1
|
Aguilar D, Zhu F, Millet A, Millet N, Germano P, Pisegna J, Akbari O, Doherty TA, Swidergall M, Jendzjowsky N. Sensory neurons regulate stimulus-dependent humoral immunity in mouse models of bacterial infection and asthma. Nat Commun 2024; 15:8914. [PMID: 39414787 PMCID: PMC11484968 DOI: 10.1038/s41467-024-53269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Sensory neurons sense pathogenic infiltration to drive innate immune responses, but their role in humoral immunity is unclear. Here, using mouse models of Streptococcus pneumoniae infection and Alternaria alternata asthma, we show that sensory neurons are required for B cell recruitment and antibody production. In response to S. pneumoniae, sensory neuron depletion increases bacterial burden and reduces B cell numbers, IgG release, and neutrophil stimulation. Meanwhile, during A. alternata-induced airway inflammation, sensory neuron depletion decreases B cell population sizes, IgE levels, and asthmatic characteristics. Mechanistically, during bacterial infection, sensory neurons preferentially release vasoactive intestinal polypeptide (VIP). In response to asthma, sensory neurons release substance P. Administration of VIP into sensory neuron-depleted mice suppresses bacterial burden, while VIPR1 deficiency increases infection. Similarly, exogenous substance P delivery aggravates asthma in sensory neuron-depleted mice, while substance P deficiency ameliorates asthma. Our data, thus demonstrate that sensory neurons release select neuropeptides which target B cells dependent on the immunogen.
Collapse
Affiliation(s)
- Diane Aguilar
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Fengli Zhu
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Antoine Millet
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Nicolas Millet
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Infectious Disease, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Patrizia Germano
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA, USA
- Division of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Joseph Pisegna
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System and Department of Medicine, Los Angeles, CA, USA
- Division of Pulmonary and Critical Care, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Taylor A Doherty
- Division of Allergy and Immunology, Department of Medicine, University of California San Diego, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Marc Swidergall
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Infectious Disease, Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine, Los Angeles, CA, USA
| | - Nicholas Jendzjowsky
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA.
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
- David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Clark RD, Rabito F, Munyonho FT, Remcho TP, Kolls JK. Evaluation of anti-vector immune responses to adenovirus-mediated lung gene therapy and modulation by αCD20. Mol Ther Methods Clin Dev 2024; 32:101286. [PMID: 39070292 PMCID: PMC11283059 DOI: 10.1016/j.omtm.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Although the last decade has seen tremendous progress in drugs that treat cystic fibrosis (CF) due to mutations that lead to protein misfolding, there are approximately 8%-10% of subjects with mutations that result in no significant CFTR protein expression demonstrating the need for gene editing or gene replacement with inhaled mRNA or vector-based approaches. A limitation for vector-based approaches is the formation of neutralizing humoral responses. Given that αCD20 has been used to manage post-transplant lymphoproliferative disease in CF subjects with lung transplants, we studied the ability of αCD20 to module both T and B cell responses in the lung to one of the most immunogenic vectors, E1-deleted adenovirus serotype 5. We found that αCD20 significantly blocked luminal antibody responses and efficiently permitted re-dosing. αCD20 had more limited impact on the T cell compartment, but reduced tissue resident memory T cell responses in bronchoalveolar lavage fluid. Taken together, these pre-clinical studies suggest that αCD20 could be re-purposed for lung gene therapy protocols to permit re-dosing.
Collapse
Affiliation(s)
- Robert D.E. Clark
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Felix Rabito
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ferris T. Munyonho
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - T. Parks Remcho
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay K. Kolls
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Auld SC, Sheshadri A, Alexander-Brett J, Aschner Y, Barczak AK, Basil MC, Cohen KA, Dela Cruz C, McGroder C, Restrepo MI, Ridge KM, Schnapp LM, Traber K, Wunderink RG, Zhang D, Ziady A, Attia EF, Carter J, Chalmers JD, Crothers K, Feldman C, Jones BE, Kaminski N, Keane J, Lewinsohn D, Metersky M, Mizgerd JP, Morris A, Ramirez J, Samarasinghe AE, Staitieh BS, Stek C, Sun J, Evans SE. Postinfectious Pulmonary Complications: Establishing Research Priorities to Advance the Field: An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2024; 21:1219-1237. [PMID: 39051991 DOI: 10.1513/annalsats.202406-651st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Continued improvements in the treatment of pulmonary infections have paradoxically resulted in a growing challenge of individuals with postinfectious pulmonary complications (PIPCs). PIPCs have been long recognized after tuberculosis, but recent experiences such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have underscored the importance of PIPCs following other lower respiratory tract infections. Independent of the causative pathogen, most available studies of pulmonary infections focus on short-term outcomes rather than long-term morbidity among survivors. In this document, we establish a conceptual scope for PIPCs with discussion of globally significant pulmonary pathogens and an examination of how these pathogens can damage different components of the lung, resulting in a spectrum of PIPCs. We also review potential mechanisms for the transition from acute infection to PIPC, including the interplay between pathogen-mediated injury and aberrant host responses, which together result in PIPCs. Finally, we identify cross-cutting research priorities for the field to facilitate future studies to establish the incidence of PIPCs, define common mechanisms, identify therapeutic strategies, and ultimately reduce the burden of morbidity in survivors of pulmonary infections.
Collapse
|
4
|
Ramirez SI, Faraji F, Hills LB, Lopez PG, Goodwin B, Stacey HD, Sutton HJ, Hastie KM, Saphire EO, Kim HJ, Mashoof S, Yan CH, DeConde AS, Levi G, Crotty S. Immunological memory diversity in the human upper airway. Nature 2024; 632:630-636. [PMID: 39085605 DOI: 10.1038/s41586-024-07748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
The upper airway is an important site of infection, but immune memory in the human upper airway is poorly understood, with implications for COVID-19 and many other human diseases1-4. Here we demonstrate that nasal and nasopharyngeal swabs can be used to obtain insights into these challenging problems, and define distinct immune cell populations, including antigen-specific memory B cells and T cells, in two adjacent anatomical sites in the upper airway. Upper airway immune cell populations seemed stable over time in healthy adults undergoing monthly swabs for more than 1 year, and prominent tissue resident memory T (TRM) cell and B (BRM) cell populations were defined. Unexpectedly, germinal centre cells were identified consistently in many nasopharyngeal swabs. In subjects with SARS-CoV-2 breakthrough infections, local virus-specific BRM cells, plasma cells and germinal centre B cells were identified, with evidence of local priming and an enrichment of IgA+ memory B cells in upper airway compartments compared with blood. Local plasma cell populations were identified with transcriptional profiles of longevity. Local virus-specific memory CD4+ TRM cells and CD8+ TRM cells were identified, with diverse additional virus-specific T cells. Age-dependent upper airway immunological shifts were observed. These findings provide new understanding of immune memory at a principal mucosal barrier tissue in humans.
Collapse
Affiliation(s)
- Sydney I Ramirez
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA, USA
| | - Farhoud Faraji
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, CA, USA
| | - L Benjamin Hills
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Paul G Lopez
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Benjamin Goodwin
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Hannah D Stacey
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Henry J Sutton
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA, USA
| | - Hyun Jik Kim
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Otorhinolaryngology, College of Medicine, Seoul National University, Seoul, Korea
| | - Sara Mashoof
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Carol H Yan
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, CA, USA
| | - Adam S DeConde
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, CA, USA
| | - Gina Levi
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Shane Crotty
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Tsai CY, Oo M, Peh JH, Yeo BCM, Aptekmann A, Lee B, Liu JJJ, Tsao WS, Dick T, Fink K, Gengenbacher M. Splenic marginal zone B cells restrict Mycobacterium tuberculosis infection by shaping the cytokine pattern and cell-mediated immunity. Cell Rep 2024; 43:114426. [PMID: 38959109 PMCID: PMC11307145 DOI: 10.1016/j.celrep.2024.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
Understanding the role of B cells in tuberculosis (TB) is crucial for developing new TB vaccines. However, the changes in B cell immune landscapes during TB and their functional implications remain incompletely explored. Using high-dimensional flow cytometry to map the immune landscape in response to Mycobacterium tuberculosis (Mtb) infection, our results show an accumulation of marginal zone B (MZB) cells and other unconventional B cell subsets in the lungs and spleen, shaping an unconventional B cell landscape. These MZB cells exhibit activated and memory-like phenotypes, distinguishing their functional profiles from those of conventional B cells. Notably, functional studies show that MZB cells produce multiple cytokines and contribute to systemic protection against TB by shaping cytokine patterns and cell-mediated immunity. These changes in the immune landscape are reversible upon successful TB chemotherapy. Our study suggests that, beyond antibody production, targeting the regulatory function of B cells may be a valuable strategy for TB vaccine development.
Collapse
Affiliation(s)
- Chen-Yu Tsai
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Myo Oo
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Jih Hou Peh
- Biosafety Level 3 Core, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 15, Centre for Translational Medicine (MD6), NUS, 14 Medical Drive, Singapore 117599, Singapore
| | - Benjamin C M Yeo
- Infectious Diseases Translational Research Programme and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 2, Blk MD4, 5 Science Drive 2, Singapore 117545, Singapore
| | - Ariel Aptekmann
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, Level 3 & 4, Immunos Building, Singapore 138648, Singapore; Centre for Biomedical Informatics, Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; A(∗)STAR Infectious Diseases Labs, Agency for Science, Technology and Research, 8A Biomedical Grove #05-13, Immunos, Singapore 138648, Singapore
| | - Joe J J Liu
- Biosafety Level 3 Core, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 15, Centre for Translational Medicine (MD6), NUS, 14 Medical Drive, Singapore 117599, Singapore
| | - Wen-Shan Tsao
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Thomas Dick
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Katja Fink
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, Level 3 & 4, Immunos Building, Singapore 138648, Singapore
| | - Martin Gengenbacher
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA.
| |
Collapse
|
6
|
Korkmaz FT, Quinton LJ. Extra-pulmonary control of respiratory defense. Cell Immunol 2024; 401-402:104841. [PMID: 38878619 DOI: 10.1016/j.cellimm.2024.104841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
Pneumonia persists as a public health crisis, representing the leading cause of death due to infection. Whether respiratory tract infections progress to pneumonia and its sequelae such as acute respiratory distress syndrome and sepsis depends on numerous underlying conditions related to both the causative agent and host. Regarding the former, pneumonia burden remains staggeringly high, despite the effectiveness of pathogen-targeting strategies such as vaccines and antibiotics. This demands a greater understanding of host features that collaborate to promote immune resistance and tissue resilience in the infected lung. Such features inside the pulmonary compartment have drawn much attention, where major advances have been made related to resident and recruited immune activity. By comparison, extra-pulmonary processes guiding pneumonia susceptibility are relatively elusive, constituting the focus of this review. Here we will highlight examples of when, how, and why tissues outside of the lungs dispatch signals that modulate local immunity in the airspaces. Topics include the liver, gut, bone marrow, brain and more, all of which contribute in direct and indirect ways to pneumonia outcome. When tuned appropriately, it has become clear that these responses can serve protective roles, and this will be considered distinctly from what would otherwise be aberrant responses characteristic of pneumonia-induced organ injury and sepsis. Further advances in this area may reveal novel targetable areas for clinical intervention that are not confined to the intra-pulmonary space.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Department of Medicine, Division of Immunology and Infectious Disease, UMass Chan Medical School, Worcester, MA 01602, United States.
| | - Lee J Quinton
- Department of Medicine, Division of Immunology and Infectious Disease, UMass Chan Medical School, Worcester, MA 01602, United States
| |
Collapse
|
7
|
MacLean AJ, Bonifacio JP, Oram SL, Mohsen MO, Bachmann MF, Arnon TI. Regulation of pulmonary plasma cell responses during secondary infection with influenza virus. J Exp Med 2024; 221:e20232014. [PMID: 38661717 PMCID: PMC11044945 DOI: 10.1084/jem.20232014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024] Open
Abstract
During secondary infection with influenza virus, plasma cells (PCs) develop within the lung, providing a local source of antibodies. However, the site and mechanisms that regulate this process are poorly defined. Here, we show that while circulating memory B cells entered the lung during rechallenge and were activated within inducible bronchus-associated lymphoid tissues (iBALTs), resident memory B (BRM) cells responded earlier, and their activation occurred in a different niche: directly near infected alveoli. This process required NK cells but was largely independent of CD4 and CD8 T cells. Innate stimuli induced by virus-like particles containing ssRNA triggered BRM cell differentiation in the absence of cognate antigen, suggesting a low threshold of activation. In contrast, expansion of PCs in iBALTs took longer to develop and was critically dependent on CD4 T cells. Our work demonstrates that spatially distinct mechanisms evolved to support pulmonary secondary PC responses, and it reveals a specialized function for BRM cells as guardians of the alveoli.
