1
|
Manis C, Casula M, Roos A, Hentschel A, Vorgerd M, Pogoryelova O, Derksen A, Spendiff S, Lochmüller H, Caboni P. Ion Mobility QTOF-MS Untargeted Lipidomics of Human Serum Reveals a Metabolic Fingerprint for GNE Myopathy. Molecules 2024; 29:5211. [PMID: 39519852 PMCID: PMC11547195 DOI: 10.3390/molecules29215211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
GNE myopathy, also known as hereditary inclusion body myopathy (HIBM), is a rare genetic muscle disorder marked by a gradual onset of muscle weakness in young adults. GNE myopathy (GNEM) is caused by bi-allelic variants in the UDP-N-acetylglucosamine 2-epimerase (UDP-GlcNAc 2-epimerase)/N-acetylmannosamine kinase (ManNAc kinase) gene (GNE), clinically resulting in the loss of ambulation within 10-20 years from the onset of the initial symptoms. The disease's mechanism is poorly understood and non-invasive biomarkers are lacking, hindering effective therapy development. Based on the available evidence, we employed a lipidomic approach to study the serum lipid profile of GNE patients. The multivariate statistical analysis revealed a downregulation of carnitines, as well as of lysophosphatidylcholines, in sera samples derived from GNEM patients. Furthermore, we identified lower levels of sphingomyelins and, concomitantly, high levels of ceramides in serum samples from GNEM patients when compared to control samples derived from healthy donors. Moreover, the GNEM serum samples showed the upregulation of Krebs cycle intermediates, in addition to a decrease in oxaloacetic acid. The correlated data gathered in this study can offer a promising diagnostic panel of complex lipids and polar metabolites that can be used in clinic for GNEM in terms of a metabolic fingerprint measurable in a minimally invasive manner.
Collapse
Affiliation(s)
- Cristina Manis
- Department of Life and Environmental Sciences, Cittadella Universitaria di Monserrato, Blocco A, Room 13, 09042 Monserrato, Italy; (C.M.); (M.C.)
| | - Mattia Casula
- Department of Life and Environmental Sciences, Cittadella Universitaria di Monserrato, Blocco A, Room 13, 09042 Monserrato, Italy; (C.M.); (M.C.)
| | - Andreas Roos
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany;
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; (A.D.); (S.S.); (H.L.)
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften, 44139 Dortmund, Germany;
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany;
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Oksana Pogoryelova
- Directorate of Neurosciences, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK;
| | - Alexa Derksen
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; (A.D.); (S.S.); (H.L.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sally Spendiff
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; (A.D.); (S.S.); (H.L.)
| | - Hanns Lochmüller
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; (A.D.); (S.S.); (H.L.)
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8M5, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, Cittadella Universitaria di Monserrato, Blocco A, Room 13, 09042 Monserrato, Italy; (C.M.); (M.C.)
| |
Collapse
|
2
|
Lin WL, Chien MM, Patchara S, Wang W, Faradina A, Huang SY, Tung TH, Tsai CS, Skalny AV, Tinkov AA, Chang CC, Chang JS. Essential trace element and phosphatidylcholine remodeling: Implications for body composition and insulin resistance. J Trace Elem Med Biol 2024; 85:127479. [PMID: 38878466 DOI: 10.1016/j.jtemb.2024.127479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Recent studies indicated that bioactive lipids of phosphatidylcholines (PCs) and lysophosphatidylcholines (LysoPCs) predict unhealthy metabolic phenotypes, but results remain inconsistent. To fill this knowledge gap, we investigated whether essential trace elements affect PC-Lyso PC remodeling pathways and the risk of insulin resistance (IR). METHODS Anthropometric and blood biochemical data (glucose, insulin, and lipoprotein-associated phospholipase A2 (Lp-PLA2)) were obtained from 99 adults. Blood essential/probably essential trace elements and lipid metabolites were respectively measured by inductively coupled plasma mass spectrometry (ICP-MS), and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). RESULT AND CONCLUSION Except for LysoPC (O-18:0/0:0), an inverse V shape was observed between body weight and PC and LysoPC species. A Pearson correlation analysis showed that essential/probably-essential metals (Se, Cu, and Ni: r=-0.4∼-0.7) were negatively correlated with PC metabolites but positively correlated with LysoPC (O-18:0/0:0) (Se, Cu, and Ni: r=0.85-0.64). Quantile-g computation showed that one quantile increase in essential metals was associated with a 2.16-fold increase in serum Lp-PLA2 (β=2.16 (95 % confidence interval (CI): 0.34, 3.98), p=0.023), which are key enzymes involved in PC/Lyso PC metabolism. An interactive analysis showed that compared to those with the lowest levels (reference), individuals with the highest levels of serum PCs (pooled, M2) and the lowest essential/probably essential metals (M1) were associated with a healthier body composition and had a 76 % decreased risk of IR (odds ratio (OR)=0.24 (95 % CI: 0.06, 0.90), p<0.05). In contrast, increased exposure to LysoPC(O-18:0/0:0) (M2) and essential metals (M2) exhibited an 8.22-times highest risk of IR (OR= 8.22 (2.07, 32.57), p<0.05) as well as an altered body composition. In conclusion, overexposure to essential/probably essential trace elements may promote an unhealthy body weight and IR through modulating PC/LysoPC remodeling pathways.
Collapse
Affiliation(s)
- Wen-Ling Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC
| | - Mu-Ming Chien
- Department of Pediatrics, Taipei Medical University Hospital, Taipei 11031, Taiwan, ROC
| | - Sangopas Patchara
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC
| | - Weu Wang
- Division of Digestive Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11301, Taiwan, ROC; Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11301, Taiwan, ROC
| | - Amelia Faradina
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC; Center for Reproductive Medicine & Sciences, Taipei Medical University Hospital, Taipei 11031, Taiwan, ROC; Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC
| | - Te-Hsuan Tung
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Tri-service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan, ROC; Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 114202, Taiwan, ROC
| | - Anatoly V Skalny
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Alexey A Tinkov
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, Russia
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taiwan, ROC; Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Collage of Medicine, Taipei Medical University, Taipei 11031, Taiwan, ROC
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC; Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan, ROC; Chinese Taipei Society for the Study of Obesity (CTSSO), Taipei 11031, Taiwan, ROC; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 11031, Taiwan, ROC.
| |
Collapse
|
3
|
Myrmel LS, Fjære E, Han M, Jensen BAH, Rolle-Kampczyk U, Danneskiold-Samsøe NB, Ho QT, Smette A, von Bergen M, Xiao L, Kristiansen K, Madsen L. The Food Sources in Western Diets Modulate Obesity Development, Insulin Sensitivity, and the Plasma and Cecal Metabolome in Mice. Mol Nutr Food Res 2024; 68:e2400246. [PMID: 39107912 DOI: 10.1002/mnfr.202400246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/10/2024] [Indexed: 08/29/2024]
Abstract
SCOPE Dietary constituents modulate development of obesity and type 2 diabetes. The metabolic impact from different food sources in western diets (WD) on obesity development is not fully elucidated. This study aims to identify dietary sources that differentially affect obesity development and the metabolic processes involved. METHODS AND RESULTS Mice were fed isocaloric WDs with protein and fat from different food groups, including egg and dairy, terrestrial meat, game meat, marine, vegetarian, and a mixture of all. This study evaluates development of obesity, glucose tolerance, insulin sensitivity, and plasma and cecal metabolome. WD based on marine or vegetarian food sources protects male mice from obesity development and insulin resistance, whereas meat-based diets promote obesity. The intake of different food sources induces marked differences in the lipid-related plasma metabolome, particularly impacting phosphatidylcholines. Fifty-nine lipid-related plasma metabolites are positively associated with adiposity and a distinct cecal metabolome is found in mice fed a marine diet. CONCLUSION This study demonstrates differences in obesity development between the food groups. Diet specific metabolomic signatures in plasma and cecum associated with adiposity, where a marine based diet modulates the level of plasma and cecal phosphatidylcholines in addition to preventing obesity development.
Collapse
Affiliation(s)
| | - Even Fjære
- Institute of Marine Research, Bergen, 5817, Norway
| | - Mo Han
- BGI Research, Shenzhen, 518083, China
- China National GeneBank, BGI Research, Shenzhen, 518120, China
| | | | - Ulrike Rolle-Kampczyk
- Department of Molecular Toxicology, UFZ-Helmholtz Centre for Environmental Research, 04318, Leipzig, Germany
| | | | - Quang Tri Ho
- Institute of Marine Research, Bergen, 5817, Norway
| | - Anita Smette
- Institute of Marine Research, Bergen, 5817, Norway
| | - Martin von Bergen
- Department of Molecular Toxicology, UFZ-Helmholtz Centre for Environmental Research, 04318, Leipzig, Germany
- Institute of Biochemistry, University of Leipzig, 04103, Leipzig, Germany
| | - Liang Xiao
- BGI Research, Shenzhen, 518083, China
- China National GeneBank, BGI Research, Shenzhen, 518120, China
| | - Karsten Kristiansen
- BGI Research, Shenzhen, 518083, China
- Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Lise Madsen
- Institute of Marine Research, Bergen, 5817, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, 5200, Norway
| |
Collapse
|
4
|
Liu CH, Shen PC, Lin WJ, Liu HC, Tsai MH, Huang TY, Chen IC, Lai YL, Wang YD, Hung MC, Cheng WC. LipidSig 2.0: integrating lipid characteristic insights into advanced lipidomics data analysis. Nucleic Acids Res 2024; 52:W390-W397. [PMID: 38709887 PMCID: PMC11223864 DOI: 10.1093/nar/gkae335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
In the field of lipidomics, where the complexity of lipid structures and functions presents significant analytical challenges, LipidSig stands out as the first web-based platform providing integrated, comprehensive analysis for efficient data mining of lipidomic datasets. The upgraded LipidSig 2.0 (https://lipidsig.bioinfomics.org/) simplifies the process and empowers researchers to decipher the complex nature of lipids and link lipidomic data to specific characteristics and biological contexts. This tool markedly enhances the efficiency and depth of lipidomic research by autonomously identifying lipid species and assigning 29 comprehensive characteristics upon data entry. LipidSig 2.0 accommodates 24 data processing methods, streamlining diverse lipidomic datasets. The tool's expertise in automating intricate analytical processes, including data preprocessing, lipid ID annotation, differential expression, enrichment analysis, and network analysis, allows researchers to profoundly investigate lipid properties and their biological implications. Additional innovative features, such as the 'Network' function, offer a system biology perspective on lipid interactions, and the 'Multiple Group' analysis aids in examining complex experimental designs. With its comprehensive suite of features for analyzing and visualizing lipid properties, LipidSig 2.0 positions itself as an indispensable tool for advanced lipidomics research, paving the way for new insights into the role of lipids in cellular processes and disease development.
