1
|
Li X, Yuan D, Zhang P, Luo C, Xie X, Zhang Y, Wei Z, Wang M, Cai Y, Zeng Y, Lai L, Che D, Ling H, Shi S, Zhang HF, Wang F, Li F. A Neuron-Mast Cell Axis Regulates Skin Microcirculation in Diabetes. Diabetes 2024; 73:1728-1741. [PMID: 38833271 DOI: 10.2337/db23-0862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
Changes in microcirculation lead to the progression of organ pathology in diabetes. Although neuroimmune interactions contribute to a variety of conditions, it is still unclear whether abnormal neural activities affect microcirculation related to diabetes. Using laser speckle contrast imaging, we examined the skin of patients with type 2 diabetes and found that their microvascular perfusion was significantly compromised. This phenomenon was replicated in a high-fat diet-driven murine model of type 2 diabetes-like disease. In this setting, although both macrophages and mast cells were enriched in the skin, only mast cells and associated degranulation were critically required for the microvascular impairment. Sensory neurons exhibited enhanced TRPV1 activities, which triggered mast cells to degranulate and compromise skin microcirculation. Chemical and genetic ablation of TRPV1+ nociceptors robustly improved skin microcirculation status. Substance P (SP) is a neuropeptide and was elevated in the skin and sensory neurons in the context of type 2 diabetes. Exogenous administration of SP resulted in impaired skin microcirculation, whereas neuronal knockdown of SP dramatically prevented mast cell degranulation and consequently improved skin microcirculation. Overall, our findings indicate a neuron-mast cell axis underlying skin microcirculation disturbance in diabetes and shed light on neuroimmune therapeutics for diabetes-related complications. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Xinran Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dan Yuan
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Zhang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Anesthesiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Chenglei Luo
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Anesthesiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Xinyang Xie
- Department of Dermatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yue Zhang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhengqi Wei
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mingyang Wang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yunqiu Cai
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Zeng
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Luying Lai
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Delu Che
- Department of Dermatology, Northwest Hospital, Xi'an Jiaotong University Second Affiliated Hospital, Shanxi, China
| | - Hao Ling
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shengjun Shi
- Department of Burns and Wound Repairing, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-Fei Zhang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Wang
- Department of Dermatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Fengxian Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Herring N, Ajijola OA, Foreman RD, Gourine AV, Green AL, Osborn J, Paterson DJ, Paton JFR, Ripplinger CM, Smith C, Vrabec TL, Wang HJ, Zucker IH, Ardell JL. Neurocardiology: translational advancements and potential. J Physiol 2024. [PMID: 39340173 DOI: 10.1113/jp284740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.
Collapse
Affiliation(s)
- N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - O A Ajijola
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - R D Foreman
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - A V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, UK
| | - A L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - J Osborn
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - D J Paterson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - C M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - C Smith
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - T L Vrabec
- Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - H J Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - I H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - J L Ardell
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
3
|
Maximiano TKE, Carneiro JA, Fattori V, Verri WA. TRPV1: Receptor structure, activation, modulation and role in neuro-immune interactions and pain. Cell Calcium 2024; 119:102870. [PMID: 38531262 DOI: 10.1016/j.ceca.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
In the 1990s, the identification of a non-selective ion channel, especially responsive to capsaicin, revolutionized the studies of somatosensation and pain that were to follow. The TRPV1 channel is expressed mainly in neuronal cells, more specifically, in sensory neurons responsible for the perception of noxious stimuli. However, its presence has also been detected in other non-neuronal cells, such as immune cells, β- pancreatic cells, muscle cells and adipocytes. Activation of the channel occurs in response to a wide range of stimuli, such as noxious heat, low pH, gasses, toxins, endocannabinoids, lipid-derived endovanilloid, and chemical agents, such as capsaicin and resiniferatoxin. This activation results in an influx of cations through the channel pore, especially calcium. Intracellular calcium triggers different responses in sensory neurons. Dephosphorylation of the TRPV1 channel leads to its desensitization, which disrupts its function, while its phosphorylation increases the channel's sensitization and contributes to the channel's rehabilitation after desensitization. Kinases, phosphoinositides, and calmodulin are the main signaling pathways responsible for the channel's regulation. Thus, in this review we provide an overview of TRPV1 discovery, its tissue expression as well as on the mechanisms by which TRPV1 activation (directly or indirectly) induces pain in different disease models.
Collapse
Affiliation(s)
- Thaila Kawane Euflazio Maximiano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Jessica Aparecida Carneiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, 300 Longwood Ave, 02115, Boston, Massachusetts, United States.
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil.
