1
|
Zhang W, Zhang X, Xiao H, Liu H, Yang Y, Peng J, Zhao P. Angiographic features of pediatric stage 4 familial exudative vitreoretinopathy with radial retinal folds. Graefes Arch Clin Exp Ophthalmol 2024:10.1007/s00417-024-06668-7. [PMID: 39638917 DOI: 10.1007/s00417-024-06668-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 12/07/2024] Open
Abstract
PURPOSE To describe vascular anomalies and nonperfusion areas (NPAs) of stage 4 familial exudative vitreoretinopathy (FEVR) with radial retinal folds (RFs) and analyze their potential clinical significance. METHODS Retinal detachment (RD) could exceed the RFs due to exudative, rhegmatogenous, or tractional factors, which we could call secondary RD. Fluorescein fundus angiography (FFA) and risk factors for progression to secondary RD of pediatric stage 4 FEVR patients with radial RFs were respectively explored. RESULTS Fifty-eight eyes with RFs from 49 stage 4 pediatric FEVR patients were studied. Various angiographic changes were noted, including peripheral NPAs (93.1%), thinning retinal arteries (48.3%), straightened retinal vessels (34.5%), supernumerary vascular branching (32.8%), arteriovenous shunt (20.7%), aberrant circumferential vessels (13.8%), bulbous vascular endings (10.3%) and peripheral vascular dilation (6.9%). Nineteen (35.2%), 21(38.2%), and 14 (25.9%) of 58 eyes showed severe, moderate, and mild peripheral NPAs, respectively. The rate of secondary RDwas higher in eyes with severe peripheral NPAs (p = 0.004). The severity of the nonperfusion area (p = 0.040) was higher in eyes with exudation. Eight eyes (42.1%) with exudation and 12 eyes (30.8%) without exudation on color fundus pictures exhibited fluorescein leakage (p = 0.394). The rate of secondary RD was 26.3% in eyes with exudation, and 2.6% in eyes without exudation (p = 0.012). CONCLUSIONS The majority of stage 4 FEVR eyes with RFs have severe peripheral NPAs. Exudation is related to more severe peripheral NPAs. Exudation and NPAs are predictive factors for secondary RD. KEY MESSAGES What is known • Radial retinal folds are a typical clinical sign of FEVR, observed in 50.9% of FEVR patients, but little is known about the angiographic characteristics of these individuals. What is new • The severity of the nonperfusion area was graded into 3 levels. The severity of the nonperfusion area and hard exudation are risk factors for progression to total retinal detachment.
Collapse
Affiliation(s)
- Wenting Zhang
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road, No. 1665, Shanghai, 200092, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuerui Zhang
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road, No. 1665, Shanghai, 200092, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haodong Xiao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road, No. 1665, Shanghai, 200092, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huanyu Liu
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road, No. 1665, Shanghai, 200092, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Yang
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road, No. 1665, Shanghai, 200092, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Peng
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road, No. 1665, Shanghai, 200092, China.
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road, No. 1665, Shanghai, 200092, China.
| |
Collapse
|
2
|
Patel A, Pauzuolyte V, Ingham NJ, Leong YC, Berger W, Steel KP, Sowden JC. Rescue of cochlear vascular pathology prevents sensory hair cell loss in Norrie disease. Proc Natl Acad Sci U S A 2024; 121:e2322124121. [PMID: 39585982 PMCID: PMC11626139 DOI: 10.1073/pnas.2322124121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/11/2024] [Indexed: 11/27/2024] Open
Abstract
Variants in the gene NDP cause Norrie disease, a severe dual-sensory disorder characterized by congenital blindness due to disrupted retinal vascular development and progressive hearing loss accompanied by sensory hair cell death. NDP encodes the secreted signaling molecule norrin. The role of norrin in the cochlea is incompletely understood. We investigated whether the Norrie disease cochlear pathology can be ameliorated in an Ndp-knockout (Ndp-KO) mouse model by conditional activation of stabilized β-catenin in vascular endothelial cells. We hypothesized that in the cochlea microvasculature, β-catenin is the primary downstream intracellular effector of norrin binding to endothelial cell surface receptors and that restoration of this signaling pathway is sufficient to prevent sensory hair cell death and hearing loss. We show that tamoxifen induction of Cdh5CreERT2;Ctnnb1flex3/+;Ndp-KO mice stabilizing β-catenin in vascular endothelial cells alone rescued defects in cochlear vascular barrier function, restored dysregulated expression of endothelial cell disease biomarkers (Cldn5, Abcb1a, Slc7a1, and Slc7a5), and prevented progressive outer hair cell death and hearing loss. Single-cell transcriptome profiling of human cochleas showed NDP expression by fibrocytes and glial cells while receptor gene expression (FZD4, TSPAN12, LRP5, and LRP6) coincided in vascular endothelial cells. Our findings support the conclusion that vascular endothelial cells are a primary target of norrin signaling in the cochlea of mice and humans and restoration of β-catenin regulation of target gene expression within cochlear endothelial cells is sufficient to maintain a cochlear microenvironment critical for hair cell survival.
Collapse
MESH Headings
- Animals
- Mice
- Mice, Knockout
- Cochlea/metabolism
- Cochlea/pathology
- Cochlea/blood supply
- beta Catenin/metabolism
- beta Catenin/genetics
- Hair Cells, Auditory/metabolism
- Hair Cells, Auditory/pathology
- Hearing Loss, Sensorineural/genetics
- Hearing Loss, Sensorineural/metabolism
- Hearing Loss, Sensorineural/pathology
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/genetics
- Spasms, Infantile/metabolism
- Spasms, Infantile/genetics
- Spasms, Infantile/pathology
- Blindness/genetics
- Blindness/metabolism
- Blindness/prevention & control
- Blindness/pathology
- Blindness/congenital
- Eye Proteins/metabolism
- Eye Proteins/genetics
- Endothelial Cells/metabolism
- Humans
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- Genetic Diseases, X-Linked/pathology
- Disease Models, Animal
- Signal Transduction
- Retinal Degeneration/metabolism
- Retinal Degeneration/pathology
- Retinal Degeneration/genetics
- Retinal Degeneration/prevention & control
- Nervous System Diseases
Collapse
Affiliation(s)
- Aara Patel
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, University College London, and National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, LondonWC1N 1EH, United Kingdom
| | - Valda Pauzuolyte
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, University College London, and National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, LondonWC1N 1EH, United Kingdom
| | - Neil J. Ingham
- Wolfson Sensory, Pain and Regeneration Centre, King’s College, LondonSE1 1UL, United Kingdom
| | - Yeh Chwan Leong
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, University College London, and National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, LondonWC1N 1EH, United Kingdom
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics and Zurich Center for Integrative Human Physiology, and Neuroscience Center Zurich, University and ETH Zurich, University of Zürich, Zurich8057, Switzerland
| | - Karen P. Steel
- Wolfson Sensory, Pain and Regeneration Centre, King’s College, LondonSE1 1UL, United Kingdom
| | - Jane C. Sowden
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, University College London, and National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, LondonWC1N 1EH, United Kingdom
| |
Collapse
|
3
|
Liu W, Li S, Yang M, Ma J, Liu L, Fei P, Xiang Q, Huang L, Zhao P, Yang Z, Zhu X. Dysfunction of Calcyphosine-Like gene impairs retinal angiogenesis through the MYC axis and is associated with familial exudative vitreoretinopathy. eLife 2024; 13:RP96907. [PMID: 39264149 PMCID: PMC11392532 DOI: 10.7554/elife.96907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a severe genetic disorder characterized by incomplete vascularization of the peripheral retina and associated symptoms that can lead to vision loss. However, the underlying genetic causes of approximately 50% of FEVR cases remain unknown. Here, we report two heterozygous variants in calcyphosine-like gene (CAPSL) that is associated with FEVR. Both variants exhibited compromised CAPSL protein expression. Vascular endothelial cell (EC)-specific inactivation of Capsl resulted in delayed radial/vertical vascular progression, compromised endothelial proliferation/migration, recapitulating the human FEVR phenotypes. CAPSL-depleted human retinal microvascular endothelial cells (HRECs) exhibited impaired tube formation, decreased cell proliferation, disrupted cell polarity establishment, and filopodia/lamellipodia formation, as well as disrupted collective cell migration. Transcriptomic and proteomic profiling revealed that CAPSL abolition inhibited the MYC signaling axis, in which the expression of core MYC targeted genes were profoundly decreased. Furthermore, a combined analysis of CAPSL-depleted HRECs and c-MYC-depleted human umbilical vein endothelial cells uncovered similar transcription patterns. Collectively, this study reports a novel FEVR-associated candidate gene, CAPSL, which provides valuable information for genetic counseling of FEVR. This study also reveals that compromised CAPSL function may cause FEVR through MYC axis, shedding light on the potential involvement of MYC signaling in the pathogenesis of FEVR.
Collapse
Affiliation(s)
- Wenjing Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shujin Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Mu Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jie Ma
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Fei
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianchun Xiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lulin Huang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenglin Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Jinfeng Laboratory, Chongqing, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Jinfeng Laboratory, Chongqing, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
4
|
Jiang L, Dai C, Wei Y, Zhao B, Li Q, Wu Z, Zou L, Ye Z, Yang Z, Huang L, Shi Y. Identification of LRRC46 as a novel candidate gene for high myopia. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1941-1956. [PMID: 38874710 DOI: 10.1007/s11427-024-2583-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/19/2024] [Indexed: 06/15/2024]
Abstract
High myopia (HM) is the primary cause of blindness, with the microstructural organization and composition of collagenous fibers in the cornea and sclera playing a crucial role in the biomechanical behavior of these tissues. In a previously reported myopic linkage region, MYP5 (17q21-22), a potential candidate gene, LRRC46 (c.C235T, p.Q79X), was identified in a large Han Chinese pedigree. LRRC46 is expressed in various eye tissues in humans and mice, including the retina, cornea, and sclera. In subsequent cell experiments, the mutation (c.C235T) decreased the expression of LRRC46 protein in human corneal epithelial cells (HCE-T). Further investigation revealed that Lrrc46-/- mice (KO) exhibited a classical myopia phenotype. The thickness of the cornea and sclera in KO mice became thinner and more pronounced with age, the activity of limbal stem cells decreased, and microstructural changes were observed in the fibroblasts of the sclera and cornea. We performed RNA-seq on scleral and corneal tissues of KO and normal control wild-type (WT) mice, which indicated a significant downregulation of the collagen synthesis-related pathway (extracellular matrix, ECM) in KO mice. Subsequent in vitro studies further indicated that LRRC46, a member of the important LRR protein family, primarily affected the formation of collagens. This study suggested that LRRC46 is a novel candidate gene for HM, influencing collagen protein VIII (Col8a1) formation in the eye and gradually altering the biomechanical structure of the cornea and sclera, thereby promoting the occurrence and development of HM.
Collapse
Affiliation(s)
- Lingxi Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Chao Dai
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yao Wei
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Bo Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qi Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zhengzheng Wu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Zimeng Ye
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- School of Medicine, University of Sydney, Sydney, 2050, Australia
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China.
- Jinfeng Laboratory, Chongging, 40000, China.
