1
|
Leikin-Frenkel A, Cohen H, Keshet R, Shnerb-GanOr R, Kandel-Kfir M, Harari A, Hollander KS, Shaish A, Harats D, Kamari Y. The effect of α-linolenic acid enrichment in perinatal diets in preventing high fat diet-induced SCD1 increased activity and lipid disarray in adult offspring of low density lipoprotein receptor knockout (LDLRKO) mice. Prostaglandins Leukot Essent Fatty Acids 2022; 184:102475. [PMID: 35940045 DOI: 10.1016/j.plefa.2022.102475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/29/2022]
Abstract
The present study examined the effects of maternal perinatal dietary ALA enrichment on the high fat diet (HFD)-induced lipid disarray in the adult offspring of low density lipoprotein receptor knock-out (LDLRKO) mice. Female LDLRKO mice received, during pregnancy and lactation, isocaloric diets with either corn oil, RD, or flax oil, ALA. The weaning offspring was given a regular chow diet for a washout period of eight weeks, which was followed by HFD for eight weeks. Plasma and liver lipids and SCD1 activity were then analyzed. The HFD-fed RD adult offspring had substantially higher plasma cholesterol levels than the HFD-fed ALA offspring (15.7 versus 9.7 mmole/l, p<0.00001) and non-alcoholic fatty liver disease (NAFLD) (65.0 versus 23.9 mg/g lipids, p<0.00001). Liver lipids oleic acid (OA) content and monounsaturated to saturated fatty acids (MUFA/SAT) ratio, were two times lower in RD compared to ALA (p<0.0001). The threefold HFD-induced SCD1 raised activity (p<0.00001), and OA produced from SA, observed in RD adult offspring were prevented by perinatal ALA. In conclusion, the resilience of SCD1 to HFD- induced increased activity may account for the beneficial effects of perinatal ALA dietary enrichment in preventing NAFLD and hypercholesterolemia from occurring in adult LDLRKO offspring mice.
Collapse
Affiliation(s)
- A Leikin-Frenkel
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel.
| | - H Cohen
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - R Keshet
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - R Shnerb-GanOr
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - M Kandel-Kfir
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - A Harari
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - K S Hollander
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - A Shaish
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Achva Academic College, Israel
| | - D Harats
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Y Kamari
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| |
Collapse
|
2
|
Pathak P, Helsley RN, Brown AL, Buffa JA, Choucair I, Nemet I, Gogonea CB, Gogonea V, Wang Z, Garcia-Garcia JC, Cai L, Temel R, Sangwan N, Hazen SL, Brown JM. Small molecule inhibition of gut microbial choline trimethylamine lyase activity alters host cholesterol and bile acid metabolism. Am J Physiol Heart Circ Physiol 2020; 318:H1474-H1486. [PMID: 32330092 DOI: 10.1152/ajpheart.00584.2019] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The gut microbe-derived metabolite trimethylamine-N-oxide (TMAO) has recently been linked to cardiovascular disease (CVD) pathogenesis, prompting the development of therapeutic strategies to reduce TMAO. Previous work has shown that experimental alteration of circulating TMAO levels via dietary alterations or inhibition of the host TMAO producing enzyme flavin containing monooxygenase 3 (FMO3) is associated with reorganization of host cholesterol and bile acid metabolism in mice. In this work, we set out to understand whether recently developed nonlethal gut microbe-targeting small molecule choline trimethylamine (TMA) lyase inhibitors also alter host cholesterol and bile acid metabolism. Treatment of mice with the mechanism-based choline TMA lyase inhibitor, iodomethylcholine (IMC), increased fecal neutral sterol loss in the form of coprostanol, a bacteria metabolite of cholesterol. In parallel, IMC treatment resulted in marked reductions in the intestinal sterol transporter Niemann-pick C1-like 1 (NPC1L1) and reorganization of the gut microbial community, primarily reversing choline supplemented diet-induced changes. IMC also prevented diet-driven hepatic cholesterol accumulation, causing both upregulation of the host hepatic bile acid synthetic enzyme CYP7A1 and altering the expression of hepatic genes critical for bile acid feedback regulation. These studies suggest that the gut microbiota-driven TMAO pathway is closely linked to both microbe and host sterol and bile acid metabolism. Collectively, as gut microbe-targeting choline TMA lyase inhibitors move through the drug discovery pipeline from preclinical models to human studies, it will be important to understand how these drugs impact both microbe and host cholesterol and bile acid metabolism.NEW & NOTEWORTHY The gut microbe-dependent metabolite trimethylamine-N-oxide (TMAO) has been strongly associated with cardiovascular mortality, prompting drug discovery efforts to identify points of therapeutic intervention within the microbe host TMAO pathway. Recently, mechanism-based small molecule inhibitors of the major bacterial trimethylamine (TMA) lyase enzymes have been developed, and these drugs show efficacy as anti-atherothrombotic agents. The novel findings of this study are that small molecule TMA lyase inhibition results in beneficial reorganization of host cholesterol and bile acid metabolism. This study confirms previous observations that the gut microbial TMAO pathway is intimately linked to host cholesterol and bile acid metabolism and provides further rationale for the development of small molecule choline TMA lyase inhibitors for the treatment of cardiometabolic disorders.
Collapse
Affiliation(s)
- Preeti Pathak
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio.,Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Robert N Helsley
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio.,Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Division of Pediatric Gastroenterology, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Amanda L Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio.,Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jennifer A Buffa
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio.,Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ibrahim Choucair
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio
| | - Ina Nemet
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio.,Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Camelia Baleanu Gogonea
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio
| | - Valentin Gogonea
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio.,Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Lei Cai
- Department of Physiology and Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | - Ryan Temel
- Department of Physiology and Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | - Naseer Sangwan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio.,Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio.,Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio.,Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
3
|
Brandhorst S, Longo VD. Dietary Restrictions and Nutrition in the Prevention and Treatment of Cardiovascular Disease. Circ Res 2019; 124:952-965. [PMID: 30870119 DOI: 10.1161/circresaha.118.313352] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in many developed countries and remains one of the major diseases strongly affected by the diet. Nutrition can affect CVD directly by contributing to the accumulation of vascular plaques and also indirectly by regulating the rate of aging. This review summarizes research on nutrition and CVD incidence based on a multipillar system that includes basic research focused on aging, epidemiological studies, clinical studies, and studies of centenarians. The relevant research linking nutrition and CVD with focus on macronutrients and aging will be highlighted. We will review some of the most relevant studies on nutrition and CVD treatment, also focusing on interventions known to delay aging. We will discuss both everyday dietary compositions, as well as intermittent and periodic fasting interventions with the potential to prevent and treat CVD.
Collapse
Affiliation(s)
- Sebastian Brandhorst
- From the Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles (S.B., V.D.L.)
| | - Valter D Longo
- From the Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles (S.B., V.D.L.).,Institute of Molecular Oncology, Italian Foundation for Cancer Research, Milan (V.D.L.)
| |
Collapse
|
4
|
Abstract
Relatively little is known about the evolutionary history of the African green monkey (genus Chlorocebus) due to the lack of sampled polymorphism data from wild populations. Yet, this characterization of genetic diversity is not only critical for a better understanding of their own history, but also for human biomedical research given that they are one of the most widely used primate models. Here, I analyze the demographic and selective history of the African green monkey, utilizing one of the most comprehensive catalogs of wild genetic diversity to date, consisting of 1,795,643 autosomal single nucleotide polymorphisms in 25 individuals, representing all five major populations: C. a. aethiops, C. a. cynosurus, C. a. pygerythrus, C. a. sabaeus, and C. a tantalus. Assuming a mutation rate of 5.9 × 10-9 per base pair per generation and a generation time of 8.5 years, divergence time estimates range from 523 to 621 kya for the basal split of C. a. aethiops from the other four populations. Importantly, the resulting tree characterizing the relationship and split-times between these populations differs significantly from that presented in the original genome paper, owing to their neglect of within-population variation when calculating between population-divergence. In addition, I find that the demographic history of all five populations is well explained by a model of population fragmentation and isolation, rather than novel colonization events. Finally, utilizing these demographic models as a null, I investigate the selective history of the populations, identifying candidate regions potentially related to adaptation in response to pathogen exposure.
Collapse
Affiliation(s)
- Susanne P Pfeifer
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,School of Life Sciences, Arizona State University, Tempe, AZ
| |
Collapse
|
5
|
Sacks FM, Lichtenstein AH, Wu JHY, Appel LJ, Creager MA, Kris-Etherton PM, Miller M, Rimm EB, Rudel LL, Robinson JG, Stone NJ, Van Horn LV. Dietary Fats and Cardiovascular Disease: A Presidential Advisory From the American Heart Association. Circulation 2017; 136:e1-e23. [PMID: 28620111 DOI: 10.1161/cir.0000000000000510] [Citation(s) in RCA: 835] [Impact Index Per Article: 104.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cardiovascular disease (CVD) is the leading global cause of death, accounting for 17.3 million deaths per year. Preventive treatment that reduces CVD by even a small percentage can substantially reduce, nationally and globally, the number of people who develop CVD and the costs of caring for them. This American Heart Association presidential advisory on dietary fats and CVD reviews and discusses the scientific evidence, including the most recent studies, on the effects of dietary saturated fat intake and its replacement by other types of fats and carbohydrates on CVD. In summary, randomized controlled trials that lowered intake of dietary saturated fat and replaced it with polyunsaturated vegetable oil reduced CVD by ≈30%, similar to the reduction achieved by statin treatment. Prospective observational studies in many populations showed that lower intake of saturated fat coupled with higher intake of polyunsaturated and monounsaturated fat is associated with lower rates of CVD and of other major causes of death and all-cause mortality. In contrast, replacement of saturated fat with mostly refined carbohydrates and sugars is not associated with lower rates of CVD and did not reduce CVD in clinical trials. Replacement of saturated with unsaturated fats lowers low-density lipoprotein cholesterol, a cause of atherosclerosis, linking biological evidence with incidence of CVD in populations and in clinical trials. Taking into consideration the totality of the scientific evidence, satisfying rigorous criteria for causality, we conclude strongly that lowering intake of saturated fat and replacing it with unsaturated fats, especially polyunsaturated fats, will lower the incidence of CVD. This recommended shift from saturated to unsaturated fats should occur simultaneously in an overall healthful dietary pattern such as DASH (Dietary Approaches to Stop Hypertension) or the Mediterranean diet as emphasized by the 2013 American Heart Association/American College of Cardiology lifestyle guidelines and the 2015 to 2020 Dietary Guidelines for Americans.