| |
Collapse
|
4
|
Inyang KE, Evans CM, Heussner M, Petroff M, Reimers M, Vermeer PD, Tykocki N, Folger JK, Laumet G. HPV+ head and neck cancer-derived small extracellular vesicles communicate with TRPV1+ neurons to mediate cancer pain. Pain 2024; 165:608-620. [PMID: 37678566 PMCID: PMC10915104 DOI: 10.1097/j.pain.0000000000003045] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/15/2023] [Indexed: 09/09/2023]
Abstract
ABSTRACT Severe pain is often experienced by patients with head and neck cancer and is associated with a poor prognosis. Despite its frequency and severity, current treatments fail to adequately control cancer-associated pain because of our lack of mechanistic understanding. Although recent works have shed some light of the biology underlying pain in HPV-negative oral cancers, the mechanisms mediating pain in HPV+ cancers remain unknown. Cancer-derived small extracellular vesicles (cancer-sEVs) are well positioned to function as mediators of communication between cancer cells and neurons. Inhibition of cancer-sEV release attenuated pain in tumor-bearing mice. Injection of purified cancer-sEVs is sufficient to induce pain hypersensitivity in naive mice that is prevented by QX-314 treatment and in Trpv1-/- mice. Cancer-sEVs triggered calcium influx in nociceptors, and inhibition or ablation of nociceptors protects against cancer pain. Interrogation of published sequencing data of human sensory neurons exposed to human cancer-sEVs suggested a stimulation of protein translation in neurons. Induction of translation by cancer-sEVs was validated in our mouse model, and its inhibition alleviated cancer pain in mice. In summary, our work reveals that HPV+ head and neck squamous cell carcinoma-derived sEVs alter TRPV1+ neurons by promoting nascent translation to mediate cancer pain and identified several promising therapeutic targets to interfere with this pathway.
Collapse
Affiliation(s)
| | - Christine M. Evans
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Matthew Heussner
- Department of Physiology, Michigan State University, East Lansing, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Margaret Petroff
- Department of Pathology Michigan State University College of Veterinary Medicine, East Lansing, MI
| | - Mark Reimers
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Paola D. Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
| | - Nathan Tykocki
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI
| | - Joseph K. Folger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Liu X, Zhang M, He C, Jia S, Xiang R, Xu Y, Zhao M. Research focus and thematic trends of transient receptor potential vanilloid member 1 research: a bibliometric analysis of the global publications (1990-2023). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1327-1346. [PMID: 37695335 DOI: 10.1007/s00210-023-02709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Recently, various studies have been devoted to the study of transient receptor potential vanilloid member 1 (TRPV1)-related diseases, potential drugs, and related mechanisms. The objective of this investigation was to examine the significant areas and cutting-edge developments in TRPV1 study within recent decades. Articles or reviews were obtained from the Web of Science Core Collection. VOSviewer 1.6.18 and CiteSpace 6.1 R2 software were utilized to examine publication growth, distribution by country/region, institution, journal, authorship, references, and keywords. The software identified keywords with a high citation burstiness to determine emerging topics. From 1990 to 2023, the annual global publications increased by 62,000%, from 1 to 621. Journal of neuroscience published the most manuscripts and Nature produced the highest citations. The USA, Seoul National University and Di marzo V were the most productive and impactful institution, country, and author, respectively. "TRPV1," "Capsaicin receptor," "Activation," and "Pain" are the most important keywords. The burst keywords "TRPV1 channel," "Oxidative stress," "TRPV1 structure," and "Cancer" are supposed to be the research frontiers. The present study offers valuable insights into the understanding of TRPV1 and pain-related conditions. The research on TRPV1 has demonstrated a steady increase in studies related to pain-related diseases in the past few decades. The significance of TRPV1 in cancer pathogenesis and the resolution of its structure will emerge as a new academic trend in this field, providing direction for more widespread and comprehensive studies in the future.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Mengying Zhang
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Chongyang He
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Shubing Jia
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Rongwu Xiang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Yijia Xu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Mingyi Zhao
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
6
|
Iadarola MJ, Sapio MR, Loydpierson AJ, Mervis CB, Fehrenbacher JC, Vasko MR, Maric D, Eisenberg DP, Nash TA, Kippenhan JS, Garvey MH, Mannes AJ, Gregory MD, Berman KF. Syntaxin1A overexpression and pain insensitivity in individuals with 7q11.23 duplication syndrome. JCI Insight 2024; 9:e176147. [PMID: 38261410 DOI: 10.1172/jci.insight.176147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Genetic modifications leading to pain insensitivity phenotypes, while rare, provide invaluable insights into the molecular biology of pain and reveal targets for analgesic drugs. Pain insensitivity typically results from Mendelian loss-of-function mutations in genes expressed in nociceptive (pain-sensing) dorsal root ganglion (DRG) neurons that connect the body to the spinal cord. We document a pain insensitivity mechanism arising from gene overexpression in individuals with the rare 7q11.23 duplication syndrome (Dup7), who have 3 copies of the approximately 1.5-megabase Williams syndrome (WS) critical region. Based on parental accounts and pain ratings, people with Dup7, mainly children in this study, are pain insensitive following serious injury to skin, bones, teeth, or viscera. In contrast, diploid siblings (2 copies of the WS critical region) and individuals with WS (1 copy) show standard reactions to painful events. A converging series of human assessments and cross-species cell biological and transcriptomic studies identified 1 likely candidate in the WS critical region, STX1A, as underlying the pain insensitivity phenotype. STX1A codes for the synaptic vesicle fusion protein syntaxin1A. Excess syntaxin1A was demonstrated to compromise neuropeptide exocytosis from nociceptive DRG neurons. Taken together, these data indicate a mechanism for producing "genetic analgesia" in Dup7 and offer previously untargeted routes to pain control.