Collapse
Affiliation(s)
| | | | - Sophia L. Oram
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, UK
| | - Mona O. Mohsen
- Department of Bio Medical Research, University of Bern, Rheumatology, Immunology and Allergology, Bern, Switzerland
| | - Martin F. Bachmann
- Nuffield Department of Medicine, University of Oxford, The Jenner Institute, Oxford, UK
- Department of Bio Medical Research, University of Bern, Rheumatology, Immunology and Allergology, Bern, Switzerland
| | - Tal I. Arnon
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, UK
| |
Collapse
|
8
|
Muir A, Paudyal B, Schmidt S, Sedaghat-Rostami E, Chakravarti S, Villanueva-Hernández S, Moffat K, Polo N, Angelopoulos N, Schmidt A, Tenbusch M, Freimanis G, Gerner W, Richard AC, Tchilian E. Single-cell analysis reveals lasting immunological consequences of influenza infection and respiratory immunization in the pig lung. PLoS Pathog 2024; 20:e1011910. [PMID: 39024231 PMCID: PMC11257366 DOI: 10.1371/journal.ppat.1011910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
The pig is a natural host for influenza viruses and integrally involved in virus evolution through interspecies transmissions between humans and swine. Swine have many physiological, anatomical, and immunological similarities to humans, and are an excellent model for human influenza. Here, we employed single cell RNA-sequencing (scRNA-seq) and flow cytometry to characterize the major leukocyte subsets in bronchoalveolar lavage (BAL), twenty-one days after H1N1pdm09 infection or respiratory immunization with an adenoviral vector vaccine expressing hemagglutinin and nucleoprotein with or without IL-1β. Mapping scRNA-seq clusters from BAL onto those previously described in peripheral blood facilitated annotation and highlighted differences between tissue resident and circulating immune cells. ScRNA-seq data and functional assays revealed lasting impacts of immune challenge on BAL populations. First, mucosal administration of IL-1β reduced the number of functionally active Treg cells. Second, influenza infection upregulated IFI6 in BAL cells and decreased their susceptibility to virus replication in vitro. Our data provide a reference map of porcine BAL cells and reveal lasting immunological consequences of influenza infection and respiratory immunization in a highly relevant large animal model for respiratory virus infection.
Collapse
Affiliation(s)
- Andrew Muir
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | | | | | | | | | | | - Katy Moffat
- The Pirbright Institute, Pirbright, United Kingdom
| | - Noemi Polo
- The Pirbright Institute, Pirbright, United Kingdom
| | | | - Anna Schmidt
- Virologisches Institut-Klinische und Molekulare Virologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- FAU Profilzentrum Immunmedizin (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Virologisches Institut-Klinische und Molekulare Virologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- FAU Profilzentrum Immunmedizin (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
9
|
Ma J, Wang X, Jia Y, Tan F, Yuan X, Du J. The roles of B cells in cardiovascular diseases. Mol Immunol 2024; 171:36-46. [PMID: 38763105 DOI: 10.1016/j.molimm.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/21/2024]
Abstract
Damage to the heart can start the repair process and cause cardiac remodeling. B cells play an important role in this process. B cells are recruited to the injured place and activate cardiac remodeling through secreting antibodies and cytokines. Different types of B cells showed specific functions in the heart. Among all types of B cells, heart-associated B cells play a vital role in the heart by secreting TGFβ1. B cells participate in the activation of fibroblasts and promote cardiac fibrosis. Four subtypes of B cells in the heart revealed the relationship between the B cells' heterogeneity and cardiac remodeling. Many cardiovascular diseases like atherosclerosis, heart failure (HF), hypertension, myocardial infarction (MI), and dilated cardiomyopathy (DCM) are related to B cells. The primary mechanisms of these B cell-related activities will be discussed in this review, which may also suggest potential novel therapeutic targets.
Collapse
Affiliation(s)
- Jian Ma
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaotong Wang
- Department of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuewang Jia
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fangyan Tan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
10
|
Krause R, Ogongo P, Tezera L, Ahmed M, Mbano I, Chambers M, Ngoepe A, Magnoumba M, Muema D, Karim F, Khan K, Lumamba K, Nargan K, Madansein R, Steyn A, Shalek AK, Elkington P, Leslie A. B cell heterogeneity in human tuberculosis highlights compartment-specific phenotype and functional roles. Commun Biol 2024; 7:584. [PMID: 38755239 PMCID: PMC11099031 DOI: 10.1038/s42003-024-06282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
B cells are important in tuberculosis (TB) immunity, but their role in the human lung is understudied. Here, we characterize B cells from lung tissue and matched blood of patients with TB and found they are decreased in the blood and increased in the lungs, consistent with recruitment to infected tissue, where they are located in granuloma associated lymphoid tissue. Flow cytometry and transcriptomics identify multiple B cell populations in the lung, including those associated with tissue resident memory, germinal centers, antibody secretion, proinflammatory atypical B cells, and regulatory B cells, some of which are expanded in TB disease. Additionally, TB lungs contain high levels of Mtb-reactive antibodies, specifically IgM, which promotes Mtb phagocytosis. Overall, these data reveal the presence of functionally diverse B cell subsets in the lungs of patients with TB and suggest several potential localized roles that may represent a target for interventions to promote immunity or mitigate immunopathology.
Collapse
Affiliation(s)
- Robert Krause
- Africa Health Research Institute, Durban, South Africa.
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Paul Ogongo
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - Liku Tezera
- National Institute for Health Research Southampton Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Division of Infection and Immunity, University College London, London, UK
| | - Mohammed Ahmed
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ian Mbano
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mark Chambers
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Magalli Magnoumba
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel Muema
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Farina Karim
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Khadija Khan
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | | | - Rajhmun Madansein
- Department of Cardiothoracic Surgery, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Adrie Steyn
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for AIDS Research and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alex K Shalek
- Institute for Medical Engineering & Science, Department of Chemistry, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paul Elkington
- National Institute for Health Research Southampton Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Al Leslie
- Africa Health Research Institute, Durban, South Africa.
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
- Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
11
|
Etesami NS, Barker KA, Shenoy AT, De Ana CL, Arafa EI, Grifno GN, Matschulat AM, Vannini ME, Pihl RMF, Breen MP, Soucy AM, Goltry WN, Ha CT, Betsuyaku H, Browning JL, Varelas X, Traber KE, Jones MR, Quinton LJ, Maglione PJ, Nia HT, Belkina AC, Mizgerd JP. B cells in the pneumococcus-infected lung are heterogeneous and require CD4 + T cell help including CD40L to become resident memory B cells. Front Immunol 2024; 15:1382638. [PMID: 38715601 PMCID: PMC11074383 DOI: 10.3389/fimmu.2024.1382638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
Recovery from respiratory pneumococcal infections generates lung-localized protection against heterotypic bacteria, mediated by resident memory lymphocytes. Optimal protection in mice requires re-exposure to pneumococcus within days of initial infection. Serial surface marker phenotyping of B cell populations in a model of pneumococcal heterotypic immunity revealed that bacterial re-exposure stimulates the immediate accumulation of dynamic and heterogeneous populations of B cells in the lung, and is essential for the establishment of lung resident memory B (BRM) cells. The B cells in the early wave were activated, proliferating locally, and associated with both CD4+ T cells and CXCL13. Antagonist- and antibody-mediated interventions were implemented during this early timeframe to demonstrate that lymphocyte recirculation, CD4+ cells, and CD40 ligand (CD40L) signaling were all needed for lung BRM cell establishment, whereas CXCL13 signaling was not. While most prominent as aggregates in the loose connective tissue of bronchovascular bundles, morphometry and live lung imaging analyses showed that lung BRM cells were equally numerous as single cells dispersed throughout the alveolar septae. We propose that CD40L signaling from antigen-stimulated CD4+ T cells in the infected lung is critical to establishment of local BRM cells, which subsequently protect the airways and parenchyma against future potential infections.
Collapse
Affiliation(s)
- Neelou S. Etesami
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Kimberly A. Barker
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Anukul T. Shenoy
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Carolina Lyon De Ana
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Emad I. Arafa
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Gabrielle N. Grifno
- Department of Biomedical Engineering, Boston University College of Engineering, Boston, MA, United States
| | - Adeline M. Matschulat
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Michael E. Vannini
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Riley M. F. Pihl
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Michael P. Breen
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Alicia M. Soucy
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Wesley N. Goltry
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Catherine T. Ha
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Hanae Betsuyaku
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Jeffrey L. Browning
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Xaralabos Varelas
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Katrina E. Traber
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Matthew R. Jones
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Lee J. Quinton
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Paul J. Maglione
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Hadi T. Nia
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biomedical Engineering, Boston University College of Engineering, Boston, MA, United States
| | - Anna C. Belkina
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Flow Cytometry Core Facility, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Joseph P. Mizgerd
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
12
|
Pereira MVA, Galvani RG, Gonçalves-Silva T, de Vasconcelo ZFM, Bonomo A. Tissue adaptation of CD4 T lymphocytes in homeostasis and cancer. Front Immunol 2024; 15:1379376. [PMID: 38690280 PMCID: PMC11058666 DOI: 10.3389/fimmu.2024.1379376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
The immune system is traditionally classified as a defense system that can discriminate between self and non-self or dangerous and non-dangerous situations, unleashing a tolerogenic reaction or immune response. These activities are mainly coordinated by the interaction between innate and adaptive cells that act together to eliminate harmful stimuli and keep tissue healthy. However, healthy tissue is not always the end point of an immune response. Much evidence has been accumulated over the years, showing that the immune system has complex, diversified, and integrated functions that converge to maintaining tissue homeostasis, even in the absence of aggression, interacting with the tissue cells and allowing the functional maintenance of that tissue. One of the main cells known for their function in helping the immune response through the production of cytokines is CD4+ T lymphocytes. The cytokines produced by the different subtypes act not only on immune cells but also on tissue cells. Considering that tissues have specific mediators in their architecture, it is plausible that the presence and frequency of CD4+ T lymphocytes of specific subtypes (Th1, Th2, Th17, and others) maintain tissue homeostasis. In situations where homeostasis is disrupted, such as infections, allergies, inflammatory processes, and cancer, local CD4+ T lymphocytes respond to this disruption and, as in the healthy tissue, towards the equilibrium of tissue dynamics. CD4+ T lymphocytes can be manipulated by tumor cells to promote tumor development and metastasis, making them a prognostic factor in various types of cancer. Therefore, understanding the function of tissue-specific CD4+ T lymphocytes is essential in developing new strategies for treating tissue-specific diseases, as occurs in cancer. In this context, this article reviews the evidence for this hypothesis regarding the phenotypes and functions of CD4+ T lymphocytes and compares their contribution to maintaining tissue homeostasis in different organs in a steady state and during tumor progression.
