
- F X Beck
- Physiologisches Institut der Universität München, Munich, Germany.
| | | | | |
Collapse
|
40
|
Paslaru L, Rallu M, Manuel M, Davidson S, Morange M. Cyclosporin A induces an atypical heat shock response. Biochem Biophys Res Commun 2000; 269:464-9. [PMID: 10708576 DOI: 10.1006/bbrc.2000.2295] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclosporin A is a widely used immunosuppressive drug having toxic side effects, in particular on kidneys and liver, as a result of its action on different molecular targets. Here we demonstrate that low doses of CsA are able to induce the expression of the heat shock protein HSP27 and its hyperphosphorylation. It also activates the two heat shock transcription factors, HSF1 and HSF2. Since these factors have been shown to be activated by proteasome inhibition, we tested the hypothesis that the inhibitory action of CsA on the proteasome might be responsible for the activation of HSFs and the subsequent expression of HSP27. The increase in multiubiquitinated proteins as well as the stabilization of p53 following CsA addition argues in favor of this hypothesis. The kidney BSC-1 cells are highly responsive to the addition of CsA: the possible link between HSP27 induction and hyperphosphorylation and nephrotoxicity is discussed.
Collapse
Affiliation(s)
- L Paslaru
- Unité de Génétique Moléculaire, UMR 8541 CNRS, Département de Biologie, ENS, 46 rue d'Ulm, Paris Cedex 05, 75230, France
| | | | | | | | | |
Collapse
|
41
|
Dunlop ME, Muggli EE. Small heat shock protein alteration provides a mechanism to reduce mesangial cell contractility in diabetes and oxidative stress. Kidney Int 2000; 57:464-75. [PMID: 10652023 DOI: 10.1046/j.1523-1755.2000.00866.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Small heat shock proteins are expressed in many tissues and are proposed to regulate actin filament dynamics when dissociated into small aggregates and phosphorylated in a p38 mitogen-activated protein kinase (p38MAPK)-dependent manner. METHODS p38MAPK activity and small heat shock protein-25 (Hsp25) were determined in glomeruli from rats with experimental diabetes induced by streptozotocin administration and in isolated glomeruli exposed to a free radical stress. Contractile responsiveness of mesangial cells was determined by the serum-induced contraction of cell-embedded type I collagen gels. RESULTS In experimental diabetes, there is an activation of p38MAPK, a decrease in the size of Hsp25 molecular aggregates, from large to small homo-oligomers, and an increase in the phosphorylation of Hsp25. In control glomeruli, a free radical stress, H2O2, activated p38MAPK and increased Hsp25 in a concentration-dependent manner. Additionally, H2O2 decreased the contractility of cultured mesangial cells concomitant with an increase in Hsp25 phosphorylation and a reduction in Hsp25 aggregate size. These effects were significantly reduced by SB202190, an imidazole-derivative cell-permeable inhibitor of p38MAPK. CONCLUSIONS It has been proposed that the generation of oxygen-derived free radicals in diabetes may be linked causally to a loss of glomerular contractile reactivity and thus hyperfiltration in the early stages of diabetes mellitus. This study provides a mechanism for alteration of mesangial cell contractile responsiveness through phosphorylation of Hsp25 and may be a mechanism underlying abnormalities in glomerular hemodynamics in diabetes and in the presence of free radical stress.
Collapse
Affiliation(s)
- M E Dunlop
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia. m.dunlop@medicine,unimelb.edu.au
| | | |
Collapse
|
42
|
Smoyer WE, Ransom R, Harris RC, Welsh MJ, Lutsch G, Benndorf R. Ischemic acute renal failure induces differential expression of small heat shock proteins. J Am Soc Nephrol 2000; 11:211-221. [PMID: 10665928 DOI: 10.1681/asn.v112211] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
AlphaB-crystallin and heat shock protein (hsp) 25 are structurally and functionally related small stress proteins induced by a variety of insults, including heat and ischemia. Cytoprotection by these two hsp is thought to result from molecular chaperoning and/or cytoskeletal stabilization. Because renal ischemia is characterized by disruption of the renal tubular cell actin cytoskeleton, this study was conducted to determine the localization and quantify the expression and phosphorylation of both hsp in renal cortex, isolated glomeruli, outer medulla, and inner medulla of rats after bilateral renal ischemia. Sham-operated kidneys had similarly small amounts of hsp25 and alphaB-crystallin in cortex and glomeruli, with substantially greater amounts of alphaB-crystallin versus hsp25 in outer and inner medulla. Ischemia resulted in significantly increased hsp25 (and hsp70i) but variable alphaB-crystallin levels in cortex and outer medulla, and progressively decreased glomerular hsp25 phosphorylation. In sham-operated kidneys, hsp25 localized to glomeruli, vessels, and collecting ducts, with alphaB-crystallin primarily in medullary thin limbs and collecting ducts. After ischemia, hsp25 accumulated in proximal tubules in cortex and outer medulla, while alphaB-crystallin labeling became nonhomogeneous in outer medulla, and increased in Bowman's capsule. It is concluded that: (1) There is striking differential expression of hsp25 and alphaB-crystallin in various renal compartments; and (2) Renal ischemia results in differential accumulation of hsp25 and alphaB-crystallin, with hsp25 part of a generalized stress response in renal proximal tubular cells, which may play a role in recovery from ischemia-induced actin filament disruption.