Collapse
Affiliation(s)
- Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Amelia J Loydpierson
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Carolyn B Mervis
- Neurodevelopmental Sciences Laboratory, Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Jill C Fehrenbacher
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael R Vasko
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke (NINDS), and
| | - Daniel P Eisenberg
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Tiffany A Nash
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - J Shane Kippenhan
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Madeline H Garvey
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael D Gregory
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Karen F Berman
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| |
Collapse
|
7
|
He Z, Xu C, Guo J, Liu T, Zhang Y, Feng Y. The CSF1-CSF1R pathway in the trigeminal ganglion mediates trigeminal neuralgia via inflammatory responses in mice. Mol Biol Rep 2024; 51:215. [PMID: 38281257 DOI: 10.1007/s11033-023-09149-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Trigeminal neuralgia (TN) is the most severe type of neuropathic pain. The trigeminal ganglion (TG) is a crucial target for the pathogenesis and treatment of TN. The colony-stimulating factor 1 (CSF1) - colony-stimulating factor 1 receptor (CSF1R) pathway regulates lower limb pain development. However, the effect and mechanism of the CSF1-CSF1R pathway in TG on TN are unclear. METHODS Partial transection of the infraorbital nerve (pT-ION) model was used to generate a mouse TN model. Mechanical and cold allodynia were used to measure pain behaviors. Pro-inflammatory factors (IL-6, TNF-a) were used to measure inflammatory responses in TG. PLX3397, an inhibitor of CSF1R, was applied to inhibit the CSF1-CSF1R pathway in TG. This pathway was activated in naïve mice by stereotactic injection of CSF1 into the TG. RESULTS The TN model activated the CSF1-CSF1R pathway in the TG, leading to exacerbated mechanical and cold allodynia. TN activated inflammatory responses in the TG manifested as a significant increase in IL-6 and TNF-a levels. After using PLX3397 to inhibit CSF1R, CSF1R expression in the TG declined significantly. Inhibiting the CSF1-CSF1R pathway in the TG downregulated the expression of IL-6 and TNF-α to reduce allodynia-related behaviors. Finally, mechanical allodynia behaviors were exacerbated in naïve mice after activating the CSF1-CSF1R pathway in the TG. CONCLUSIONS The CSF1-CSF1R pathway in the TG modulates TN by regulating neuroimmune responses. Our findings provide a theoretical basis for the development of treatments for TN in the TG.
Collapse
Affiliation(s)
- Zile He
- Department of Anesthesiology, Peking University People's Hospital, Xizhimen South Street 11, Beijing, 100044, China
| | - Chao Xu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Guo
- Shanghai Minhang Center for Disease Control and Prevention, Shanghai, China
| | - Tianyu Liu
- Department of Anesthesiology, Peking University People's Hospital, Xizhimen South Street 11, Beijing, 100044, China
| | - Yunpeng Zhang
- Department of Anesthesiology, Peking University People's Hospital, Xizhimen South Street 11, Beijing, 100044, China
| | - Yi Feng
- Department of Anesthesiology, Peking University People's Hospital, Xizhimen South Street 11, Beijing, 100044, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Xueyuan Road 38, Beijing, 100191, China.
| |
Collapse
|
8
|
Sapio MR, King DM, Staedtler ES, Maric D, Jahanipour J, Kurochkina NA, Manalo AP, Ghetti A, Mannes AJ, Iadarola MJ. Expression pattern analysis and characterization of the hereditary sensory and autonomic neuropathy 2 A (HSAN2A) gene with no lysine kinase (WNK1) in human dorsal root ganglion. Exp Neurol 2023; 370:114552. [PMID: 37793538 DOI: 10.1016/j.expneurol.2023.114552] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/20/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
Inherited painless neuropathies arise due to genetic insults that either block the normal signaling of or destroy the sensory afferent neurons in the dorsal root ganglion (DRG) responsible for transducing noxious stimuli. Complete loss of these neurons leads to profound insensitivity to all sensory modalities including pain. Hereditary sensory and autonomic neuropathy type 2 (HSNAII) is a rare genetic neuropathy characterized by a progressive distal early onset sensory loss. This syndrome is caused by autosomal recessive mutations in the with-no-lysine protein kinase 1 (WNK1) serine-threonine kinase gene. Of interest, disease-associated mutations are found in the large exon, termed "HSN2," which encodes a 498 amino acid domain C-terminal to the kinase domain. These mutations lead to truncation of the HSN2-containing proteins through the addition of an early stop codon (nonsense mutation) leading to loss of the C-terminal domains of this large protein. The present study evaluates the transcripts, gene structure, and protein structure of HSN2-containing WNK1 splice variants in DRG and spinal cord in order to establish the basal expression patterns of WNK1 and HSN2-containing WNK1 splice variants using multiplex fluorescent situ hybridization. We hypothesized that these transcripts would be enriched in pain-sensing DRG neurons, and, potentially, that enrichment in nociceptive neurons was responsible for the painless phenotypes observed. However, our in-depth analyses revealed that the HSN2-WNK1 splice variants were ubiquitously expressed but were not enriched in tachykinin 1-expressing C-fiber neurons, a class of neurons with a highly nociceptive character. We subsequently identified other subpopulations of DRG neurons with higher levels of HSN2-WNK1 expression, including mechanosensory large fibers. These data are inconsistent with the hypothesis that this transcript is enriched in nociceptive fibers, and instead suggest it may be related to general axon maintenance, or that nociceptive fibers are more sensitive to the genetic insult. These findings clarify the molecular and cellular expression pattern of this painless neuropathy gene in human tissue.
