1
|
Xie M, Hu Y, Ji M, Shen Z, Yao X, Sun H, Zhu X, Xie Y, Zhou S, Xu C, He X, Liu B, Fang J, Shao X. Electroacupuncture alleviates the relapse of behaviors associated with pain sensory memory and pain-related aversive memory by activating MORs and inhibiting GABAergic neurons in the insular cortex. Brain Res Bull 2025; 227:111394. [PMID: 40398703 DOI: 10.1016/j.brainresbull.2025.111394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/30/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025]
Abstract
Pain memory, which includes sensory and emotional memory, is one of the main causes of pain complications and prolongation. Recent research has identified the insular cortex (IC) as a critical brain region involved in the integration of information pertaining to pain, emotion, reward, cognition and memory. GABAergic neuronal activity in the IC has been demonstrated to be strongly correlated with the manifestation of pain-related aversive behavior. Electroacupuncture (EA) relieves pain-related aversive memory by activating μ opioid receptors (MORs) in the IC. The results of this study demonstrate that activating MORs in the IC may inhibit GABAergic neuron activity and thus alleviate the relapse of behaviors associated with pain sensory memory and pain-related aversive memory. The relapse of such behaviors was found to be alleviated by EA in model mice; however, antagonism of MORs in the IC reversed the therapeutic effect of EA. In consideration of these findings, we suggest that EA may affect GABAergic neuron activity through activation of MORs in the IC thereby alleviating the relapse of behaviors associated with pain sensory memory and pain-related aversive memory. The study provides novel insights into the mechanisms by which EA chronic pain and behaviors associated with chronic pain-related aversive memory.
Collapse
Affiliation(s)
- Mengdi Xie
- The Third Clinical Medical College of Zhejiang Chinese Medical University, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuxin Hu
- The Third Clinical Medical College of Zhejiang Chinese Medical University, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Miaoling Ji
- The Third Clinical Medical College of Zhejiang Chinese Medical University, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zui Shen
- The Third Clinical Medical College of Zhejiang Chinese Medical University, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangnan Yao
- The Third Clinical Medical College of Zhejiang Chinese Medical University, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haiju Sun
- The Third Clinical Medical College of Zhejiang Chinese Medical University, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xixiao Zhu
- The Third Clinical Medical College of Zhejiang Chinese Medical University, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiping Xie
- The Third Clinical Medical College of Zhejiang Chinese Medical University, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuting Zhou
- The Third Clinical Medical College of Zhejiang Chinese Medical University, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Xu
- The Third Clinical Medical College of Zhejiang Chinese Medical University, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofen He
- The Third Clinical Medical College of Zhejiang Chinese Medical University, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Boyi Liu
- The Third Clinical Medical College of Zhejiang Chinese Medical University, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianqiao Fang
- The Third Clinical Medical College of Zhejiang Chinese Medical University, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xiaomei Shao
- The Third Clinical Medical College of Zhejiang Chinese Medical University, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
2
|
Kakehashi T, Nakajima M. Effects of a Muscle Relaxation Technique on Catatonia Symptoms Associated With Schizophrenia: A Case Report. Cureus 2024; 16:e66972. [PMID: 39280417 PMCID: PMC11401976 DOI: 10.7759/cureus.66972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Catatonia is characterized by the loss of voluntary control over the workings of the mind and body. It disrupts daily life by manifesting as idle posture, heightened muscle tone, and repetitive purposeless movements. However, specific physiotherapy methods addressing these symptoms are yet to be established. This case report describes a 63-year-old man hospitalized for schizophrenia who was then diagnosed with stuporous catatonia based on the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR) criteria, characterized by catalepsy, mutism, and difficulty performing daily activities. This case report aimed to evaluate the effectiveness of a specific muscle relaxation technique, squeeze-hold (SH), in treating catatonia associated with schizophrenia and its impact on daily activities. The patient exhibited catalepsy, mutism, and difficulty in performing daily activities. The SH technique employed temporarily obstructs muscle blood flow to induce ischemia, resulting in the relaxation of vascular smooth muscle due to CO2 retention. Furthermore, shear stress upon reperfusion stimulates nitric oxide production in the vascular endothelium, enhancing blood flow. Following weekly SH on the bilateral thighs, the muscle tone in the lower extremities was alleviated within two weeks, and the patient no longer required a wheelchair by the eighth week. In addition, responsiveness to verbal commands improved. As muscle tone in the lower limbs improved, the patient regained ambulation, and his improved responsiveness facilitated independent eating during activities of daily living (ADLs), potentially enhancing motivation and spontaneity. These findings suggest that muscle tone relaxation due to enhanced blood flow and increased CO2 concentration from blood flow restriction may have promoted β-endorphin secretion, thereby improving symptoms via brain-derived neurotrophic factor expression through PGC-1α activation. In conclusion, the SH muscle relaxation technique effectively alleviated catatonic symptoms, and improved muscle tone and daily functioning in patients with schizophrenia-associated catatonia. These findings suggest that this physiotherapy approach may be a valuable addition to catatonia treatment, potentially contributing to physical and psychiatric rehabilitation. This case report illustrates the efficacy of a muscle-tone-focused treatment approach in physical therapy for catatonia and posits its contribution to the reacquisition of psychiatric function and ADLs.
Collapse
Affiliation(s)
| | - Masaaki Nakajima
- Physical Therapy, School of Health Science and Social Welfare, Kibi International University, Takahashi, JPN
| |
Collapse
|
3
|
Zhao W, Yu YM, Wang XY, Xia SH, Ma Y, Tang H, Tao M, Li H, Xu Z, Yang JX, Wu P, Zhang H, Ding HL, Cao JL. CRF regulates pain sensation by enhancement of corticoaccumbal excitatory synaptic transmission. Mol Psychiatry 2024; 29:2170-2184. [PMID: 38454083 DOI: 10.1038/s41380-024-02488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
Both peripheral and central corticotropin-releasing factor (CRF) systems have been implicated in regulating pain sensation. However, compared with the peripheral, the mechanisms underlying central CRF system in pain modulation have not yet been elucidated, especially at the neural circuit level. The corticoaccumbal circuit, a structure rich in CRF receptors and CRF-positive neurons, plays an important role in behavioral responses to stressors including nociceptive stimuli. The present study was designed to investigate whether and how CRF signaling in this circuit regulated pain sensation under physiological and pathological pain conditions. Our studies employed the viral tracing and circuit-, and cell-specific electrophysiological methods to label the CRF-containing circuit from the medial prefrontal cortex to the nucleus accumbens shell (mPFCCRF-NAcS) and record its neuronal propriety. Combining optogenetic and chemogenetic manipulation, neuropharmacological methods, and behavioral tests, we were able to precisely manipulate this circuit and depict its role in regulation of pain sensation. The current study found that the CRF signaling in the NAc shell (NAcS), but not NAc core, was necessary and sufficient for the regulation of pain sensation under physiological and pathological pain conditions. This process was involved in the CRF-mediated enhancement of excitatory synaptic transmission in the NAcS. Furthermore, we demonstrated that the mPFCCRF neurons monosynaptically connected with the NAcS neurons. Chronic pain increased the protein level of CRF in NAcS, and then maintained the persistent NAcS neuronal hyperactivity through enhancement of this monosynaptic excitatory connection, and thus sustained chronic pain behavior. These findings reveal a novel cell- and circuit-based mechanistic link between chronic pain and the mPFCCRF → NAcS circuit and provide a potential new therapeutic target for chronic pain.
Collapse
Affiliation(s)
- Weinan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yu-Mei Yu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xiao-Yi Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
| | - Sun-Hui Xia
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yu Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Huimei Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Mingshu Tao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - He Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Zheng Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Peng Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
4
|
Du W. Interactions Between Endogenous Opioids and the Immune System. ADVANCES IN NEUROBIOLOGY 2024; 35:27-43. [PMID: 38874717 DOI: 10.1007/978-3-031-45493-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The endogenous opioid system, which consists of opioid receptors and their ligands, is widely expressed in the nervous system and also found in the immune system. As a part of the body's defense machinery, the immune system is heavily regulated by endogenous opioid peptides. Many types of immune cells, including macrophages, dendritic cells, neutrophils, and lymphocytes are influenced by endogenous opioids, which affect cell activation, differentiation, proliferation, apoptosis, phagocytosis, and cytokine production. Additionally, immune cells also synthesize and secrete endogenous opioid peptides and participate peripheral analgesia. This chapter is structured into two sections. Part one focuses on immunoregulatory functions of central endogenous opioids; and part two describes how opioid peptide-containing immune cells participate in local analgesia.
Collapse
Affiliation(s)
- Wei Du
- Clinical Sciences Research, CAMC Institute for Academic Medicine, Charleston, WV, USA.
| |
Collapse
|
5
|
Balog BM, Sonti A, Zigmond RE. Neutrophil biology in injuries and diseases of the central and peripheral nervous systems. Prog Neurobiol 2023; 228:102488. [PMID: 37355220 PMCID: PMC10528432 DOI: 10.1016/j.pneurobio.2023.102488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
The role of inflammation in nervous system injury and disease is attracting increased attention. Much of that research has focused on microglia in the central nervous system (CNS) and macrophages in the peripheral nervous system (PNS). Much less attention has been paid to the roles played by neutrophils. Neutrophils are part of the granulocyte subtype of myeloid cells. These cells, like macrophages, originate and differentiate in the bone marrow from which they enter the circulation. After tissue damage or infection, neutrophils are the first immune cells to infiltrate into tissues and are directed there by specific chemokines, which act on chemokine receptors on neutrophils. We have reviewed here the basic biology of these cells, including their differentiation, the types of granules they contain, the chemokines that act on them, the subpopulations of neutrophils that exist, and their functions. We also discuss tools available for identification and further study of neutrophils. We then turn to a review of what is known about the role of neutrophils in CNS and PNS diseases and injury, including stroke, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, spinal cord and traumatic brain injuries, CNS and PNS axon regeneration, and neuropathic pain. While in the past studies have focused on neutrophils deleterious effects, we will highlight new findings about their benefits. Studies on their actions should lead to identification of ways to modify neutrophil effects to improve health.