Collapse
Affiliation(s)
- Chia-Hsin Liu
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 404328, Taiwan
| | - Pei-Chun Shen
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 404328, Taiwan
| | - Wen-Jen Lin
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 404328, Taiwan
- School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Hsiu-Cheng Liu
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 404328, Taiwan
| | - Meng-Hsin Tsai
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 404328, Taiwan
| | - Tzu-Ya Huang
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 404328, Taiwan
| | - I-Chieh Chen
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 404328, Taiwan
| | - Yo-Liang Lai
- Department of Radiation Oncology, China Medical University, Taichung 404328, Taiwan
| | - Yu-De Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404328, Taiwan
- Department of Urology, China Medical University, Taichung 404328, Taiwan
| | - Mien-Chie Hung
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 404328, Taiwan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 404328, Taiwan
- Molecular Medicine Center, China Medical University Hospital, China Medical University, Taichung 404328, Taiwan
- Department of Biotechnology, Asia University, Taichung 413305, Taiwan
| | - Wei-Chung Cheng
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 404328, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404328, Taiwan
- The Ph.D. program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 404328, Taiwan
| |
Collapse
|
5
|
Korbecki J, Bosiacki M, Pilarczyk M, Gąssowska-Dobrowolska M, Jarmużek P, Szućko-Kociuba I, Kulik-Sajewicz J, Chlubek D, Baranowska-Bosiacka I. Phospholipid Acyltransferases: Characterization and Involvement of the Enzymes in Metabolic and Cancer Diseases. Cancers (Basel) 2024; 16:2115. [PMID: 38893234 PMCID: PMC11171337 DOI: 10.3390/cancers16112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review delves into the enzymatic processes governing the initial stages of glycerophospholipid (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine) and triacylglycerol synthesis. The key enzymes under scrutiny include GPAT and AGPAT. Additionally, as most AGPATs exhibit LPLAT activity, enzymes participating in the Lands cycle with similar functions are also covered. The review begins by discussing the properties of these enzymes, emphasizing their specificity in enzymatic reactions, notably the incorporation of polyunsaturated fatty acids (PUFAs) such as arachidonic acid and docosahexaenoic acid (DHA) into phospholipids. The paper sheds light on the intricate involvement of these enzymes in various diseases, including obesity, insulin resistance, and cancer. To underscore the relevance of these enzymes in cancer processes, a bioinformatics analysis was conducted. The expression levels of the described enzymes were correlated with the overall survival of patients across 33 different types of cancer using the GEPIA portal. This review further explores the potential therapeutic implications of inhibiting these enzymes in the treatment of metabolic diseases and cancer. By elucidating the intricate enzymatic pathways involved in lipid synthesis and their impact on various pathological conditions, this paper contributes to a comprehensive understanding of these processes and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland;
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Maciej Pilarczyk
- Department of Nervous System Diseases, Neurosurgery Center University Hospital in Zielona Góra, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Góra, Poland; (M.P.); (P.J.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Paweł Jarmużek
- Department of Nervous System Diseases, Neurosurgery Center University Hospital in Zielona Góra, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Góra, Poland; (M.P.); (P.J.)
| | | | - Justyna Kulik-Sajewicz
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| |
Collapse
|
6
|
Garcia IS, Silva-Vignato B, Cesar ASM, Petrini J, da Silva VH, Morosini NS, Goes CP, Afonso J, da Silva TR, Lima BD, Clemente LG, Regitano LCDA, Mourão GB, Coutinho LL. Novel putative causal mutations associated with fat traits in Nellore cattle uncovered by eQTLs located in open chromatin regions. Sci Rep 2024; 14:10094. [PMID: 38698200 PMCID: PMC11066111 DOI: 10.1038/s41598-024-60703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
Intramuscular fat (IMF) and backfat thickness (BFT) are critical economic traits impacting meat quality. However, the genetic variants controlling these traits need to be better understood. To advance knowledge in this area, we integrated RNA-seq and single nucleotide polymorphisms (SNPs) identified in genomic and transcriptomic data to generate a linkage disequilibrium filtered panel of 553,581 variants. Expression quantitative trait loci (eQTL) analysis revealed 36,916 cis-eQTLs and 14,408 trans-eQTLs. Association analysis resulted in three eQTLs associated with BFT and 24 with IMF. Functional enrichment analysis of genes regulated by these 27 eQTLs revealed noteworthy pathways that can play a fundamental role in lipid metabolism and fat deposition, such as immune response, cytoskeleton remodeling, iron transport, and phospholipid metabolism. We next used ATAC-Seq assay to identify and overlap eQTL and open chromatin regions. Six eQTLs were in regulatory regions, four in predicted insulators and possible CCCTC-binding factor DNA binding sites, one in an active enhancer region, and the last in a low signal region. Our results provided novel insights into the transcriptional regulation of IMF and BFT, unraveling putative regulatory variants.
Collapse
Affiliation(s)
- Ingrid Soares Garcia
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Bárbara Silva-Vignato
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Aline Silva Mello Cesar
- Department of Agroindustry, Food and Nutrition, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Juliana Petrini
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Vinicius Henrique da Silva
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Natália Silva Morosini
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Carolina Purcell Goes
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | | | - Thaís Ribeiro da Silva
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Beatriz Delcarme Lima
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Luan Gaspar Clemente
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | | | - Gerson Barreto Mourão
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Luiz Lehmann Coutinho
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil.
| |
Collapse
|
7
|
Islam MT, Cai J, Allen S, Moreno DG, Bloom SI, Bramwell RC, Mitton J, Horn AG, Zhu W, Donato AJ, Holland WL, Lesniewski LA. Endothelial-Specific Reduction in Arf6 Impairs Insulin-Stimulated Vasodilation and Skeletal Muscle Blood Flow Resulting in Systemic Insulin Resistance in Mice. Arterioscler Thromb Vasc Biol 2024; 44:1101-1113. [PMID: 38545783 PMCID: PMC11042974 DOI: 10.1161/atvbaha.123.319375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Much of what we know about insulin resistance is based on studies from metabolically active tissues such as the liver, adipose tissue, and skeletal muscle. Emerging evidence suggests that the vascular endothelium plays a crucial role in systemic insulin resistance; however, the underlying mechanisms remain incompletely understood. Arf6 (ADP ribosylation factor 6) is a small GTPase that plays a critical role in endothelial cell function. Here, we tested the hypothesis that the deletion of endothelial Arf6 will result in systemic insulin resistance. METHODS We used mouse models of constitutive endothelial cell-specific Arf6 deletion (Arf6f/- Tie2Cre+) and tamoxifen-inducible Arf6 knockout (Arf6f/f Cdh5CreER+). Endothelium-dependent vasodilation was assessed using pressure myography. Metabolic function was assessed using a battery of metabolic assessments including glucose and insulin tolerance tests and hyperinsulinemic-euglycemic clamps. We used a fluorescence microsphere-based technique to measure tissue blood flow. Skeletal muscle capillary density was assessed using intravital microscopy. RESULTS Endothelial Arf6 deletion impaired insulin-stimulated vasodilation in white adipose tissue and skeletal muscle feed arteries. The impairment in vasodilation was primarily due to attenuated insulin-stimulated nitric oxide bioavailability but independent of altered acetylcholine-mediated or sodium nitroprusside-mediated vasodilation. Endothelial cell-specific deletion of Arf6 also resulted in systematic insulin resistance in normal chow-fed mice and glucose intolerance in high-fat diet-fed obese mice. The underlying mechanisms of glucose intolerance were reductions in insulin-stimulated blood flow and glucose uptake in the skeletal muscle and were independent of changes in capillary density or vascular permeability. CONCLUSIONS Results from this study support the conclusion that endothelial Arf6 signaling is essential for maintaining insulin sensitivity. Reduced expression of endothelial Arf6 impairs insulin-mediated vasodilation and results in systemic insulin resistance. These results have therapeutic implications for diseases that are associated with endothelial cell dysfunction and insulin resistance such as diabetes.
Collapse
Affiliation(s)
- Md Torikul Islam
- Department of Nutrition and Integrative Physiology (M.T.I., S.I.B., A.J.D., W.L.H., L.A.L.), The University of Utah, Salt Lake City
| | - Jinjin Cai
- Division of Geriatrics, Department of Internal Medicine (J.C., S.A., D.G.M., R.C.B., J.M., A.J.D., L.A.L.), The University of Utah, Salt Lake City
| | - Shanena Allen
- Division of Geriatrics, Department of Internal Medicine (J.C., S.A., D.G.M., R.C.B., J.M., A.J.D., L.A.L.), The University of Utah, Salt Lake City
| | - Denisse G Moreno
- Division of Geriatrics, Department of Internal Medicine (J.C., S.A., D.G.M., R.C.B., J.M., A.J.D., L.A.L.), The University of Utah, Salt Lake City
| | - Samuel I Bloom
- Department of Nutrition and Integrative Physiology (M.T.I., S.I.B., A.J.D., W.L.H., L.A.L.), The University of Utah, Salt Lake City
| | - R Colton Bramwell
- Division of Geriatrics, Department of Internal Medicine (J.C., S.A., D.G.M., R.C.B., J.M., A.J.D., L.A.L.), The University of Utah, Salt Lake City
| | - Jonathan Mitton
- Division of Geriatrics, Department of Internal Medicine (J.C., S.A., D.G.M., R.C.B., J.M., A.J.D., L.A.L.), The University of Utah, Salt Lake City
| | - Andrew G Horn
- Department of Kinesiology, Kansas State University, Manhattan (A.G.H.)
| | - Weiquan Zhu
- Division of Cardiovascular Medicine, Department of Internal Medicine (W.Z.), The University of Utah, Salt Lake City
- Department of Pathology (W.Z.), The University of Utah, Salt Lake City
- Program of Molecular Medicine (W.Z.), The University of Utah, Salt Lake City
| | - Anthony J Donato
- Department of Nutrition and Integrative Physiology (M.T.I., S.I.B., A.J.D., W.L.H., L.A.L.), The University of Utah, Salt Lake City
- Division of Geriatrics, Department of Internal Medicine (J.C., S.A., D.G.M., R.C.B., J.M., A.J.D., L.A.L.), The University of Utah, Salt Lake City
- Department of Biochemistry (A.J.D.), The University of Utah, Salt Lake City
- Nora Eccles Harrison Cardiovascular Research and Training Institute (A.J.D., L.A.L.), The University of Utah, Salt Lake City
- Veteran's Affairs Medical Center-Salt Lake City, Geriatric Research and Clinical Center, UT (A.J.D., L.A.L.)
| | - William L Holland
- Department of Nutrition and Integrative Physiology (M.T.I., S.I.B., A.J.D., W.L.H., L.A.L.), The University of Utah, Salt Lake City
| | - Lisa A Lesniewski
- Department of Nutrition and Integrative Physiology (M.T.I., S.I.B., A.J.D., W.L.H., L.A.L.), The University of Utah, Salt Lake City
- Division of Geriatrics, Department of Internal Medicine (J.C., S.A., D.G.M., R.C.B., J.M., A.J.D., L.A.L.), The University of Utah, Salt Lake City
- Nora Eccles Harrison Cardiovascular Research and Training Institute (A.J.D., L.A.L.), The University of Utah, Salt Lake City
- Veteran's Affairs Medical Center-Salt Lake City, Geriatric Research and Clinical Center, UT (A.J.D., L.A.L.)
| |
Collapse
|
8
|
Janssens GE, Molenaars M, Herzog K, Grevendonk L, Remie CME, Vervaart MAT, Elfrink HL, Wever EJM, Schomakers BV, Denis SW, Waterham HR, Pras-Raves ML, van Weeghel M, van Kampen AHC, Tammaro A, Butter LM, van der Rijt S, Florquin S, Jongejan A, Moerland PD, Hoeks J, Schrauwen P, Vaz FM, Houtkooper RH. A conserved complex lipid signature marks human muscle aging and responds to short-term exercise. NATURE AGING 2024; 4:681-693. [PMID: 38609524 DOI: 10.1038/s43587-024-00595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/22/2024] [Indexed: 04/14/2024]
Abstract
Studies in preclinical models suggest that complex lipids, such as phospholipids, play a role in the regulation of longevity. However, identification of universally conserved complex lipid changes that occur during aging, and how these respond to interventions, is lacking. Here, to comprehensively map how complex lipids change during aging, we profiled ten tissues in young versus aged mice using a lipidomics platform. Strikingly, from >1,200 unique lipids, we found a tissue-wide accumulation of bis(monoacylglycero)phosphate (BMP) during mouse aging. To investigate translational value, we assessed muscle tissue of young and older people, and found a similar marked BMP accumulation in the human aging lipidome. Furthermore, we found that a healthy-aging intervention consisting of moderate-to-vigorous exercise was able to lower BMP levels in postmenopausal female research participants. Our work implicates complex lipid biology as central to aging, identifying a conserved aging lipid signature of BMP accumulation that is modifiable upon a short-term healthy-aging intervention.
Collapse
Affiliation(s)
- Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands.
| | - Marte Molenaars
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands
| | - Katharina Herzog
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands
| | - Lotte Grevendonk
- Department of Nutrition and Human Movement Sciences, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
- TI Food and Nutrition, Wageningen, the Netherlands
| | - Carlijn M E Remie
- Department of Nutrition and Human Movement Sciences, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Martin A T Vervaart
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
| | - Hyung L Elfrink
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
| | - Eric J M Wever
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Epidemiology and Data Science, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
| | - Bauke V Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
| | - Simone W Denis
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands
| | - Mia L Pras-Raves
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Epidemiology and Data Science, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
| | - Antoine H C van Kampen
- Epidemiology and Data Science, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Methodology, Amsterdam, the Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, the Netherlands
| | - Alessandra Tammaro
- Pathology Department, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection and Immunity, Amsterdam, the Netherlands
| | - Loes M Butter
- Pathology Department, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection and Immunity, Amsterdam, the Netherlands
| | - Sanne van der Rijt
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands
- Pathology Department, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
| | - Sandrine Florquin
- Pathology Department, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection and Immunity, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Epidemiology and Data Science, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Methodology, Amsterdam, the Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, the Netherlands
| | - Perry D Moerland
- Epidemiology and Data Science, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Methodology, Amsterdam, the Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, the Netherlands
| | - Joris Hoeks
- Department of Nutrition and Human Movement Sciences, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
- TI Food and Nutrition, Wageningen, the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Human Movement Sciences, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
- TI Food and Nutrition, Wageningen, the Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands.