Collapse
Affiliation(s)
- Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diana M King
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ellen S Staedtler
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, Flow and Imaging Cytometry Core Facility, Bethesda, MD 20892, USA
| | - Jahandar Jahanipour
- National Institute of Neurological Disorders and Stroke, Flow and Imaging Cytometry Core Facility, Bethesda, MD 20892, USA
| | | | - Allison P Manalo
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Münzberg H, Berthoud HR, Neuhuber WL. Sensory spinal interoceptive pathways and energy balance regulation. Mol Metab 2023; 78:101817. [PMID: 37806487 PMCID: PMC10590858 DOI: 10.1016/j.molmet.2023.101817] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Interoception plays an important role in homeostatic regulation of energy intake and metabolism. Major interoceptive pathways include gut-to-brain and adipose tissue-to brain signaling via vagal sensory nerves and hormones, such as leptin. However, signaling via spinal sensory neurons is rapidly emerging as an additional important signaling pathway. Here we provide an in-depth review of the known anatomy and functions of spinal sensory pathways and discuss potential mechanisms relevant for energy balance homeostasis in health and disease. Because sensory innervation by dorsal root ganglia (DRG) neurons goes far beyond vagally innervated viscera and includes adipose tissue, skeletal muscle, and skin, it is in a position to provide much more complete metabolic information to the brain. Molecular and anatomical identification of function specific DRG neurons will be important steps in designing pharmacological and neuromodulation approaches to affect energy balance regulation in disease states such as obesity, diabetes, and cancer.
Collapse
Affiliation(s)
- Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Winfried L Neuhuber
- Institute for Anatomy and Cell Biology, Friedrich-Alexander University, Erlangen, Germany.
| |
Collapse
|
10
|
Shehab S, Javed H, Johnson AM, Tariq S, Kumar CA, Emerald BS. Unveiling the mechanisms of neuropathic pain suppression: perineural resiniferatoxin targets Trpv1 and beyond. Front Neuroanat 2023; 17:1306180. [PMID: 38099210 PMCID: PMC10720729 DOI: 10.3389/fnana.2023.1306180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Neuropathic pain arises from damage or disorders affecting the somatosensory system. In rats, L5 nerve injury induces thermal and mechanical hypersensitivity/hyperalgesia. Recently, we demonstrated that applying resiniferatoxin (RTX) directly on uninjured L3 and L4 nerves alleviated thermal and mechanical hypersensitivity resulting from L5 nerve injury. Herein, using immunohistochemistry, Western blot, and qRT-PCR techniques, we reveal that perineural application of RTX (0.002%) on the L4 nerve substantially downregulated the expression of its receptor (Trpv1) and three different voltage-gated ion channels (Nav1.9, Kv4.3, and Cav2.2). These channels are found primarily in small-sized neurons and show significant colocalization with Trpv1 in the dorsal root ganglion (DRG). However, RTX treatment did not affect the expression of Kv1.1, Piezo2 (found in large-sized neurons without colocalization with Trpv1), and Kir4.1 (localized in satellite cells) in the ipsilateral DRGs. Furthermore, RTX application on L3 and L4 nerves reduced the activation of c-fos in the spinal neurons induced by heat stimulation. Subsequently, we investigated whether applying RTX to the L3 and L4 nerves 3 weeks before the L5 nerve injury could prevent the onset of neuropathic pain. Both 0.002 and 0.004% concentrations of RTX produced significant analgesic effects, while complete prevention of thermal and mechanical hypersensitivity required a concentration of 0.008%. Importantly, this preventive effect on neuropathic manifestations was not associated with nerve degeneration, as microscopic examination revealed no morphological changes. Overall, this study underscores the mechanisms and the significance of perineural RTX treatment applied to adjacent uninjured nerves in entirely preventing nerve injury-induced neuropathic pain in humans and animals.
Collapse
Affiliation(s)
- Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | | | | | | | | | | |
Collapse
|
11
|
Szallasi A. Resiniferatoxin: Nature's Precision Medicine to Silence TRPV1-Positive Afferents. Int J Mol Sci 2023; 24:15042. [PMID: 37894723 PMCID: PMC10606200 DOI: 10.3390/ijms242015042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Resiniferatoxin (RTX) is an ultrapotent capsaicin analog with a unique spectrum of pharmacological actions. The therapeutic window of RTX is broad, allowing for the full desensitization of pain perception and neurogenic inflammation without causing unacceptable side effects. Intravesical RTX was shown to restore continence in a subset of patients with idiopathic and neurogenic detrusor overactivity. RTX can also ablate sensory neurons as a "molecular scalpel" to achieve permanent analgesia. This targeted (intrathecal or epidural) RTX therapy holds great promise in cancer pain management. Intra-articular RTX is undergoing clinical trials to treat moderate-to-severe knee pain in patients with osteoarthritis. Similar targeted approaches may be useful in the management of post-operative pain or pain associated with severe burn injuries. The current state of this field is reviewed, from preclinical studies through veterinary medicine to clinical trials.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
12
|