Collapse
Affiliation(s)
- Brian M Balog
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Anisha Sonti
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Richard E Zigmond
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA.
| |
Collapse
|
6
|
Pandey V, Yadav V, Singh R, Srivastava A, Subhashini. β-Endorphin (an endogenous opioid) inhibits inflammation, oxidative stress and apoptosis via Nrf-2 in asthmatic murine model. Sci Rep 2023; 13:12414. [PMID: 37524754 PMCID: PMC10390559 DOI: 10.1038/s41598-023-38366-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/07/2023] [Indexed: 08/02/2023] Open
Abstract
Asthma, a chronic respiratory disease is characterized by airway inflammation, remodelling, airflow limitation and hyperresponsiveness. At present, it is considered as an umbrella diagnosis consisting several variable clinical presentations (phenotypes) and distinct pathophysiological mechanisms (endotypes). Recent evidence suggests that oxidative stress participates in airway inflammation and remodelling in chronic asthma. Opioids resembled by group of regulatory peptides have proven to act as an immunomodulator. β-Endorphin a natural and potent endogenous morphine produced in the anterior pituitary gland play role in pain modulation. Therapeutic strategy of many opioids including β-Endorphin as an anti‑inflammatory and antioxidative agent has not been yet explored despite its promising analgesic effects. This is the first study to reveal the role of β-Endorphin in regulating airway inflammation, cellular apoptosis, and oxidative stress via Nrf-2 in an experimental asthmatic model. Asthma was generated in balb/c mice by sensitizing with 1% Toulene Diisocyanate on day 0, 7, 14 and 21 and challenging with 2.5% Toulene Diisocyanate from day 22 to 51 (on every alternate day) through intranasal route. β-Endorphin (5 µg/kg) was administered through the nasal route 1 h prior to sensitization and challenge. The effect of β-Endorphin on pulmonary inflammation and redox status along with parameters of oxidative stress were evaluated. We found that pre-treatment of β-Endorphin significantly reduced inflammatory infiltration in lung tissue and cell counts in bronchoalveolar lavage fluid. Also, pre-treatment of β-Endorphin reduced reactive oxygen species, Myeloperoxidase, Nitric Oxide, Protein and protein carbonylation, Glutathione Reductase, Malondialdehyde, IFN-γ, and TNF-α. Reversely, β-Endorphin significantly increased Superoxide dismutase, Catalase, glutathione, Glutathione-S-Transferase, and activation of NF-E2-related factor 2 (Nrf-2) via Kelch-like ECH-associated protein 1 (Keap1), independent pathway in the lung restoring architectural alveolar and bronchial changes. The present findings reveal the therapeutic potency of β-END in regulating asthma by Keap-1 independent regulation of Nrf-2 activity. The present findings reveal the therapeutic potency of β-Endorphin in regulating asthma.
Collapse
Affiliation(s)
- Vinita Pandey
- Department of Zoology, Mahila Mahavidyalya, Banaras Hindu University, Varanasi, 221005, India
| | - Vandana Yadav
- Department of Zoology, Mahila Mahavidyalya, Banaras Hindu University, Varanasi, 221005, India
| | - Rashmi Singh
- Department of Zoology, Mahila Mahavidyalya, Banaras Hindu University, Varanasi, 221005, India
| | - Atul Srivastava
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Subhashini
- Department of Zoology, Mahila Mahavidyalya, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
7
|
Nurhapsari A, Cilmiaty R, Prayitno A, Purwanto B, Soetrisno S. The Role of Asiatic Acid in Preventing Dental Pulp Inflammation: An in-vivo Study. Clin Cosmet Investig Dent 2023; 15:109-119. [PMID: 37333763 PMCID: PMC10276571 DOI: 10.2147/ccide.s408158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023] Open
Abstract
Purpose Acute dental pulp inflammation necessitates early treatment to alleviate inflammation and pain. In the inflammatory phase, a substance is required to lower the inflammatory mediators and reactive oxygen species that play a crucial role in that phase. Asiatic acid is a natural triterpene obtained from the Centella asiatica plant with a high antioxidant value. This study examined the effect of Asiatic acid's antioxidant, anti-inflammatory, and antinociceptive properties on dental pulp inflammation. Methods The research is an experimental laboratory, with a post-test only with a control group design. The study utilised 40 male Wistar rats weighing 200-250 grams and aged 8-10 weeks. Rats were divided into five groups (control, eugenol, Asiatic Acid 0.5%; 1%; 2% group). Dental pulp inflammation was created in the maxillary incisor after six hours of administration of lipopolysaccharides (LPS). The dental pulp treatment then continued with the administration of eugenol and three different Asiatic acid concentrations (0.5%, 1% and 2%). In the next 72 hours, the teeth were biopsied, and the dental pulp was analysed using the enzyme-linked immunosorbent assay (ELISA) to measure the level of MDA, SOD, TNF-α, beta-endorphins and CGRP. Histopathological examination and the Rat Grimace Scale were utilised to determine the level of inflammation and pain, respectively. Results The effect of Asiatic Acid on MDA, TNF-α, and CGRP levels decreased significantly compared to the control group (p=<0.001). On the SOD and beta-endorphin levels, Asiatic acid treatment resulted in a considerable rise (p =<0.001). Conclusion Due to its antioxidant, anti-inflammatory, and antinociceptive characteristics, Asiatic acid can reduce inflammation and pain in acute pulp inflammation due to its ability to decrease MDA, TNFα, and CGRP levels while raising SOD and beta-endorphin levels.
Collapse
Affiliation(s)
- Arlina Nurhapsari
- Doctoral Degree of Medical Science, Faculty of Medicine, Sebelas Maret University, Surakarta, Central Java, Indonesia
- Department of Conservative Dentistry, Faculty of Dentistry, Islam Sultan Agung University, Semarang, Central Java, Indonesia
| | - Risya Cilmiaty
- Department of Oral Disease, Faculty of Medicine, Sebelas Maret University, Surakarta, Central Java, Indonesia
| | - Adi Prayitno
- Department of Oral Disease, Faculty of Medicine, Sebelas Maret University, Surakarta, Central Java, Indonesia
| | - Bambang Purwanto
- Department of Internal Medicine, Faculty of Medicine, Sebelas Maret University, Surakarta, Central Java, Indonesia
| | - Soetrisno Soetrisno
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Sebelas Maret University, Surakarta, Central Java, Indonesia
| |
Collapse
|
8
|
Chatterjee T, Arora I, Underwood LB, Lewis TL, Masjoan Juncos JX, Heath SL, Goodin BR, Aggarwal S. Heme-Induced Macrophage Phenotype Switching and Impaired Endogenous Opioid Homeostasis Correlate with Chronic Widespread Pain in HIV. Cells 2023; 12:1565. [PMID: 37371035 PMCID: PMC10297192 DOI: 10.3390/cells12121565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic widespread pain (CWP) is associated with a high rate of disability and decreased quality of life in people with HIV-1 (PWH). We previously showed that PWH with CWP have increased hemolysis and elevated plasma levels of cell-free heme, which correlate with low endogenous opioid levels in leukocytes. Further, we demonstrated that cell-free heme impairs β-endorphin synthesis/release from leukocytes. However, the cellular mechanisms by which heme dampens β-endorphin production are inconclusive. The current hypothesis is that heme-dependent TLR4 activation and macrophage polarization to the M1 phenotype mediate this phenomenon. Our novel findings showed that PWH with CWP have elevated M1-specific macrophage chemokines (ENA-78, GRO-α, and IP-10) in plasma. In vitro, hemin-induced polarization of M0 and M2 macrophages to the M1 phenotype with low β-endorphins was mitigated by treating cells with the TLR4 inhibitor, TAK-242. Similarly, in vivo phenylhydrazine hydrochloride (PHZ), an inducer of hemolysis, injected into C57Bl/6 mice increased the M1/M2 cell ratio and reduced β-endorphin levels. However, treating these animals with the heme-scavenging protein hemopexin (Hx) or TAK-242 reduced the M1/M2 ratio and increased β-endorphins. Furthermore, Hx attenuated heme-induced mechanical, heat, and cold hypersensitivity, while TAK-242 abrogated hypersensitivity to mechanical and heat stimuli. Overall, these results suggest that heme-mediated TLR4 activation and M1 polarization of macrophages correlate with impaired endogenous opioid homeostasis and hypersensitivity in people with HIV.
Collapse
Affiliation(s)
- Tanima Chatterjee
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, PBMR 230, 901 19th Street South, Birmingham, AL 35205, USA; (T.C.); (L.B.U.); (T.L.L.); (J.X.M.J.)
| | - Itika Arora
- Division of Developmental Biology and the Reproductive Sciences Center, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA;
| | - Lilly B. Underwood
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, PBMR 230, 901 19th Street South, Birmingham, AL 35205, USA; (T.C.); (L.B.U.); (T.L.L.); (J.X.M.J.)
| | - Terry L. Lewis
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, PBMR 230, 901 19th Street South, Birmingham, AL 35205, USA; (T.C.); (L.B.U.); (T.L.L.); (J.X.M.J.)
| | - Juan Xavier Masjoan Juncos
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, PBMR 230, 901 19th Street South, Birmingham, AL 35205, USA; (T.C.); (L.B.U.); (T.L.L.); (J.X.M.J.)
| | - Sonya L. Heath
- Division of Infectious Disease, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Burel R. Goodin
- Washington University Pain Center, Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, PBMR 230, 901 19th Street South, Birmingham, AL 35205, USA; (T.C.); (L.B.U.); (T.L.L.); (J.X.M.J.)
| |
Collapse
|
9
|
Lohman RJ, Reddy Tupally K, Kandale A, Cabot PJ, Parekh HS. Design and development of novel, short, stable dynorphin-based opioid agonists for safer analgesic therapy. Front Pharmacol 2023; 14:1150313. [PMID: 36937883 PMCID: PMC10020352 DOI: 10.3389/fphar.2023.1150313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Kappa opioid receptors have exceptional potential as an analgesic target, seemingly devoid of many problematic Mu receptor side-effects. Kappa-selective, small molecule pharmaceutical agents have been developed, but centrally mediated side-effects limit clinical translation. We modify endogenous dynorphin peptides to improve drug-likeness and develop safer KOP receptor agonists for clinical use. Using rational, iterative design, we developed a series of potent, selective, and metabolically stable peptides from dynorphin 1-7. Peptides were assessed for in vitro cAMP-modulation against three opioid receptors, metabolic stability, KOP receptor selectivity, desensitisation and pERK-signalling capability. Lead peptides were evaluated for in vivo efficacy in a rat model of inflammatory nociception. A library of peptides was synthesised and assessed for pharmacological and metabolic stability. Promising peptide candidates showed low nanomolar KOP receptor selectivity in cAMP assay, and improved plasma and trypsin stability. Selected peptides showed bias towards cAMP signalling over pERK activity, also demonstrating reduced desensitisation. In vivo, two peptides showed significant opioid-like antinociception comparable to morphine and U50844H. These highly potent and metabolically stable peptides are promising opioid analgesic leads for clinical translation. Since they are somewhat biased peptide Kappa agonists they may lack many significant side-effects, such as tolerance, addiction, sedation, and euphoria/dysphoria, common to opioid analgesics.
