1
|
Gattarello S, Pozzi T, Galizia M, Busana M, Ghidoni V, Catozzi G, Donati B, Nocera D, Giovanazzi S, D'Albo R, Fioccola A, Velati M, Nicolardi R, Fratti I, Romitti F, Gatta A, Collino F, Herrmann P, Quintel M, Meissner K, Sonzogni A, Marini JJ, Camporota L, Moerer O, Gattinoni L. Impact of Fluid Balance on the Development of Lung Injury. Am J Respir Crit Care Med 2025; 211:331-338. [PMID: 39585957 DOI: 10.1164/rccm.202406-1240oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/21/2024] [Indexed: 11/27/2024] Open
Abstract
Rationale: The pathophysiological relationship among fluid administration, fluid balance, and mechanical ventilation in the development of lung injury is unclear. Objectives: To quantify the relative contributions of mechanical power and fluid balance in the development of lung injury. Methods: Thirty-nine healthy female pigs, divided into four groups, were ventilated for 48 hours with high (∼18 J/min) or low (∼6 J/min) mechanical power and high (∼4 L) or low (∼1 L) targeted fluid balance. Measurements and Main Results: We measured physiological variables (e.g., end-expiratory lung gas volume, respiratory system mechanics, gas exchange, hemodynamics) and pathological variables (i.e., lung weight, wet-to-dry ratio, and histology score of lung injury). End-expiratory lung gas volume, respiratory system elastance, strain, and oxygenation significantly worsened in the two groups assigned to receive high fluid balance, irrespective of the mechanical power received. All four groups had similar lung weights (i.e., lung edema), lung wet-to-dry ratios, and pathological variables. Animals with higher fluid balance developed more ascites, which was associated with a decrease in end-expiratory lung gas volume. Conclusions: Our study did not detect a significant difference in lung injury between high and low mechanical power. Some damage is directly attributable to mechanical power, while additional injury appears to result indirectly from high fluid balance, which reduces end-expiratory lung gas volume, with ascites playing an important role in this process.
Collapse
Affiliation(s)
- Simone Gattarello
- Department of Anesthesia and Intensive Care Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Tommaso Pozzi
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Mauro Galizia
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Mattia Busana
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Valentina Ghidoni
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Health Science, Department of Anesthesia and Intensive Care, AOU Careggi, Florence, Italy
| | - Giulia Catozzi
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Beatrice Donati
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Domenico Nocera
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Stefano Giovanazzi
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Rosanna D'Albo
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Antonio Fioccola
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
- Dipartimento di Anestesia e Rianimazione, ASST Santi Paolo e Carlo, Ospedale Universitario San Paolo, Milano, Italia
| | - Mara Velati
- Department of Anesthesia and Intensive Care Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Rosmery Nicolardi
- Department of Anesthesia and Intensive Care Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Isabella Fratti
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Federica Romitti
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Alessandro Gatta
- Dipartimento di Anestesia e Rianimazione, Ospedale "Ceccarini", AUSL della Romagna, Riccione, Italia
| | - Francesca Collino
- Dipartimento di Anestesia e Rianimazione, AOU Città della Salute e della Scienza di Torino, Corso Bramante 88, Torino, Italia
| | - Peter Herrmann
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Quintel
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Konrad Meissner
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - John J Marini
- Department of Pulmonary and Critical Care Medicine, Regions Hospital, St. Paul, Minnesota
| | - Luigi Camporota
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, United Kingdom; and
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Onnen Moerer
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Luciano Gattinoni
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Spinelli E, Perez J, Chiavieri V, Leali M, Mansour N, Madotto F, Rosso L, Panigada M, Grasselli G, Vaira V, Mauri T. Pathophysiological Markers of Acute Respiratory Distress Syndrome Severity Are Correlated With Ventilation-Perfusion Mismatch Measured by Electrical Impedance Tomography. Crit Care Med 2025; 53:e42-e53. [PMID: 39445936 DOI: 10.1097/ccm.0000000000006458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
OBJECTIVES Pulmonary ventilation/perfusion (V/Q) mismatch measured by electrical impedance tomography (EIT) is associated with the outcome of patients with the acute respiratory distress syndrome (ARDS), but the underlying pathophysiological mechanisms have not been fully elucidated. The present study aimed to verify the correlation between relevant pathophysiological markers of ARDS severity and V/Q mismatch. DESIGN Prospective observational study. SETTING General ICU of a university-affiliated hospital. PATIENTS Deeply sedated intubated adult patients with ARDS under controlled mechanical ventilation. INTERVENTIONS Measures of V/Q mismatch by EIT, respiratory mechanics, gas exchange, lung imaging, and plasma biomarkers. MEASUREMENTS AND MAIN RESULTS Unmatched V/Q units were assessed by EIT as the fraction of ventilated nonperfused plus perfused nonventilated lung units. At the same time, plasma biomarkers with proven prognostic and mechanistic significance for ARDS (carbonic anhydrase 9 [CA9], hypoxia-inducible factor 1 [HIF1], receptor for advanced glycation endproducts [RAGE], angiopoietin 2 [ANG2], gas exchange, respiratory mechanics, and quantitative chest CT scans were measured. Twenty-five intubated ARDS patients were included with median unmatched V/Q units of 37.1% (29.2-49.2%). Unmatched V/Q units were correlated with plasma levels of CA9 (rho = 0.47; p = 0.01), HIF1 (rho = 0.40; p = 0.05), RAGE (rho = 0.46; p = 0.02), and ANG2 (rho = 0.42; p = 0.03). Additionally, unmatched V/Q units correlated with plateau pressure ( r = 0.38; p = 0.05) and with the number of quadrants involved on chest radiograph ( r = 0.73; p < 0.01). Regional unmatched V/Q units were correlated with the corresponding fraction of poorly aerated lung tissue ( r = 0.62; p = 0.01) and of lung tissue weight (rho: 0.51; p = 0.04) measured by CT scan. CONCLUSIONS In ARDS patients, unmatched V/Q units are correlated with pathophysiological markers of lung epithelial and endothelial dysfunction, increased lung stress, and lung edema. Unmatched V/Q units could represent a comprehensive marker of ARDS severity, reflecting the complex organ pathophysiology and reinforcing their prognostic significance.
Collapse
Affiliation(s)
- Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Joaquin Perez
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Chiavieri
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Marco Leali
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nadia Mansour
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabiana Madotto
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Rosso
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Division of Thoracic Surgery and Lung Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Panigada
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Grasselli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Valentina Vaira
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Galizia M, Ghidoni V, Catozzi G, Giovanazzi S, Nocera D, Donati B, Pozzi T, D'Albo R, Busana M, Romitti F, Herrmann P, Moerer O, Meissner K, Quintel M, Camporota L, Gattinoni L. Predictors of VILI risk: driving pressure, 4DPRR and mechanical power ratio-an experimental study. Intensive Care Med Exp 2024; 12:116. [PMID: 39661304 PMCID: PMC11635077 DOI: 10.1186/s40635-024-00697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Ventilator-induced lung injury (VILI) is one of the side effects of mechanical ventilation during ARDS; a prerequisite for averting it is the quantification of its risk factors associated with a given ventilatory setting. Many clinical variables have been proposed as predictors of VILI, of which driving pressure is the most widely used. In this study, we compared the performance of driving pressure, four times the driving pressure added to respiratory rate (4DPRR) and mechanical power ratio. RESULTS In a study population of 121 previously healthy pigs exposed to harmful ventilation, we compared the association of driving pressure, 4DPRR and mechanical power ratio to lung weight, lung wet-to-dry and total histological score. All the three variables were associated with these outcomes. Driving pressure, 4DPRR and mechanical power ratio increase linearly with the lung weight (adjusted R2 of 0.27, 0.36 and 0.40, respectively), the lung wet-to-dry ratio (adjusted R2 of 0.19, 0.25 and 0.37) and the total histological score (adjusted R2 of 0.26, 0.38 and 0.26). Using a multiple linear regression model with forward analysis, starting with tidal volume and progressively adding respiratory rate and positive end-expiratory pressure, and comparing the topic with the outcome variables, we obtained R2 values, respectively, of 0.07, 0.20, 0.42 for lung weight, 0.09, 0.19, 0.26 for lung wet-to-dry ratio and 0.07, 0.27, 0.43 for total histological score. CONCLUSIONS Driving pressure, 4DPRR and mechanical power ratio, were all associated with lung injury in healthy animals undergoing mechanical ventilation.
Collapse
Affiliation(s)
- Mauro Galizia
- Department of Anaesthesiology, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
- Department of Health Sciences, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italia
| | - Valentina Ghidoni
- Department of Anaesthesiology, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
- Department of Health Science, Department of Anesthesia and Intensive Care, AOU Careggi, Largo Brambilla 3, 50139, Florence, Italia
| | - Giulia Catozzi
- Department of Anaesthesiology, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
- Department of Health Sciences, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italia
| | - Stefano Giovanazzi
- Department of Anaesthesiology, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazzale Spedali Civili 1, 25121, Brescia, Italia
| | - Domenico Nocera
- Department of Anaesthesiology, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Via Massarenti 9, 40138, Bologna, Italia
| | - Beatrice Donati
- Department of Anaesthesiology, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
- Department of Health Sciences, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italia
| | - Tommaso Pozzi
- Department of Health Sciences, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italia
| | - Rosanna D'Albo
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Via Massarenti 9, 40138, Bologna, Italia
| | - Mattia Busana
- Department of Anaesthesiology, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
| | - Federica Romitti
- Department of Anaesthesiology, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
| | - Peter Herrmann
- Department of Anaesthesiology, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
| | - Onnen Moerer
- Department of Anaesthesiology, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
| | - Konrad Meissner
- Department of Anaesthesiology, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
| | - Michael Quintel
- Department of Anaesthesiology, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
| | - Luigi Camporota
- Department of Adult Critical Care, Guy's and St. Thomas' NHS Foundation Trust, Health Centre for Human and Applied Physiological Sciences, London, UK
| | - Luciano Gattinoni
- Department of Anaesthesiology, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany.
| |
Collapse
|
4
|
Castellví-Font A, Goligher EC, Dianti J. Lung and Diaphragm Protection During Mechanical Ventilation in Patients with Acute Respiratory Distress Syndrome. Clin Chest Med 2024; 45:863-875. [PMID: 39443003 DOI: 10.1016/j.ccm.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Patients with acute respiratory distress syndrome often require mechanical ventilation to maintain adequate gas exchange and to reduce the workload of the respiratory muscles. Although lifesaving, positive pressure mechanical ventilation can potentially injure the lungs and diaphragm, further worsening patient outcomes. While the effect of mechanical ventilation on the risk of developing lung injury is widely appreciated, its potentially deleterious effects on the diaphragm have only recently come to be considered by the broader intensive care unit community. Importantly, both ventilator-induced lung injury and ventilator-induced diaphragm dysfunction are associated with worse patient-centered outcomes.
Collapse
Affiliation(s)
- Andrea Castellví-Font
- Critical Care Department, Hospital del Mar de Barcelona, Critical Illness Research Group (GREPAC), Hospital del Mar Research Institute (IMIM), Passeig Marítim de la Barceloneta 25-29, Ciutat Vella, 08003, Barcelona, Spain; Interdepartmental Division of Critical Care Medicine, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada; Division of Respirology, Department of Medicine, University Health Network, Toronto, Canada
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada; Division of Respirology, Department of Medicine, University Health Network, Toronto, Canada; University Health Network/Sinai Health System, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada; Toronto General Hospital Research Institute, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada; Department of Physiology, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada.
| | - Jose Dianti
- Critical Care Medicine Department, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Av. E. Galván 4102, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
5
|
Ter Horst J, Rimensberger PC, Kneyber MCJ. What every paediatrician needs to know about mechanical ventilation. Eur J Pediatr 2024; 183:5063-5070. [PMID: 39349751 PMCID: PMC11527898 DOI: 10.1007/s00431-024-05793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 11/01/2024]
Abstract
Invasive mechanical ventilation (MV) is one of the most practiced interventions in the intensive care unit (ICU) and is unmistakably lifesaving for children with acute respiratory failure (ARF). However, if delivered inappropriately (i.e. ignoring the respiratory system mechanics and not targeted to the need of the individual patient at a specific time point in the disease trajectory), the side effects will outweigh the benefits. Decades of experimental and clinical investigations have resulted in a better understanding of three important detrimental effects of MV. These are ventilation-induced lung injury (VILI), patient self-inflicted lung injury (P-SILI), and ventilation-induced diaphragmatic injury (VIDD). VILI, P-SILI, and VIDD have in common that they occur when there is either too much or too little ventilatory assistance.Conclusion: The purpose of this review is to give the paediatrician an overview of the challenges to prevent these detrimental effects and titrate MV to the individual patient needs.
Collapse
Affiliation(s)
- Jeroen Ter Horst
- Division of Paediatric Critical Care Medicine, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Huispost CA62, P.O. Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Peter C Rimensberger
- Division of Neonatology and Paediatric Intensive Care, University of Geneva, Geneva, Switzerland
| | - Martin C J Kneyber
- Division of Paediatric Critical Care Medicine, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Huispost CA62, P.O. Box 30.001, 9700 RB, Groningen, the Netherlands.