Yamaguchi T, Salavatian S, Kuwabara Y, Hellman A, Taylor BK, Howard-Quijano K, Mahajan A. Thoracic Dorsal Root Ganglion Application of Resiniferatoxin Reduces Myocardial Ischemia-Induced Ventricular Arrhythmias. Biomedicines 2023; 11:2720. [PMID: 37893094 PMCID: PMC10604235 DOI: 10.3390/biomedicines11102720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND A myocardial ischemia/reperfusion (IR) injury activates the transient receptor potential vanilloid 1 (TRPV1) dorsal root ganglion (DRG) neurons. The activation of TRPV1 DRG neurons triggers the spinal dorsal horn and the sympathetic preganglionic neurons in the spinal intermediolateral column, which results in sympathoexcitation. In this study, we hypothesize that the selective epidural administration of resiniferatoxin (RTX) to DRGs may provide cardioprotection against ventricular arrhythmias by inhibiting afferent neurotransmission during IR injury. METHODS Yorkshire pigs (n = 21) were assigned to either the sham, IR, or IR + RTX group. A laminectomy and sternotomy were performed on the anesthetized animals to expose the left T2-T4 spinal dorsal root and the heart for IR intervention, respectively. RTX (50 μg) was administered to the DRGs in the IR + RTX group. The activation recovery interval (ARI) was measured as a surrogate for the action potential duration (APD). Arrhythmia risk was investigated by assessing the dispersion of repolarization (DOR), a marker of arrhythmogenicity, and measuring the arrhythmia score and the number of non-sustained ventricular tachycardias (VTs). TRPV1 and calcitonin gene-related peptide (CGRP) expressions in DRGs and CGRP expression in the spinal cord were assessed using immunohistochemistry. RESULTS The RTX mitigated IR-induced ARI shortening (-105 ms ± 13 ms in IR vs. -65 ms ± 11 ms in IR + RTX, p = 0.028) and DOR augmentation (7093 ms2 ± 701 ms2 in IR vs. 3788 ms2 ± 1161 ms2 in IR + RTX, p = 0.020). The arrhythmia score and VT episodes during an IR were decreased by RTX (arrhythmia score: 8.01 ± 1.44 in IR vs. 3.70 ± 0.81 in IR + RTX, p = 0.037. number of VT episodes: 12.00 ± 3.29 in IR vs. 0.57 ± 0.3 in IR + RTX, p = 0.002). The CGRP expression in the DRGs and spinal cord was decreased by RTX (DRGs: 6.8% ± 1.3% in IR vs. 0.6% ± 0.2% in IR + RTX, p < 0.001. Spinal cord: 12.0% ± 2.6% in IR vs. 4.5% ± 0.8% in IR + RTX, p = 0.047). CONCLUSIONS The administration of RTX locally to thoracic DRGs reduces ventricular arrhythmia in a porcine model of IR, likely by inhibiting spinal afferent hyperactivity in the cardio-spinal sympathetic pathways.
Collapse
Affiliation(s)
- Tomoki Yamaguchi
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (T.Y.); (S.S.); (Y.K.); (A.H.); (B.K.T.); (K.H.-Q.)
| | - Siamak Salavatian
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (T.Y.); (S.S.); (Y.K.); (A.H.); (B.K.T.); (K.H.-Q.)
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Yuki Kuwabara
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (T.Y.); (S.S.); (Y.K.); (A.H.); (B.K.T.); (K.H.-Q.)
| | - Abigail Hellman
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (T.Y.); (S.S.); (Y.K.); (A.H.); (B.K.T.); (K.H.-Q.)
| | - Bradley K. Taylor
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (T.Y.); (S.S.); (Y.K.); (A.H.); (B.K.T.); (K.H.-Q.)
| | - Kimberly Howard-Quijano
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (T.Y.); (S.S.); (Y.K.); (A.H.); (B.K.T.); (K.H.-Q.)
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (T.Y.); (S.S.); (Y.K.); (A.H.); (B.K.T.); (K.H.-Q.)
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| |
Collapse
|
13
|
Mishra G, Townsend KL. The metabolic and functional roles of sensory nerves in adipose tissues. Nat Metab 2023; 5:1461-1474. [PMID: 37709960 DOI: 10.1038/s42255-023-00868-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/18/2023] [Indexed: 09/16/2023]
Abstract
Homeostatic regulation of adipose tissue is critical for the maintenance of energy balance and whole-body metabolism. The peripheral nervous system provides bidirectional neural communication between the brain and adipose tissue, thereby providing homeostatic control. Most research on adipose innervation and nerve functions has been limited to the sympathetic nerves and their neurotransmitter norepinephrine. In recent years, more work has focused on adipose sensory nerves, but the contributions of subsets of sensory nerves to metabolism and the specific roles contributed by sensory neuropeptides are still understudied. Advances in imaging of adipose innervation and newer tissue denervation techniques have confirmed that sensory nerves contribute to the regulation of adipose functions, including lipolysis and browning. Here, we summarize the historical and latest findings on the regulation, function and plasticity of adipose tissue sensory nerves that contribute to metabolically important processes such as lipolysis, vascular control and sympathetic axis cross-talk.
Collapse
Affiliation(s)
- Gargi Mishra
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
14
|
Lu HJ, Wu XB, Wei QQ. Ion channels in cancer-induced bone pain: from molecular mechanisms to clinical applications. Front Mol Neurosci 2023; 16:1239599. [PMID: 37664239 PMCID: PMC10469682 DOI: 10.3389/fnmol.2023.1239599] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Cancer-induced bone pain (CIBP) caused by bone metastasis is one of the most prevalent diseases, and current treatments rely primarily on opioids, which have significant side effects. However, recent developments in pharmaceutical science have identified several new mechanisms for CIBP, including the targeted modification of certain ion channels and receptors. Ion channels are transmembrane proteins, which are situated on biological cell membranes, which facilitate passive transport of inorganic ions across membranes. They are involved in various physiological processes, including transmission of pain signals in the nervous system. In recent years, there has been an increasing interest in the role of ion channels in chronic pain, including CIBP. Therefore, in this review, we summarize the current literature on ion channels, related receptors, and drugs and explore the mechanism of CIBP. Targeting ion channels and regulating their activity might be key to treating pain associated with bone cancer and offer new treatment avenues.