Collapse
|
6
|
Lopez AM, Chuang JC, Posey KS, Ohshiro T, Tomoda H, Rudel LL, Turley SD. PRD125, a potent and selective inhibitor of sterol O-acyltransferase 2 markedly reduces hepatic cholesteryl ester accumulation and improves liver function in lysosomal acid lipase-deficient mice. J Pharmacol Exp Ther 2015; 355:159-67. [PMID: 26283692 PMCID: PMC4613965 DOI: 10.1124/jpet.115.227207] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/14/2015] [Indexed: 11/22/2022] Open
Abstract
In most organs, the bulk of cholesterol is unesterified, although nearly all possess a varying capability of esterifying cholesterol through the action of either sterol O-acyltransferase (SOAT) 1 or, in the case of hepatocytes and enterocytes, SOAT2. Esterified cholesterol (EC) carried in plasma lipoproteins is hydrolyzed by lysosomal acid lipase (LAL) when they are cleared from the circulation. Loss-of-function mutations in LIPA, the gene that encodes LAL, result in Wolman disease or cholesteryl ester storage disease (CESD). Hepatomegaly and a massive increase in tissue EC levels are hallmark features of both disorders. While these conditions can be corrected with enzyme replacement therapy, the question arose as to whether pharmacological inhibition of SOAT2 might reduce tissue EC accretion in CESD. When weaned at 21 days, Lal(-/-) mice, of either gender, had a whole liver cholesterol content that was 12- to 13-fold more than that of matching Lal(+/+) littermates (23 versus 1.8 mg, respectively). In Lal(-/-) males given the selective SOAT2 inhibitor PRD125 1,11-O-o-methylbenzylidene-7-O-p-cyanobenzoyl-1,7,11-trideacetylpyripyropene A in their diet (∼10 mg/day per kg body weight) from 21 to 53 days, whole liver cholesterol content was 48.6 versus 153.7 mg in untreated 53-day-old Lal(-/-) mice. This difference reflected a 59% reduction in hepatic EC concentration (mg/g), combined with a 28% fall in liver mass. The treated mice also showed a 63% reduction in plasma alanine aminotransferase activity, in parallel with decisive falls in hepatic mRNA expression levels for multiple proteins that reflect macrophage presence and inflammation. These data implicate SOAT2 as a potential target in CESD management.
Collapse
Affiliation(s)
- Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas (A.M.L., J-C.C., K.S.P., S.D.T.); Graduate School of Pharmaceutical Science, Kitasato University, Tokyo, Japan (T.O., H.T.); and Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (T.O., L.L.R.)
| | - Jen-Chieh Chuang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas (A.M.L., J-C.C., K.S.P., S.D.T.); Graduate School of Pharmaceutical Science, Kitasato University, Tokyo, Japan (T.O., H.T.); and Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (T.O., L.L.R.)
| | - Kenneth S Posey
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas (A.M.L., J-C.C., K.S.P., S.D.T.); Graduate School of Pharmaceutical Science, Kitasato University, Tokyo, Japan (T.O., H.T.); and Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (T.O., L.L.R.)
| | - Taichi Ohshiro
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas (A.M.L., J-C.C., K.S.P., S.D.T.); Graduate School of Pharmaceutical Science, Kitasato University, Tokyo, Japan (T.O., H.T.); and Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (T.O., L.L.R.)
| | - Hiroshi Tomoda
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas (A.M.L., J-C.C., K.S.P., S.D.T.); Graduate School of Pharmaceutical Science, Kitasato University, Tokyo, Japan (T.O., H.T.); and Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (T.O., L.L.R.)
| | - Lawrence L Rudel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas (A.M.L., J-C.C., K.S.P., S.D.T.); Graduate School of Pharmaceutical Science, Kitasato University, Tokyo, Japan (T.O., H.T.); and Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (T.O., L.L.R.)
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas (A.M.L., J-C.C., K.S.P., S.D.T.); Graduate School of Pharmaceutical Science, Kitasato University, Tokyo, Japan (T.O., H.T.); and Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (T.O., L.L.R.)
| |
Collapse
|
7
|
Jones PJH, MacKay DS, Senanayake VK, Pu S, Jenkins DJA, Connelly PW, Lamarche B, Couture P, Kris-Etherton PM, West SG, Liu X, Fleming JA, Hantgan RR, Rudel LL. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans. Atherosclerosis 2014; 238:231-8. [PMID: 25528432 DOI: 10.1016/j.atherosclerosis.2014.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/27/2014] [Accepted: 12/02/2014] [Indexed: 11/25/2022]
Abstract
Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets: 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p = 0.0005 and p = 0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p = 0.0243) and DHA-enriched high oleic canola oil (p = 0.0249), although high-oleic canola oil had the lowest binding at baseline (p = 0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding.
Collapse
Affiliation(s)
- Peter J H Jones
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB, Canada.
| | - Dylan S MacKay
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB, Canada
| | - Vijitha K Senanayake
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB, Canada
| | - Shuaihua Pu
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB, Canada
| | | | | | - Benoît Lamarche
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC, Canada
| | - Patrick Couture
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC, Canada
| | | | - Sheila G West
- Department of Nutritional Sciences, Pennsylvania State University, PA, USA; Department of Biobehavioral Health, Pennsylvania State University, PA, USA
| | - Xiaoran Liu
- Department of Nutritional Sciences, Pennsylvania State University, PA, USA
| | - Jennifer A Fleming
- Department of Nutritional Sciences, Pennsylvania State University, PA, USA
| | - Roy R Hantgan
- Department of Biochemistry Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Lawrence L Rudel
- Department of Biochemistry Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
8
|
Kavanagh K, Wylie AT, Tucker KL, Hamp TJ, Gharaibeh RZ, Fodor AA, Cullen JM. Reply to JS White. Am J Clin Nutr 2013; 98:1370. [PMID: 24142242 PMCID: PMC3798085 DOI: 10.3945/ajcn.113.072264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kylie Kavanagh
- Department of Pathology Section on Comparative Medicine and Lipid Sciences Wake Forest University Health Sciences Medical Center Boulevard Winston Salem, NC 27127 E-mail:
| | | | | | | | | | | | | |
Collapse
|
9
|
Miller CD, Thomas MJ, Hiestand B, Samuel MP, Wilson MD, Sawyer J, Rudel LL. Cholesteryl esters associated with acyl-CoA:cholesterol acyltransferase predict coronary artery disease in patients with symptoms of acute coronary syndrome. Acad Emerg Med 2012; 19:673-82. [PMID: 22687182 PMCID: PMC3566778 DOI: 10.1111/j.1553-2712.2012.01378.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVES Identifying the likelihood of a patient having coronary artery disease (CAD) at the time of emergency department (ED) presentation with chest pain could reduce the need for stress testing or coronary imaging after myocardial infarction (MI) has been excluded. The authors aimed to determine if a novel cardiac biomarker consisting of plasma cholesteryl ester (CE) levels typically derived from the activity of the enzyme acyl-CoA:cholesterol acyltransferase (ACAT2) are predictive of CAD in a clinical model. METHODS A single-center prospective cohort design enrolled participants with symptoms of acute coronary syndrome (ACS) undergoing coronary computed tomography angiography (CCTA) or invasive angiography. Plasma samples were analyzed for CE composition with mass spectrometry. The primary endpoint was any CAD determined at angiography. Multivariable logistic regression analyses were used to estimate the relationship between the sum of the plasma concentrations from cholesteryl palmitoleate (16:1) and cholesteryl oleate (18:1) (defined as ACAT2-CE) and the presence of CAD. The added value of ACAT2-CE to the model was analyzed comparing the C-statistics and integrated discrimination improvement (IDI). RESULTS The study cohort was composed of 113 participants with a mean (± standard deviation [SD]) age of 49 (±11.7) years, 59% had CAD at angiography, and 23% had an MI within 30 days. The median (interquartile range [IQR]) plasma concentration of ACAT2-CE was 938 μmol/L (IQR = 758 to 1,099 μmol/L) in patients with CAD and 824 μmol/L (IQR = 683 to 998 μmol/L) in patients without CAD (p = 0.03). When considered with age, sex, and the number of conventional CAD risk factors, ACAT2-CE levels were associated with a 6.5% increased odds of having CAD per 10 μmol/L increase in concentration. The addition of ACAT2-CE significantly improved the C-statistic (0.89 vs. 0.95, p = 0.0035) and IDI (0.15, p < 0.001) compared to the reduced model. In the subgroup of low-risk observation unit patients, the CE model had superior discrimination compared to the Diamond-Forrester classification (IDI = 0.403, p < 0.001). CONCLUSIONS Plasma levels of ACAT2-CE have strong potential to predict a patient's likelihood of having CAD when considered in a clinical model but not when used alone. In turn, a clinical model containing ACAT2-CE could reduce the need for cardiac imaging after the exclusion of MI.
Collapse
Affiliation(s)
- Chadwick D Miller
- Department of Emergency Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhang J, Kelley KL, Marshall SM, Davis MA, Wilson MD, Sawyer JK, Farese RV, Brown JM, Rudel LL. Tissue-specific knockouts of ACAT2 reveal that intestinal depletion is sufficient to prevent diet-induced cholesterol accumulation in the liver and blood. J Lipid Res 2012; 53:1144-52. [PMID: 22460046 PMCID: PMC3351821 DOI: 10.1194/jlr.m024356] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/20/2012] [Indexed: 11/20/2022] Open
Abstract
Acyl-CoA:cholesterol acyltransferase 2 (ACAT2) generates cholesterol esters (CE) for packaging into newly synthesized lipoproteins and thus is a major determinant of blood cholesterol levels. ACAT2 is expressed exclusively in the small intestine and liver, but the relative contributions of ACAT2 expression in these tissues to systemic cholesterol metabolism is unknown. We investigated whether CE derived from the intestine or liver would differentially affect hepatic and plasma cholesterol homeostasis. We generated liver-specific (ACAT2(L-/L-)) and intestine-specific (ACAT2(SI-/SI-)) ACAT2 knockout mice and studied dietary cholesterol-induced hepatic lipid accumulation and hypercholesterolemia. ACAT2(SI-/SI-) mice, in contrast to ACAT2(L-/L-) mice, had blunted cholesterol absorption. However, specific deletion of ACAT2 in the intestine generated essentially a phenocopy of the conditional knockout of ACAT2 in the liver, with reduced levels of plasma very low-density lipoprotein and hepatic CE, yet hepatic-free cholesterol does not build up after high cholesterol intake. ACAT2(L-/L-) and ACAT2(SI-/SI-) mice were equally protected from diet-induced hepatic CE accumulation and hypercholesterolemia. These results suggest that inhibition of intestinal or hepatic ACAT2 improves atherogenic hyperlipidemia and limits hepatic CE accumulation in mice and that depletion of intestinal ACAT2 is sufficient for most of the beneficial effects on cholesterol metabolism. Inhibitors of ACAT2 targeting either tissue likely would be beneficial for atheroprotection.
