1
|
Xiong J, Sun P, Wang Y, Hua X, Song W, Wang Y, Wu J, Yu W, Liu G, Chen L. Heterozygous deletion of Seipin in islet beta cells of male mice has an impact on insulin synthesis and secretion through reduced PPARγ expression. Diabetologia 2020; 63:338-350. [PMID: 31776610 DOI: 10.1007/s00125-019-05038-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) is an autosomal recessive disorder characterised by lipodystrophy and insulin resistance. BSCL2 is caused by loss-of-function mutations in the Seipin gene (also known as Bscl2). Deletion of this gene in mice induces insulin resistance, glucose intolerance and a loss of adipose tissue. This study evaluated the effects of genetic deletion of Seipin on islet beta cell function. METHODS We examined seipin expression in islet cells and measured glucose profiles, insulin synthesis, glucose-stimulated insulin secretion (GSIS), islet expression of peroxisome proliferator-activated receptor γ (PPARγ), levels of Pdx-1, Nkx6.1, Glut2 (also known as Slc2a2) and proinsulin mRNA, nuclear translocation of pancreatic duodenal homeobox 1 (PDX-1), islet numbers, and beta cell mass and proliferation in male and female Seipin-knockout homozygous (Seipin-/-) and heterozygous (Seipin+/-) mice. RESULTS Male and female Seipin-/- mice displayed glucose intolerance, insulin resistance, hyperinsulinaemia and a lack of adipose tissue. By contrast, male but not female Seipin+/- mice showed glucose intolerance without adipose tissue loss or insulin resistance. Seipin was highly expressed in islet beta cells in wild-type mice. Expression of islet PPARγ was reduced in male Seipin-/- and Seipin+/- mice but not in female Seipin-/- or Seipin+/- mice. Treatment of male Seipin+/- mice with rosiglitazone corrected the glucose intolerance. Male Seipin+/- mice displayed a decrease in islet insulin concentration and GSIS with low expression of Pdx-1, Nkx6.1, Glut2 and proinsulin, and a decline in PDX-1 nuclear translocation; these changes were rescued by rosiglitazone administration. Male Seipin-/- mice showed obvious, but rosiglitazone-sensitive, increases in islet insulin concentration, islet number and beta cell mass and proliferation, with a notable decline in GSIS. Ovariectomised female Seipin+/- mice displayed glucose intolerance and deficits in insulin synthesis and secretion, with a decline in islet PPARγ level; these deleterious effects were reversed by administration of oestradiol or rosiglitazone. CONCLUSIONS/INTERPRETATION Heterozygous deletion of Seipin in islet beta cells impacts on insulin synthesis and secretion through reduced PPARγ expression. This leads to glucose intolerance and is relieved by oestradiol, which rescues PPARγ expression.
Collapse
Affiliation(s)
- Jianwei Xiong
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Ya Wang
- Department of Physiology, Nanjing Medical University, Longmian Road 101, Nanjing, 211166, China
| | - Xu Hua
- Department of Physiology, Nanjing Medical University, Longmian Road 101, Nanjing, 211166, China
| | - Wenyu Song
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yan Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Jie Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Wenfeng Yu
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, China.
| | - George Liu
- Institute of Cardiovascular Sciences, Peking University and Key Laboratory of Cardiovascular Sciences, China Administration of Education, Beijing, 100191, China.
| | - Ling Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
- Department of Physiology, Nanjing Medical University, Longmian Road 101, Nanjing, 211166, China.
| |
Collapse
|
2
|
Wang Q, Mu H, Shen H, Gu Z, Liu D, Yang M, Zhang Y, Xu W, Zhang W, Mai K. Comparative analysis of glucose metabolism responses of large yellow croaker Larimichthys crocea fed diet with fish oil and palm oil. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1603-1614. [PMID: 31054044 DOI: 10.1007/s10695-019-00646-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
In order to study the effects of dietary fatty acid compositions on glucose metabolism, large yellow croaker juveniles Larimichthys crocea (initial weight, 36.80 ± 0.39 g) were fed with two experiment diets for 12 weeks. The two diets contained 6.5% of fish oil (FO) and palm oil (PO), respectively. Results showed that the contents of saturated fatty acids in liver and muscle, levels of glucose, triglyceride (TG), non-esterified fatty acid (NEFA), and leptin in blood were significantly higher in PO group, while the hepatic glycogen and muscle glycogen significantly decreased (P < 0.05). There were no significant differences in blood insulin and adiponectin levels between the two groups (P > 0.05). Compared with the FO group, the expressions of glucokinase (GK), glucose-6-phosphate dehydrogenase, glycogen synthase (GYS), glucose transporter 2 (GLUT2), insulin receptor 1 (IR1), insulin receptor substrate 1 (IRS1), insulin receptor substrate (IRS2), and protein kinase B (AKT2) were significantly decreased, and the expressions of phosphoenolpyruvate carboxykinase (PEPCK) in liver were significantly increased in the PO group. Meanwhile, the expressions of GK, phosphofructokinase, GYS, GLUT4, and insulin receptor 2 (IR2) were significantly reduced, and the expressions PEPCK, fructose-1 and 6-diphosphatase in muscle were significantly increased in the PO group. In conclusion, palm oil in diet could inhibit the utilization of glucose and promote the endogenous glucose production in large yellow croaker by reducing the sensitivity of insulin, so as to increase the blood glucose level.
Collapse
Affiliation(s)
- Qi Wang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Hua Mu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Haohao Shen
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Zhixiang Gu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Dong Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Mengxi Yang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Yue Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Weiqi Xu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao, 266237, China.
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao, 266237, China
| |
Collapse
|
3
|
Synergistic effects of caffeine and catechins on lipid metabolism in chronically fed mice via the AMP-activated protein kinase signaling pathway. Eur J Nutr 2016; 56:2309-2318. [DOI: 10.1007/s00394-016-1271-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 07/11/2016] [Indexed: 01/28/2023]
|
4
|
El-Zein O, Usta J, El Moussawi L, Kreydiyyeh SI. Leptin inhibits the Na(+)/K(+) ATPase in Caco-2 cells via PKC and p38MAPK. Cell Signal 2014; 27:416-23. [PMID: 25499980 DOI: 10.1016/j.cellsig.2014.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/22/2014] [Accepted: 12/06/2014] [Indexed: 10/24/2022]
Abstract
We demonstrated previously an inhibitory effect of luminal leptin on glucose absorption in differentiated Caco-2 cells. Since this process is dependent on the Na(+) gradient established by the Na(+)/K(+)ATPase this work was undertaken to investigate if the ATPase is one of the hormone's targets. Fully differentiated Caco-2 cells were incubated with 10nM luminal leptin and the activity of the Na(+)/K(+) ATPase was assayed by measuring the amount of inorganic phosphate liberated. To elucidate the signaling pathway involved, the suspected mediators, namely PKC, p38MAPK, ERK and PI3K, were inhibited with specific pharmacological inhibitors and their implication was confirmed by determining changes in the protein expression of their active phosphorylated forms by Western blot analysis. Leptin reduced significantly the activity of the Na(+)/K(+) ATPase, by activating p38MAPK via inhibition of PKC, an upstream inhibitor of the kinase. ERK and PI3K are modulators of the pump and are not along the pathway activated by leptin but cross talk with it at the level of p38MAPK.
Collapse
Affiliation(s)
- Ola El-Zein
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon
| | - Julnar Usta
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Layla El Moussawi
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon
| | | |
Collapse
|
5
|
Alix PM, Guebre-Egziabher F, Soulage CO. Leptin as an uremic toxin: Deleterious role of leptin in chronic kidney disease. Biochimie 2014; 105:12-21. [PMID: 25010649 DOI: 10.1016/j.biochi.2014.06.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 06/30/2014] [Indexed: 12/27/2022]
Abstract
White adipose tissue secretes a large variety of compounds named adipokines amongst which, leptin exhibits pleiotropic metabolic actions. Leptin is an anorexigenic hormone, secreted in proportion of fat mass, with additional effects on the regulation of inflammation, cardiovascular system, immunity, hematopoiesis and bone metabolism. Chronic kidney disease (CKD) is characterized by an increase of plasma leptin concentration that may be explained by a lack of renal clearance. Hyperleptinemia plays a key role in the pathogenesis of complications associated with CKD such as cachexia, protein energy wasting, chronic inflammation, insulin resistance, cardiovascular damages and bone complications. Leptin is also involved in the progression of renal disease through its pro-fibrotic and pro-hypertensive actions. Most of the adverse effects of leptin have been documented both experimentally and clinically. Leptin may therefore be considered as an uremic toxin in CKD. The aim of this review is to summarize the pathophysiological and clinical role of leptin in in vitro studies, experimental models, as well as in patients suffering from CKD.