- Critical Care, Anaesthesiology, Peri-Operative & Emergency Medicine (CAPE), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
6
|
Mascia L, Fanelli V, Mistretta A, Filippini M, Zanin M, Berardino M, Mazzeo AT, Caricato A, Antonelli M, Della Corte F, Grossi F, Munari M, Caravello M, Alessandri F, Cavalli I, Mezzapesa M, Silvestri L, Casartelli Liviero M, Zanatta P, Pelosi P, Citerio G, Filippini C, Rucci P, Rasulo FA, Tonetti T. Lung-Protective Mechanical Ventilation in Patients with Severe Acute Brain Injury: A Multicenter Randomized Clinical Trial (PROLABI). Am J Respir Crit Care Med 2024; 210:1123-1131. [PMID: 39288368 DOI: 10.1164/rccm.202402-0375oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024] Open
Abstract
Rationale: Lung-protective strategies using low Vt and moderate positive end-expiratory pressure (PEEP) are considered best practice in critical care, but interventional trials have never been conducted in patients with acute brain injuries because of concerns about carbon dioxide control and the effect of PEEP on cerebral hemodynamics. Objectives: To test the hypothesis that ventilation with lower VT and higher PEEP compared to conventional ventilation would improve clinical outcomes in patients with acute brain injury. Methods: In this multicenter, open-label, controlled clinical trial, 190 adult patients with acute brain injury were assigned to receive either a lung-protective or a conventional ventilatory strategy. The primary outcome was a composite endpoint of death, ventilator dependency, and acute respiratory distress syndrome (ARDS) at Day 28. Neurological outcome was assessed at ICU discharge by the Oxford Handicap Scale and at 6 months by the Glasgow Outcome Scale. Measurements and Main Results: The two study arms had similar characteristics at baseline. In the lung-protective and conventional strategy groups, using an intention-to-treat approach, the composite outcome at 28 days was 61.5% and 45.3% (relative risk [RR], 1.35; 95% confidence interval [CI], 1.03-1.79; P = 0.025). Mortality was 28.9% and 15.1% (RR, 1.91; 95% CI, 1.06-3.42; P = 0.02), ventilator dependency was 42.3% and 27.9% (RR, 1.52; 95% CI, 1.01-2.28; P = 0.039), and incidence of ARDS was 30.8% and 22.1% (RR, 1.39; 95% CI, 0.85-2.27; P = 0.179), respectively. The trial was stopped after enrolling 190 subjects because of termination of funding. Conclusions: In patients with acute brain injury without ARDS, a lung-protective ventilatory strategy, as compared with a conventional strategy, did not reduce mortality, percentage of patients weaned from mechanical ventilation, or incidence of ARDS and was not beneficial in terms of neurological outcomes. Because of the early termination, these preliminary results require confirmation in larger trials. Clinical trial registered with www.clinicaltrials.gov (NCT01690819).
Collapse
Affiliation(s)
- Luciana Mascia
- Department of Experimental Medicine (DIMES), Campus Ecotekne, University of Salento, Lecce, Italy
| | - Vito Fanelli
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Department of Anaesthesia, Critical Care, and Emergency, Città della Salute e della Scienza di Torino University Hospital - Molinette Hospital, Turin, Italy
| | - Alice Mistretta
- Department of Anesthesia and Intensive Care Unit, Città della Salute e della Scienza di Torino University Hospital - Orthopedic and Trauma Center, Turin, Italy
| | - Matteo Filippini
- Department of Anesthesiology, Intensive Care, and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | - Mattia Zanin
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Maurizio Berardino
- Department of Anesthesia and Intensive Care Unit, Città della Salute e della Scienza di Torino University Hospital - Orthopedic and Trauma Center, Turin, Italy
| | - Anna Teresa Mazzeo
- Department of Adult and Pediatric Pathology, University of Messina, Messina, Italy
| | | | - Massimo Antonelli
- Department of Anesthesiology and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Institute of Anesthesiology and Critical Care, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Della Corte
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Anesthesiology and Intensive Care Medicine, Maggiore della Carità University Hospital, Novara, Italy
| | - Francesca Grossi
- Anesthesiology and Intensive Care Medicine, Maggiore della Carità University Hospital, Novara, Italy
| | - Marina Munari
- Institute of Anesthesia and Intensive Care, University Hospital of Padua, Padua, Italy
| | | | - Francesco Alessandri
- Department of General Surgery and Organ Transplantation Unit, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Irene Cavalli
- Department of Medical and Surgical Sciences (DIMEC) and
| | - Mario Mezzapesa
- Department of General Surgery and Organ Transplantation Unit, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Lucia Silvestri
- Department of General Surgery and Organ Transplantation Unit, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | | | - Paolo Zanatta
- Department of Anesthesia and Intensive Care, Integrated University Hospital of Verona, Verona, Italy
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Department Neuroscience, Neurointensive Care, ASST-Monza, Monza, Italy; and
| | | | - Paola Rucci
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Frank A Rasulo
- Department of Anesthesiology, Intensive Care, and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | - Tommaso Tonetti
- Department of Medical and Surgical Sciences (DIMEC) and
- Anesthesiology and General Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
7
|
Mthunzi L, Islam MN, Gusarova GA, Bhattacharya S, Karolewski B, Bhattacharya J. Macrophage-specific lipid nanoparticle therapy blocks the lung's mechanosensitive immunity due to macrophage-epithelial interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.24.541735. [PMID: 37292826 PMCID: PMC10245918 DOI: 10.1101/2023.05.24.541735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The lung's mechanosensitive immune response, which occurs when pulmonary alveoli are overstretched, is a major impediment to ventilation therapy for hypoxemic respiratory failure. The cause is not known. We tested the hypothesis that alveolar stretch causes stretch of alveolar macrophages (AMs), leading to the immune response. In lungs viewed by optical imaging, sessile AMs expressed gap junctional protein connexin-43 (Cx43), and they communicated with the alveolar epithelium through gap junctions. Alveolar hyperinflation increased Ca2+ in the AMs but did not stretch the AMs. The Ca2+ response, and concomitant TNFα secretion by AMs were blocked in mice with AM-specific deletion of Cx43. The AM responses, as also lung injury due to mechanical ventilation at high tidal volume, were inhibited by AM-specific delivery of lipid nanoparticles containing Xestospongin C, which blocked the induced Ca2+ increases. We conclude, Cx43- and Ca2+-dependent AM-epithelial interactions determine the lung's mechanosensitive immunity, providing a basis for therapy for ventilator-induced lung injury.
Collapse
Affiliation(s)
- Liberty Mthunzi
- Lung Biology Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Mohammad N Islam
- Lung Biology Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Galina A Gusarova
- Lung Biology Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sunita Bhattacharya
- Lung Biology Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Brian Karolewski
- Institute of Comparative Medicine, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Jahar Bhattacharya
- Lung Biology Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
8
|
Rozé H, Bonnardel E, Gallo E, Boisselier C, Khan P, Perrier V, Repusseau B, Brochard L. Inter-lung asymmetrical airway closure cause insufflation delay between lungs in acute hypoxemic respiratory failure. Ann Intensive Care 2024; 14:162. [PMID: 39441425 PMCID: PMC11499510 DOI: 10.1186/s13613-024-01379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Electrical Impedance Tomography (EIT) can quantify ventilation in the two lungs and be used to measure the airway opening pressure (AOP) of each lung. Asymmetrical AOPs can cause inter-lung insufflation delay. OBJECTIVES To assess the relation between AOP asymmetry and inter-lung insufflation delay at different PEEP levels. METHODS Patients with acute hypoxemic respiratory failure and airway closure were included. Low-flow pressure-volume curves and EIT signal were recorded during controlled ventilation and for some patients in pressure support ventilation. RESULTS 23 patients were studied, 22 patients had ARDS, 9 patients had asymmetrical airway closure with an AOP of 10 [6-13] cmH20 in the sicker lung (AOPsicker) vs. 5 [3-9, ] cmH20 in the healthier lung. During a low flow inflation, the inter-lung inflation delay was 0 [0-112]ms vs. 1450 [375-2400]ms in patients without or with asymmetrical AOPs, p < 0.0001. This delay was correlated to the difference of AOP between the 2 lungs, Spearman R2 = 0.800, p < 0.0001. During tidal ventilation, median delay was 0 [0-62] ms vs. 150 [50-355] ms in patients without vs. with asymmetry, p = 0.019. Setting PEEP at the crossing point of a decremental EIT-based PEEP trial decreased the inter-lung insufflation delay. During pressure support insufflation delay could still be measured and was reduced by increasing PEEP from 5 to 10 cmH2O in patient with asymmetrical lung injury. CONCLUSION In asymmetrical airway closure, titrating PEEP can minimize inter-lung insufflation delay and can be monitored by EIT. Reducing the delay and reducing ventilation asymmetry is also feasible during pressure support ventilation when low flow inflation curves cannot be performed.
Collapse
Affiliation(s)
- Hadrien Rozé
- Réanimation Polyvalente, Centre Hospitalier Côte Basque, Bayonne, F-64100, France.
- CHU de Bordeaux, Service d'Anesthésie-Réanimation Thoraco-Abdominale, Pessac, F-33600, France.
- Université de Bordeaux, Talence, F-33400, France.
| | - Eline Bonnardel
- CHU de Bordeaux, Service d'Anesthésie-Réanimation Thoraco-Abdominale, Pessac, F-33600, France
| | - Eloise Gallo
- CHU de Bordeaux, Service d'Anesthésie-Réanimation Thoraco-Abdominale, Pessac, F-33600, France
| | - Clément Boisselier
- CHU de Bordeaux, Service d'Anesthésie-Réanimation Thoraco-Abdominale, Pessac, F-33600, France
| | - Pierre Khan
- CHU de Bordeaux, Service d'Anesthésie-Réanimation Thoraco-Abdominale, Pessac, F-33600, France
| | - Virginie Perrier
- CHU de Bordeaux, Service d'Anesthésie-Réanimation Thoraco-Abdominale, Pessac, F-33600, France
| | - Benjamin Repusseau
- CHU de Bordeaux, Service d'Anesthésie-Réanimation Thoraco-Abdominale, Pessac, F-33600, France
| | - Laurent Brochard
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Yu H, Wei X, Ding H, Hu S, Sun F, Cao Z, Shi L. Exploring the potential mechanisms of Mahuang Fuzi Xixin decoction in treating elderly bronchial asthma through network pharmacology, molecular docking, and molecular dynamics simulations. Medicine (Baltimore) 2024; 103:e39921. [PMID: 39465880 PMCID: PMC11479521 DOI: 10.1097/md.0000000000039921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/13/2024] [Indexed: 10/29/2024] Open
Abstract
Modern medical practice has confirmed the efficacy of Mahuang Fuzi Xixin Decoction (MHFZXXD) in treating elderly bronchial asthma, but its specific mechanisms of action remain to be clarified. Therefore, this study utilizes network pharmacology, molecular docking techniques, and molecular dynamics simulations to explore the key active components, core target genes, and potential mechanisms of MHFZXXD in the treatment of elderly bronchial asthma. Active components and related targets of MHFZXXD were identified through the retrieval and screening of the TCMSP, Swiss Targets Prediction, and Uniprot databases. Relevant targets for elderly bronchial asthma were searched using the GeneCards, OMIM, and Pharm GKB databases, followed by the selection of intersecting targets between the drug's active components and the disease. A PPI network diagram was created using String and Cytoscape software, and the intersecting targets of the disease and the active components of traditional Chinese medicine were imported into the DAVID database for GO and KEGG enrichment analysis to further explore their potential mechanisms of action. Subsequently, molecular docking and molecular dynamics simulations were performed using AutoDock Vina and Gromacs to verify the binding capacity and stability of the core genes with the key active components. The study results indicate that the active components of MHFZXXD, such as quercetin, luteolin, and kaempferol, target multiple genes including AKT1, EGF, MYC, TGFB1, PTEN, and CCND1. They exert effects through signaling pathways such as TNF, PI3K-Akt, and HIF-1. Molecular docking and dynamics simulations show that the core targets bind stably with the key active components. Overall, MHFZXXD may reduce inflammatory responses and improve hypoxic conditions and apoptosis during the progression of elderly bronchial asthma through multiple active components, targets, and signaling pathways, thereby delaying the malignant progression of the disease. This provides relevant evidence and experimental data for clinical treatment and further research.
Collapse
Affiliation(s)
- Hongpeng Yu
- Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Xiaotong Wei
- Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Huan Ding
- Department of Respiratory Medicine, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Shaodan Hu
- Department of Respiratory Medicine, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Feng Sun
- Department of Respiratory Medicine, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Zhenghua Cao
- Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Li Shi
- Department of Respiratory Medicine, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
10
|
Bates JHT, Kaczka DW, Kollisch-Singule M, Nieman GF, Gaver DP. Atelectrauma can be avoided if expiration is sufficiently brief: evidence from inverse modeling and oscillometry during airway pressure release ventilation. Crit Care 2024; 28:329. [PMID: 39380082 PMCID: PMC11462759 DOI: 10.1186/s13054-024-05112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Airway pressure release ventilation (APRV) has been shown to be protective against atelectrauma if expirations are brief. We hypothesize that this is protective because epithelial surfaces are not given enough time to come together and adhere during expiration, thereby avoiding their highly damaging forced separation during inspiration. METHODS We investigated this hypothesis in a porcine model of ARDS induced by Tween lavage. Animals were ventilated with APRV in 4 groups based on whether inspiratory pressure was 28 or 40 cmH2O, and whether expiration was terminated when end-expiratory flow reached either 75% (a shorter expiration) or 25% (a longer expiration) of its initial peak value. A mathematical model of respiratory system mechanics that included a volume-dependent elastance term characterized by the parameter E 2 was fit to airway pressure-flow data obtained each hour for 6 h post-Tween injury during both expiration and inspiration. We also measured respiratory system impedance between 5 and 19 Hz continuously through inspiration at the same time points from which we derived a time-course for respiratory system resistance ( R rs ). RESULTS E 2 during both expiration and inspiration was significantly different between the two longer expiration versus the two shorter expiration groups (ANOVA, p < 0.001). We found that E 2 was most depressed during inspiration in the higher-pressure group receiving the longer expiration, suggesting that E 2 reflects a balance between strain stiffening of the lung parenchyma and ongoing recruitment as lung volume increases. We also found in this group that R rs increased progressively during the first 0.5 s of inspiration and then began to decrease again as inspiration continued, which we interpret as corresponding to the point when continuing derecruitment was reversed by progressive lung inflation. CONCLUSIONS These findings support the hypothesis that sufficiently short expiratory durations protect against atelectrauma because they do not give derecruitment enough time to manifest. This suggests a means for the personalized adjustment of mechanical ventilation.