Collapse
Affiliation(s)
- Jun Zhang
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Kathryn L. Kelley
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Stephanie M. Marshall
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Matthew A. Davis
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Martha D. Wilson
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Janet K. Sawyer
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Robert V. Farese
- Departments of Medicine, Biochemistry & Biophysics, Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, CA 94158
| | - J. Mark Brown
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Lawrence L. Rudel
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
11
|
|
12
|
Fatty acids in cardiovascular health and disease: a comprehensive update. J Clin Lipidol 2012; 6:216-34. [PMID: 22658146 DOI: 10.1016/j.jacl.2012.04.077] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/28/2012] [Accepted: 04/11/2012] [Indexed: 12/29/2022]
Abstract
Research dating back to the 1950s reported an association between the consumption of saturated fatty acids (SFAs) and risk of coronary heart disease. Recent epidemiological evidence, however, challenges these findings. It is well accepted that the consumption of SFAs increases low-density lipoprotein cholesterol (LDL-C), whereas carbohydrates, monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs) do not. High-density lipoprotein (HDL)-C increases with SFA intake. Among individuals who are insulin resistant, a low-fat, high-carbohydrate diet typically has an adverse effect on lipid profiles (in addition to decreasing HDL-C, it also increases triglyceride and LDL particle concentrations). Consequently, a moderate fat diet in which unsaturated fatty acids replace SFAs and carbohydrates are not augmented is advised to lower LDL-C; compared with a low-fat diet, a moderate-fat diet will lower triglycerides and increase HDL-C. Now, there is some new evidence that is questioning the health benefits of even MUFAs and PUFAs. In addition, in a few recent studies investigators have also failed to demonstrate expected cardiovascular benefits of marine-derived omega-3 fatty acids. To clarify the clinical pros and cons of dietary fats, the National Lipid Association held a fatty acid symposium at the 2011 National Lipid Association Scientific Sessions. During these sessions, the science regarding the effects of different fatty acid classes on coronary heart disease risk was reviewed.
Collapse
|
13
|
Nguyen TM, Sawyer JK, Kelley KL, Davis MA, Rudel LL. Cholesterol esterification by ACAT2 is essential for efficient intestinal cholesterol absorption: evidence from thoracic lymph duct cannulation. J Lipid Res 2012; 53:95-104. [PMID: 22045928 PMCID: PMC3243485 DOI: 10.1194/jlr.m018820] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/11/2011] [Indexed: 01/21/2023] Open
Abstract
The hypothesis tested in this study was that cholesterol esterification by ACAT2 would increase cholesterol absorption efficiency by providing cholesteryl ester (CE) for incorporation into chylomicrons. The assumption was that absorption would be proportional to Acat2 gene dosage. Male ACAT2⁺/⁺, ACAT2⁺/⁻, and ACAT2⁻/⁻ mice were fed a diet containing 20% of energy as palm oil with 0.2% (w/w) cholesterol. Cholesterol absorption efficiency was measured by fecal dual-isotope and thoracic lymph duct cannulation (TLDC) methods using [³H]sitosterol and [¹⁴C]cholesterol tracers. Excellent agreement among individual mice was found for cholesterol absorption measured by both techniques. Cholesterol absorption efficiency in ACAT2⁻/⁻ mice was 16% compared with 46-47% in ACAT2⁺/⁺ and ACAT2⁺/⁻ mice. Chylomicrons from ACAT2⁺/⁺ and ACAT2⁺/⁻ mice carried ∼80% of total sterol mass as CE, whereas ACAT2⁻/⁻ chylomicrons carried >90% of sterol mass in the unesterified form. The total percentage of chylomicron mass as CE was reduced from 12% in the presence of ACAT2 to ∼1% in ACAT2⁻/⁻ mice. Altogether, the data demonstrate that ACAT2 increases cholesterol absorption efficiency by providing CE for chylomicron transport, but one copy of the Acat2 gene, providing ∼50% of ACAT2 mRNA and enzyme activity, was as effective as two copies in promoting cholesterol absorption.
Collapse
Affiliation(s)
| | - Janet K. Sawyer
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Kathryn L. Kelley
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Matthew A. Davis
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Lawrence L. Rudel
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
14
|
Palsdottir V, Olsson B, Borén J, Strandvik B, Gabrielsson BG. Postnatal essential fatty acid deficiency in mice affects lipoproteins, hepatic lipids, fatty acids and mRNA expression. Prostaglandins Leukot Essent Fatty Acids 2011; 85:179-88. [PMID: 21658924 DOI: 10.1016/j.plefa.2011.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
Abstract
We have previously reported that essential fatty acid deficiency (EFAD) during suckling in mice resulted in an adult lean phenotype and a resistance to diet-induced obesity. We now hypothesized that postnatal EFAD would cause long-term effects on lipid metabolism. C57BL/6 mice were fed an EFAD or a control diet from the 16th day of gestation and throughout lactation. The pups were weaned to standard diet (STD) and at 15 weeks of age given either high fat diet (HFD) or STD. Lipoprotein profiles, hepatic lipids, fatty acids and mRNA expression were analyzed in 3-week-old and 25-week-old offspring. At weaning, the EFAD pups had higher cholesterol levels in both plasma and liver and 6-fold higher concentrations of hepatic cholesterol esters than control pups. Adult EFAD offspring had higher levels of hepatic cholesterol and linoleic acid, but lower levels of dihomo-γ-linolenic acid and Pparg mRNA expression in the liver. In addition, HFD fed EFAD offspring had lower plasma total cholesterol, lower hepatic triglycerides and lower liver weight compared to controls fed HFD. In conclusion, early postnatal EFAD resulted in short-term alterations with increased hepatic cholesterol accumulation and long-term protection against diet-induced liver steatosis and hypercholesterolemia.
Collapse
Affiliation(s)
- Vilborg Palsdottir
- Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, 416 85 Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
15
|
Abstract
Dietary interventions have been consistently proposed as a part of a comprehensive strategy to lower the incidence and severity of coronary heart disease (CHD), in the process providing long-term cardioprotection. Replacement of dietary saturated fatty acids (SFA) with higher intakes of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) has been reported to be inversely associated with risk of CHD. The observed lower incidence of CHD among populations consuming a Mediterranean-type diet, mainly enriched in MUFA from olive oil, has long supported the belief that MUFA are an optimal substitution for SFA. However, both epidemiologic and interventional studies suggest that although substituting MUFA-rich foods for SFA-rich foods in the diet can potentially lower total plasma cholesterol concentrations, this substitution does not lower the extent of coronary artery atherosclerosis. In addition, although recent evidence suggests that the source of MUFA (animal fat vs vegetable oils) may differentially influence the correlation between MUFA intake and CHD mortality, animal studies suggest that neither source is cardioprotective.
Collapse
Affiliation(s)
- Chiara Degirolamo
- Department of Translational Pharmacology, Consorzio Mario Negri Sud, via Nazionale 8/A, 66030, S. Maria Imbaro, CH, Italy,
| | - Lawrence L. Rudel
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1040, USA,
| |
Collapse
|
16
|
Lecker JL, Matthan NR, Billheimer JT, Rader DJ, Lichtenstein AH. Impact of dietary fat type within the context of altered cholesterol homeostasis on cholesterol and lipoprotein metabolism in the F1B hamster. Metabolism 2010; 59:1491-501. [PMID: 20197195 PMCID: PMC2891578 DOI: 10.1016/j.metabol.2010.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 12/21/2009] [Accepted: 01/19/2010] [Indexed: 01/25/2023]
Abstract
Cholesterol status and dietary fat alter several metabolic pathways reflected in lipoprotein profiles. To assess plasma lipoprotein response and mechanisms by which cholesterol and dietary fat type regulate expression of genes involved in lipoprotein metabolism, we developed an experimental model system using F1B hamsters fed diets (12 weeks) enriched in 10% (wt/wt) coconut, olive, or safflower oil with either high cholesterol (0.1%; cholesterol supplemented) or low cholesterol coupled with cholesterol-lowering drugs 10 days before killing (0.01% cholesterol, 0.15% lovastatin, 2% cholestyramine; cholesterol depleted). Irrespective of dietary fat, cholesterol depletion, relative to supplementation, resulted in lower plasma non-high-density lipoprotein (non-HDL) and HDL cholesterol, and triglyceride concentrations (all Ps < .05). In the liver, these differences were associated with higher sterol regulatory element binding protein-2, low-density lipoprotein receptor, 3-hydroxy-3-methylglutaryl coenzyme A reductase, and 7α-hydroxylase messenger RNA (mRNA) levels; higher scavenger receptor B1 and apolipoprotein A-I mRNA and protein levels; lower apolipoprotein E protein levels; and in intestine, modestly lower sterol transporters adenosine triphosphate-binding cassette (ABC) A1, ABCG5, and ABCG8 mRNA levels. Irrespective of cholesterol status, coconut oil, relative to olive and safflower oils, resulted in higher non-HDL cholesterol and triglyceride concentrations (both Ps < .05) and modestly higher sterol regulatory element binding protein-2 mRNA levels. These data suggest that, in F1B hamsters, differences in plasma lipoprotein profiles in response to cholesterol depletion are associated with changes in the expression of genes involved in cholesterol metabolism, whereas the effect of dietary fat type on gene expression was modest, which limits the usefulness of the experimental animal model.
Collapse
Affiliation(s)
- Jaime L. Lecker
- Cardiovascular Nutrition Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston MA
| | - Nirupa R. Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston MA
| | - Jeffrey T. Billheimer
- Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia PA
| | - Daniel J. Rader
- Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia PA
| | - Alice H. Lichtenstein
- Corresponding author. Alice H. Lichtenstein, DSc., JM USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111. Tel. 617-556-3127.
| |
Collapse
|
17
|
Brown JM, Rudel LL. Stearoyl-coenzyme A desaturase 1 inhibition and the metabolic syndrome: considerations for future drug discovery. Curr Opin Lipidol 2010; 21:192-7. [PMID: 20216310 PMCID: PMC3099527 DOI: 10.1097/mol.0b013e32833854ac] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The metabolic syndrome has become a leading health concern in developed countries. In the search for strategies to combat this growing problem, stearoyl-CoA desaturase 1 (SCD1) inhibition has been proposed as an attractive therapeutic strategy. However, recent studies warn of potentially harmful consequences of SCD1 inhibition. The purpose of this review is to discuss recent insights into the potential for SCD1 inhibitors as viable metabolic syndrome therapeutics. RECENT FINDINGS SCD1 converts saturated fatty acids (SFAs) to monounsaturated fatty acids (MUFAs). Although SCD1 inhibition protects against diet-induced obesity, hepatic steatosis, and insulin resistance, recent studies have demonstrated that the accumulation of SCD1 substrates (SFA) can promote inflammation, atherosclerosis, steatohepatitis, and pancreatic beta cell dysfunction in preclinical rodent models. This suggests SCD1 may play a critical role in suppressing inflammatory diseases by shuttling proinflammatory SFAs into less biologically active MUFA-enriched neutral lipids. Given this, SCD1 inhibitors given in conjunction with anti-inflammatory agents may provide a useful strategy to prevent the metabolic syndrome without deleterious side-effects seen with SCD1 inhibition alone. SUMMARY SCD1 inhibitors continue to hold promise as metabolic syndrome therapeutics; yet consideration must be taken to avoid the proinflammatory side-effects secondary to accumulation SCD1 substrates (SFAs).