Collapse
Affiliation(s)
- Pascaline M Alix
- Université de Lyon, INSERM U1060, CarMeN, INSA de Lyon, Univ Lyon-1, F-69621 Villeurbanne, France; Hospices Civils de Lyon, Department of Nephrology, Hôpital E Herriot, Lyon F-69003, France.
| | - Fitsum Guebre-Egziabher
- Université de Lyon, INSERM U1060, CarMeN, INSA de Lyon, Univ Lyon-1, F-69621 Villeurbanne, France; Hospices Civils de Lyon, Department of Nephrology, Hôpital E Herriot, Lyon F-69003, France
| | - Christophe O Soulage
- Université de Lyon, INSERM U1060, CarMeN, INSA de Lyon, Univ Lyon-1, F-69621 Villeurbanne, France
| |
Collapse
|
6
|
Abstract
The fat‐derived hormone, leptin, is well known to regulate body weight. However, there is now substantial evidence that leptin also plays a primary role in the regulation of glucose homeostasis, independent of actions on food intake, energy expenditure or body weight. As such, leptin might have clinical utility in treating hyperglycemia, particularly in conditions of leptin deficiency, such as lipodystrophy and diabetes mellitus. The mechanisms through which leptin modulates glucose metabolism have not been fully elucidated. Leptin receptors are widely expressed in peripheral tissues, including the endocrine pancreas, liver, skeletal muscle and adipose, and both direct and indirect leptin action on these tissues contributes to the control of glucose homeostasis. Here we review the role of leptin in glucose homeostasis, along with our present understanding of the mechanisms involved. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2012.00203.x, 2012)
Collapse
Affiliation(s)
- Heather C Denroche
- Department of Cellular and Physiological Sciences, The Life Sciences Institute
| | - Frank K Huynh
- Department of Cellular and Physiological Sciences, The Life Sciences Institute
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, The Life Sciences Institute ; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Abstract
Pancreatic β-cell dysfunction plays an important role in the pathogenesis of both type 1 and type 2 diabetes. Insulin, which is produced in β-cells, is a critical regulator of metabolism. Insulin is synthesized as preproinsulin and processed to proinsulin. Proinsulin is then converted to insulin and C-peptide and stored in secretary granules awaiting release on demand. Insulin synthesis is regulated at both the transcriptional and translational level. The cis-acting sequences within the 5' flanking region and trans-activators including paired box gene 6 (PAX6), pancreatic and duodenal homeobox- 1(PDX-1), MafA, and β-2/Neurogenic differentiation 1 (NeuroD1) regulate insulin transcription, while the stability of preproinsulin mRNA and its untranslated regions control protein translation. Insulin secretion involves a sequence of events in β-cells that lead to fusion of secretory granules with the plasma membrane. Insulin is secreted primarily in response to glucose, while other nutrients such as free fatty acids and amino acids can augment glucose-induced insulin secretion. In addition, various hormones, such as melatonin, estrogen, leptin, growth hormone, and glucagon like peptide-1 also regulate insulin secretion. Thus, the β-cell is a metabolic hub in the body, connecting nutrient metabolism and the endocrine system. Although an increase in intracellular [Ca2+] is the primary insulin secretary signal, cAMP signaling- dependent mechanisms are also critical in the regulation of insulin secretion. This article reviews current knowledge on how β-cells synthesize and secrete insulin. In addition, this review presents evidence that genetic and environmental factors can lead to hyperglycemia, dyslipidemia, inflammation, and autoimmunity, resulting in β-cell dysfunction, thereby triggering the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Zhuo Fu
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
8
|
Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev 2013; 9:25-53. [PMID: 22974359 PMCID: PMC3934755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 09/11/2012] [Accepted: 09/11/2012] [Indexed: 11/11/2023]
Abstract
Pancreatic β-cell dysfunction plays an important role in the pathogenesis of both type 1 and type 2 diabetes. Insulin, which is produced in β-cells, is a critical regulator of metabolism. Insulin is synthesized as preproinsulin and processed to proinsulin. Proinsulin is then converted to insulin and C-peptide and stored in secretary granules awaiting release on demand. Insulin synthesis is regulated at both the transcriptional and translational level. The cis-acting sequences within the 5' flanking region and trans-activators including paired box gene 6 (PAX6), pancreatic and duodenal homeobox- 1(PDX-1), MafA, and β-2/Neurogenic differentiation 1 (NeuroD1) regulate insulin transcription, while the stability of preproinsulin mRNA and its untranslated regions control protein translation. Insulin secretion involves a sequence of events in β-cells that lead to fusion of secretory granules with the plasma membrane. Insulin is secreted primarily in response to glucose, while other nutrients such as free fatty acids and amino acids can augment glucose-induced insulin secretion. In addition, various hormones, such as melatonin, estrogen, leptin, growth hormone, and glucagon like peptide-1 also regulate insulin secretion. Thus, the β-cell is a metabolic hub in the body, connecting nutrient metabolism and the endocrine system. Although an increase in intracellular [Ca2+] is the primary insulin secretary signal, cAMP signaling- dependent mechanisms are also critical in the regulation of insulin secretion. This article reviews current knowledge on how β-cells synthesize and secrete insulin. In addition, this review presents evidence that genetic and environmental factors can lead to hyperglycemia, dyslipidemia, inflammation, and autoimmunity, resulting in β-cell dysfunction, thereby triggering the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Zhuo Fu
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
9
|
Marroquí L, Gonzalez A, Ñeco P, Caballero-Garrido E, Vieira E, Ripoll C, Nadal A, Quesada I. Role of leptin in the pancreatic β-cell: effects and signaling pathways. J Mol Endocrinol 2012; 49:R9-17. [PMID: 22448029 DOI: 10.1530/jme-12-0025] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Leptin plays an important role in the control of food intake, energy expenditure, metabolism, and body weight. This hormone also has a key function in the regulation of glucose homeostasis. Although leptin acts through central and peripheral mechanisms to modulate glucose metabolism, the pancreatic β-cell of the endocrine pancreas is a critical target of leptin actions. Leptin receptors are present in the β-cell, and their activation directly inhibits insulin secretion from these endocrine cells. The effects of leptin on insulin occur also in the long term, since this hormone inhibits insulin gene expression as well. Additionally, β-cell mass can be affected by leptin through changes in proliferation, apoptosis, or cell size. All these different functions in the β-cell are triggered by leptin as a result of the large diversity of signaling pathways that this hormone is able to activate in the endocrine pancreas. Therefore, leptin can participate in glucose homeostasis owing to different levels of modulation of the pancreatic β-cell population. Furthermore, it has been proposed that alterations in this level of regulation could contribute to the impairment of β-cell function in obesity states. In the present review, we will discuss all these issues with special emphasis on the effects and pathways of leptin signaling in the pancreatic β-cell.
Collapse
Affiliation(s)
- Laura Marroquí
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas-CIBERDEM, Elche, Spain
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lee YH, Magkos F, Mantzoros CS, Kang ES. Effects of leptin and adiponectin on pancreatic β-cell function. Metabolism 2011; 60:1664-72. [PMID: 21632069 DOI: 10.1016/j.metabol.2011.04.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/24/2011] [Accepted: 04/18/2011] [Indexed: 02/09/2023]
Abstract
Leptin and adiponectin are hormones secreted from adipocytes that have important roles in metabolism and energy homeostasis. This review evaluates the effects of leptin and adiponectin on β-cell function by analyzing and compiling results from human clinical trials and epidemiologic studies as well as in vitro and in vivo experiments. Leptin has been shown to inhibit ectopic fat accumulation and thereby prevent β-cell dysfunction and protect the β-cell from cytokine- and fatty acid-induced apoptosis. However, leptin suppresses insulin gene expression and secretion as well as glucose transport into the β-cell. Adiponectin stimulates insulin secretion by enhancing exocytosis of insulin granules and upregulating the expression of the insulin gene; however, this effect depends on the prevailing glucose concentration and status of insulin resistance. In addition, adiponectin has antiapoptotic properties in β-cells. Available evidence concerning the role of these adipokines on insulin secretion, insulin gene expression, and apoptosis is not always entirely consistent; and many fundamental questions remain to be answered by future studies.
Collapse
Affiliation(s)
- Yong-ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | |
Collapse
|
11
|
Abstract
Leptin resistance and insulin resistance are the common pathology of various metabolic diseases, and make great contribution to the metabolic syndrome. Many researches have proved that the two processes affected each other, whereas the exploration of the resistance mechanism was often independently carried out. Here, we'd like to make a review focusing on the relationship between leptin resistance and insulin resistance, and their interactions at multiple levels.
Collapse
|
12
|
Mentor-Marcel RA, Bobe G, Barrett KG, Young MR, Albert PS, Bennink MR, Lanza E, Colburn NH. Inflammation-associated serum and colon markers as indicators of dietary attenuation of colon carcinogenesis in ob/ob mice. Cancer Prev Res (Phila) 2009; 2:60-9. [PMID: 19139019 DOI: 10.1158/1940-6207.capr-08-0086] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although inflammatory cytokines and obesity-associated serum proteins have been reported as biomarkers of colorectal adenoma risk in humans, little is known of biomarkers of response to interventions that attenuate tumorigenesis. Dietary navy beans and their fractions attenuate colon carcinogenesis in carcinogen-induced genetically obese mice. We hypothesized that this attenuation would be associated with changes in inflammatory cytokines and obesity-related serum proteins that may serve as measures of efficacy. ob/ob mice (n = 160) were injected with the carcinogen azoxymethane (AOM) to induce colon cancer and randomly placed on one of four diets (control, whole navy bean, bean residue fraction, or bean extract fraction) for 26 to 28 wk. Serum was analyzed for 14 inflammation- or obesity-related proteins, and colon RNA was analyzed for expression of 84 inflammation-associated genes. Six of 14 serum proteins were increased [i.e., interleukin (IL)-4, IL-5, IL-6, IL-10, IFN gamma, granulocyte macrophage colony-stimulating factor] in hyperplastic/dysplastic stages of colon carcinogenesis. Bean-fed mice had significantly higher monocyte chemoattractant protein-1 and lower IL-6 levels in serum. In colon mucosa, 55 of 84 inflammation-associated genes differed between AOM-induced and noninduced mice. Of the 55 AOM-induced genes, 5 were counteracted by bean diets, including IL-6 whose increase in expression levels was attenuated by bean diets in AOM-induced mice. In summary, IL-6 emerged as a serum protein that was increased in hyperplastic/dysplastic stages of colon carcinogenesis, but attenuated with bean-based diet in serum and colon mucosa. Changes in a subset of inflammation-associated serum proteins and colon gene expression may serve as response indicators of dietary attenuation of colon carcinogenesis.