Collapse
Affiliation(s)
- Jason H T Bates
- Department of Medicine, University of Vermont, University of Vermont Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, USA.
| | - David W Kaczka
- Departments of Anesthesia, Biomedical Engineering, and Radiology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Gary F Nieman
- Department of Surgery, SUNY Upstate Medical Center, Syracuse, NY, 13210, USA
| | - Donald P Gaver
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| |
Collapse
|
11
|
Ruiz-Botella M, Manrique S, Gomez J, Bodí M. Advancing ICU patient care with a Real-Time predictive model for mechanical Power to mitigate VILI. Int J Med Inform 2024; 189:105511. [PMID: 38851133 DOI: 10.1016/j.ijmedinf.2024.105511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Invasive Mechanical Ventilation (IMV) in Intensive Care Units (ICU) significantly increases the risk of Ventilator-Induced Lung Injury (VILI), necessitating careful management of mechanical power (MP). This study aims to develop a real-time predictive model of MP utilizing Artificial Intelligence to mitigate VILI. METHODOLOGY A retrospective observational study was conducted, extracting patient data from Clinical Information Systems from 2018 to 2022. Patients over 18 years old with more than 6 h of IMV were selected. Continuous data on IMV variables, laboratory data, monitoring, procedures, demographic data, type of admission, reason for admission, and APACHE II at admission were extracted. The variables with the highest correlation to MP were used for prediction and IMV data was grouped in 15-minute intervals using the mean. A mixed neural network model was developed to forecast MP 15 min in advance, using IMV data from 6 h before the prediction and current patient status. The model's ability to predict future MP was analyzed and compared to a baseline model predicting the future value of MP as equal to the current value. RESULTS The cohort consisted of 1967 patients after applying inclusion criteria, with a median age of 63 years and 66.9 % male. The deep learning model achieved a mean squared error of 2.79 in the test set, indicating a 20 % improvement over the baseline model. It demonstrated high accuracy (94 %) in predicting whether MP would exceed a critical threshold of 18 J/min, which correlates with increased mortality. The integration of this model into a web platform allows clinicians real-time access to MP predictions, facilitating timely adjustments to ventilation settings. CONCLUSIONS The study successfully developed and integrated in clinical practice a predictive model for MP. This model will assist clinicians allowing for the adjustment of ventilatory parameters before lung damage occurs.
Collapse
Affiliation(s)
- M Ruiz-Botella
- Departament of Chemical Engineering, Universitat Rovira I Virgili, Tarragona, Spain; Instituto de Investigación Sanitaria Pere i Virgili, Universidad Rovira i Virgili, Tarragona, Spain.
| | - S Manrique
- Instituto de Investigación Sanitaria Pere i Virgili, Universidad Rovira i Virgili, Tarragona, Spain; Critical Care department, Hospital Universitario Joan XXIII, Tarragona, Spain
| | - J Gomez
- Instituto de Investigación Sanitaria Pere i Virgili, Universidad Rovira i Virgili, Tarragona, Spain; Critical Care department, Hospital Universitario Joan XXIII, Tarragona, Spain
| | - M Bodí
- Instituto de Investigación Sanitaria Pere i Virgili, Universidad Rovira i Virgili, Tarragona, Spain; Critical Care department, Hospital Universitario Joan XXIII, Tarragona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES). Instituto de Salud Carlos III, Spain
| |
Collapse
|
12
|
D'Albo R, Pozzi T, Nicolardi RV, Galizia M, Catozzi G, Ghidoni V, Donati B, Romitti F, Herrmann P, Busana M, Gattarello S, Collino F, Sonzogni A, Camporota L, Marini JJ, Moerer O, Meissner K, Gattinoni L. Mechanical power ratio threshold for ventilator-induced lung injury. Intensive Care Med Exp 2024; 12:65. [PMID: 39080225 PMCID: PMC11289208 DOI: 10.1186/s40635-024-00649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
RATIONALE Mechanical power (MP) is a summary variable incorporating all causes of ventilator-induced-lung-injury (VILI). We expressed MP as the ratio between observed and normal expected values (MPratio). OBJECTIVE To define a threshold value of MPratio leading to the development of VILI. METHODS In a population of 82 healthy pigs, a threshold of MPratio for VILI, as assessed by histological variables and confirmed by using unsupervised cluster analysis was 4.5. The population was divided into two groups with MPratio above or below the threshold. MEASUREMENTS AND MAIN RESULTS We measured physiological variables every six hours. At the end of the experiment, we measured lung weight and wet-to-dry ratio to quantify edema. Histological samples were analyzed for alveolar ruptures, inflammation, alveolar edema, atelectasis. An MPratio threshold of 4.5 was associated with worse injury, lung weight, wet-to-dry ratio and fluid balance (all p < 0.001). After 48 h, in the two MPratio clusters (above or below 4.5), respiratory system elastance, mean pulmonary artery pressure and physiological dead space differed by 32%, 36% and 22%, respectively (all p < 0.001), being worse in the high MPratio group. Also, the changes in driving pressure, lung elastance, pulmonary artery occlusion pressure, central venous pressure differed by 17%, 64%, 8%, 25%, respectively (all p < 0.001). LIMITATIONS The main limitation of this study is its retrospective design. In addition, the computation for the expected MP in pigs is based on arbitrary criteria. Different values of expected MP may change the absolute value of MP ratio but will not change the concept of the existence of an injury threshold. CONCLUSIONS The concept of MPratio is a physiological and intuitive way to quantify the risk of ventilator-induced lung injury. Our results suggest that a mechanical power ratio > 4.5 MPratio in healthy lungs subjected to 48 h of mechanical ventilation appears to be a threshold for the development of ventilator-induced lung injury, as indicated by the convergence of histological, physiological, and anatomical alterations. In humans and in lungs that are already injured, this threshold is likely to be different.
Collapse
Affiliation(s)
- Rosanna D'Albo
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Tommaso Pozzi
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Rosmery V Nicolardi
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mauro Galizia
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Giulia Catozzi
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Valentina Ghidoni
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Health Sciences, Section of Anesthesiology, Intensive Care and Pain Medicine, University of Florence, Florence, Italy
| | - Beatrice Donati
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Federica Romitti
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Herrmann
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Mattia Busana
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Simone Gattarello
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Collino
- Department of Anesthesia, Intensive Care and Emergency, "City of Health and Science" Hospital, Turin, Italy
| | | | - Luigi Camporota
- Department of Adult Critical Care, Guy's and St. Thomas' NHS Foundation Trust, Health Centre for Human and Applied Physiological Sciences, London, UK
| | - John J Marini
- Department of Pulmonary and Critical Care Medicine, University of Minnesota and Regions Hospital, St. Paul, Minnesota, USA
| | - Onnen Moerer
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Konrad Meissner
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Luciano Gattinoni
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
13
|
Lee S, Lee CH, Lee J, Jeong Y, Park JH, Nam IJ, Lee DS, Lee HM, Ahn SY, Kim E, Jeong S, Yu SS, Lee W. Botanical formulation HX110B ameliorates PPE-induced emphysema in mice via regulation of PPAR/RXR signaling pathway. PLoS One 2024; 19:e0305911. [PMID: 39052574 PMCID: PMC11271920 DOI: 10.1371/journal.pone.0305911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), an inflammatory lung disease, causes approximately 3 million deaths each year; however, its pathological mechanisms are not fully understood. In this study, we examined whether HX110B, a mixture of Taraxacum officinale, Dioscorea batatas, and Schizonepeta tenuifolia extracts, could suppress porcine pancreatic elastase (PPE)-induced emphysema in mice and its mechanism of action. The therapeutic efficacy of HX110B was tested using a PPE-induced emphysema mouse model and human bronchial epithelial cell line BEAS-2B. In vivo data showed that the alveolar wall and air space expansion damaged by PPE were improved by HX110B administration. HX110B also effectively suppresses the expression levels of pro-inflammatory mediators including IL-6, IL-1β, MIP-2, and iNOS, while stimulating the expression of lung protective factors such as IL-10, CC16, SP-D, and sRAGE. Moreover, HX110B improved the impaired OXPHOS subunit gene expression. In vitro analysis revealed that HX110B exerted its effects by activating the PPAR-RXR signaling pathways. Overall, our data demonstrated that HX110B could be a promising therapeutic option for COPD treatment.
Collapse
Affiliation(s)
- Soojin Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Chang Hyung Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Jungkyu Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Yoonseon Jeong
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Jong-Hyung Park
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - In-Jeong Nam
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Doo Suk Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Hyun Myung Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Soo-Yeon Ahn
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Eujung Kim
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Seungyeon Jeong
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Seung-Shin Yu
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Wonwoo Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| |
Collapse
|
14
|
van Kaam AH. Optimal Strategies of Mechanical Ventilation: Can We Avoid or Reduce Lung Injury? Neonatology 2024; 121:570-575. [PMID: 38870922 PMCID: PMC11446299 DOI: 10.1159/000539346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/11/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Despite the increasing use of non-invasive support modalities, many preterm infants still need invasive mechanical ventilation. Mechanical ventilation can lead to so-called ventilator-induced lung injury, which is considered an important risk factor in the development of bronchopulmonary dysplasia. Understanding the concepts of lung protective ventilation strategies is imperative to reduce the risk of BPD. SUMMARY Overdistension, atelectasis, and oxygen toxicity are the most important risk factors for VILI. A lung protective ventilation strategy should therefore optimize lung volume (resolve atelectasis), limit tidal volumes, and reduce oxygen exposure. Executing such a lung protective ventilation strategy requires basic knowledge on neonatal lung physiology. Studies have shown that volume-targeted ventilation (VTV) stabilizes tidal volume delivery, reduces VILI, and reduces BPD in preterm infants with respiratory distress syndrome. High-frequency ventilation (HFV) also reduces BPD although the effect is modest and inconsistent. It is unclear if these benefits also apply to infants with more heterogeneous lung disease. KEY MESSAGES Understanding basic physiology and the concept of ventilator-induced lung injury is essential in neonatal mechanical ventilation. Current evidence suggests that the principles of lung protective ventilation are best captured by VTV and HFV.
Collapse
Affiliation(s)
- Anton H. van Kaam
- Department of Neonatology, Emma Children’s Hospital Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
15
|
de Souza ABF, de Matos NA, Castro TDF, Costa GDP, Talvani A, Nagato AC, de Menezes RCA, Bezerra FS. Preventive effects of hesperidin in an experimental model ofs acute lung inflammation. Respir Physiol Neurobiol 2024; 323:104240. [PMID: 38417564 DOI: 10.1016/j.resp.2024.104240] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
In this study, we hypothesized that long-term administration of hesperidin can modulate the inflammatory response and oxidative stress in animals submitted to mechanical ventilation (MV). Twenty-five C57BL/6 male mice were divided into 5 groups: control, MV, animals receiving hesperidin in three doses 10, 25 and 50 mg/kg. The animals received the doses of hesperidin for 30 days via orogastric gavage, and at the end of the period the animals were submitted to MV. In animals submitted to MV, increased lymphocyte, neutrophil and monocyte/macrophage cell counts were observed in the blood and airways. Associated to this, MV promoted an increase in inflammatory cytokine levels such as CCL2, IL-12 and TNFα. The daily administration of hesperidin in the three doses prevented the effects caused by MV, which was observed by a lower influx of inflammatory cells into the airways, a reduction in inflammatory markers and less oxidative damage.
Collapse
Affiliation(s)
- Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Natália Alves de Matos
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Akinori Cardozo Nagato
- Immunopathology Laboratory and Experimental Pathology, Reproductive Biology Center (CRB), Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Rodrigo Cunha Alvim de Menezes
- Laboratory of Cardiovascular Physiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
16
|
Kaur J, Sharma A, Passi G, Dey P, Khajuria A, Alajangi HK, Jaiswal PK, Barnwal RP, Singh G. Nanomedicine at the Pulmonary Frontier: Immune-Centric Approaches for Respiratory Disease Treatment. Immunol Invest 2024; 53:295-347. [PMID: 38206610 DOI: 10.1080/08820139.2023.2298398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Respiratory diseases (RD) are a group of common ailments with a rapidly increasing global prevalence, posing a significant threat to humanity, especially the elderly population, and imposing a substantial burden on society and the economy. RD represents an unmet medical need that requires the development of viable pharmacotherapies. While various promising strategies have been devised to advance potential treatments for RD, their implementation has been hindered by difficulties in drug delivery, particularly in critically ill patients. Nanotechnology offers innovative solutions for delivering medications to the inflamed organ sites, such as the lungs. Although this approach is enticing, delivering nanomedicine to the lungs presents complex challenges that require sophisticated techniques. In this context, we review the potential of novel nanomedicine-based immunomodulatory strategies that could offer therapeutic benefits in managing this pressing health condition.