Collapse
Affiliation(s)
- Marina V. A. Pereira
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rômulo G. Galvani
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Triciana Gonçalves-Silva
- National Center for Structural Biology and Bioimaging - CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zilton Farias Meira de Vasconcelo
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Adriana Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Majumder S, Das S, Li P, Yang N, Dellario H, Sui H, Guan Z, Sun W. Pneumonic Plague Protection Induced by a Monophosphoryl Lipid A Decorated Yersinia Outer-Membrane-Vesicle Vaccine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307066. [PMID: 38009518 PMCID: PMC11009084 DOI: 10.1002/smll.202307066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/19/2023] [Indexed: 11/29/2023]
Abstract
A new Yersinia pseudotuberculosis mutant strain, YptbS46, carrying the lpxE insertion and pmrF-J deletion is constructed and shown to exclusively produce monophosphoryl lipid A (MPLA) having adjuvant properties. Outer membrane vesicles (OMVs) isolated from YptbS46 harboring an lcrV expression plasmid, pSMV13, are designated OMV46-LcrV, which contained MPLA and high amounts of LcrV (Low Calcium response V) and displayed low activation of Toll-like receptor 4 (TLR4). Intramuscular prime-boost immunization with 30 µg of of OMV46-LcrV exhibited substantially reduced reactogenicity than the parent OMV44-LcrV and conferred complete protection to mice against a high-dose of respiratory Y. pestis challenge. OMV46-LcrV immunization induced robust adaptive responses in both lung mucosal and systemic compartments and orchestrated innate immunity in the lung, which are correlated with rapid bacterial clearance and unremarkable lung damage during Y. pestis challenge. Additionally, OMV46-LcrV immunization conferred long-term protection. Moreover, immunization with reduced doses of OMV46-LcrV exhibited further lower reactogenicity and still provided great protection against pneumonic plague. The studies strongly demonstrate the feasibility of OMV46-LcrV as a new type of plague vaccine candidate.
Collapse
Affiliation(s)
- Saugata Majumder
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Shreya Das
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Peng Li
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Nicole Yang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Hazel Dellario
- Wadsworth Center, New York State Department of Health, Albany, NY, 12237, USA
| | - Haixin Sui
- Wadsworth Center, New York State Department of Health, Albany, NY, 12237, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| |
Collapse
|
14
|
Noh HE, Rha MS. Mucosal Immunity against SARS-CoV-2 in the Respiratory Tract. Pathogens 2024; 13:113. [PMID: 38392851 PMCID: PMC10892713 DOI: 10.3390/pathogens13020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The respiratory tract, the first-line defense, is constantly exposed to inhaled allergens, pollutants, and pathogens such as respiratory viruses. Emerging evidence has demonstrated that the coordination of innate and adaptive immune responses in the respiratory tract plays a crucial role in the protection against invading respiratory pathogens. Therefore, a better understanding of mucosal immunity in the airways is critical for the development of novel therapeutics and next-generation vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses. Since the coronavirus disease 2019 pandemic, our knowledge of mucosal immune responses in the airways has expanded. In this review, we describe the latest knowledge regarding the key components of the mucosal immune system in the respiratory tract. In addition, we summarize the host immune responses in the upper and lower airways following SARS-CoV-2 infection and vaccination, and discuss the impact of allergic airway inflammation on mucosal immune responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Hae-Eun Noh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Min-Seok Rha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
15
|
Trentini MM, Rodriguez D, Kanno AI, Goulart C, Darrieux M, de Cerqueira Leite LC. Robust Immune Response and Protection against Lethal Pneumococcal Challenge with a Recombinant BCG-PspA-PdT Prime/Boost Scheme Administered to Neonatal Mice. Vaccines (Basel) 2024; 12:122. [PMID: 38400107 PMCID: PMC10893189 DOI: 10.3390/vaccines12020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Pneumococcal diseases are an important public health problem, with high mortality rates in young children. Although conjugated pneumococcal vaccines offer high protection against invasive pneumococcal diseases, this is restricted to vaccine serotypes, leading to serotype replacement. Furthermore, the current vaccines do not protect neonates. Therefore, several protein-based pneumococcal vaccines have been studied over the last few decades. Our group established a recombinant BCG expressing rPspA-PdT as a prime/rPspA-PdT boost strategy, which protected adult mice against lethal intranasal pneumococcal challenge. Here, we immunized groups of neonate C57/Bl6 mice (6-10) (at 5 days) with rBCG PspA-PdT and a boost with rPspA-PdT (at 12 days). Controls were saline or each antigen alone. The prime/boost strategy promoted an IgG1 to IgG2c isotype shift compared to protein alone. Furthermore, there was an increase in specific memory cells (T and B lymphocytes) and higher cytokine production (IFN-γ, IL-17, TNF-α, IL-10, and IL-6). Immunization with rBCG PspA-PdT/rPspA-PdT showed 100% protection against pulmonary challenge with the WU2 pneumococcal strain; two doses of rPspA-PdT showed non-significant protection in the neonates. These results demonstrate that a prime/boost strategy using rBCG PspA-PdT/rPspA-PdT is effective in protecting neonates against lethal pneumococcal infection via the induction of strong antibody and cytokine responses.
Collapse
Affiliation(s)
| | - Dunia Rodriguez
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Alex Issamu Kanno
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Cibelly Goulart
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Michelle Darrieux
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista 12916-900, Brazil;
| | | |
Collapse
|
16
|
M. S. Barron A, Fabre T, De S. Distinct fibroblast functions associated with fibrotic and immune-mediated inflammatory diseases and their implications for therapeutic development. F1000Res 2024; 13:54. [PMID: 38681509 PMCID: PMC11053351 DOI: 10.12688/f1000research.143472.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 05/01/2024] Open
Abstract
Fibroblasts are ubiquitous cells that can adopt many functional states. As tissue-resident sentinels, they respond to acute damage signals and shape the earliest events in fibrotic and immune-mediated inflammatory diseases. Upon sensing an insult, fibroblasts produce chemokines and growth factors to organize and support the response. Depending on the size and composition of the resulting infiltrate, these activated fibroblasts may also begin to contract or relax thus changing local stiffness within the tissue. These early events likely contribute to the divergent clinical manifestations of fibrotic and immune-mediated inflammatory diseases. Further, distinct changes to the cellular composition and signaling dialogue in these diseases drive progressive fibroblasts specialization. In fibrotic diseases, fibroblasts support the survival, activation and differentiation of myeloid cells, granulocytes and innate lymphocytes, and produce most of the pathogenic extracellular matrix proteins. Whereas, in immune-mediated inflammatory diseases, sequential accumulation of dendritic cells, T cells and B cells programs fibroblasts to support local, destructive adaptive immune responses. Fibroblast specialization has clear implications for the development of effective induction and maintenance therapies for patients with these clinically distinct diseases.
Collapse
Affiliation(s)
- Alexander M. S. Barron
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Thomas Fabre
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Saurav De
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
17
|
Zhang X, Zhang J, Chen S, He Q, Bai Y, Liu J, Wang Z, Liang Z, Chen L, Mao Q, Xu M. Progress and challenges in the clinical evaluation of immune responses to respiratory mucosal vaccines. Expert Rev Vaccines 2024; 23:362-370. [PMID: 38444382 DOI: 10.1080/14760584.2024.2326094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Following the coronavirus disease pandemic, respiratory mucosal vaccines that elicit both mucosal and systemic immune responses have garnered increasing attention. However, human physiological characteristics pose significant challenges in the evaluation of mucosal immunity, which directly impedes the development and application of respiratory mucosal vaccines. AREAS COVERED This study summarizes the characteristics of immune responses in the respiratory mucosa and reviews the current status and challenges in evaluating immune response to respiratory mucosal vaccines. EXPERT OPINION Secretory Immunoglobulin A (S-IgA) is a major effector molecule at mucosal sites and a commonly used indicator for evaluating respiratory mucosal vaccines. However, the unique physiological structure of the respiratory tract pose significant challenges for the clinical collection and detection of S-IgA. Therefore, it is imperative to develop a sampling method with high collection efficiency and acceptance, a sensitive detection method, reference materials for mucosal antibodies, and to establish a threshold for S-IgA that correlates with clinical protection. Sample collection is even more challenging when evaluating mucosal cell immunity. Therefore, a mucosal cell sampling method with high operability and high tolerance should be established. Targets of the circulatory system capable of reflecting mucosal cellular immunity should also be explored.
Collapse
Affiliation(s)
- Xuanxuan Zhang
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Jialu Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Si Chen
- Drug and Vaccine Research Center, Guangzhou National Laboratory, Guangzhou, China
| | - Qian He
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Yu Bai
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Jianyang Liu
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Zhongfang Wang
- Drug and Vaccine Research Center, Guangzhou National Laboratory, Guangzhou, China
| | - Zhenglun Liang
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Ling Chen
- Drug and Vaccine Research Center, Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qunying Mao
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Miao Xu
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
18
|
Abu-Raya B, Esser MJ, Nakabembe E, Reiné J, Amaral K, Diks AM, Imede E, Way SS, Harandi AM, Gorringe A, Le Doare K, Halperin SA, Berkowska MA, Sadarangani M. Antibody and B-cell Immune Responses Against Bordetella Pertussis Following Infection and Immunization. J Mol Biol 2023; 435:168344. [PMID: 37926426 DOI: 10.1016/j.jmb.2023.168344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Neither immunization nor recovery from natural infection provides life-long protection against Bordetella pertussis. Replacement of a whole-cell pertussis (wP) vaccine with an acellular pertussis (aP) vaccine, mutations in B. pertussis strains, and better diagnostic techniques, contribute to resurgence of number of cases especially in young infants. Development of new immunization strategies relies on a comprehensive understanding of immune system responses to infection and immunization and how triggering these immune components would ensure protective immunity. In this review, we assess how B cells, and their secretory products, antibodies, respond to B. pertussis infection, current and novel vaccines and highlight similarities and differences in these responses. We first focus on antibody-mediated immunity. We discuss antibody (sub)classes, elaborate on antibody avidity, ability to neutralize pertussis toxin, and summarize different effector functions, i.e. ability to activate complement, promote phagocytosis and activate NK cells. We then discuss challenges and opportunities in studying B-cell immunity. We highlight shared and unique aspects of B-cell and plasma cell responses to infection and immunization, and discuss how responses to novel immunization strategies better resemble those triggered by a natural infection (i.e., by triggering responses in mucosa and production of IgA). With this comprehensive review, we aim to shed some new light on the role of B cells and antibodies in the pertussis immunity to guide new vaccine development.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| | - Mirjam J Esser
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Eve Nakabembe
- Centre for Neonatal and Paediatric Infectious Diseases Research, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK; Department of Obstetrics and Gynaecology, Makerere University College of Health Sciences, Upper Mulago Hill Road, Kampala, P.O. Box 7072, Uganda
| | - Jesús Reiné
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
| | - Kyle Amaral
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Annieck M Diks
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden ZA 2333, the Netherlands
| | - Esther Imede
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Sing Sing Way
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Ali M Harandi
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Andrew Gorringe
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Kirsty Le Doare
- Centre for Neonatal and Paediatric Infectious Diseases Research, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK; Makerere University-Johns Hopkins University Research Collaboration, MU-JHU, Upper Mulago Hill, Kampala, P.O. Box 23491, Uganda
| | - Scott A Halperin
- Canadian Center for Vaccinology, Departments of Pediatrics and Microbiology and Immunology, Dalhousie University, Izaak Walton Killam Health Centre, and Nova Scotia Health Authority, Halifax, NS, Canada
| | - Magdalena A Berkowska
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Yeung AK, Villacorta-Martin C, Lindstrom-Vautrin J, Belkina AC, Vanuytsel K, Dowrey TW, Ysasi AB, Bawa P, Wang F, Vrbanac V, Mostoslavsky G, Balazs AB, Murphy GJ. De novo hematopoiesis from the fetal lung. Blood Adv 2023; 7:6898-6912. [PMID: 37729429 PMCID: PMC10685174 DOI: 10.1182/bloodadvances.2022008347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 09/22/2023] Open
Abstract
Hemogenic endothelial cells (HECs) are specialized cells that undergo endothelial-to-hematopoietic transition (EHT) to give rise to the earliest precursors of hematopoietic progenitors that will eventually sustain hematopoiesis throughout the lifetime of an organism. Although HECs are thought to be primarily limited to the aorta-gonad-mesonephros (AGM) during early development, EHT has been described in various other hematopoietic organs and embryonic vessels. Though not defined as a hematopoietic organ, the lung houses many resident hematopoietic cells, aids in platelet biogenesis, and is a reservoir for hematopoietic stem and progenitor cells (HSPCs). However, lung HECs have never been described. Here, we demonstrate that the fetal lung is a potential source of HECs that have the functional capacity to undergo EHT to produce de novo HSPCs and their resultant progeny. Explant cultures of murine and human fetal lungs display adherent endothelial cells transitioning into floating hematopoietic cells, accompanied by the gradual loss of an endothelial signature. Flow cytometric and functional assessment of fetal-lung explants showed the production of multipotent HSPCs that expressed the EHT and pre-HSPC markers EPCR, CD41, CD43, and CD44. scRNA-seq and small molecule modulation demonstrated that fetal lung HECs rely on canonical signaling pathways to undergo EHT, including TGFβ/BMP, Notch, and YAP. Collectively, these data support the possibility that post-AGM development, functional HECs are present in the fetal lung, establishing this location as a potential extramedullary site of de novo hematopoiesis.