Collapse
Affiliation(s)
- Huan-Jun Lu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Xiao-Bo Wu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| |
Collapse
|
15
|
Leite-Panissi CRA, De Paula BB, Neubert JK, Caudle RM. Influence of TRPV1 on Thermal Nociception in Rats with Temporomandibular Joint Persistent Inflammation Evaluated by the Operant Orofacial Pain Assessment Device (OPAD). J Pain Res 2023; 16:2047-2062. [PMID: 37342611 PMCID: PMC10278653 DOI: 10.2147/jpr.s405258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Background Temporomandibular joint (TMJ)-associated inflammation contributes to the pain reported by patients with temporomandibular disorders (TMD). It is common for patients diagnosed with TMD to report pain in the masticatory muscles and temporomandibular joints, headache, and jaw movement disturbances. Although TMD can have different origins, including trauma and malocclusion disorder, anxiety/depression substantially impacts the development and maintenance of TMD. In general, rodent studies on orofacial pain mechanisms involve the use of tests originally developed for other body regions, which were adapted to the orofacial area. To overcome limitations and expand knowledge in orofacial pain, our group validated and characterized an operant assessment paradigm in rats with both hot and cold stimuli as well mechanical stimuli. Nevertheless, persistent inflammation of the TMJ has not been evaluated with this operant orofacial pain assessment device (OPAD). Methods We characterized the thermal orofacial sensitivity for cold, neutral, and hot stimuli during the development of TMD using the OPAD behavior test. In addition, we evaluated the role of transient receptor potential vanilloid 1 (TRPV1) expressing nociceptors in rats with persistent TMJ inflammation. The experiments were performed in male and female rats with TMJ inflammation induced by carrageenan (CARR). Additionally, resiniferatoxin (RTX) was administered into the TMJs prior CARR to lesion TRPV1-expressing neurons to evaluate the role of TRPV1-expressing neurons. Results We evidenced an increase in the number of facial contacts and changes in the number of reward licks per stimulus on neutral (37°C) and cold (21°C) temperatures. However, at the hot temperature (42°C), the inflammation did not induce changes in the OPAD test. The prior administration of RTX in the TMJ prevented the allodynia and thermal hyperalgesia induced by CARR. Conclusion We showed that TRPV-expressing neurons are involved in the sensitivity to carrageenan-induced pain in male and female rats evaluated in the OPAD.
Collapse
Affiliation(s)
- Christie R A Leite-Panissi
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Bruna B De Paula
- Department of Oral and Maxillofacial Surgery, University of Florida, Gainesville, FL, USA
| | - John K Neubert
- Department of Orthodontics, University of Florida, Gainesville, FL, USA
| | - Robert M Caudle
- Department of Oral and Maxillofacial Surgery, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Bang SK, Chang S, Seo SY, Kang SY, Cho SJ, Choi KH, Juping X, Kim HY, Ryu Y. Attenuation of immobilization stress-induced hypertension by temperature-controllable warm needle acupuncture in rats and the peripheral neural mechanisms. Front Neurol 2023; 14:1168012. [PMID: 37384285 PMCID: PMC10294230 DOI: 10.3389/fneur.2023.1168012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction We and others have shown that electrical stimulation of the PC-6 acupoint over the wrist relieves hypertension by stimulating afferent sensory nerve fibers and activating the central endogenous opioid system. Warm needle acupuncture has long been utilized to treat various diseases in clinics. Methods Here, we developed a temperature-controllable warm needle acupuncture instrument (WAI) and investigated the peripheral mechanism underlying the effect of warm needle acupuncture at PC-6 on hypertension in a rat model of immobilization stress-induced hypertension. Results Stimulation with our newly developed WAI and traditional warm needle acupuncture attenuated hypertension development. Such effects were reproduced by capsaicin (a TRPV1 agonist) injection into PC-6 or WAI stimulation at 48°C. In contrast, PC-6 pretreatment with the TRPV1 antagonist capsazepine blocked the antihypertensive effect of WAI stimulation at PC-6. WAI stimulation at PC-6 increased the number of dorsal root ganglia double-stained with TRPV1 and CGRP. QX-314 and capsaicin perineural injection into the median nerve for chemical ablation of small afferent nerve fibers (C-fibers) prevented the antihypertensive effect of WAI stimulation at PC-6. Additionally, PC-6 pretreatment with RTX ablated the antihypertensive effect of WAI stimulation. Conclusion These findings suggest that warm needle acupuncture at PC-6 activates C-fiber of median nerve and the peripheral TRPV1 receptors to attenuate the development of immobilization stress-induced hypertension in rats.