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
5
|
Ng BW, Kaukonen MK, McClements ME, Shamsnajafabadi H, MacLaren RE, Cehajic-Kapetanovic J. Genetic therapies and potential therapeutic applications of CRISPR activators in the eye. Prog Retin Eye Res 2024; 102:101289. [PMID: 39127142 DOI: 10.1016/j.preteyeres.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. In vivo experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology in vivo, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.
Collapse
Affiliation(s)
- Benjamin Wj Ng
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maria K Kaukonen
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
6
|
Kondo H, Tsukahara-Kawamura T, Matsushita I, Nagata T, Hayashi T, Nishina S, Higasa K, Uchio E, Kondo M, Sakamoto T, Kusaka S. Familial Exudative Vitreoretinopathy With and Without Pathogenic Variants of Norrin/β-Catenin Signaling Genes. OPHTHALMOLOGY SCIENCE 2024; 4:100514. [PMID: 38881609 PMCID: PMC11179410 DOI: 10.1016/j.xops.2024.100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 06/18/2024]
Abstract
Purpose To determine the clinical characteristics of familial exudative vitreoretinopathy (FEVR) associated with or without pathogenic variants of the Norrin/β-catenin genes. Design This was a multicenter, cross-sectional, observational, and genetic study. Subjects Two-hundred eighty-one probands with FEVR were studied. Methods Whole-exome sequence and/or Sanger sequence was performed for the Norrin/β-catenin genes, the FZD4, LRP5, TSPAN12, and NDP genes on blood collected from the probands. The clinical symptoms of the probands with or without the pathogenic variants were assessed as well as differences in the inter Norrin/β-catenin genes. Main Outcome Measures The phenotype associated with or without pathogenic variants of the Norrin/β-catenin genes. Results One-hundred eight probands (38.4%) had 88 different pathogenic or likely pathogenic variants in the genes: 24 with the FZD4, 42 with the LRP5, 10 with the TSPAN12, and 12 with the NDP gene. Compared with the 173 probands without pathogenic variants, the 108 variant-positive probands had characteristics of familial predisposition (63.9% vs. 37.6%, P < 0.0001), progression during infancy (75.0% vs. 53.8%, P = 0.0004), asymmetrical severity between the 2 eyes (50.0% vs. 37.6%, P = 0.0472), and nonsyndromic characteristics (10.2% vs. 17.3%, P = 0.1185). The most frequent stage at which the more severe eye conditions was present was at stage 4 in both groups (40.7% vs. 34.7%). However, the advanced stages of 3 to 5 in the more severe eye were found more frequently in probands with variants than in those without variants (83.3% vs. 58.4%, P < 0.0001). Patients with rhegmatogenous retinal detachments progressed from stage 1 or 2 were found less frequently in the variant-positive probands (8.3% vs. 17.3%, P = 0.0346). Nine probands with NDP variants had features different from probands with typical Norrin/β-catenin gene variants including the sporadic, symmetrical, and systemic characteristics consistent with Norrie disease. Conclusions The results showed that the clinical characteristics of FEVR of patients with variants in the Norrin/β-catenin genes are different from those with other etiologies. We recommend that clinicians who diagnose a child with FEVR perform genetic testing so that the parents can be informed on the prognosis of the vision and general health in the child. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | - Itsuka Matsushita
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsuo Nagata
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Sachiko Nishina
- Division of Ophthalmology, National Center for Child Health and Development, Tokyo, Japan
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Eiichi Uchio
- Department of Ophthalmology, Fukuoka University, Fukuoka, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Faculty of Medicine, Tsu, Japan
| | - Taiji Sakamoto
- Department of Ophthalmology, Kagoshima University Faculty of Medicine, Kagoshima, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
7
|
Zhang Y, Chen S, Xiu Y. FEVR combined with macular heterotopia in children presenting as pseudo-exotropia: a case report and literature review. Front Med (Lausanne) 2024; 11:1409074. [PMID: 39253537 PMCID: PMC11381418 DOI: 10.3389/fmed.2024.1409074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Familial exudative retinopathy (FEVR) is a hereditary disease involving abnormal retinal vascular development in which macular heterotopia (MH) caused by mechanical-like pulling of the vitreous may lead to pseudo-strabismus. We describe the case of a 12-year-old male patient from China who presented to our hospital with a request for surgical correction of exotropia. Examination revealed that the strabismic appearance was due to MH, and dilated pupil examination of the peripheral fundus revealed that the blood vessels of the left eye and the macula were displaced toward the temporal retina by pulling, and further FFA examination was performed to diagnose FEVR. With good binocular vision and stereoscopic distance vision, corrective surgery for strabismus in this patient would have resulted in a hard-to-resolve diplopia. Therefore, it is important to identify FEVR combined with MH in clinical practice to avoid wrong diagnostic and treatment options.
Collapse
Affiliation(s)
- Yujie Zhang
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Shuimiao Chen
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Yanghui Xiu
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
8
|
D'Aversa E, Salvatori F, Vaccarezza M, Antonica B, Grisafi M, Singh AV, Secchiero P, Zauli G, Tisato V, Gemmati D. circRNAs as Epigenetic Regulators of Integrity in Blood-Brain Barrier Architecture: Mechanisms and Therapeutic Strategies in Multiple Sclerosis. Cells 2024; 13:1316. [PMID: 39195206 DOI: 10.3390/cells13161316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease leading to progressive demyelination and neuronal loss, with extensive neurological symptoms. As one of the most widespread neurodegenerative disorders, with an age onset of about 30 years, it turns out to be a socio-health and economic issue, thus necessitating therapeutic interventions currently unavailable. Loss of integrity in the blood-brain barrier (BBB) is one of the distinct MS hallmarks. Brain homeostasis is ensured by an endothelial cell-based monolayer at the interface between the central nervous system (CNS) and systemic bloodstream, acting as a selective barrier. MS results in enhanced barrier permeability, mainly due to the breakdown of tight (TJs) and adherens junctions (AJs) between endothelial cells. Specifically, proinflammatory mediator release causes failure in cytoplasmic exposure of junctions, resulting in compromised BBB integrity that enables blood cells to cross the barrier, establishing iron deposition and neuronal impairment. Cells with a compromised cytoskeletal protein network, fiber reorganization, and discontinuous junction structure can occur, resulting in BBB dysfunction. Recent investigations on spatial transcriptomics have proven circularRNAs (circRNAs) to be powerful multi-functional molecules able to epigenetically regulate transcription and structurally support proteins. In the present review, we provide an overview of the recent role ascribed to circRNAs in maintaining BBB integrity/permeability via cytoskeletal stability. Increased knowledge of the mechanisms responsible for impairment and circRNA's role in driving BBB damage and dysfunction might be helpful for the recognition of novel therapeutic targets to overcome BBB damage and unrestrained neurodegeneration.
Collapse
Affiliation(s)
- Elisabetta D'Aversa
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mauro Vaccarezza
- Curtin Medical School & Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Bianca Antonica
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Miriana Grisafi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 11462, Saudi Arabia
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
9
|
Herrera-Pariente C, Bonjoch L, Muñoz J, Fernàndez G, Soares de Lima Y, Mahmood R, Cuatrecasas M, Ocaña T, Lopez-Prades S, Llargués-Sistac G, Domínguez-Rovira X, Llach J, Luzko I, Díaz-Gay M, Lazaro C, Brunet J, Castillo-Manzano C, García-González MA, Lanas A, Carrillo M, Hernández San Gil R, Quintero E, Sala N, Llort G, Aguilera L, Carot L, Diez-Redondo P, Jover R, Ramon Y Cajal T, Cubiella J, Castells A, Balaguer F, Bujanda L, Castellví-Bel S, Moreira L. CTNND1 is involved in germline predisposition to early-onset gastric cancer by affecting cell-to-cell interactions. Gastric Cancer 2024; 27:747-759. [PMID: 38796558 PMCID: PMC11193828 DOI: 10.1007/s10120-024-01504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/20/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND CDH1 and CTNNA1 remain as the main genes for hereditary gastric cancer. However, they only explain a small fraction of gastric cancer cases with suspected inherited basis. In this study, we aimed to identify new hereditary genes for early-onset gastric cancer patients (EOGC; < 50 years old). METHODS After germline exome sequencing in 20 EOGC patients and replication of relevant findings by gene-panel sequencing in an independent cohort of 152 patients, CTNND1 stood out as an interesting candidate gene, since its protein product (p120ctn) directly interacts with E-cadherin. We proceeded with functional characterization by generating two knockout CTNND1 cellular models by gene editing and introducing the detected genetic variants using a lentiviral delivery system. We assessed β-catenin and E-cadherin levels, cell detachment, as well as E-cadherin localization and cell-to-cell interaction by spheroid modeling. RESULTS Three CTNND1 germline variants [c.28_29delinsCT, p.(Ala10Leu); c.1105C > T, p.(Pro369Ser); c.1537A > G, p.(Asn513Asp)] were identified in our EOGC cohorts. Cells encoding CTNND1 variants displayed altered E-cadherin levels and intercellular interactions. In addition, the p.(Pro369Ser) variant, located in a key region in the E-cadherin/p120ctn binding domain, showed E-cadherin mislocalization. CONCLUSIONS Defects in CTNND1 could be involved in germline predisposition to gastric cancer by altering E-cadherin and, consequently, cell-to-cell interactions. In the present study, CTNND1 germline variants explained 2% (3/172) of the cases, although further studies in larger external cohorts are needed.