- Core Facility Metabolomics, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands.
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands.
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Siripoksup P, Cao G, Cluntun AA, Maschek JA, Pearce Q, Brothwell MJ, Jeong MY, Eshima H, Ferrara PJ, Opurum PC, Mahmassani ZS, Peterlin AD, Watanabe S, Walsh MA, Taylor EB, Cox JE, Drummond MJ, Rutter J, Funai K. Sedentary behavior in mice induces metabolic inflexibility by suppressing skeletal muscle pyruvate metabolism. J Clin Invest 2024; 134:e167371. [PMID: 38652544 PMCID: PMC11142742 DOI: 10.1172/jci167371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Carbohydrates and lipids provide the majority of substrates to fuel mitochondrial oxidative phosphorylation. Metabolic inflexibility, defined as an impaired ability to switch between these fuels, is implicated in a number of metabolic diseases. Here, we explore the mechanism by which physical inactivity promotes metabolic inflexibility in skeletal muscle. We developed a mouse model of sedentariness, small mouse cage (SMC), that, unlike other classic models of disuse in mice, faithfully recapitulated metabolic responses that occur in humans. Bioenergetic phenotyping of skeletal muscle mitochondria displayed metabolic inflexibility induced by physical inactivity, demonstrated by a reduction in pyruvate-stimulated respiration (JO2) in the absence of a change in palmitate-stimulated JO2. Pyruvate resistance in these mitochondria was likely driven by a decrease in phosphatidylethanolamine (PE) abundance in the mitochondrial membrane. Reduction in mitochondrial PE by heterozygous deletion of phosphatidylserine decarboxylase (PSD) was sufficient to induce metabolic inflexibility measured at the whole-body level, as well as at the level of skeletal muscle mitochondria. Low mitochondrial PE in C2C12 myotubes was sufficient to increase glucose flux toward lactate. We further implicate that resistance to pyruvate metabolism is due to attenuated mitochondrial entry via mitochondrial pyruvate carrier (MPC). These findings suggest a mechanism by which mitochondrial PE directly regulates MPC activity to modulate metabolic flexibility in mice.
Collapse
Affiliation(s)
- Piyarat Siripoksup
- Diabetes & Metabolism Research Center
- Department of Physical Therapy and Athletic Training
| | - Guoshen Cao
- Diabetes & Metabolism Research Center
- Department of Biochemistry
| | | | - J. Alan Maschek
- Metabolomics Core Research Facility
- Department of Nutrition & Integrative Physiology, and
| | | | - Marisa J. Brothwell
- Diabetes & Metabolism Research Center
- Department of Nutrition & Integrative Physiology, and
| | - Mi-Young Jeong
- Diabetes & Metabolism Research Center
- Department of Biochemistry
| | - Hiroaki Eshima
- Diabetes & Metabolism Research Center
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Patrick J. Ferrara
- Diabetes & Metabolism Research Center
- Department of Nutrition & Integrative Physiology, and
| | - Precious C. Opurum
- Diabetes & Metabolism Research Center
- Department of Nutrition & Integrative Physiology, and
| | - Ziad S. Mahmassani
- Diabetes & Metabolism Research Center
- Department of Physical Therapy and Athletic Training
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Alek D. Peterlin
- Diabetes & Metabolism Research Center
- Department of Nutrition & Integrative Physiology, and
| | - Shinya Watanabe
- Diabetes & Metabolism Research Center
- Department of Nutrition & Integrative Physiology, and
| | - Maureen A. Walsh
- Diabetes & Metabolism Research Center
- Department of Physical Therapy and Athletic Training
| | - Eric B. Taylor
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - James E. Cox
- Diabetes & Metabolism Research Center
- Department of Biochemistry
- Metabolomics Core Research Facility
| | - Micah J. Drummond
- Diabetes & Metabolism Research Center
- Department of Physical Therapy and Athletic Training
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Jared Rutter
- Diabetes & Metabolism Research Center
- Department of Biochemistry
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center
- Department of Physical Therapy and Athletic Training
- Department of Biochemistry
- Department of Nutrition & Integrative Physiology, and
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
10
|
Chen Y, Wu J. Aging-Related Sarcopenia: Metabolic Characteristics and Therapeutic Strategies. Aging Dis 2024:AD.2024.0407. [PMID: 38739945 DOI: 10.14336/ad.2024.0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/07/2024] [Indexed: 05/16/2024] Open
Abstract
The proportion of the elderly population is gradually increasing as a result of medical care advances, leading to a subsequent surge in geriatric diseases that significantly impact quality of life and pose a substantial healthcare burden. Sarcopenia, characterized by age-related decline in skeletal muscle mass and quality, affects a considerable portion of older adults, particularly the elderly, and can result in adverse outcomes such as frailty, fractures, bedridden, hospitalization, and even mortality. Skeletal muscle aging is accompanied by underlying metabolic changes. Therefore, elucidating these metabolic profiles and specific mechanisms holds promise for informing prevention and treatment strategies for sarcopenia. This review provides a comprehensive overview of the key metabolites identified in current clinical studies on sarcopenia and their potential pathophysiological alterations in metabolic activity. Besides, we examine potential therapeutic strategies for sarcopenia from a perspective focused on metabolic regulation.
Collapse
|
11
|
Pang SJ, Liu TT, Pan JC, Man QQ, Song S, Zhang J. The Association between the Plasma Phospholipid Profile and Insulin Resistance: A Population-Based Cross-Section Study from the China Adult Chronic Disease and Nutrition Surveillance. Nutrients 2024; 16:1205. [PMID: 38674894 PMCID: PMC11054597 DOI: 10.3390/nu16081205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The dysfunction of phospholipid metabolism enzymes and the change in membrane phospholipid composition are associated with insulin resistance, indicating that phospholipids play an important role in the regulation of insulin sensitivity. The reflection of phospholipid changes in blood might provide clues for both mechanism understanding and intervention. Using a targeted phospholipidomic approach, 199 phospholipid molecular species were identified and quantified in the plasma of 1053 middle-aged participants from a national investigation. The associations of the phospholipid matrix, clusters, and molecular species with insulin resistance were investigated. A significant association was confirmed between the phospholipid matrix and the homeostatic-model assessment of insulin resistance (HOMA-IR) by a distance-based linear model. Furthermore, three clustered phospholipid modules and 32 phospholipid molecular species were associated with HOMA-IR with the strict control of demographic and lifestyle parameters, family history of diabetes, BMI, WC, and blood lipid parameters. The overall decline in lysophosphatidylcholines (LPCs), the decrease in saturated lysophosphatidylethanolamines (LPEs), the decrease in polyunsaturated/plasmenyl phosphatidylcholines (PCs), and the increase in polyunsaturated phatidylethanolamines (PEs) were the prominent characters of plasma phospholipid perturbation associated with insulin resistance. This suggested that PC- and PE-related metabolic pathways were widely involved in the process of insulin resistance, especially the disorder of LPC acylation to diacyl-PC.
Collapse
Affiliation(s)
- Shao-Jie Pang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 29 of Nanwei Road, Beijing 100050, China; (S.-J.P.); (T.-T.L.); (Q.-Q.M.)
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People’s Republic of China, Beijing 100050, China
- Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Beijing 100015, China;
| | - Ting-Ting Liu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 29 of Nanwei Road, Beijing 100050, China; (S.-J.P.); (T.-T.L.); (Q.-Q.M.)
| | - Jian-Cun Pan
- Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Beijing 100015, China;
| | - Qing-Qing Man
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 29 of Nanwei Road, Beijing 100050, China; (S.-J.P.); (T.-T.L.); (Q.-Q.M.)
| | - Shuang Song
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 29 of Nanwei Road, Beijing 100050, China; (S.-J.P.); (T.-T.L.); (Q.-Q.M.)
| | - Jian Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 29 of Nanwei Road, Beijing 100050, China; (S.-J.P.); (T.-T.L.); (Q.-Q.M.)
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People’s Republic of China, Beijing 100050, China
| |
Collapse
|
12
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
13
|
Kondreddy V, Banerjee R, Devi BLAP, Muralidharan K, Piramanayagam S. Inhibition of the MALT1-LPCAT3 axis protects cartilage degeneration and osteoarthritis. Cell Commun Signal 2024; 22:189. [PMID: 38519981 PMCID: PMC10960471 DOI: 10.1186/s12964-024-01547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
The proinflammatory cytokines and arachidonic acid (AA)-derived eicosanoids play a key role in cartilage degeneration in osteoarthritis (OA). The lysophosphatidylcholine acyltransferase 3 (LPCAT3) preferentially incorporates AA into the membranes. Our recent studies showed that MALT1 [mucosa-associated lymphoid tissue lymphoma translocation protein 1]) plays a crucial role in propagating inflammatory signaling triggered by IL-1β and other inflammatory mediators in endothelial cells. The present study shows that LPCAT3 expression was up-regulated in both human and mice articular cartilage of OA, and correlated with severity of OA. The IL-1β-induces cell death via upregulation of LPCAT3, MMP3, ADAMTS5, and eicosanoids via MALT1. Gene silencing or pharmacological inhibition of LPCAT3 or MALT1 in chondrocytes and human cartilage explants notably suppressed the IL-1β-induced cartilage catabolism through inhibition of expression of MMP3, ADAMTS5, and also secretion of cytokines and eicosanoids. Mechanistically, overexpression of MALT1 in chondrocytes significantly upregulated the expression of LPCAT3 along with MMP3 and ADAMTS5 via c-Myc. Inhibition of c-Myc suppressed the IL-1β-MALT1-dependent upregulation of LPCAT3, MMP3 and ADAMTS5. Consistent with the in vitro data, pharmacological inhibition of MALT1 or gene silencing of LPCAT3 using siRNA-lipid nanoparticles suppressed the synovial articular cartilage erosion, pro-inflammatory cytokines, and eicosanoids such as PGE2, LTB4, and attenuated osteoarthritis induced by the destabilization of the medial meniscus in mice. Overall, our data reveal a previously unrecognized role of the MALT1-LPCAT3 axis in osteoarthritis. Targeting the MALT1-LPCAT3 pathway with MALT1 inhibitors or siRNA-liposomes of LPCAT3 may become an effective strategy to treat OA by suppressing eicosanoids, matrix-degrading enzymes, and proinflammatory cytokines.
Collapse
Affiliation(s)
- Vijay Kondreddy
- Department of Lipid Science and Technology, The Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India.
| | - Rajkumar Banerjee
- Department of Lipid Science and Technology, The Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India
| | - B L A Prabhavathi Devi
- Department of Lipid Science and Technology, The Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India
| | - Kathirvel Muralidharan
- Division of Applied Biology, The Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India
| | - Selvakumar Piramanayagam
- Division of Applied Biology, The Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India
| |
Collapse
|
14
|
Tawara W, Morisasa M, Mukai R, Suo R, Itoi S, Mori T, Goto-Inoue N. A lipidomics approach reveals novel phospholipid changes in palmitate-treated C2C12 myotubes. Lipids 2024; 59:55-63. [PMID: 38299442 DOI: 10.1002/lipd.12387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a highly prevalent metabolic disorder. Insulin resistance and oxidative stress are associated with T2DM development. The hypothesis that patients with T2DM show excess accumulation of lipids, such as ceramides (Cers) and diacylglycerols (DAGs), in their skeletal muscles has been widely supported; however, detailed lipidomic data at the molecular species level are limited. Therefore, in this study, we aimed to investigate the in vitro dynamics of total lipids, including phospholipids (PLs), sphingolipids, and neutral lipids, in palmitic acid-induced insulin-resistant C2C12 skeletal muscle cells. Our data demonstrated that the profiles of not only Cers and DAGs but also those of PLs showed considerably differences after palmitate treatment. We found that PL synthesis reduced and PL degradation increased after palmitate treatment. These findings may aid in the development of treatments to ameliorate muscle dysfunction caused by lipid accumulation in muscles.