Collapse
|
10
|
Schricker S, Kimmel M. Unravelling the pathophysiology of chronic kidney disease-associated pruritus. Clin Kidney J 2022; 14:i23-i31. [PMID: 34987780 PMCID: PMC8702819 DOI: 10.1093/ckj/sfab200] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 12/12/2022] Open
Abstract
For decades, itch related to chronic kidney disease (CKDaP) has been a clinical problem, but the aetiology and pathophysiology of CKDaP are still not yet fully understood—currently the underlying pathophysiological mechanisms are thought to be multifactorial. As new therapeutic targets have recently been identified and clinical trials have shown promising results, our current understanding of the interrelationships has expanded significantly. Here we review the pathophysiology and recent findings on modulation and sensitization of itch contributing to the development of CKDaP, covering hypothesis regarding immune system dysfunction, metabolic changes, uremic toxin deposition, peripheral neuropathy and imbalances in the endogenous opioid system.
Collapse
Affiliation(s)
- Severin Schricker
- Department of General Internal Medicine and Nephrology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Martin Kimmel
- Department of Internal Medicine, Division of Nephrology, Hypertension and Autoimmune Disorders, Alb-Fils Kliniken, Göppingen, Germany
| |
Collapse
|
11
|
Dworsky-Fried Z, Chadwick CI, Kerr BJ, Taylor AMW. Multiple Sclerosis and the Endogenous Opioid System. Front Neurosci 2021; 15:741503. [PMID: 34602975 PMCID: PMC8484329 DOI: 10.3389/fnins.2021.741503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by chronic inflammation, neuronal degeneration and demyelinating lesions within the central nervous system. The mechanisms that underlie the pathogenesis and progression of MS are not fully known and current therapies have limited efficacy. Preclinical investigations using the murine experimental autoimmune encephalomyelitis (EAE) model of MS, as well as clinical observations in patients with MS, provide converging lines of evidence implicating the endogenous opioid system in the pathogenesis of this disease. In recent years, it has become increasingly clear that endogenous opioid peptides, binding μ- (MOR), κ- (KOR) and δ-opioid receptors (DOR), function as immunomodulatory molecules within both the immune and nervous systems. The endogenous opioid system is also well known to play a role in the development of chronic pain and negative affect, both of which are common comorbidities in MS. As such, dysregulation of the opioid system may be a mechanism that contributes to the pathogenesis of MS and associated symptoms. Here, we review the evidence for a connection between the endogenous opioid system and MS. We further explore the mechanisms by which opioidergic signaling might contribute to the pathophysiology and symptomatology of MS.
Collapse
Affiliation(s)
- Zoë Dworsky-Fried
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Caylin I. Chadwick
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Bradley J. Kerr
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Anna M. W. Taylor
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Mitani K, Ito Y, Takene Y, Hatoya S, Sugiura K, Inaba T. Quality of life-improving effect of autologous ex vivo expanded cytotoxic and opioid-producing lymphocytes for dogs with cancers. Vet Immunol Immunopathol 2021; 238:110292. [PMID: 34246811 DOI: 10.1016/j.vetimm.2021.110292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/26/2021] [Accepted: 07/04/2021] [Indexed: 11/24/2022]
Abstract
Activated lymphocyte therapy is one of the immunotherapies for cancer patients that is expected to prolong life without any adverse effects and maintain satisfactory quality of life (QOL). However, the objective assessment and maintenance of a standardized evaluation of QOL are not easy. We aimed to evaluate activated autologous lymphocyte therapy for cancer dogs using the characteristics of the cultured cells and QOL as perceived by owners. In in vitro experiments, peripheral blood mononuclear cells (PBMCs) collected from healthy dogs were stimulated using anti-CD3 antibody and recombinant interleukin-2 under a closed system. The number of CD4+ and CD8+ T lymphocytes in the cultured cells was higher than that of PBMCs (P < 0.05). Natural killer activity, proenkephalin (known as the precursor of endogenous opioids) and interferon-γ mRNA in activated lymphocytes were significantly higher than in PBMCs (P < 0.05). Met-enkephalin was detected in activated lymphocytes. QOL of 58 dogs afflicted with common types of cancers in humans increased after every administration of activated lymphocyte therapy (P < 0.05). Overall, these results indicated that activated lymphocyte therapy could have beneficial effects on QOL in dogs with cancers. This was objectively evaluated and this improvement was related to presence of opioid-producing lymphocytes.
Collapse
Affiliation(s)
- Kosuke Mitani
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan; Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Yuki Ito
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan
| | - Yukio Takene
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan
| | - Shingo Hatoya
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Kikuya Sugiura
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Toshio Inaba
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan.
| |
Collapse
|
13
|
Abstract
The evolution of therapeutics for and management of human immunodeficiency virus-1 (HIV-1) infection has shifted it from predominately manifesting as a severe, acute disease with high mortality to a chronic, controlled infection with a near typical life expectancy. However, despite extensive use of highly active antiretroviral therapy, the prevalence of chronic widespread pain in people with HIV remains high even in those with a low viral load and high CD4 count. Chronic widespread pain is a common comorbidity of HIV infection and is associated with decreased quality of life and a high rate of disability. Chronic pain in people with HIV is multifactorial and influenced by HIV-induced peripheral neuropathy, drug-induced peripheral neuropathy, and chronic inflammation. The specific mechanisms underlying these three broad categories that contribute to chronic widespread pain are not well understood, hindering the development and application of pharmacological and nonpharmacological approaches to mitigate chronic widespread pain. The consequent insufficiencies in clinical approaches to alleviation of chronic pain in people with HIV contribute to an overreliance on opioids and alarming rise in active addiction and overdose. This article reviews the current understanding of the pathogenesis of chronic widespread pain in people with HIV and identifies potential biomarkers and therapeutic targets to mitigate it.
Collapse
Affiliation(s)
- Dylan R Addis
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer J DeBerry
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
14
|
Li J, Zhang Y, Illes P, Tang Y, Rubini P. Increasing Efficiency of Repetitive Electroacupuncture on Purine- and Acid-Induced Pain During a Three-Week Treatment Schedule. Front Pharmacol 2021; 12:680198. [PMID: 34040538 PMCID: PMC8141797 DOI: 10.3389/fphar.2021.680198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Acupuncture (AP) is an important constituent of the therapeutic repertoire of traditional Chinese medicine and has been widely used to alleviate chronic painful conditions all over the world. We studied in rats the efficiency of electroacupuncture (EAP) applied to the Zusanli acupoint (ST36) as an analgesic treatment over a 3-week period of time on purine (α,β-methylene ATP, dibenzoyl-ATP)- and acid (pH 6.0 medium)-induced pain in the rat paw. The two ATP derivatives stimulated P2X3 and P2X7 receptors, respectively, while the slightly acidic medium stimulated the “acid-sensitive ion channel 3” (ASIC3). It was found that the P2X7 receptor and ASIC-mediated pain was counteracted by EAP with greater efficiency at the end than at the beginning of the treatment schedule, while the P2X3 receptor–mediated pain was not. Our findings have important clinical and theoretical consequences, among others, because they are difficult to reconcile with the assumption that AP is primarily due to the release of peripheral and central opioid peptides causing the well-known tolerance to their effects. In consequence, AP is a convenient therapeutic instrument to treat subacute and chronic pain.
Collapse
Affiliation(s)
- Jie Li
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, China
| | - Ying Zhang
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, China
| | - Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, China.,International Collaborative Center on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Medicine, Chengdu, China.,Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, China.,International Collaborative Center on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Medicine, Chengdu, China
| | - Patrizia Rubini
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, China.,International Collaborative Center on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Medicine, Chengdu, China
| |
Collapse
|
15
|
Liu Q, He H, Mai L, Yang S, Fan W, Huang F. Peripherally Acting Opioids in Orofacial Pain. Front Neurosci 2021; 15:665445. [PMID: 34017236 PMCID: PMC8129166 DOI: 10.3389/fnins.2021.665445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
The activation of opioid receptors by exogenous or endogenous opioids can produce significant analgesic effects in peripheral tissues. Numerous researchers have demonstrated the expression of peripheral opioid receptors (PORs) and endogenous opioid peptides (EOPs) in the orofacial region. Growing evidence has shown the involvement of PORs and immune cell-derived EOPs in the modulation of orofacial pain. In this review, we discuss the role of PORs and EOPs in orofacial pain and the possible cellular mechanisms involved. Furthermore, the potential development of therapeutic strategies for orofacial pain is also summarized.
Collapse
Affiliation(s)
- Qing Liu
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lijia Mai
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Shengyan Yang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
16
|
Augé C, Basso L, Blanpied C, Vergnolle N, Gamé X, Chabot S, Lluel P, Dietrich G. Pain Management in a Model of Interstitial Cystitis/Bladder Pain Syndrome by a Vaccinal Strategy. FRONTIERS IN PAIN RESEARCH 2021; 2:642706. [PMID: 35295433 PMCID: PMC8915701 DOI: 10.3389/fpain.2021.642706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Current analgesic treatments for Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS) are limited. Here, we propose a novel antinociceptive strategy exploiting the opioid-mediated analgesic properties of T lymphocytes to relieve from bladder pain. In a chronic model of IC/BPS in rats, we show that a secondary T cell response against intravesically administered ovalbumin prevents from visceral pain in OVA-primed animals. The analgesic effect is associated with the recruitment of T lymphocytes within the inflamed mucosa and is reversed by naloxone-methiodide, a peripheral opioid receptor antagonist. Similarly, intravesical instillation of BCG or tetanus toxoid antigens in vaccinated rats protects from pain in the same model. We show opioid-dependent analgesic properties of local vaccine antigen recall in a preclinical rat model of chronic cystitis. Since BCG bladder instillation is regularly used in humans (as anticancer therapy), our results open it as a new therapeutic positioning for a pain management indication for IC/BPS patients.