Collapse
Affiliation(s)
- Se Kyun Bang
- Department of Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- Department of Korean convergence Medical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Suchan Chang
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| | - Su Yeon Seo
- Department of Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Suk-Yun Kang
- Department of Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Seong Jin Cho
- Department of Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Kwang-Ho Choi
- Department of Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Xing Juping
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeonhee Ryu
- Department of Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- Department of Korean convergence Medical Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
17
|
Alcohol-Induced Headache with Neuroinflammation: Recent Progress. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Ethanol and other congeners in alcoholic beverages and foods are known triggers of alcohol-induced headaches (AIHs). Recent studies implicate AIHs as an important underlying factor for neuroinflammation. Studies show the relationship between alcoholic beverages, AIH agents, neuroinflammation, and the pathway they elicit. However, studies elucidating specific AIH agents’ pathways are scarce. Works reviewing their pathways can give invaluable insights into specific substances’ patterns and how they can be controlled. Hence, we reviewed the current understanding of how AIH agents in alcoholic beverages affect neuroinflammation and their specific roles. Ethanol upregulates transient receptor potential cation channel subfamily V member 1 (TRPV1) and Toll-like receptor 4 (TLR4) expression levels; both receptors trigger a neuroinflammation response that promotes AIH manifestation—the most common cause of AIHs. Other congeners such as histamine, 5-HT, and condensed tannins also upregulate TRPV1 and TLR4, neuroinflammatory conditions, and AIHs. Data elucidating AIH agents, associating pathways, and fermentation parameters can help reduce or eliminate AIH inducers and create healthier beverages.
Collapse
|
18
|
Reis TO, Noronha SISR, Lima PMA, De Abreu ARR, Mesquita LBT, Ferreira FI, Silva FC, Chianca-Jr DA, De Menezes RC. Abdominal TRPV1 channel desensitization enhances stress-induced hyperthermia during social stress in rats. Auton Neurosci 2023; 246:103073. [PMID: 36736078 DOI: 10.1016/j.autneu.2023.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/22/2022] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
AIMS In rats, stress-induced hyperthermia caused by social interaction depends on brown adipose tissue (BAT) thermogenesis and peripheral vasoconstriction. However, the peripheral mechanisms responsible for regulating the level of hyperthermia during social stress are still unknown. The transient receptor potential vanilloid 1 (TRPV1) subfamily, expressed in sensory and visceral neurons, can serve as a thermoreceptor. Here, we tested the hypothesis that the abdominal TRPV1 is essential in regulating stress-induced hyperthermia during social stress. MAIN METHODS Male Wistar rats received an intraperitoneal injection of Resiniferatoxin (RTX) - an ultra-potent capsaicin analog, (i.e., to desensitize the TRPV1 channels) or vehicle. Seven days later, we evaluated the effects of abdominal TRPV1 channels desensitization on core body temperature (CBT), brown adipose tissue (BAT) temperature, tail skin temperature, and heart rate (HR) of rats subjected to a social stress protocol. KEY FINDINGS We found abdominal TRPV1 desensitization increased CBT and BAT temperature but did not change tail skin temperature and HR during rest. However, under social stress, we found that abdominal TRPV1 desensitization heightened the increase in CBT and BAT caused by stress. Also, it abolished the increase in tail skin temperature that occurs during and after social stress. TRPV1 desensitization also delayed the HR recovery after the exposure to the social stress. SIGNIFICANCE These results show that abdominal TRPV1 channels desensitization heightens stress-induced hyperthermia, causing heat dissipation during and after social stress, enabling optimal thermal control during social encounters.
Collapse
Affiliation(s)
- T O Reis
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - S I S R Noronha
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - P M A Lima
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - A R R De Abreu
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - L B T Mesquita
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - F I Ferreira
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - F C Silva
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil..
| | - D A Chianca-Jr
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil..
| | - R C De Menezes
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil..
| |
Collapse
|
19
|
Barletta M, Gordon J, Escobar A, Mitchell K, Trenholme HN, Grimes JA, Jiménez-Andrade JM, Nahama A, Cisternas A. Safety and efficacy of intravesical instillation of resiniferatoxin in healthy cats: A preliminary study. Front Vet Sci 2023; 9:922305. [PMID: 36713852 PMCID: PMC9878299 DOI: 10.3389/fvets.2022.922305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Objectives To evaluate the safety of intravesical application of resiniferatoxin (RTX) in healthy cats and its effects on calcitonin gene-related peptide (CGRP) and substance P (SP) produced by C-fibers. Methods Seven adult female cats received either 25 mL of saline (control; n = 1), or intravesical RTX at 5, 25, or 50 μg in 25 mL of saline to a final concentration of 0.2 μg/mL (318 nM), 1 μg/mL (1,591 nM), and 2 μg/mL (3,181 nM) (n = 2 per group). The treatment was instilled into the urinary bladder for 20 min. Plasma concentrations of RTX were measured at 0, 0.5, 1, and 4 h. Physical exam, complete blood count, and serum biochemical analysis were performed on day 0, 7, and 14. After 14 days, the sacral dorsal root ganglia (DRG) and the urinary bladder were harvested for histological and immunofluorescence analysis. Results Intravesical RTX was well tolerated and plasma concentrations were below the quantifiable limits except for one cat receiving 1 μg/mL. Mild to moderate histopathological changes, including epithelial changes, edema, and blood vessel proliferation, were observed at lower doses (0.2 and 1 μg/mL), and were more severe at the higher dose (2 μg/mL). C-fiber ablation was observed in the urinary bladder tissue at all doses, as shown by an apparent reduction of both CGRP and SP immunoreactive axons. Conclusion A dose of 25 μg (1 μg/mL) of RTX instilled in the urinary bladder of healthy cats appeared to decrease the density of SP and CGRP nerve axons innervating bladder and induced moderate changes in the bladder tissue.