Collapse
Affiliation(s)
- Cristina Herrera-Pariente
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | - Laia Bonjoch
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | - Jenifer Muñoz
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | | | - Yasmin Soares de Lima
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | - Romesa Mahmood
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | - Miriam Cuatrecasas
- Pathology, Hospital Clínic, FRCB-IDIBAPS, CIBEREHD, 08036, Barcelona, Spain
| | - Teresa Ocaña
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | | | - Gemma Llargués-Sistac
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | - Xavier Domínguez-Rovira
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | - Joan Llach
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | - Irina Luzko
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, UC San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Conxi Lazaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, CIBERONC, 08908, Barcelona, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, CIBERONC, 08908, Barcelona, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBGI, 17190, Girona, Spain
| | | | - María Asunción García-González
- Instituto de Investigación Sanitaria Aragón, Instituto Aragonés de Ciencias de La Salud, CIBEREHD, 50009, Zaragoza, Spain
| | - Angel Lanas
- Instituto de Investigación Sanitaria Aragón, Instituto Aragonés de Ciencias de La Salud, CIBEREHD, 50009, Zaragoza, Spain
- Gastroenterology, Hospital Clínico Universitario de Zaragoza, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, CIBEREHD, 50009, Zaragoza, Spain
| | - Marta Carrillo
- Gastroenterology, Centro de Investigación Biomédica de Canarias (CIBICAN), Hospital Universitario de Canarias, Instituto Universitario de Tecnologías Biomédicas (ITB), Universidad de La Laguna, 38320, Santa Cruz de Tenerife, Spain
| | | | - Enrique Quintero
- Gastroenterology, Centro de Investigación Biomédica de Canarias (CIBICAN), Hospital Universitario de Canarias, Instituto Universitario de Tecnologías Biomédicas (ITB), Universidad de La Laguna, 38320, Santa Cruz de Tenerife, Spain
| | - Nuria Sala
- Unit of Nutrition and Cancer, Translational Research Laboratory, Catalan Institute of Oncology (ICO) and Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain
| | - Gemma Llort
- Medical Oncology, Parc Taulí University Hospital, 08208, Sabadell, Spain
| | - Lara Aguilera
- Gastroenterology, Vall d'Hebron Research Institute, 08035, Barcelona, Spain
| | - Laura Carot
- Gastroenterology, Hospital del Mar, 08003, Barcelona, Spain
| | | | - Rodrigo Jover
- Gastroenterology, Departamento de Medicina Clínica, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria ISABIAL, Universidad Miguel Hernández, 03010, Alicante, Spain
| | | | - Joaquín Cubiella
- Gastroenterology, Complexo Hospitalario de Ourense, CIBEREHD, 32005, Ourense, Spain
| | - Antoni Castells
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | - Francesc Balaguer
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | - Luis Bujanda
- Department of Hepatology and Gastroenterology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Biodonostia Health Research Institute - Donostia University Hospital, Universidad del País Vasco (UPV/EHU), 20014, San Sebastián, Spain
| | - Sergi Castellví-Bel
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | - Leticia Moreira
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
10
|
Redden LD, Iaboni DS, van der Ende S, Nightingale M, Gaston D, McMaster CR, Robitaille JM, Gupta RR. Multimodal imaging of white preretinal lesions in atypical familial exudative vitreoretinopathy: Case report and literature review. Am J Ophthalmol Case Rep 2024; 34:102051. [PMID: 38628947 PMCID: PMC11019094 DOI: 10.1016/j.ajoc.2024.102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose To report a rare clinical finding of preretinal granules associated with atypical familial exudative vitreoretinopathy (FEVR) and perform a review of the literature. Observations An asymptomatic 18-year-old male was referred for unilateral peripheral avascular retina evaluation in association with presumed FEVR. He was first noted to have white preretinal granules on fundus examination at five years of age. The lesions remained unchanged over the subsequent years. Genetic testing did not reveal a pathogenic or likely pathogenic variant in a known FEVR gene. A review of the literature revealed five other cases of FEVR with similar findings. Conclusions and Importance Literature review suggests preretinal granules may present rarely in FEVR. Negative genetic screening of known FEVR genes in our patient with atypical FEVR suggests either a molecularly distinct etiology supporting the rarity of this association with FEVR or, alternatively, the presence of granules in developmental retinal vascular anomalies that are not specific to FEVR. Future study and genetic testing is necessary to better understand the cause of these preretinal granules and the clinical manifestations of FEVR.
Collapse
Affiliation(s)
- Liam D. Redden
- Dalhousie Medical School, Dalhousie University, Halifax, NS, Canada
| | - Douglas S.M. Iaboni
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Sarah van der Ende
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | | | - Daniel Gaston
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Christopher R. McMaster
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Johane M. Robitaille
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - R. Rishi Gupta
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
11
|
Lähteenoja L, Palosaari T, Tiirikka T, Haanpää M, Moilanen J, Falck A, Rahikkala E. Clinical and genetic characteristics and natural history of Finnish families with familial exudative vitreoretinopathy due to pathogenic FZD4 variants. Acta Ophthalmol 2024. [PMID: 38706142 DOI: 10.1111/aos.16701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE To report clinical and genetic characteristics of familial exudative vitreoretinopathy (FEVR) in the Finnish population. METHODS Detailed clinical and genetic data of 35 individuals with heterozygous pathogenic variants in FZD4 were gathered and analysed. RESULTS Thirty-two individuals with FZD4 c.313A>G variant and three individuals with FZD4 c.40_49del were included in the study. The clinical phenotype was variable even among family members with the same FZD4 variant. Only 34% (N = 12/35) of variant-positive individuals had been clinically diagnosed with FEVR. The median age of the onset of symptoms was 2.3 years, ranging between 0 to 25 years. Median visual acuity was 0.1 logMAR (0.8 Snellen decimal), ranging between light perception and -0.1 logMAR (1.25 Snellen decimal). Most (N = 33/35, 94%) were classified as not visually impaired. Despite unilateral visual loss present in some, they did not meet the criteria of visual impairment according to the WHO classification. Two study patients (N = 2/35, 6%) had severe visual impairment. The most common FEVR stage in study patient's eyes (N = 28/70 eyes, 40%) was FEVR stage 1, that is, avascular periphery or abnormal vascularisation. Most of FZD4-variant-positive study patient's eyes (N = 31/50 eyes, 62%) were myopic. Two individuals presented with persistent hyperplastic primary vitreous expanding the phenotypic spectrum of FEVR. Shared haplotypes extending approximately 0.9 Mb around the recurrent FZD4 c.313A>G variant were identified. CONCLUSION Most study patients were unaffected or had mild clinical manifestations by FEVR. Myopia seemed to be overly common in FZD4-variant-positive individuals.
Collapse
Affiliation(s)
- Laura Lähteenoja
- Research Unit of Clinical Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
- Department of Ophthalmology, Oulu University Hospital, Oulu, Finland
| | - Tapani Palosaari
- Research Unit of Clinical Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Ophthalmology, Oulu University Hospital, Oulu, Finland
| | - Timo Tiirikka
- Research Unit of Clinical Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| | - Maria Haanpää
- Department of Clinical Genetics, Turku University Hospital, Turku, Finland
| | - Jukka Moilanen
- Research Unit of Clinical Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| | - Aura Falck
- Research Unit of Clinical Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Ophthalmology, Oulu University Hospital, Oulu, Finland
| | - Elisa Rahikkala
- Research Unit of Clinical Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
12
|
Kiryakoza L, Cruz NFSD, Hoyek S, Berrocal AM. Retinopathy With Variant of Unknown Significance and Atypical Chorioretinal Coloboma in the Setting of Prematurity. Ophthalmic Surg Lasers Imaging Retina 2024; 55:285-288. [PMID: 38408227 DOI: 10.3928/23258160-20240202-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A 37-week-old girl underwent ophthalmic examination. Born at 32 weeks, the infant weighed 680 grams and received high-flow nasal cannula for respiratory distress of the newborn. Dilated fundus examination of the right eye revealed an atypical chorioretinal coloboma; the left eye revealed hyperpigmentary changes in the macula. Fluorescein angiography of both eyes showed retinal vascularization to zone II. Genetic testing revealed a heterozygous variant of uncertain significance in the catenin Alpha 1 (CTNNA1) gene. CTNNA1 gene abnormalities have been implicated as causes of familial exudative vitreoretinopathy (FEVR). It is important to recognize possible simultaneous retinopathy of prematurity and FEVR. [Ophthalmic Surg Lasers Imaging Retina 2024;55:285-288.].
Collapse
|
13
|
Yang M, Peng L, Lv L, Dai E, He Y, Zhao R, Li S. Characterization of a novel heterozygous frameshift variant in NDP gene that causes familial exudative vitreoretinopathy in female patients. Mol Genet Genomics 2024; 299:32. [PMID: 38472449 DOI: 10.1007/s00438-024-02128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/28/2023] [Indexed: 03/14/2024]
Abstract
Familial exudative vitreoretinopathy (FEVR) is a severe inherited disease characterized by defective retinal vascular development. With genetic and clinical heterogeneity, FEVR can be inherited in different patterns and characterized by phenotypes ranging from moderate visual defects to complete vision loss. This study was conducted to unravel the genetic and functional etiology of a 4-month-old female FEVR patient. Targeted gene panel and Sanger sequencing were utilized for genetic evaluation. Luciferase assays, western blot, quantitive real-time PCR, and immunocytochemistry were performed to verify the functional defects in the identified candidate variant. Here, we report a 4-month-old girl with bilateral retinal folds and peripheral avascularization, and identified a novel frameshift heterozygous variant c.37dup (p.Leu13ProfsTer13) in NDP. In vitro experiments revealed that the Leu13ProfsTer13 variant led to a prominent decrease in protein levels instead of mRNA levels, resulting in compromised Norrin/β-catenin signaling activity. Human androgen receptor assay further revealed that a slight skewing of X chromosome inactivation could partially cause FEVR. Thus, the pathogenic mechanism by which heterozygous frameshift or nonsense variants in female carriers cause FEVR might largely result from a loss-of-function variant in one X chromosome allele and a slightly skewed X-inactivation. Further recruitment of more FEVR-affected females carrying NDP variants and genotype-phenotype correlation analysis can ultimately offer valuable information for the prognosis prediction of FEVR.
Collapse
Affiliation(s)
- Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No. 2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Li Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No. 2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Liting Lv
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No. 2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunqi He
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No. 2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No. 2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China.
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No. 2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.
| |
Collapse
|
14
|
Liu M, Dai E, Yang M, Li S, Fan L, Liu Y, Xiao H, Zhao P, Yang Z. Investigating the Impact of Dimer Interface Mutations on Norrin's Secretion and Norrin/β-Catenin Pathway Activation. Invest Ophthalmol Vis Sci 2024; 65:31. [PMID: 38517429 PMCID: PMC10981164 DOI: 10.1167/iovs.65.3.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Purpose This study aimed to investigate the impact of 21 NDP mutations located at the dimer interface, focusing on their potential effects on protein assembly, secretion efficiency, and activation of the Norrin/β-catenin signaling pathway. Methods The expression level, secretion efficiency, and protein assembly of mutations were analyzed using Western blot. The Norrin/β-catenin signaling pathway activation ability after overexpression of mutants or supernatant incubation of mutant proteins was tested in HEK293STF cells. The mutant norrin and wild-type (WT) FZD4 were overexpressed in HeLa cells to observe their co-localization. Immunofluorescence staining was conducted in HeLa cells to analyze the subcellular localization of Norrin and the Retention Using Selective Hook (RUSH) assay was used to dynamically observe the secretion process of WT and mutant Norrin. Results Four mutants (A63S, E66K, H68P, and L103Q) exhibited no significant differences from WT in all evaluations. The other 17 mutants presented abnormalities, including inadequate protein assembly, reduced secretion, inability to bind to FZD4 on the cell membrane, and decreased capacity to activate Norrin/β-catenin signaling pathway. The RUSH assay revealed the delay in endoplasmic reticulum (ER) exit and impairment of Golgi transport. Conclusions Mutations at the Norrin dimer interface may lead to abnormal protein assembly, inability to bind to FZD4, and decreased secretion, thus contributing to compromised Norrin/β-catenin signaling. Our results shed light on the pathogenic mechanisms behind a significant proportion of NDP gene mutations in familial exudative vitreoretinopathy (FEVR) or Norrie disease.