Collapse
Affiliation(s)
- Céline Augé
- Urosphere, Department of Pain and Inflammation, Toulouse, France
| | - Lilian Basso
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xavier Gamé
- Urology Department, Rangueil University Hospital, Toulouse, France
- INSERM, I2MC-U1048, CHU Rangueil, Toulouse, France
| | - Sophie Chabot
- Urosphere, Department of Pain and Inflammation, Toulouse, France
| | - Philippe Lluel
- Urosphere, Department of Pain and Inflammation, Toulouse, France
- *Correspondence: Philippe Lluel
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
17
|
Zheng H, Lim JY, Seong JY, Hwang SW. The Role of Corticotropin-Releasing Hormone at Peripheral Nociceptors: Implications for Pain Modulation. Biomedicines 2020; 8:biomedicines8120623. [PMID: 33348790 PMCID: PMC7766747 DOI: 10.3390/biomedicines8120623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral nociceptors and their synaptic partners utilize neuropeptides for signal transmission. Such communication tunes the excitatory and inhibitory function of nociceptor-based circuits, eventually contributing to pain modulation. Corticotropin-releasing hormone (CRH) is the initiator hormone for the conventional hypothalamic-pituitary-adrenal axis, preparing our body for stress insults. Although knowledge of the expression and functional profiles of CRH and its receptors and the outcomes of their interactions has been actively accumulating for many brain regions, those for nociceptors are still under gradual investigation. Currently, based on the evidence of their expressions in nociceptors and their neighboring components, several hypotheses for possible pain modulations are emerging. Here we overview the historical attention to CRH and its receptors on the peripheral nociception and the recent increases in information regarding their roles in tuning pain signals. We also briefly contemplate the possibility that the stress-response paradigm can be locally intrapolated into intercellular communication that is driven by nociceptor neurons. Such endeavors may contribute to a more precise view of local peptidergic mechanisms of peripheral pain modulation.
Collapse
Affiliation(s)
- Haiyan Zheng
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (H.Z.); (J.Y.L.); (J.Y.S.)
| | - Ji Yeon Lim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (H.Z.); (J.Y.L.); (J.Y.S.)
| | - Jae Young Seong
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (H.Z.); (J.Y.L.); (J.Y.S.)
| | - Sun Wook Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (H.Z.); (J.Y.L.); (J.Y.S.)
- Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea
- Correspondence: ; Tel.: +82-2-2286-1204; Fax: +82-2-925-5492
| |
Collapse
|
18
|
Machelska H, Celik MÖ. Immune cell-mediated opioid analgesia. Immunol Lett 2020; 227:48-59. [PMID: 32814155 DOI: 10.1016/j.imlet.2020.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022]
Abstract
Pathological pain is regulated by a balance between pro-algesic and analgesic mechanisms. Interactions between opioid peptide-producing immune cells and peripheral sensory neurons expressing opioid receptors represent a powerful intrinsic pain control in animal models and in humans. Therefore, treatments based on general suppression of immune responses have been mostly unsuccessful. It is highly desirable to develop strategies that specifically promote neuro-immune communication mediated by opioids. Promising examples include vaccination-based recruitment of opioid-containing leukocytes to painful tissue and the local reprogramming of pro-algesic immune cells into analgesic cells producing and secreting high amounts of opioid peptides. Such approaches have the potential to inhibit pain at its origin and be devoid of central and systemic side effects of classical analgesics. In support of these concepts, in this article, we describe the functioning of peripheral opioid receptors, migration of opioid-producing immune cells to inflamed tissue, opioid peptide release, and the consequent pain relief. Conclusively, we provide clinical evidence and discuss therapeutic opportunities and challenges associated with immune cell-mediated peripheral opioid analgesia.
Collapse
Affiliation(s)
- Halina Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany.
| | - Melih Ö Celik
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
19
|
Heme attenuates beta-endorphin levels in leukocytes of HIV positive individuals with chronic widespread pain. Redox Biol 2020; 36:101684. [PMID: 32828015 PMCID: PMC7451624 DOI: 10.1016/j.redox.2020.101684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 12/27/2022] Open
Abstract
The prevalence of chronic widespread pain (CWP) in people with HIV is high, yet the underlying mechanisms are elusive. Leukocytes synthesize the endogenous opioid, β-endorphin, within their endoplasmic reticulum (ER). When released into plasma, β-endorphin dampens nociception by binding to opioid receptors on sensory neurons. We hypothesized that the heme-dependent redox signaling induces ER stress, which attenuates leukocyte β-endorphins levels/release, thereby increasing pain sensitivity in people with HIV. Results demonstrated that HIV positive individuals with CWP had increased plasma methemoglobin, erythrocytes membrane oxidation, hemolysis, and low plasma heme scavenging enzyme, hemopexin, compared to people with HIV without CWP and HIV-negative individuals with or without pain. In addition, the leukocytes from people with HIV with CWP had attenuated levels of the heme metabolizing enzyme, heme oxygenase-1, which metabolizes free heme to carbon-monoxide and biliverdin. These individuals also had elevated ER stress, and low β-endorphin in leukocytes. In vitro, heme exposure or heme oxygenase-1 deletion, decreased β-endorphins in murine monocytes/macrophages. Treating cells with a carbon-monoxide donor or an ER stress inhibitor, increased β-endorphins. To mimic hemolytic effects in a preclinical model, C57BL/6 mice were injected with phenylhydrazine hydrochloride (PHZ). PHZ increased cell-free heme and ER stress, decreased leukocyte β-endorphin levels and hindpaw mechanical sensitivity thresholds. Treatment of PHZ-injected mice with hemopexin blocked these effects, suggesting that heme-induced ER stress and a subsequent decrease in leukocyte β-endorphin is responsible for hypersensitivity in people with HIV.
Collapse
|
20
|
Rogers TJ. Bidirectional Regulation of Opioid and Chemokine Function. Front Immunol 2020; 11:94. [PMID: 32076421 PMCID: PMC7006827 DOI: 10.3389/fimmu.2020.00094] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
The opioid family of GPCRs consists of the classical opioid receptors, designated μ-, κ-, and δ-opioid receptors, and the orphanin-FQ receptor, and these proteins are expressed on both neuronal and hematopoietic cells. A number of laboratories have reported that an important degree of cross-talk can occur between the opioid receptors and the chemokine and chemokine receptor families. As a part of this, the opioid receptors are known to regulate the expression of certain chemokines and chemokine receptors, including those that possess strong pro-inflammatory activity. At the level of receptor function, it is clear that certain members of the chemokine family can mediate cross-desensitization of the opioid receptors. Conversely, the opioid receptors are all able to induce heterologous desensitization of some of the chemokine receptors. Consequently, activation of one or more of the opioid receptors can selectively cross-desensitize chemokine receptors and regulate chemokine function. These cross-talk processes have significant implications for the inflammatory response, since the regulation of both the recruitment of inflammatory cells, as well as the sensation of pain, can be controlled in this way.
Collapse
Affiliation(s)
- Thomas J Rogers
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
21
|
Cabanas H, Muraki K, Staines D, Marshall-Gradisnik S. Naltrexone Restores Impaired Transient Receptor Potential Melastatin 3 Ion Channel Function in Natural Killer Cells From Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. Front Immunol 2019; 10:2545. [PMID: 31736966 PMCID: PMC6834647 DOI: 10.3389/fimmu.2019.02545] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a seriously long-term and debilitating illness of unknown cause hallmarked by chronic pain and fatigue, memory and concentration impairment, and inflammation. ME/CFS hypothesis involves impaired Transient receptor potential melastatin 3 (TRPM3) ion channel function, affecting calcium signaling and Natural killer (NK) cell functions. Currently, substances called opioids, agonists of mu (μ)-opioid receptors (μOR), are the strongest painkillers clinically available for people suffering from strong or long-lasting pain characteristic of ME/CFS. μOR have been reported to specifically inhibit TRPM3 and to be expressed in immune cells where they play an immunomodulatory and immunosuppressive role. Naltrexone hydrochloride (NTX) acts as an antagonist to the μOR thus negating the inhibitory function of this opioid receptor on TRPM3. Therefore, understanding the mechanism of action for NTX in regulating and modulating TRPM3 channel function in NK cells will provide important information for the development of effective therapeutic interventions for ME/CFS. Whole-cell patch-clamp technique was used to measure TRPM3 activity in Interleukin-2 (IL-2) stimulated and NTX-treated NK cells for 24 h on eight ME/CFS patients and 8 age- and sex-matched healthy controls, after modulation with a TRPM3-agonist, pregnenolone sulfate (PregS), NTX and a TRPM3-antagonist, ononetin. We confirmed impaired TRPM3 function in ME/CFS patients through electrophysiological investigations in IL-2 stimulated NK cells after modulation with PregS and ononetin. Importantly, TRPM3 channel activity was restored in IL-2 stimulated NK cells isolated from ME/CFS patients after incubation for 24 h with NTX. Moreover, we demonstrated that NTX does not act as an agonist by directly coupling on the TRPM3 ion channel gating. The opioid antagonist NTX has the potential to negate the inhibitory function of opioid receptors on TRPM3 in NK cells from ME/CFS patients, resulting in calcium signals remodeling, which will in turn affect cell functions, supporting the hypothesis that NTX may have potential for use as a treatment for ME/CFS. Our results demonstrate, for the first time, and based on novel patch clamp electrophysiology, potential pharmaco-therapeutic interventions in ME/CFS.
Collapse
Affiliation(s)
- Helene Cabanas
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Katsuhiko Muraki
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia.,Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Donald Staines
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Sonya Marshall-Gradisnik
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
22
|
Komla E, Stevens DL, Zheng Y, Zhang Y, Dewey WL, Akbarali HI. Experimental Colitis Enhances the Rate of Antinociceptive Tolerance to Morphine via Peripheral Opioid Receptors. J Pharmacol Exp Ther 2019; 370:504-513. [PMID: 31248978 PMCID: PMC6806632 DOI: 10.1124/jpet.119.256941] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/24/2019] [Indexed: 01/21/2023] Open
Abstract
Opioids are highly effective analgesics, however, their therapeutic use is limited by adverse effects that include respiratory depression, dependence, and tolerance. Inflammation has been implicated as a significant driver for the development of tolerance to opioids. Recent studies show that chronic morphine in mice results in gut microbial dysbiosis and inflammation in the colon. In the present study, we examined whether colonic inflammation results in tolerance to the antinociceptive effects of morphine. Colonic inflammation was induced in mice by intrarectal administration of 2,4,6-trinitro-benzene sulfonic acid. The development of antinociceptive tolerance was determined by warm-water tail-immersion assay in mice implanted with 25-, 50-, or 75-mg morphine pellet. Colonic inflammation significantly enhanced the rate at which tolerance developed in each cohort of chronic morphine-treated mice. At the lowest dose of morphine pellet (25 mg), antinociceptive tolerance only developed in the presence of colonic inflammation, whereas in 50- and 75-mg pelleted mice, tolerance developed faster in the inflamed animals than in the noninflamed mice. The enhanced antinociceptive tolerance was attenuated with daily administration of peripheral opioid receptor antagonist, 6β-N-heterocyclic-substituted naltrexamine derivative [17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(4'pyridyl)acetamido]morphinan (NAP)], irrespective of colonic inflammation. Collectively, these findings show that the rate of tolerance to morphine antinociception is exaggerated in the presence of colonic inflammation, and tolerance is prevented by a peripheral μ-opioid receptor antagonist. These studies suggest a peripheral component to the development of antinociceptive tolerance to opioids. Furthermore, peripherally selective opioid antagonists may be useful adjuncts in opioid-based pain management. SIGNIFICANCE STATEMENT: This study supports the notion that inflammation influences the development of antinociceptive tolerance to chronic morphine exposure. We found that, in the presence of colonic inflammation, the rate of development of tolerance to the antinociceptive effects of morphine increased. We also found that treatment with a peripheral opioid receptor antagonist prevented morphine antinociceptive tolerance. Increasing opioid intake during an inflammatory state would result in decreased analgesia and enhanced analgesic tolerance, which puts patients with inflammatory bowel diseases, inflammatory joint diseases, and sickle cell anemia at risk for heavy opioid use.