Collapse
Affiliation(s)
- William E Smoyer
- Department of Pediatrics University of Michigan, Ann Arbor, Michigan
| | - Richard Ransom
- Department of Pediatrics University of Michigan, Ann Arbor, Michigan
| | - Raymond C Harris
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Michael J Welsh
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Gudrun Lutsch
- Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Rainer Benndorf
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
43
|
Müller E, Burger-Kentischer A, Neuhofer W, Fraek ML, März J, Thurau K, Beck FX. Possible involvement of heat shock protein 25 in the angiotensin II-induced glomerular mesangial cell contraction via p38 MAP kinase. J Cell Physiol 1999; 181:462-9. [PMID: 10528232 DOI: 10.1002/(sici)1097-4652(199912)181:3<462::aid-jcp10>3.0.co;2-t] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the rat kidney, mesangial cells (MCs), especially those in the extraglomerular mesangium (EGM) region of the juxtagomerular apparatus, express high amounts of heat shock protein 25 (HSP25). Because MCs are contractile in vivo and HSP25 is known to modulate polymerization/depolymerization of F-actin and to be involved in smooth muscle contraction, it is possible that HSP25 participates in the contraction process of MCs. We analyzed a permanent mouse MC line using Northern and Western blot analyses, and observed that similar to the MCs in the glomerulus, these cells also express high amounts of HSP25 constitutively. Exposure of these cells to angiotensin II (ANG II: 2 x 10(-7) M) evoked contraction and a concomitant increase in HSP25 phosphorylation, while the cytoplasmic fraction of HSP25 was transiently reduced. Because phosphorylation of HSP25 is essential for its actin-modulating function, we suppressed the activity of p38 MAP kinase, the major upstream activator of HSP25 phosphorylation, with the specific inhibitor SB 203580. This maneuver reduced HSP25 phosphorylation dramatically, abolished cell contraction, and prevented the decrease of the cytoplasmic HSP25 content. This suggests that HSP25 might be a component of the contraction machinery in MCs and that this process depends on p38 MAP kinase-mediated HSP25 phosphorylation. The decrease of cytoplasmic HSP25 content observed after ANG II exposure is probably the result of a transient redistribution of HSP25 into a buffer-insoluble fraction, because the whole cell content of HSP25 did not change, a phenomenon known to be related to the actin-modulating activity of HSP25. The fact that this function requires phosphorylation of HSP25 would explain the observation that HSP25 does not redistribute in SB 203580-pretreated cells.
Collapse
Affiliation(s)
- E Müller
- Institute of Physiology, University of Munich, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Focal segmental glomerulosclerosis is a pathological hallmark of many forms of progressive renal disease. The 'classic' lesion, based on the adhesion of the capillary tuft to Bowman's capsule, results from the loss of podocytes from the capillary basement membrane. The recently described 'collapsing' variant, in contrast, has an apparent excess of extracapillary cells, which may represent dedifferentiated, 'dysregulated' podocytes.