Collapse
Affiliation(s)
- Roycelynn A Mentor-Marcel
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute-Frederick, 1050 Boyles Street, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Procaccini C, Lourenco EV, Matarese G, La Cava A. Leptin signaling: A key pathway in immune responses. ACTA ACUST UNITED AC 2009; 4:22-30. [PMID: 19774101 DOI: 10.2174/157436209787048711] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Leptin is a hormone whose central role is to regulate endocrine functions and to control energy expenditure. After the discovery that leptin can also have pro-inflammatory effects, several studies have tried to address - at the molecular level - the pathways involved in leptin-induced modulation of the immune functions in normal and pathologic conditions. The signaling events influenced by leptin after its binding to the leptin receptor have been under scrutiny in the past few years, and considerable experimental work has elucidated the consequences of leptin effects on immune cells. This review examines the biochemistry, function and regulation of leptin signaling in view of possible intervention on this molecule for a better management and therapy of immune-mediated diseases.
Collapse
Affiliation(s)
- Claudio Procaccini
- Department of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | | | | | | |
Collapse
|
14
|
Yamanaka M, Itakura Y, Ono-Kishino M, Tsuchida A, Nakagawa T, Taiji M. Intermittent administration of brain-derived neurotrophic factor (BDNF) ameliorates glucose metabolism and prevents pancreatic exhaustion in diabetic mice. J Biosci Bioeng 2008; 105:395-402. [PMID: 18499057 DOI: 10.1263/jbb.105.395] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 01/23/2008] [Indexed: 12/12/2022]
Abstract
We previously demonstrated that repetitive administration of brain-derived neurotrophic factor (BDNF) ameliorates glucose metabolism and energy expenditure in obese diabetic db/db mice. However, we have not evaluated in detail the effect of single or intermittent BDNF administration on glucose metabolism in a diabetic animal model. The objectives of this study were to examine the dose-response effect and dosing interval of BDNF administration in db/db mice and to evaluate the effect of intermittent BDNF administration on pancreatic function in db/db mice. We evaluated the dose-response effect of BDNF by single administration in db/db mice. First, single administration of BDNF greater than 70 mg/kg significantly reduced blood glucose concentration one day after administered, and the BDNF effect was maintained for 6 d. Next, the effects of BDNF administered twice a week at 4, 10, 25, and 62.5 mg/kg on blood glucose concentration, and the effects of BDNF administered once a week at 10, 20, 30, 50, and 70 mg/kg on blood glucose concentration were examined in db/db mice. In the intermittent treatment studies, BDNF dose-dependently ameliorated glucose metabolism by not only the twice-a-week administration but also the once-a-week administration. Lastly, because BDNF reduces the food intake of obese hyperphagic diabetic mice, the effects of BDNF administered once or twice a week on the blood glucose concentration and plasma and pancreatic insulin concentrations in db/db mice were compared with those of the vehicle under pair-fed conditions. Under pair-fed conditions, the intermittent administration of BDNF (25 mg/kg, twice a week, or 50 mg/kg, once a week) significantly reduced the blood glucose concentration and increased the plasma and pancreatic insulin concentrations compared with those in the pair-fed vehicle-treated db/db mice. This indicates that the prolonged hypoglycemic effect of BDNF is not simply due to the reduction of food intake. In conclusion, we demonstrated that the intermittent administration of BDNF ameliorates glucose metabolism and prevents pancreatic exhaustion in obese diabetic mice. These findings indicate that BDNF may have potential as a unique hypoglycemic agent for the treatment of diabetes at a fundamental level with good patient compliance.
Collapse
Affiliation(s)
- Mitsugu Yamanaka
- Discovery Pharmacology I, Pharmacology Research Laboratories, Dainippon Sumitomo Pharma Co., Ltd., 3-1-98 Kasugade Naka, Konohana-ku, Osaka 554-0022, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Yamanaka M, Itakura Y, Inoue T, Tsuchida A, Nakagawa T, Noguchi H, Taiji M. Protective effect of brain-derived neurotrophic factor on pancreatic islets in obese diabetic mice. Metabolism 2006; 55:1286-92. [PMID: 16979397 DOI: 10.1016/j.metabol.2006.04.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 04/26/2006] [Indexed: 10/24/2022]
Abstract
We have previously demonstrated that brain-derived neurotrophic factor (BDNF) ameliorates glucose metabolism and energy expenditure in obese diabetic db/db mice. In the present study, the effect of BDNF treatment on pancreatic islets of db/db mice was examined, using vehicle-treated pair-fed db/db mice as controls. Brain-derived neurotrophic factor (10 mg/kg) or vehicle was subcutaneously administered to male db/db mice for 4 weeks. The food intake of vehicle-treated db/db mice was restricted and precisely synchronized with that of BDNF-treated db/db mice using a pellet pair-feeding apparatus because BDNF decreases food intake in hyperphagic mice. Repetitive administration of BDNF significantly lowered the blood glucose concentration compared with pair-fed vehicle-treated db/db mice. The pancreatic insulin and glucagon concentrations were measured in db/db mice to evaluate the effect of BDNF on the pancreas. Although the insulin concentration in the pancreas of pair-fed vehicle-treated db/db mice was lower than in nondiabetic control +m/+m mice, it was higher in BDNF-treated db/db mice than in vehicle-treated pair-fed db/db mice and comparable to the concentration in +m/+m mice. The glucagon concentration in the pancreas of vehicle-treated pair-fed db/db mice was higher than in +m/+m mice, and BDNF partially decreased the glucagon concentration in the pancreas of db/db mice compared with vehicle. Histologic analyses of pancreatic sections were performed to characterize the mechanism through which BDNF modulates the hormonal concentration in the pancreas of db/db mice. Although there were no significant differences in the number and total area of islets between the BDNF- and vehicle-treated groups, immunostaining with an anti-insulin antibody indicated that the islet beta-cell area in BDNF-treated db/db mice was larger than that in vehicle-treated pair-fed db/db mice. Furthermore, immunostaining with an antiglucagon antibody indicated that BDNF normalized the delocalization of non-beta cells in islets of db/db mice. Electron microscopic images of beta cells indicated a decrease in secretory granules in vehicle-treated pair-fed db/db mice; this change was reversed in BDNF-treated db/db mice and reached a level comparable to that found in +m/+m mice. These findings suggest that BDNF prevents exhaustion of the pancreas in diabetic mice by maintaining the histologic cellular organization of beta cells and non-beta cells in pancreatic islets and restoring the level of insulin-secreting granules in beta cells.
Collapse
Affiliation(s)
- Mitsugu Yamanaka
- Discovery Pharmacology Group I, Pharmacology Research Laboratories, Drug Research Division, Dainippon Sumitomo Pharma Co., Ltd., Chuo-ku, Tokyo 541-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhao YF, Feng DD, Chen C. Contribution of adipocyte-derived factors to beta-cell dysfunction in diabetes. Int J Biochem Cell Biol 2006; 38:804-19. [PMID: 16378747 DOI: 10.1016/j.biocel.2005.11.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 11/11/2005] [Accepted: 11/16/2005] [Indexed: 11/30/2022]
Abstract
In addition to serving as an energy reservoir, the adipocyte has been characterized as an endocrine cell, secreting many bioactive factors which influence energy homeostasis. Being overweight, with excessive adipose tissue, is considered to be part of the pathogenesis of type 2 diabetes. Insulin resistance and beta-cell dysfunction are two major pathophysiological changes seen in type 2 diabetes. In addition to inducing insulin resistance in insulin-responsive tissues, adipocyte-derived factors play an important role in the pathogenesis of beta-cell dysfunction. Leptin, free fatty acids, adiponectin, tumor necrosis factor-alpha and interleukin-6 are all produced and secreted by adipocytes, and may directly influence aspects of beta-cell function, including insulin synthesis and secretion, insulin cell survival and apoptosis. During the progression from normal weight to obesity and on to overt diabetes, the adipocyte-derived factors contribute to the occurrence and development of beta-cell dysfunction and type 2 diabetes.
Collapse
Affiliation(s)
- Yu-Feng Zhao
- Department of Physiology, The Fourth Military Medical University, Xi'an, China
| | | | | |
Collapse
|
17
|
Haddad N, Howland R, Baroody G, Daher C. The modulatory effect of leptin on the overall insulin production in ex-vivo normal rat pancreas. Can J Physiol Pharmacol 2006; 84:157-62. [PMID: 16900941 DOI: 10.1139/y06-006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leptin has a modulator effect on glucose-stimulated insulin secretion. To define the influences of different glucose (4, 8, 12, and 16 mmol/L) and leptin (5, 10, 15, and 20 nmol/L) concentrations on total insulin release in ex vivo pancreatic preparations, a customized perfusion technique was used. Such a profile of concentration brought about an index for the combined effect of leptin and glucose on the production of insulin. Insulin output was measured by radioimmunoassay. Stimulated by glucose alone in the control group, insulin secretion confirmed a bi-phasic pattern. Addition of leptin in the experimental group suppressed insulin secretion compared with control. A U-shape pattern of suppression was observed when the leptin and stimulatory glucose concentrations were combined. At 12 mmol/L glucose, leptin showed maximal insulin suppression. Leptin’s effect on insulin was glucose dependent and showed a reproducible U-shaped pattern of suppression, which implicated possible direct dose-dependent interaction between leptin and glucose on insulin secretion.