Collapse
Affiliation(s)
- J Mark Brown
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1040, USA
| | | |
Collapse
|
18
|
Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Saturated fat, carbohydrate, and cardiovascular disease. Am J Clin Nutr 2010; 91:502-9. [PMID: 20089734 PMCID: PMC2824150 DOI: 10.3945/ajcn.2008.26285] [Citation(s) in RCA: 345] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 12/03/2009] [Indexed: 01/22/2023] Open
Abstract
A focus of dietary recommendations for cardiovascular disease (CVD) prevention and treatment has been a reduction in saturated fat intake, primarily as a means of lowering LDL-cholesterol concentrations. However, the evidence that supports a reduction in saturated fat intake must be evaluated in the context of replacement by other macronutrients. Clinical trials that replaced saturated fat with polyunsaturated fat have generally shown a reduction in CVD events, although several studies showed no effects. An independent association of saturated fat intake with CVD risk has not been consistently shown in prospective epidemiologic studies, although some have provided evidence of an increased risk in young individuals and in women. Replacement of saturated fat by polyunsaturated or monounsaturated fat lowers both LDL and HDL cholesterol. However, replacement with a higher carbohydrate intake, particularly refined carbohydrate, can exacerbate the atherogenic dyslipidemia associated with insulin resistance and obesity that includes increased triglycerides, small LDL particles, and reduced HDL cholesterol. In summary, although substitution of dietary polyunsaturated fat for saturated fat has been shown to lower CVD risk, there are few epidemiologic or clinical trial data to support a benefit of replacing saturated fat with carbohydrate. Furthermore, particularly given the differential effects of dietary saturated fats and carbohydrates on concentrations of larger and smaller LDL particles, respectively, dietary efforts to improve the increasing burden of CVD risk associated with atherogenic dyslipidemia should primarily emphasize the limitation of refined carbohydrate intakes and a reduction in excess adiposity.
Collapse
Affiliation(s)
- Patty W Siri-Tarino
- Department of Atherosclerosis Research Children's Hospital Oakland Research Institute Oakland, CA, USA
| | | | | | | |
Collapse
|
19
|
Degirolamo C, Kelley KL, Wilson MD, Rudel LL. Dietary n-3 LCPUFA from fish oil but not alpha-linolenic acid-derived LCPUFA confers atheroprotection in mice. J Lipid Res 2010; 51:1897-905. [PMID: 20154006 DOI: 10.1194/jlr.m005058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The atheroprotective potential of n-3 alpha-linolenic acid (ALA) has not yet been fully determined, even in murine models of atherosclerosis. We tested whether ALA-derived, n-3 long chain polyunsaturated fatty acids (LCPUFA) could offer atheroprotection in a dose-dependent manner. Apolipoprotein B (ApoB)100/100LDLr-/- mice were fed with diets containing two levels of ALA from flaxseed oil for 16 weeks. Fish oil- and cis-monounsaturated-fat-enriched diets were used as positive and negative controls, respectively. The mice fed cis-monounsaturated fat and ALA-enriched diets exhibited equivalent plasma total cholesterol (TPC) and LDL-cholesterol (LDL-c) levels; only mice fed the fish-oil diet had lower TPC and LDL-c concentrations. Plasma LDL-CE fatty acid composition analysis showed that ALA-enriched diets lowered the percentage of atherogenic cholesteryl oleate compared with cis-monounsaturated-fat diet (44% versus 55.6%) but not as efficiently as the fish-oil diet (32.4%). Although both ALA and fish-oil diets equally enriched hepatic phospholipids with eicosapentaenoic acid (EPA) and ALA-enriched diets lowered hepatic cholesteryl ester (CE) levels compared with cis-monounsaturated-fat diet, only fish oil strongly protected from atherosclerosis. These outcomes indicate that dietary n-3 LCPUFA from fish oil and n-3 LCPUFA (mostly EPA) synthesized endogenously from ALA were not equally atheroprotective in these mice.
Collapse
Affiliation(s)
- Chiara Degirolamo
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | |
Collapse
|
20
|
Devlin AM, Singh R, Bottiglieri T, Innis SM, Green TJ. Hepatic acyl-coenzyme a:cholesterol acyltransferase-2 expression is decreased in mice with hyperhomocysteinemia. J Nutr 2010; 140:231-7. [PMID: 20018805 DOI: 10.3945/jn.109.112920] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Alterations in lipid metabolism may contribute to the pathology of hyperhomocysteinemia (HHcy). Our objective in this study was to test the hypothesis that HHcy is associated with changes in liver acyl CoA:cholesterol acyl transferase 2 (ACAT2) expression and cholesteryl esters (CE) in mice with HHcy. ACAT2 is encoded by Soat2 and functions to catalyze the esterification of cholesterol with acyl-CoA. Mice heterozygous for disruption of the cystathionine-beta-synthase gene (Cbs +/-) and C57BL/6 mice (Cbs +/+) were fed a control diet or a diet high in l-methionine (8.60 g/kg) and low in folic acid (0.20 mg/kg) to induce HHcy (HH diet). Lower Soat2 mRNA (P < 0.05) and ACAT protein (P < 0.001), higher total oleic acid [18:1(n-9)], and lower CE 18:1(n-9) was found in liver from Cbs +/- mice fed the HH diet, with higher plasma total homocysteine concentrations, than Cbs +/+ mice fed the control diet (35.01 +/- 5.6 vs. 2.21 +/- 0.6 mumol/L, respectively). In silico searches identified a CpG-rich region in the 5' portion of the Soat2 gene, which was differentially methylated (P < 0.05) in Cbs +/- mice fed the HH diet than in Cbs +/+ mice fed the control diet and was accompanied by higher (P < 0.05) B1 repeat element methylation, an indicator of global de novo methylation. These findings show altered methylation and expression of Soat2/ACAT2 in liver from mice with HHcy and suggest a role for changes in liver CE in the pathology of HHcy.
Collapse
Affiliation(s)
- Angela M Devlin
- Department of Pathology and Laboratory Medicine, Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver V5Z 4H4, Canada.
| | | | | | | | | |
Collapse
|
21
|
Mulvihill EE, Assini JM, Sutherland BG, DiMattia AS, Khami M, Koppes JB, Sawyez CG, Whitman SC, Huff MW. Naringenin decreases progression of atherosclerosis by improving dyslipidemia in high-fat-fed low-density lipoprotein receptor-null mice. Arterioscler Thromb Vasc Biol 2010; 30:742-8. [PMID: 20110573 DOI: 10.1161/atvbaha.109.201095] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Naringenin is a citrus flavonoid that potently inhibits the assembly and secretion of apolipoprotein B100-containing lipoproteins in cultured hepatocytes and improves the dyslipidemia and insulin resistance in a mouse model of the metabolic syndrome. In the present study, we used low-density lipoprotein receptor-null mice fed a high-fat diet (Western, TD96125) to test the hypothesis that naringenin prevents atherosclerosis. METHODS AND RESULTS Three groups (chow, Western, and Western plus naringenin) were fed ad libitum for 6 months. The Western diet increased fasting plasma triglyceride (TG) (5-fold) and cholesterol (8-fold) levels compared with chow, whereas the addition of naringenin significantly decreased both lipids by 50%. The Western-fed mice developed extensive atherosclerosis in the aortic sinus because plaque area was increased by 10-fold compared with chow-fed animals. Quantitation of fat-soluble dye (Sudan IV)-stained aortas, prepared en face, revealed that Western-fed mice also had a 10-fold increase in plaque deposits throughout the arch and in the abdominal sections of the aorta, compared with chow. Atherosclerosis in both areas was significantly decreased by more than 70% in naringenin-treated mice. Consistent with quantitation of aortic lesions, the Western-fed mice had a significant 6-fold increase in cholesterol and a 4-fold increase in TG deposition in the aorta compared with chow-fed mice. Both were reduced more than 50% by naringenin. The Western diet induced extensive hepatic steatosis, with a 10-fold increase in both TG and cholesteryl ester mass compared with chow. The addition of naringenin decreased both liver TG and cholesteryl ester mass by 80%. The hyperinsulinemia and obesity that developed in Western-fed mice was normalized by naringenin to levels observed in chow-fed mice. CONCLUSIONS These in vivo studies demonstrate that the citrus flavonoid naringenin ameliorates the dyslipidemia in Western-fed low-density lipoprotein receptor-null mice, leading to decreased atherosclerosis; and suggests a potential therapeutic strategy for the hyperlipidemia and increased risk of atherosclerosis associated with insulin resistance.
Collapse
Affiliation(s)
- Erin E Mulvihill
- Vascular Biology Group, Robarts Research Institute, The University of Western Ontario, 100 Perth Dr, London, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kavanagh K, Davis MA, Zhang L, Wilson MD, Register TC, Adams MR, Rudel LL, Wagner JD. Estrogen decreases atherosclerosis in part by reducing hepatic acyl-CoA:cholesterol acyltransferase 2 (ACAT2) in monkeys. Arterioscler Thromb Vasc Biol 2009; 29:1471-7. [PMID: 19759374 PMCID: PMC2763273 DOI: 10.1161/atvbaha.109.191825] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Estrogens decrease atherosclerosis progression, mediated in part through changes in plasma lipids and lipoproteins. This study aimed to determine estrogen-induced changes in hepatic cholesterol metabolism, plasma lipoproteins, and the relationship of these changes to atherosclerosis extent. METHODS AND RESULTS Ovariectomized monkeys (n=34) consumed atherogenic diets for 30 months which contained either no hormones (control, n=17) or conjugated equine estrogens (CEE, n=17) at a human dose equivalent of 0.625 mg/d. Hepatic cholesterol content, low-density lipoprotein (LDL) receptor expression, cholesterol 7 alpha-hydroxylase and acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity, and expression levels were determined. CEE treatment resulted in lower plasma concentrations of very-low- and intermediate- density lipoprotein cholesterol (V+IDLC; P=0.01), smaller LDL particles (P=0.002), and 50% lower hepatic cholesterol content (total, free, and esterified; P<0.05 for all). Total ACAT activity was significantly lower (P=0.01), explained primarily by reductions in the activity of ACAT2. Estrogen regulation of enzymatic activity was at the protein level as both ACAT1 and 2 protein, but not mRNA levels, were lower (P=0.02 and <0.0001, respectively). ACAT2 activity was significantly associated with hepatic total cholesterol, plasma V+IDLC cholesterol, and atherosclerosis. CONCLUSIONS Atheroprotective effects of estrogen therapy may be related to reduced hepatic secretion of ACAT2-derived cholesteryl esters in plasma lipoproteins.