Collapse
Affiliation(s)
- Min Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Lin Fan
- The University of Chinese Academy of Sciences, Beijing, China
| | - Yining Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Haodong Xiao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- The University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Zhao R, Liu M, Dai E, Chen C, Lv L, Peng L, He Y, Li S, Yang M. Deciphering a crucial dimeric interface governing Norrin dimerization and the pathogenesis of familial exudative vitreoretinopathy. FASEB J 2024; 38:e23493. [PMID: 38363575 DOI: 10.1096/fj.202302387r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disease that could cause blindness. It has been established that Norrin forms dimers to activate β-catenin signaling, yet the core interface for Norrin dimerization and the precise mechanism by which Norrin dimerization contributes to the pathogenesis of FEVR remain elusive. Here, we report an NDP variant, c.265T>C (p.Phe89Leu), that interrupted β-catenin signaling by disrupting Norrin dimerization. Structural and functional analysis revealed that the Phe-89 of one Norrin monomer interacts with Pro-98, Ser-101, Arg-121, and Ile-123 of another, forming two core symmetrical dimerization interfaces that are pivotal for the formation of a "hand-by-arm" dimer. Intriguingly, we proved that one of the two core symmetrical interfaces is sufficient for dimerization and activation of β-catenin signaling, with a substantial contribution from the Phe-89/Pro-98 interaction. Further functional analysis revealed that the disruption of both dimeric interfaces eliminates potential binding sites for LRP5, which could be partially restored by over-expression of TSPAN12. In conclusion, our findings unveil a core dimerization interface that regulates Norrin/LRP5 interaction, highlighting the essential role of Norrin dimerization on β-catenin signaling and providing potential therapeutic avenues for the treatment of FEVR.
Collapse
Affiliation(s)
- Rulian Zhao
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Min Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Chen
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Liting Lv
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Li Peng
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Yunqi He
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Shujin Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Mu Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
16
|
Liu Y, Yang M, Fan L, He Y, Dai E, Liu M, Jiang L, Yang Z, Li S. Frameshift variants in the C-terminal of CTNNB1 cause familial exudative vitreoretinopathy by AXIN1-mediated ubiquitin-proteasome degradation condensation. Int J Biol Macromol 2024; 258:128570. [PMID: 38096938 DOI: 10.1016/j.ijbiomac.2023.128570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/08/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
The β-catenin has two intrinsically disordered regions in both C- and N-terminal domains that trigger the formation of phase-separated condensates. Variants in its C-terminus are associated with familial exudative vitreoretinopathy (FEVR), yet the pathogenesis and the role of these variants in inducing abnormal condensates, are unclear. In this study, we identified a novel heterozygous frameshift variant, c.2104-2105insCC (p.Gln703ProfsTer33), in CTNNB1 from a FEVR-affected family. This variant encodes an unstable truncated protein that was unable to activate Wnt signal transduction, which could be rescued by the inhibition of proteasome or phosphorylation. Further functional experiments revealed the propensity of the Gln703ProfsTer33 variant to form cytoplasmic condensates, exhibiting a lower turnover rate after fluorescent bleaching due to enhanced interaction with AXIN1. LiCl, which specifically blocks GSK3β-mediated phosphorylation, restored signal transduction, cell proliferation, and junctional integrity in primary human retinal microvascular endothelial cells over-expressed with Gln703ProfsTer33. Finally, experiments on two reported FEVR-associated mutations in the C-terminal domain of β-catenin exhibited several functional defects similar to the Gln703ProfsTer33. Together, our findings unravel that the C-terminal region of β-catenin is pivotal for the regulation of AXIN1/β-catenin interaction, acting as a switch to mediate nucleic and cytosolic condensates formation that is implicated in the pathogenesis of FEVR.
Collapse
Affiliation(s)
- Yining Liu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China; Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; Jinfeng Laboratory, Chongqing, China
| | - Lin Fan
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China; The University of Chinese Academy of Sciences, Beijing, China
| | - Yunqi He
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China; Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China; Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Lei Jiang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China; Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; Jinfeng Laboratory, Chongqing, China; Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China; The University of Chinese Academy of Sciences, Beijing, China.
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China; Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; Jinfeng Laboratory, Chongqing, China.
| |
Collapse
|
17
|
Chatterjee S, Subudhi BB, Chattopadhyay S. A hidden gem Catenin-α-1 is essential for Chikungunya virus infection. Microbiol Spectr 2023; 11:e0248523. [PMID: 37962368 PMCID: PMC10715081 DOI: 10.1128/spectrum.02485-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Affiliation(s)
- Sanchari Chatterjee
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Bharat Bhusan Subudhi
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Soma Chattopadhyay
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
18
|
Le V, Abdelmessih G, Dailey WA, Pinnock C, Jobczyk V, Rashingkar R, Drenser KA, Mitton KP. Mechanisms Underlying Rare Inherited Pediatric Retinal Vascular Diseases: FEVR, Norrie Disease, Persistent Fetal Vascular Syndrome. Cells 2023; 12:2579. [PMID: 37947657 PMCID: PMC10647367 DOI: 10.3390/cells12212579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Familial Exudative Vitreoretinopathy (FEVR), Norrie disease, and persistent fetal vascular syndrome (PFVS) are extremely rare retinopathies that are clinically distinct but are unified by abnormal retinal endothelial cell function, and subsequent irregular retinal vascular development and/or aberrant inner blood-retinal-barrier (iBRB) function. The early angiogenesis of the retina and its iBRB is a delicate process that is mediated by the canonical Norrin Wnt-signaling pathway in retinal endothelial cells. Pathogenic variants in genes that play key roles within this pathway, such as NDP, FZD4, TSPAN12, and LRP5, have been associated with the incidence of these retinal diseases. Recent efforts to further elucidate the etiology of these conditions have not only highlighted their multigenic nature but have also resulted in the discovery of pathological variants in additional genes such as CTNNB1, KIF11, and ZNF408, some of which operate outside of the Norrin Wnt-signaling pathway. Recent discoveries of FEVR-linked variants in two other Catenin genes (CTNND1, CTNNA1) and the Endoplasmic Reticulum Membrane Complex Subunit-1 gene (EMC1) suggest that we will continue to find additional genes that impact the neural retinal vasculature, especially in multi-syndromic conditions. The goal of this review is to briefly highlight the current understanding of the roles of their encoded proteins in retinal endothelial cells to understand the essential functional mechanisms that can be altered to cause these very rare pediatric retinal vascular diseases.
Collapse
Affiliation(s)
- Vincent Le
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | | | - Wendy A. Dailey
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | - Cecille Pinnock
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | - Victoria Jobczyk
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | - Revati Rashingkar
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Kimberly A. Drenser
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
- Associated Retinal Consultants P.C., Royal Oak, MI 48073, USA
| | - Kenneth P. Mitton
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| |
Collapse
|
19
|
Li S, Yang M, Zhao R, Peng L, Liu W, Jiang X, He Y, Dai E, Zhang L, Yang Y, Shi Y, Zhao P, Yang Z, Zhu X. Defective EMC1 drives abnormal retinal angiogenesis via Wnt/β-catenin signaling and may be associated with the pathogenesis of familial exudative vitreoretinopathy. Genes Dis 2023; 10:2572-2585. [PMID: 37554197 PMCID: PMC10404869 DOI: 10.1016/j.gendis.2022.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/10/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum (ER) membrane protein complex (EMC) is required for the co-translational insertion of newly synthesized multi-transmembrane proteins. Compromised EMC function in different cell types has been implicated in multiple diseases. Using inducible genetic mouse models, we revealed defects in retinal vascularization upon endothelial cell (EC) specific deletion of Emc1, the largest subunit of EMC. Loss of Emc1 in ECs led to reduced vascular progression and vascular density, diminished tip cell sprouts, and vascular leakage. We then performed an unbiased transcriptomic analysis on human retinal microvascular endothelial cells (HRECs) and revealed a pivotal role of EMC1 in the β-catenin signaling pathway. Further in-vitro and in-vivo experiments proved that loss of EMC1 led to compromised β-catenin signaling activity through reduced expression of Wnt receptor FZD4, which could be restored by lithium chloride (LiCl) treatment. Driven by these findings, we screened genomic DNA samples from familial exudative vitreoretinopathy (FEVR) patients and identified one heterozygous variant in EMC1 that co-segregated with FEVR phenotype in the family. In-vitro expression experiments revealed that this variant allele failed to facilitate the expression of FZD4 on the plasma membrane and activate the β-catenin signaling pathway, which might be a main cause of FEVR. In conclusion, our findings reveal that variants in EMC1 gene cause compromised β-catenin signaling activity, which may be associated with the pathogenesis of FEVR.
Collapse
Affiliation(s)
- Shujin Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Mu Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Rulian Zhao
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Li Peng
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Wenjing Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xiaoyan Jiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yunqi He
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lin Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yeming Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yi Shi
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhenglin Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China
| |
Collapse
|
20
|
Bora K, Kushwah N, Maurya M, Pavlovich MC, Wang Z, Chen J. Assessment of Inner Blood-Retinal Barrier: Animal Models and Methods. Cells 2023; 12:2443. [PMID: 37887287 PMCID: PMC10605292 DOI: 10.3390/cells12202443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Proper functioning of the neural retina relies on the unique retinal environment regulated by the blood-retinal barrier (BRB), which restricts the passage of solutes, fluids, and toxic substances. BRB impairment occurs in many retinal vascular diseases and the breakdown of BRB significantly contributes to disease pathology. Understanding the different molecular constituents and signaling pathways involved in BRB development and maintenance is therefore crucial in developing treatment modalities. This review summarizes the major molecular signaling pathways involved in inner BRB (iBRB) formation and maintenance, and representative animal models of eye diseases with retinal vascular leakage. Studies on Wnt/β-catenin signaling are highlighted, which is critical for retinal and brain vascular angiogenesis and barriergenesis. Moreover, multiple in vivo and in vitro methods for the detection and analysis of vascular leakage are described, along with their advantages and limitations. These pre-clinical animal models and methods for assessing iBRB provide valuable experimental tools in delineating the molecular mechanisms of retinal vascular diseases and evaluating therapeutic drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
21
|
Zhao R, Dai E, Wang S, Zhang X, He Y, Peng L, Zhao P, Yang Z, Yang M, Li S. A comprehensive functional analysis on the pathogenesis of novel TSPAN12 and NDP variants in familial exudative vitreoretinopathy. Clin Genet 2023; 103:320-329. [PMID: 36453149 DOI: 10.1111/cge.14273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Familial exudative vitreoretinopathy (FEVR) is an inherited blinding disorder; however, the known FEVR-associated variants account for approximately only 50% cases. Currently, the pathogenesis of most reported variants is not well studied, we aim to identify novel variants from FEVR-associated genes and perform a comprehensive functional analysis to uncover the pathogenesis of variants that cause FEVR. Using targeted gene panel and Sanger sequencing, we identified six novel and three known variants in TSPAN12 and NDP. These variants were demonstrated to cause significant inhibition of Norrin/β-catenin pathway by dual-luciferase reporter assay and western blot analysis. Structural analysis and co-immunoprecipitation revealed compromised interactions between missense variants and binding partners in the Norrin/β-catenin pathway. Immunofluorescence and subcellular protein extraction were performed to reveal the abnormal subcellular trafficking. Additionally, over-expression of TSPAN12 successfully enhanced the Norrin/β-catenin signaling activity by strengthening the binding affinity of mutant Norrin with FZD4 or LRP5. Together, these observations expanded the spectrum of FEVR-associated variants for the genetic counseling and prenatal diagnosis of FEVR, as well providing a potential therapeutic strategy for the treatment of FEVR.