Collapse
Affiliation(s)
- Anthony K. Yeung
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA
| | | | | | - Anna C. Belkina
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA
| | - Kim Vanuytsel
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA
| | - Todd W. Dowrey
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA
| | - Alexandra B. Ysasi
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Pushpinder Bawa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
| | - Feiya Wang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
| | | | - Gustavo Mostoslavsky
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA
| | | | - George J. Murphy
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA
| |
Collapse
|
20
|
Suchanek O, Ferdinand JR, Tuong ZK, Wijeyesinghe S, Chandra A, Clauder AK, Almeida LN, Clare S, Harcourt K, Ward CJ, Bashford-Rogers R, Lawley T, Manz RA, Okkenhaug K, Masopust D, Clatworthy MR. Tissue-resident B cells orchestrate macrophage polarisation and function. Nat Commun 2023; 14:7081. [PMID: 37925420 PMCID: PMC10625551 DOI: 10.1038/s41467-023-42625-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
B cells play a central role in humoral immunity but also have antibody-independent functions. Studies to date have focused on B cells in blood and secondary lymphoid organs but whether B cells reside in non-lymphoid organs (NLO) in homeostasis is unknown. Here we identify, using intravenous labeling and parabiosis, a bona-fide tissue-resident B cell population in lung, liver, kidney and urinary bladder, a substantial proportion of which are B-1a cells. Tissue-resident B cells are present in neonatal tissues and also in germ-free mice NLOs, albeit in lower numbers than in specific pathogen-free mice and following co-housing with 'pet-store' mice. They spatially co-localise with macrophages and regulate their polarization and function, promoting an anti-inflammatory phenotype, in-part via interleukin-10 production, with effects on bacterial clearance during urinary tract infection. Thus, our data reveal a critical role for tissue-resident B cells in determining the homeostatic 'inflammatory set-point' of myeloid cells, with important consequences for tissue immunity.
Collapse
Affiliation(s)
- Ondrej Suchanek
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - John R Ferdinand
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Zewen K Tuong
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Sathi Wijeyesinghe
- Department of Microbiology and Immunology, Centre for Immunology, University of Minnesota, Minneapolis, MI, USA
| | - Anita Chandra
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ann-Katrin Clauder
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Larissa N Almeida
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Simon Clare
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Christopher J Ward
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | | | - Trevor Lawley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - David Masopust
- Department of Microbiology and Immunology, Centre for Immunology, University of Minnesota, Minneapolis, MI, USA
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
21
|
Banerji R, Grifno GN, Shi L, Smolen D, LeBourdais R, Muhvich J, Eberman C, Hiller BE, Lee J, Regan K, Zheng S, Zhang S, Jiang J, Raslan AA, Breda JC, Pihl R, Traber K, Mazzilli S, Ligresti G, Mizgerd JP, Suki B, Nia HT. Crystal ribcage: a platform for probing real-time lung function at cellular resolution. Nat Methods 2023; 20:1790-1801. [PMID: 37710017 PMCID: PMC10860663 DOI: 10.1038/s41592-023-02004-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
Understanding the dynamic pathogenesis and treatment response in pulmonary diseases requires probing the lung at cellular resolution in real time. Despite advances in intravital imaging, optical imaging of the lung during active respiration and circulation has remained challenging. Here, we introduce the crystal ribcage: a transparent ribcage that allows multiscale optical imaging of the functioning lung from whole-organ to single-cell level. It enables the modulation of lung biophysics and immunity through intravascular, intrapulmonary, intraparenchymal and optogenetic interventions, and it preserves the three-dimensional architecture, air-liquid interface, cellular diversity and respiratory-circulatory functions of the lung. Utilizing these capabilities on murine models of pulmonary pathologies we probed remodeling of respiratory-circulatory functions at the single-alveolus and capillary levels during disease progression. The crystal ribcage and its broad applications presented here will facilitate further studies of nearly any pulmonary disease as well as lead to the identification of new targets for treatment strategies.
Collapse
Affiliation(s)
- Rohin Banerji
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Gabrielle N Grifno
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Linzheng Shi
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Dylan Smolen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Rob LeBourdais
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Johnathan Muhvich
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cate Eberman
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Bradley E Hiller
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jisu Lee
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kathryn Regan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Siyi Zheng
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sue Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - John Jiang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Ahmed A Raslan
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Julia C Breda
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Riley Pihl
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Katrina Traber
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sarah Mazzilli
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Giovanni Ligresti
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Hadi T Nia
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
22
|
Lyon De Ana C, Shenoy AT, Barker KA, Arafa EI, Etesami NS, Korkmaz FT, Soucy AM, Breen MP, Martin IMC, Tilton BR, Devarajan P, Crossland NA, Pihl RMF, Goltry WN, Belkina AC, Jones MR, Quinton LJ, Mizgerd JP. GL7 ligand expression defines a novel subset of CD4 + T RM cells in lungs recovered from pneumococcus. Mucosal Immunol 2023; 16:699-710. [PMID: 37604254 PMCID: PMC10591822 DOI: 10.1016/j.mucimm.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023]
Abstract
Streptococcus pneumoniae is the most common etiology of bacterial pneumonia, one of the leading causes of death in children and the elderly worldwide. During non-lethal infections with S. pneumoniae, lymphocytes accumulate in the lungs and protect against reinfection with serotype-mismatched strains. Cluster of differentiation CD4+ resident memory T (TRM) cells are known to be crucial for this protection, but the diversity of lung CD4+ TRM cells has yet to be fully delineated. We aimed to identify unique subsets and their contributions to lung immunity. After recovery from pneumococcal infections, we identified a distinct subset of CD4+ T cells defined by the phenotype CD11ahiCD69+GL7+ in mouse lungs. Phenotypic analyses for markers of lymphocyte memory and residence demonstrated that GL7+ T cells are a subset of CD4+ TRM cells. Functional studies revealed that unlike GL7- TRM subsets that were mostly (RAR-related Orphan Receptor gamma T) RORγT+, GL7+ TRM cells exhibited higher levels of (T-box expressed in T cells) T-bet and Gata-3, corresponding with increased synthesis of interferon-γ, interleukin-13, and interleukin-5, inherent to both T helper 1 (TH1) and TH2 functions. Thus, we propose that these cells provide novel contributions during pneumococcal pneumonia, serving as important determinants of lung immunity.
Collapse
Affiliation(s)
- Carolina Lyon De Ana
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Anukul T Shenoy
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department. of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kimberly A Barker
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Emad I Arafa
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Neelou S Etesami
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Filiz T Korkmaz
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Alicia M Soucy
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Michael P Breen
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Ian M C Martin
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Brian R Tilton
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Priyadharshini Devarajan
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Nicholas A Crossland
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Riley M F Pihl
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Flow Cytometry Core Facility, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Wesley N Goltry
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Anna C Belkina
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Flow Cytometry Core Facility, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Matthew R Jones
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Lee J Quinton
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
23
|
Diao J, Liu H, Cao H, Chen W. The dysfunction of Tfh cells promotes pediatric recurrent respiratory tract infections development by interfering humoral immune responses. Heliyon 2023; 9:e20778. [PMID: 37876425 PMCID: PMC10590952 DOI: 10.1016/j.heliyon.2023.e20778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/06/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Recurrent respiratory tract infections (RRTIs) are one of the most common pediatric diseases. Although the pathogenesis of pediatric RRTIs remains unknown, ineffective B cell-dominated humoral immunity has been considered as the core mechanism. During the course of pediatric RRTIs, B cell-dominated humoral immunity has changed from "protector" of respiratory system to "bystander" of respiratory tract infections. Under physiological condition, Tfh cells are essential for B cell-dominated humoral immunity, including regulating GC formation, promoting memory B cell (MB)/plasma cell (PC) differentiation, inducting immunoglobulin (Ig) class switching, and selecting affinity-matured antibodies. However, in disease states, Tfh cells are dysfunctional, which can be reflected by phenotypes and cytokine production. Tfh cell dysfunctions can cause the disorders of B cell-dominated humoral immunity, such as promoting B cell presented apoptosis, abrogating total Ig production, reducing MB/PC populations, and delaying affinity maturation of antigens-specific antibodies. In this review, we focused on the functions of B and Tfh cells in the homeostasis of respiratory system, and specifically discussed the disorders of humoral immunity and aberrant Tfh cell responses in the disease process of pediatric RRTIs. We hoped to provide some clues for the prevention and treatment of pediatric RRTIs.