Collapse
Affiliation(s)
- Kylie Kavanagh
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Matthan NR, Dillard A, Lecker JL, Ip B, Lichtenstein AH. Effects of dietary palmitoleic acid on plasma lipoprotein profile and aortic cholesterol accumulation are similar to those of other unsaturated fatty acids in the F1B golden Syrian hamster. J Nutr 2009; 139:215-21. [PMID: 19106316 PMCID: PMC4274120 DOI: 10.3945/jn.108.099804] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The lower susceptibility of palmitoleic acid (16:1) to oxidation compared to PUFA may confer functional advantages with respect to finding acceptable alternatives to partially hydrogenated fats, but limited data are available on its effect on cardiovascular risk factors. This study investigated the effect of diets (10% fat, 0.1% cholesterol, wt:wt) enriched with macadamia [monounsaturated fatty acid (MUFA)16:1], palm (SFA,16:0), canola (MUFA,18:1), or safflower (PUFA,18:2) oils on lipoprotein profiles and aortic cholesterol accumulation in F1B Golden Syrian hamsters (n = 16/group). After 12 wk, 8 hamsters in each group were killed (phase 1). The remaining hamsters fed palm oil were changed to a diet containing coconut oil, while hamsters in the other diet groups continued on their original diets for an additional 6 wk (phase 2). With minor exceptions, the time course and dietary SFA source did not alter the study outcomes. Macadamia oil-fed hamsters had lower non-HDL cholesterol and triglyceride concentrations compared with the palm and coconut oil-fed hamsters and higher HDL-cholesterol compared with the coconut, canola, and safflower oil-fed hamsters. The aortic cholesterol concentration was not affected by dietary fat type. The hepatic cholesterol concentration was higher in the unsaturated compared with the saturated oil-fed hamsters. RBC membrane and aortic cholesteryl ester, triglyceride, and phospholipid fatty acid profiles reflected that of the dietary oil. These data suggest that an oil relatively high in palmitoleic acid does not adversely affect plasma lipoprotein profiles or aortic cholesterol accumulation and was similar to other unsaturated fatty acid-rich oils.
Collapse
|
24
|
Cao Y, Mauger DT, Pelkman CL, Zhao G, Townsend SM, Kris-Etherton PM. Effects of moderate (MF) versus lower fat (LF) diets on lipids and lipoproteins: a meta-analysis of clinical trials in subjects with and without diabetes. J Clin Lipidol 2009; 3:19-32. [DOI: 10.1016/j.jacl.2008.12.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/22/2008] [Accepted: 12/23/2008] [Indexed: 02/03/2023]
|
25
|
Degirolamo C, Shelness GS, Rudel LL. LDL cholesteryl oleate as a predictor for atherosclerosis: evidence from human and animal studies on dietary fat. J Lipid Res 2008; 50 Suppl:S434-9. [PMID: 19029117 DOI: 10.1194/jlr.r800076-jlr200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This review focuses on the relationships among dietary fat type, plasma and liver lipid, and lipoprotein metabolism and atherosclerosis. Dietary polyunsaturated fatty acids are beneficial for the prevention of coronary artery atherosclerosis. By contrast, dietary monounsaturated fatty acids appear to alter hepatic lipoprotein metabolism, promote cholesteryl oleate accumulation, and confer atherogenic properties to lipoproteins as shown in data from experimental animal studies. Polyunsaturated fat appears to provide atheroprotection, at least in part, because it limits the accumulation of cholesteryl oleate in favor of cholesteryl linoleate in plasma lipoproteins.
Collapse
Affiliation(s)
- Chiara Degirolamo
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem NC 27157, USA
| | | | | |
Collapse
|
26
|
Brown JM, Chung S, Sawyer JK, Degirolamo C, Alger HM, Nguyen T, Zhu X, Duong MN, Wibley AL, Shah R, Davis MA, Kelley K, Wilson MD, Kent C, Parks JS, Rudel LL. Inhibition of stearoyl-coenzyme A desaturase 1 dissociates insulin resistance and obesity from atherosclerosis. Circulation 2008; 118:1467-75. [PMID: 18794388 DOI: 10.1161/circulationaha.108.793182] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Stearoyl-coenzyme A desaturase 1 (SCD1) is a well-known enhancer of the metabolic syndrome. The purpose of the present study was to investigate the role of SCD1 in lipoprotein metabolism and atherosclerosis progression. METHODS AND RESULTS Antisense oligonucleotides were used to inhibit SCD1 in a mouse model of hyperlipidemia and atherosclerosis (LDLr(-/-)Apob(100/100)). In agreement with previous reports, inhibition of SCD1 protected against diet-induced obesity, insulin resistance, and hepatic steatosis. Unexpectedly, however, SCD1 inhibition strongly promoted aortic atherosclerosis, which could not be reversed by dietary oleate. Further analyses revealed that SCD1 inhibition promoted accumulation of saturated fatty acids in plasma and tissues and reduced plasma triglyceride, yet had little impact on low-density lipoprotein cholesterol. Because dietary saturated fatty acids have been shown to promote inflammation through toll-like receptor 4, we examined macrophage toll-like receptor 4 function. Interestingly, SCD1 inhibition resulted in alterations in macrophage membrane lipid composition and marked hypersensitivity to toll-like receptor 4 agonists. CONCLUSIONS This study demonstrates that atherosclerosis can occur independently of obesity and insulin resistance and argues against SCD1 inhibition as a safe therapeutic target for the metabolic syndrome.
Collapse
Affiliation(s)
- J Mark Brown
- Department of Pathology, Wake Forest University School of Medicine, Section on Lipid Sciences, Winston-Salem, NC 27157-1040, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Parini P, Gustafsson U, Davis MA, Larsson L, Einarsson C, Wilson M, Rudling M, Tomoda H, Omura S, Sahlin S, Angelin B, Rudel LL, Eriksson M. Cholesterol synthesis inhibition elicits an integrated molecular response in human livers including decreased ACAT2. Arterioscler Thromb Vasc Biol 2008; 28:1200-6. [PMID: 18340009 PMCID: PMC2757773 DOI: 10.1161/atvbaha.107.157172] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The purpose of this study was to identify how different degrees of cholesterol synthesis inhibition affect human hepatic cholesterol metabolism. METHODS AND RESULTS Thirty-seven normocholesterolemic gallstone patients randomized to treatment with placebo, 20 mg/d fluvastatin, or 80 mg/d atorvastatin for 4 weeks were studied. Based on serum lathosterol determinations, cholesterol synthesis was reduced by 42% and 70% in the 2 groups receiving statins. VLDL cholesterol was reduced by 20% and 55%. During gallstone surgery, a liver biopsy was obtained and hepatic protein and mRNA expression of rate-limiting steps in cholesterol metabolism were assayed and related to serum lipoproteins. A marked induction of LDL receptors and 3-hydroxy-3-methylglutaryl (HMG) coenzyme A (CoA) reductase was positively related to the degree of cholesterol synthesis inhibition (ChSI). The activity, protein, and mRNA for ACAT2 were all reduced during ChSI, as was apoE mRNA. The lowering of HDL cholesterol in response to high ChSI could not be explained by altered expression of the HDL receptor CLA-1, ABCA1, or apoA-I. CONCLUSIONS Statin treatment reduces ACAT2 activity in human liver and this effect, in combination with a reduced Apo E expression, may contribute to the favorable lowering of VLDL cholesterol seen in addition to the LDL lowering during statin treatment.
Collapse
Affiliation(s)
- Paolo Parini
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Brown JM, Bell TA, Alger HM, Sawyer JK, Smith TL, Kelley K, Shah R, Wilson MD, Davis MA, Lee RG, Graham MJ, Crooke RM, Rudel LL. Targeted depletion of hepatic ACAT2-driven cholesterol esterification reveals a non-biliary route for fecal neutral sterol loss. J Biol Chem 2008; 283:10522-34. [PMID: 18281279 PMCID: PMC2447638 DOI: 10.1074/jbc.m707659200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 02/14/2008] [Indexed: 12/30/2022] Open
Abstract
Deletion of acyl-CoA:cholesterol O-acyltransferase 2 (ACAT2) in mice results in resistance to diet-induced hypercholesterolemia and protection against atherosclerosis. Recently, our group has shown that liver-specific inhibition of ACAT2 via antisense oligonucleotide (ASO)-mediated targeting likewise limits atherosclerosis. However, whether this atheroprotective effect was mediated by: 1) prevention of packaging of cholesterol into apoB-containing lipoproteins, 2) augmentation of nascent HDL cholesterol secretion, or 3) increased hepatobiliary sterol secretion was not examined. Therefore, the purpose of these studies was to determine whether hepatic ACAT2 is rate-limiting in all three of these important routes of cholesterol homeostasis. Liver-specific depletion of ACAT2 resulted in reduced packaging of cholesterol into apoB-containing lipoproteins (very low density lipoprotein, intermediate density lipoprotein, and low density lipoprotein), whereas high density lipoprotein cholesterol levels remained unchanged. In the liver of ACAT2 ASO-treated mice, cholesterol ester accumulation was dramatically reduced, yet there was no reciprocal accumulation of unesterified cholesterol. Paradoxically, ASO-mediated depletion of hepatic ACAT2 promoted fecal neutral sterol excretion without altering biliary sterol secretion. Interestingly, during isolated liver perfusion, ACAT2 ASO-treated livers had augmented secretion rates of unesterified cholesterol and phospholipid. Furthermore, we demonstrate that liver-derived cholesterol from ACAT2 ASO-treated mice is preferentially delivered to the proximal small intestine as a precursor to fecal excretion. Collectively, these studies provide the first insight into the hepatic itinerary of cholesterol when cholesterol esterification is inhibited only in the liver, and provide evidence for a novel non-biliary route of fecal sterol loss.
Collapse
Affiliation(s)
- J Mark Brown
- Department of Pathology, Biochemistry, and Orthopedic Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1040, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Pramfalk C, Angelin B, Eriksson M, Parini P. Cholesterol regulates ACAT2 gene expression and enzyme activity in human hepatoma cells. Biochem Biophys Res Commun 2007; 364:402-9. [PMID: 17950700 DOI: 10.1016/j.bbrc.2007.10.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 10/06/2007] [Indexed: 10/22/2022]
Abstract
Acyl-coenzyme A:cholesterol acyltransferase (ACAT) catalyzes the synthesis of cholesteryl esters from cholesterol and long-chain fatty acids. The two ACAT enzymes, ACAT1 and ACAT2, lack sterol regulatory elements in their promoters and have not been thought to be transcriptionally regulated by cellular cholesterol. However, Cynomolgus monkeys respond to high-cholesterol diet with increased hepatic ACAT2 mRNA expression. Also, a decrease in hepatic ACAT2 mRNA expression has been observed during statin treatment in humans. Thus, we hypothesized that cholesterol may exert transcriptional regulation on the human ACAT2 gene. To test this, we studied two human hepatoma cell lines (HuH7 and HepG2) under conditions of cholesterol loading or depletion and analyzed ACAT gene expression, enzymatic activity, and cellular cholesterol mass. We show a dose-dependent increase of ACAT2 mRNA expression, an increased enzymatic activity of ACAT2, and increased esterified cholesterol mass upon cholesterol loading. These results suggest that human ACAT2 is transcriptionally regulated by cholesterol.