Collapse
Affiliation(s)
- N Haddad
- School of Biological and Molecular Sciences, University of Surrey, Guilford, UK.
| | | | | | | |
Collapse
|
18
|
Ducroc R, Guilmeau S, Akasbi K, Devaud H, Buyse M, Bado A. Luminal leptin induces rapid inhibition of active intestinal absorption of glucose mediated by sodium-glucose cotransporter 1. Diabetes 2005; 54:348-54. [PMID: 15677491 DOI: 10.2337/diabetes.54.2.348] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effect of leptin on glucose transport was studied in rat jejunal mucosa in Ussing chambers. Leptin was added in the luminal or the serosal compartment before the tissues were challenged with 1, 10, or 50 mmol/l glucose. In response to 10 mmol/l glucose, the increase in short-circuit current (DeltaIsc) reached 26.8 +/- 2.1 microA/cm(2). Luminal addition of leptin dramatically decreased glucose-induced Isc (90.5% for 10 nmol/l leptin). Inhibition was maximal after 5 min and dose dependent (IC(50) = 0.13 nM). Western blot analysis showed that rapid inhibition of glucose-induced Isc by leptin was associated with a parallel decrease in the abundance of sodium-glucose transporter-1 in brush border membranes. Inhibition by luminal leptin of DeltaIsc was prevented by inhibitor of conventional protein kinase C isoforms. Serosal addition of leptin did not decrease glucose-induced Isc within 5 min and reached maximum after 10 min. The effect of leptin from serosal side was blocked by cholecystokinin (CCK) receptor-2 receptor antagonist YM022. Altogether, these data demonstrate that luminal leptin induces rapid inhibition of glucose entry into enterocyte. The slower action of leptin on the serosal side of mucosa seems indirect and is likely mediated by endogenous CCK. They demonstrate that gut leptin is a major regulator of rapid intestinal glucose transport.
Collapse
Affiliation(s)
- Robert Ducroc
- Institut National de la Santé et de la Recherche Médicale Unité 410, IFR02 Claude Bernard, Faculté de Médecine Xavier Bichat, Paris, France.
| | | | | | | | | | | |
Collapse
|
19
|
Mistry AM, Swick AG, Romsos DR. Leptin acts peripherally to limit meal-induced increases in plasma insulin concentrations in mice: a brief communication. Exp Biol Med (Maywood) 2004; 229:1033-7. [PMID: 15522839 DOI: 10.1177/153537020422901007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Leptin inhibits food intake and lowers plasma insulin concentrations. This study was designed to determine whether leptin acts independent of food-intake regulation to affect meal-induced increases in plasma insulin concentrations. Leptin-deficient, Lep(ob)/Lep(ob) mice were administered 1 microg leptin intracerebroventricularly (ICV) or intraperitoneally. Food intake and plasma insulin concentrations of mice administered leptin ICV before a meal were lower, as expected, than were intakes and plasma insulin concentrations of mice administered vehicle ICV. However when food intake was controlled, meal-induced increases in plasma insulin were unaffected by ICV administration of leptin. Intraperitoneal administration of 1 microg leptin before a meal lowered meal-induced increases in plasma insulin concentrations without influencing the size of the meal. We conclude that plasma leptin concentrations can affect meal-induced insulin secretion independent of the central nervous system actions of leptin associated with food-intake regulation.
Collapse
Affiliation(s)
- Anahita M Mistry
- Department of Nutrition, Food, and Exercise Science, Florida State University, Tallahassee, FL 32306-1493, USA.
| | | | | |
Collapse
|
20
|
Abstract
The hormone leptin is secreted from white adipocytes, and serum levels of leptin correlate with adipose tissue mass. Leptin was first described to act on the satiety center in the hypothalamus through specific receptors (leptin receptor [ObR]) to restrict food intake and enhance energy expenditure. Important peripheral actions of leptin involve inhibition of insulin biosynthesis and secretion in pancreatic beta-cells. In turn, insulin stimulates leptin secretion from adipose tissue, establishing a hormonal regulatory feedback loop-the so-called "adipo-insular axis." Multiple signal transduction pathways are involved in leptin signaling in pancreatic beta-cells. We have identified the proinsulin gene and protein phosphatase 1 gene as leptin repressed genes and the gene for the suppressor of cytokine signaling 3 protein as a leptin-induced gene in pancreatic beta-cells. The molecular effects of leptin culminate to restrict insulin secretion and biosynthesis to adapt glucose homeostasis to the amount of body fat. In most overweight individuals, however, physiological regulation of body weight by leptin seems to be disturbed, representing "leptin resistance." This leptin resistance at the level of the pancreatic beta-cell may contribute to dysregulation of the adipo-insular axis and promote the development of hyperinsulinemia and manifest type 2 diabetes in overweight patients.
Collapse
Affiliation(s)
- Jochen Seufert
- Division of Metabolism, Medizinische Poliklinik, University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
21
|
Lee JW, Romsos DR. Leptin administration normalizes insulin secretion from islets of Lep(ob)/Lep(ob) mice by food intake-dependent and -independent mechanisms. Exp Biol Med (Maywood) 2003; 228:183-7. [PMID: 12563025 DOI: 10.1177/153537020322800208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Leptin-deficient Lep(ob)/Lep(ob) mice exhibit elevations in plasma insulin early in development. The present study tested the hypothesis that absence of leptin during neonatal development permanently programs islets from these mice to hypersecrete insulin. Administration of leptin for 8 days to young adult Lep(ob)/Lep(ob) mice normalized their food intake, plasma insulin concentration, and insulin secretion in response to glucose, acetylcholine, and leptin. Restriction of food intake per se of Lep(ob)/Lep(ob) mice lowered, but did not normalize, plasma insulin concentrations. Food-restricted Lep(ob)/Lep(ob) mice continued to hypersecrete insulin in response to glucose, but islets from these mice did not hyperrespond to acetylcholine or respond to leptin as occurs in ad libitum-fed Lep(ob)/Lep(ob) mice. We conclude that neonatal leptin deficiency does not permanently program islets from mice to hypersecrete insulin. The hyperphagia associated with leptin deficiency contributes substantially to the hypersecretion of insulin, but leptin also appears to have more direct effects on regulation of insulin secretion.
Collapse
Affiliation(s)
- Joo-Won Lee
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824-1224, USA
| | | |
Collapse
|
22
|
Lee JW, Swick AG, Romsos DR. Leptin constrains phospholipase C-protein kinase C-induced insulin secretion via a phosphatidylinositol 3-kinase-dependent pathway. Exp Biol Med (Maywood) 2003; 228:175-82. [PMID: 12563024 DOI: 10.1177/153537020322800207] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Leptin-deficient Lep(ob)/Lep(ob)mice hypersecrete insulin in response to acetylcholine stimulation of the phospholipase C-protein kinase C (PLC-PKC) pathway, and leptin constrains this hypersecretion. Leptin has been reported to activate phosphatidylinositol 3-kinase (PI 3-K) and subsequently phosphodiesterase (PDE) to impair protein kinase A (PKA)-induced insulin secretion from cultured islets of neonatal rats. We determined if PKA-induced insulin secretion was also hyperresponsive in islets from Lep(ob)/Lep(ob)mice, and if leptin impaired this pathway in islets from these mice. Additionally, the possible role for PI 3-K and PDE in leptin-induced control of acetylcholine-induced insulin secretion was examined. Stimulation of insulin secretion with GLP-1, forskolin (an activator of adenylyl cyclase), or IBMX (an inhibitor of PDE) did not cause hypersecretion of insulin from islets of young Lep(ob)/Lep(ob)mice, and leptin did not inhibit GLP-1-induced insulin secretion from islets of these mice. Inhibition of PDE with IBMX also did not block leptin-induced inhibition of acetylcholine-mediated insulin secretion from islets of Lep(ob)/Lep(ob)mice. But, preincubation of islets with wortmannin, an inhibitor of PI 3-K activity, blocked the ability of leptin to constrain acetylcholine-induced insulin secretion from islets of Lep(ob)/Lep(ob)mice. We conclude that the capacity of the PKA pathway to stimulate insulin secretion is not increased in islets from young Lep(ob)/Lep(ob)mice, and that leptin does not regulate this pathway in islets from mice. Leptin may stimulate PI 3-K to constrain PLC-PKC-induced insulin secretion from islets of Lep(ob)/Lep(ob)mice.
Collapse
Affiliation(s)
- Joo-Won Lee
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824-1224, USA
| | | | | |
Collapse
|
23
|
Silva LFP, VandeHaar MJ, Weber Nielsen MS, Smith GW. Evidence for a local effect of leptin in bovine mammary gland. J Dairy Sci 2002; 85:3277-86. [PMID: 12512601 DOI: 10.3168/jds.s0022-0302(02)74416-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
On average, high-energy diets promoting body growth rates above 1 kg/d before puberty impair mammary development by 15 to 20% in cattle. We hypothesized that leptin, a protein produced by adipocytes, mediates the inhibitory effect of high-energy diets on mammary development. Therefore, our objectives were to determine the effect of leptin on mammary epithelial cell proliferation, and the distribution of mRNA for two leptin receptor isoforms in prepubertal bovine mammary glands and other peripheral tissues. Addition of leptin to culture media containing either 5 ng/ml of insulin-like growth factor-I (IGF-I) or 1% fetal bovine serum decreased DNA synthesis of a bovine mammary epithelial cell line (MAC-T) in a dose-dependent manner. The minimal doses of leptin that decreased IGF-I- and fetal bovine serum-stimulated cell proliferation were 64 and 1 ng/ml, respectively. In addition, we determined that MAC-T cells and isolated bovine mammary epithelial cells express the long form of leptin receptor (Ob-Rb) mRNA. Ob-Rb mRNA was detected in all bovine tissues examined. In contrast with reports on other species, mRNA expression of the short form of leptin receptor (Ob-Ra) was detected only in bovine liver, pituitary body, and spleen. These results support the concept that leptin mediates the inhibitory effect of high-energy diets on mammary development.