Collapse
Affiliation(s)
- Wakako Tawara
- Department of Marine Sciences, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Mizuki Morisasa
- Department of Marine Sciences, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Risa Mukai
- Department of Marine Sciences, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Rei Suo
- Department of Marine Sciences, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Shiro Itoi
- Department of Marine Sciences, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Tsukasa Mori
- Department of Marine Sciences, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Naoko Goto-Inoue
- Department of Marine Sciences, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
15
|
Shahtout JL, Eshima H, Ferrara PJ, Maschek JA, Cox JE, Drummond MJ, Funai K. Inhibition of the skeletal muscle Lands cycle ameliorates weakness induced by physical inactivity. J Cachexia Sarcopenia Muscle 2024; 15:319-330. [PMID: 38123161 PMCID: PMC10834354 DOI: 10.1002/jcsm.13406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/12/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Lipid hydroperoxides (LOOH) have been implicated in skeletal muscle atrophy with age and disuse. Lysophosphatidylcholine acyltransferase 3 (LPCAT3), an enzyme of the Lands cycle, conjugates a polyunsaturated fatty acyl chain to a lysophospholipid to form a polyunsaturated fatty acid containing phospholipid (PUFA-PL) molecule, providing substrates for LOOH propagation. Previous studies suggest that inhibition of the Lands cycle is an effective strategy to suppress LOOH. Mice with skeletal muscle-specific tamoxifen-inducible knockout of LPCAT3 (LPCAT3-MKO) were utilized to determine if muscle-specific attenuation of LOOH may alleviate muscle atrophy and weakness with disuse. METHODS LPCAT3-MKO and control mice underwent 7 days of sham or hindlimb unloading (HU model) to study muscle mass and force-generating capacity. LOOH was assessed by quantifying 4-hydroxynonenal (4-HNE)-conjugated peptides. Quantitative PCR and lipid mass spectrometry were used to validate LPCAT3 deletion. RESULTS Seven days of HU was sufficient to induce muscle atrophy and weakness concomitant to a ~2-fold increase in 4-HNE (P = 0.0069). Deletion of LPCAT3 reversed HU-induced increase in muscle 4-HNE (P = 0.0256). No difference was found in body mass, body composition, or caloric intake between genotypes. The soleus (SOL) and plantaris (PLANT) muscles of the LPCAT3-MKO mice experienced ~15% and ~40% less atrophy than controls, respectively. (P = 0.0011 and P = 0.0265). Type I and IIa SOL myofibers experienced a ~40% decrease in cross sectional area (CSA), which was attenuated to only 15% in the LPCAT3-MKO mice (P = 0.0170 and P = 0.0411, respectively). Strikingly, SOL muscles were fully protected and extensor digitorum longus (EDL) muscles experienced a ~35% protection from HU-induced reduction in force-generating capacity in the LPCAT3-MKO mice compared with controls (P < 0.0001 for both muscles). CONCLUSIONS Our findings demonstrate that attenuation of skeletal muscle lipid hydroperoxides is sufficient to restore its function, in particular a protection from reduction in muscle specific force. Our findings suggest muscle lipid peroxidation contributes to atrophy and weakness induced by disuse in mice.
Collapse
Affiliation(s)
- Justin L. Shahtout
- Diabetes and Metabolism Research CenterUniversity of UtahSalt Lake CityUtahUSA
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUtahUSA
| | - Hiroaki Eshima
- Diabetes and Metabolism Research CenterUniversity of UtahSalt Lake CityUtahUSA
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUtahUSA
- Nagasaki International UniversitySaseboJapan
| | - Patrick J. Ferrara
- Diabetes and Metabolism Research CenterUniversity of UtahSalt Lake CityUtahUSA
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUtahUSA
| | - J. Alan Maschek
- Diabetes and Metabolism Research CenterUniversity of UtahSalt Lake CityUtahUSA
- Metabolomics, Mass Spectrometry, and Proteomics CoreUniversity of UtahSalt Lake CityUtahUSA
| | - James E. Cox
- Diabetes and Metabolism Research CenterUniversity of UtahSalt Lake CityUtahUSA
- Metabolomics, Mass Spectrometry, and Proteomics CoreUniversity of UtahSalt Lake CityUtahUSA
- Department of BiochemistryUniversity of UtahSalt Lake CityUtahUSA
| | - Micah J. Drummond
- Diabetes and Metabolism Research CenterUniversity of UtahSalt Lake CityUtahUSA
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUtahUSA
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUtahUSA
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research CenterUniversity of UtahSalt Lake CityUtahUSA
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUtahUSA
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUtahUSA
- Department of BiochemistryUniversity of UtahSalt Lake CityUtahUSA
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
16
|
Saprina TV, Bashirova AS, Ivanov VV, Pekov SI, Popov IA, Bashirov SR, Vasilyeva EA, Pavlenko OA, Krinitskii DV, Chen M. Lipidomic markers of obesity and their dynamics after bariatric surgery. BULLETIN OF SIBERIAN MEDICINE 2024; 22:174-187. [DOI: 10.20538/1682-0363-2023-4-174-187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Obesity is considered as a chronic progressive disease, heterogeneous in its etiology and clinical manifestations, and characterized by excess in body fat mass and its deposition in the body. The term “morbid obesity” refers to excessive deposition of adipose tissue with a body mass index (BMI) ≥40 kg / m2 or with a BMI ≥ 35 kg / m2 in the presence of serious complications associated with obesity. Along with obesity, the frequency of type 2 diabetes mellitus and cardiovascular diseases closely associated with it has increased. It results from the progression of metabolic disorders, including insulin resistance, which is inextricably linked with the accumulation of visceral fat and plays a key role in the pathogenesis of obesity-related diseases.The study of lipidomic signatures in obesity and associated conditions is a promising branch of fundamental medicine, which makes it possible to significantly and at a new conceptual level stratify a cohort of obese patients into various phenotypes, including a metabolically healthy and metabolically unhealthy obesity phenotypes. Dynamic changes in the lipidome both in the context of diet, drug treatment, and after various bariatric surgeries are of great interest for developing personalized strategies for the treatment of this disease. Currently available studies and their results suggest that we are only at the very start of studying this promising biomedical field.
Collapse
Affiliation(s)
| | | | | | - S. I. Pekov
- Siberian State Medical University;
Skolkovo Institute of Science and Technology;
Moscow Institute of Physics and Technology
| | - I. A. Popov
- Siberian State Medical University;
Moscow Institute of Physics and Technology
| | | | | | | | | | - M. Chen
- Siberian State Medical University
| |
Collapse
|
17
|
Al Saedi A, Yacoub AS, Awad K, Karasik D, Brotto M, Duque G. The Interplay of Lipid Signaling in Musculoskeletal Cross Talk: Implications for Health and Disease. Methods Mol Biol 2024; 2816:1-11. [PMID: 38977583 DOI: 10.1007/978-1-0716-3902-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The intricate interplay between the muscle and bone tissues is a fundamental aspect of musculoskeletal physiology. Over the past decades, emerging research has highlighted the pivotal role of lipid signaling in mediating communication between these tissues. This chapter delves into the multifaceted mechanisms through which lipids, particularly phospholipids, sphingolipids, and eicosanoids, participate in orchestrating cellular responses and metabolic pathways in both muscle and bone. Additionally, we examine the clinical implications of disrupted lipid signaling in musculoskeletal disorders, offering insights into potential therapeutic avenues. This chapter aims to shed light on the complex lipid-driven interactions between the muscle and bone tissues, paving the way for a deeper understanding of musculoskeletal health and disease.
Collapse
Affiliation(s)
- Ahmed Al Saedi
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Ahmed S Yacoub
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - Kamal Awad
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - Gustavo Duque
- Research Institute of McGill University Health Center, Department of Medicine, McGill University, Québec, Canada
| |
Collapse
|
18
|
Jin HL, Feng XY, Feng SL, Dai L, Zhu WT, Yuan ZW. Isoquercitrin attenuates the progression of non-alcoholic steatohepatitis in mice by modulating galectin-3-mediated insulin resistance and lipid metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155188. [PMID: 38056146 DOI: 10.1016/j.phymed.2023.155188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a global health problem with no effective treatment. Isoquercitrin (IQ) alters hepatic lipid metabolism and inhibits adipocyte differentiation. The underlying regulatory mechanisms of IQ in regulating insulin resistance (IR) and lipid metabolism remain unclear. PURPOSE This study was aimed at investigating the effects of IQ on NASH and deciphering whether the underlying mechanisms are via modulation of galectin-3 mediated IR and lipid metabolism. METHODS IR-HepG2 cell lines were used to demonstrate the ability of IQ to modulate galectin-3-mediated glucose disposal and lipid metabolism. A 20-week high-fat diet (HFD)-induced NASH model was established in C57BL/6J mice, and the protective effect of IQ on lipid disposal in the liver was verified. Further, the mRNA and protein levels of glucose and lipid metabolism were investigated, and lysophosphatidylcholine (LPC) and acylcarnitine (AC) profiling were performed to characterize the changes in endogenous substances associated with mitochondrial function and lipid metabolism in serum and cells. Furthermore, the pharmacokinetic features of IQ were explored in a rat model of NASH. RESULTS IQ restored liver function and ameliorated inflammation and lipid accumulationin NASH model mice. Notably, significant regulation of the proteins included fatty acid-generating and transporting, cholesterol metabolism enzymes, nuclear transcription factors, mitochondrial metabolism, and IR-related enzymes was noted to be responsible for the therapeutic mechanisms of IQ against experimental NASH. Serum lipid metabolism-related metabolomic assay confirmed that LPC and AC biosynthesis mostly accounted for the therapeutic effect of IQ in mice with NASH and that IQ maintained the homeostasis of LPC and AC levels. CONCLUSION This is the first study showing that IQ protects against of NASH by modulating galectin-3-mediated IR and lipid metabolism. The mechanisms responsible for liver protection and improved lipid metabolic disorder by IQ may be related to the suppression of IR and regulation of mitochondrial function and lipid metabolism. Galectin-3 down-regulation represents a potentially novel approach for the treatment and prevention of NASH.
Collapse
Affiliation(s)
- Hong-Liu Jin
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiao-Ying Feng
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Sen-Ling Feng
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Ling Dai
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wen-Ting Zhu
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhong-Wen Yuan
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
19
|
Valentine WJ, Shimizu T, Shindou H. Lysophospholipid acyltransferases orchestrate the compositional diversity of phospholipids. Biochimie 2023; 215:24-33. [PMID: 37611890 DOI: 10.1016/j.biochi.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Lysophospholipid acyltransferases (LPLATs), in concert with glycerol-3-phosphate acyltransferases (GPATs) and phospholipase A1/2s, orchestrate the compositional diversity of the fatty chains in membrane phospholipids. Fourteen LPLAT enzymes which come from two distinct families, AGPAT and MBOAT, have been identified, and in this mini-review we provide an overview of their roles in de novo and remodeling pathways of membrane phospholipid biosynthesis. Recently new nomenclature for LPLATs has been introduced (LPLATx, where x is a number 1-14), and we also give an overview of key biological functions that have been discovered for LPLAT1-14, revealed primarily through studies of LPLAT-gene-deficient mice as well as by linkages to various human diseases.
Collapse
Affiliation(s)
- William J Valentine
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan.
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, 162-8655, Japan; Institute of Microbial Chemistry, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, 162-8655, Japan; Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
20
|
Tian Y, Lu W, Shi R, McGuffee R, Lee R, Ford DA, Wang B. Targeting phospholipid remodeling pathway improves insulin resistance in diabetic mouse models. FASEB J 2023; 37:e23251. [PMID: 37823674 PMCID: PMC10575708 DOI: 10.1096/fj.202301122rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Previous studies have revealed that membrane phospholipid composition controlled by lysophosphatidylcholine acyltransferase 3 (LPCAT3) is involved in the development of insulin resistance in type 2 diabetes. In this study, we aimed to investigate the therapeutic potential of targeting Lpcat3 in the treatment of insulin resistance in diabetic mouse models. Lpcat3 expression was suppressed in the whole body by antisense oligonucleotides (ASO) injection or in the liver by adeno-associated virus (AAV)-encoded Cre in high-fat diet (HFD)-induced and genetic ob/ob type 2 diabetic mouse models. Glucose tolerance test (GTT), insulin tolerance test (ITT), fasting blood glucose, and insulin levels were used to assess insulin sensitivity. Lipid levels in the liver and serum were measured. The expression of genes involved in de novo lipogenesis was analyzed by real-time RT-PCR. Metabolic rates were measured by indirect calorimetry using the Comprehensive Lab Animal Monitoring System (CLAMS). Our data demonstrate that acute knockout of hepatic Lpcat3 by AAV-Cre improves both hyperglycemia and hypertriglyceridemia in HFD-fed mice. Similarly, whole-body ablation of Lpcat3 by ASO administration improves obesity and insulin resistance in both HFD-fed and ob/ob mice. These findings demonstrate that targeting LPCAT3 could be a novel therapy for insulin resistance.