Collapse
Affiliation(s)
- Jatinder Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Akanksha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Gautam Passi
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Piyush Dey
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Akhil Khajuria
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Hema Kumari Alajangi
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas, USA
| | | | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
17
|
Spinelli E, Damia A, Damarco F, Gregori B, Occhipinti F, Busani Z, Leali M, Battistin M, Lonati C, Zhao Z, Storaci AM, Lopez G, Vaira V, Ferrero S, Rosso L, Gatti S, Mauri T. Pathophysiological profile of non-ventilated lung injury in healthy female pigs undergoing mechanical ventilation. COMMUNICATIONS MEDICINE 2024; 4:18. [PMID: 38361130 PMCID: PMC10869686 DOI: 10.1038/s43856-024-00449-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Lung regions excluded from mechanical insufflation are traditionally assumed to be spared from ventilation-associated lung injury. However, preliminary data showed activation of potential mechanisms of injury within these non-ventilated regions (e.g., hypoperfusion, inflammation). METHODS In the present study, we hypothesized that non-ventilated lung injury (NVLI) may develop within 24 h of unilateral mechanical ventilation in previously healthy pigs, and we performed extended pathophysiological measures to profile NVLI. We included two experimental groups undergoing exclusion of the left lung from the ventilation with two different tidal volumes (15 vs 7.5 ml/kg) and a control group on bilateral ventilation. Pathophysiological alteration including lung collapse, changes in lung perfusion, lung stress and inflammation were measured. Lung injury was quantified by histological score. RESULTS Histological injury score of the non-ventilated lung is significantly higher than normally expanded lung from control animals. The histological score showed lower intermediate values (but still higher than controls) when the tidal volume distending the ventilated lung was reduced by 50%. Main pathophysiological alterations associated with NVLI were: extensive lung collapse; very low pulmonary perfusion; high inspiratory airways pressure; and higher concentrations of acute-phase inflammatory cytokines IL-6, IL-1β and TNF-α and of Angiopoietin-2 (a marker of endothelial activation) in the broncho-alveolar lavage. Only the last two alterations were mitigated by reducing tidal volume, potentially explaining partial protection. CONCLUSIONS Non-ventilated lung injury develops within 24 h of controlled mechanical ventilation due to multiple pathophysiological alterations, which are only partially prevented by low tidal volume.
Collapse
Grants
- This study was supported, in part, by Current Research from the Italian Ministry of Health, Rome, Italy; by EuroELSO Research grant 2021; by the “Hub Life Science-Diagnostica Avanzata (HLS-DA), PNC-E3-2022-23683266-CUP: C43C22001630001/MI-0117” Project from the Italian Ministry of Health (Piano Nazionale Complementare Ecosistema Innovativo della Salute), Rome, Italy; by the “Dipartimenti di Eccellenza Program 2023–2027” to the Dept. of Pathophysiology and Transplantation, University of Milan, from The Italian Ministry of Education and Research (MUR), Rome, Italy.
Collapse
Affiliation(s)
- Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Damia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Francesco Damarco
- Division of Thoracic Surgery and Lung Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Beatrice Gregori
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Federica Occhipinti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Zara Busani
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Marco Leali
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Michele Battistin
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Zhanqi Zhao
- Furtwangen University, Institute of Technical Medicine, Villingen-Schwenningen, Germany
| | - Alessandra Maria Storaci
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianluca Lopez
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Vaira
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Lorenzo Rosso
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Division of Thoracic Surgery and Lung Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Gatti
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
18
|
Mounier R, Diop S, Kallel H, Constantin JM, Roujansky A. Tidal volume in mechanically ventilated patients: Searching for Cinderella's shoe rather than 6 mL/kg for all. Anaesth Crit Care Pain Med 2024; 43:101356. [PMID: 38365168 DOI: 10.1016/j.accpm.2024.101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024]
Affiliation(s)
- R Mounier
- Department of Anaesthesiology and Critical Care, Georges Pompidou European Hospital, Paris, France; Université Paris, Paris, France; INSERM U955, Équipe 15, Institut Mondor de la Recherche Biomédicale, Université Paris-Est-Créteil, France.
| | - S Diop
- Department of Anesthesiology, Marie Lannelongue Hospital, Paris Saint Joseph Hospital, 133 Avenue de la Résistance, 92350 Le Plessis Robinson, France; Cardiothoracic Intensive Care Unit. Marie Lannelongue Hospital, Paris Saint Joseph Hospital, 133 Avenue de la Résistance, 92350 Le Plessis Robinson, France
| | - H Kallel
- Réanimation Polyvalente, Centre Hospitalier de Cayenne, Cayenne, French Guiana; Tropical Biome et Immunopathologie CNRS UMR-9017, Inserm U 1019, Université de Guyane, French Guiana
| | - J M Constantin
- Department of Anaesthesiology and Critical Care, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne University, GRC 29, AP-HP, DMU DREAM, Paris, France
| | - A Roujansky
- Réanimation Polyvalente, Centre Hospitalier de Cayenne, Cayenne, French Guiana; Tropical Biome et Immunopathologie CNRS UMR-9017, Inserm U 1019, Université de Guyane, French Guiana
| |
Collapse
|
19
|
Gattinoni L, Collino F, Camporota L. Ventilator induced lung injury: a case for a larger umbrella? Intensive Care Med 2024; 50:275-278. [PMID: 38172299 PMCID: PMC10907410 DOI: 10.1007/s00134-023-07296-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024]
Affiliation(s)
- Luciano Gattinoni
- Department of Anesthesiology, University Medical Center Göttingen, Robert Koch Straße 40, 37075, Göttingen, Germany.
| | - Francesca Collino
- Department of Anesthesia, Intensive Care and Emergency, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Piemonte, Turin, Italy
| | - Luigi Camporota
- Department of Adult Critical Care, Centre for Human and Applied Physiological Sciences, Guy's and St. Thomas' NHS Foundation Trust, King's College London, London, UK
| |
Collapse
|
20
|
Wong H, Chi Y, Zhang R, Yin C, Jia J, Wang B, Liu Y, Shang Y, Wang R, Long Y, Zhao Z, He H. Multicentre, parallel, open-label, two-arm, randomised controlled trial on the prognosis of electrical impedance tomography-guided versus low PEEP/FiO2 table-guided PEEP setting: a trial protocol. BMJ Open 2024; 14:e080828. [PMID: 38307528 PMCID: PMC10836340 DOI: 10.1136/bmjopen-2023-080828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
INTRODUCTION Previous studies suggested that electrical impedance tomography (EIT) has the potential to guide positive end-expiratory pressure (PEEP) titration via quantifying the alveolar collapse and overdistension. The aim of this trial is to compare the effect of EIT-guided PEEP and acute respiratory distress syndrome (ARDS) network low PEEP/fraction of inspired oxygen (FiO2) table strategy on mortality and other clinical outcomes in patients with ARDS. METHODS This is a parallel, two-arm, multicentre, randomised, controlled trial, conducted in China. All patients with ARDS under mechanical ventilation admitted to the intensive care unit will be screened for eligibility. The enrolled patients are stratified by the aetiology (pulmonary/extrapulmonary) and partial pressure of arterial oxygen/FiO2 (≥150 mm Hg or <150 mm Hg) and randomised into the intervention group or the control group. The intervention group will receive recruitment manoeuvre and EIT-guided PEEP titration. The EIT-guided PEEP will be set for at least 12 hours after titration. The control group will not receive recruitment manoeuvre routinely and the PEEP will be set according to the lower PEEP/FiO2 table proposed by the ARDS Network. The primary outcome is 28-day survival. ANALYSIS Qualitative data will be analysed using the χ2 test or Fisher's exact test, quantitative data will be analysed using independent samples t-test or Mann-Whitney U test. Kaplan-Meier analysis with log-rank test will be used to evaluate the 28-day survival rate between two groups. All outcomes will be analysed based on the intention-to-treat principle. ETHICS AND DISSEMINATION The trial is approved by the Institutional Research and Ethics Committee of the Peking Union Medical College Hospital. Data will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT05307913.
Collapse
Affiliation(s)
- HouPeng Wong
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Yi Chi
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Rui Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai, China
| | | | - Jianwei Jia
- Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, China
| | - Bo Wang
- Department of Critical Care Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Yi Liu
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - You Shang
- Critical Care Medicine, Wuhan Union Hospital, Wuhan, China
| | - Rui Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital Capital Medical University, Beijing, China
| | - Yun Long
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Zhanqi Zhao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Huaiwu He
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
21
|
Qianqian Z, Gui M, Min Y, Qingfeng Z, Xiufen X, Zejun F, Yahong L, Mingwei Y. Effect of ω-9MUFAs in Fat Emulsion on Serum Interleukin-6 in Rats with Lipopolysaccharide-induced Lung Injury. Comb Chem High Throughput Screen 2024; 27:877-884. [PMID: 37464819 DOI: 10.2174/1386207326666230718154641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023]
Abstract
AIM This study aimed to investigate how ω-9 MUFAs in fat emulsion affect serum IL- 6 levels in rats with lipopolysaccharide (LPS)-induced lung injury. BACKGROUND Research suggests that acute lung injury (ALI) develops acute respiratory distress syndrome (ARDS) due to the activation of many inflammatory factors. ALI may be treated by reducing inflammation. Fat emulsion is used in parenteral nutrition for critically ill patients to regulate the body's inflammatory response. It is mostly made up of ω-9 MUFAs (Clinoleic), which can regulate the inflammatory response. OBJECTIVE The effect of ω-9MUFAs on the secretion of IL-6 in ALI rats was studied in order to provide a basis for the rational use of fat emulsion in clinical practice and provide new ideas for the diagnosis and treatment of ALI. METHODS The control, model, and -9MUFAs groups consisted of 18 female Sprageue-Dawley (SD) young rats (180 ± 20 g). The SD young rats received normal saline and were not operated. LPS-induced ALI animals received tail vein injections of normal saline. SD young rats were first triggered with acute lung injury by LPS (3 mg/kg) and then injected with 3 mg/kg of ω-9MUFAs via the tail vein. The expression levels of IL-6, an activator of signal transduction transcription 3 (STAT3), transforming growth factor-β (TGF-β), and glycoprotein 130 (GP130) in serum and lung tissues were determined by ELISA and Western blot methods. RESULTS Compared with the model group, the survival rate of rats in the ω-9 MUFAs group was significantly increased, and the difference was statistically significant (p<0.05). Compared with the model group, the lung pathology of rats in the ω-9 MUFAs group was significantly improved, and the expression levels of IL-6, TGF-β1, GP130, IL-1 and other proteins were significantly decreased. The difference was statistically significant (p<0.05). CONCLUSION In LPS-induced lung injury, ω-9MUFAs may alleviate symptoms by inhibiting the IL-6/GP130/STAT3 pathway.
Collapse
Affiliation(s)
- Zheng Qianqian
- Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, Taizhou, China
| | - Mei Gui
- Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, Taizhou, China
| | - Yang Min
- Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, Taizhou, China
| | - Zhang Qingfeng
- Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, Taizhou, China
| | - Xu Xiufen
- Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, Taizhou, China
| | - Fang Zejun
- Central Laboratory, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, Taizhou, China
| | - Li Yahong
- Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, Taizhou, China
| | - Ye Mingwei
- Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, Taizhou, China
| |
Collapse
|
22
|
Thornton LT, Marini JJ. Optimized ventilation power to avoid VILI. J Intensive Care 2023; 11:57. [PMID: 37986109 PMCID: PMC10658809 DOI: 10.1186/s40560-023-00706-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
The effort to minimize VILI risk must be multi-pronged. The need to adequately ventilate, a key determinant of hazardous power, is reduced by judicious permissive hypercapnia, reduction of innate oxygen demand, and by prone body positioning that promotes both efficient pulmonary gas exchange and homogenous distributions of local stress. Modifiable ventilator-related determinants of lung protection include reductions of tidal volume, plateau pressure, driving pressure, PEEP, inspiratory flow amplitude and profile (using longer inspiration to expiration ratios), and ventilation frequency. Underappreciated conditional cofactors of importance to modulate the impact of local specific power may include lower vascular pressures and blood flows. Employed together, these measures modulate ventilation power with the intent to avoid VILI while achieving clinically acceptable targets for pulmonary gas exchange.
Collapse
Affiliation(s)
- Lauren T Thornton
- Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis/St Paul, MN, USA
| | - John J Marini
- Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis/St Paul, MN, USA.
| |
Collapse
|
23
|
Han H, Xing L, Chen BT, Liu Y, Zhou TJ, Wang Y, Zhang LF, Li L, Cho CS, Jiang HL. Progress on the pathological tissue microenvironment barrier-modulated nanomedicine. Adv Drug Deliv Rev 2023; 200:115051. [PMID: 37549848 DOI: 10.1016/j.addr.2023.115051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Imbalance in the tissue microenvironment is the main obstacle to drug delivery and distribution in the human body. Before penetrating the pathological tissue microenvironment to the target site, therapeutic agents are usually accompanied by three consumption steps: the first step is tissue physical barriers for prevention of their penetration, the second step is inactivation of them by biological molecules, and the third step is a cytoprotective mechanism for preventing them from functioning on specific subcellular organelles. However, recent studies in drug-hindering mainly focus on normal physiological rather than pathological microenvironment, and the repair of damaged physiological barriers is also rarely discussed. Actually, both the modulation of pathological barriers and the repair of damaged physiological barriers are essential in the disease treatment and the homeostasis maintenance. In this review, we present an overview describing the latest advances in the generality of these pathological barriers and barrier-modulated nanomedicine. Overall, this review holds considerable significance for guiding the design of nanomedicine to increase drug efficacy in the future.
Collapse
Affiliation(s)
- Han Han
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Bi-Te Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Ling-Feng Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
24
|
Dankhara N, Holla I, Ramarao S, Kalikkot Thekkeveedu R. Bronchopulmonary Dysplasia: Pathogenesis and Pathophysiology. J Clin Med 2023; 12:4207. [PMID: 37445242 DOI: 10.3390/jcm12134207] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD), also known as chronic lung disease, is the most common respiratory morbidity in preterm infants. "Old" or "classic" BPD, as per the original description, is less common now. "New BPD", which presents with distinct clinical and pathological features, is more frequently observed in the current era of advanced neonatal care, where extremely premature infants are surviving because of medical advancements. The pathogenesis of BPD is complex and multifactorial and involves both genetic and environmental factors. This review provides an overview of the pathology of BPD and discusses the influence of several prenatal and postnatal factors on its pathogenesis, such as maternal factors, genetic susceptibility, ventilator-associated lung injury, oxygen toxicity, sepsis, patent ductus arteriosus (PDA), and nutritional deficiencies. This in-depth review draws on existing literature to explore these factors and their potential contribution to the development of BPD.