Collapse
Affiliation(s)
- W Kriz
- Institut für Anatomie und Zellbiologie, INF 307, Universität Heidelberg, Germany.
| | | |
Collapse
|
45
|
Abstract
The balance between local offense factors and defense machinery determines the fate of tissue injury: progression or resolution. In glomerular research, the most interest has been on the offensive side, for example, the roles of leukocytes, platelets, complement, cytokines, eicosanoids, and oxygen radical intermediates. There has been little focus on the defensive side, which is responsible for the attenuation and resolution of disease. The aim of this review is to address possible mechanisms of local defense that may be exerted during glomerular injury. Cytokine inhibitors, proteinase inhibitors, complement regulatory proteins, anti-inflammatory cytokines, anti-inflammatory eicosanoids, antithrombotic molecules, and extracellular matrix proteins can participate in the extracellular and/or cell surface defense. Heat shock proteins, antioxidants, protein phosphatases, and cyclin kinase inhibitors may contribute to the intracellular defense. This article outlines how the glomerulus, when faced with injurious cells or exposed to pathogenic mediators, defends itself via the intrinsic machinery that is brought into play in resident glomerular cells.
Collapse
Affiliation(s)
- M Kitamura
- Department of Medicine, University College London Medical School, England, United Kingdom.
| | | |
Collapse
|
46
|
Abstract
The stereotyped development of the glomerular lesions in many animal models and human forms of progressive renal disease suggests that there are common mechanisms of disease progression. We propose the outline of such a mechanism based on following aspects: (1) The glomerulus is a complex structure, the stability of which depends on the cooperative function of the basement membrane, mesangial cells and podocytes, counteracting the distending forces originating from the high glomerular hydrostatic pressures. Failure of this system leads to quite uniform architectural lesions. (2) There is strong evidence that the podocyte is incapable of regenerative replication post-natally; when podocytes are lost for any reason they cannot be replaced by new cells. Loss of podocytes may therefore lead to areas of "bare" GBM. which represent potential starting points for irreversible glomerular injury. (3) Attachment of parietal epithelial cells to bare GBM invariably occurs when bare GBM coexists with architectural lesions, leading to the formation of a tuft adhesion to Bowman's capsule, the first "committed" lesion progressing to segmental sclerosis. (4) Within an adhesion the tuft merges with the interstitium, allowing filtration from perfused capillaries inside the adhesion towards the interstitium. The relevance of such filtration is as yet unclear but may play a considerable role in progression to global sclerosis and interstitial fibrosis.
Collapse
Affiliation(s)
- W Kriz
- Institut für Anatomie und Zellbiologie, Universität Heidelberg, Germany.
| | | | | |
Collapse
|
47
|
Abstract
Heat shock proteins, or stress proteins, are molecular chaperones responsible for protein processing and protection against cellular injury through the prevention of inappropriate peptide interactions. The distribution of individual stress proteins varies between regions of the kidney and within subcellular compartments both in normal and pathological conditions. Novel molecular chaperones have been identified in renal medullary cells which are unique, among mammalian cells, in routinely facing osmotic stress. Heat shock proteins can participate in renal injury as antigenic targets, but their primary role is beneficial, and these proteins may function by interacting with the cytoskeleton to protect against and assist recovery from cellular injury.
Collapse
Affiliation(s)
- S K Van Why
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
48
|
Maizels ET, Peters CA, Kline M, Cutler RE, Shanmugam M, Hunzicker-Dunn M. Heat-shock protein-25/27 phosphorylation by the delta isoform of protein kinase C. Biochem J 1998; 332 ( Pt 3):703-12. [PMID: 9620873 PMCID: PMC1219531 DOI: 10.1042/bj3320703] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Small heat-shock proteins (sHSPs) are widely expressed 25-28 kDa proteins whose functions are dynamically regulated by phosphorylation. While recent efforts have clearly delineated a stress-responsive p38 mitogen-activated protein-kinase (MAPK)-dependent kinase pathway culminating in activation of the heat-shock (HSP)-kinases, mitogen-activated protein-kinase-activated protein kinase-2 and -3, not all sHSP phosphorylation events can be explained by the p38 MAPK-dependent pathway. The contribution of protein kinase C (PKC) to sHSP phosphorylation was suggested by early studies but later questioned on the basis of the reported poor ability of purified PKC to phosphorylate sHSP in vitro. The current study re-evaluates the role of PKC in sHSP phosphorylation in the light of the isoform complexity of the PKC family. We evaluated the sHSP phosphorylation status in rat corpora lutea obtained from two stages of pregnancy, mid-pregnancy and late-pregnancy, which express different levels of the novel PKC isoform, PKC-delta. Two-dimensional Western blot analysis showed that HSP-27 was more highly phosphorylated in vivo in corpora lutea of late pregnancy, corresponding to the developmental stage in which PKC-delta is abundant and active. Late-pregnant luteal extracts contained a lipid-sensitive HSP-kinase activity which exactly co-purified with PKC-delta using hydroxyapatite and S-Sepharose column chromatography. To determine whether there might be preferential phosphorylation of sHSP by a particular PKC isoform, purified recombinant PKC isoforms corresponding to those PKC isoforms detected in rat corpora lutea were evaluated for HSP-kinase activity in vitro. Recombinant PKC-delta effectively catalysed the phosphorylation of sHSP in vitro, and PKC-alpha was 30-50% as effective as an HSP-kinase; other PKCs tested (beta1, beta2, epsilon and zeta) were poor HSP-kinases. These results show that select PKC family members can function as direct HSP-kinases in vitro. Moreover, the observation of enhanced luteal HSP-27 phosphorylation in vivo, in late pregnancy, when PKC-delta is abundant and active, suggests that select PKC family members contribute to sHSP phosphorylation events in vivo.