Collapse
Affiliation(s)
- Jun Diao
- Department of Pediatrics, Yueyang Hospital of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huosheng Liu
- Department of Acupuncture and Moxibustion, Jiading Hospital of Traditional Chinese Medicine, Shanghai, 201800, China
| | - Hui Cao
- Department of Liver Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weibin Chen
- Department of Pediatrics, Yueyang Hospital of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Longet S, Paul S. Pivotal role of tissue-resident memory lymphocytes in the control of mucosal infections: can mucosal vaccination induce protective tissue-resident memory T and B cells? Front Immunol 2023; 14:1216402. [PMID: 37753095 PMCID: PMC10518612 DOI: 10.3389/fimmu.2023.1216402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Affiliation(s)
- Stephanie Longet
- Centre International de Recherche en Infectiologie, Team Groupe sur l'immunité des muqueuses et agents pathogènes (GIMAP), Université Jean Monnet, Université Claude Bernard Lyon, Inserm, Saint-Etienne, France
| | - Stephane Paul
- Centre International de Recherche en Infectiologie, Team Groupe sur l'immunité des muqueuses et agents pathogènes (GIMAP), Université Jean Monnet, Université Claude Bernard Lyon, Inserm, Saint-Etienne, France
- Centre d'investigation clinique (CIC) 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, Saint-Etienne, France
- Immunology Department, iBiothera Reference Center, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
25
|
Majumder S, Das S, Li P, Yang N, Dellario H, Sui H, Guan Z, Sun W. Pneumonic plague protection induced by a monophosphoryl lipid A decorated Yersinia outer-membrane-vesicle vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553697. [PMID: 37645871 PMCID: PMC10462118 DOI: 10.1101/2023.08.17.553697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A newly constructed Yersinia pseudotuberculosis mutant (YptbS46) carrying the lpxE insertion and pmrF-J deletion exclusively synthesized an adjuvant form of lipid A, monophosphoryl lipid A (MPLA). Outer membrane vesicles (OMVs) isolated from YptbS46 harboring an lcrV expression plasmid, pSMV13, were designated OMV 46 -LcrV, which contained MPLA and high amounts of LcrV and displayed low activation of Toll-like receptor 4 (TLR4). Similar to the previous OMV 44 -LcrV, intramuscular prime-boost immunization with 30 µg of OMV 46 -LcrV exhibited substantially reduced reactogenicity and conferred complete protection to mice against a high-dose of respiratory Y. pestis challenge. OMV 46 -LcrV immunization induced robust adaptive responses in both lung mucosal and systemic compartments and orchestrated innate immunity in the lung, which were correlated with rapid bacterial clearance and unremarkable lung damage during Y. pestis challenge. Additionally, OMV 46 -LcrV immunization conferred long-term protection. Moreover, immunization with reduced doses of OMV 46 -LcrV exhibited further lower reactogenicity and still provided great protection against pneumonic plague. Our studies strongly demonstrate the feasibility of OMV 46 -LcrV as a new type of plague vaccine candidate.
Collapse
|
26
|
Zhu W, Park J, Pho T, Wei L, Dong C, Kim J, Ma Y, Champion JA, Wang BZ. ISCOMs/MPLA-Adjuvanted SDAD Protein Nanoparticles Induce Improved Mucosal Immune Responses and Cross-Protection in Mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301801. [PMID: 37162451 PMCID: PMC10524461 DOI: 10.1002/smll.202301801] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Indexed: 05/11/2023]
Abstract
The epidemics caused by the influenza virus are a serious threat to public health and the economy. Adding appropriate adjuvants to improve immunogenicity and finding effective mucosal vaccines to combat respiratory infection at the portal of virus entry are important strategies to boost protection. In this study, a novel type of core/shell protein nanoparticle consisting of influenza nucleoprotein (NP) as the core and NA1-M2e or NA2-M2e fusion proteins as the coating antigens by SDAD hetero-bifunctional crosslinking is exploited. Immune-stimulating complexes (ISCOMs)/monophosphoryl lipid A (MPLA) adjuvants further boost the NP/NA-M2e SDAD protein nanoparticle-induced immune responses when administered intramuscularly. The ISCOMs/MPLA-adjuvanted protein nanoparticles are delivered through the intranasal route to validate the application as mucosal vaccines. ISCOMs/MPLA-adjuvanted nanoparticles induce significantly strengthened antigen-specific antibody responses, cytokine-secreting splenocytes in the systemic compartment, and higher levels of antigen-specific IgA and IgG in the local mucosa. Meanwhile, significantly expanded lung resident memory (RM) T and B cells (TRM /BRM ) and alveolar macrophages population are observed in ISCOMs/MPLA-adjuvanted nanoparticle-immunized mice with a 100% survival rate after homogeneous and heterogeneous H3N2 viral challenges. Taken together, ISCOMs/MPLA-adjuvanted protein nanoparticles could improve strong systemic and mucosal immune responses conferring protection in different immunization routes.
Collapse
Affiliation(s)
- Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Jaeyoung Park
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Thomas Pho
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Bioengineering Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lai Wei
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Joo Kim
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Bioengineering Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
27
|
Aihara F, Wang Y, Belkina AC, Fearns R, Mizgerd JP, Feng F, Kepler TB. Diversity of B Cell Populations and Ig Repertoire in Human Lungs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:486-496. [PMID: 37314411 PMCID: PMC10352589 DOI: 10.4049/jimmunol.2200340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/25/2023] [Indexed: 06/15/2023]
Abstract
The human lung carries a unique microbiome adapted to the air-filled, mucous-lined environment, the presence of which requires an immune system capable of recognizing harmful populations while preventing reactions toward commensals. B cells in the lung play a key role in pulmonary immunity, generating Ag-specific Abs, as well as cytokine secretion for immune activation and regulation. In this study, we compared B cell subsets in human lungs versus circulating cells by analyzing patient-paired lung and blood samples. We found a significantly smaller pool of CD19+, CD20+ B cells in the lung relative to the blood. CD27+, IgD-, class-switched memory B cells (Bmems) composed a larger proportion of the pool of pulmonary B cells. The residency marker CD69 was also significantly higher in the lung. We also sequenced the Ig V region genes (IgVRGs) of class-switched Bmems that do, or do not, express CD69. We observed the IgVRGs of pulmonary Bmems to be as heavily mutated from the unmutated common ancestor as those in circulation. Furthermore, we found progenies within a quasi-clone can gain or lose CD69 expression, regardless of whether the parent clone expressed the residency marker. Overall, our results show that despite its vascularized nature, human lungs carry a unique proportion of B cell subsets. The IgVRGs of pulmonary Bmems are as diverse as those in blood, and progenies of Bmems retain the ability to gain or lose residency.
Collapse
Affiliation(s)
- Fumiaki Aihara
- Department of Microbiology, Boston University, Boston, MA
| | - Yumei Wang
- Department of Microbiology, Boston University, Boston, MA
| | | | - Rachel Fearns
- Department of Microbiology, Boston University, Boston, MA
| | | | - Feng Feng
- Department of Microbiology, Boston University, Boston, MA
| | | |
Collapse
|
28
|
Grimsholm O. CD27 on human memory B cells-more than just a surface marker. Clin Exp Immunol 2023; 213:164-172. [PMID: 36508329 PMCID: PMC10361737 DOI: 10.1093/cei/uxac114] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 07/23/2023] Open
Abstract
Immunological memory protects the human body from re-infection with an earlier recognized pathogen. This memory comprises the durable serum antibody titres provided by long-lived plasma cells and the memory T and B cells with help from other cells. Memory B cells are the main precursor cells for new plasma cells during a secondary infection. Their formation starts very early in life, and they continue to form and undergo refinements throughout our lifetime. While the heterogeneity of the human memory B-cell pool is still poorly understood, specific cellular surface markers define most of the cell subpopulations. CD27 is one of the most commonly used markers to define human memory B cells. In addition, there are molecular markers, such as somatic mutations in the immunoglobulin heavy and light chains and isotype switching to, for example, IgG. Although not every memory B cell undergoes somatic hypermutation or isotype switching, most of them express these molecular traits in adulthood. In this review, I will focus on the most recent knowledge regarding CD27+ human memory B cells in health and disease, and describe how Ig sequencing can be used as a tool to decipher the evolutionary pathways of these cells.
Collapse
Affiliation(s)
- Ola Grimsholm
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, AT-1090 Vienna, Austria
| |
Collapse
|
29
|
Du J, Zhang J, Wang L, Wang X, Zhao Y, Lu J, Fan T, Niu M, Zhang J, Cheng F, Li J, Zhu Q, Zhang D, Pei H, Li G, Liang X, Huang H, Cao X, Liu X, Shao W, Sheng J. Selective oxidative protection leads to tissue topological changes orchestrated by macrophage during ulcerative colitis. Nat Commun 2023; 14:3675. [PMID: 37344477 PMCID: PMC10284839 DOI: 10.1038/s41467-023-39173-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Ulcerative colitis is a chronic inflammatory bowel disorder with cellular heterogeneity. To understand the composition and spatial changes of the ulcerative colitis ecosystem, here we use imaging mass cytometry and single-cell RNA sequencing to depict the single-cell landscape of the human colon ecosystem. We find tissue topological changes featured with macrophage disappearance reaction in the ulcerative colitis region, occurring only for tissue-resident macrophages. Reactive oxygen species levels are higher in the ulcerative colitis region, but reactive oxygen species scavenging enzyme SOD2 is barely detected in resident macrophages, resulting in distinct reactive oxygen species vulnerability for inflammatory macrophages and resident macrophages. Inflammatory macrophages replace resident macrophages and cause a spatial shift of TNF production during ulcerative colitis via a cytokine production network formed with T and B cells. Our study suggests components of a mechanism for the observed macrophage disappearance reaction of resident macrophages, providing mechanistic hints for macrophage disappearance reaction in other inflammation or infection situations.
Collapse
Affiliation(s)
- Juan Du
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China.
| | - Junlei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Zhejiang University Cancer Centre, Zhejiang University, Hangzhou, 310002, China
| | - Lin Wang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Zhejiang University Cancer Centre, Zhejiang University, Hangzhou, 310002, China
| | - Xun Wang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Zhejiang University Cancer Centre, Zhejiang University, Hangzhou, 310002, China
| | - Yaxing Zhao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Zhejiang University Cancer Centre, Zhejiang University, Hangzhou, 310002, China
| | - Jiaoying Lu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Tingmin Fan
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Central Laboratory, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310002, China
| | - Meng Niu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Jie Zhang
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Fei Cheng
- Pathology Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Jun Li
- Pathology Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Qi Zhu
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 JiangJun Road, Jiang Ning District, Nanjing, Jiangsu, 211106, China
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 JiangJun Road, Jiang Ning District, Nanjing, Jiangsu, 211106, China
| | - Hao Pei
- MobiDrop (Zhejiang), No. 455 Heshun Road, Tongxiang, Zhejiang, 314500, China
| | - Guang Li
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing, 100024, China
| | - Xingguang Liang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Central Laboratory, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310002, China
| | - He Huang
- Frontiers Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaocang Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Department of Hepato-Gastroenterology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300000, China.
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing, 100024, China.
| | - Wei Shao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 JiangJun Road, Jiang Ning District, Nanjing, Jiangsu, 211106, China.
| | - Jianpeng Sheng
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China.