Collapse
Affiliation(s)
- Nilesh Dankhara
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Ira Holla
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Sumana Ramarao
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | |
Collapse
|
25
|
Dong D, Jing C, Zong Y, Wang Y, Ren J. Effect of different titration methods on right heart function and prognosis in patients with acute respiratory distress syndrome. Heart Lung 2023; 61:127-135. [PMID: 37263145 DOI: 10.1016/j.hrtlng.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a common disease in intensive critical care(ICU), and the use of positive end-expiratory pressure(PEEP) during mechanical ventilation can increase the right heart afterload and eventually cause right heart dysfunction. For these factors causing acute cor pulmonale(ACP), especially inappropriate mechanical ventilation settings, it is important to explore the effect of PEEP on right heart function. OBJECTIVE To investigate the effects of three titration methods on right heart function and prognosis in patients with ARDS. METHODS Observational, prospective study in which ARDS patients were enrolled into three distinct PEEP-titration strategies groups: guide, transpulmonary pressure-oriented and driving pressure-oriented. Prognostic indicators, right heart systolic and diastolic echocardiographic function indices, ventilatory parameters, blood gas analysis results, and respiratory mechanics Monitoring indices were collated and analyzed statistically by STATA 15 software. RESULTS A total of 62 ARDS patients were enrolled into guide (G) group (n=40) for whom titrated PEEP values were 9±2cm H2O, driving pressure-oriented (DPO) group (n=12) with titrated PEEP values of 10±2cm H2O and transpulmonary pressure-oriented (TPO) group (n=10) with titrated PEEP values of 12±3cm H2O. Values were significantly higher for TPO than for G (p=0.616) or DPO (p=0.011). Compliance was significantly increased after 72 h in the TPO and DPO groups compared with the G group (p<0.001). Mean airway pressure at end-inspiratory obstruction (p=0.047), tricuspid annular plane systolic excursion (TAPSE, p<0.001) and right ventricular area change fraction (RVFAC, p=0.049) were all higher in the TPO and DPO groups than in the G group. E/A indices were significantly better in the TPO group than in the G or DPO groups (p=0.046). No significant differences in 28 day mortality were found among the three groups. Multivariate logistic regression analysis revealed that lung compliance and transpulmonary pressure-oriented PEEP titration method was negatively correlated to the increase in right ventricular systolic dysfunction. CONCLUSION Transpulmonary pressure-oriented PEEP titration improves oxygenation and pulmonary function and causes less right heart strain when compared to other PEEP-titration methods during mechanical ventilation of ARDS patients.
Collapse
Affiliation(s)
- Daoran Dong
- Department of ICU, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Chengqiao Jing
- Department of ICU, Shaanxi Provincial People's Hospital, Xi'an, China.
| | - Yuan Zong
- Department of ICU, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yan Wang
- Department of ICU, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jiawei Ren
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
26
|
Yuan X, Zhang R, Wang Y, Chen D, Chao Y, Xu J, Guo L, Liu A, Xie J, Pan C, Yang Y, Qiu H, Liu L. Effect of EIT-guided PEEP titration on prognosis of patients with moderate to severe ARDS: study protocol for a multicenter randomized controlled trial. Trials 2023; 24:266. [PMID: 37041561 PMCID: PMC10088128 DOI: 10.1186/s13063-023-07280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Acute respiratory syndrome distress (ARDS) is a clinical common syndrome with high mortality. Electrical impedance tomography (EIT)-guided positive end-expiratory pressure (PEEP) titration can achieve the compromise between lung overdistension and collapse which may minimize ventilator-induced lung injury in these patients. However, the effect of EIT-guided PEEP titration on the clinical outcomes remains unknown. The objective of this trial is to investigate the effects of EIT-guided PEEP titration on the clinical outcomes for moderate or severe ARDS, compared to the low fraction of inspired oxygen (FiO2)-PEEP table. METHODS This is a prospective, multicenter, single-blind, parallel-group, adaptive designed, randomized controlled trial (RCT) with intention-to-treat analysis. Adult patients with moderate to severe ARDS less than 72 h after diagnosis will be included in this study. Participants in the intervention group will receive PEEP titrated by EIT with a stepwise decrease PEEP trial, whereas participants in the control group will select PEEP based on the low FiO2-PEEP table. Other ventilator parameters will be set according to the ARDSNet strategy. Participants will be followed up until 28 days after enrollment. Three hundred seventy-six participants will be recruited based on a 15% decrease of 28-day mortality in the intervention group, with an interim analysis for sample size re-estimation and futility assessment being undertaken once 188 participants have been recruited. The primary outcome is 28-day mortality. The secondary outcomes include ventilator-free days and shock-free days at day 28, length of ICU and hospital stay, the rate of successful weaning, proportion requiring rescue therapies, compilations, respiratory variables, and Sequential Organ Failure Assessment (SOFA). DISCUSSION As a heterogeneous syndrome, ARDS has different responses to treatment and further results in different clinical outcomes. PEEP selection will depend on the properties of patients and can be individually achieved by EIT. This study will be the largest randomized trial to investigate thoroughly the effect of individual PEEP titrated by EIT in moderate to severe ARDS patients to date. TRIAL REGISTRATION ClinicalTrial.gov NCT05207202. First published on January 26, 2022.
Collapse
Affiliation(s)
- Xueyan Yuan
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Rui Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuxuan Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Dongyu Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, China
- Department of Critical Care Medicine, The First People's Hospital of Yancheng, Yancheng, 224000, Jiangsu, China
| | - Yali Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, China
- Department of Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 320300, Jiangsu, China
| | - Jingyuan Xu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lanqi Guo
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Airan Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Chun Pan
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
27
|
Pereira LF, Dallagnol CA, Moulepes TH, Hirota CY, Kutsmi P, dos Santos LV, Pirich CL, Picheth GF. Oxygen therapy alternatives in COVID-19: From classical to nanomedicine. Heliyon 2023; 9:e15500. [PMID: 37089325 PMCID: PMC10106793 DOI: 10.1016/j.heliyon.2023.e15500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
Around 10-15% of COVID-19 patients affected by the Delta and the Omicron variants exhibit acute respiratory insufficiency and require intensive care unit admission to receive advanced respiratory support. However, the current ventilation methods display several limitations, including lung injury, dysphagia, respiratory muscle atrophy, and hemorrhage. Furthermore, most of the ventilatory techniques currently offered require highly trained professionals and oxygen cylinders, which may attain short supply owing to the high demand and misuse. Therefore, the search for new alternatives for oxygen therapeutics has become extremely important for maintaining gas exchange in patients affected by COVID-19. This review highlights and suggest new alternatives based on micro and nanostructures capable of supplying oxygen and/or enabling hematosis during moderate or acute COVID-19 cases.
Collapse
Affiliation(s)
- Luis F.T. Pereira
- School of Medicine, Pontifical Catholic University of Paraná, Curitiba, PR, Brazil
| | - Camila A. Dallagnol
- School of Medicine, Pontifical Catholic University of Paraná, Curitiba, PR, Brazil
| | - Tassiana H. Moulepes
- School of Medicine, Pontifical Catholic University of Paraná, Curitiba, PR, Brazil
| | - Clara Y. Hirota
- School of Medicine, Pontifical Catholic University of Paraná, Curitiba, PR, Brazil
| | - Pedro Kutsmi
- School of Medicine, Pontifical Catholic University of Paraná, Curitiba, PR, Brazil
| | - Lucas V. dos Santos
- Department of Biochemistry, Federal University of Paraná, Curitiba, PR, Brazil
| | - Cleverton L. Pirich
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Guilherme F. Picheth
- School of Medicine, Pontifical Catholic University of Paraná, Curitiba, PR, Brazil
- Department of Biochemistry, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
28
|
Lim MJ, Lakshminrusimha S, Hedriana H, Albertson T. Pregnancy and Severe ARDS with COVID-19: Epidemiology, Diagnosis, Outcomes and Treatment. Semin Fetal Neonatal Med 2023; 28:101426. [PMID: 36964118 PMCID: PMC9990893 DOI: 10.1016/j.siny.2023.101426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Pregnancy-related acute respiratory distress syndrome (ARDS) is fast becoming a growing and clinically relevant subgroup of ARDS amidst global outbreaks of various viral respiratory pathogens that include H1N1-influenza, severe acute respiratory syndrome (SARS), middle east respiratory syndrome (MERS), and the most recent COVID-19 pandemic. Pregnancy is a risk factor for severe viral-induced ARDS and commonly associated with poor maternal and fetal outcomes including fetal growth-restriction, preterm birth, and spontaneous abortion. Physiologic changes of pregnancy further compounded by mechanical and immunologic alterations are theorized to impact the development of ARDS from viral pneumonia. The COVID-19 sub-phenotype of ARDS share overlapping molecular features of maternal pathogenicity of pregnancy with respect to immune-dysregulation and endothelial/microvascular injury (i.e., preeclampsia) that may in part explain a trend toward poor maternal and fetal outcomes seen with severe COVID-19 maternal infections. To date, current ARDS diagnostic criteria and treatment management fail to include and consider physiologic adaptations that are unique to maternal physiology of pregnancy and consideration of maternal-fetal interactions. Treatment focused on lung-protective ventilation strategies have been shown to improve clinical outcomes in adults with ARDS but may have adverse maternal-fetal interactions when applied in pregnancy-related ARDS. No specific pharmacotherapy has been identified to improve outcomes in pregnancy with ARDS. Adjunctive therapies aimed at immune-modulation and anti-viral treatment with COVID-19 infection during pregnancy have been reported but data in regard to its efficacy and safety is currently lacking.
Collapse
Affiliation(s)
- Michelle J Lim
- UC Davis School of Medicine, UC Davis Children's Hospital, Department of Pediatrics, Division of Critical Care and Neonatology, Sacramento, CA, USA.
| | - Satyan Lakshminrusimha
- UC Davis School of Medicine, UC Davis Children's Hospital, Department of Pediatrics, Division of Critical Care and Neonatology, Sacramento, CA, USA
| | - Herman Hedriana
- UC Davis School of Medicine, UC Davis Medical Center, Department of Obstetrics and Gynecology, Sacramento, CA, USA
| | - Timothy Albertson
- UC Davis School of Medicine, UC Davis Medical Center, Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Sacramento, CA, USA
| |
Collapse
|
29
|
Hennessey E, Bittner E, White P, Kovar A, Meuchel L. Intraoperative Ventilator Management of the Critically Ill Patient. Anesthesiol Clin 2023; 41:121-140. [PMID: 36871995 PMCID: PMC9985493 DOI: 10.1016/j.anclin.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Strategies for the intraoperative ventilator management of the critically ill patient focus on parameters used for lung protective ventilation with acute respiratory distress syndrome, preventing or limiting the deleterious effects of mechanical ventilation, and optimizing anesthetic and surgical conditions to limit postoperative pulmonary complications for patients at risk. Patient conditions such as obesity, sepsis, the need for laparoscopic surgery, or one-lung ventilation may benefit from intraoperative lung protective ventilation strategies. Anesthesiologists can use risk evaluation and prediction tools, monitor advanced physiologic targets, and incorporate new innovative monitoring techniques to develop an individualized approach for patients.
Collapse
Affiliation(s)
- Erin Hennessey
- Stanford University - School of Medicine Department of Anesthesiology, Perioperative and Pain Medicine, 300 Pasteur Drive, Room H3580, Stanford, CA 94305, USA.
| | - Edward Bittner
- Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Peggy White
- University of Florida College of Medicine, Department of Anesthesiology, 1500 SW Archer Road, PO Box 100254, Gainesville, FL 32610, USA
| | - Alan Kovar
- Oregon Health and Science University, 3161 SW Pavilion Loop, Portland, OR 97239, USA
| | - Lucas Meuchel
- Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
30
|
Al Hashim AH, Al-Zakwani I, Al Jadidi A, Al Harthi R, Al Naabi M, Biyappu R, Kodange S, Asati NK, Al Barhi T, Mohan M, Jagadeesan J, Sachez M, Sycaayao PS, Al Amrani K, Al Khalili H, Al Mamari R, Al-Busaidi M. Early Prone versus Supine Positioning in Moderate to Severe Coronavirus Disease 2019 Patients with Acute Respiratory Distress Syndrome. Oman Med J 2023; 38:e465. [PMID: 36895639 PMCID: PMC9990371 DOI: 10.5001/omj.2023.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/11/2022] [Indexed: 11/03/2022] Open
Abstract
Objectives This study sought to determine whether early prone positioning of patients with moderate to severe COVID-19-related acute respiratory distress syndrome (ARDS) lowers the mortality rate. Methods We conducted a retrospective study using data from intensive care units of two tertiary centers in Oman. Adult patients with moderate to severe COVID-19-related ARDS with a PaO2/FiO2 ratio < 150 on FiO2 of 60% or more and a positive end-expiratory pressure of at least 8 cm H2O who were admitted between 1 May 2020 and 31 October 2020 were selected as participants. All patients were intubated and subjected to mechanical ventilation within 48 hours of admission and placed in either prone or supine position. Mortality was measured and compared between the patients from the two groups. Results A total of 235 patients were included (120 in the prone group and 115 in the supine group). There were no significant differences in mortality (48.3% vs. 47.8%; p =0.938) and discharge rates (50.8% vs. 51.3%; p =0.942) between the prone and supine groups, respectively. Conclusions Early prone positioning of patients with COVID-19-related ARDS does not result in a significant reduction in mortality.