Collapse
Affiliation(s)
- E T Maizels
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
49
|
Sunamoto M, Kuze K, Iehara N, Takeoka H, Nagata K, Kita T, Doi T. Expression of heat shock protein 47 is increased in remnant kidney and correlates with disease progression. Int J Exp Pathol 1998; 79:133-40. [PMID: 9741355 PMCID: PMC3220379 DOI: 10.1046/j.1365-2613.1998.00061.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glomerulosclerosis is characterized by accumulation of the mesangial extracellular matrix, including type I and V collagen. The processing for the collagens in the glomeruli may play a critical role for development of glomerulosclerosis. We examined the expression of heat shock protein 47 (HSP47), a collagen-binding molecular chaperone in the progressive glomerulosclerosis model. Subtotally nephrectomized rats, unlike sham-operated rats, developed focal and segmental glomerulosclerosis. Immunological staining demonstrated an increased expression of HSP47 which paralleled the expression of type I and IV collagen in the glomeruli of the nephrectomized rats as the glomerulosclerosis developed. The mRNA levels encoding type I and type IV collagen and HSP47 were increased 3.4 fold, 3.6 fold and 2.8 fold, respectively, at week 7 after nephrectomy. By in situ hybridization, the expression of HSP47 mRNA was determined to be localized to the glomeruli with segmental sclerosis. These results suggest that HSP47 may play a central role in the process of extracellular matrix accumulation during the development of glomerulosclerosis.
Collapse
Affiliation(s)
- M Sunamoto
- Department of Clinical Bio-Regulatory Science, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Aufricht C, Ardito T, Thulin G, Kashgarian M, Siegel NJ, Van Why SK. Heat-shock protein 25 induction and redistribution during actin reorganization after renal ischemia. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:F215-22. [PMID: 9458842 DOI: 10.1152/ajprenal.1998.274.1.f215] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The small heat-shock proteins appear to have a regulatory role in actin dynamics. Since cytoskeletal disruption is integral to ischemic renal injury, we evaluated expression and intracellular distribution of heat-shock protein 25 (HSP-25) in rat renal cortex after 45 min of renal ischemia. HSP-25 was constitutively expressed and induced by ischemia with peak levels reached by 6 h reflow. Ischemia caused a shift of HSP-25 from the detergent-soluble into the insoluble cytoskeletal fraction. By 2 h reflow, the majority of HSP-25 had redistributed into the soluble fraction. HSP-25 was predominantly localized in a subapical distribution in control proximal tubules, a pattern intermediate between deoxyribonuclease (DNase)-reactive and filamentous actin. After ischemia, HSP-25 dispersed through the cytoplasm with small punctate accumulations similar to DNase-reactive actin. During later reflow, all three proteins were found in coarse intracytoplasmic accumulations; however, HSP-25 and DNase-reactive actin were in separate accumulations. HSP-25 and microfilamentous actin staining returned to the subapical domain. Thus the temporal and spatial patterns of HSP-25 induction and distribution suggest specific interactions between HSP-25 and actin during the early postischemic reorganization of the cytoskeleton. HSP-25 may have additional roles distinct from actin dynamics later in the course of postischemic recovery.
Collapse
Affiliation(s)
- C Aufricht
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520-8064, USA
| | | | | | | | | | | |
Collapse
|