- Zhejiang University Cancer Centre, Zhejiang University, Hangzhou, 310002, China.
| |
Collapse
|
30
|
Pitiot A, Ferreira M, Parent C, Boisseau C, Cortes M, Bouvart L, Paget C, Heuzé-Vourc'h N, Sécher T. Mucosal administration of anti-bacterial antibodies provide long-term cross-protection against Pseudomonas aeruginosa respiratory infection. Mucosal Immunol 2023; 16:312-325. [PMID: 36990281 DOI: 10.1016/j.mucimm.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023]
Abstract
Bacterial respiratory infections, either acute or chronic, are major threats to human health. Direct mucosal administration, through the airways, of therapeutic antibodies (Abs) offers a tremendous opportunity to benefit patients with respiratory infections. The mode of action of anti-infective Abs relies on pathogen neutralization and crystallizable fragment (Fc)-mediated recruitment of immune effectors to facilitate their elimination. Using a mouse model of acute pneumonia induced by Pseudomonas aeruginosa, we depicted the immunomodulatory mode of action of a neutralizing anti-bacterial Abs. Beyond the rapid and efficient containment of the primary infection, the Abs delivered through the airways harnessed genuine innate and adaptive immune responses to provide long-term protection, preventing secondary bacterial infection. In vitro antigen-presenting cells stimulation assay, as well as in vivo bacterial challenges and serum transfer experiments indicate an essential contribution of immune complexes with the Abs and pathogen in the induction of the sustained and protective anti-bacterial humoral response. Interestingly, the long-lasting response protected partially against secondary infections with heterologous P. aeruginosa strains. Overall, our findings suggest that Abs delivered mucosally promotes bacteria neutralization and provides protection against secondary infection. This opens novel perspectives for the development of anti-infective Abs delivered to the lung mucosa, to treat respiratory infections.
Collapse
Affiliation(s)
- Aubin Pitiot
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Marion Ferreira
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Christelle Parent
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Chloé Boisseau
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Mélanie Cortes
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Laura Bouvart
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Christophe Paget
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Thomas Sécher
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France.
| |
Collapse
|
31
|
Reusch L, Angeletti D. Memory B-cell diversity: From early generation to tissue residency and reactivation. Eur J Immunol 2023; 53:e2250085. [PMID: 36811174 DOI: 10.1002/eji.202250085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Memory B cells (MBCs) have a crucial function in providing an enhanced response to repeated infections. Upon antigen encounter, MBC can either rapidly differentiate to antibody secreting cells or enter germinal centers (GC) to further diversify and affinity mature. Understanding how and when MBC are formed, where they reside and how they select their fate upon reactivation has profound implications for designing strategies to improve targeted, next-generation vaccines. Recent studies have crystallized much of our knowledge on MBC but also reported several surprising discoveries and gaps in our current understanding. Here, we review the latest advancements in the field and highlight current unknowns. In particular, we focus on timing and cues leading to MBC generation before and during the GC reaction, discuss how MBC become resident in mucosal tissues, and finally, provide an overview of factors shaping MBC fate-decision upon reactivation in mucosal and lymphoid tissues.
Collapse
Affiliation(s)
- Laura Reusch
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
32
|
T-cell-B-cell collaboration in the lung. Curr Opin Immunol 2023; 81:102284. [PMID: 36753826 DOI: 10.1016/j.coi.2023.102284] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
Collaboration between T and B cells in secondary lymphoid organs is a crucial component of adaptive immunity, but lymphocytes also persist in other tissues. Recent studies have examined T-cell-B-cell interactions in nonlymphoid tissues such as the lung. CD4+ T- resident helper cells (TRH) remain in the lung after influenza infection and support both resident CD8 T cells and B cells. Multiple lung-resident B-cell subsets (B-resident memory (BRM)) that exhibit spatial and phenotypic diversity have also been described. Though not generated by all types of infection, inducible bronchus-associated lymphoid tissue offers a logical place for T and B cells to interact. Perturbations to BRM and TRH cells elicit effects specific to Immunoglobulin A (IgA) production, an antibody isotype with privileged access to mucosa. Understanding the interplay of lymphocytes in mucosal tissues, which can be insulated from systemic immune responses, may improve the design of future vaccines and therapies.
Collapse
|
33
|
CD73: Friend or Foe in Lung Injury. Int J Mol Sci 2023; 24:ijms24065545. [PMID: 36982618 PMCID: PMC10056814 DOI: 10.3390/ijms24065545] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Ecto-5′-nucleotidase (CD73) plays a strategic role in calibrating the magnitude and chemical nature of purinergic signals that are delivered to immune cells. Its primary function is to convert extracellular ATP to adenosine in concert with ectonucleoside triphosphate diphosphohydrolase-1 (CD39) in normal tissues to limit an excessive immune response in many pathophysiological events, such as lung injury induced by a variety of contributing factors. Multiple lines of evidence suggest that the location of CD73, in proximity to adenosine receptor subtypes, indirectly determines its positive or negative effect in a variety of organs and tissues and that its action is affected by the transfer of nucleoside to subtype-specific adenosine receptors. Nonetheless, the bidirectional nature of CD73 as an emerging immune checkpoint in the pathogenesis of lung injury is still unknown. In this review, we explore the relationship between CD73 and the onset and progression of lung injury, highlighting the potential value of this molecule as a drug target for the treatment of pulmonary disease.
Collapse
|
34
|
Iwanaga N, Devarajan P, Shenoy AT. Editorial: Adaptive immunity to respiratory pathogens. Front Immunol 2023; 14:1174178. [PMID: 36949940 PMCID: PMC10026996 DOI: 10.3389/fimmu.2023.1174178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Affiliation(s)
- Naoki Iwanaga
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Priyadharshini Devarajan
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Anukul T. Shenoy
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
35
|
Agrafiotis A, Dizerens R, Vincenti I, Wagner I, Kuhn R, Shlesinger D, Manero-Carranza M, Cotet TS, Hong KL, Page N, Fonta N, Shammas G, Mariotte A, Piccinno M, Kreutzfeldt M, Gruntz B, Ehling R, Genovese A, Pedrioli A, Dounas A, Franzenburg S, Tumani H, Kümpfel T, Kavaka V, Gerdes LA, Dornmair K, Beltrán E, Oxenius A, Reddy ST, Merkler D, Yermanos A. Persistent virus-specific and clonally expanded antibody-secreting cells respond to induced self-antigen in the CNS. Acta Neuropathol 2023; 145:335-355. [PMID: 36695896 PMCID: PMC9925600 DOI: 10.1007/s00401-023-02537-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/20/2022] [Accepted: 01/02/2023] [Indexed: 01/26/2023]
Abstract
B cells contribute to the pathogenesis of both cellular- and humoral-mediated central nervous system (CNS) inflammatory diseases through a variety of mechanisms. In such conditions, B cells may enter the CNS parenchyma and contribute to local tissue destruction. It remains unexplored, however, how infection and autoimmunity drive transcriptional phenotypes, repertoire features, and antibody functionality. Here, we profiled B cells from the CNS of murine models of intracranial (i.c.) viral infections and autoimmunity. We identified a population of clonally expanded, antibody-secreting cells (ASCs) that had undergone class-switch recombination and extensive somatic hypermutation following i.c. infection with attenuated lymphocytic choriomeningitis virus (rLCMV). Recombinant expression and characterisation of these antibodies revealed specificity to viral antigens (LCMV glycoprotein GP), correlating with ASC persistence in the brain weeks after resolved infection. Furthermore, these virus-specific ASCs upregulated proliferation and expansion programs in response to the conditional and transient induction of the LCMV GP as a neo-self antigen by astrocytes. This class-switched, clonally expanded, and mutated population persisted and was even more pronounced when peripheral B cells were depleted prior to autoantigen induction in the CNS. In contrast, the most expanded B cell clones in mice with persistent expression of LCMV GP in the CNS did not exhibit neo-self antigen specificity, potentially a consequence of local tolerance induction. Finally, a comparable population of clonally expanded, class-switched, and proliferating ASCs was detected in the cerebrospinal fluid of relapsing multiple sclerosis (RMS) patients. Taken together, our findings support the existence of B cells that populate the CNS and are capable of responding to locally encountered autoantigens.
Collapse
Affiliation(s)
- Andreas Agrafiotis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Raphael Dizerens
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ilena Vincenti
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Raphael Kuhn
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Danielle Shlesinger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Tudor-Stefan Cotet
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kai-Lin Hong
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Nicolas Fonta
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ghazal Shammas
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Alexandre Mariotte
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Margot Piccinno
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Benedikt Gruntz
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Roy Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | | | - Andreas Dounas
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, Faculty of Medicine, University Hospital and Biomedical Center (BMC), LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Vladyslav Kavaka
- Institute of Clinical Neuroimmunology, Faculty of Medicine, University Hospital and Biomedical Center (BMC), LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Lisa Ann Gerdes
- Institute of Clinical Neuroimmunology, Faculty of Medicine, University Hospital and Biomedical Center (BMC), LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, Faculty of Medicine, University Hospital and Biomedical Center (BMC), LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, Faculty of Medicine, University Hospital and Biomedical Center (BMC), LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | | | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland.
| | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
36
|
Swadling L, Maini MK. Can T Cells Abort SARS-CoV-2 and Other Viral Infections? Int J Mol Sci 2023; 24:4371. [PMID: 36901802 PMCID: PMC10002440 DOI: 10.3390/ijms24054371] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Despite the highly infectious nature of the SARS-CoV-2 virus, it is clear that some individuals with potential exposure, or even experimental challenge with the virus, resist developing a detectable infection. While a proportion of seronegative individuals will have completely avoided exposure to the virus, a growing body of evidence suggests a subset of individuals are exposed, but mediate rapid viral clearance before the infection is detected by PCR or seroconversion. This type of "abortive" infection likely represents a dead-end in transmission and precludes the possibility for development of disease. It is, therefore, a desirable outcome on exposure and a setting in which highly effective immunity can be studied. Here, we describe how early sampling of a new pandemic virus using sensitive immunoassays and a novel transcriptomic signature can identify abortive infections. Despite the challenges in identifying abortive infections, we highlight diverse lines of evidence supporting their occurrence. In particular, expansion of virus-specific T cells in seronegative individuals suggests abortive infections occur not only after exposure to SARS-CoV-2, but for other coronaviridae, and diverse viral infections of global health importance (e.g., HIV, HCV, HBV). We discuss unanswered questions related to abortive infection, such as: 'Are we just missing antibodies? Are T cells an epiphenomenon? What is the influence of the dose of viral inoculum?' Finally, we argue for a refinement of the current paradigm that T cells are only involved in clearing established infection; instead, we emphasise the importance of considering their role in terminating early viral replication by studying abortive infections.
Collapse
Affiliation(s)
- Leo Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| | - Mala K. Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| |
Collapse
|
37
|
Humphries DC, O’Connor RA, Stewart HL, Quinn TM, Gaughan EE, Mills B, Williams GO, Stone JM, Finlayson K, Chabaud-Riou M, Boudet F, Dhaliwal K, Pavot V. Specific in situ immuno-imaging of pulmonary-resident memory lymphocytes in human lungs. Front Immunol 2023; 14:1100161. [PMID: 36845117 PMCID: PMC9951616 DOI: 10.3389/fimmu.2023.1100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Pulmonary-resident memory T cells (TRM) and B cells (BRM) orchestrate protective immunity to reinfection with respiratory pathogens. Developing methods for the in situ detection of these populations would benefit both research and clinical settings. Methods To address this need, we developed a novel in situ immunolabelling approach combined with clinic-ready fibre-based optical endomicroscopy (OEM) to detect canonical markers of lymphocyte tissue residency in situ in human lungs undergoing ex vivo lung ventilation (EVLV). Results Initially, cells from human lung digests (confirmed to contain TRM/BRM populations using flow cytometry) were stained with CD69 and CD103/CD20 fluorescent antibodies and imaged in vitro using KronoScan, demonstrating it's ability to detect antibody labelled cells. We next instilled these pre-labelled cells into human lungs undergoing EVLV and confirmed they could still be visualised using both fluorescence intensity and lifetime imaging against background lung architecture. Finally, we instilled fluorescent CD69 and CD103/CD20 antibodies directly into the lung and were able to detect TRM/BRM following in situ labelling within seconds of direct intra-alveolar delivery of microdoses of fluorescently labelled antibodies. Discussion In situ, no wash, immunolabelling with intra-alveolar OEM imaging is a novel methodology with the potential to expand the experimental utility of EVLV and pre-clinical models.