Collapse
Affiliation(s)
- L F P Silva
- Department of Animal Science, Michigan State University, East Lansing 48824, USA
| | | | | | | |
Collapse
|
24
|
Abstract
The adipocyte-derived hormone, leptin, regulates food intake and systemic fuel metabolism; ob /ob mice, which lack functional leptin, exhibit an obesity syndrome that is similar to morbid obesity in humans. Leptin receptors are expressed most abundantly in the brain but are also present in several peripheral tissues. The role of leptin in controlling energy homeostasis has thus far focused on brain receptors and neuroendocrine pathways that regulate feeding behaviour and sympathetic nervous system activity. This chapter focuses on mounting evidence that leptin's effects on energy balance are also mediated by direct peripheral actions on key metabolic organs such as skeletal muscle, liver, pancreas and adipose tissue. Strong evidence indicates that peripheral leptin receptors regulate cellular lipid balance, favouring beta-oxidation over triacylglycerol storage. There are data to indicate that peripheral leptin also modulates glucose metabolism and insulin action; however, its precise role in controlling gluco-regulatory pathways remains uncertain and requires further investigation.
Collapse
Affiliation(s)
- Deborah M Muoio
- Duke University Medical Center, Box 3327, Durham, NC 27710, USA
| | | |
Collapse
|
25
|
Margetic S, Gazzola C, Pegg GG, Hill RA. Leptin: a review of its peripheral actions and interactions. Int J Obes (Lond) 2002; 26:1407-33. [PMID: 12439643 DOI: 10.1038/sj.ijo.0802142] [Citation(s) in RCA: 619] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2001] [Revised: 04/02/2002] [Accepted: 05/27/2002] [Indexed: 12/11/2022]
Abstract
Following the discovery of leptin in 1994, the scientific and clinical communities have held great hope that manipulation of the leptin axis may lead to the successful treatment of obesity. This hope is not yet dashed; however the role of the leptin axis is now being shown to be ever more complex than was first envisaged. It is now well established that leptin interacts with pathways in the central nervous system and through direct peripheral mechanisms. In this review, we consider the tissues in which leptin is synthesized and the mechanisms which mediate leptin synthesis, the structure of leptin and the knowledge gained from cloning leptin genes in aiding our understanding of the role of leptin in the periphery. The discoveries of expression of leptin receptor isotypes in a wide range of tissues in the body have encouraged investigation of leptin interactions in the periphery. Many of these interactions appear to be direct, however many are also centrally mediated. Discovery of the relative importance of the centrally mediated and peripheral interactions of leptin under different physiological states and the variations between species is beginning to show the complexity of the leptin axis. Leptin appears to have a range of roles as a growth factor in a range of cell types: as be a mediator of energy expenditure; as a permissive factor for puberty; as a signal of metabolic status and modulation between the foetus and the maternal metabolism; and perhaps importantly in all of these interactions, to also interact with other hormonal mediators and regulators of energy status and metabolism such as insulin, glucagon, the insulin-like growth factors, growth hormone and glucocorticoids. Surely, more interactions are yet to be discovered. Leptin appears to act as an endocrine and a paracrine factor and perhaps also as an autocrine factor. Although the complexity of the leptin axis indicates that it is unlikely that effective treatments for obesity will be simply derived, our improving knowledge and understanding of these complex interactions may point the way to the underlying physiology which predisposes some individuals to apparently unregulated weight gain.
Collapse
Affiliation(s)
- S Margetic
- Central Queensland University, School of Chemical and Biomedical Sciences, Queensland, Australia
| | | | | | | |
Collapse
|
26
|
Colombo C, Cutson JJ, Yamauchi T, Vinson C, Kadowaki T, Gavrilova O, Reitman ML. Transplantation of adipose tissue lacking leptin is unable to reverse the metabolic abnormalities associated with lipoatrophy. Diabetes 2002; 51:2727-33. [PMID: 12196465 DOI: 10.2337/diabetes.51.9.2727] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Severe adipose tissue deficiency (lipoatrophy) causes insulin-resistant diabetes, elevated serum triglyceride and fatty acid levels, and massive triglyceride deposition in the liver. In lipoatrophic A-ZIP/F-1 mice, transplantation of normal adipose tissue greatly improved these parameters, whereas 1 week of leptin infusion had more modest effects. In contrast, leptin infusion was strikingly more effective in the aP2-n sterol response element binding protein 1 lipoatrophic mouse. Here we show that a longer duration of leptin infusion further improves the metabolic status of the A-ZIP/F-1 mice and that genetic background does not make a major contribution to the effect of leptin on glucose and insulin levels. Adipose transplantation using leptin-deficient ob/ob fat had no effect on the phenotype of the A-ZIP/F-1 mice. Moreover, the presence of ob/ob adipose tissue did not enhance the effects of leptin infusion. Serum adiponectin levels were 2% of control levels in the A-ZIP/F-1 mouse and increased only twofold with adipose transplantation and not at all after leptin infusion, suggesting that adiponectin deficiency is not a major contributor to the diabetic phenotype. Taken together, these results suggest that sequestration of triglycerides into fat may not be enough to restore a nondiabetic phenotype and that leptin deficiency plays a major role in causing the metabolic complications of lipoatrophy.
Collapse
Affiliation(s)
- Carlo Colombo
- Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The identification of leptin as the product of the obesity (ob) gene has been followed by extensive research identifying a wide spectrum of physiological effects elicited by this adipose-derived hormone. These effects are mediated via a family of cytokine-like receptor isoforms distributed in both the central nervous system and periphery. The signal transduction pathways regulated by leptin are diverse and include those characteristic of both cytokine and growth factor receptor signalling. This review describes the structure and function of leptin receptors and summarizes recent progress that has been made in characterizing the increasing number of signal transduction pathways regulated by leptin.
Collapse
Affiliation(s)
- Gary Sweeney
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.
| |
Collapse
|
28
|
Ceddia RB, Koistinen HA, Zierath JR, Sweeney G. Analysis of paradoxical observations on the association between leptin and insulin resistance. FASEB J 2002; 16:1163-76. [PMID: 12153984 DOI: 10.1096/fj.02-0158rev] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Obesity is commonly associated with the development of insulin resistance and diabetes in humans and rodents. Insulin resistance and diabetes are observed in lipoatrophic individuals or rodent models of lipoatrophy. Here we focus on the role of leptin, the product of the obesity (ob) gene, in the development of insulin resistance and diabetes associated with obesity and lipoatrophy. We review the reported effects of leptin on whole body glucose metabolism and compare and contrast these with direct effects on skeletal muscle, fat and liver. This summary of paradoxical observations on the effects of leptin on glucose homeostasis and the ability of leptin to induce or improve insulin resistance suggests that a complex interplay exists between direct peripheral and centrally mediated effects of the hormone. Evidence suggesting that leptin acts as a mediator of insulin release from pancreatic beta cells is reviewed. Finally, intracellular signaling mechanisms stimulated by both leptin and insulin are discussed, with potential points of cross-talk suggested.
Collapse
|
29
|
Goïot H, Attoub S, Kermorgant S, Laigneau JP, Lardeux B, Lehy T, Lewin MJ, Bado A. Antral mucosa expresses functional leptin receptors coupled to STAT-3 signaling, which is involved in the control of gastric secretions in the rat. Gastroenterology 2001; 121:1417-27. [PMID: 11729121 DOI: 10.1053/gast.2001.29581] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Leptin is a circulating hormone that communicates the peripheral nutritional status to the hypothalamus, which controls food intake, energy expenditure, and body weight. This study characterizes leptin receptors and leptin-sensitive STAT proteins in the antrum and investigates the effects of leptin on gastric secretions. METHODS The effects of leptin on gastrin messenger RNA (mRNA), plasma gastrin, gastric acid in vivo in the rat, and on somatostatin and gastrin secretions by isolated antral cells were determined in vitro. Leptin receptors were investigated in isolated rat antral cells by reverse transcription-polymerase chain reaction and binding of [(125)I]-leptin studies. The effects of in vivo and in vitro leptin on transduction signal STAT proteins were investigated by immunoblotting antral extracts. RESULTS Peripheral injection of leptin inhibited in a dose-dependent manner, basal gastric secretion, gastrinemia, and mucosal gastrin mRNA in vivo. mRNAs encoding the long (Ob-Rb) and short (Ob-Ra) receptor forms were detected in rat antral mucosa, as were STAT-1, -3, and -5b immunoreactive proteins. Isolated antral cells specifically bound [(125)I]-leptin, and addition of leptin to these cells inhibited the release of somatostatin and increased the release of gastrin. These effects were associated with an increase in nuclear STAT-3 proteins in vitro and in vivo. CONCLUSIONS This study provides the first molecular evidence for the coexpression of leptin receptors and STAT-3 in antral mucosa. It provides further evidence for the involvement of leptin in the control of gastric secretions.