Collapse
Affiliation(s)
- Camilla Pramfalk
- Division of Clinical Chemistry, Department of Laboratory Medicine, C1-74, Karolinska Institute at Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | | | | | | |
Collapse
|
31
|
Brown JM, Shelness GS, Rudel LL. Monounsaturated fatty acids and atherosclerosis: opposing views from epidemiology and experimental animal models. Curr Atheroscler Rep 2007; 9:494-500. [PMID: 18377790 DOI: 10.1007/s11883-007-0066-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A substantial body of epidemiologic data has shed light on the potential protective effects of the Mediterranean diet against atherosclerosis in humans. Many believe the reason the Mediterranean diet is atheroprotective is the elevated consumption of olive oil, an oil poor in saturated fatty acids (SFA) and highly enriched in monounsaturated fatty acids (MUFA). Based on human feeding studies, the American Heart Association and the US Food and Drug Administration have advocated for the consumption of MUFA as a more healthy replacement for SFA. However, using experimental animal models in which extent of atherosclerosis can be directly measured following dietary intervention, it has been demonstrated that MUFA-enriched diets are not atheroprotective when compared with SFA-enriched diets. Hence, the current body of experimental evidence refutes the idea that MUFAs per se are atheroprotective; therefore much additional work is needed to determine which aspects of the Mediterranean diet are indeed heart healthy.
Collapse
Affiliation(s)
- J Mark Brown
- Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1040, USA
| | | | | |
Collapse
|
32
|
Jasinska AJ, Service S, Levinson M, Slaten E, Lee O, Sobel E, Fairbanks LA, Bailey JN, Jorgensen MJ, Breidenthal SE, Dewar K, Hudson TJ, Palmour R, Freimer NB, Ophoff RA. A genetic linkage map of the vervet monkey (Chlorocebus aethiops sabaeus). Mamm Genome 2007; 18:347-60. [PMID: 17629771 DOI: 10.1007/s00335-007-9026-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 04/03/2007] [Accepted: 04/05/2007] [Indexed: 11/30/2022]
Abstract
The spectacular progress in genomics increasingly highlights the importance of comparative biology in biomedical research. In particular, nonhuman primates, as model systems, provide a crucial intermediate between humans and mice. The close similarities between humans and other primates are stimulating primate studies in virtually every area of biomedical research, including development, anatomy, physiology, immunology, and behavior. The vervet monkey (Chlorocebus aethiops sabaeus) is an important model for studying human diseases and complex traits, especially behavior. We have developed a vervet genetic linkage map to enable mapping complex traits in this model organism and facilitate comparative genomic analysis between vervet and other primates. Here we report construction of an initial genetic map built with about 360 human orthologous short tandem repeats (STRs) that were genotyped in 434 members of an extended vervet pedigree. The map includes 226 markers mapped in a unique order with a resolution of 9.8 Kosambi centimorgans (cM) in the vervet monkey genome, and with a total length (including all 360 markers) of 2726 cM. At least one complex and 11 simple rearrangements in marker order distinguish vervet chromosomes from human homologs. While inversions and insertions can explain a similar number of changes in marker order between vervet and rhesus homologs, mostly inversions are observed when vervet chromosome organization is compared to that in human and chimpanzee. Our results support the notion that large inversions played a less prominent role in the evolution within the group of the Old World monkeys compared to the human and chimpanzee lineages.
Collapse
Affiliation(s)
- Anna J Jasinska
- Center for Neurobehavioral Genetics, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Temel RE, Hou L, Rudel LL, Shelness GS. ACAT2 stimulates cholesteryl ester secretion in apoB-containing lipoproteins. J Lipid Res 2007; 48:1618-27. [PMID: 17438337 DOI: 10.1194/jlr.m700109-jlr200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies in nonhuman primates revealed a striking positive correlation between liver cholesteryl ester (CE) secretion rate and the development of coronary artery atherosclerosis. CE incorporated into hepatic VLDL is necessarily synthesized by ACAT2, the cholesterol-esterifying enzyme in hepatocytes. We tested the hypothesis that the level of ACAT2 expression, in concert with cellular cholesterol availability, affects the CE content of apolipoprotein B (apoB)-containing lipoproteins. In a model system of lipoprotein secretion using COS cells cotransfected with microsomal triglyceride transfer protein and truncated forms of apoB, ACAT2 expression resulted in a 3-fold increase in microsomal ACAT activity and a 4-fold increase in the radiolabeled CE content of apoB-lipoproteins. After cholesterol-cyclodextrin (Chol-CD) treatment, CE secretion was increased by 27-fold in ACAT2-transfected cells but by only 7-fold in control cells. Chol-CD treatment also caused the percentage of CE in the apoB-lipoproteins to increase from 3% to 33% in control cells and from 16% to 54% in ACAT2-transfected cells. In addition, ACAT2-transfected cells secreted 3-fold more apoB than control cells. These results indicate that under all conditions of cellular cholesterol availability tested, the relative level of ACAT2 expression affects the CE content and, hence, the potential atherogenicity, of nascent apoB-containing lipoproteins.
Collapse
Affiliation(s)
- Ryan E Temel
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
34
|
Bell TA, Kelley K, Wilson MD, Sawyer JK, Rudel LL. Dietary fat-induced alterations in atherosclerosis are abolished by ACAT2-deficiency in ApoB100 only, LDLr-/- mice. Arterioscler Thromb Vasc Biol 2007; 27:1396-402. [PMID: 17431188 DOI: 10.1161/atvbaha.107.142802] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The enzyme acyl-coenzymeA (CoA):cholesterol O-acyltransferase 2 (ACAT2) in the liver synthesizes cholesteryl esters (CE) from cholesterol and fatty acyl-CoA, which get incorporated into apoB-containing lipoproteins that are secreted into the bloodstream. Dietary fatty acid composition influences the amount and fatty acid composition of CE within apoB-containing lipoproteins. We hypothesized that when ACAT2 activity is removed by gene deletion, hepatic CE synthesis and secretion would be minimal and, as a result, dietary fat-related differences in atherosclerosis would be eliminated. METHODS AND RESULTS Groups of female apoB100 only, LDLr-/- mice with and without ACAT2 were fed diets enriched in either omega-3 or omega-6 polyunsaturated fat, saturated fat, and cis or trans monounsaturated fat. After 20 weeks on diet, mice fed diets enriched in monounsaturated or saturated fat exhibited significantly higher amounts of plasma cholesterol, larger LDL particles enriched in monounsaturated CE, and more atherosclerosis than mice fed polyunsaturated fat. The dietary fat-induced shifts in plasma cholesterol, LDL size, LDL CE composition, and atherosclerosis were not observed in ACAT2-/- mice. Regardless of the diet fed, the ACAT2-/- mice were protected from atherosclerosis. CONCLUSIONS The results indicate that in apoB100 only, LDLr-/- mice, ACAT2 plays an essential role in facilitating dietary fat type-specific atherosclerosis through its various effects on plasma lipoprotein concentration and composition.
Collapse
Affiliation(s)
- Thomas A Bell
- Wake Forest University School of Medicine, Department of Pathology/Lipid Sciences, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Bell TA, Wilson MD, Kelley K, Sawyer JK, Rudel LL. Monounsaturated fatty acyl-coenzyme A is predictive of atherosclerosis in human apoB-100 transgenic, LDLr-/- mice. J Lipid Res 2007; 48:1122-31. [PMID: 17277381 DOI: 10.1194/jlr.m600526-jlr200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ACAT2, the enzyme responsible for the formation of cholesteryl esters incorporated into apolipoprotein B-containing lipoproteins by the small intestine and liver, forms predominantly cholesteryl oleate from acyl-CoA and free cholesterol. The accumulation of cholesteryl oleate in plasma lipoproteins has been found to be predictive of atherosclerosis. Accordingly, a method was developed in which fatty acyl-CoA subspecies could be extracted from mouse liver and quantified. Analyses were performed on liver tissue from mice fed one of four diets enriched with one particular type of dietary fatty acid: saturated, monounsaturated, n-3 polyunsaturated, or n-6 polyunsaturated. We found that the hepatic fatty acyl-CoA pools reflected the fatty acid composition of the diet fed. The highest percentage of fatty acyl-CoAs across all diet groups was in monoacyl-CoAs, and values were 36% and 46% for the n-3 and n-6 polyunsaturated diet groups and 55% and 62% in the saturated and monounsaturated diet groups, respectively. The percentage of hepatic acyl-CoA as oleoyl-CoA was also highly correlated to liver cholesteryl ester, plasma cholesterol, LDL molecular weight, and atherosclerosis extent. These data suggest that replacing monounsaturated with polyunsaturated fat can benefit coronary heart disease by reducing the availability of oleoyl-CoA in the substrate pool of hepatic ACAT2, thereby reducing cholesteryl oleate secretion and accumulation in plasma lipoproteins.
Collapse
Affiliation(s)
- Thomas A Bell
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
37
|
Sampath H, Miyazaki M, Dobrzyn A, Ntambi JM. Stearoyl-CoA desaturase-1 mediates the pro-lipogenic effects of dietary saturated fat. J Biol Chem 2006; 282:2483-93. [PMID: 17127673 DOI: 10.1074/jbc.m610158200] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dietary saturated fats have often been implicated in the promotion of obesity and related disorders. It has been shown recently that saturated fats act through the transcription factor SREBP-1c (sterol regulatory element-binding protein-1c) and its requisite coactivator, peroxisome proliferator-activated receptor-gamma coactivator-1beta (PGC-1beta), to exert their pro-lipogenic effects. We show here that a diet high in the saturated fat stearate induces lipogenic genes in wild-type mice, with the induction of the Scd1 (stearoyl-CoA desaturase-1) gene preceding that of other lipogenic genes. However, in Scd1-/- mice, stearate does not induce lipogenesis, and Srebp-1c and Pgc-1beta levels are markedly reduced. Instead, genes of fatty acid oxidation such as Cpt-1 (carnitine palmitoyltransferase-1) as well as Pgc-1alpha are induced. Mitochondrial fatty acid oxidation is increased, and white adipose tissue and hepatic glycogen stores are depleted in stearate-fed Scd1-/- mice. Furthermore, AMP-activated protein kinase is also induced by stearate feeding in Scd1-/- mice. These results indicate that the desaturation of saturated fats such as stearate by SCD is an essential step mediating their induction of lipogenesis. In the absence of SCD1, stearate promotes oxidation, leading to protection from saturated fat-induced obesity. SCD1 thus serves as a molecular switch in the promotion or prevention of lipid-induced disorders brought on by consumption of excess saturated fat.
Collapse
Affiliation(s)
- Harini Sampath
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
38
|
Lee JH, Cho KH, Lee KT, Kim MR. Antiatherogenic effects of structured lipid containing conjugated linoleic acid in C57BL/6J mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:7295-301. [PMID: 16131145 DOI: 10.1021/jf050626e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Conjugated linoleic acids (CLA) were enzymatically acidolyzed with olive oil to produce structured lipids (SL), and their antiatherosclerotic properties were investigated in C57BL/6J mice. Twenty-eight mice were divided into four groups and fed control diet or atherogenic diets supplemented with high cholesterol and high fat (HCHF) containing 5% of lard, olive oil, or SL based on control diet for 4 weeks. The supplementation of SL diet (0.6% CLA) significantly reduced the levels of serum total cholesterol and total triglyceride and increased high-density lipoprotein cholesterol level as compared to lard and olive oil diet groups (p < 0.05). The activity of liver acyl CoA:cholesterol acyltransferase (ACAT) of mice fed the SL diet was significantly lower than that of mice fed the lard or olive oil diet. A reduced formation of aortic fatty streak was observed in SL group. The extent of CLA incorporation depended on tissues or types of phospholipids. More CLA was incorporated in adipose tissue (1.85 mol %) than in the liver (0.33 mol %). Besides, more CLA was found in phosphatidylethanolamine (PE) (0.47 mol %) than in phosphatidylcholine (PC) (0.05 mol %) of hepatic phospholipids. Hepatic phospholipids (PC and PE) of mice fed the SL diet contained reduced contents of arachidonic and linoleic acid compared with mice fed the olive oil or lard diet. The present study suggests that SL could be considered as a functional oil for preventing risks of atheroscelerosis.