Collapse
Affiliation(s)
- Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyuan Wang
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Zhang
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunqi He
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Li Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
22
|
Huang L, Lu J, Wang Y, Sun L, Ding X. Familial Exudative Vitreoretinopathy and Systemic Abnormalities in Patients With CTNNB1 Mutations. Invest Ophthalmol Vis Sci 2023; 64:18. [PMID: 36790797 PMCID: PMC9940768 DOI: 10.1167/iovs.64.2.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Purpose Familial exudative vitreoretinopathy (FEVR) is an inherited vitreoretinopathy. This study aimed to analyze the ocular phenotypes and systemic features of patients with CTNNB1 mutations. Methods Whole exome sequencing was performed in the probands, and Sanger sequencing was used to verify the mutations and perform segregation analysis in the available family members. A luciferase assay was used to assess the effect of the mutant β-catenin on transcription. Comprehensive ocular examinations were performed on the probands and family members. Systemic features were evaluated and followed up. Results A total of 763 FEVR families were enrolled. Seven different CTNNB1 mutations, including 5 novels and 2 known mutations, were detected in 8 families, accounting for 1.05% of all FEVR families. Compared to wild-type CTNNB1, the CTNNB1 mutants failed to induce luciferase reporter activity in SuperTopFlash (STF) cells. Among the 16 eyes of the 8 probands, 2 (12.5%) eyes were classified as stage 2 FEVR, 8 (50.0%) as stage 4, and 6 (37.5%) as stage 5. All the patients had varying degrees of systemic abnormalities and presented with motor, speech, and developmental delays over time. Among the eight families with CTNNB1 mutations, seven were de novo mutations, and one proband inherited the mutation from his asymptomatic mother. Conclusions This study provides detailed descriptions of the ocular phenotypes of patients with CTNNB1 mutations that presented as severe FEVR, and accompanied with other systemic abnormalities. Five novel mutations identified in this study, expanded the mutation spectrum of CTNNB1-associated FEVR.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jinglin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - You Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Limei Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
23
|
Profile of Dr. Zhenglin Yang. SCIENCE CHINA. LIFE SCIENCES 2023; 66:209-210. [PMID: 36326975 DOI: 10.1007/s11427-022-2159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
He Y, Yang M, Zhao R, Peng L, Dai E, Huang L, Zhao P, Li S, Yang Z. Novel truncating variants in CTNNB1 cause familial exudative vitreoretinopathy. J Med Genet 2023; 60:174-182. [PMID: 35361685 DOI: 10.1136/jmedgenet-2021-108259] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/12/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is an inheritable blinding disorder with clinical and genetic heterogeneity. Heterozygous variants in the CTNNB1 gene have been reported to cause FEVR. However, the pathogenic basis of CTNNB1-associated FEVR has not been fully explored. METHODS Whole-exome sequencing was performed on the genomic DNA of probands. Dual-luciferase reporter assay, western blotting and co-immunoprecipitation were used to characterise the impacts of variants. Quantitative real-time PCR, EdU (5-ethynyl-2'-deoxyuridine) incorporation assay and immunocytochemistry were performed on the primary human retinal microvascular endothelial cells (HRECs) to investigate the effect of CTNNB1 depletion on the downstream genes involved in Norrin/β-catenin signalling, cell proliferation and junctional integrity, respectively. Transendothelial electrical resistance assay was applied to measure endothelial permeability. Heterozygous endothelial-specific Ctnnb1-knockout mouse mice were generated to verify FEVR-like phenotypes in the retina. RESULTS We identified two novel heterozygous variants (p.Leu103Ter and p.Val199LeufsTer11) and one previously reported heterozygous variant (p.His369ThrfsTer2) in the CTNNB1 gene. These variants caused truncation and degradation of β-catenin that reduced Norrin/β-catenin signalling activity. Additionally, knockdown (KD) of CTNNB1 in HRECs led to diminished mRNA levels of Norrin/β-catenin targeted genes, reduced cell proliferation and compromised junctional integrity. The Cre-mediated heterozygous deletion of Ctnnb1 in mouse endothelial cells (ECs) resulted in FEVR-like phenotypes. Moreover, LiCl treatment partially rescued the defects in CTNNB1-KD HRECs and EC-specific Ctnnb1 heterozygous knockout mice. CONCLUSION Our findings reinforced the current pathogenesis of Norrin/β-catenin for FEVR and expanded the causative variant spectrum of CTNNB1 for the prenatal diagnosis and genetic counselling of FEVR.
Collapse
Affiliation(s)
- Yunqi He
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China.,Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Li Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China .,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zhenglin Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China .,Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Mao J, Chen Y, Fang Y, Shao Y, Xiang Z, Li H, Zhao S, Chen Y, Shen L. Clinical characteristics and mutation spectrum in 33 Chinese families with familial exudative vitreoretinopathy. Ann Med 2022; 54:3286-3298. [PMID: 36411543 PMCID: PMC9704097 DOI: 10.1080/07853890.2022.2146744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To explore the clinical manifestations and search for the variants of six related genes (LRP5, FZD4, TSPAN12, NDP, KIF11 and ZNF408) in Chinese patients with familial exudative vitreoretinopathy (FEVR), and investigate the correlation between the genetic variants and the clinical characteristics. PATIENTS AND METHODS Clinical data, including the retinal artery angle, acquired from wide-field fundus imaging, structural and microvascular features of the retina obtained from optical coherence tomography (OCT) and OCT angiography (OCTA) were collected from 33 pedigrees. Furthermore, mutation screening was performed. Variants filtering, bioinformatics analysis and Sanger sequencing were conducted to verify the variants. RESULTS Twenty-one variants were successfully detected in 16 of 33 families, of which 10 variants were newly identified. The proportion of variants in LRP5, FZD4, TSPAN12, NDP and KIF11 was 38.1% (8/21), 33.3% (7/21), 19.1% (4/21), 4.8% (1/21) and 4.8% (1/21), respectively. Three new variants were considered to be pathogenic or likely pathogenic. The FEVR group tended to exhibit a smaller retinal artery angle, higher incidence of foveal hypoplasia and lower vascular density compared to the control group. Patients who harboured variants of FZD4 exhibited greater severity of FEVR than those with LRP5 variants. However, those who harboured LRP5 variants tended to possess lower foveal vascular density. CONCLUSIONS Six known pathogenic genes were screened in 33 pedigrees with FEVR in our study, which revealed 10 novel variants. These findings enrich the clinical features and mutation spectrum in Chinese patients with FEVR, revealing the genotype-phenotype relationship, and contributing to the diagnosis and treatment of the disease.Key messagesWe identified 21 variants in 5 genes (LRP5, FZD4, TSPAN12, NDP and KIF11) associated with FEVR, 10 of which are novel (three were pathogenic or likely pathogenic).The proportion of variants was the highest for the LRP5 gene.FZD4 variants may be responsible for greater FEVR severity than LRP5 variants.
Collapse
Affiliation(s)
- Jianbo Mao
- Department of Ophthalmology, Center for Rehabilitation Medicine, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, PR China.,Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Yijing Chen
- Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Yuyan Fang
- Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Yirun Shao
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Ziyi Xiang
- Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Hanxiao Li
- Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Shixin Zhao
- Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Yiqi Chen
- Department of Ophthalmology, Center for Rehabilitation Medicine, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, PR China.,Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Lijun Shen
- Department of Ophthalmology, Center for Rehabilitation Medicine, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, PR China.,Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| |
Collapse
|
26
|
Goncalves A, Antonetti DA. Transgenic animal models to explore and modulate the blood brain and blood retinal barriers of the CNS. Fluids Barriers CNS 2022; 19:86. [PMID: 36320068 PMCID: PMC9628113 DOI: 10.1186/s12987-022-00386-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
The unique environment of the brain and retina is tightly regulated by blood-brain barrier and the blood-retinal barrier, respectively, to ensure proper neuronal function. Endothelial cells within these tissues possess distinct properties that allow for controlled passage of solutes and fluids. Pericytes, glia cells and neurons signal to endothelial cells (ECs) to form and maintain the barriers and control blood flow, helping to create the neurovascular unit. This barrier is lost in a wide range of diseases affecting the central nervous system (CNS) and retina such as brain tumors, stroke, dementia, and in the eye, diabetic retinopathy, retinal vein occlusions and age-related macular degeneration to name prominent examples. Recent studies directly link barrier changes to promotion of disease pathology and degradation of neuronal function. Understanding how these barriers form and how to restore these barriers in disease provides an important point for therapeutic intervention. This review aims to describe the fundamentals of the blood-tissue barriers of the CNS and how the use of transgenic animal models led to our current understanding of the molecular framework of these barriers. The review also highlights examples of targeting barrier properties to protect neuronal function in disease states.
Collapse
Affiliation(s)
- Andreia Goncalves
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall St Rm, Ann Arbor, MI, 7317, USA
| | - David A Antonetti
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall St Rm, Ann Arbor, MI, 7317, USA.
| |
Collapse
|
27
|
Liu M, Luo J, Feng H, Li J, Zhang X, Zhao P, Fei P. Decrease of FZD4 exon 1 methylation in probands from FZD4-associated FEVR family of phenotypic heterogeneity. Front Med (Lausanne) 2022; 9:976520. [PMID: 36353221 PMCID: PMC9638120 DOI: 10.3389/fmed.2022.976520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is an important cause of childhood blindness and is clinically characterized by phenotypic heterogeneity. FEVR patients harboring the same genetic mutation vary widely in disease severity. The purpose of this study was to explore non-genetic factors that regulate FEVR phenotypic heterogeneity. We detected methylation levels of 21 CpG sites located at the FZD4 exon 1 region of 11 probands, 12 asymptomatic/paucisymptomatic carriers and 11 non-carriers from 10 unrelated FZD4-associated FEVR families using bisulfite amplicon sequencing (BSAS). Our results showed reduced methylation level of FZD4 exon 1 in probands, suggesting that FZD4 exon 1 methylation level may be negatively linked with FEVR disease severity. It provided a new research direction for follow-up research, helping us better understand the complexity of the FEVR-causing mechanism.
Collapse
|
28
|
Chen C, Guo S, Zhao R, Liu S, Wu J, Xiao Y, Hou S, Jiang L. A boy with amblyopia and familial exudative vitreoretinopathy harboring a new mutation of LRP5 and OPA1: A case report. Front Genet 2022; 13:998846. [PMID: 36246636 PMCID: PMC9556980 DOI: 10.3389/fgene.2022.998846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
Background: The study aimed to report a boy with familial exudative vitreoretinopathy and amblyopia harboring a new mutation of the LRP5 and OPA1 gene abnormality. Case presentation: A 9-year-old boy presented with a 2-year history of deteriorating visual acuity in the right eye. His best-corrected visual acuity was −7.00/−1.75 × 100 = 0.3 in the right eye and −2.50/−1.50 × 170 = 0.8 in the left eye. Two autosomal dominant gene mutation sites were identified in the patient: LRP5 (c.2551C > T, p.His851Tyr) from his father and OPA1 (c.565G > A, p.Glu189Lys) from his mother. Interestingly, his fraternal twin brother harbored no abnormal gene mutations, and his eye tests were normal. Conclusion: This case expands the spectrum of LRP5 gene mutations among Chinese patients with familial exudative vitreoretinopathy, and it is the first time to report a patient harboring both LRP5 and OPA1 gene mutations having anisometropic amblyopia and strabismus as the primary manifestations. These four family members exhibited individual heterogeneity of phenotypes and genotypes associated with hereditary ophthalmopathy. A comprehensive analysis of clinical phenotypes and genotypes provides clinical clues for improving the level of clinical and genetic diagnoses and a deeper understanding of the disease.