Collapse
Affiliation(s)
- H Goïot
- INSERM Unité 410, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, 75870 Paris Cedex 18, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Lee JW, Romsos DR. Leptin-deficient mice commence hypersecreting insulin in response to acetylcholine between 1 and 2 weeks of age. Exp Biol Med (Maywood) 2001; 226:906-11. [PMID: 11682696 DOI: 10.1177/153537020122601005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Leptin-deficient Lep(ob)/Lep(ob)mice develop hyperinsulinemia early in life, before they begin to overeat or develop insulin resistance. Pancreatic islets from these young mice do not yet hypersecrete insulin in response to glucose, but they hyperrespond to acetylcholine. Islets from 4-day, and 1-, 2-, and 4-week-old mice were used in the present study to determine when leptin-deficient mice first hypersecrete insulin in response to acetylcholine. This relative hypersecretion of insulin from islets of leptin-deficient mice occurred between 1 and 2 weeks of age. The divergence in insulin secretion occurred at this time because islets from lean, leptin-sufficient mice became relatively less responsive to acetylcholine between 1 and 2 weeks of age, whereas islets from leptin-deficient mice maintained a high responsiveness to acetylcholine during development. Leptin addition to islets isolated from 4-day, and 2-, and 4-week-old leptin-deficient mice rapidly (i.e., within 30 min) suppressed acetylcholine-induced insulin secretion at each stage of development. In contrast, islets from 4-day, and 2- and 4-week-old leptin-sufficient mice became progressively less responsive to leptin with development. Leptin targets pancreatic islets early in development to specifically constrain the overall capacity for acetylcholine-induced insulin secretion, and to acutely modulate this secretion.
Collapse
Affiliation(s)
- J W Lee
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824-1224, USA
| | | |
Collapse
|
31
|
Kawaji N, Yoshida A, Motoyashiki T, Morita T, Ueki H. Anti-leptin receptor antibody mimics the stimulation of lipolysis induced by leptin in isolated mouse fat pads. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)32222-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
32
|
Gilon P, Henquin JC. Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr Rev 2001; 22:565-604. [PMID: 11588141 DOI: 10.1210/edrv.22.5.0440] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acetylcholine (ACh), the major parasympathetic neurotransmitter, is released by intrapancreatic nerve endings during the preabsorptive and absorptive phases of feeding. In beta-cells, ACh binds to muscarinic M(3) receptors and exerts complex effects, which culminate in an increase of glucose (nutrient)-induced insulin secretion. Activation of PLC generates diacylglycerol. Activation of PLA(2) produces arachidonic acid and lysophosphatidylcholine. These phospholipid-derived messengers, particularly diacylglycerol, activate PKC, thereby increasing the efficiency of free cytosolic Ca(2+) concentration ([Ca(2+)](c)) on exocytosis of insulin granules. IP3, also produced by PLC, causes a rapid elevation of [Ca(2+)](c) by mobilizing Ca(2+) from the endoplasmic reticulum; the resulting fall in Ca(2+) in the organelle produces a small capacitative Ca(2+) entry. ACh also depolarizes the plasma membrane of beta-cells by a Na(+)- dependent mechanism. When the plasma membrane is already depolarized by secretagogues such as glucose, this additional depolarization induces a sustained increase in [Ca(2+)](c). Surprisingly, ACh can also inhibit voltage-dependent Ca(2+) channels and stimulate Ca(2+) efflux when [Ca(2+)](c) is elevated. However, under physiological conditions, the net effect of ACh on [Ca(2+)](c) is always positive. The insulinotropic effect of ACh results from two mechanisms: one involves a rise in [Ca(2+)](c) and the other involves a marked, PKC-mediated increase in the efficiency of Ca(2+) on exocytosis. The paper also discusses the mechanisms explaining the glucose dependence of the effects of ACh on insulin release.
Collapse
Affiliation(s)
- P Gilon
- Unité d'Endocrinologie et Métabolisme, University of Louvain Faculty of Medicine, B-1200 Brussels, Belgium.
| | | |
Collapse
|
33
|
Ahmed M, Grapengiesser E. Pancreatic beta-cells from obese-hyperglycemic mice are characterized by excessive firing of cytoplasmic Ca2+ transients. Endocrine 2001; 15:73-8. [PMID: 11572329 DOI: 10.1385/endo:15:1:073] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pancreatic beta-cells from obese-hyperglycemic (ob/ob) mice are widely used for studying the mechanisms of insulin release, including its regulation by the cytoplasmic Ca2+ concentration ([Ca2+]i). In this study, we compared changes of [Ca2+]i in single beta-cells isolated from ob/ob mice with those from lean mice using dual-wavelength microfluorometry and the indicator fura-2. There were no differences in the frequency, amplitude, and half-width of the slow oscillations induced by glucose. Most beta-cells from the obese mice responded to 10 mM caffeine with transformation of the oscillations into sustained elevation of [Ca2+]i, a process counteracted by ryanodine. The beta-cells from the obese mice were characterized by ample generation of [Ca2+]i transients, which increased in number in the presence of glucagon. The transients became less frequent when leptin was added at a concentration as low as 1 nM. It is suggested that the excessive firing of [Ca2+]i transients in the ob/ob mice is owing to the absence of leptin and is mediated by activation of the phospholipase C signaling pathway.
Collapse
Affiliation(s)
- M Ahmed
- Department of Medical Cell Biology, Uppsala University, Sweden
| | | |
Collapse
|
34
|
Abstract
Much attention has focused on the effects of leptin as a central satiety agent. There is now a significant amount of evidence that leptin is active in the periphery. This review focuses on the ability of leptin to modify insulin sensitivity, tissue metabolism, stress responses, and reproductive function. Leptin's effect on several of these systems is mediated via the hypothalamic-pituitary axis. Therefore, although in vitro studies provide evidence for direct effects on specific tissues and metabolic pathways, it is essential to consider the interactions between leptin and other regulatory factors in vivo. Little is known about the regulation of peripheral receptor expression or the production of binding proteins. Both of these factors determine the bioactivity of circulating leptin and have the potential to induce a peripheral resistance to leptin, similar to the central "leptin resistance" observed in obese subjects. Future research will clarify which of the endocrine and metabolic actions of peripheral leptin are of physiological relevance and which should be considered a pharmacological manipulation.
Collapse
Affiliation(s)
- R B Harris
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA.
| |
Collapse
|
35
|
Sjöholm A, Arkhammar P, Berggren PO, Andersson A. Polyamines in pancreatic islets of obese-hyperglycemic (ob/ob) mice of different ages. Am J Physiol Cell Physiol 2001; 280:C317-23. [PMID: 11208527 DOI: 10.1152/ajpcell.2001.280.2.c317] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To further evaluate the role of polyamines in insulin production and cell replication in diabetic pancreatic islets, we have studied hyperplastic islets of obese-hyperglycemic mice of different ages and normal islets of the same strain. The aims of the study were to investigate the impact of the diabetic state and aging on polyamine contents and requirements in these islets. Cultured islets from lean and obese animals contained significantly less polyamines than freshly isolated islets. Spermine-to-spermidine ratio was elevated in freshly isolated islets from young obese mice compared with those from lean mice. In islets from old obese animals, spermidine content was decreased, whereas the content of spermine was not different from that of young obese mice. The physiological significance of polyamines was investigated by exposing islets in tissue culture to inhibitors of polyamine synthesis. This treatment caused a partial polyamine depletion in whole islets but failed to affect polyamine content of cell nuclei. Insulin content was not affected in polyamine-deficient islets of obese mice, irrespective of age, in contrast to decreased islet insulin content in polyamine-depleted young lean animals. Polyamine depletion depressed DNA synthesis rate in obese mouse islets; in lean mice it actually stimulated DNA synthesis. We concluded that important qualitative and quantitative differences exist between islets from obese-hyperglycemic and normal mice with respect to polyamine content and requirements of polyamines for regulation of insulin content and cell proliferation. The results suggest that spermine may be involved in mediating the rapid islet cell proliferation noted early in obese-hyperglycemic syndrome, but changes in spermine concentration do not seem to account for the decline in islet cell DNA synthesis in aged normoglycemic animals.
Collapse
Affiliation(s)
- A Sjöholm
- Department of Molecular Medicine, Endocrine and Diabetes Unit, Rolf Luft Center for Diabetes Research, Karolinska Institutet, Karolinska Hospital, SE-171 76 Stockholm.
| | | | | | | |
Collapse
|
36
|
Jang M, Mistry A, Swick AG, Romsos DR. Leptin rapidly inhibits hypothalamic neuropeptide Y secretion and stimulates corticotropin-releasing hormone secretion in adrenalectomized mice. J Nutr 2000; 130:2813-20. [PMID: 11053526 DOI: 10.1093/jn/130.11.2813] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leptin may rapidly inhibit food intake by altering the secretion of hypothalamic neuropeptides such as neuropeptide Y (NPY), a stimulator of food intake, and/or corticotropin-releasing hormone (CRH), an inhibitor of food intake. We measured concentrations of NPY and CRH in specific hypothalamic regions [i.e., arcuate nucleus (ARC), paraventricular nucleus (PVN), ventromedial nucleus and dorsomedial nucleus] of 7- to 8-wk-old lean and ob/ob mice at 1 or 3 h after intracerebroventricular leptin administration. No rapid-onset effects of leptin on hypothalamic NPY or CRH concentrations were observed in intact mice. The addition of leptin to hypothalamic preparations from intact mice also did not alter NPY or CRH secretion. Glucocorticoids may oppose leptin actions. Consistent with this, leptin administration to adrenalectomized mice markedly reduced CRH concentrations in the ARC within 3 h after injection. This rapid reduction in CRH concentration in the ARC after leptin administration is more likely due to stimulated CRH release from this region than to decreased synthesis/transport from the PVN because leptin stimulates CRH synthesis in the PVN. Within 20 min after exposure to leptin, NPY secretion from hypothalamic preparations obtained from adrenalectomized mice was lowered by 27% and CRH secretion was elevated by 51%. The current study demonstrates that leptin rapidly influences the secretion of hypothalamic NPY and CRH and that these actions of leptin within the hypothalamus are restrained by the presence of endogenous corticosterone.