Collapse
Affiliation(s)
- Ye Tian
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wei Lu
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ruicheng Shi
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Reagan McGuffee
- Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, Saint Louis University, St. Louis, MO, USA, 63104
| | | | - David A. Ford
- Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, Saint Louis University, St. Louis, MO, USA, 63104
| | - Bo Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
21
|
He M, Li Z, Tung VSK, Pan M, Han X, Evgrafov O, Jiang XC. Inhibiting Phosphatidylcholine Remodeling in Adipose Tissue Increases Insulin Sensitivity. Diabetes 2023; 72:1547-1559. [PMID: 37625119 PMCID: PMC10588299 DOI: 10.2337/db23-0317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Cell membrane phosphatidylcholine (PC) composition is regulated by lysophosphatidylcholine acyltransferase (LPCAT); changes in membrane PC saturation are implicated in metabolic disorders. Here, we identified LPCAT3 as the major isoform of LPCAT in adipose tissue and created adipocyte-specific Lpcat3-knockout mice to study adipose tissue lipid metabolism. Transcriptome sequencing and plasma adipokine profiling were used to investigate how LPCAT3 regulates adipose tissue insulin signaling. LPCAT3 deficiency reduced polyunsaturated PCs in adipocyte plasma membranes, increasing insulin sensitivity. LPCAT3 deficiency influenced membrane lipid rafts, which activated insulin receptors and AKT in adipose tissue, and attenuated diet-induced insulin resistance. Conversely, higher LPCAT3 activity in adipose tissue from ob/ob, db/db, and high-fat diet-fed mice reduced insulin signaling. Adding polyunsaturated PCs to mature human or mouse adipocytes in vitro worsened insulin signaling. We suggest that targeting LPCAT3 in adipose tissue to manipulate membrane phospholipid saturation is a new strategy to treat insulin resistance. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Mulin He
- Department of Cell Biology, The State University of New York Downstate Health Sciences University, Brooklyn, NY
| | - Zhiqiang Li
- Department of Cell Biology, The State University of New York Downstate Health Sciences University, Brooklyn, NY
| | - Victoria Sook Keng Tung
- Department of Cell Biology, The State University of New York Downstate Health Sciences University, Brooklyn, NY
| | - Meixia Pan
- Lipidomics Core, The University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Xianlin Han
- Lipidomics Core, The University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Oleg Evgrafov
- Department of Cell Biology, The State University of New York Downstate Health Sciences University, Brooklyn, NY
| | - Xian-Cheng Jiang
- Department of Cell Biology, The State University of New York Downstate Health Sciences University, Brooklyn, NY
- Molecular and Cellular Cardiology Program, Veterans Affairs New York Harbor Healthcare System, New York, NY
| |
Collapse
|
22
|
Shahtout JL, Eshima H, Ferrara PJ, Maschek JA, Cox JE, Drummond MJ, Funai K. Inhibition of skeletal muscle Lands cycle ameliorates weakness induced by physical inactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550576. [PMID: 37546754 PMCID: PMC10402104 DOI: 10.1101/2023.07.25.550576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Background Lipid hydroperoxides (LOOH) have been implicated in skeletal muscle atrophy with age and disuse. Lysophosphatidylcholine acyltransferase 3 (LPCAT3), an enzyme of Lands cycle, conjugates a polyunsaturated fatty acyl chain to a lysophospholipid (PUFA-PL) molecule, providing substrates for LOOH propagation. Previous studies suggest that inhibition of Lands cycle is an effective strategy to suppress LOOH. Mice with skeletal muscle-specific tamoxifen-inducible knockout of LPCAT3 (LPCAT3-MKO) were utilized to determine if muscle-specific attenuation of LOOH may alleviate muscle atrophy and weakness with disuse. Methods LPCAT3-MKO and control mice underwent 7 days of sham or hindlimb unloading (HU model) to study muscle mass and force-generating capacity. LOOH was assessed by quantifying 4-hydroxynonenal (4-HNE)-conjugated peptides. Quantitative PCR and lipid mass spectrometry were used to validate LPCAT3 deletion. Results 7 days of HU was sufficient to induce muscle atrophy and weakness concomitant to an increase in 4-HNE. Deletion of LPCAT3 reversed HU-induced increase in muscle 4HNE. No difference was found in body mass, body composition, or caloric intake between genotypes. The soleus (SOL) and plantaris (PLANT) muscles of the LPCAT3-MKO mice were partially protected from atrophy compared to controls, concomitant to attenuated decrease in cross-sectional areas in type I and IIa fibers. Strikingly, SOL and extensor digitorum longus (EDL) were robustly protected from HU-induced reduction in force-generating capacity in the LPCAT3-MKO mice compared to controls. Conclusion Our findings demonstrate that attenuation of muscle LOOH is sufficient to restore skeletal muscle function, in particular a protection from reduction in muscle specific force. Thus, muscle LOOH contributes to atrophy and weakness induced by HU in mice.
Collapse
Affiliation(s)
- Justin L. Shahtout
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA
| | - Hiroaki Eshima
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Nagasaki International University, Sasebo, Nagasaki, Japan
| | - Patrick J. Ferrara
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - J. Alan Maschek
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Metabolomics, Mass Spectrometry, and Proteomics Core, University of Utah, Salt Lake City, UT. USA
| | - James E. Cox
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Metabolomics, Mass Spectrometry, and Proteomics Core, University of Utah, Salt Lake City, UT. USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Micah J. Drummond
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
23
|
Mocciaro G, Allison M, Jenkins B, Azzu V, Huang-Doran I, Herrera-Marcos LV, Hall Z, Murgia A, Susan D, Frontini M, Vidal-Puig A, Koulman A, Griffin JL, Vacca M. Non-alcoholic fatty liver disease is characterised by a reduced polyunsaturated fatty acid transport via free fatty acids and high-density lipoproteins (HDL). Mol Metab 2023; 73:101728. [PMID: 37084865 PMCID: PMC10176260 DOI: 10.1016/j.molmet.2023.101728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/25/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) develops due to impaired hepatic lipid fluxes and is a risk factor for chronic liver disease and atherosclerosis. Lipidomic studies consistently reported characteristic hepatic/VLDL "lipid signatures" in NAFLD; whole plasma traits are more debated. Surprisingly, the HDL lipid composition by mass spectrometry has not been characterised across the NAFLD spectrum, despite HDL being a possible source of hepatic lipids delivered from peripheral tissues alongside free fatty acids (FFA). This study characterises the HDL lipidomic signature in NAFLD, and its correlation with metabolic and liver disease markers. METHODS We used liquid chromatography-mass spectrometry to determine the whole serum and HDL lipidomic profile in 89 biopsy-proven NAFLD patients and 20 sex and age-matched controls. RESULTS In the whole serum of NAFLD versus controls, we report a depletion in polyunsaturated (PUFA) phospholipids (PL) and FFA; with PUFA PL being also lower in HDL, and negatively correlated with BMI, insulin resistance, triglycerides, and hepatocyte ballooning. In the HDL of the NAFLD group we also describe higher saturated ceramides, which positively correlate with insulin resistance and transaminases. CONCLUSION NAFLD features lower serum lipid species containing polyunsaturated fatty acids; the most affected lipid fractions are FFA and (HDL) phospholipids; our data suggest a possible defect in the transfer of PUFA from peripheral tissues to the liver in NAFLD. Mechanistic studies are required to explore the biological implications of our findings addressing if HDL composition can influence liver metabolism and damage, thus contributing to NAFLD pathophysiology.
Collapse
Affiliation(s)
- Gabriele Mocciaro
- University of Cambridge, Department of Biochemistry, Cambridge, CB2 1GA, United Kingdom; Roger Williams Institute of Hepatology, Foundation for Liver Research, London, SE5 9NT, United Kingdom
| | - Michael Allison
- Addenbrooke's Hospital, Cambridge Biomedical Research Centre, Department of Medicine, United Kingdom
| | - Benjamin Jenkins
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Cambridge, CB2 0QQ, United Kingdom
| | - Vian Azzu
- Addenbrooke's Hospital, Cambridge Biomedical Research Centre, Department of Medicine, United Kingdom; Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Cambridge, CB2 0QQ, United Kingdom
| | - Isabel Huang-Doran
- Addenbrooke's Hospital, Cambridge Biomedical Research Centre, Department of Medicine, United Kingdom
| | - Luis Vicente Herrera-Marcos
- Department of Biochemistry and Molecular and Cellular Biology, Veterinary Faculty, University of Zaragoza, Zaragoza, 50013, Spain
| | - Zoe Hall
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Antonio Murgia
- University of Cambridge, Department of Biochemistry, Cambridge, CB2 1GA, United Kingdom
| | - Davies Susan
- Addenbrooke's Hospital, Cambridge Biomedical Research Centre, Department of Medicine, United Kingdom
| | - Mattia Frontini
- Faculty of Health and Life Sciences, Clinical and Biomedical Sciences, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, United Kingdom
| | - Antonio Vidal-Puig
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Cambridge, CB2 0QQ, United Kingdom
| | - Albert Koulman
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Cambridge, CB2 0QQ, United Kingdom.
| | - Julian L Griffin
- University of Cambridge, Department of Biochemistry, Cambridge, CB2 1GA, United Kingdom; The Rowett Institute, Foresterhill Campus, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom.
| | - Michele Vacca
- University of Cambridge, Department of Biochemistry, Cambridge, CB2 1GA, United Kingdom; Roger Williams Institute of Hepatology, Foundation for Liver Research, London, SE5 9NT, United Kingdom; Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Cambridge, CB2 0QQ, United Kingdom; Aldo Moro University of Bari, Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", Bari, 70124, Italy.
| |
Collapse
|
24
|
Zakany F, Mándity IM, Varga Z, Panyi G, Nagy P, Kovacs T. Effect of the Lipid Landscape on the Efficacy of Cell-Penetrating Peptides. Cells 2023; 12:1700. [PMID: 37443733 PMCID: PMC10340183 DOI: 10.3390/cells12131700] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Every cell biological textbook teaches us that the main role of the plasma membrane is to separate cells from their neighborhood to allow for a controlled composition of the intracellular space. The mostly hydrophobic nature of the cell membrane presents an impenetrable barrier for most hydrophilic molecules larger than 1 kDa. On the other hand, cell-penetrating peptides (CPPs) are capable of traversing this barrier without compromising membrane integrity, and they can do so on their own or coupled to cargos. Coupling biologically and medically relevant cargos to CPPs holds great promise of delivering membrane-impermeable drugs into cells. If the cargo is able to interact with certain cell types, uptake of the CPP-drug complex can be tailored to be cell-type-specific. Besides outlining the major membrane penetration pathways of CPPs, this review is aimed at deciphering how properties of the membrane influence the uptake mechanisms of CPPs. By summarizing an extensive body of experimental evidence, we argue that a more ordered, less flexible membrane structure, often present in the very diseases planned to be treated with CPPs, decreases their cellular uptake. These correlations are not only relevant for understanding the cellular biology of CPPs, but also for rationally improving their value in translational or clinical applications.
Collapse
Affiliation(s)
- Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - István M. Mándity
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, 1085 Budapest, Hungary;
- TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| |
Collapse
|
25
|
Pierce MR, Hougland JL. A rising tide lifts all MBOATs: recent progress in structural and functional understanding of membrane bound O-acyltransferases. Front Physiol 2023; 14:1167873. [PMID: 37250116 PMCID: PMC10213974 DOI: 10.3389/fphys.2023.1167873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Acylation modifications play a central role in biological and physiological processes. Across a range of biomolecules from phospholipids to triglycerides to proteins, introduction of a hydrophobic acyl chain can dramatically alter the biological function and cellular localization of these substrates. Amongst the enzymes catalyzing these modifications, the membrane bound O-acyltransferase (MBOAT) family occupies an intriguing position as the combined substrate selectivities of the various family members span all three classes of these biomolecules. MBOAT-dependent substrates are linked to a wide range of health conditions including metabolic disease, cancer, and neurodegenerative disease. Like many integral membrane proteins, these enzymes have presented challenges to investigation due to their intractability to solubilization and purification. However, over the last several years new solubilization approaches coupled with computational modeling, crystallography, and cryoelectron microscopy have brought an explosion of structural information for multiple MBOAT family members. These studies enable comparison of MBOAT structure and function across members catalyzing modifications of all three substrate classes, revealing both conserved features amongst all MBOATs and distinct architectural features that correlate with different acylation substrates ranging from lipids to proteins. We discuss the methods that led to this renaissance of MBOAT structural investigations, our new understanding of MBOAT structure and implications for catalytic function, and the potential impact of these studies for development of new therapeutics targeting MBOAT-dependent physiological processes.