Collapse
Affiliation(s)
- Chunli Chen
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
- Beijing Institute of Ophthalmology, Beijing, China
| | - Sitong Guo
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Rui Zhao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Shoubin Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Jingjing Wu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Yuanyuan Xiao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Simeng Hou
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Libin Jiang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
- *Correspondence: Libin Jiang,
| |
Collapse
|
29
|
Qu N, Li W, Han DM, Gao JY, Yang ZT, Jiang L, Liu TB, Chen YX, Jiang XS, Zhou L, Wu JH, Huang X. Mutation spectrum in a cohort with familial exudative vitreoretinopathy. Mol Genet Genomic Med 2022; 10:e2021. [PMID: 35876299 PMCID: PMC9482396 DOI: 10.1002/mgg3.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/06/2021] [Accepted: 07/08/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose To expand the mutation spectrum of patients with familial exudative vitreoretinopathy (FEVR) disease. Participants 74 probands (53 families and 21 sporadic probands) with familial exudative vitreoretinopathy (FEVR) disease and their available family members (n = 188) were recruited for sequencing. Methods Panel‐based targeted screening was performed on all subjects. Before sanger sequencing, variants of LRP5, NDP, FZD4, TSPAN12, ZNF408, KIF11, RCBTB1, JAG1, and CTNNA1 genes were verified by a series of bioinformatics tools and genotype–phenotype co‐segregation analysis. Results 40.54% (30/74) of the probands were sighted to possess at least one etiological mutation of the nine FEVR‐causative genes. The etiological mutation detection rate was 37.74% (20/53) in family‐attainable probands while 47.62% (10/21) in sporadic cases. The diagnosis rate of patients in the early‐onset subgroup (≤5 years old, 45.4%) is higher than that of the children or adolescence‐onset subgroup (6–16 years old, 42.1%) and the late‐onset subgroup (≥17 years old, 39.4%). A total of 36 etiological mutations were identified in this study, comprising 26 novel mutations and 10 reported mutations. LRP5 was the most prevalent mutant gene among the 36 mutation types with a percentage of 41.67% (15/36). Followed by FZD4 (10/36, 27.78%), TSPAN12 (5/36, 13.89%), NDP (4/36, 11.11%), KIF11 (1/36, 2.78%), and RCBTB1 (1/36, 2.78%). Among these mutations, 63.89% (23/36) were missense mutations, 25.00% (9/36) were frameshift mutations, 5.56% (2/36) were splicing mutations, 5.56% (2/36) were nonsense mutations. Moreover, the clinical pathogenicity of these variants was defined according to American College of Medical Genetics (ACMG) and genomics guidelines: 41.67% (15/36) were likely pathogenic variants, 27.78% (10/36) pathogenic variants, 30.55% (11/36) variants of uncertain significance. No etiological mutations discovered in the ZNF408, JAG1, and CTNNA1 genes in this FEVR cohort. Conclusions We systematically screened nine FEVR disease‐associated genes in a cohort of 74 Chinese probands with FEVR disease. With a detection rate of 40.54%, 36 etiological mutations of six genes were authenticated in 30 probands, including 26 novel mutations and 10 reported mutations. The most prevalent mutated gene is LRP5, followed by FZD4, TSPAN12, NDP, KIF11, and RCBTB1. In total, a de novo mutation was confirmed. Our study significantly clarified the mutation spectrum of variants bounded up to FEVR disease.
Collapse
Affiliation(s)
- Ning Qu
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wei Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dong-Ming Han
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Yu Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-Tao Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Jiang
- Department of Ophthalmology, Laizhou City People's Hospital, Yantai, China
| | - Tian-Bin Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Xian Chen
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiao-Sen Jiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Zhou
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ji-Hong Wu
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Xin Huang
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|
30
|
Yang M, Li S, Huang L, Zhao R, Dai E, Jiang X, He Y, Lu J, Peng L, Liu W, Zhang Z, Jiang D, Zhang Y, Jiang Z, Yang Y, Zhao P, Zhu X, Ding X, Yang Z. CTNND1 variants cause familial exudative vitreoretinopathy through Wnt/Cadherin axis. JCI Insight 2022; 7:158428. [PMID: 35700046 PMCID: PMC9431724 DOI: 10.1172/jci.insight.158428] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a hereditary disorder that can cause vision loss. The CTNND1 gene encodes a cellular adhesion protein p120-catenin (p120), which is essential for vascularization, yet the function of p120 in postnatal physiological angiogenesis remains unclear. Here, we applied whole-exome sequencing (WES) on 140 probands of FEVR families and identified three candidate variants in the human CTNND1 gene. We performed inducible deletion of Ctnnd1 in the postnatal mouse endothelial cells (ECs) and observed typical phenotypes of FEVR. Immunofluorescence of retina flat mounts also revealed immune responses, including reactive astrogliosis and microgliosis accompanied by abnormal Vegfa expression. Using an unbiased proteomics analysis in combination with in vivo or in vitro approaches, we propose that p120 is critical for the integrity of cadherin/catenin complex, and that p120 activates Wnt signaling activity by protecting β-catenin from Gsk3β-ubiquitin-guided degradation. Treatment of CTNND1-depleted HRECs with Gsk3β inhibitors LiCl or CHIR-99021 successfully enhanced cell proliferation by preventing β-catenin from degradation. Moreover, LiCl treatment increased vessel density in Ctnnd1-deficient mouse retinas. Functional analysis also revealed that variants in CTNND1 cause FEVR by compromising the expression of adherens junctions (AJs) and Wnt signaling activity. Additionally, genetic interactions between p120 and β-catenin or α-catenin revealed by double heterozygous deletion in mice further confirmed that p120 regulates vascular development through the Wnt/Cadherin axis. Together, we propose that CTNND1 is a novel candidate gene associated with FEVR, and that variants in CTNND1 can cause FEVR through the Wnt/Cadherin axis.
Collapse
Affiliation(s)
- Mu Yang
- Prenatal Diagnosis Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Shujin Li
- Prenatal Diagnosis Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Rulian Zhao
- Prenatal Diagnosis Center, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Erkuan Dai
- Department of Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Chengdu, China
| | - Xiaoyan Jiang
- Center for Human Molecular Genetics, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunqi He
- Center for Human Molecular Genetics, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinglin Lu
- Prenatal Diagnosis Center, Sun Yat-sen University, Guangzhou, China
| | - Li Peng
- Center for Human Molecular Genetics, Sun Yat-sen University, Chengdu, China
| | - Wenjing Liu
- Center for Human Molecular Genetics, Sun Yat-sen University, Chengdu, China
| | - Zhaotian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Dan Jiang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Sichua, Chengdu, China
| | - Yi Zhang
- Center for Human Molecular Genetics, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhilin Jiang
- Center for Human Molecular Genetics, University of Electronic Science and Technology of China, Chengdu, China
| | - Yeming Yang
- Center for Human Molecular Genetics, University of Electronic Science and Technology of China, Chengdu, China
| | - Peiquan Zhao
- Department of Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Chengdu, China
| | - Xianjun Zhu
- Center for Human Molecular Genetics, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhenglin Yang
- Department of Medical Genetics, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
31
|
Peng L, Dai E, Xiao H, Zhao R, He Y, Li S, Yang M, Yang Z, Zhao P. A novel frameshift variant in the TSPAN12 gene causes autosomal dominant FEVR. Mol Genet Genomic Med 2022; 10:e1949. [PMID: 35417085 PMCID: PMC9184668 DOI: 10.1002/mgg3.1949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/01/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is an inherited blinding eye disease with abnormal retinal vascular development. We aim to broaden the variant spectrum of FEVR and provide a basis for molecular diagnosis and genetic consultation. METHODS We recruited five FEVR patients from one large Chinese family. Whole-exome sequencing (WES) and Sanger sequencing were applied to sequence, analyze, and verify variants on genomic DNA samples. Immunocytochemistry, western blot, qPCR, and luciferase assay were performed to test the influence of the variant on the protein expression and activity of the Norrin/β-catenin pathway. RESULTS We identified a novel heterozygous frameshift variant c.533dupC (p.D179Rfs*6) in Tetraspanin 12 (TSPAN12) gene that is related to FEVR. This variant caused degradation of the entire TSPAN12 protein, which failed to activate Norrin/β-catenin signaling, possibly causing FEVR. CONCLUSION Our study revealed a novel frameshift variant D179Rfs*6 in TSPAN12 that is inherited in an autosomal dominant manner. We found that D179Rfs*6 caused a failure to activate Norrin/β-catenin signaling. This finding broadens the variant spectrum of TSPAN12 and provides invaluable information for the molecular diagnosis of FEVR.
Collapse
Affiliation(s)
- Li Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Natural Products Research Center, Institute of Chengdu BiologySichuan Translational Medicine Hospital, Chinese Academy of SciencesChengduChina
| | - Erkuan Dai
- Department of OphthalmologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haodong Xiao
- Department of OphthalmologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yunqi He
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Natural Products Research Center, Institute of Chengdu BiologySichuan Translational Medicine Hospital, Chinese Academy of SciencesChengduChina
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Natural Products Research Center, Institute of Chengdu BiologySichuan Translational Medicine Hospital, Chinese Academy of SciencesChengduChina
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical SciencesChengduChina
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Natural Products Research Center, Institute of Chengdu BiologySichuan Translational Medicine Hospital, Chinese Academy of SciencesChengduChina
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical SciencesChengduChina
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Natural Products Research Center, Institute of Chengdu BiologySichuan Translational Medicine Hospital, Chinese Academy of SciencesChengduChina
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical SciencesChengduChina
| | - Peiquan Zhao
- Department of OphthalmologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
32
|
Zhao R, Wang S, Zhao P, Dai E, Zhang X, Peng L, He Y, Yang M, Li S, Yang Z. Heterozygote loss-of-function variants in the LRP5 gene cause familial exudative vitreoretinopathy. Clin Exp Ophthalmol 2022; 50:441-448. [PMID: 35133048 DOI: 10.1111/ceo.14037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/22/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is an inherited ocular disease with clinical manifestations of aberrant retinal vasculature. We aimed to identify novel causative variants responsible for FEVR and provided evidence for the genetic counselling of FEVR. METHODS We applied whole-exome sequencing (WES) on the genomic DNA samples from the probands and performed Sanger sequencing for variant validation. Western blot analysis and luciferase assays were performed to test the expression levels and the activity of mutant proteins. RESULTS We identified one novel heterozygous nonsense variant, and three novel heterozygous frameshift variants including c.1801G>T (p.G601*), c.1965delC (p.H656Tfs*41), c.4445delC (p.S1482Cfs*17), and c.4482delC (p.P1495Rfs*4), which disabled the function of LRP5 on the Norrin/β-catenin signalling. Overexpression of variant-carrying LRP5 proteins resulted in down regulation of the protein levels of β-catenin and the Norrin/β-catenin signalling target genes c-Myc and Glut1. CONCLUSION Our study showed that four inherited LRP5 variants can cause autosomal dominant FEVR via down regulation of Norrin/β-catenin signalling and expanded the spectrum of FEVR-associated LRP5 variants.