Collapse
Affiliation(s)
- M Jang
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824-1224 and. Pfizer Central Research, Groton, CT 06340, USA
| | | | | | | |
Collapse
|
37
|
Hill DJ, Strutt B, Arany E, Zaina S, Coukell S, Graham CF. Increased and persistent circulating insulin-like growth factor II in neonatal transgenic mice suppresses developmental apoptosis in the pancreatic islets. Endocrinology 2000; 141:1151-7. [PMID: 10698192 DOI: 10.1210/endo.141.3.7354] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In rats, a proportion of pancreatic beta-cells are deleted by apoptosis in the second week of postnatal life and replaced by endocrine cell neogenesis from pancreatic ductal epithelium. This coincides with a reduction in pancreatic insulin-like growth factor II (IGF-II) expression, and IGF-II has been shown to act as a beta-cell survival factor in vitro. To examine whether IGF-II regulates beta-cell apoptosis in vivo, an IGF-II transgenic mouse model was used in which mouse IGF-II is overexpressed in skin, gut, and uterus driven by a keratin promoter, so that circulating IGF-II is retained postnatally. Mice were killed between postnatal days 7 and 26, and the pancreas was examined histologically. Apoptotic cells were visualized by the terminal deoxynucleotidyltransferase-mediated deoxy-UTP nick end labeling method, and proliferating cells were examined by immunohistochemistry for proliferating cell nuclear antigen. In nontransgenic mice, serum IGF-II was absent by 26 days, but mean (+/-SEM) values were 45+/-9 ng/ml (n = 5) in transgenic animals. A 2- to 3-fold rise in islet cell apoptosis was seen in normal animals between days 11 and 16, but this was substantially decreased in IGF-II transgenic mice (day 11; control, 12+/-1%; transgenic, 6+/-1%; P < 0.01; n = 5). Consequently, islets from IGF-II transgenic mice had a significantly greater mean area from days 11-16, but the proportions of beta- and alpha-cells and circulating insulin levels were not changed. Islet cell DNA synthesis was increased in transgenic mice on days 13 and 16. The total islet number per section did not alter. The results show that a persistent presence of circulating IGF-II postnatally alters endocrine pancreatic ontogeny in the mouse and largely prevents the wave of developmental apoptosis that precipitates beta-cell turnover in neonatal life.
Collapse
Affiliation(s)
- D J Hill
- Lawson Research Institute, St. Joseph's Health Center, London, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The prevalence of obesity and related diabetes mellitus is increasing worldwide. Here we review evidence for the existence of an adipoinsular axis, a dual hormonal feedback loop involving the hormones insulin and leptin produced by pancreatic beta-cells and adipose tissue, respectively. Insulin is adipogenic, increases body fat mass, and stimulates the production and secretion of leptin, the satiety hormone that acts centrally to reduce food intake and increase energy expenditure. Leptin in turn suppresses insulin secretion by both central actions and direct actions on beta-cells. Because plasma levels of leptin are directly proportional to body fat mass, an increase of adiposity increases plasma leptin, thereby curtailing insulin production and further increasing fat mass. We propose that the adipoinsular axis is designed to maintain nutrient balance and that dysregulation of this axis may contribute to obesity and the development of hyperinsulinemia associated with diabetes.
Collapse
Affiliation(s)
- T J Kieffer
- Departments of Medicine and Physiology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | |
Collapse
|
39
|
Affiliation(s)
- T J Kieffer
- Department of Medicine, University of Alberta, Edmonton, Canada.
| | | |
Collapse
|
40
|
Ahrén B, Havel PJ. Leptin inhibits insulin secretion induced by cellular cAMP in a pancreatic B cell line (INS-1 cells). THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:R959-66. [PMID: 10516232 DOI: 10.1152/ajpregu.1999.277.4.r959] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of leptin on insulin secretion is controversial due to conflicting results in the literature. In the present study, we incubated insulin-producing rat insulinoma INS-1 cells for 60 min and examined the effects of recombinant murine leptin (20 nmol/l). We found that leptin (0.1-100 nmol/l) did not affect the insulin response to glucose (1-20 mmol/l). However, when cells were incubated with agents that increase the intracellular content of cAMP, i.e., glucagon-like peptide-1 (100 nmol/l), pituitary adenylate cyclase activating polypeptide (100 nmol/l), forskolin (2.5 micromol/l), dibutyryl-cAMP (1 mmol/l), or 3-isobutyl-1-methylxanthine (100 micromol/l), leptin significantly reduced insulin secretion (by 34-58%, P < 0.05-0.001). In contrast, when insulin secretion was stimulated by the cholinergic agonist carbachol (100 micromol/l) or the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (1 micromol/l), both of which activate protein kinase C, leptin was without effect. We conclude that leptin inhibits insulin secretion from INS-1 cells under conditions in which intracellular cAMP is increased. This suggests that the cAMP-protein kinase A signal transduction pathway is a target for leptin to inhibit insulin secretion in insulin-producing cells.
Collapse
Affiliation(s)
- B Ahrén
- Department of Medicine, Lund University, Malmö, SE-205 02 Sweden.
| | | |
Collapse
|
41
|
White DW, Tartaglia LA. Evidence for ligand-independent homo-oligomerization of leptin receptor (OB-R) isoforms: A proposed mechanism permitting productive long-form signaling in the presence of excess short-form expression. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990501)73:2<278::aid-jcb13>3.0.co;2-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
|
43
|
Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus. J Clin Endocrinol Metab 1999. [PMID: 10022436 DOI: 10.1210/jc.84.2.670] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previously we demonstrated the expression of the long form of the leptin receptor in rodent pancreatic beta-cells and an inhibition of insulin secretion by leptin via activation of ATP-sensitive potassium channels. Here we examine pancreatic islets isolated from pancreata of human donors for their responses to leptin. The presence of leptin receptors on islet beta-cells was demonstrated by double fluorescence confocal microscopy after binding of a fluorescent derivative of human leptin (Cy3-leptin). Leptin (6.25 nM) suppressed insulin secretion of normal islets by 20% at 5.6 mM glucose. Intracellular calcium responses to 16.7 mM glucose were rapidly reduced by leptin. Proinsulin messenger ribonucleic acid expression in islets was inhibited by leptin at 11.1 mM, but not at 5.6 mM glucose. Leptin also reduced proinsulin messenger ribonucleic acid levels that were increased in islets by treatment with 10 nM glucagon-like peptide-1 in the presence of either 5.6 or 11.1 mM glucose. These findings demonstrate direct suppressive effects of leptin on insulin-producing beta-cells in human islets at the levels of both stimulus-secretion coupling and gene expression. The findings also further indicate the existence of an adipoinsular axis in humans in which insulin stimulates leptin production in adipocytes and leptin inhibits the production of insulin in beta-cells. We suggest that dysregulation of the adipoinsular axis in obese individuals due to defective leptin reception by beta-cells may result in chronic hyperinsulinemia and may contribute to the pathogenesis of adipogenic diabetes.
Collapse
|
44
|
Ahrén B. Plasma leptin and insulin in C57BI/6J mice on a high-fat diet: relation to subsequent changes in body weight. ACTA PHYSIOLOGICA SCANDINAVICA 1999; 165:233-40. [PMID: 10090336 DOI: 10.1046/j.1365-201x.1999.00518.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
It has been proposed that leptin and insulin through central effects are involved in the regulation of energy balance and body weight. Whether circulating leptin or insulin levels predict subsequent changes in body weight is, however, not known. We examined plasma leptin and insulin at 2, 3, 6, 9 and 12 months of age in C57BI/6J mice given a normal diet (n = 12) or a high-fat diet (58% fat on a caloric base; n = 15). Plasma leptin levels increased by age and correlated with body weight in the entire material (r = 0.81, P < 0.001). Also plasma insulin increased by high-fat diet and correlated across all age periods with body weight (r = 0.56, P < 0.001). In mice, given normal diet, plasma leptin or insulin did not correlate to subsequent changes in body weight at any of the time points studied. However, in mice given the high-fat diet, plasma leptin at 6 (r = -0.57, P = 0.027) and 9 months of age (r = -0.56, P = 0.042) as well as plasma insulin at 6 (r = - 0.51, P = 0.049) and 9 months (r = -0.58, P = 0.037) correlated inversely to the change in body weight during the subsequent 3-month period. Hence, both leptin and insulin are negative predictors for future weight gain in high-fat fed mice. This suggests that when the regulation of body weight is challenged by a high-fat diet, leptin and insulin act to restrain or prevent future weight gain. This in turn may suggest that impairment of these (probably central) actions of leptin and insulin might underlie excessive increase in body weight under such conditions.
Collapse
Affiliation(s)
- B Ahrén
- Department of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
45
|
Seufert J, Kieffer TJ, Leech CA, Holz GG, Moritz W, Ricordi C, Habener JF. Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus. J Clin Endocrinol Metab 1999; 84:670-6. [PMID: 10022436 PMCID: PMC2927866 DOI: 10.1210/jcem.84.2.5460] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previously we demonstrated the expression of the long form of the leptin receptor in rodent pancreatic beta-cells and an inhibition of insulin secretion by leptin via activation of ATP-sensitive potassium channels. Here we examine pancreatic islets isolated from pancreata of human donors for their responses to leptin. The presence of leptin receptors on islet beta-cells was demonstrated by double fluorescence confocal microscopy after binding of a fluorescent derivative of human leptin (Cy3-leptin). Leptin (6.25 nM) suppressed insulin secretion of normal islets by 20% at 5.6 mM glucose. Intracellular calcium responses to 16.7 mM glucose were rapidly reduced by leptin. Proinsulin messenger ribonucleic acid expression in islets was inhibited by leptin at 11.1 mM, but not at 5.6 mM glucose. Leptin also reduced proinsulin messenger ribonucleic acid levels that were increased in islets by treatment with 10 nM glucagon-like peptide-1 in the presence of either 5.6 or 11.1 mM glucose. These findings demonstrate direct suppressive effects of leptin on insulin-producing beta-cells in human islets at the levels of both stimulus-secretion coupling and gene expression. The findings also further indicate the existence of an adipoinsular axis in humans in which insulin stimulates leptin production in adipocytes and leptin inhibits the production of insulin in beta-cells. We suggest that dysregulation of the adipoinsular axis in obese individuals due to defective leptin reception by beta-cells may result in chronic hyperinsulinemia and may contribute to the pathogenesis of adipogenic diabetes.