Collapse
Affiliation(s)
- Mariah R. Pierce
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
| | - James L. Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
- Department of Biology, Syracuse University, Syracuse, NY, United States
- BioInspired Syracuse, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
26
|
Islam MT, Cai J, Allen S, Moreno DG, Bloom SI, Bramwell RC, Mitton J, Horn AG, Zhu W, Donato AJ, Holland WL, Lesniewski LA. Endothelial specific reduction in Arf6 impairs insulin-stimulated vasodilation and skeletal muscle blood flow resulting in systemic insulin resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539173. [PMID: 37205339 PMCID: PMC10187242 DOI: 10.1101/2023.05.02.539173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Background Much of what we know about insulin resistance is based on studies from metabolically active tissues such as liver, adipose tissue, and skeletal muscle. Emerging evidence suggests that the vascular endothelium plays a crucial role in systemic insulin resistance, however, the underlying mechanisms remain incompletely understood. ADP ribosylation factor 6 (Arf6) is a small GTPase that plays a critical role in endothelial cell (EC) function. Here, we tested the hypothesis that the deletion of endothelial Arf6 will result in systemic insulin resistance. Methods We used mouse models of constitutive EC-specific Arf6 deletion (Arf6 f/- Tie2Cre) and tamoxifen inducible Arf6 knockout (Arf6 f/f Cdh5Cre). Endothelium-dependent vasodilation was assessed using pressure myography. Metabolic function was assessed using a battery of metabolic assessments including glucose- and insulin-tolerance tests and hyperinsulinemic-euglycemic clamps. A fluorescence microsphere-based technique was used to measure tissue blood flow. Intravital microscopy was used to assess skeletal muscle capillary density. Results Endothelial Arf6 deletion impaired insulin-stimulated vasodilation in white adipose tissue (WAT) and skeletal muscle feed arteries. The impairment in vasodilation was primarily due to attenuated insulin-stimulated nitric oxide (NO) bioavailability but independent of altered acetylcholine- or sodium nitroprusside-mediated vasodilation. In vitro Arf6 inhibition resulted in suppressed insulin stimulated phosphorylation of Akt and endothelial NO synthase. Endothelial cell-specific deletion of Arf6 also resulted in systematic insulin resistance in normal chow fed mice and glucose intolerance in high fat diet fed obese mice. The underlying mechanisms of glucose intolerance were reductions in insulin-stimulated blood flow and glucose uptake in the skeletal muscle and were independent of changes in capillary density or vascular permeability. Conclusion Results from this study support the conclusion that endothelial Arf6 signaling is essential for maintaining insulin sensitivity. Reduced expression of endothelial Arf6 impairs insulin-mediated vasodilation and results in systemic insulin resistance. These results have therapeutic implications for diseases that are associated with endothelial cell dysfunction and insulin resistance such as diabetes.
Collapse
|
27
|
Ferrara PJ, Reidy PT, Petrocelli JJ, Yee EM, Fix DK, Mahmassani ZS, Montgomery JA, McKenzie AI, de Hart NMMP, Drummond MJ. Global deletion of CCL2 has adverse impacts on recovery of skeletal muscle fiber size and function and is muscle specific. J Appl Physiol (1985) 2023; 134:923-932. [PMID: 36861669 PMCID: PMC10069960 DOI: 10.1152/japplphysiol.00444.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
Timely and complete recovery of muscle mass and function following a bout of physical disuse are critical components of returning to normal activities of daily living and lifestyle. Proper cross talk between the muscle tissue and myeloid cells (e.g., macrophages) throughout the recovery period from disuse atrophy plays a significant role in the complete resolution of muscle size and function. Chemokine C-C motif ligand 2 (CCL2) has a critical function of recruiting macrophages during the early phase of muscle damage. However, the importance of CCL2 has not been defined in the context of disuse and recovery. Here, we utilized a mouse model of whole body CCL2 deletion (CCL2KO) and subjected them to a period of hindlimb unloading followed by reloading to investigate the importance of CCL2 on the regrowth of muscle following disuse atrophy using ex vivo muscle tests, immunohistochemistry, and fluorescence-activated cell sorting approaches. We show mice that lack CCL2 display an incomplete recovery of gastrocnemius muscle mass, myofiber cross-sectional area, and EDL muscle contractile characteristics during the recovery from disuse atrophy. The soleus and plantaris had limited impact as a result of CCL2 deficiency suggesting a muscle-specific effect. Mice that lack CCL2 have decreased skeletal muscle collagen turnover, which may be related to defects in muscle function and stiffness. In addition, we show that the recruitment of macrophages to gastrocnemius muscle was dramatically reduced in CCL2KO mice during the recovery from disuse atrophy, which likely precipitated poor recovery of muscle size and function and aberrant collagen remodeling.NEW & NOTEWORTHY We provide evidence that the whole body loss of CCL2 in mice has adverse impacts on whole body function and skeletal muscle-specific contractile characteristics and collagen content. These defects in muscle function worsened during the recovery from disuse atrophy and corresponded with decreased recovery of muscle mass. We conclude that the absence of CCL2 decreased recruitment of proinflammatory macrophages to the muscle during the regrowth phase following disuse atrophy resulting in impaired collagen remodeling events and full resolution of muscle morphology and function.
Collapse
Affiliation(s)
- Patrick J Ferrara
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Jonathan J Petrocelli
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, United States
| | - Elena M Yee
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, United States
| | - Dennis K Fix
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| | - Ziad S Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, United States
| | - Jessie A Montgomery
- Department of Chemistry, University of Utah, Salt Lake City, Utah, United States
| | - Alec I McKenzie
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, United States
| | - Naomi M M P de Hart
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Micah J Drummond
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
28
|
Eshima H, Shahtout JL, Siripoksup P, Pearson MJ, Mahmassani ZS, Ferrara PJ, Lyons AW, Maschek JA, Peterlin AD, Verkerke ARP, Johnson JM, Salcedo A, Petrocelli JJ, Miranda ER, Anderson EJ, Boudina S, Ran Q, Cox JE, Drummond MJ, Funai K. Lipid hydroperoxides promote sarcopenia through carbonyl stress. eLife 2023; 12:e85289. [PMID: 36951533 PMCID: PMC10076018 DOI: 10.7554/elife.85289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/22/2023] [Indexed: 03/24/2023] Open
Abstract
Reactive oxygen species (ROS) accumulation is a cardinal feature of skeletal muscle atrophy. ROS refers to a collection of radical molecules whose cellular signals are vast, and it is unclear which downstream consequences of ROS are responsible for the loss of muscle mass and strength. Here, we show that lipid hydroperoxides (LOOH) are increased with age and disuse, and the accumulation of LOOH by deletion of glutathione peroxidase 4 (GPx4) is sufficient to augment muscle atrophy. LOOH promoted atrophy in a lysosomal-dependent, proteasomal-independent manner. In young and old mice, genetic and pharmacological neutralization of LOOH or their secondary reactive lipid aldehydes robustly prevented muscle atrophy and weakness, indicating that LOOH-derived carbonyl stress mediates age- and disuse-induced muscle dysfunction. Our findings provide novel insights for the role of LOOH in sarcopenia including a therapeutic implication by pharmacological suppression.
Collapse
Affiliation(s)
- Hiroaki Eshima
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Molecular Medicine Program, University of UtahSalt Lake CityUnited States
- Department of International Tourism, Nagasaki International UniversityNagasakiJapan
| | - Justin L Shahtout
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Department of Physical Therapy & Athletic Training, University of UtahSalt Lake CityUnited States
| | - Piyarat Siripoksup
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Department of Physical Therapy & Athletic Training, University of UtahSalt Lake CityUnited States
| | | | - Ziad S Mahmassani
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Molecular Medicine Program, University of UtahSalt Lake CityUnited States
- Department of Physical Therapy & Athletic Training, University of UtahSalt Lake CityUnited States
| | - Patrick J Ferrara
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Molecular Medicine Program, University of UtahSalt Lake CityUnited States
- Department of Nutrition & Integrative Physiology, University of UtahSalt Lake CityUnited States
| | - Alexis W Lyons
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
| | - John Alan Maschek
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Department of Nutrition & Integrative Physiology, University of UtahSalt Lake CityUnited States
- Metabolomics Core Research Facility, University of UtahSalt Lake CityUnited States
| | - Alek D Peterlin
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Department of Nutrition & Integrative Physiology, University of UtahSalt Lake CityUnited States
| | - Anthony RP Verkerke
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Department of Nutrition & Integrative Physiology, University of UtahSalt Lake CityUnited States
| | - Jordan M Johnson
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Department of Nutrition & Integrative Physiology, University of UtahSalt Lake CityUnited States
| | - Anahy Salcedo
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
| | - Jonathan J Petrocelli
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Department of Physical Therapy & Athletic Training, University of UtahSalt Lake CityUnited States
| | - Edwin R Miranda
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Molecular Medicine Program, University of UtahSalt Lake CityUnited States
| | - Ethan J Anderson
- Fraternal Order of Eagles Diabetes Research Center, University of IowaIowa CityUnited States
| | - Sihem Boudina
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Molecular Medicine Program, University of UtahSalt Lake CityUnited States
- Department of Nutrition & Integrative Physiology, University of UtahSalt Lake CityUnited States
| | - Qitao Ran
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - James E Cox
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Metabolomics Core Research Facility, University of UtahSalt Lake CityUnited States
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - Micah J Drummond
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Molecular Medicine Program, University of UtahSalt Lake CityUnited States
- Department of Physical Therapy & Athletic Training, University of UtahSalt Lake CityUnited States
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Molecular Medicine Program, University of UtahSalt Lake CityUnited States
- Department of Physical Therapy & Athletic Training, University of UtahSalt Lake CityUnited States
- Department of Nutrition & Integrative Physiology, University of UtahSalt Lake CityUnited States
| |
Collapse
|
29
|
Xiao D, Chang W. Phosphatidylserine in Diabetes Research. Mol Pharm 2023; 20:82-89. [PMID: 36480277 DOI: 10.1021/acs.molpharmaceut.2c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phospholipids are lipids that constitute the basic structure of cell membranes. In-depth research has shown that in addition to supporting cell structures, phospholipids participate in multiple cellular processes, including promoting cell signal transduction, guiding protein translocation, activating enzymatic activity, and eliminating dysfunctional/redundant organelles/cells. Diabetes is a chronic metabolic disease with a complicated etiology and pathology. Studies have shown that the level of certain phospholipids, for example, the ratio of phosphatidylcholine (PC) to phosphatidylethanolamine (PE) in liver tissue, is negatively associated with insulin sensitivity. In addition, PS is a phospholipid exhibiting extensive cellular functions in diabetes. For this review, we analyzed many PS studies focusing on diabetes and insulin sensitivity in recent years and found that PS participates in controlling insulin secretion, regulating insulin signaling transduction, and participating in the progression of diabetic complications by mediating coagulation disorders in the microvasculature or targeting mitochondria. Moreover, PS supplements in food and PS-containing liposomes have been shown to protect against type 1 and type 2 diabetes (T1D and T2D, respectively) in animal studies. Therefore, by summarizing the regulatory roles played by PS in diabetes and the potential of successfully using PS or PS-containing liposomes for diabetic therapy, we hope to provide new ideas for further research into the mechanisms of diabetes and for drug development for treating diabetes and its complications.