Collapse
Affiliation(s)
- Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Shiyuan Wang
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Peiquan Zhao
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Erkuan Dai
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Xiang Zhang
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Li Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Yunqi He
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Jia B, Zhang L, Ma F, Wang X, Li J, Diao N, Leng X, Shi K, Zeng F, Zong Y, Liu F, Gong Q, Cai R, Yang F, Du R, Chang Z. Comparison of miRNA and mRNA Expression in Sika Deer Testes With Age. Front Vet Sci 2022; 9:854503. [PMID: 35464385 PMCID: PMC9019638 DOI: 10.3389/fvets.2022.854503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
To elucidate the complex physiological process of testis development and spermatogenesis in Sika deer, this study evaluated the changes of miRNA and mRNA profiles in the four developmental stages of testis in the juvenile (1-year-old), adolescence (3-year-old), adult (5-year-old), and aged (10-year-old) stages. The results showed that a total of 198 mature, 66 novel miRNAs, and 23,558 differentially expressed (DE) unigenes were obtained; 14,918 (8,413 up and 6,505 down), 4,988 (2,453 up and 2,535 down), and 5,681 (2,929 up and 2,752 down) DE unigenes, as well as 88 (43 up and 45 down), 102 (44 up and 58 down), and 54 (18 up and 36 down) DE miRNAs were identified in 3- vs. 1-, 5- vs. 3-, and 10- vs. 5-year-old testes, respectively. By integrating miRNA and mRNA expression profiles, we predicted 10,790 mRNA-mRNA and 69,883 miRNA-mRNA interaction sites. The target genes were enriched by GO and KEGG pathways to obtain DE mRNA (IGF1R, ALKBH5, Piwil, HIF1A, BRDT, etc.) and DE miRNA (miR-140, miR-145, miR-7, miR-26a, etc.), which play an important role in testis development and spermatogenesis. The data show that DE miRNAs could regulate testis developmental and spermatogenesis through signaling pathways, including the MAPK signaling pathway, p53 signaling pathway, PI3K-Akt signaling pathway, Hippo signaling pathway, etc. miR-140 was confirmed to directly target mutant IGF1R-3'UTR by the Luciferase reporter assays. This study provides a useful resource for future studies on the role of miRNA regulation in testis development and spermatogenesis.
Collapse
Affiliation(s)
- Boyin Jia
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Linlin Zhang
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Fuquan Ma
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xue Wang
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jianming Li
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Naichao Diao
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Xue Leng
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Kun Shi
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Fanli Zeng
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Ying Zong
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Fei Liu
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Qinglong Gong
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Ruopeng Cai
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Fuhe Yang
- Institute of Wild Economic Animals and Plants and State Key Laboratory for Molecular Biology of Special Economical Animals, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Rui Du
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Zhiguang Chang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
34
|
Lu J, Huang L, Sun L, Li S, Zhang Z, Jiang Z, Li J, Ding X. FZD4 in a Large Chinese Population With Familial Exudative Vitreoretinopathy: Molecular Characteristics and Clinical Manifestations. Invest Ophthalmol Vis Sci 2022; 63:7. [PMID: 35394490 PMCID: PMC8994167 DOI: 10.1167/iovs.63.4.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose The purpose of this study was to establish a genotype-phenotype correlation of familial exudative vitreoretinopathy (FEVR) caused by FZD4 gene mutations. Methods Six hundred fifty-one probands and their family members were recruited based on a clinical diagnosis of FEVR between 2015 and 2021 at Zhongshan Ophthalmic Center. Ocular examinations were performed in all participants. Targeted gene panel sequencing and whole-exome sequencing were performed in the probands, and Sanger sequencing was used to verify the mutations and segregation analysis was performed in the family members. Results Fifty-one FZD4 mutations (24 novels and 27 known) were detected in 84 families. Of these 168 eyes with FEVR, the eyes at stages 1, 2, 3, 4, and 5 were 29 (17.3%), 15 (8.9%), 19 (11.3%), 55 (32.7%), and 12 (7.1%), respectively. Exact stage of 38 (22.6%) eyes could not be determined. The FEVR phenotypes were more severe in the probands than the phenotypes in the family members (P < 0.001). The families were divided into two groups, probands that inherited the variant from the mother, and probands that inherited the variant from the father. In addition, the FEVR stage differences between these two groups were different (P < 0.05). Despite the mutations being located in different domains of FZD4, no significant differences were identified among the domains in terms of FEVR staging, retinal folds, retinal detachment, temporal midperipheral vitreoretinal interface abnormality, and foveal hypoplasia. Conclusions The FZD4 probands had severer phenotype than the family members, and the FEVR stage difference was greater between the probands and mothers than that between the probands and fathers.
Collapse
Affiliation(s)
- Jinglin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Li Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Limei Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Songshan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhaotian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhaoxin Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jiaqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Huang L, Zhang L, Li X, Lu J, Sun L, Chen L, Ding X, Li Z. Ocular manifestations of Chinese patients with copy number variants in the NDP gene. Mol Vis 2022; 28:29-38. [PMID: 35656167 PMCID: PMC9108013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/23/2022] [Indexed: 12/04/2022] Open
Abstract
PURPOSE Familial exudative vitreoretinopathy (FEVR) and Norrie disease (ND) are genetic disorders that can be caused by mutations in the NDP gene and affect retinal vasculature growth and development. This study aimed to describe the copy number variations (CNVs) in the NDP gene in Chinese FEVR families and the associated phenotypes. METHODS This study recruited 651 FEVR families. SeqCNV was used to analyze the CNVs in the families without mutations in known FEVR-associated genes. Multiplex ligation-dependent probe amplification and semiquantitative multiplex PCR were performed to verify the NDP CNVs. The probands and family members underwent complete ocular examinations. RESULTS NDP CNVs were identified in four patients from three unrelated families, accounting for 15% of the patients with NDP mutations and 0.46% of the entire FEVR cohort. Exon 2 deletions were detected in two families, and whole gene deletion was identified in one family. The affected individuals were born blind with total retinal detachment. CONCLUSIONS The findings confirm that CNVs are a common NDP mutation type. The CNV-associated phenotype is congenital blindness with total retinal detachment. Antenatal genetic analyses and fetal ultrasound can facilitate early diagnosis and interventions in patients with NDP mutations.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Linyan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jinglin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Limei Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Limei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhan Li
- Zhuhai Women and Children's Hospital, Zhuhai, China
| |
Collapse
|
36
|
Whole exome sequencing revealed 14 variants in NDP, FZD4, LRP5, and TSPAN12 genes for 20 families with familial exudative vitreoretinopathy. BMC Med Genomics 2022; 15:54. [PMID: 35277167 PMCID: PMC8915523 DOI: 10.1186/s12920-022-01204-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Familial exudative vitreoretinopathy (FEVR) is a complex form of blindness-causing retinal degeneration. This study investigated the potential disease-causing variants in 20 Chinese families with FEVR.
Methods
All available family members underwent detailed ophthalmological examinations, including best-corrected visual acuity and fundus examination. All probands and most family members underwent fluorescein fundus angiography. Twenty probands underwent whole exome sequencing; 16 of them also underwent copy number variant and mitochondrial genome analysis. Bioinformatics analysis and Sanger sequencing of available family members were used to confirm the disease-causing gene variant.
Results
Twenty families were diagnosed with FEVR based on clinical symptoms, fundus manifestations, and fundus fluorescein angiography. Whole exome sequencing revealed 14 variants in NDP, FZD4, LRP5, and TSPAN12 genes among the 13 families. These variants were predicted to be damaging or deleterious according to multiple lines of prediction algorithms; they were not frequently found in multiple population databases. Seven variants had not previously been reported to cause FEVR: c.1039T>G p.(Phe347Val) in the FZD4 gene; c.1612C>T p.(Arg538Trp) and c.3237-2A>C in the LRP5 gene; and c.77T>A p.(Ile26Asn), c.170dupT p.(Leu57Phe fsTer60), c.236T>G p.(Met79Arg) and c.550dupA p.(Arg184Lys fsTer16) in the TSPAN12 gene. We did not detect any variants in the remaining seven families.
Conclusions
These results expand the spectrum of variants in the NDP, FZD4, LRP5, and TSPAN12 genes and provide insights regarding accurate diagnosis, family genetic counseling, and future gene therapy for FEVR.
Collapse
|
37
|
Wang Y, Zhao R, Dai E, Peng L, He Y, Yang M, Li S. Identification of Two Novel Variants in the LRP5 Gene that Cause Familial Exudative Vitreoretinopathy. Genet Test Mol Biomarkers 2022; 26:146-151. [PMID: 35244470 DOI: 10.1089/gtmb.2021.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Familial exudative vitreoretinopathy (FEVR, OMIM 133780) is a severe inherited eye disease characterized by abnormal development of the retinal vasculature. Variants in the reported genes account for ∼50% of total FEVR cases. However, the pathogenesis of other 50% of FEVR cases remains unclear. Therefore, it is crucial to identify novel variants responsible for the pathogenesis of FEVR. Aims: To find causative variants responsible for FEVR in two Han Chinses families. Materials and Methods: We recruited two families with two FEVR patients and applied exome sequencing on the genomic DNA samples from the probands. Sanger sequencing was performed for variant validation. Western blot analysis and luciferase assays were performed to test the expression levels and activity of mutant proteins. Results: We identified two novel missense variants in the LRP5 gene (NM_002335), namely c.1176 C > A (p.Asp392Glu) and c.2435 A>C (p.Asp812Ala), inherited in an autosomal dominant manner. Both variants significantly reduced Norrin/β-catenin signaling activity without affecting the expression of the LRP5 protein. Conclusion: This study expands the variant spectrum of the LRP5 gene for FEVR, providing valuable information for prenatal counseling and molecular diagnosis of FEVR.
Collapse
Affiliation(s)
- Yuze Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Erkuan Dai
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Li Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Yunqi He
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
38
|
Engelbrecht E, Metzler MA, Sandell LL. Retinoid signaling regulates angiogenesis and blood-retinal barrier integrity in neonatal mouse retina. Microcirculation 2022; 29:e12752. [PMID: 35203102 DOI: 10.1111/micc.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/24/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The neonatal mouse retina is a well-characterized experimental model for investigating factors impacting retinal angiogenesis and inner blood-retinal barrier (BRB) integrity. Retinoic acid (RA) is an essential signaling molecule. RA is needed for vasculogenic development in embryos and endothelial barrier integrity in zebrafish retina and adult mouse brain, however the function of this signaling molecule in developing mammalian retinal vasculature remains unknown. This study aims to investigate the role of RA signaling in angiogenesis and inner BRB integrity in mouse neonatal retina. METHODS RA distribution in the developing neurovascular retina was assessed in mice carrying an RA-responsive transgene. RA function in retinal angiogenesis was determined by treating C57BL/6 neonatal pups with a pharmacological inhibitor of RA signaling BMS493 or control vehicle. BRB integrity assessed by monitoring leakage of injected tracer into extravascular retinal tissue. RESULTS RA signaling activity is present in peripheral astrocytes in domains corresponding to RA activity of the underlying neural retina. RA inhibition impaired retinal angiogenesis and reduced endothelial cell proliferation. RA inhibition also compromised BRB integrity. Vascular leakage was not associated with altered expression of CLDN5, PLVAP, LEF1 or VEcad. CONCLUSIONS RA signaling is needed for angiogenesis and integrity of the BRB in the neonatal mouse retina.