Collapse
Affiliation(s)
- Essie Komla
- Departments of Pharmacology and Toxicology (E.K., D.L.S., W.L.D., H.I.A.) and Medicinal Chemistry (Y.Zhe., Y.Zha.), Virginia Commonwealth University, Richmond, Virginia
| | - David L Stevens
- Departments of Pharmacology and Toxicology (E.K., D.L.S., W.L.D., H.I.A.) and Medicinal Chemistry (Y.Zhe., Y.Zha.), Virginia Commonwealth University, Richmond, Virginia
| | - Yi Zheng
- Departments of Pharmacology and Toxicology (E.K., D.L.S., W.L.D., H.I.A.) and Medicinal Chemistry (Y.Zhe., Y.Zha.), Virginia Commonwealth University, Richmond, Virginia
| | - Yan Zhang
- Departments of Pharmacology and Toxicology (E.K., D.L.S., W.L.D., H.I.A.) and Medicinal Chemistry (Y.Zhe., Y.Zha.), Virginia Commonwealth University, Richmond, Virginia
| | - William L Dewey
- Departments of Pharmacology and Toxicology (E.K., D.L.S., W.L.D., H.I.A.) and Medicinal Chemistry (Y.Zhe., Y.Zha.), Virginia Commonwealth University, Richmond, Virginia
| | - Hamid I Akbarali
- Departments of Pharmacology and Toxicology (E.K., D.L.S., W.L.D., H.I.A.) and Medicinal Chemistry (Y.Zhe., Y.Zha.), Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
23
|
Overexpression of µ-Opioid Receptors in Peripheral Afferents, but Not in Combination with Enkephalin, Decreases Neuropathic Pain Behavior and Enhances Opioid Analgesia in Mouse. Anesthesiology 2019; 128:967-983. [PMID: 29334500 DOI: 10.1097/aln.0000000000002063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The current study used recombinant herpes simplex virus type I to increase expression of µ-opiate receptors and the opioid ligand preproenkephalin in peripheral nerve fibers in a mouse model of neuropathic pain. It was predicted that viral vector delivery of a combination of genes encoding the µ-opioid receptor and preproenkephalin would attenuate neuropathic pain and enhance opioid analgesia. The behavioral effects would be paralleled by changes in response properties of primary afferent neurons. METHODS Recombinant herpes simplex virus type 1 containing cDNA sequences of the µ-opioid receptor, human preproenkephalin, a combination, or Escherichia coli lacZ gene marker (as a control) was used to investigate the role of peripheral opioids in neuropathic pain behaviors. RESULTS Inoculation with the µ-opioid receptor viral vector (n = 13) reversed mechanical allodynia and thermal hyperalgesia and produced leftward shifts in loperamide (ED50 = 0.6 ± 0.2 mg/kg vs. ED50 = 0.9 ± 0.2 mg/kg for control group, n = 8, means ± SD) and morphine dose-response curves (ED50 = 0.3 ± 0.5 mg/kg vs. ED50 = 1.1 ± 0.1 mg/kg for control group). In µ-opioid receptor viral vector inoculated C-fibers, heat-evoked responses (n = 12) and ongoing spontaneous activity (n = 18) were decreased after morphine application. Inoculation with both µ-opioid receptor and preproenkephalin viral vectors did not alter mechanical and thermal responses. CONCLUSIONS Increasing primary afferent expression of opioid receptors can decrease neuropathic pain-associated behaviors and increase systemic opioid analgesia through inhibition of peripheral afferent fiber activity.
Collapse
|
24
|
Increased pain sensitivity and decreased opioid analgesia in T-cell-deficient mice and implications for sex differences. Pain 2019; 160:358-366. [PMID: 30335680 DOI: 10.1097/j.pain.0000000000001420] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The processing of pain in the central nervous system is now known to have an important immune component, including T cells of the adaptive immune system. T cells have been shown to release endogenous opioids, and although it is well known that opioids have effects on T-cell populations, very little attention has been given to the converse: how T cells may affect opioid regulation. We find here that, in addition to displaying significantly increased baseline pain sensitivity across various pain modalities, T-cell-deficient mice (CD-1 nude, Rag1 null mutant, and Cd4 null mutant) exhibit pronounced deficiencies in morphine inhibition of thermal or inflammatory pain. Nude mice are also deficient in endogenous opioid-mediated analgesia, exhibiting no stress-induced analgesia from restraint. The relevant T-cell subpopulation seems to be CD4 T cells because adoptive transfer of them but not CD8 cells into nude mice rescues both the pain and morphine analgesia phenotypes. As previously reported, we also observe a sex difference in CD-1 mice, with females requiring 2- to 3-fold more morphine than males to produce equal analgesia. Nude mice display no sex differences in morphine analgesia, and the sex difference is restored in nude mice of either sex receiving CD4 T cells from CD-1 donor male or female mice. These results suggest that CD4 T cells play an as yet unappreciated role in opioid analgesia and may be a driver of sex differences therein.
Collapse
|
25
|
Mobilization of CD4+ T lymphocytes in inflamed mucosa reduces pain in colitis mice: toward a vaccinal strategy to alleviate inflammatory visceral pain. Pain 2019; 159:331-341. [PMID: 29140925 DOI: 10.1097/j.pain.0000000000001103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
T lymphocytes play a pivotal role in endogenous regulation of inflammatory visceral pain. The analgesic activity of T lymphocytes is dependent on their production of opioids, a property acquired on antigen activation. Accordingly, we investigated whether an active recruitment of T lymphocytes within inflamed colon mucosa via a local vaccinal strategy may counteract inflammation-induced visceral pain in mice. Mice were immunized against ovalbumin (OVA). One month after immunization, colitis was induced by adding 3% (wt/vol) dextran sulfate sodium into drinking water containing either cognate antigen OVA or control antigen bovine serum albumin for 5 days. Noncolitis OVA-primed mice were used as controls. Visceral sensitivity was then determined by colorectal distension. Oral administration of OVA but not bovine serum albumin significantly reduced dextran sulfate sodium-induced abdominal pain without increasing colitis severity in OVA-primed mice. Analgesia was dependent on local release of enkephalins by effector anti-OVA T lymphocytes infiltrating the inflamed mucosa. The experiments were reproduced with the bacillus Calmette-Guerin vaccine as antigen. Similarly, inflammatory visceral pain was dramatically alleviated in mice vaccinated against bacillus Calmette-Guerin and then locally administered with live Mycobacterium bovis. Together, these results show that the induction of a secondary adaptive immune response against vaccine antigens in inflamed mucosa may constitute a safe noninvasive strategy to relieve from visceral inflammatory pain.
Collapse
|
26
|
Tuerxun H, Cui J. The dual effect of morphine on tumor development. Clin Transl Oncol 2018; 21:695-701. [PMID: 30470993 DOI: 10.1007/s12094-018-1974-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
Morphine is a classic opioid drug used for reducing pain and is commonly prescribed as an effective drug to control cancer pain. Morphine has a direct role in the central nervous system to relieve pain, but because of its peripheral functions, morphine also has some side effects, such as nausea, constipation, and addiction (Gupta et al. in Sci World J 2015:10, 2015). In addition to its analgesic effect, the role of morphine in tumor development is an important question that has been investigated for many years with conflicting results. Numerous studies suggest that morphine has a role in both promoting and inhibiting tumor growth. In this extensive review, we attempt to comprehensively understand the effects of morphine and summarize both its positive and negative influences on various aspects of tumors, including tumor growth, angiogenesis, metastasis, inflammation, and immunomodulation.
Collapse
Affiliation(s)
- H Tuerxun
- The First Hospital of Jilin University, Jilin City, China
| | - J Cui
- The First Hospital of Jilin University, Jilin City, China.
| |
Collapse
|
27
|
Tejada MÁ, Montilla-García Á, González-Cano R, Bravo-Caparrós I, Ruiz-Cantero MC, Nieto FR, Cobos EJ. Targeting immune-driven opioid analgesia by sigma-1 receptors: Opening the door to novel perspectives for the analgesic use of sigma-1 antagonists. Pharmacol Res 2018; 131:224-230. [PMID: 29454675 DOI: 10.1016/j.phrs.2018.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 12/16/2022]
Abstract
Immune cells have a known role in pronociception, since they release a myriad of inflammatory algogens which interact with neurons to facilitate pain signaling. However, these cells also produce endogenous opioid peptides with analgesic potential. The sigma-1 receptor is a ligand-operated chaperone that modulates neurotransmission by interacting with multiple protein partners, including the μ-opioid receptor. We recently found that sigma-1 antagonists are able to induce opioid analgesia by enhancing the action of endogenous opioid peptides of immune origin during inflammation. This opioid analgesia is seen only at the inflamed site, where immune cells naturally accumulate. In this article we review the difficulties of targeting the opioid system for selective pain relief, and discuss the dual role of immune cells in pain and analgesia. Our discussion creates perspectives for possible novel therapeutic uses of sigma-1 antagonists as agents able to maximize the analgesic potential of the immune system.
Collapse
Affiliation(s)
- Miguel Á Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neurosciences, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
| | - Ángeles Montilla-García
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neurosciences, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
| | - Rafael González-Cano
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Inmaculada Bravo-Caparrós
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neurosciences, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
| | - M Carmen Ruiz-Cantero
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neurosciences, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
| | - Francisco R Nieto
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neurosciences, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain; Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neurosciences, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain; Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain; Teófilo Hernando Institute for Drug Discovery, 28029 Madrid, Spain.
| |
Collapse
|
28
|
Salaffi F, Giacobazzi G, Di Carlo M. Chronic Pain in Inflammatory Arthritis: Mechanisms, Metrology, and Emerging Targets-A Focus on the JAK-STAT Pathway. Pain Res Manag 2018; 2018:8564215. [PMID: 29623147 PMCID: PMC5829432 DOI: 10.1155/2018/8564215] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022]
Abstract
Chronic pain is nowadays considered not only the mainstay symptom of rheumatic diseases but also "a disease itself." Pain is a multidimensional phenomenon, and in inflammatory arthritis, it derives from multiple mechanisms, involving both synovitis (release of a great number of cytokines) and peripheral and central pain-processing mechanisms (sensitization). In the last years, the JAK-STAT pathway has been recognized as a pivotal component both in the inflammatory process and in pain amplification in the central nervous system. This paper provides a summary on pain in inflammatory arthritis, from pathogenesis to clinimetric instruments and treatment, with a focus on the JAK-STAT pathway.