Collapse
Affiliation(s)
- Dandan Xiao
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao 266071, China.,School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
30
|
Woźniak-Budych M, Tylkowski B. The Patent Application Discloses Compositions for Reducing Skin Fat. Curr Pharm Des 2023; 29:3340-3342. [PMID: 38111117 DOI: 10.2174/0113816128280165231212070355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/14/2023] [Indexed: 12/20/2023]
Affiliation(s)
- Marta Woźniak-Budych
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan, Poland
| | - Bartosz Tylkowski
- Department of Clinical Neuropsychology, Faculty of Health Science, Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz, ul. Sklodowskiej Curie 9, 85-094 Bydgoszcz, Poland ul. Sklodowskiej Curie 9, 85-094 Bydgoszcz, Poland
| |
Collapse
|
31
|
Lpcat3 deficiency promotes palmitic acid-induced 3T3-L1 mature adipocyte inflammation through enhanced ROS generation. Acta Biochim Biophys Sin (Shanghai) 2022; 55:117-130. [PMID: 36331295 PMCID: PMC10157521 DOI: 10.3724/abbs.2022161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylcholines (PCs) are major phospholipids in the mammalian cell membrane. Structural remodeling of PCs is associated with many biological processes. Lysophosphatidylcholine acyltransferase 3 (Lpcat3), which catalyzes the incorporation of polyunsaturated fatty acyl chains into the sn-2 site of PCs, plays an important role in maintaining plasma membrane fluidity. Adipose tissue is one of the main distribution organs of Lpcat3, while the relationship between Lpcat3 and adipose tissue dysfunction during overexpansion remains unknown. In this study, we reveal that both polyunsaturated PC content and Lpcat3 expression are increased in abdominal adipose tissues of high-fat diet-fed mice when compared with chow-diet-fed mice, indicating that Lpcat3 is involved in adipose tissue overexpansion and dysfunction. Our experiments in 3T3-L1 adipocytes show that inhibition of Lpcat3 does not change triglyceride accumulation but increases palmitic acid-induced inflammation and lipolysis. Conversely, Lpcat3 overexpression exhibits anti-inflammatory and anti-lipolytic effects. Furthermore, mechanistic studies demonstrate that Lpcat3 deficiency promotes reactive oxygen species (ROS) generation by increasing NOX enzyme activity by facilitating the translocation of NOX4 to lipid rafts, thereby aggregating 3T3-L1 adipocyte inflammation induced by palmitic acid. Moreover, overexpression of Lpcat3 exhibits the opposite effects. These findings suggest that Lpcat3 protects adipocytes from inflammation during adipose tissue overexpansion by reducing ROS generation. In conclusion, our study demonstrates that Lpcat3 deficiency promotes palmitic acid-induced inflammation in 3T3-L1 adipocytes by enhancing ROS generation.
Collapse
|
32
|
Ren Q, Chen S, Chen X, Niu S, Yue L, Pan X, Li Z, Chen X. An Effective Glucagon-Like Peptide-1 Receptor Agonists, Semaglutide, Improves Sarcopenic Obesity in Obese Mice by Modulating Skeletal Muscle Metabolism. Drug Des Devel Ther 2022; 16:3723-3735. [PMID: 36304787 PMCID: PMC9594960 DOI: 10.2147/dddt.s381546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Purpose This study aimed to investigate the effect of Semaglutide on skeletal muscle and its metabolomics. Methods A total of 18 male C57BL/6 mice were randomly divided into normal control (NC) group, high-fat diet (HFD) group and HFD+Semaglutide group, and were given standard diet, HFD diet, HFD diet plus Semaglutide, respectively. The body weight, gastrocnemius weight, serum lipid, blood glucose and inflammatory index levels of mice in each group were observed and compared, and the morphological and structural changes of gastrocnemius were also analyzed. Meanwhile, gastrocnemius metabolite changes were analyzed by untargeted metabolomics. Results After Semaglutide treatment, the food intake and body weight of mice were evidently decreased, while the relative gastrocnemius weight ratio were conversely increased. Meanwhile, the levels of TG, CHO, LDL, HDL, TNF-α, IL-6, IL-1β and HOMA-IR were all observed to decrease remarkably after Semaglutide intervention. Histological analysis showed that Semaglutide significantly improved the pathological changes of gastrocnemius, manifested as increased type I/type II muscle fiber ratio, total muscle fiber area, muscle fiber density, sarcomere length, mitochondrial number and mitochondrial area. Furthermore, metabolic changes of gastrocnemius after Semaglutide intervention were analyzed, and 141 kinds of differential metabolites were screened out, mainly embodied in lipids and organic acids, and enriched in 9 metabolic pathways including a variety of amino acids. Conclusion Semaglutide can significantly reduce the body weight and the accumulation of intramuscular fat, promote muscle protein synthesis, increase the relative proportion of skeletal muscle, and improve muscle function of obese mice, possibly by altering the metabolism of muscle lipids and organic acids.
Collapse
Affiliation(s)
- Qingjuan Ren
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China,Department of Geriatrics, Shijiazhuang People’s Hospital, Shijiazhuang, 050000, People’s Republic of China
| | - Shuchun Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, 050000, People’s Republic of China,Correspondence: Shuchun Chen, Department of Endocrinology, Hebei General Hospital, No. 348, Heping West Road, Shijiazhuang, 050000, People’s Republic of China, Tel +86-13833166283, Email
| | - Xing Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Shu Niu
- Department of Endocrinology, Shijiazhuang People’s Hospital, Shijiazhuang, 050000, People’s Republic of China
| | - Lin Yue
- Department of Endocrinology, The Third Hospital of Shijiazhuang, Shijiazhuang, 050000, People’s Republic of China
| | - Xiaoyu Pan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Zelin Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Xiaoyi Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| |
Collapse
|
33
|
Ferrara PJ, Yee EM, Petrocelli JJ, Fix DK, Hauser CT, de Hart NMMP, Mahmassani ZS, Reidy PT, O'Connell RM, Drummond MJ. Macrophage immunomodulation accelerates skeletal muscle functional recovery in aged mice following disuse atrophy. J Appl Physiol (1985) 2022; 133:919-931. [PMID: 36049060 PMCID: PMC9550586 DOI: 10.1152/japplphysiol.00374.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
Poor recovery of muscle size and strength with aging coincides with a dysregulated macrophage response during the early stages of regrowth. Immunomodulation in the form of ex vivo cytokine (macrophage-colony stimulating factor) or polarized macrophage delivery has been demonstrated to improve skeletal muscle regeneration. However, it is unclear if these macrophage-promoting approaches would be effective to improve skeletal muscle recovery following disuse in aged animals. Here, we isolated bone marrow-derived macrophages from donor mice of different ages under various experimental conditions and polarized them into proinflammatory macrophages. Macrophages were delivered intramuscularly into young adult or aged recipient mice during the early recovery period following a period of hindlimb unloading (HU). Delivery of proinflammatory macrophages from donor young adults or aged mice was sufficient to increase muscle function of aged mice during the recovery period. Moreover, proinflammatory macrophages derived from aged donor mice collected during recovery were similarly able to increase muscle function of aged mice following disuse. In addition to the delivery of macrophages, we showed that the intramuscular injection of the cytokine, macrophage-colony stimulating factor, to the muscle of aged mice following HU was able to increase muscle macrophage content and muscle force production during recovery. Together, these results suggest that macrophage immunomodulation approaches in the form of ex vivo proinflammatory macrophage or macrophage-colony stimulating factor delivery during the early recovery phase following disuse atrophy were sufficient to restore the loss of aged skeletal muscle function.NEW & NOTEWORTHY A single intramuscular administration of polarized macrophages into muscles of aged mice following a bout of disuse atrophy was sufficient to improve functional recover similarly to young adults after disuse atrophy regardless of the age or experimental condition of the donor mice. Additionally, intramuscular delivery of macrophage-colony stimulating factor into aged mice was similarly effective. Targeting macrophage function early during the regrowth phase may be a novel tool to bolster muscle recovery in aging.
Collapse
Affiliation(s)
- Patrick J Ferrara
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Elena M Yee
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah
| | - Jonathan J Petrocelli
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah
| | - Dennis K Fix
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Carson T Hauser
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Naomi M M P de Hart
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Ziad S Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah
| | - Paul T Reidy
- Department of Kinesiology, Miami University, Oxford, Ohio
| | - Ryan M O'Connell
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
34
|
Lagrost L, Masson D. The expanding role of lyso-phosphatidylcholine acyltransferase-3 (LPCAT3), a phospholipid remodeling enzyme, in health and disease. Curr Opin Lipidol 2022; 33:193-198. [PMID: 35165232 DOI: 10.1097/mol.0000000000000820] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The turnover of fatty acids (FAs) at the sn-2 position of phospholipids is mediated by the reciprocal actions of phospholipases A2 and lyso-PL acyltransferases (LPLAT). LPCAT3, a major LPLAT isoform, exhibits a strong specificity for polyunsaturated FAs s (PUFAs). Although the enzyme was originally studied in the context of cardiometabolism, recent investigations have shed light on the role of LPCAT3 in other tissues such as skeletal muscle and in unexpected biological processes such as cell death and oncogenesis. RECENT FINDINGS The three-dimensional structure of LPCAT3 has been elucidated allowing further understanding of the mechanism of the acylation reaction as well as the substrate specificity of the enzyme. In skeletal muscle, LPCAT3-mediated phospholipid remodeling modulates membrane domain clustering and insulin signalingLPCAT3 plays an important role in the process of ferroptosis by modulating the PUFA content of phospholipids and possibly of plasmalogens.In tumor-associated macrophages, LPCAT3 can prevent ER stress induced by the tumor microenvironment and may equally modulate antitumor immunity. SUMMARY LPCAT3 is an attractive therapeutic target in the cardiometabolic disorders. Nevertheless, the involvement of LPCAT3 in processes such as cell death and oncogenesis demands caution with respect to the potential deleterious effects of enzyme modulation.
Collapse
Affiliation(s)
- Laurent Lagrost
- Université Bourgogne Franche-Comté
- INSERM, LNC UMR1231
- FCS Bourgogne-Franche Comté, LipSTIC LabEx
| | - David Masson
- Université Bourgogne Franche-Comté
- INSERM, LNC UMR1231
- FCS Bourgogne-Franche Comté, LipSTIC LabEx
- CHU Dijon, Dijon, France
| |
Collapse
|
35
|
Dang JT, Mocanu V, Park H, Laffin M, Hotte N, Karmali S, Birch DW, Madsen KL. Roux-en-Y gastric bypass and sleeve gastrectomy induce substantial and persistent changes in microbial communities and metabolic pathways. Gut Microbes 2022; 14:2050636. [PMID: 35316158 PMCID: PMC8942407 DOI: 10.1080/19490976.2022.2050636] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bariatric surgery induces significant microbial and metabolomic changes, however, links between microbial and metabolic pathways have not been fully elucidated. The objective of this study was to conduct a comprehensive investigation of the microbial, metabolomic, and inflammatory changes that occur following Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG). A prospective clinical trial was conducted with participants undergoing RYGB, SG, and non-operative controls (CTRL). Clinical parameters, blood samples, and fecal samples were collected pre-intervention and at 3 and 9 months. A multi-omics approach was used to perform integrated microbial-metabolomic analysis to identify functional pathways in which weight loss and metabolic changes occur after surgery. RYGB led to profound microbial changes over time that included reductions in alpha-diversity, increased Proteobacteria and Verrucomicrobiota, decreased Firmicutes, and numerous changes at the genera level. These changes were associated with a reduction in inflammation and significant weight loss. A reduction in Romboutsia genera correlated strongly with weight loss and integrated microbial-metabolomic analysis revealed the importance of Romboutsia. Its obliteration correlated with improved weight loss and insulin resistance, possibly through decreases in glycerophospholipids. In contrast, SG was associated with no changes in alpha-diversity, and only a small number of changes in microbial genera. A cluster of Firmicutes genera including Butyriciccocus, Eubacterium ventriosum, and Monoglobus was decreased, which correlated with decreased weight, insulin resistance, and systemic inflammation. This work represents comprehensive analyses of microbial-metabolomic changes that occur following bariatric surgery and identifies several pathways that are associated with beneficial metabolic effects of surgery.