Collapse
Affiliation(s)
- Eric Engelbrecht
- University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Melissa A Metzler
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40202, USA
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40202, USA
| |
Collapse
|
39
|
Liu W, Jiang X, Li X, Sun K, Yang Y, Yang M, Li S, Zhu X. LMBR1L regulates proliferation and migration of endothelial cells through Norrin/β-catenin signaling. J Cell Sci 2022; 135:274701. [PMID: 35146515 DOI: 10.1242/jcs.259468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/07/2022] [Indexed: 11/20/2022] Open
Abstract
Precise Norrin/β-catenin signaling is critical for proper angiogenesis. Dysregulation of the signaling leads various diseases, of which retinal exudative vitreoretinopathy is the most prevalent. Here, we used global knockout mouse model to show that endothelial cells-derived limb region 1 like (LMBR1L), a transmembrane protein of unknown function in angiogenesis, is essential for retinal vascular development. In vitro experiments revealed that LMBR1L depletion resulted in aberrant activation of Norrin/β-catenin signaling pathway via decreased ubiquitination of FZD4, increased Norrin co-receptor LRP5 and p-GSK3β-Ser9 expression level, which caused accumulation of β-catenin. Moreover, inhibition of LMBR1L in human retinal microvascular endothelial cells (HRECs) caused increased proliferation ability and defective cell migration, which might due to upregulated expression levels of the AJ components. Treatment of p-GSK3β-Ser9 inhibitor AR-A014418 restored the phenotypes in LMBR1L-null HRECs, which further demonstrated the important regulatory role of LMBR1L in Norrin/β-catenin signaling pathway. Taken together, our data unravels an essential role of LMBR1L in angiogenesis.
Collapse
Affiliation(s)
- Wenjing Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.,Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Xiaoyan Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Xiao Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Kuanxiang Sun
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Yeming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.,Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China.,Departement of Ophthalmology, First People's Hospital of Shangqiu, Shangqiu, Henan, 476000, China
| |
Collapse
|
40
|
Zhang L, Zhang SS, Wang KF, Li YH, Xu HJ, Sun KX, Ma S, Leng HM, Chen SZ, Jia WJ, Zhu XJ, Li J. Overexpression of Twist1 in vascular endothelial cells promotes pathological retinal angiogenesis in mice. Zool Res 2022; 43:64-74. [PMID: 34845879 PMCID: PMC8743260 DOI: 10.24272/j.issn.2095-8137.2021.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/29/2021] [Indexed: 11/07/2022] Open
Abstract
Retinal angiogenesis is a critical process for normal retinal function. However, uncontrolled angiogenesis can lead to pathological neovascularization (NV), which is closely related to most irreversible blindness-causing retinal diseases. Understanding the molecular basis behind pathological NV is important for the treatment of related diseases. Twist-related protein 1 (TWIST1) is a well-known transcription factor and principal inducer of epithelial-mesenchymal transition (EMT) in many human cancers. Our previous study showed that Twist1 expression is elevated in pathological retinal NV. To date, however, the role of TWIST1 in retinal pathological angiogenesis remains to be elucidated. To study the role of TWIST1 in pathological retinal NV and identify specific molecular targets for antagonizing pathological NV, we generated an inducible vascular endothelial cell (EC)-specific Twist1 transgenic mouse model ( Tg-Twist1 iEC+ ). Whole-mount retinas from Tg-Twist1 iEC+ mice showed retarded vascular progression and increased vascular density in the front end of the growing retinal vasculature, as well as aneurysm-like pathological retinal NV. Furthermore, overexpression of Twist1 in the ECs promoted cell proliferation but disturbed cell polarity, thus leading to uncontrolled retinal angiogenesis. TWIST1 promoted pathological NV by activating the Wnt/β-catenin signaling pathway and inducing the expression of NV formation-related genes, thereby acting as a 'valve' in the regulation of pathological angiogenesis. This study identified the critical role of TWIST1 in retinal pathological NV, thus providing a potential therapeutic target for pathological NV.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
- Qinghai Key Laboratory of Qinghai-Tibetan Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Shan-Shan Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| | - Kai-Fang Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| | - Yi-Hui Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| | - Hui-Juan Xu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| | - Kuan-Xiang Sun
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| | - Shi Ma
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| | - Hong-Mei Leng
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Si-Zhu Chen
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Wen-Jing Jia
- Qinghai Key Laboratory of Qinghai-Tibetan Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Xian-Jun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
- Qinghai Key Laboratory of Qinghai-Tibetan Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Jie Li
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China. E-mail:
| |
Collapse
|
41
|
Li S, Yang M, He Y, Jiang X, Zhao R, Liu W, Huang L, Shi Y, Li X, Sun K, Yang Y, Sundaresan P, Zhao P, Yang Z, Zhu X. Variants in the Wnt co-receptor LRP6 are associated with familial exudative vitreoretinopathy. J Genet Genomics 2021; 49:590-594. [PMID: 34896607 DOI: 10.1016/j.jgg.2021.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/25/2023]
Affiliation(s)
- Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Yunqi He
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Xiaoyan Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Wenjing Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Xiao Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Kuanxiang Sun
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yeming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Periasamy Sundaresan
- Department of Genetics, Aravind Medical Research Foundation, Aravind Eye Hospital, Madurai, India
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China; Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| |
Collapse
|
42
|
Whole-Gene Deletions of FZD4 Cause Familial Exudative Vitreoretinopathy. Genes (Basel) 2021; 12:genes12070980. [PMID: 34199009 PMCID: PMC8306649 DOI: 10.3390/genes12070980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/28/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is an inherited disorder characterized by abnormalities in the retinal vasculature. The FZD4 gene is associated with FEVR, but the prevalence and impact of FZD4 copy number variation (CNV) on FEVR patients are unknown. The aim of this study was to better understand the genetic features and clinical manifestations of patients with FZD4 CNVs. A total of 651 FEVR families were recruited. Families negative for mutations in FEVR-associated genes were selected for CNV analysis using SeqCNV. Semiquantitative multiplex polymerase chain reaction and multiplex ligation-dependent probe amplification were conducted to verify the CNVs. Four probands were found to carry whole-gene deletions of FZD4, accounting for 5% (4/80) of probands with FZD4 mutations and 0.6% (4/651) of all FEVR probands. The four probands exhibited similar phenotypes of unilateral retinal folds. FEVR in probands with CNVs was not more severe than in probands with FZD4 missense mutations (p = 1.000). Although this is the first report of FZD4 CNVs and the associated phenotypes, the interpretation of FZD4 CNVs should be emphasized when analyzing the next-generation sequencing data of FEVR patients because of their high prevalence.
Collapse
|
43
|
The ER membrane protein complex subunit Emc3 controls angiogenesis via the FZD4/WNT signaling axis. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1868-1883. [PMID: 34128175 DOI: 10.1007/s11427-021-1941-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023]
Abstract
The endoplasmic reticulum (ER) membrane protein complex (EMC) regulates the synthesis and quality control of membrane proteins with multiple transmembrane domains. One of the membrane spanning subunits, EMC3, is a core member of the EMC complex that provides essential hydrophilic vestibule for substrate insertion. Here, we show that the EMC subunit Emc3 plays critical roles in the retinal vascular angiogenesis by regulating Norrin/Wnt signaling. Postnatal endothelial cell (EC)-specific deletion of Emc3 led to retarded retinal vascular development with a hyperpruned vascular network, the appearance of blunt-ended, aneurysm-like tip endothelial cells (ECs) with reduced numbers of filopodia and leakage of erythrocytes at the vascular front. Diminished tube formation and cell proliferation were also observed in EMC3 depleted human retinal endothelial cells (HRECs). We then discovered a critical role for EMC3 in expression of FZD4 receptor of β-catenin signaling using RNA sequencing, real-time quantitative PCR (RT-qPCR) and luciferase reporter assay. Moreover, augmentation of Wnt activity via lithium chloride (LiCl) treatment remarkably enhanced β-catenin signaling and cell proliferation of HRECs. Additionally, LiCl partially reversed the angiogenesis defects in Emc3-cKO mice. Our data reveal that Emc3 plays essential roles in angiogenesis through direct control of FZD4 expression and Norrin/β-catenin signaling.
Collapse
|
44
|
Kondo H, Matsushita I, Nagata T, Fujihara E, Hosono K, Uchio E, Hotta Y, Kusaka S. Retinal Features of Family Members With Familial Exudative Vitreoretinopathy Caused By Mutations in KIF11 Gene. Transl Vis Sci Technol 2021; 10:18. [PMID: 34128965 PMCID: PMC8212440 DOI: 10.1167/tvst.10.7.18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose To determine the clinical characteristics of patients and family members with familial exudative vitreoretinopathy (FEVR) caused by mutations in the KIF11 gene. Methods Twenty-one patients from 10 FEVR families with mutations in the KIF11 gene were studied. The retinal and systemic features were examined. The genetic analyses performed included Sanger sequencing of the KIF11 gene, whole exome sequencing, as well as array comparative genomic hybridization (CGH) analysis and multiple ligation probe assay (MLPA). Results Sequence analysis revealed seven different KIF11 mutations. Array CGH with MLPA revealed two different exon deletions. All probands had advanced FEVR with retinal detachments (RDs) and microcephaly with or without developmental disabilities. Patients with bilateral RDs were more frequently associated with developmental disabilities (P = 0.023). Multimodal imaging of the family members revealed that six of nine patients without RDs (66%) had varying degrees of chorioretinopathy. The retinal folds in FEVR patients were associated with severe retinal avascularization. However, funduscopic changes in the peripheral retina were unremarkable in family members without RDs. A score representing the peripheral vascular anomalies determined from the fluorescein angiograms was lower than that of control eyes of patients with mutations of the Wnt signaling genes (P = 0.0029). Conclusions The probands with KIF11 mutations were associated with severe ocular and systemic pathologies, whereas affected family members showed highly variable clinical manifestations. Peripheral vascular anomalies can often be unremarkable in eyes without RDs. Translational Relevance These findings highlight more diverse mechanisms that underlie the pathological changes in patients with FEVR.
Collapse
Affiliation(s)
- Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Itsuka Matsushita
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsuo Nagata
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Etsuko Fujihara
- Division of Ophthalmology, Matsue Red Cross Hospital, Matsue, Japan
| | - Katsuhiro Hosono
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Eiichi Uchio
- Department of Ophthalmology, Fukuoka University, Fukuoka, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|