Collapse
Affiliation(s)
- Fausto Salaffi
- Rheumatology Department, Università Politecnica delle Marche, Jesi, Ancona, Italy
| | | | - Marco Di Carlo
- Rheumatology Department, Università Politecnica delle Marche, Jesi, Ancona, Italy
| |
Collapse
|
29
|
Jacobi CLJ, Stein C. Inflammatory-linked changes in CpG island methylation of three opioid peptide genes in a rat model for pain. PLoS One 2018; 13:e0191698. [PMID: 29352321 PMCID: PMC5774833 DOI: 10.1371/journal.pone.0191698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/09/2018] [Indexed: 11/19/2022] Open
Abstract
Expression of the opioid peptide genes proopiomelanocortin (Pomc), proenkephalin (Penk), and prodynorphin (Pdyn), in immune cells plays a key role in endogenous pain control. In a rat model of painful unilateral paw inflammation, we isolated cells from popliteal lymph nodes and evaluated the role of CpG island C5-methylation on the transcriptional activation of those genes. Using methylated DNA immunoprecipitation, we sorted gDNA into methylated (me) and non-me fractions and then determined the CpG island methylation status of each fraction via quantitative Real Time-PCR (qRT-PCR). In silico analysis by MethPrimer software identified one CpG island in Pdyn and three each in Pomc and Penk. No substantial changes in C5-methylation of any gene were observed. In conclusion, the CpG island methylation status does not seem to be a key regulator of opioid gene activation in immune cells during peripheral tissue inflammation.
Collapse
Affiliation(s)
- Charlotte Louise Justine Jacobi
- Klinik für Anästhesiologie und operative Intensivmedizin, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| | - Christoph Stein
- Klinik für Anästhesiologie und operative Intensivmedizin, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
30
|
Dantzer R. Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa. Physiol Rev 2018; 98:477-504. [PMID: 29351513 PMCID: PMC5866360 DOI: 10.1152/physrev.00039.2016] [Citation(s) in RCA: 607] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 06/05/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
Because of the compartmentalization of disciplines that shaped the academic landscape of biology and biomedical sciences in the past, physiological systems have long been studied in isolation from each other. This has particularly been the case for the immune system. As a consequence of its ties with pathology and microbiology, immunology as a discipline has largely grown independently of physiology. Accordingly, it has taken a long time for immunologists to accept the concept that the immune system is not self-regulated but functions in close association with the nervous system. These associations are present at different levels of organization. At the local level, there is clear evidence for the production and use of immune factors by the central nervous system and for the production and use of neuroendocrine mediators by the immune system. Short-range interactions between immune cells and peripheral nerve endings innervating immune organs allow the immune system to recruit local neuronal elements for fine tuning of the immune response. Reciprocally, immune cells and mediators play a regulatory role in the nervous system and participate in the elimination and plasticity of synapses during development as well as in synaptic plasticity at adulthood. At the whole organism level, long-range interactions between immune cells and the central nervous system allow the immune system to engage the rest of the body in the fight against infection from pathogenic microorganisms and permit the nervous system to regulate immune functioning. Alterations in communication pathways between the immune system and the nervous system can account for many pathological conditions that were initially attributed to strict organ dysfunction. This applies in particular to psychiatric disorders and several immune-mediated diseases. This review will show how our understanding of this balance between long-range and short-range interactions between the immune system and the central nervous system has evolved over time, since the first demonstrations of immune influences on brain functions. The necessary complementarity of these two modes of communication will then be discussed. Finally, a few examples will illustrate how dysfunction in these communication pathways results in what was formerly considered in psychiatry and immunology to be strict organ pathologies.
Collapse
Affiliation(s)
- Robert Dantzer
- Department of Symptom Research, University of Texas MD Anderson Cancer Center , Houston, Texas
| |
Collapse
|
31
|
Seo SY, Lee KB, Shin JS, Lee J, Kim MR, Ha IH, Ko Y, Lee YJ. Effectiveness of Acupuncture and Electroacupuncture for Chronic Neck Pain: A Systematic Review and Meta-Analysis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1573-1595. [DOI: 10.1142/s0192415x17500859] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this systematic review was to assess evidence from randomized controlled trials (RCTs) on the effectiveness and safety of acupuncture and electroacupuncture in patients with chronic neck pain. We searched nine databases including Chinese, Japanese and Korean databases through 30 July 2016. The participants were adults with chronic neck pain and were treated with acupuncture or electroacupuncture. Eligible trials were those with intervention groups receiving acupuncture and electroacupuncture with or without active control, and control groups receiving other conventional treatments such as physical therapy or medication. Outcomes included pain intensity, disability, quality of life (QoL) and adverse effects. For statistical pooling, the standardized mean difference (SMD) and its 95% confidence interval (CI) were calculated using a fixed-effects model. Sixteen RCTs were selected. The comparison of the sole acupuncture group and the active control group did not come out with a significant difference in pain (SMD 0.24, 95% CI [Formula: see text]0.27–0.75), disability (SMD 0.51, 95% CI [Formula: see text]0.01–1.02), or QoL (SMD [Formula: see text]0.37, 95% CI [Formula: see text]1.09–0.35), showing a similar effectiveness of acupuncture with active control. When acupuncture was added into the control group, the acupuncture add-on group showed significantly higher relief of pain in studies with unclear allocation concealment (SMD [Formula: see text]1.78, 95% CI [Formula: see text]2.08–[Formula: see text]1.48), but did not show significant relief of pain in studies with good allocation concealment (SMD [Formula: see text]0.07, 95% CI [Formula: see text]0.26–0.12). Significant relief of pain was observed when the sole electroacupuncture group was compared to the control group or electroacupuncture was added onto the active control group, but a lot of the results were evaluated to have low level of evidence, making it difficult to draw clear conclusions. In the result reporting adverse effects, no serious outcome of adverse event was confirmed. Acupuncture and conventional medicine for chronic neck pain have similar effectiveness on pain and disability when compared solely between the two of them. When acupuncture was added onto conventional treatment it relieved pain better, and electroacupuncture relieved pain even more. It is difficult to draw conclusion because the included studies have a high risk of bias and imprecision. Therefore better designed large-scale studies are needed in the future.
Collapse
Affiliation(s)
- See Yoon Seo
- Department of Korean Medicine, College of Korean Medicine, Sangji University, Wonju, Republic of Korea
| | - Ki-Beom Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Joon-Shik Shin
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Jinho Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Me-Riong Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Youme Ko
- Department of Korean Preventive Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| |
Collapse
|
32
|
Zhang XY, Liang YX, Yan Y, Dai Z, Chu HC. Morphine: double-faced roles in the regulation of tumor development. Clin Transl Oncol 2017; 20:808-814. [DOI: 10.1007/s12094-017-1796-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/05/2017] [Indexed: 12/31/2022]
|
33
|
Grandhi RK, Lee S, Abd-Elsayed A. Does Opioid Use Cause Angiogenesis and Metastasis? PAIN MEDICINE 2017; 18:140-151. [PMID: 27346886 DOI: 10.1093/pm/pnw132] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Objective To provide a comprehensive overview of the potential for morphine to lead to angiogenesis and metastasis. Background Morphine is often the treatment of choice for severe cancer-related pain. Small studies have been emerging that indicate that opioids may influence angiogenesis and metastasis, but this has not yet been comprehensively synthesized. Purpose To highlight morphine's relationship with angiogenesis and metastasis in in vitro models. Method A review of the literature was conducted using PubMed (1966 to 2015) and Cochrane Library (1987 to 2015) electronic databases. The search, as well as consultation with experts, yielded 84 articles for initial review, 12 of which met inclusion for review. Possible theories of the underlying etiology of the metastasis and angiogenesis were recorded. Results All studies were assessed using the PRISMA checklist. Conclusion This systematic review demonstrates that morphine has a potential causal relationship with angiogenesis and metastasis. This is likely due to multiple etiologies, including immunosuppressive, pro-inflammatory, and pro-angiogenetic.
Collapse
Affiliation(s)
- Ravi K Grandhi
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, OH, USA
| | - Samuel Lee
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, OH, USA
| | - Alaa Abd-Elsayed
- Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
34
|
T-Cell Mediation of Pregnancy Analgesia Affecting Chronic Pain in Mice. J Neurosci 2017; 37:9819-9827. [PMID: 28877966 DOI: 10.1523/jneurosci.2053-17.2017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 01/02/2023] Open
Abstract
It has been reported consistently that many female chronic pain sufferers have an attenuation of symptoms during pregnancy. Rats display increased pain tolerance during pregnancy due to an increase in opioid receptors in the spinal cord. Past studies did not consider the role of non-neuronal cells, which are now known to play an important role in chronic pain processing. Using an inflammatory (complete Freund's adjuvant) or neuropathic (spared nerve injury) model of persistent pain, we observed that young adult female mice in early pregnancy switch from a microglia-independent to a microglia-dependent pain hypersensitivity mechanism. During late pregnancy, female mice show no evidence of chronic pain whatsoever. This pregnancy-related analgesia is reversible by intrathecal administration of naloxone, suggesting an opioid-mediated mechanism; pharmacological and genetic data suggest the importance of δ-opioid receptors. We also observe that T-cell-deficient (nude and Rag1-null mutant) pregnant mice do not exhibit pregnancy analgesia, which can be rescued with the adoptive transfer of CD4+ or CD8+ T cells from late-pregnant wild-type mice. These results suggest that T cells are a mediator of the opioid analgesia exhibited during pregnancy.SIGNIFICANCE STATEMENT Chronic pain symptoms often subside during pregnancy. This pregnancy-related analgesia has been demonstrated for acute pain in rats. Here, we show that pregnancy analgesia can produce a complete cessation of chronic pain behaviors in mice. We show that the phenomenon is dependent on pregnancy hormones (estrogen and progesterone), δ-opioid receptors, and T cells of the adaptive immune system. These findings add to the recent but growing evidence of sex-specific T-cell involvement in chronic pain processing.