Collapse
Affiliation(s)
- Jeung Hee Lee
- Department of Food Science and Nutrition, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, Korea
| | | | | | | |
Collapse
|
39
|
Rudel LL, Lee RG, Parini P. ACAT2 is a target for treatment of coronary heart disease associated with hypercholesterolemia. Arterioscler Thromb Vasc Biol 2005; 25:1112-8. [PMID: 15831806 DOI: 10.1161/01.atv.0000166548.65753.1e] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The inhibition of intracellular cholesterol esterification as a means to prevent atherosclerosis has been considered to have potential for many years. Two different ACAT enzymes were discovered about 7 years ago, and it has become clear that the two enzymes provide separate physiologic functions. Much has been learned from mice with gene deletions for either ACAT1 or ACAT2. Deletion of ACAT2 has consistently been atheroprotective whereas deletion of ACAT1 has been varyingly problematic. ACAT1 functions in converting cellular cholesterol into cholesteryl ester in response to cholesterol abundance inside the cells. In atherosclerotic lesions, where macrophages ingest excess cholesterol, the ability to esterify the newly-acquired cholesterol seems important for cell survival. Inhibition of ACAT1 may bring undesired consequences with destabilization of cellular membrane function upon cholesterol accumulation leading to macrophage cell death. In contrast, ACAT2 is expressed only in hepatocytes and enterocytes, where ACAT1 is silent, and appears to provide cholesteryl esters for transport in lipoproteins. These two cell types have an abundance of additional mechanisms for disposing of cholesterol so that depletion of ACAT2 does not signal apoptosis. At the present time, the bulk of the available data suggest that the strategy seeming to bear the most potential for treatment of coronary heart disease associated with hypercholesterolemia would be to specifically inhibit ACAT2.
Collapse
Affiliation(s)
- Lawrence L Rudel
- Lipid Sciences Research Program, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA.
| | | | | |
Collapse
|
40
|
Lee RG, Shah R, Sawyer JK, Hamilton RL, Parks JS, Rudel LL. ACAT2 contributes cholesteryl esters to newly secreted VLDL, whereas LCAT adds cholesteryl ester to LDL in mice. J Lipid Res 2005; 46:1205-12. [PMID: 15805543 DOI: 10.1194/jlr.m500018-jlr200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relative contributions of ACAT2 and LCAT to the cholesteryl ester (CE) content of VLDL and LDL were measured. ACAT2 deficiency led to a significant decrease in the percentage of CE (37.2 +/- 2.1% vs. 3.9 +/- 0.8%) in plasma VLDL, with a concomitant increase in the percentage of triglyceride (33.0 +/- 3.2% vs. 66.7 +/- 2.5%). Interestingly, the absence of ACAT2 had no apparent effect on the percentage CE in LDL, whereas LCAT deficiency significantly decreased the CE percentage (38.6 +/- 4.0% vs. 54.6 +/- 1.9%) and significantly increased the phospholipid percentage (11.2 +/- 0.9% vs. 19.3 +/- 0.1%) of LDL. When both LCAT and ACAT2 were deficient, VLDL composition was similar to VLDL of the ACAT2-deficient mouse, whereas LDL was depleted in core lipids and enriched in surface lipids, appearing discoidal when observed by electron microscopy. We conclude that ACAT2 is important in the synthesis of VLDL CE, whereas LCAT is important in remodeling VLDL to LDL. Liver perfusions were performed, and perfusate apolipoprotein B accumulation rates in ACAT2-deficient mice were not significantly different from those of controls; perfusate VLDL CE decreased from 8.0 +/- 0.8% in controls to 0 +/- 0.7% in ACAT2-deficient mice. In conclusion, our data establish that ACAT2 provides core CE of newly secreted VLDL, whereas LCAT adds CE during LDL particle formation.
Collapse
Affiliation(s)
- Richard G Lee
- Arteriosclerosis Research Program, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | | | |
Collapse
|
41
|
Repa JJ, Turley SD, Quan G, Dietschy JM. Delineation of molecular changes in intrahepatic cholesterol metabolism resulting from diminished cholesterol absorption. J Lipid Res 2005; 46:779-89. [PMID: 15654122 DOI: 10.1194/jlr.m400475-jlr200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The absorption of cholesterol by the small intestine is a major route for the net entry of cholesterol into the body and can therefore affect the plasma low density lipoprotein-cholesterol (LDL-C) concentration. These studies used ezetimibe, a potent inhibitor of cholesterol absorption, to delineate the biochemical and molecular changes in intrahepatic metabolism and biliary lipid secretion when there is a major reduction in chylomicron cholesterol delivery to the liver. In female LDL receptor (LDLR)-deficient (LDLR-/-) mice fed a basal diet containing ezetimibe (0-10 mg/day/kg body weight), cholesterol absorption was reduced up to 91%, fecal neutral sterol excretion was increased up to 4.7-fold, and plasma total cholesterol concentrations decreased by up to 18%. Blocking cholesterol absorption prevented the accumulation of very low density lipoproteins and LDL in the circulation of LDLR-/- mice fed a lipid-rich diet. In female LDLR+/+ mice fed the lipid-rich diet with ezetimibe, the relative mRNA level for the LDLR in the liver was 2-fold greater than in matching mice given the lipid-rich diet alone. We conclude that in the mouse the reduction in plasma LDL-C levels induced by blocking cholesterol absorption reflects both a diminished rate of LDL-C production and a modest increase in hepatic LDLR expression.
Collapse
Affiliation(s)
- Joyce J Repa
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8887, USA
| | | | | | | |
Collapse
|
42
|
Lee JY, Carr TP. Dietary fatty acids regulate acyl-CoA:cholesterol acyltransferase and cytosolic cholesteryl ester hydrolase in hamsters. J Nutr 2004; 134:3239-44. [PMID: 15570019 DOI: 10.1093/jn/134.12.3239] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To investigate the effects of dietary fatty acids on acyl-CoA:cholesterol acyltransferase (ACAT) and cytosolic cholesteryl ester hydrolase (cCEH), male Syrian hamsters (F(1)B hybrid) were fed a modified version of the NIH-07 open formula, cereal-based rodent diet enriched with one of the following 4 dietary fatty acids: palmitic acid (16:0), trans fatty acids (18:1t), oleic acid (18:1c), or linoleic acid (18:2). Hamsters fed 16:0 and 18:1t had significantly higher plasma non-HDL cholesterol concentrations compared with those fed 18:1c and 18:2. However, differences in plasma apolipoprotein (apo)B(100) concentration, hepatic cCEH mRNA abundance, and hepatic ACAT activity between 16:0- and 18:1t-fed hamsters suggest that the hypercholesterolemic effects are achieved by different mechanisms. Specifically, an increase in ACAT activity by 16:0 may induce enrichment of cholesteryl esters in apoB(100)-containing particles, whereas 18:1t may increase the number of the particles. Hepatic cholesteryl esters accumulated in the 18:1c- and 18:2-fed groups with no differences in hepatic ACAT activity and cCEH mRNA abundance among hamsters fed unsaturated fatty acids (i.e., 18:1t, 18:1c, and 18:2). Considering the lack of change in free cholesterol concentration and increased cholesteryl esters in the liver, the hypocholesterolemic effect of 18:1c and 18:2 compared with 18:1t may be attributed to decreased production of apoB(100)-containing particles. ACAT-1 was expressed in all the tissues examined; in contrast, ACAT-2 was highly expressed in the liver and small intestine. Hepatic ACAT activity was disproportionate to the levels of ACAT-1 and ACAT-2 mRNA and protein, indicating post-transcriptional regulation of ACAT by dietary fatty acids. The data suggest that cholesterolemic effects of individual dietary fatty acids can be achieved through their independent modulation of pathways regulating assembly and secretion of apoB(100)-containing particles.
Collapse
Affiliation(s)
- Ji-Young Lee
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | | |
Collapse
|
43
|
Lee RG, Kelley KL, Sawyer JK, Farese RV, Parks JS, Rudel LL. Plasma cholesteryl esters provided by lecithin:cholesterol acyltransferase and acyl-coenzyme a:cholesterol acyltransferase 2 have opposite atherosclerotic potential. Circ Res 2004; 95:998-1004. [PMID: 15486318 DOI: 10.1161/01.res.0000147558.15554.67] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evidence suggests that ACAT2 is a proatherogenic enzyme that contributes cholesteryl esters (CEs) to apoB-containing lipoproteins, whereas LCAT is an antiatherogenic enzyme that facilitates reverse cholesterol transport by esterifying free cholesterol on HDL particles. We hypothesized that deletion of LCAT and ACAT2 would lead to absence of plasma CEs and reduced atherosclerosis. To test this hypothesis, ACAT2-/- LCAT-/- LDLr-/-, ACAT2-/- LDLr-/-, and LCAT-/- LDLr-/- mice were fed a 0.15% cholesterol diet for 20 weeks. In comparison to LDLr-/- mice, the total plasma cholesterol (TPC) of ACAT2-/- LCAT-/- LDLr-/- mice was 67% lower because of the complete absence of plasma CEs, leading to 94% less CE accumulation in the aorta. In the LCAT-/- LDLr-/- mice, TPC and atherosclerosis were significantly higher because of increased accumulations of ACAT2-derived CE. In ACAT2-/- LDLr-/- mice, again compared with LDLr-/- mice, TPC was 19% lower, whereas atherosclerosis was 88% lower. Therefore, the absence of ACAT2 led to a significant reduction in TPC although benefits in reduction of atherosclerosis were much more pronounced. Overall, the data suggest that ACAT2-derived CE is the predominant atherogenic lipid in blood, and that an important goal for prevention of atherosclerosis is to limit ACAT2-derived CE accumulation in lipoproteins.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/blood
- Aortic Diseases/enzymology
- Aortic Diseases/etiology
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Apolipoproteins B/blood
- Arteriosclerosis/blood
- Arteriosclerosis/enzymology
- Arteriosclerosis/etiology
- Arteriosclerosis/genetics
- Arteriosclerosis/pathology
- Cholesterol/blood
- Cholesterol Esters/analysis
- Cholesterol Esters/blood
- Cholesterol, Dietary/pharmacokinetics
- Cholesterol, Dietary/toxicity
- Cholesterol, HDL/blood
- Cholesterol, LDL/blood
- Cholesterol, VLDL/blood
- Diet, Atherogenic
- Fatty Acids, Unsaturated/blood
- Intestinal Absorption
- Lecithin Cholesterol Acyltransferase Deficiency/blood
- Lecithin Cholesterol Acyltransferase Deficiency/genetics
- Liver/chemistry
- Liver/enzymology
- Male
- Mice
- Mice, Knockout
- Particle Size
- Phosphatidylcholine-Sterol O-Acyltransferase/genetics
- Phosphatidylcholine-Sterol O-Acyltransferase/physiology
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Sterol O-Acyltransferase/deficiency
- Sterol O-Acyltransferase/genetics
- Sterol O-Acyltransferase/physiology
- Trans Fatty Acids/toxicity
- Triglycerides/analysis
- Sterol O-Acyltransferase 2
Collapse
Affiliation(s)
- Richard G Lee
- Arteriosclerosis Research Program, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|
44
|
Parini P, Davis M, Lada AT, Erickson SK, Wright TL, Gustafsson U, Sahlin S, Einarsson C, Eriksson M, Angelin B, Tomoda H, Omura S, Willingham MC, Rudel LL. ACAT2 is localized to hepatocytes and is the major cholesterol-esterifying enzyme in human liver. Circulation 2004; 110:2017-23. [PMID: 15451793 DOI: 10.1161/01.cir.0000143163.76212.0b] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Two acyl-coenzyme A:cholesterol acyltransferase (ACAT) genes, ACAT1 and ACAT2, have been identified that encode 2 proteins responsible for intracellular cholesterol esterification. METHODS AND RESULTS In this study, immunohistology was used to establish their cellular localization in human liver biopsies. ACAT2 protein expression was confined to hepatocytes, whereas ACAT1 protein was found in Kupffer cells only. Studies with a highly specific ACAT2 inhibitor, pyripyropene A, in microsomal activity assays demonstrated that ACAT2 activity was highly variable among individual human liver samples, whereas ACAT1 activity was more similar in all specimens. ACAT2 provided the major cholesterol-esterifying activity in 3 of 4 human liver samples examined. CONCLUSIONS The data suggest that in diseases in which dysregulation of cholesterol metabolism occurs, such as hypercholesterolemia and atherosclerosis, ACAT2 should be considered a target for prevention and treatment.