Collapse
Affiliation(s)
- Abdul Hakeem Al Hashim
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Ibrahim Al-Zakwani
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Abdullah Al Jadidi
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Ruqaiya Al Harthi
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Maadh Al Naabi
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Ramakrishna Biyappu
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Sonali Kodange
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Naveen Kumar Asati
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Tamadher Al Barhi
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Mudhun Mohan
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Jayachandiran Jagadeesan
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Micheline Sachez
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Praisemabel S Sycaayao
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Khalfan Al Amrani
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Huda Al Khalili
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Rashid Al Mamari
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Mujahid Al-Busaidi
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| |
Collapse
|
31
|
Slobod D, Damia A, Leali M, Spinelli E, Mauri T. Pathophysiology and Clinical Meaning of Ventilation-Perfusion Mismatch in the Acute Respiratory Distress Syndrome. BIOLOGY 2022; 12:biology12010067. [PMID: 36671759 PMCID: PMC9855693 DOI: 10.3390/biology12010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
Acute respiratory distress syndrome (ARDS) remains an important clinical challenge with a mortality rate of 35-45%. It is being increasingly demonstrated that the improvement of outcomes requires a tailored, individualized approach to therapy, guided by a detailed understanding of each patient's pathophysiology. In patients with ARDS, disturbances in the physiological matching of alveolar ventilation (V) and pulmonary perfusion (Q) (V/Q mismatch) are a hallmark derangement. The perfusion of collapsed or consolidated lung units gives rise to intrapulmonary shunting and arterial hypoxemia, whereas the ventilation of non-perfused lung zones increases physiological dead-space, which potentially necessitates increased ventilation to avoid hypercapnia. Beyond its impact on gas exchange, V/Q mismatch is a predictor of adverse outcomes in patients with ARDS; more recently, its role in ventilation-induced lung injury and worsening lung edema has been described. Innovations in bedside imaging technologies such as electrical impedance tomography readily allow clinicians to determine the regional distributions of V and Q, as well as the adequacy of their matching, providing new insights into the phenotyping, prognostication, and clinical management of patients with ARDS. The purpose of this review is to discuss the pathophysiology, identification, consequences, and treatment of V/Q mismatch in the setting of ARDS, employing experimental data from clinical and preclinical studies as support.
Collapse
Affiliation(s)
- Douglas Slobod
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Critical Care Medicine, McGill University, Montreal, QC H3A 3R1, Canada
| | - Anna Damia
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Marco Leali
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
32
|
Ramcharran H, Bates JHT, Satalin J, Blair S, Andrews PL, Gaver DP, Gatto LA, Wang G, Ghosh AJ, Robedee B, Vossler J, Habashi NM, Daphtary N, Kollisch-Singule M, Nieman GF. Protective ventilation in a pig model of acute lung injury: timing is as important as pressure. J Appl Physiol (1985) 2022; 133:1093-1105. [PMID: 36135956 PMCID: PMC9621707 DOI: 10.1152/japplphysiol.00312.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/26/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
Abstract
Ventilator-induced lung injury (VILI) is a significant risk for patients with acute respiratory distress syndrome (ARDS). Management of the patient with ARDS is currently dominated by the use of low tidal volume mechanical ventilation, the presumption being that this mitigates overdistension (OD) injury to the remaining normal lung tissue. Evidence exists, however, that it may be more important to avoid cyclic recruitment and derecruitment (RD) of lung units, although the relative roles of OD and RD in VILI remain unclear. Forty pigs had a heterogeneous lung injury induced by Tween instillation and were randomized into four groups (n = 10 each) with higher (↑) or lower (↓) levels of OD and/or RD imposed using airway pressure release ventilation (APRV). OD was increased by setting inspiratory airway pressure to 40 cmH2O and lessened with 28 cmH2O. RD was attenuated using a short duration of expiration (∼0.45 s) and increased with a longer duration (∼1.0 s). All groups developed mild ARDS following injury. RD ↑ OD↑ caused the greatest degree of lung injury as determined by [Formula: see text]/[Formula: see text] ratio (226.1 ± 41.4 mmHg). RD ↑ OD↓ ([Formula: see text]/[Formula: see text]= 333.9 ± 33.1 mmHg) and RD ↓ OD↑ ([Formula: see text]/[Formula: see text] = 377.4 ± 43.2 mmHg) were both moderately injurious, whereas RD ↓ OD↓ ([Formula: see text]/[Formula: see text] = 472.3 ± 22.2 mmHg; P < 0.05) was least injurious. Both tidal volume and driving pressure were essentially identical in the RD ↑ OD↓ and RD ↓ OD↑ groups. We, therefore, conclude that considerations of expiratory time may be at least as important as pressure for safely ventilating the injured lung.NEW & NOTEWORTHY In a large animal model of ARDS, recruitment/derecruitment caused greater VILI than overdistension, whereas both mechanisms together caused severe lung damage. These findings suggest that eliminating cyclic recruitment and derecruitment during mechanical ventilation should be a preeminent management goal for the patient with ARDS. The airway pressure release ventilation (APRV) mode of mechanical ventilation can achieve this if delivered with an expiratory duration (TLow) that is brief enough to prevent derecruitment at end expiration.
Collapse
Affiliation(s)
| | | | | | - Sarah Blair
- SUNY Upstate Medical University, Syracuse, New York
| | | | | | | | - Guirong Wang
- SUNY Upstate Medical University, Syracuse, New York
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Juffermans NP, Rocco PRM, Laffey JG. Protective ventilation. Intensive Care Med 2022; 48:1629-1631. [PMID: 35939095 PMCID: PMC9592633 DOI: 10.1007/s00134-022-06820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam University Medical Centre Location AMC, Amsterdam, The Netherlands. .,OLVG Hospital, Amsterdam, The Netherlands.
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - John G Laffey
- Anaesthesia and Intensive Care Medicine, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland.,Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, SAOLTA University Health Group, Galway, Ireland
| |
Collapse
|
34
|
Geoghegan P, Clarke J, Hogan G, Keogh A, Marsh H, Donnelly K, McEvoy N, Doolan A, Madden SF, Martin-Loeches I, Power M, Laffey JG, Curley GF. Use of a novel "Split" ventilation system in bench and porcine modeling of acute respiratory distress syndrome. Physiol Rep 2022; 10:e15452. [PMID: 36082971 PMCID: PMC9461348 DOI: 10.14814/phy2.15452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/28/2022] Open
Abstract
Split ventilation (using a single ventilator to ventilate multiple patients) is technically feasible. However, connecting two patients with acute respiratory distress syndrome (ARDS) and differing lung mechanics to a single ventilator is concerning. This study aimed to: (1) determine functionality of a split ventilation system in benchtop tests, (2) determine whether standard ventilation would be superior to split ventilation in a porcine model of ARDS and (3) assess usability of a split ventilation system with minimal specific training. The functionality of a split ventilation system was assessed using test lungs. The usability of the system was assessed in simulated clinical scenarios. The feasibility of the system to provide modified lung protective ventilation was assessed in a porcine model of ARDS (n = 30). In bench testing a split ventilation system independently ventilated two test lungs under conditions of varying compliance and resistance. In usability tests, a high proportion of naïve operators could assemble and use the system. In the porcine model, modified lung protective ventilation was feasible with split ventilation and produced similar respiratory mechanics, gas exchange and biomarkers of lung injury when compared to standard ventilation. Split ventilation can provide some elements of lung protective ventilation and is feasible in bench testing and an in vivo model of ARDS.
Collapse
Affiliation(s)
- Pierce Geoghegan
- Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jennifer Clarke
- Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Grace Hogan
- Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Aoife Keogh
- Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Karen Donnelly
- Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Natalie McEvoy
- Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Stephen F Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | - John G Laffey
- Department of Anaesthesia and Critical Care, Galway University Hospital, Galway, Ireland
| | - Gerard F Curley
- Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
35
|
Krishnan JK, Rajan M, Baer BR, Hoffman KL, Alshak MN, Aronson KI, Goyal P, Ezeomah C, Hill SS, Martinez FJ, Turetz ML, Wells MT, Safford MM, Schenck EJ. Assessing mortality differences across acute respiratory failure management strategies in Covid-19. J Crit Care 2022; 70:154045. [PMID: 35490502 PMCID: PMC9049881 DOI: 10.1016/j.jcrc.2022.154045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/14/2022] [Accepted: 04/06/2022] [Indexed: 12/17/2022]
Abstract
PURPOSE Prolonged observation could avoid invasive mechanical ventilation (IMV) and related risks in patients with Covid-19 acute respiratory failure (ARF) compared to initiating early IMV. We aimed to determine the association between ARF management strategy and in-hospital mortality. MATERIALS AND METHODS Patients in the Weill Cornell Covid-19 registry who developed ARF between March 5 - March 25, 2020 were exposed to an early IMV strategy; between March 26 - April 1, 2020 to an intermediate strategy; and after April 2 to prolonged observation. Cox proportional hazards regression was used to model in-hospital mortality and test an interaction between ARF management strategy and modified sequential organ failure assessment (mSOFA). RESULTS Among 632 patients with ARF, 24% of patients in the early IMV strategy died versus 28% in prolonged observation. At lower mSOFA, prolonged observation was associated with lower mortality compared to early IMV (at mSOFA = 0, HR 0.16 [95% CI 0.04-0.57]). Mortality risk increased in the prolonged observation strategy group with each point increase in mSOFA score (HR 1.29 [95% CI 1.10-1.51], p = 0.002). CONCLUSION In Covid-19 ARF, prolonged observation was associated with a mortality benefit at lower mSOFA scores, and increased mortality at higher mSOFA scores compared to early IMV.
Collapse
Affiliation(s)
- Jamuna K Krishnan
- Divison of Pulmonary and Critical Care Medicine, Weill Cornell Department of Medicine, NY, NY, United States of America.
| | - Mangala Rajan
- Division of General Internal Medicine, Weill Cornell Department of Medicine, NY, NY, United States of America
| | - Benjamin R Baer
- Department of Statistics and Data Science, Cornell University, Ithaca, New York, United States of America
| | - Katherine L Hoffman
- Division of Biostatistics and Epidemiology, Weill Cornell Medicine, NY, NY, United States of America
| | - Mark N Alshak
- Division of General Internal Medicine, Weill Cornell Department of Medicine, NY, NY, United States of America
| | - Kerri I Aronson
- Divison of Pulmonary and Critical Care Medicine, Weill Cornell Department of Medicine, NY, NY, United States of America
| | - Parag Goyal
- Division of General Internal Medicine, Weill Cornell Department of Medicine, NY, NY, United States of America; Division of Cardiology, Weill Cornell Department of Medicine, NY, NY, United States of America
| | - Chiomah Ezeomah
- Division of General Internal Medicine, Weill Cornell Department of Medicine, NY, NY, United States of America
| | - Shanna S Hill
- Department of Anesthesiology, Weill Cornell Medicine, NY, NY, United States of America
| | - Fernando J Martinez
- Divison of Pulmonary and Critical Care Medicine, Weill Cornell Department of Medicine, NY, NY, United States of America
| | - Meredith L Turetz
- Divison of Pulmonary and Critical Care Medicine, Weill Cornell Department of Medicine, NY, NY, United States of America
| | - Martin T Wells
- Department of Statistics and Data Science, Cornell University, Ithaca, New York, United States of America; Department of Population Health Sciences, Weill Cornell Medicine, NY, NY, United States of America
| | - Monika M Safford
- Division of General Internal Medicine, Weill Cornell Department of Medicine, NY, NY, United States of America
| | - Edward J Schenck
- Divison of Pulmonary and Critical Care Medicine, Weill Cornell Department of Medicine, NY, NY, United States of America
| |
Collapse
|
36
|
Identification of bronchoalveolar and blood immune-inflammatory biomarker signature associated with poor 28-day outcome in critically ill COVID-19 patients. Sci Rep 2022; 12:9502. [PMID: 35681070 PMCID: PMC9178326 DOI: 10.1038/s41598-022-13179-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/20/2022] [Indexed: 11/09/2022] Open
Abstract
The local immune-inflammatory response elicited by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is still poorly described, as well as the extent to which its characteristics may be associated with the outcome of critical Coronavirus disease 2019 (COVID-19). In this prospective monocenter study, all consecutive COVID-19 critically ill patients admitted from February to December 2020 and explored by fiberoptic bronchoscopy with bronchoalveolar lavage (BAL) were included. Biological assays, including digital ELISA cytokine profiling and targeted eicosanoid metabolomic analysis, were performed on paired blood and BAL fluid (BALF). Clinical outcome was assessed through the World Health Organization 10-point Clinical Progression Scale (WHO-CPS) at the 28th day (D28) following the admission to intensive care unit. A D28-WHO-CPS value higher than 5 defined a poor outcome. Seventy-six patients were included, 45 (59%) had a poor day-28 outcome. As compared to their counterparts, patients with D28-WHO-CPS > 5 exhibited a neutrophil-predominant bronchoalveolar phenotype, with a higher BALF neutrophil/lymphocyte ratio, a blunted local type I interferon response, a decompartimentalized immune-inflammatory response illustrated by lower BALF/blood ratio of concentrations of IL-6 (1.68 [0.30-4.41] vs. 9.53 [2.56-19.1]; p = 0.001), IL-10, IL-5, IL-22 and IFN-γ, and a biological profile of vascular endothelial injury illustrated by a higher blood concentration of VEGF and higher blood and/or BALF concentrations of several vasoactive eicosanoids. In critically ill COVID-19 patients, we identified bronchoalveolar and blood immune-inflammatory biomarker signature associated with poor 28-day outcome.