Collapse
Affiliation(s)
- Jerry T. Dang
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada,CONTACT Jerry T. Dang Division of General Surgery, Department of Surgery, University of Alberta, University of Alberta Hospital, 8440 112 Street NW, Edmonton, AB, CanadaT6G 2B7
| | - Valentin Mocanu
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Heekuk Park
- Department of Medicine, Columbia University, New York, New York, USA
| | - Michael Laffin
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Naomi Hotte
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Shahzeer Karmali
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel W. Birch
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Karen L. Madsen
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
36
|
Valentine WJ, Yanagida K, Kawana H, Kono N, Noda NN, Aoki J, Shindou H. Update and nomenclature proposal for mammalian lysophospholipid acyltransferases which create membrane phospholipid diversity. J Biol Chem 2021; 298:101470. [PMID: 34890643 PMCID: PMC8753187 DOI: 10.1016/j.jbc.2021.101470] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The diversity of glycerophospholipid species in cellular membranes is immense and affects various biological functions. Glycerol-3-phosphate acyltransferases (GPATs) and lysophospholipid acyltransferases (LPLATs), in concert with phospholipase A1/2s enzymes, contribute to this diversity via selective esterification of fatty acyl chains at the sn-1 or sn-2 positions of membrane phospholipids. These enzymes are conserved across all kingdoms, and in mammals four GPATs of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family and at least 14 LPLATs, either of the AGPAT or the membrane-bound O-acyltransferase (MBOAT) families, have been identified. Here we provide an overview of the biochemical and biological activities of these mammalian enzymes, including their predicted structures, involvements in human diseases, and essential physiological roles as revealed by gene-deficient mice. Recently, the nomenclature used to refer to these enzymes has generated some confusion due to the use of multiple names to refer to the same enzyme and instances of the same name being used to refer to completely different enzymes. Thus, this review proposes a more uniform LPLAT enzyme nomenclature, as well as providing an update of recent advances made in the study of LPLATs, continuing from our JBC mini review in 2009.
Collapse
Affiliation(s)
- William J Valentine
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan; Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Keisuke Yanagida
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo 141-0021, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan; Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
37
|
|
38
|
The structural basis for the phospholipid remodeling by lysophosphatidylcholine acyltransferase 3. Nat Commun 2021; 12:6869. [PMID: 34824256 PMCID: PMC8617236 DOI: 10.1038/s41467-021-27244-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
As the major component of cell membranes, phosphatidylcholine (PC) is synthesized de novo in the Kennedy pathway and then undergoes extensive deacylation-reacylation remodeling via Lands' cycle. The re-acylation is catalyzed by lysophosphatidylcholine acyltransferase (LPCAT) and among the four LPCAT members in human, the LPCAT3 preferentially introduces polyunsaturated acyl onto the sn-2 position of lysophosphatidylcholine, thereby modulating the membrane fluidity and membrane protein functions therein. Combining the x-ray crystallography and the cryo-electron microscopy, we determined the structures of LPCAT3 in apo-, acyl donor-bound, and acyl receptor-bound states. A reaction chamber was revealed in the LPCAT3 structure where the lysophosphatidylcholine and arachidonoyl-CoA were positioned in two tunnels connected near to the catalytic center. A side pocket was found expanding the tunnel for the arachidonoyl CoA and holding the main body of arachidonoyl. The structural and functional analysis provides the basis for the re-acylation of lysophosphatidylcholine and the substrate preference during the reactions.
Collapse
|
39
|
New Insights on the PBMCs Phospholipidome in Obesity Demonstrate Modulations Associated with Insulin Resistance and Glycemic Status. Nutrients 2021; 13:nu13103461. [PMID: 34684461 PMCID: PMC8541295 DOI: 10.3390/nu13103461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Obesity and type 2 diabetes have been suspected to impact both intrinsic metabolism and function of circulating immune cells. (2) Methods: To further investigate this immunometabolic modulation, we profiled the phospholipidome of the peripheral blood mononuclear cells (PBMCs) in lean, normoglycemic obese (OBNG) and obese with dysglycemia (OBDysG) individuals. (3) Results: The global PBMCs phospholipidome is significantly downmodulated in OBDysG unlike OBNG patients when compared to lean ones. Multiple linear regression analyses show a strong negative relationship between the global PBMCs phospholipidome and parameters assessing insulin resistance. Even though all classes of phospholipid are affected, the relative abundance of each class is maintained with the exception of Lyso-PC/PC and Lyso-PE/PE ratios that are downmodulated in PBMCs of OBDysG compared to OBNG individuals. Interestingly, the percentage of saturated PC is positively associated with glycated hemoglobin (HbA1c). Moreover, a few lipid species are significantly downmodulated in PBMCs of OBDysG compared to OBNG individuals, making possible to distinguish the two phenotypes. (4) Conclusions: This lipidomic study highlights for the first-time modulations of the PBMCs phospholipidome in obese patients with prediabetes and type 2 diabetes. Such phospholipidome remodeling could disrupt the cell membranes and the lipid mediator's levels, driving an immune cell dysfunction.
Collapse
|
40
|
Ferrara PJ, Verkerke ARP, Maschek JA, Shahtout JL, Siripoksup P, Eshima H, Johnson JM, Petrocelli JJ, Mahmassani ZS, Green TD, McClung JM, Cox JE, Drummond MJ, Funai K. Low lysophosphatidylcholine induces skeletal muscle myopathy that is aggravated by high-fat diet feeding. FASEB J 2021; 35:e21867. [PMID: 34499764 DOI: 10.1096/fj.202101104r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 12/25/2022]
Abstract
Obesity alters skeletal muscle lipidome and promotes myopathy, but it is unknown whether aberrant muscle lipidome contributes to the reduction in skeletal muscle contractile force-generating capacity. Comprehensive lipidomic analyses of mouse skeletal muscle revealed a very strong positive correlation between the abundance of lysophosphatidylcholine (lyso-PC), a class of lipids that is known to be downregulated with obesity, with maximal tetanic force production. The level of lyso-PC is regulated primarily by lyso-PC acyltransferase 3 (LPCAT3), which acylates lyso-PC to form phosphatidylcholine. Tamoxifen-inducible skeletal muscle-specific overexpression of LPCAT3 (LPCAT3-MKI) was sufficient to reduce muscle lyso-PC content in both standard chow diet- and high-fat diet (HFD)-fed conditions. Strikingly, the assessment of skeletal muscle force-generating capacity ex vivo revealed that muscles from LPCAT3-MKI mice were weaker regardless of diet. Defects in force production were more apparent in HFD-fed condition, where tetanic force production was 40% lower in muscles from LPCAT3-MKI compared to that of control mice. These observations were partly explained by reductions in the cross-sectional area in type IIa and IIx fibers, and signs of muscle edema in the absence of fibrosis. Future studies will pursue the mechanism by which LPCAT3 may alter protein turnover to promote myopathy.
Collapse
Affiliation(s)
- Patrick J Ferrara
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Anthony R P Verkerke
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - J Alan Maschek
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Metabolomics, Mass Spectrometry, and Proteomics Core, University of Utah, Salt Lake City, Utah, USA
| | - Justin L Shahtout
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Piyarat Siripoksup
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Hiroaki Eshima
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of International Tourism, Nagasaki International University, Sasebo, Japan
| | - Jordan M Johnson
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Jonathan J Petrocelli
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Ziad S Mahmassani
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Thomas D Green
- East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Joseph M McClung
- East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - James E Cox
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Metabolomics, Mass Spectrometry, and Proteomics Core, University of Utah, Salt Lake City, Utah, USA.,Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA
| | - Micah J Drummond
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
41
|
Xiang H, Shao M, Lu Y, Wang J, Wu T, Ji G. Kaempferol Alleviates Steatosis and Inflammation During Early Non-Alcoholic Steatohepatitis Associated With Liver X Receptor α-Lysophosphatidylcholine Acyltransferase 3 Signaling Pathway. Front Pharmacol 2021; 12:690736. [PMID: 34262459 PMCID: PMC8273916 DOI: 10.3389/fphar.2021.690736] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Kaempferol (KP) has a variety of biological effects such as anti-inflammatory, anti-oxidant, anti-aging and cardiovascular protection. Whether KP has a therapeutic effect on non-alcoholic steatohepatitis (NASH), and the detailed mechanism is currently unclear. This study aims to explore the mechanism of KP in the treatment of NASH through in vivo and in vitro experiments. Methods: 1) In vivo experiment: In the C57BL/6 NASH mice model induced by high fat diet (HFD), KP was administered by gavage at a dose of 20 mg/kg/day. 2) In vitro experiment: Palmitic acid/Oleic acid (PA/OA, 0.375/0.75 mM) was used to intervene HepG2 and AML12 cells to establish a steatosis cell model. Three concentrations of KP, low (20 μmol/L), medium (40 μmol/L) and high (60 μmol/L) were used in vitro. The mRNA and protein expression of related molecules involved in LXRα-LPCAT3-ERS pathway were detected using RT-qPCR and Western blot. Results: In the NASH mouse model, KP can significantly reduce the expression of LXRα, LPCAT3 and ERS-related factors PERK, eIF2α, ATF6, ATF4, XBP1, CHOP, IRE1α and GRP78. In the PA/OA-induced cell model, KP could decrease the content of triglyceride and lipid droplets, and also decrease the expression of LXR α, LPCAT3 and ERS related factors PERK, eIF2α, ATF6, ATF4, XBP1, CHOP, IRE1α and GRP78. Conclusion: KP may decrease the expression level of LXRα and LPCAT3, thus improve ERS and reduce hepatic steatosis and inflammation.
Collapse
Affiliation(s)
- Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Shao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
42
|
Wolfgang MJ. Remodeling glycerophospholipids affects obesity-related insulin signaling in skeletal muscle. J Clin Invest 2021; 131:148176. [PMID: 33855969 DOI: 10.1172/jci148176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
It has long been known that fatty acids can either adversely or positively affect insulin signaling in skeletal muscle, depending on chain length or saturation, and can therefore be primary drivers of systemic insulin sensitivity. However, the detailed mechanisms linking fatty acids to insulin signaling in skeletal muscle have been elusive. In this issue of the JCI, Ferrara et al. suggest a model whereby membrane lipid remodeling mediates skeletal muscle insulin sensitivity. The authors demonstrate that membrane glycerophospholipid fatty acid remodeling by lysophosphatidylcholine acyltransferase 3 (LPCAT3) in skeletal muscle from subjects with obesity was induced, suppressing insulin signaling and glucose tolerance. Loss or gain of LPCAT3 function in mouse models showed that Lpcat3 was both required and sufficient for high-fat diet-induced muscle insulin resistance. These results suggest that the physiochemical properties of muscle cell membranes may drive insulin sensitivity and, therefore, systemic glucose intolerance.
Collapse
Affiliation(s)
- Michael J Wolfgang
- Department of Biological Chemistry.,Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
43
|
Szczerbinski L, Golonko A, Taylor M, Puchta U, Konopka P, Paszko A, Citko A, Szczerbinski K, Gorska M, Zabielski P, Błachnio-Zabielska A, Larsen S, Kretowski A. Metabolomic Profile of Skeletal Muscle and Its Change Under a Mixed-Mode Exercise Intervention in Progressively Dysglycemic Subjects. Front Endocrinol (Lausanne) 2021; 12:778442. [PMID: 34938272 PMCID: PMC8685540 DOI: 10.3389/fendo.2021.778442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscles play an essential role in whole-body glucose homeostasis. They are a key organ system engaged in the development of insulin resistance, and also a crucial tissue mediating the beneficial metabolic effects of physical activity. However, molecular mechanisms underlying both these processes in skeletal muscle remain unclear. The aim of our study was to compare metabolomic profiles in skeletal muscle of patients at different stages of dysglycemia, from normoglycemia through prediabetes to T2D, and its changes under a mixed-mode (strength and endurance) exercise intervention. We performed targeted metabolomics comprising several major metabolite classes, including amino acids, biogenic amines and lipid subgroups in skeletal muscles of male patients. Dysglycemic groups differed significantly at baseline in lysophosphatidylcholines, phosphatidylcholines, sphingomyelins, glutamine, ornithine, and carnosine. Following the exercise intervention, we detected significant changes in lipids and metabolites related to lipid metabolism, including in ceramides and acylcarnitines. With their larger and more significant change over the intervention and among dysglycemic groups, these findings suggest that lipid species may play a predominant role in both the pathogenesis of type 2 diabetes and its protection by exercise. Simultaneously, we demonstrated that amino acid metabolism, especially glutamate dysregulation, is correlated to the development of insulin resistance and parallels disturbances in lipid metabolites.
Collapse
Affiliation(s)
- Lukasz Szczerbinski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Lukasz Szczerbinski,
| | - Aleksandra Golonko
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Mark Taylor
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, United States
| | - Urszula Puchta
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Paulina Konopka
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Adam Paszko
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Anna Citko
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Karol Szczerbinski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Maria Gorska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
| | | | - Steen Larsen
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adam Kretowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|