Collapse
|
35
|
Hess NCL, Smart NA. Isometric Exercise Training for Managing Vascular Risk Factors in Mild Cognitive Impairment and Alzheimer's Disease. Front Aging Neurosci 2017; 9:48. [PMID: 28316570 PMCID: PMC5334511 DOI: 10.3389/fnagi.2017.00048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia diagnosed amongst the elderly. Mild cognitive impairment (MCI) is a condition often indicative of the earliest symptomatology of AD with 10%–15% of MCI patients reportedly progressing to a diagnosis of AD. Individuals with a history of vascular risk factors (VRF’s) are considered high risk candidates for developing cognitive impairment in later life. Evidence suggests that vascular injury resulting from untreated VRF’s promotes progression from MCI to AD and exacerbates the severity of dementia in AD, and neuroimaging studies have found that the neurodegenerative processes associated with AD are heavily driven by VRF’s that promote cerebral hypoperfusion. Subsequently, common links between vascular disorders such as hypertension and neurodegenerative disorders such as AD include compromised vasculature, cerebral hypoperfusion and chronic low grade inflammation (a hallmark of both hypertension and AD). Exercise has been demonstrated to be an effective intervention for blood pressure management, chronic low grade inflammation and improvements in cognition. Data from recent analyses suggests that isometric exercise training (IET) may improve vascular integrity and elicit blood pressure reductions in hypertensives greater than those seen with dynamic aerobic and resistance exercise. IET may also play an effective role in the management of VRF’s at the MCI stage of AD and may prove to be a significant strategy in the prevention, attenuation or delay of progression to AD. A plausible hypothesis is that the reactive hyperemia stimulated by IET initiates a cascade of vascular, neurotrophic and neuro-endocrine events that lead to improvements in cognitive function.
Collapse
Affiliation(s)
- Nicole C L Hess
- School of Science and Technology, University of New England Armidale, NSW, Australia
| | - Neil A Smart
- School of Science and Technology, University of New England Armidale, NSW, Australia
| |
Collapse
|
36
|
Morgan M, Heffernan A, Benhabib F, Wagner S, Hewavitharana AK, Shaw PN, Cabot PJ. The efficacy of Dynorphin fragments at the κ, μ and δ opioid receptor in transfected HEK cells and in an animal model of unilateral peripheral inflammation. Peptides 2017; 89:9-16. [PMID: 28049031 DOI: 10.1016/j.peptides.2016.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/20/2016] [Accepted: 12/30/2016] [Indexed: 11/16/2022]
Abstract
Dynorphin 1-17 is an endogenous peptide that is released at sites of inflammation by leukocytes, binding preferentially to κ-opioid receptors (KOP) to mediate nociception. We have previously shown that dynorphin 1-17 is rapidly biotransformed to smaller peptide fragments in inflamed tissue homogenate. This study aimed to determine the efficacy and potency of selected dynorphin fragments produced in an inflamed environment at the KOP, μ and δ-opioid receptors (MOP and DOP respectively) and in a model of inflammatory pain. Functional activity of Dynorphin 1-17 and fragments (1-6, 1-7 and 1-9) were screened over a range of concentrations against forskolin stimulated human embryonic kidney 293 (HEK) cells stably transfected with one of KOP, MOP or DOP. The analgesic activity of dynorphin 1-7 in a unilateral model of inflammatory pain was subsequently tested. Rats received unilateral intraplantar injections of Freund's Complete Adjuvant to induce inflammation. After six days rats received either dynorphin 1-7, 1-17 or the selective KOP agonist U50488H and mechanical allodynia determined. Dynorphin 1-7 and 1-9 displayed the greatest activity across all receptor subtypes, while dynorphin 1-7, 1-9 and 1-17 displaying a potent activation of both KOP and DOP evidenced by cAMP inihibition. Administration of dynorphin 1-7 and U50488H, but not dynorphin 1-17 resulted in a significant increase in paw pressure threshold at an equimolar dose suggesting the small peptide dynorphin 1-7 mediates analgesia. These results show that dynorphin fragments produced in an inflamed tissue homogenate have changed activity at the opioid receptors and that dynorphin 1-7 mediates analgesia.
Collapse
Affiliation(s)
- M Morgan
- School of Pharmacy, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - A Heffernan
- School of Pharmacy, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - F Benhabib
- School of Pharmacy, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - S Wagner
- School of Pharmacy, The University of Queensland, Brisbane, Qld, 4072, Australia.
| | - A K Hewavitharana
- School of Pharmacy, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - P N Shaw
- School of Pharmacy, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - P J Cabot
- School of Pharmacy, The University of Queensland, Brisbane, Qld, 4072, Australia.
| |
Collapse
|
37
|
Maddila SC, Busch-Dienstfertig M, Stein C. B Lymphocytes Express Pomc mRNA, Processing Enzymes and β-Endorphin in Painful Inflammation. J Neuroimmune Pharmacol 2016; 12:180-186. [DOI: 10.1007/s11481-016-9715-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/20/2016] [Indexed: 01/31/2023]
|
38
|
Celik MÖ, Labuz D, Henning K, Busch-Dienstfertig M, Gaveriaux-Ruff C, Kieffer BL, Zimmer A, Machelska H. Leukocyte opioid receptors mediate analgesia via Ca(2+)-regulated release of opioid peptides. Brain Behav Immun 2016; 57:227-242. [PMID: 27139929 DOI: 10.1016/j.bbi.2016.04.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 12/23/2022] Open
Abstract
Opioids are the most powerful analgesics. As pain is driven by sensory transmission and opioid receptors couple to inhibitory G proteins, according to the classical concept, opioids alleviate pain by activating receptors on neurons and blocking the release of excitatory mediators (e.g., substance P). Here we show that analgesia can be mediated by opioid receptors in immune cells. We propose that activation of leukocyte opioid receptors leads to the secretion of opioid peptides Met-enkephalin, β-endorphin and dynorphin A (1-17), which subsequently act at local neuronal receptors, to relieve pain. In a mouse model of neuropathic pain induced by a chronic constriction injury of the sciatic nerve, exogenous agonists of δ-, μ- and κ-opioid receptors injected at the damaged nerve infiltrated by opioid peptide- and receptor-expressing leukocytes, produced analgesia, as assessed with von Frey filaments. The analgesia was attenuated by pharmacological or genetic inactivation of opioid peptides, and by leukocyte depletion. This decrease in analgesia was restored by the transfer of wild-type, but not opioid receptor-lacking leukocytes. Ex vivo, exogenous opioids triggered secretion of opioid peptides from wild-type immune cells isolated from damaged nerves, which was diminished by blockade of Gαi/o or Gβγ (but not Gαs) proteins, by chelator of intracellular (but not extracellular) Ca(2+), by blockers of phospholipase C (PLC) and inositol 1,4,5-trisphosphate (IP3) receptors, and was partially attenuated by protein kinase C inhibitor. Similarly, the leukocyte depletion-induced decrease in exogenous opioid analgesia was re-established by transfer of immune cells ex vivo pretreated with extracellular Ca(2+) chelator, but was unaltered by leukocytes pretreated with intracellular Ca(2+) chelator or blockers of Gαi/o and Gβγ proteins. Thus, both ex vivo opioid peptide release and in vivo analgesia were mediated by leukocyte opioid receptors coupled to the Gαi/o-Gβγ protein-PLC-IP3 receptors-intracellular Ca(2+) pathway. Our findings suggest that opioid receptors in immune cells are important targets for the control of pathological pain.
Collapse
Affiliation(s)
- Melih Ö Celik
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany.
| | - Dominika Labuz
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany.
| | - Karen Henning
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany.
| | - Melanie Busch-Dienstfertig
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany.
| | - Claire Gaveriaux-Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.
| | - Brigitte L Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Douglas Hospital Research Center, McGill University, Montreal H4H 1R3, Canada.
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, 53105 Bonn, Germany.
| | - Halina Machelska
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany.
| |
Collapse
|
39
|
Distinct roles of exogenous opioid agonists and endogenous opioid peptides in the peripheral control of neuropathy-triggered heat pain. Sci Rep 2016; 6:32799. [PMID: 27605249 PMCID: PMC5015056 DOI: 10.1038/srep32799] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/16/2016] [Indexed: 12/14/2022] Open
Abstract
Neuropathic pain often results from peripheral nerve damage, which can involve immune response. Local leukocyte-derived opioid peptides or exogenous opioid agonists inhibit neuropathy-induced mechanical hypersensitivity in animal models. Since neuropathic pain can also be augmented by heat, in this study we investigated the role of opioids in the modulation of neuropathy-evoked heat hypersensitivity. We used a chronic constriction injury of the sciatic nerve in wild-type and opioid peptide-knockout mice, and tested opioid effects in heat and mechanical hypersensitivity using Hargreaves and von Frey tests, respectively. We found that although perineural exogenous opioid agonists, including peptidergic ligands, were effective, the endogenous opioid peptides β-endorphin, Met-enkephalin and dynorphin A did not alleviate heat hypersensitivity. Specifically, corticotropin-releasing factor, an agent triggering opioid peptide secretion from leukocytes, applied perineurally did not attenuate heat hypersensitivity in wild-type mice. Exogenous opioids, also shown to release opioid peptides via activation of leukocyte opioid receptors, were equally analgesic in wild-type and opioid peptide-knockout mice, indicating that endogenous opioids do not contribute to exogenous opioid analgesia in heat hypersensitivity. Furthermore, exogenously applied opioid peptides were ineffective as well. Conversely, opioid peptides relieved mechanical hypersensitivity. Thus, both opioid type and sensory modality may determine the outcome of neuropathic pain treatment.
Collapse
|
40
|
Kulyk VB, Volkova TN, Kryshtal’ OA. Mechanisms of Expression and Release of Endogenous Opioids in Peripheral Tissues. NEUROPHYSIOLOGY+ 2016. [DOI: 10.1007/s11062-016-9590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Hua S. Neuroimmune Interaction in the Regulation of Peripheral Opioid-Mediated Analgesia in Inflammation. Front Immunol 2016; 7:293. [PMID: 27532001 PMCID: PMC4970451 DOI: 10.3389/fimmu.2016.00293] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/20/2016] [Indexed: 12/12/2022] Open
Abstract
Peripheral immune cell-mediated analgesia in inflammation is an important endogenous mechanism of pain control. Opioid receptors localized on peripheral sensory nerve terminals are activated by endogenous opioid peptides released from immune cells to produce significant analgesia. Following transendothelial migration of opioid-containing leukocytes into peripheral sites of inflammation, opioid peptides are released into a harsh milieu associated with an increase in temperature, low pH, and high proteolytic activity. Together, this microenvironment has been suggested to increase the activity of opioid peptide metabolism. Therefore, the proximity of immune cells and nerve fibers may be essential to produce adequate analgesic effects. Close associations between opioid-containing immune cells and peripheral nerve terminals have been observed. However, it is not yet determined whether these immune cells actually form synaptic-like contacts with peripheral sensory terminals and/or whether they secrete opioids in a paracrine manner. This review will provide novel insight into the peripheral mechanisms of immune-derived analgesia in inflammation, in particular, the importance of direct interactions between immune cells and the peripheral nervous system.