Collapse
|
37
|
Wang Y, Xie W, Feng Y, Xu Z, He Y, Xiong Y, Chen L, Li X, Liu J, Liu G, Wu Q. Epithelial‑derived exosomes promote M2 macrophage polarization via Notch2/SOCS1 during mechanical ventilation. Int J Mol Med 2022; 50:96. [PMID: 35616134 PMCID: PMC9170191 DOI: 10.3892/ijmm.2022.5152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
Alveolar macrophages (AMs) play an essential role in ventilator-induced lung injury (VILI). Exosomes and their cargo, including microRNAs (miRNAs/miRs) serve as regulators of the intercellular communications between macrophages and epithelial cells (ECs), and are involved in maintaining homeostasis in lung tissue. The present study found that exosomes released by ECs subjected to cyclic stretching promoted M2 macrophage polarization. It was demonstrated that miR-21a-5p, upregulated in epithelial-derived exosomes, increased the percentage of M2 macrophages by suppressing the expression of Notch2 and the suppressor of cytokine signaling 1 (SOCS1). The overexpression of Notch2 decreased the percentage of M2 macrophages. However, these effects were reversed by the downregulation of SOCS1. The percentage of M2 macrophages was increased in both short-term high- and low-tidal-volume mechanical ventilation, and the administration of exosomes-derived from cyclically stretched ECs had the same function. However, the administration of miR-21a-5p antagomir decreased M2 macrophage activation induced by cyclically stretched ECs or ventilation. Thus, the present study demonstrates that the intercellular transferring of exosomes from ECs to AMs promotes M2 macrophage polarization. Exosomes may prove to be a novel treatment for VILI.
Collapse
Affiliation(s)
- Yanting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wanli Xie
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yiqi Feng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhenzhen Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yuyao He
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yue Xiong
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jie Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Guoyang Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
38
|
Zhang W, Zhu Q. Punicalagin suppresses inflammation in ventilator-induced lung injury through protease-activated receptor-2 inhibition-induced inhibition of NLR family pyrin domain containing-3 inflammasome activation. Chem Biol Drug Des 2022; 100:218-229. [PMID: 35434894 DOI: 10.1111/cbdd.14059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022]
Abstract
Punicalagin is recorded to be a potent anti-inflammatory drug, while its effect on inflammation existing in ventilator-induced lung injury (VILI) requires further verification. Rats were pretreated with punicalagin, followed by VILI modeling. Lung histopathological examination was performed with hematoxylin-eosin staining accompanied by the lung injury score. The lung wet/dry (W/D) weight ratio and total bronchoalveolar lavage fluid (BALF) protein level were measured. After transfection with protease-activated receptor-2 (PAR2) overexpression plasmids, mouse alveolar epithelial MLE-12 cells were treated with punicalagin and then subjected to cyclic stretching. Punicalagin's cytotoxicity to MLE-12 cells were measured by MTT assay. The levels of inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6), PAR2, NLR family pyrin domain containing-3 (NLRP3), and apoptosis-associated speck-like protein containing a CARD (ASC) in the BALF, lung tissues or cells were analyzed by enzyme-linked immune-sorbent assay (ELISA), qRT-PCR or/and western blot. Punicalagin treatment attenuated VILI-induced lung histopathological changes and counteracted VILI-induced increases in the lung injury score, W/D weight ratio and total protein level in BALF. Also, punicalagin treatment counteracted in vivo VILI/cyclic stretching-induced increases in the levels of PAR2, inflammatory cytokines, NLRP3, and ASC. PAR2 overexpression potentiated the cyclic stretching-induced effects, while punicalagin treatment revoked this PAR2 overexpression-induced potentiation effect. In turn, PAR2 overexpression partly resisted the punicalagin treatment-induced counteractive effects on the cyclic stretching-induced effects. Punicalagin suppresses inflammation in VILI through PAR2 inhibition-induced inhibition of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou City, China
| | - Qi Zhu
- Emergency and Critical Care Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou City, China
| |
Collapse
|
39
|
Ferreira JMC, Huhle R, Müller S, Schnabel C, Mehner M, Koch T, Gama de Abreu M. Static Stretch Increases the Pro-Inflammatory Response of Rat Type 2 Alveolar Epithelial Cells to Dynamic Stretch. Front Physiol 2022; 13:838834. [PMID: 35480037 PMCID: PMC9035495 DOI: 10.3389/fphys.2022.838834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Mechanical ventilation (MV) inflicts stress on the lungs, initiating or increasing lung inflammation, so-called ventilator-induced lung injury (VILI). Besides overdistention, cyclic opening-and-closing of alveoli (atelectrauma) is recognized as a potential mechanism of VILI. The dynamic stretch may be reduced by positive end-expiratory pressure (PEEP), which in turn increases the static stretch. We investigated whether static stretch modulates the inflammatory response of rat type 2 alveolar epithelial cells (AECs) at different levels of dynamic stretch and hypothesized that static stretch increases pro-inflammatory response of AECs at given dynamic stretch. Methods: AECs, stimulated and not stimulated with lipopolysaccharide (LPS), were subjected to combinations of static (10, 20, and 30%) and dynamic stretch (15, 20, and 30%), for 1 and 4 h. Non-stretched AECs served as control. The gene expression and secreted protein levels of interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein 2 (MIP-2) were studied by real-time polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), respectively. The effects of static and dynamic stretch were assessed by two-factorial ANOVA with planned effects post-hoc comparison according to Šidák. Statistical significance was considered for p < 0.05. Results: In LPS-stimulated, but not in non-stimulated rat type 2 AECs, compared to non-stretched cells: 1) dynamic stretch increased the expression of amphiregulin (AREG) (p < 0.05), MCP-1 (p < 0.001), and MIP-2 (<0.05), respectively, as well as the protein secretion of IL-6 (p < 0.001) and MCP-1 (p < 0.05); 2) static stretch increased the gene expression of MCP-1 (p < 0.001) and MIP-2, but not AREG, and resulted in higher secretion of IL-6 (p < 0.001), but not MCP-1, while MIP-2 was not detectable in the medium. Conclusion: In rat type 2 AECs stimulated with LPS, static stretch increased the pro-inflammatory response to dynamic stretch, suggesting a potential pro-inflammatory effect of PEEP during mechanical ventilation at the cellular level.
Collapse
Affiliation(s)
- Jorge M. C. Ferreira
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
- *Correspondence: Jorge M. C. Ferreira,
| | - Robert Huhle
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Sabine Müller
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Christian Schnabel
- Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Mirko Mehner
- Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Thea Koch
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Marcelo Gama de Abreu
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
- Department of Intensive Care and Resuscitation, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
40
|
Lin X, Yu T, Luo J, Chen L, Liu Y, Xu J, Chen L, Lin Q, Bao Y, Xu L. BMSCs mediates endothelial cell autophagy by upregulating miR-155-5p to alleviate ventilator-induced lung injury. J Biochem Mol Toxicol 2022; 36:e23060. [PMID: 35355364 DOI: 10.1002/jbt.23060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/05/2022] [Accepted: 03/21/2022] [Indexed: 01/10/2023]
Abstract
In this study, we explored to detect the effects and mechanism of bone-marrow-derived mesenchymal stem cells (BMSCs) on ventilator-induced lung injury (VILI). We transplanted BMSCs in mice and then induced VILI using mechanical ventilation (MV) treatment. The pathological changes, the content of PaO2 and PaCO2 , wet/dry weight ratio (W/D) of the lung, levels of tumor necrosis factor-α and interleukin-6 in bronchoalveolar lavage fluid, and apoptosis were detected. The autophagy-associated factor p62, LC3, and Beclin-1 expression were analyzed by western blot. The quantitative polymerase chain reaction was applied to detect abnormally expressed microRNAs, including miR-155-5p. Subsequently, we overexpressed miR-155-5p in VILI mice to detect the effects of miR-155-5p on MV-induced lung injury. Then, we carried out bioinformatics analysis to verify the BMSCs-regulated miR-155-5p that target messenger RNA. It was observed that BMSCs transplantation mitigated the severity of VILI in mice. BMSCs transplantation reduced lung inflammation, strengthened the arterial oxygen partial pressure, and reduced apoptosis and the W/D of the lung. BMSCs promoted autophagy of pulmonary endothelial cells accompanied by decreased p62 and increased LC3 II/I and Beclin-1. BMSCs increased the levels of miR-155-5p in VILI mice. Overexpression of miR-155-5p alleviated lung injury in VILI mice following reduced apoptosis and increased autophagy. Finally, TAB2 was identified as a downstream target of miR-155-5p and regulated by miR-155-5p. BMSCs may protect lung tissues from MV-induced injury, inhibit lung inflammation, promote autophagy through upregulating of miR-155-5p.
Collapse
Affiliation(s)
- Xin Lin
- Department of Respiratory Medicine, Center of Medical Endoscopy, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Tianxing Yu
- Department of Respiratory Medicine, Center of Medical Endoscopy, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jianxiong Luo
- Department of Respiratory Medicine, Center of Medical Endoscopy, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Lin Chen
- Department of Respiratory Medicine, Center of Medical Endoscopy, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yang Liu
- Department of Respiratory Medicine, Center of Medical Endoscopy, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Junping Xu
- Department of Respiratory Medicine, Center of Medical Endoscopy, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Lifang Chen
- Department of Respiratory Medicine, Center of Medical Endoscopy, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Qiong Lin
- Department of Respiratory Medicine, Center of Medical Endoscopy, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yuwang Bao
- Department of Respiratory Medicine, Center of Medical Endoscopy, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Liyu Xu
- Department of Respiratory Medicine, Center of Medical Endoscopy, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
41
|
Wen K, Ni K, Guo J, Bu B, Liu L, Pan Y, Li J, Luo M, Deng L. MircroRNA Let-7a-5p in Airway Smooth Muscle Cells is Most Responsive to High Stretch in Association With Cell Mechanics Modulation. Front Physiol 2022; 13:830406. [PMID: 35399286 PMCID: PMC8990250 DOI: 10.3389/fphys.2022.830406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: High stretch (strain >10%) can alter the biomechanical behaviors of airway smooth muscle cells which may play important roles in diverse lung diseases such as asthma and ventilator-induced lung injury. However, the underlying modulation mechanisms for high stretch-induced mechanobiological responses in ASMCs are not fully understood. Here, we hypothesize that ASMCs respond to high stretch with increased expression of specific microRNAs (miRNAs) that may in turn modulate the biomechanical behaviors of the cells. Thus, this study aimed to identify the miRNA in cultured ASMCs that is most responsive to high stretch, and subsequently investigate in these cells whether the miRNA expression level is associated with the modulation of cell biomechanics. Methods: MiRNAs related to inflammatory airway diseases were obtained via bioinformatics data mining, and then tested with cultured ASMCs for their expression variations in response to a cyclic high stretch (13% strain) simulating in vivo ventilator-imposed strain on airways. Subsequently, we transfected cultured ASMCs with mimics and inhibitors of the miRNA that is most responsive to the high stretch, followed by evaluation of the cells in terms of morphology, stiffness, traction force, and mRNA expression of cytoskeleton/focal adhesion-related molecules. Results: 29 miRNAs were identified to be related to inflammatory airway diseases, among which let-7a-5p was the most responsive to high stretch. Transfection of cultured human ASMCs with let-7a-5p mimics or inhibitors led to an increase or decrease in aspect ratio, stiffness, traction force, migration, stress fiber distribution, mRNA expression of α-smooth muscle actin (SMA), myosin light chain kinase, some subfamily members of integrin and talin. Direct binding between let-7a-5p and ItgαV was also verified in classical model cell line by using dual-luciferase assays. Conclusion: We demonstrated that high stretch indeed enhanced the expression of let-7a-5p in ASMCs, which in turn led to changes in the cells’ morphology and biomechanical behaviors together with modulation of molecules associated with cytoskeletal structure and focal adhesion. These findings suggest that let-7a-5p regulation is an alternative mechanism for high stretch-induced effect on mechanobiology of ASMCs, which may contribute to understanding the pathogenesis of high stretch-related lung diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingzhi Luo
- *Correspondence: Mingzhi Luo, ; Linhong Deng,
| | | |
Collapse
|
42
|
Kawai M, Zhang E, Kabwe JC, Okada A, Maruyama J, Sawada H, Maruyama K. Lung damage created by high tidal volume ventilation in rats with monocrotaline-induced pulmonary hypertension. BMC Pulm Med 2022; 22:78. [PMID: 35247989 PMCID: PMC8897872 DOI: 10.1186/s12890-022-01867-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Rats with chronic hypoxia-induced non-inflammatory pulmonary hypertension (PH) are resistant to ventilator-induced lung injury. We investigated the effect of high tidal volume ventilation in another model of PH, monocrotaline (MCT)-induced PH, which is a type of inflammatory PH.
Methods PH was induced in rats by subcutaneous injection with 60 mg/kg MCT. Normal control rats, rats at 2 weeks after MCT injection (MCT2), and rats at 3 weeks after MCT injection (MCT3) were ventilated with low tidal volume (LV, 6 mL/kg) or high tidal volume (HV, 35 mL/kg) for 2 h with room air without positive end-expiratory pressure. Arterial oxygen pressure (PaO2) and Evans blue dye (EBD) extravasation were measured. Hypertensive pulmonary vascular remodeling was assessed morphometrically by the percentage of muscularized peripheral pulmonary arteries (%Muscularization) and the media wall thickness to external diameter ratio, namely percentage medial wall thickness (%MWT). To assess inflammation, lung IκB protein and cytokine mRNA expression levels were assessed. Results Baseline mean pulmonary arterial pressure was significantly higher in MCT rats (normal, 15.4 ± 0.5 mmHg; MCT2, 23.7 ± 0.9; and MCT3, 34.5 ± 1.5). After 2-h ventilation, PaO2 was significantly lower in the HV groups compared with the LV groups in normal and MCT2 rats, but not in MCT3 rats. Impairment of oxygenation with HV was less in MCT3 rats compared with normal and MCT2 rats. Among the HV groups, MCT3 rats showed significantly lower levels of EBD extravasation than normal and MCT2 rats. HV significantly downregulated IκB protein expression in normal and MCT3 rats and increased IL-6, MCP-1, CXCL-1 (MIP-1), and IL-10 mRNA levels in MCT3 rats. %Muscularization, %MWT, and the expression of lung elastin were significantly higher in MCT3 rats than in normal and MCT2 rats. Conclusion We found that HV-associated damage might be reduced in MCT-induced PH rats compared with normal rats. The results of this and earlier studies suggest that hypertensive pulmonary vascular structural changes might be protective against the occurrence of ventilator-induced lung injury, irrespective of the etiology of PH. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01867-6.