Collapse
Affiliation(s)
- Duncan C. Humphries
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom,Research & Development, Sanofi, Marcy L’Etoile, France
| | - Richard A. O’Connor
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hazel L. Stewart
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tom M. Quinn
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Erin E. Gaughan
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Beth Mills
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gareth O.S. Williams
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - James M. Stone
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom,Centre for Photonic and Physics, Bath University, Bath, United Kingdom
| | - Keith Finlayson
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Kevin Dhaliwal
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom,*Correspondence: Kevin Dhaliwal, ; Vincent Pavot,
| | - Vincent Pavot
- Research & Development, Sanofi, Marcy L’Etoile, France,*Correspondence: Kevin Dhaliwal, ; Vincent Pavot,
| |
Collapse
|
38
|
Bertrand Y, Sánchez-Montalvo A, Hox V, Froidure A, Pilette C. IgA-producing B cells in lung homeostasis and disease. Front Immunol 2023; 14:1117749. [PMID: 36936934 PMCID: PMC10014553 DOI: 10.3389/fimmu.2023.1117749] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Immunoglobulin A (IgA) is the most abundant Ig in mucosae where it plays key roles in host defense against pathogens and in mucosal immunoregulation. Whereas intense research has established the different roles of secretory IgA in the gut, its function has been much less studied in the lung. This review will first summarize the state-of-the-art knowledge on the distribution and phenotype of IgA+ B cells in the human lung in both homeostasis and disease. Second, it will analyze the studies looking at cellular and molecular mechanisms of homing and priming of IgA+ B cells in the lung, notably following immunization. Lastly, published data on observations related to IgA and IgA+ B cells in lung and airway disease such as asthma, cystic fibrosis, idiopathic pulmonary fibrosis, or chronic rhinosinusitis, will be discussed. Collectively it provides the state-of-the-art of our current understanding of the biology of IgA-producing cells in the airways and identifies gaps that future research should address in order to improve mucosal protection against lung infections and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Youri Bertrand
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
| | - Alba Sánchez-Montalvo
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, Katholieke universiteit (KU) Leuven, Leuven, Belgium
| | - Valérie Hox
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
- Department of Otorhinolaryngology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Antoine Froidure
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
- Service de Pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Charles Pilette
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
- Service de Pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- *Correspondence: Charles Pilette,
| |
Collapse
|
39
|
Notario GR, Kwak K. Increased B Cell Understanding Puts Improved Vaccine Platforms Just Over the Horizon. Immune Netw 2022; 22:e47. [PMID: 36627934 PMCID: PMC9807965 DOI: 10.4110/in.2022.22.e47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 12/30/2022] Open
Abstract
In the face of an endlessly expanding repertoire of Ags, vaccines are constantly being tested, each more effective than the last. As viruses and other pathogens evolve to become more infectious, the need for efficient and effective vaccines grows daily, which is especially obvious in an era that is still attempting to remove itself from the clutches of the severe acute respiratory syndrome coronavirus 2, the cause of coronavirus pandemic. To continue evolving alongside these pathogens, it is proving increasingly essential to consider one of the main effector cells of the immune system. As one of the chief orchestrators of the humoral immune response, the B cell and other lymphocytes are essential to not only achieving immunity, but also maintaining it, which is the vital objective of every vaccine.
Collapse
Affiliation(s)
- Geneva Rose Notario
- Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.,Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Kihyuck Kwak
- Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.,Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
40
|
Hu X, Wu M, Ma T, Zhang Y, Zou C, Wang R, Zhang Y, Ren Y, Li Q, Liu H, Li H, Wang T, Sun X, Yang Y, Tang M, Li X, Li J, Gao X, Li T, Zhou X. Single-cell transcriptomics reveals distinct cell response between acute and chronic pulmonary infection of Pseudomonas aeruginosa. MedComm (Beijing) 2022; 3:e193. [PMID: 36514779 PMCID: PMC9732387 DOI: 10.1002/mco2.193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
Knowledge of the changes in the immune microenvironment during pulmonary bacterial acute and chronic infections is limited. The dissection of immune system may provide a basis for effective therapeutic strategies against bacterial infection. Here, we describe a single immune cell atlas of mouse lungs after acute and chronic Pseudomonas aeruginosa infection using single-cell transcriptomics, multiplex immunohistochemistry, and flow cytometry. Our single-cell transcriptomic analysis revealed large-scale comprehensive changes in immune cell composition and high variation in cell-cell interactions after acute and chronic P. aeruginosa infection. Bacterial infection reprograms the genetic architecture of immune cell populations. We identified specific immune cell types, including Cxcl2+ B cells and interstitial macrophages, in response to acute and chronic infection, such as their proportions, distribution, and functional status. Importantly, the patterns of immune cell response are drastically different between acute and chronic infection models. The distinct molecular signatures highlight the importance of the highly dynamic cell-cell interaction process in different pathological conditions, which has not been completely revealed previously. These findings provide a comprehensive and unbiased immune cellular landscape for respiratory pathogenesis in mice, enabling further understanding of immunologic mechanisms in infection and inflammatory diseases.
Collapse
Affiliation(s)
- Xueli Hu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Mingbo Wu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Teng Ma
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Yige Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Chaoyu Zou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Ruihuan Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Yongxin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Yuan Ren
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Qianqian Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Huan Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Heyue Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Taolin Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Xiaolong Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Miao Tang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Xuefeng Li
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jing Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xiang Gao
- Department of Neurosurgery and Institute of NeurosurgeryState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Taiwen Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| |
Collapse
|
41
|
Wu C, Liang JA, Brenchley JM, Shin T, Fan X, Mortlock RD, Abraham D, Allan DS, Thomas ML, Hong S, Dunbar CE. Barcode clonal tracking of tissue-resident immune cells in rhesus macaque highlights distinct clonal distribution pattern of tissue NK cells. Front Immunol 2022; 13:994498. [PMID: 36605190 PMCID: PMC9808525 DOI: 10.3389/fimmu.2022.994498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
Tissue resident (TR) immune cells play important roles in facilitating tissue homeostasis, coordinating immune responses against infections and tumors, and maintaining immunological memory. While studies have shown these cells are distinct phenotypically and functionally from cells found in the peripheral blood (PB), the clonal relationship between these populations across tissues has not been comprehensively studied in primates or humans. We utilized autologous transplantation of rhesus macaque hematopoietic stem and progenitor cells containing high diversity barcodes to track the clonal distribution of T, B, myeloid and natural killer (NK) cell populations across tissues, including liver, spleen, lung, and gastrointestinal (GI) tract, in comparison with PB longitudinally post-transplantation, in particular we focused on NK cells which do not contain endogenous clonal markers and have not been previously studied in this context. T cells demonstrated tissue-specific clonal expansions as expected, both overlapping and distinct from blood T cells. In contrast, B and myeloid cells showed a much more homogeneous clonal pattern across various tissues and the blood. The clonal distribution of TR NK was more heterogenous between individual animals. In some animals, as we have previously reported, we observed large PB clonal expansions in mature CD56-CD16+ NK cells. Notably, we found a separate set of highly expanded PB clones in CD16-CD56- (DN) NK subset that were also contributing to TR NK cells in all tissues examined, both in TR CD56-CD16+ and DN populations but absent in CD56+16- TR NK across all tissues analyzed. Additionally, we observed sets of TR NK clones specific to individual tissues such as lung or GI tract and sets of TR NK clones shared across liver and spleen, distinct from other tissues. Combined with prior functional data that suggests NK memory is restricted to liver or other TR NK cells, these clonally expanded TR NK cells may be of interest for future investigation into NK cell tissue immunological memory, with implications for development of NK based immunotherapies and an understanding of NK memory.
Collapse
Affiliation(s)
- Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jialiu A. Liang
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jason M. Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Taehoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Xing Fan
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ryland D. Mortlock
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Diana M. Abraham
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - David S.J. Allan
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Marvin L. Thomas
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, United States
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
42
|
Valeri V, Sochon A, Cousu C, Chappert P, Lecoeuche D, Blanc P, Weill JC, Reynaud CA. The whole-cell pertussis vaccine imposes a broad effector B cell response in mouse heterologous prime-boost settings. JCI Insight 2022; 7:157034. [PMID: 36136586 PMCID: PMC9675447 DOI: 10.1172/jci.insight.157034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 09/16/2022] [Indexed: 12/15/2022] Open
Abstract
ÍSince the introduction of new generation pertussis vaccines, resurgence of pertussis has been observed in many developed countries. Former whole-cell pertussis (wP) vaccines are able to protect against disease and transmission but have been replaced in several industrialized countries because of their reactogenicity and adverse effects. Current acellular pertussis (aP) vaccines, made of purified proteins of Bordetella pertussis, are efficient at preventing disease but fail to induce long-term protection from infection. While the systemic and mucosal T cell immunity induced by the 2 types of vaccines has been well described, much less is known concerning B cell responses. Taking advantage of an inducible activation-induced cytidine deaminase fate-mapping mouse model, we compared effector and memory B cells induced by the 2 classes of vaccines and showed that a stronger and broader memory B cell and plasma cell response was achieved by a wP prime. We also observed that homologous or heterologous vaccine combinations that include at least 1 wP administration, even as a booster dose, were sufficient to induce this broad effector response, thus highlighting its dominant imprint on the B cell profile. Finally, we describe the settlement of memory B cell populations in the lung following subcutaneous wP prime vaccination.
Collapse
Affiliation(s)
- Viviana Valeri
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Akhésa Sochon
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Clara Cousu
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pascal Chappert
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Damiana Lecoeuche
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Jean-Claude Weill
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Claude-Agnès Reynaud
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
43
|
Shenoy AT, De Ana CL, Barker KA, Arafa EI, Martin IM, Mizgerd JP, Belkina AC. CPHEN-011: Comprehensive phenotyping of murine lung resident lymphocytes after recovery from pneumococcal pneumonia. Cytometry A 2022; 101:892-902. [PMID: 34854229 PMCID: PMC9160214 DOI: 10.1002/cyto.a.24522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 01/27/2023]
Abstract
Recovery from pneumococcal (Spn) pneumonia induces development of tissue resident memory CD4+ TRM cells, BRM cells, and antibody secreting plasma cells in experienced lungs. These tissue resident lymphocytes confer protection against subsequent lethal challenge by serotype mismatched Spn (termed as heterotypic immunity). While traditional flow cytometry and gating strategies support premeditated identification of cells using a limited set of markers, discovery of novel tissue resident lymphocytes necessitates stable platforms that can handle larger sets of phenotypic markers and lends itself to unbiased clustering approaches. In this report, we leverage the power of full spectrum flow cytometry (FSFC) to develop a comprehensive panel of phenotypic markers that allows identification of multiple subsets of tissue resident lymphocytes in Spn-experienced murine lungs. Using Phenograph algorithm on this multidimensional data, we identify unforeseen heterogeneity in lung resident adaptive immune landscape which includes unexpected subsets of TRM and BRM cells. Further, using conventional gating strategy informed by our unsupervised clustering data, we confirm their presence exquisitely in Spn-experienced lungs as potentially relevant to heterotypic immunity and define CD73 as a highly expressed marker on TRM cells. Thus, our study emphasizes the utility of FSFC for confirmatory and discovery studies relating to tissue resident adaptive immunity.