Collapse
Affiliation(s)
- Paolo Parini
- Metabolism Unit, Center for Metabolism and Endocrinology, Department of Medicine, Novum, Karolinska Institute at Huddinge University Hospital, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW A growing body of data suggests that in addition to LDL-cholesterol concentrations, compositional properties of LDL, including size and fatty acid composition, are important in determining the relative degree of atherogenicity. This review examines current research in this field to evaluate which properties of LDL may most directly influence the risk of coronary heart disease. RECENT FINDINGS The presence of small dense LDL has been correlated with an increased risk of coronary heart disease, but this has not been shown to be fully independent of related factors such as elevated plasma triacylglycerol concentrations. An increased susceptibility of small dense LDL to in-vitro oxidation has also been demonstrated, but its importance to coronary heart disease risk has not been established. Other studies have found that the presence of enlarged LDL, modified (oleate enriched) fatty acyl composition of LDL, and higher numbers of LDL particles in plasma also are endpoints associated with an increased risk of coronary heart disease. SUMMARY LDL size may indicate a metabolic condition associated with increased CHD risk as opposed to the direct promotion of atherosclerosis by specific particle types of LDL. In most claims of detrimental effects of small dense LDL, neither LDL particle concentrations nor the fatty acid composition of the particles were established, both factors being important in contributing to the atherogenic potential of LDL. The predisposition to premature coronary heart disease cannot currently be objectively assigned to any one type of LDL particle.
Collapse
Affiliation(s)
- Aaron T Lada
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
46
|
Furbee JW, Parks JS. Transgenic overexpression of human lecithin: cholesterol acyltransferase (LCAT) in mice does not increase aortic cholesterol deposition. Atherosclerosis 2002; 165:89-100. [PMID: 12208474 DOI: 10.1016/s0021-9150(02)00201-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Results from several atherosclerosis studies using morphometric procedures have proven controversial with regard to whether over-expression of human LCAT in transgenic (Tg) mice is atherogenic. The purpose of the present study was to determine the effect of 10-fold over-expression of human LCAT on aortic free and esterified cholesterol (EC) deposition as well as plasma lipoprotein cholesteryl ester (CE) fatty acid composition in mice fed an atherogenic diet containing cholic acid. C57Bl/6 (control) and human LCAT-Tg mice were fed chow or an atherogenic diet (15% of calories from palm oil, 1.0% cholesterol and 0.5% cholic acid) for 24 weeks before measurement of aortic cholesterol content. Compared with the chow diet, control and LCAT-Tg mice fed the atherogenic diet had a 2-fold increase in plasma total, free and EC, a 7-fold increase in plasma apoB lipoprotein cholesterol, and a 40-50-fold increase in hepatic cholesterol content. The aortic EC content was increased in control (0.7 vs. 1.2 mg/g protein) and LCAT-Tg (0.3 vs. 1.5 mg/g protein) mice fed the atherogenic diet compared with those consuming the chow diet; however, there was no difference in aortic free (14.4+/-6.8 vs. 18.5+/-7.7 mg/g protein) or esterified (1.2+/-1.0 vs. 1.5+/-1.2 mg/g protein) cholesterol content between atherogenic diet-fed control and LCAT-Tg mice, respectively. LCAT-Tg mice fed the atherogenic diet had a 2-fold increase in the ratio of saturated+monounsaturated to polyunsaturated CE species in plasma apoB lipoproteins compared with control mice (9.4+/-2.4 vs. 4.9+/-0.7). We conclude that over-expression of human LCAT in Tg mice fed an atherogenic diet containing cholic acid does not result in increased aortic cholesterol deposition compared with control mice, even though the CE fatty acid saturation index of plasma apoB lipoproteins was doubled.
Collapse
Affiliation(s)
- James W Furbee
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1040, USA
| | | |
Collapse
|
47
|
Xie C, Woollett LA, Turley SD, Dietschy JM. Fatty acids differentially regulate hepatic cholesteryl ester formation and incorporation into lipoproteins in the liver of the mouse. J Lipid Res 2002; 43:1508-19. [PMID: 12235183 DOI: 10.1194/jlr.m200146-jlr200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
These experiments tested the hypothesis that fatty acids (FAs) that drive cholesterol esterification also enhance sterol secretion and were undertaken using a mouse model where lipoprotein-cholesterol output by the liver could be assessed in vivo. The turnover of sterol in the animals was kept constant ( approximately 160 mg/d per kg) while the liver was enriched with the single FAs 8:0, 14:0, 18:1, or 18:2. Under these conditions, the steady-state concentration of cholesteryl ester in the liver varied 6-fold, from 1.2 to 7.9 mg/g, and the expansion of this pool was directly related to the specific FA enriching the liver (FA 18:1>18:2>8:0> 14:0). Secretion of lipoprotein-cholesterol varied 5-fold and was a linear function of the concentration of cholesteryl ester in the liver. These studies demonstrate that unsaturated FAs drive the esterification reaction and enhance lipoprotein cholesterol secretion by the liver under conditions where cholesterol balance across this organ is constant. Thus, individual FAs interact with cholesterol to profoundly regulate both the output and uptake of sterol by the liver, and these effects are articulated through the esterification reaction.
Collapse
Affiliation(s)
- Chonglun Xie
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-8887, USA
| | | | | | | |
Collapse
|
48
|
Rudel LL, Davis M, Sawyer J, Shah R, Wallace J. Primates highly responsive to dietary cholesterol up-regulate hepatic ACAT2, and less responsive primates do not. J Biol Chem 2002; 277:31401-6. [PMID: 12080065 DOI: 10.1074/jbc.m204106200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of liver acyl-CoA:cholesterol acyltransferase 2 (ACAT2), earlier shown to be the principal ACAT enzyme within primate hepatocytes, as a regulator of the hypercholesterolemia induced by dietary cholesterol was studied. At the end of low and high cholesterol diet periods, liver biopsies were taken from cynomolgus monkeys, a species highly responsive to dietary cholesterol, and less responsive African green monkeys. Liver cholesterol and cholesteryl ester concentrations were highest in cynomolgus monkeys fed cholesterol, despite the fact that in order to induce equivalent hypercholesterolemia, dietary cholesterol levels were 50% lower than was fed to green monkeys. Hepatic cholesteryl oleate secretion rate, measured during liver perfusion as an indicator of ACAT activity, was significantly higher in cynomolgus monkeys. Liver microsomal ACAT activity was 2-3-fold higher in cynomolgus monkeys than in green monkeys. The responses of ACAT2 were compared with those of ACAT1 that is found primarily in Kupffer cells. ACAT2 protein mass was significantly correlated to microsomal total ACAT activity in both species; ACAT1 mass was less well correlated. Dietary cholesterol induced a significant 3-fold increase of ACAT2 protein mass in cynomolgus monkeys, a much greater increase than was found for mRNA abundance; neither ACAT2 mRNA nor protein was diet-responsive in green monkeys. In cynomolgus monkeys but not in green monkeys, liver free cholesterol concentrations were elevated when cholesterol was fed and were correlated with ACAT2 protein levels. The data suggest a mechanism whereby the elevation of hepatic free cholesterol concentrations by dietary cholesterol, seen only in cynomolgus monkeys, resulted in higher ACAT2 protein levels in hepatocytes, either through increased production or stabilization of the protein. Regulation of ACAT2 gene transcription was not a factor.
Collapse
Affiliation(s)
- Lawrence L Rudel
- Arteriosclerosis Research Program, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | |
Collapse
|
49
|
Kim JY, Jang MK, Lee SS, Choi MS, Bok SH, Oh GT, Park YB. Rab7 gene is up-regulated by cholesterol-rich diet in the liver and artery. Biochem Biophys Res Commun 2002; 293:375-82. [PMID: 12054610 DOI: 10.1016/s0006-291x(02)00173-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To identify genes responding to the cholesterol-rich diet, differentially expressed hepatic genes have been searched from a diet-induced hypercholesterolemic rabbit by differential display reverse transcription-polymerase chain reaction (DDRT-PCR). Among the many screened genes, Rab7 gene was shown to be distinctively up-regulated in response to the cholesterol-loading into the rabbit. To visualize the location of elevated Rab7 expression in tissues, patterns of the gene expression were monitored within hepatic and aortic tissues by in situ hybridization and immunohistochemistry. The expression of Rab7 was obviously increased in the hepatic tissues, especially in the endothelial cells and hepatocytes around central veins of the high cholesterol-fed rabbit, compared to the tissues from rabbit fed a normal diet. To find out a potential relationship between the Rab7 and the atherogenesis, the same experiments were conducted with the atherosclerotic plaques obtained from rabbit and human. The elevated expression of Rab7 gene was clearly evident in both tissues, suggesting that the Rab7 may be involved in the process of atherogenesis.
Collapse
Affiliation(s)
- Ji Yong Kim
- Department of Genetic Engineering, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Furbee JW, Francone O, Parks JS. In vivo contribution of LCAT to apolipoprotein B lipoprotein cholesteryl esters in LDL receptor and apolipoprotein E knockout mice. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)30149-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|