Collapse
|
43
|
Abstract
Extremely preterm infants who must suddenly support their own gas exchange with lungs that are incompletely developed and lacking adequate amount of surfactant and antioxidant defenses are susceptible to lung injury. The decades-long quest to prevent bronchopulmonary dysplasia has had limited success, in part because of increasing survival of more immature infants. The process must begin in the delivery room with gentle assistance in establishing and maintaining adequate lung aeration, followed by noninvasive support and less invasive surfactant administration. Various modalities of invasive and noninvasive support have been used with varying degree of effect and are reviewed in this article.
Collapse
|
44
|
Assessment of respiratory support decision and the outcome of invasive mechanical ventilation in severe COVID-19 with ARDS. JOURNAL OF INTENSIVE MEDICINE 2022; 2:92-102. [PMID: 36785779 PMCID: PMC8810377 DOI: 10.1016/j.jointm.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/12/2021] [Accepted: 12/10/2021] [Indexed: 01/15/2023]
Abstract
Background The coronavirus disease 2019 (COVID-19) is an ongoing pandemic. Invasive mechanical ventilation (IMV) is essential for the management of COVID-19 with acute respiratory distress syndrome (ARDS). We aimed to assess the impact of compliance with a respiratory decision support system on the outcomes of patients with COVID-19-associated ARDS who required IMV. Methods In this retrospective, single-center, case series study, patients with COVID-19-associated ARDS who required IMV at Zhongnan Hospital of Wuhan University, China, from January 8th, 2020, to March 24th, 2020, with the final follow-up date of April 20th, 2020, were included. Demographic, clinical, laboratory, imaging, and management information were collected and analyzed. Compliance with the respiratory support decision system was documented, and its relationship with 28-day mortality was evaluated. Results The study included 46 COVID-19-associated ARDS patients who required IMV. The median age of the 46 patients was 68.5 years, and 31 were men. The partial pressure of arterial oxygen (PaO2)/fraction of inspired oxygen (FiO2) ratio at intensive care unit (ICU) admission was 104 mmHg. The median total length of IMV was 12.0 (interquartile range [IQR]: 6.0-27.3) days, and the median respiratory support decision score was 11.0 (IQR: 7.8-16.0). To 28 days after ICU admission, 18 (39.1%) patients died. Survivors had a significantly higher respiratory support decision score than non-survivors (15.0 [10.3-17.0] vs. 8.5 (6.0-10.3), P = 0.001). Using receiver operating characteristic (ROC) curve to assess the discrimination of respiratory support decision score to 28-day mortality, the area under the curve (AUC) was 0.796 (95% confidence interval [CI]: 0.657-0.934, P = 0.001) and the cut-off was 11.5 (sensitivity = 0.679, specificity = 0.889). Patients with a higher score (>11.5) were more likely to survive at 28 days after ICU admission (log-rank test, P < 0.001). Conclusions For severe COVID-19-associated ARDS with IMV, following the respiratory support decision and assessing completion would improve the progress of ventilation. With a decision score of >11.5, the mortality at 28 days after ICU admission showed an obvious decrease.
Collapse
|
45
|
Kulkarni HS, Lee JS, Bastarache JA, Kuebler WM, Downey GP, Albaiceta GM, Altemeier WA, Artigas A, Bates JHT, Calfee CS, Dela Cruz CS, Dickson RP, Englert JA, Everitt JI, Fessler MB, Gelman AE, Gowdy KM, Groshong SD, Herold S, Homer RJ, Horowitz JC, Hsia CCW, Kurahashi K, Laubach VE, Looney MR, Lucas R, Mangalmurti NS, Manicone AM, Martin TR, Matalon S, Matthay MA, McAuley DF, McGrath-Morrow SA, Mizgerd JP, Montgomery SA, Moore BB, Noël A, Perlman CE, Reilly JP, Schmidt EP, Skerrett SJ, Suber TL, Summers C, Suratt BT, Takata M, Tuder R, Uhlig S, Witzenrath M, Zemans RL, Matute-Bello G. Update on the Features and Measurements of Experimental Acute Lung Injury in Animals: An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2022; 66:e1-e14. [PMID: 35103557 PMCID: PMC8845128 DOI: 10.1165/rcmb.2021-0531st] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Advancements in methods, technology, and our understanding of the pathobiology of lung injury have created the need to update the definition of experimental acute lung injury (ALI). We queried 50 participants with expertise in ALI and acute respiratory distress syndrome using a Delphi method composed of a series of electronic surveys and a virtual workshop. We propose that ALI presents as a "multidimensional entity" characterized by four "domains" that reflect the key pathophysiologic features and underlying biology of human acute respiratory distress syndrome. These domains are 1) histological evidence of tissue injury, 2) alteration of the alveolar-capillary barrier, 3) presence of an inflammatory response, and 4) physiologic dysfunction. For each domain, we present "relevant measurements," defined as those proposed by at least 30% of respondents. We propose that experimental ALI encompasses a continuum of models ranging from those focusing on gaining specific mechanistic insights to those primarily concerned with preclinical testing of novel therapeutics or interventions. We suggest that mechanistic studies may justifiably focus on a single domain of lung injury, but models must document alterations of at least three of the four domains to qualify as "experimental ALI." Finally, we propose that a time criterion defining "acute" in ALI remains relevant, but the actual time may vary based on the specific model and the aspect of injury being modeled. The continuum concept of ALI increases the flexibility and applicability of the definition to multiple models while increasing the likelihood of translating preclinical findings to critically ill patients.
Collapse
|
46
|
Yuki K, Koutsogiannaki S. Translational Role of Rodent Models to Study Ventilator-Induced Lung Injury. TRANSLATIONAL PERIOPERATIVE AND PAIN MEDICINE 2021; 8:404-415. [PMID: 34993270 PMCID: PMC8729883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanical ventilation is an important part of medical care in intensive care units and operating rooms to support respiration. While it is a critical component of medical care, it is well known that mechanical ventilation itself can be injurious to the lungs. Despite a large number of clinical and preclinical studies that have been done so far, there still exists a gap of knowledge regarding how to ventilate patients mechanically without increasing lung injury. Here, we will review what we have learned so far from preclinical and clinical studies and consider how to use preclinical models of ventilation-induced lung injury that better recapitulate the clinical scenarios.
Collapse
Affiliation(s)
- Koichi Yuki
- Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, USA,Department of Anaesthesia, Harvard Medical School, USA,Corresponding Authors: Sophia Koutsogiannaki, Ph.D and Koichi Yuki, M.D., Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, USA, ;
| | - Sophia Koutsogiannaki
- Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, USA,Department of Anaesthesia, Harvard Medical School, USA,Corresponding Authors: Sophia Koutsogiannaki, Ph.D and Koichi Yuki, M.D., Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, USA, ;
| |
Collapse
|
47
|
Different Tidal Volumes May Jeopardize Pulmonary Redox and Inflammatory Status in Healthy Rats Undergoing Mechanical Ventilation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5196896. [PMID: 34745417 PMCID: PMC8570858 DOI: 10.1155/2021/5196896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022]
Abstract
Mechanical ventilation (MV) is essential for the treatment of critical patients since it may provide a desired gas exchange. However, MV itself can trigger ventilator-associated lung injury in patients. We hypothesized that the mechanisms of lung injury through redox imbalance might also be associated with pulmonary inflammatory status, which has not been so far described. We tested it by delivering different tidal volumes to normal lungs undergoing MV. Healthy Wistar rats were divided into spontaneously breathing animals (control group, CG), and rats were submitted to MV (controlled ventilation mode) with tidal volumes of 4 mL/kg (MVG4), 8 mL/kg (MVG8), or 12 mL/kg (MVG12), zero end-expiratory pressure (ZEEP), and normoxia (FiO2 = 21%) for 1 hour. After ventilation and euthanasia, arterial blood, bronchoalveolar lavage fluid (BALF), and lungs were collected for subsequent analysis. MVG12 presented lower PaCO2 and bicarbonate content in the arterial blood than CG, MVG4, and MVG8. Neutrophil influx in BALF and MPO activity in lung tissue homogenate were significantly higher in MVG12 than in CG. The levels of CCL5, TNF-α, IL-1, and IL-6 in lung tissue homogenate were higher in MVG12 than in CG and MVG4. In the lung parenchyma, the lipid peroxidation was more important in MVG12 than in CG, MVG4, and MVG8, while there was more protein oxidation in MVG12 than in CG and MVG4. The stereological analysis confirmed the histological pulmonary changes in MVG12. The association of controlled mode ventilation and high tidal volume, without PEEP and normoxia, impaired pulmonary histoarchitecture and triggered redox imbalance and lung inflammation in healthy adult rats.
Collapse
|
48
|
Albert RK. Constant Tidal Volume Ventilation and Surfactant Dysfunction: An Overlooked Cause of Ventilator-Induced Lung Injury. Am J Respir Crit Care Med 2021; 205:152-160. [PMID: 34699343 DOI: 10.1164/rccm.202107-1690cp] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ventilator-induced lung injury (VILI) is currently ascribed to volutrauma and/or atelectrauma but the effect of constant tidal volume ventilation (CVTV) has received little attention. This Perspective summarizes the literature documenting that CVTV causes VILI and reviews the mechanisms by which it occurs. Surfactant is continuously inactivated, depleted, displaced or desorbed as a function of the duration of ventilation, the tidal volume, the level of PEEP and possibly the respiratory rate. Accordingly, surfactant must be continuously replenished and secretion primarily depends on intermittent delivery of large ventilatory excursions. The surfactant abnormalities resulting from CVTV result in atelectasis and VILI. While surfactant secretion is reduced by the absence of intermittent deep breaths continuous administration of large tidal volumes depletes surfactant and impairs subsequent secretion. Low or normal lung volumes result in desorption of surfactant. PEEP can be protective by reducing surface film collapse and subsequent film rupture on re-expansion, and/or by reducing surfactant displacement into the airways, but PEEP can also down-regulate surfactant release. Conclusions: The effect of CVTV on surfactant is complex. If attention is not paid to facilitating surfactant secretion and limiting its inactivation, depletion, desorption or displacement surface tension will increase and atelectasis and VILI will occur.
Collapse
Affiliation(s)
- Richard K Albert
- University of Colorado Denver School of Medicine, 12225, Aurora, Colorado, United States;
| |
Collapse
|
49
|
Adherence to Lung-Protective Ventilation in Pediatric Acute Respiratory Distress Syndrome: Principles Versus Explicit Targets. Crit Care Med 2021; 49:1836-1839. [PMID: 34529616 DOI: 10.1097/ccm.0000000000005108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Bai Y, Zhang J, Zhao B, Liu K, Bai Y. Dexmedetomidine attenuates one-lung ventilation associated lung injury by suppressing inflammatory responses: A systematic review and meta-analysis. Clin Exp Pharmacol Physiol 2021; 48:1203-1214. [PMID: 34042207 PMCID: PMC8453530 DOI: 10.1111/1440-1681.13525] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/29/2022]
Abstract
One-lung ventilation (OLV), a common ventilation technique, is associated with perioperative lung injury, tightly connected with inflammatory responses. Dexmedetomidine has shown positive anti-inflammatory effects in lung tissues in pre-clinical models. This study investigated the efficacy of dexmedetomidine for suppressing inflammatory responses in patients requiring OLV. We searched PubMed, MEDLINE, Embase, Scopus, Ovid, and Cochrane Library for randomized controlled trials focusing on dexmedetomidine's anti-inflammatory effects on patients requiring OLV without any limitation on the year of publication or languages. 20 clinical trials were assessed with 870 patients in the dexmedetomidine group and 844 in the control group. Our meta-analysis investigated the anti-inflammatory property of dexmedetomidine perioperatively [T1 (30-min OLV), T2 (90-min OLV), T3 (end of surgery) and T4 (postoperative day 1)], demonstrating that dexmedetomidine's intraoperative administration resulted in a significant reduction in serum concentration of interleukin-6, tumor necrosis factor-α and other inflammatory cytokines perioperatively. By calculating specific I2 index, significant heterogeneity was observed on all occasions, with I2 index ranging from 95% to 99%. For IL-6 changes, sensitivity analysis showed that the exclusion of a single study led to a significant decrease of heterogeneity (96%-0%; p < 0.00001). Besides, pulmonary oxygenation was ameliorated in the dexmedetomidine group comparing with the control group. In conclusion, perioperative administration of dexmedetomidine can attenuate OLV induced inflammation, ameliorate pulmonary oxygenation, and may be conducive to a decreased occurrence of postoperative complications and better prognosis. However, the results should be prudently interpreted due to the evidence of heterogeneity and the limited number of studies.
Collapse
Affiliation(s)
- Yun‐Xiao Bai
- College of AnesthesiologySouthern Medical UniversityGuangzhouChina
| | - Jie‐Han Zhang
- The First Clinical Medical CollegeSouthern Medical UniversityGuangzhouChina
| | - Bing‐Cheng Zhao
- Department of Anesthesiology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ke‐Xuan Liu
- Department of Anesthesiology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yao‐Wu Bai
- Department of AnesthesiologyTangshan Maternity and Child Health Care HospitalTangshanChina
| |
Collapse
|