Collapse
Affiliation(s)
- Anukul T. Shenoy
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Carolina Lyon De Ana
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
- Dept. of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kimberly A. Barker
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
- Dept. of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Emad I. Arafa
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
- Dept. of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ian M.C. Martin
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Joseph P. Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
- Dept. of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- Dept. of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Dept. of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anna C. Belkina
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, 02118, USA
- Dept. of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
44
|
Abstract
Barrier tissues are the primary site of infection for pathogens likely to cause future pandemics. Tissue-resident lymphocytes can rapidly detect pathogens upon infection of barrier tissues and are critical in preventing viral spread. However, most vaccines fail to induce tissue-resident lymphocytes and are instead reliant on circulating antibodies to mediate protective immunity. Circulating antibody titers wane over time following vaccination leaving individuals susceptible to breakthrough infections by variant viral strains that evade antibody neutralization. Memory B cells were recently found to establish tissue residence following infection of barrier tissues. Here, we summarize emerging evidence for the importance of tissue-resident memory B cells in the establishment of protective immunity against viral and bacterial challenge. We also discuss the role of tissue-resident memory B cells in regulating the progression of non-infectious diseases. Finally, we examine new approaches to develop vaccines capable of eliciting barrier immunity.
Collapse
Affiliation(s)
- Changfeng Chen
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Brian J Laidlaw
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
45
|
Vesin B, Lopez J, Noirat A, Authié P, Fert I, Le Chevalier F, Moncoq F, Nemirov K, Blanc C, Planchais C, Mouquet H, Guinet F, Hardy D, Vives FL, Gerke C, Anna F, Bourgine M, Majlessi L, Charneau P. An intranasal lentiviral booster reinforces the waning mRNA vaccine-induced SARS-CoV-2 immunity that it targets to lung mucosa. Mol Ther 2022; 30:2984-2997. [PMID: 35484842 PMCID: PMC9044714 DOI: 10.1016/j.ymthe.2022.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 12/19/2022] Open
Abstract
As the coronavirus disease 2019 (COVID-19) pandemic continues and new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern emerge, the adaptive immunity initially induced by the first-generation COVID-19 vaccines starts waning and needs to be strengthened and broadened in specificity. Vaccination by the nasal route induces mucosal, humoral, and cellular immunity at the entry point of SARS-CoV-2 into the host organism and has been shown to be the most effective for reducing viral transmission. The lentiviral vaccination vector (LV) is particularly suitable for this route of immunization owing to its non-cytopathic, non-replicative, and scarcely inflammatory properties. Here, to set up an optimized cross-protective intranasal booster against COVID-19, we generated an LV encoding stabilized spike of SARS-CoV-2 Beta variant (LV::SBeta-2P). mRNA vaccine-primed and -boosted mice, with waning primary humoral immunity at 4 months after vaccination, were boosted intranasally with LV::SBeta-2P. A strong boost effect was detected on cross-sero-neutralizing activity and systemic T cell immunity. In addition, mucosal anti-spike IgG and IgA, lung-resident B cells, and effector memory and resident T cells were efficiently induced, correlating with complete pulmonary protection against the SARS-CoV-2 Delta variant, demonstrating the suitability of the LV::SBeta-2P vaccine candidate as an intranasal booster against COVID-19. LV::SBeta-2P vaccination was also fully protective against Omicron infection of the lungs and central nervous system, in the highly susceptible B6.K18-hACE2IP-THV transgenic mice.
Collapse
Affiliation(s)
- Benjamin Vesin
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| | - Jodie Lopez
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| | - Amandine Noirat
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| | - Pierre Authié
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| | - Ingrid Fert
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| | - Fabien Le Chevalier
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| | - Fanny Moncoq
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| | - Kirill Nemirov
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| | - Catherine Blanc
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| | - Cyril Planchais
- Laboratory of Humoral Immunology, Université de Paris, Immunology Department, Institut Pasteur, INSERM U1222, Paris F-75015, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Université de Paris, Immunology Department, Institut Pasteur, INSERM U1222, Paris F-75015, France
| | - Françoise Guinet
- Lymphocytes and Immunity Unit, Université de Paris, Immunology Department, Institut Pasteur, Paris F-75015, France
| | - David Hardy
- Histopathology Platform, Institut Pasteur, Paris F-75015, France
| | | | - Christiane Gerke
- Institut Pasteur, Université de Paris, Innovation Office, Vaccine Programs, Institut Pasteur, Paris F-75015, France
| | - François Anna
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| | - Maryline Bourgine
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| | - Laleh Majlessi
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France.
| | - Pierre Charneau
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| |
Collapse
|
46
|
Abstract
Epithelial barriers, which include the gastrointestinal, respiratory, and genitourinary mucosa, compose the body’s front line of defense. Since barrier tissues are persistently exposed to microbial challenges, a rapid response that can deal with diverse invading pathogens is crucial. Because B cells have been perceived as indirectly contributing to immune responses through antibody production, B cells functioning in the peripheral organs have been outside the scope of researchers. However, recent evidence supports the existence of tissue-resident memory B cells (BRMs) in the lungs. This population’s defensive response was stronger and faster than that of their circulating counterparts and could resist heterogeneous strains. With such traits, BRMs could be a promising target for vaccine design, but much about them remains to be revealed, including their locations, origin, specific markers, and the mechanisms of their establishment and maintenance. There is evidence for resident B cells in organs other than the lungs, suggesting that B cells are directly involved in the immune reactions of multiple non-lymphoid organs. This review summarizes the history of the discovery of BRMs and discusses important unresolved questions. Unique characteristics of humoral immunity that play an important role in the peripheral organs will be described briefly. Future research on B cells residing in non-lymphoid organs will provide new insights to help solve major problems regarding human health.
Collapse
Affiliation(s)
- Choong Man Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Ji Eun Oh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- BioMedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- *Correspondence: Ji Eun Oh,
| |
Collapse
|
47
|
Rahimi RA, Cho JL, Jakubzick CV, Khader SA, Lambrecht BN, Lloyd CM, Molofsky AB, Talbot S, Bonham CA, Drake WP, Sperling AI, Singer BD. Advancing Lung Immunology Research: An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2022; 67:e1-18. [PMID: 35776495 PMCID: PMC9273224 DOI: 10.1165/rcmb.2022-0167st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The mammalian airways and lungs are exposed to a myriad of inhaled particulate matter, allergens, and pathogens. The immune system plays an essential role in protecting the host from respiratory pathogens, but a dysregulated immune response during respiratory infection can impair pathogen clearance and lead to immunopathology. Furthermore, inappropriate immunity to inhaled antigens can lead to pulmonary diseases. A complex network of epithelial, neural, stromal, and immune cells has evolved to sense and respond to inhaled antigens, including the decision to promote tolerance versus a rapid, robust, and targeted immune response. Although there has been great progress in understanding the mechanisms governing immunity to respiratory pathogens and aeroantigens, we are only beginning to develop an integrated understanding of the cellular networks governing tissue immunity within the lungs and how it changes after inflammation and over the human life course. An integrated model of airway and lung immunity will be necessary to improve mucosal vaccine design as well as prevent and treat acute and chronic inflammatory pulmonary diseases. Given the importance of immunology in pulmonary research, the American Thoracic Society convened a working group to highlight central areas of investigation to advance the science of lung immunology and improve human health.
Collapse
|
48
|
Pathogenesis of pneumonia and acute lung injury. Clin Sci (Lond) 2022; 136:747-769. [PMID: 35621124 DOI: 10.1042/cs20210879] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022]
Abstract
Pneumonia and its sequelae, acute lung injury, present unique challenges for pulmonary and critical care healthcare professionals, and these challenges have recently garnered global attention due to the ongoing Sars-CoV-2 pandemic. One limitation to translational investigation of acute lung injury, including its most severe manifestation (acute respiratory distress syndrome, ARDS) has been heterogeneity resulting from the clinical and physiologic diagnosis that represents a wide variety of etiologies. Recent efforts have improved our understanding and approach to heterogeneity by defining sub-phenotypes of ARDS although significant gaps in knowledge remain. Improving our mechanistic understanding of acute lung injury and its most common cause, infectious pneumonia, can advance our approach to precision targeted clinical interventions. Here, we review the pathogenesis of pneumonia and acute lung injury, including how respiratory infections and lung injury disrupt lung homoeostasis, and provide an overview of respiratory microbial pathogenesis, the lung microbiome, and interventions that have been demonstrated to improve outcomes-or not-in human clinical trials.
Collapse
|
49
|
The STING Ligand and Delivery System Synergistically Enhance the Immunogenicity of an Intranasal Spike SARS-CoV-2 Vaccine Candidate. Biomedicines 2022; 10:biomedicines10051142. [PMID: 35625879 PMCID: PMC9138454 DOI: 10.3390/biomedicines10051142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
The respiratory organ serves as a primary target site for SARS-CoV-2. Thus, the vaccine-stimulating immune response of the respiratory tract is significant in controlling SARS-CoV-2 transmission and disease development. In this study, mucoadhesive nanoparticles were used to deliver SARS-CoV-2 spike proteins (S-NPs) into the nasal tracts of mice. The responses in the respiratory organ and the systemic responses were monitored. The administration of S-NPs along with cGAMP conferred a robust stimulation of antibody responses in the respiratory tract, as demonstrated by an increase of IgA and IgG antibodies toward the spike proteins in bronchoalveolar lavages (BALs) and the lungs. Interestingly, the elicited antibodies were able to neutralize both the wild-type and Delta variant strains of SARS-CoV-2. Significantly, the intranasal immunization also stimulated systemic responses. This is evidenced by the increased production of circulating IgG and IgA, which were able to neutralize and bind specifically to the SARS-CoV-2 virion and spike protein. Additionally, this intranasal administration potently activated a splenic T cell response and the production of Th-1 cytokines, suggesting that this vaccine may well activate a cellular response in the respiratory tract. The results demonstrate that STING agonist strongly acts as an adjuvant to the immunogenicity of S-NPs. This platform may be an ideal vaccine against SARS-CoV-2.
Collapse
|
50
|
Biological and Immune Responses to Current Anti-SARS-CoV-2 mRNA Vaccines beyond Anti-Spike Antibody Production. J Immunol Res 2022; 2022:4028577. [PMID: 35607407 PMCID: PMC9124111 DOI: 10.1155/2022/4028577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/29/2022] [Indexed: 01/29/2023] Open
Abstract
Several vaccine strategies are now available to fight the current SARS-CoV-2 pandemic. Those based on the administration of lipid-complexed messenger(m)RNA molecules represent the last frontiers in terms of technology innovation. mRNA molecules coding for the SARS-CoV-2 Spike protein are intramuscularly injected, thereby entering cells by virtue of their encapsulation into synthetic lipid nanovesicles. mRNA-targeted cells express the Spike protein on their plasma membrane in a way that it can be sensed by the immune system, which reacts generating anti-Spike antibodies. Although this class of vaccines appears as the most effective against SARS-CoV-2 infection and disease, their safety and efficiency are challenged by several factors included, but not limited to the following: emergence of viral variants, lack of adequate pharmacokinetics/pharmacodynamics studies, inability to protect oral mucosa from infection, and antibody waning. Emergence of viral variants can be a consequence of mass vaccination carried out in a pandemic time using suboptimal vaccines against an RNA virus. On the other hand, understanding the remainder flaws could be of some help in designing next generation anti-SARS-CoV-2 vaccines. In this commentary, issues regarding the fate of injected mRNA, the tissue distribution of the induced antiviral antibodies, and the generation of memory B cells are discussed. Careful evaluation of both experimental and clinical observations on these key aspects should be taken into account before planning booster administration, vaccination to non-at-risk population, and social restrictions.
Collapse
|