Collapse
Affiliation(s)
- J Seufert
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston 02114, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Seufert J, Kieffer TJ, Habener JF. Leptin inhibits insulin gene transcription and reverses hyperinsulinemia in leptin-deficient ob/ob mice. Proc Natl Acad Sci U S A 1999; 96:674-9. [PMID: 9892692 PMCID: PMC15195 DOI: 10.1073/pnas.96.2.674] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1998] [Indexed: 11/18/2022] Open
Abstract
Leptin controls feeding behavior and insulin secretion from pancreatic beta-cells. Insulin stimulates the production of leptin, thereby establishing an adipoinsular axis. Earlier we identified leptin receptors on pancreatic beta-cells and showed leptin-mediated inhibition of insulin secretion by activation of ATP-sensitive potassium channels. Here we examine transcriptional effects of leptin on the promoter of the rat insulin I gene in rodent beta-cells. A fall in levels of preproinsulin mRNA is detected in vivo in islets of ob/ob mice 24 h after a single injection of leptin, in isolated ob/ob islets treated with leptin in vitro and in the beta-cell line INS-1 on leptin exposure when preproinsulin mRNA expression is stimulated by 25 mM glucose or 10 nM glucagon-like peptide 1. Under these conditions, transcriptional activity of -410 bp of the rat insulin I promoter is inhibited by leptin, whereas transactivation of a 5'-deleted promoter (-307 bp) is not. The -307 sequence contains the known glucose-responsive control elements (E2:A3/4). Constitutive activation of ATP-sensitive potassium channels by diazoxide does not alter leptin inhibition of preproinsulin mRNA levels. Distinct protein-DNA complexes appear on the rat insulin I promoter sequences located between -307 and -410 with nuclear extracts from ob/ob islets in response to leptin, including a signal transducer and activator of transcription (STAT)5b binding site. These results indicate that leptin inhibits transcription of the preproinsulin gene by altering transcription factor binding to sequences upstream from the elements (307 bp) that confer glucose responsivity to the rat insulin I gene promoter. Thus leptin exerts inhibitory effects on both insulin secretion and insulin gene expression in pancreatic beta-cells, but by different cellular mechanisms.
Collapse
Affiliation(s)
- J Seufert
- The Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
47
|
Karlsson E, Stridsberg M, Sandler S. Leptin regulation of islet amyloid polypeptide secretion from mouse pancreatic islets. Biochem Pharmacol 1998; 56:1339-46. [PMID: 9825733 DOI: 10.1016/s0006-2952(98)00194-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Leptin receptors are expressed in pancreatic beta-cells. However, leptin's role in islet hormone secretion is essentially unknown. In the present study, we aimed to elucidate leptin's effect on isolated pancreatic NMRI mouse islets by examining islet amyloid polypeptide (IAPP) and insulin secretion in acute experiments and after 48-hr exposure to leptin (1-100 nM). It was also examined whether a putative effect of leptin was affected by the glucose concentration. Islets were cultured in medium RPMI 1640 + 10% fetal calf serum, and the effects of leptin on islet cell replication, glucose metabolism, and hormone content were subsequently examined. Glucose-stimulated IAPP secretion was reduced both acutely and after 48-hr exposure to leptin, whereas only minor effects were found on insulin release, i.e. an inhibition in islets cultured with 1 nM leptin. An acute inhibitory effect by 10 nM leptin was observed on the ratio of IAPP/insulin release at 5.6-11.1 mM glucose, but this was overcome by 16.7 mM glucose. The islet glucose oxidation rate was enhanced by 1 nM leptin, but decreased at higher concentrations of leptin in acute experiments. In contrast, glucose metabolism was not affected in long-term experiments. Moreover, leptin did not influence islet (pro)insulin synthesis or the cell replication rate after culture. In conclusion, we show that islet IAPP release seems to be more sensitive to leptin than is insulin release. The effect of leptin on islet hormone secretion is dependent on the glucose concentration. The regulation of hormone secretion seems to be dissociated from glucose metabolism, an effect previously described in islets after exposure to certain cytokines. Our data necessarily suggest that a previously proposed negative feedback loop between leptin and insulin can be counteracted by IAPP.
Collapse
Affiliation(s)
- E Karlsson
- Department of Medical Cell Biology, Uppsala University, Sweden.
| | | | | |
Collapse
|
48
|
Carlsson PO, Andersson A, Jansson L. Influence of age, hyperglycemia, leptin, and NPY on islet blood flow in obese-hyperglycemic mice. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:E594-601. [PMID: 9755077 DOI: 10.1152/ajpendo.1998.275.4.e594] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to elucidate possible age-related changes in islet blood perfusion in lean and obese C57BL/6 mice. Obese mice aged 1 mo were hyperglycemic and hyperinsulinemic and had an increased islet blood flow compared with age-matched lean mice. This augmented blood flow could be abolished by pretreatment with leptin. The islet blood perfusion was, in contrast to this, markedly decreased in obese 6- to 7-mo-old animals compared with age-matched lean mice. Reversal of hyperglycemia, but not hyperinsulinemia, in these obese mice with phlorizin normalized the islet blood flow. Spontaneous reversal of hyperglycemia, but not hyperinsulinemia, was seen in the 12-mo-old obese mice. Islet blood perfusion in obese mice at this age did not differ compared with lean mice. It is suggested that the initial increase in islet blood flow in obese mice is due to the leptin deficiency. The subsequent decrease in islet blood perfusion is probably caused by the chronic hyperglycemia. The described islet blood flow changes may be of importance for impairment of islet function in obese-hyperglycemic mice.
Collapse
Affiliation(s)
- P O Carlsson
- Department of Medical Cell Biology, Uppsala University, S-75123 Uppsala, Sweden
| | | | | |
Collapse
|
49
|
Schreyer SA, Chua SC, LeBoeuf RC. Obesity and diabetes in TNF-alpha receptor- deficient mice. J Clin Invest 1998; 102:402-11. [PMID: 9664082 PMCID: PMC508899 DOI: 10.1172/jci2849] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
TNF-alpha may play a role in mediating insulin resistance associated with obesity. This concept is based on studies of obese rodents and humans, and cell culture models. TNF elicits cellular responses via two receptors called p55 and p75. Our purpose was to test the involvement of TNF in glucose homeostasis using mice lacking one or both TNF receptors. C57BL/6 mice lacking p55 (p55(-)/-), p75, (p75(-)/-), or both receptors (p55(-)/-p75(-)/-) were fed a high-fat diet to induce obesity. Marked fasting hyperinsulinemia was seen for p55(-)/-p75(-)/- males between 12 and 16 wk of feeding the high-fat diet. Insulin levels were four times greater than wild-type mice. In contrast, p55(-)/- and p75(-)/- mice exhibited insulin levels that were similar or reduced, respectively, as compared with wild-type mice. In addition, high-fat diet-fed p75(-)/- mice had the lowest body weights and leptin levels, and improved insulin sensitivity. Obese (db/db) mice, which are not responsive to leptin, were used to study the role of p55 in severe obesity. Male p55(-)/-db/db mice exhibited threefold higher insulin levels and twofold lower glucose levels at 20 wk of age than control db/db expressing p55. All db/db mice remained severely insulin resistant based on fasting plasma glucose and insulin levels, and glucose and insulin tolerance tests. Our data do not support the concept that TNF, acting via its receptors, is a major contributor to obesity-associated insulin resistance. In fact, data suggest that the two TNF receptors work in concert to protect against diabetes.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Diabetes Mellitus, Experimental/metabolism
- Female
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Obese
- Obesity/metabolism
- Receptors, Tumor Necrosis Factor/deficiency
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- S A Schreyer
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
50
|
Leclercq-Meyer V, Malaisse WJ. Failure of human and mouse leptin to affect insulin, glucagon and somatostatin secretion by the perfused rat pancreas at physiological glucose concentration. Mol Cell Endocrinol 1998; 141:111-8. [PMID: 9723892 DOI: 10.1016/s0303-7207(98)00087-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In isolated perfused pancreas from normal rats, a rise in d-glucose concentration from 3.3 to 8.3 mM provoked a rapid phasic stimulation of both insulin and somatostatin secretion and rapid fall in glucagon output, these changes being reversed when the concentration of the hexose was brought back to its initial low level. In the presence of 8.3 mM d-glucose, the administration of either human or mouse leptin (10 nM in both cases) for 15 min failed to affect significantly the perfusion pressure and release of the three hormones. It is concluded that leptin does not exert any major immediate and direct effect upon pancreatic insulin, glucagon and somatostatin secretion, at least at the physiological concentration of d-glucose normally found in the plasma of fed rats.
Collapse
Affiliation(s)
- V Leclercq-Meyer
- Laboratory of Experimental Medicine, Brussels Free University, Belgium
| | | |
Collapse
|