Collapse
Affiliation(s)
- Susan Hua
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
42
|
Tang Y, Yin HY, Rubini P, Illes P. Acupuncture-Induced Analgesia: A Neurobiological Basis in Purinergic Signaling. Neuroscientist 2016; 22:563-578. [PMID: 27343858 DOI: 10.1177/1073858416654453] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic pain is a debilitating and rather common health problem. The present shortage in analgesic drugs with a favorable spectrum but without remarkable side effects furthered the search for alternative therapeutic manipulations. Increasing evidence from both basic and clinical research on acupuncture, a main alternative therapy of traditional Chinese medicine, suggests that chronic pain is sensitive to acupuncture procedures. Clarification of the underlying mechanisms is a challenge of great theoretical and practical significance. The seminal hypothesis of Geoffrey Burnstock and the astounding findings of Maiken Nedergaard on the involvement of purinergic signaling in the beneficial effects of acupuncture fertilized the field and led to an intensification of research on acupurines. In this review, we will summarize the state-of-the-art situation and try to forecast how the field is likely to develop in the future.
Collapse
Affiliation(s)
- Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Yan Yin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Patrizia Rubini
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
43
|
Basso L, Boué J, Mahiddine K, Blanpied C, Robiou-du-Pont S, Vergnolle N, Deraison C, Dietrich G. Endogenous analgesia mediated by CD4(+) T lymphocytes is dependent on enkephalins in mice. J Neuroinflammation 2016; 13:132. [PMID: 27245576 PMCID: PMC4888630 DOI: 10.1186/s12974-016-0591-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/20/2016] [Indexed: 12/31/2022] Open
Abstract
Background T cell-derived opioids play a key role in the control of inflammatory pain. However, the nature of opioids produced by T cells is still matter of debate in mice. Whereas β-endorphin has been found in T lymphocytes by using antibody-based methods, messenger RNA (mRNA) quantification shows mainly mRNA encoding for enkephalins. The objective of the study is to elucidate the nature of T cell-derived opioids responsible for analgesia and clarify discrepancy of the results at the protein and genetic levels. Methods CD4+ T lymphocytes were isolated from wild-type and enkephalin-deficient mice. mRNA encoding for β-endorphin and enkephalin was quantified by RT-qPCR. The binding of commercially available polyclonal anti-endorphin antibodies to lymphocytes from wild-type or enkephalin knockout mice was assessed by cytofluorometry. Opioid-mediated analgesic properties of T lymphocytes from wild-type and enkephalin-deficient mice were compared in a model of inflammation-induced somatic pain by measuring sensitivity to mechanical stimuli using calibrated von Frey filaments. Results CD4+ T lymphocytes expressed high level of mRNA encoding for enkephalins but not for β-endorphin in mice. Anti-β-endorphin polyclonal IgG antibodies are specific for β-endorphin but cross-react with enkephalins. Anti-β-endorphin polyclonal antibodies bound to wild-type but not enkephalin-deficient CD4+ T lymphocytes. Endogenous regulation of inflammatory pain by wild-type T lymphocytes was completely abolished when T lymphocytes were deficient in enkephalins. Pain behavior of immune-deficient (i.e., without B and T lymphocytes) mice was superimposable to that of mice transferred with enkephalin-deficient lymphocytes. Conclusions Rabbit polyclonal anti-β-endorphin serum IgG bind to CD4+ T lymphocytes because of their cross-reactivity towards enkephalins. Thus, staining of T lymphocytes by anti-β-endorphin polyclonal IgG reported in most of studies in mice is because of their binding to enkephalins. In mice, CD4+ T lymphocytes completely lose their analgesic opioid-mediated activity when lacking enkephalins.
Collapse
Affiliation(s)
- Lilian Basso
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Jérôme Boué
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Karim Mahiddine
- CPTP, Université de Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | | | | | | | - Céline Deraison
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.
| |
Collapse
|
44
|
Xie F, Wang Y, Li X, Chao YC, Yue Y. Early Repeated Administration of CXCR4 Antagonist AMD3100 Dose-Dependently Improves Neuropathic Pain in Rats After L5 Spinal Nerve Ligation. Neurochem Res 2016; 41:2289-99. [PMID: 27168326 DOI: 10.1007/s11064-016-1943-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/29/2016] [Accepted: 04/30/2016] [Indexed: 01/10/2023]
Abstract
AMD3100 is a specific C-X-C chemokine receptor type 4 (CXCR4) antagonist which blocks the interaction between CXCR4 and CXCL12. Multiple lines of evidence suggest that AMD3100 has analgesic effects on many pathological pain states, including peripheral neuropathic pain. However, little is known about the underlying mechanisms. In the current study, we investigated the effect of different doses of AMD3100 on neuropathic pain in rats after L5 spinal nerve ligation. We used naloxone methiodide (NLXM) to further determine whether AMD3100-mediated analgesic effect was opioid-dependent. Behavioral study showed that early repeated administration of AMD3100 (2 and 5 mg/kg, i.p.) dose-dependently alleviates peripheral neuropathic pain. Flow cytometry, immunofluorescence and NLXM experiments showed that AMD3100 alleviates neuropathic pain partially by augmenting leukocyte-derived endogenous opioid secretion. Furthermore, we found that pro-inflammatory cytokines were down-regulated by AMD3100 using Enzyme-linked Immunosorbent Assay. Our data indicate that AMD3100 dose-dependently alleviates neuropathic pain partially by augmenting leukocyte-derived endogenous opioid secretion. This finding suggests that AMD3100 may be a viable pharmacotherapeutic strategy for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Fang Xie
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongtinan Road, Chaoyang District, Beijing, 100020, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongtinan Road, Chaoyang District, Beijing, 100020, China
| | - Xueyang Li
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongtinan Road, Chaoyang District, Beijing, 100020, China
| | - Yu-Chieh Chao
- Department of Anesthesiology, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, Beijing, 102218, China
| | - Yun Yue
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongtinan Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
45
|
Basso L, Bourreille A, Dietrich G. Intestinal inflammation and pain management. Curr Opin Pharmacol 2015; 25:50-5. [PMID: 26629597 DOI: 10.1016/j.coph.2015.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/05/2015] [Accepted: 11/11/2015] [Indexed: 01/20/2023]
Abstract
Intestinal inflammation results in the production of inflammatory pain-inducing mediators that may directly activate colon sensory neurons. Endogenous opioids produced by mucosal effector CD4(+) T lymphocytes identified as colitogenic may paradoxically counterbalance the local pro-algesic effect of inflammatory mediators by acting on opioid receptors expressed on sensory nerve endings. The review will focus on the endogenous immune-mediated regulation of visceral inflammatory pain, current pain treatments in inflammatory bowel diseases and prospectives on new opioid therapeutic opportunities to alleviate pain but avoiding common centrally-mediated side effects.
Collapse
Affiliation(s)
- Lilian Basso
- INSERM, U1043, Toulouse F-31300, France; CNRS, U5282, Toulouse F-31300, France; Université de Toulouse, UPS, Toulouse F-31300, France
| | - Arnaud Bourreille
- INSERM, U913, Nantes F-44093, France; Université de Nantes, Institut des Maladies de l'Appareil Digestif, Nantes F-44093, France
| | - Gilles Dietrich
- INSERM, U1043, Toulouse F-31300, France; CNRS, U5282, Toulouse F-31300, France; Université de Toulouse, UPS, Toulouse F-31300, France.
| |
Collapse
|
46
|
Involvement of endogenous opioid peptides in the peripheral antinociceptive effect induced by the coffee specific diterpene kahweol. Pharmacol Rep 2015; 67:1010-5. [DOI: 10.1016/j.pharep.2015.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 11/23/2022]
|
47
|
Smith MT, Wyse BD, Edwards SR, El-Tamimy M, Gaetano G, Gavin P. Topical Application of a Novel Oxycodone Gel Formulation (Tocopheryl Phosphate Mixture) in a Rat Model of Peripheral Inflammatory Pain Produces Localized Pain Relief Without Significant Systemic Exposure. J Pharm Sci 2015; 104:2388-96. [DOI: 10.1002/jps.24502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 02/07/2023]
|
48
|
Signaling Mechanism of Cannabinoid Receptor-2 Activation-Induced β-Endorphin Release. Mol Neurobiol 2015; 53:3616-3625. [DOI: 10.1007/s12035-015-9291-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/04/2015] [Indexed: 01/20/2023]
|
49
|
Pállinger É, Csaba G. In vivo effect of insulin on the hormone production of immune cells in mice - gender differences. Acta Microbiol Immunol Hung 2014; 61:417-23. [PMID: 25496970 DOI: 10.1556/amicr.61.2014.4.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The immune cells of rat and man synthesize, store and secrete hormones, characteristic to the endocrine glands. In the present experiments female and male CD1 mice were treated with 10 IU/kg insulin sc. (the controls with normal saline) and after 30 min peritoneal fluid was gained. The cells of the peritoneal fluid (lymphocytes and the monocyte-granulocyte group) were studied by immunocytochemical flow-cytometry to adrenocorticotropic hormone (ACTH), triiodothyronine (T3), histamine and serotonin content. In the female mice each hormone level was significantly lower in the insulin-treated animals, except histamine in the monocyte-granulocyte group. In the insulin-treated male animals, the hormone levels were similar to the control. The results 1) support the previously hypothesized hormonal network in the immune system, 2) justify that the insulin effect is not species dependent and 3) call attention to the sex, species and organ differences in the response.
Collapse
Affiliation(s)
- Éva Pállinger
- 1 Semmelweis University Department of Genetics, Cell and Immunobiology Budapest Hungary
| | - György Csaba
- 1 Semmelweis University Department of Genetics, Cell and Immunobiology Budapest Hungary
| |
Collapse
|
50
|
Abstract
Painful sensation is a hallmark of microbe-induced inflammation. This inflammatory pain is downregulated a few days after infection by opioids locally released by effector T lymphocytes generated in response to microbe-derived antigens. This review focuses on the endogenous regulation of inflammatory pain associated with adaptive T-cell response and puts in perspective the clinical consequences of the opioid-mediated analgesic activity of colitogenic T lymphocytes in inflammatory bowel disease.
Collapse
|