Collapse
Affiliation(s)
- Michele Barletta
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, United States,*Correspondence: Michele Barletta ✉
| | - Julie Gordon
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - André Escobar
- Department Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Krista Mitchell
- Department Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - H. Nicole Trenholme
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Janet A. Grimes
- Department Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Juan M. Jiménez-Andrade
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Alexis Nahama
- ARK Animal Health, Sorrento Therapeutics, San Diego, CA, United States
| | - Alvaro Cisternas
- ARK Animal Health, Sorrento Therapeutics, San Diego, CA, United States
| |
Collapse
|
20
|
Spekker E, Körtési T, Vécsei L. TRP Channels: Recent Development in Translational Research and Potential Therapeutic Targets in Migraine. Int J Mol Sci 2022; 24:ijms24010700. [PMID: 36614146 PMCID: PMC9820749 DOI: 10.3390/ijms24010700] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Migraine is a chronic neurological disorder that affects approximately 12% of the population. The cause of migraine headaches is not yet known, however, when the trigeminal system is activated, neuropeptides such as calcitonin gene-related peptide (CGRP) and substance P (SP) are released, which cause neurogenic inflammation and sensitization. Advances in the understanding of migraine pathophysiology have identified new potential pharmacological targets. In recent years, transient receptor potential (TRP) channels have been the focus of attention in the pathophysiology of various pain disorders, including primary headaches. Genetic and pharmacological data suggest the role of TRP channels in pain sensation and the activation and sensitization of dural afferents. In addition, TRP channels are widely expressed in the trigeminal system and brain regions which are associated with the pathophysiology of migraine and furthermore, co-localize several neuropeptides that are implicated in the development of migraine attacks. Moreover, there are several migraine trigger agents known to activate TRP channels. Based on these, TRP channels have an essential role in migraine pain and associated symptoms, such as hyperalgesia and allodynia. In this review, we discuss the role of the certain TRP channels in migraine pathophysiology and their therapeutic applicability.
Collapse
Affiliation(s)
- Eleonóra Spekker
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Tamás Körtési
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31, H-6726 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545351; Fax: +36-62-545597
| |
Collapse
|
21
|
Javed H, Johnson AM, Challagandla AK, Emerald BS, Shehab S. Cutaneous Injection of Resiniferatoxin Completely Alleviates and Prevents Nerve-Injury-Induced Neuropathic Pain. Cells 2022; 11:cells11244049. [PMID: 36552812 PMCID: PMC9776507 DOI: 10.3390/cells11244049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/16/2022] Open
Abstract
Fifth lumbar (L5) nerve injury in rodent produces neuropathic manifestations in the corresponding hind paw. The aim of this study was to investigate the effect of cutaneous injection of resiniferatoxin (RTX), a TRPV1 receptor agonist, in the rat's hind paw on the neuropathic pain induced by L5 nerve injury. The results showed that intraplantar injection of RTX (0.002%, 100 µL) (1) completely reversed the development of chronic thermal and mechanical hypersensitivity; (2) completely prevented the development of nerve-injury-induced thermal and mechanical hypersensitivity when applied one week earlier; (3) caused downregulation of nociceptive pain markers, including TRPV1, IB4 and CGRP, and upregulation of VIP in the ipsilateral dorsal horn of spinal cord and dorsal root ganglion (DRG) immunohistochemically and a significant reduction in the expression of TRPV1 mRNA and protein in the ipsilateral DRG using Western blot and qRT-PCR techniques; (4) caused downregulation of PGP 9.5- and CGRP-immunoreactivity in the injected skin; (5) produced significant suppression of c-fos expression, as a neuronal activity marker, in the spinal neurons in response to a second intraplantar RTX injection two weeks later. This work identifies the ability of cutaneous injection of RTX to completely alleviate and prevent the development of different types of neuropathic pain in animals and humans.
Collapse
|
22
|
Electrolyzed Hydrogen Water Alleviates Abdominal Pain through Suppression of Colonic Tissue Inflammation in a Rat Model of Inflammatory Bowel Disease. Nutrients 2022; 14:nu14214451. [PMID: 36364715 PMCID: PMC9655279 DOI: 10.3390/nu14214451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the digestive tract and is typically accompanied by characteristic symptoms, such as abdominal pain, diarrhea, and bloody stool, severely deteriorating the quality of the patient's life. Electrolyzed hydrogen water (EHW) has been shown to alleviate inflammation in several diseases, such as renal disease and polymyositis/dermatomyositis. To investigate whether and how daily EHW consumption alleviates abdominal pain, the most common symptom of IBD, we examined the antioxidative and anti-inflammatory effects of EHW in an IBD rat model, wherein colonic inflammation was induced by colorectal administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS). We found that EHW significantly alleviated TNBS-induced abdominal pain and tissue inflammation. Moreover, the production of proinflammatory cytokines in inflamed colon tissue was also decreased significantly. Meanwhile, the overproduction of reactive oxygen species (ROS), which is intricately involved in intestinal inflammation, was significantly suppressed by EHW. Additionally, expression of S100A9, an inflammatory biomarker of IBD, was significantly suppressed by EHW. These results suggest that the EHW prevented the overproduction of ROS due to its powerful free-radical scavenging ability and blocked the crosstalk between oxidative stress and inflammation, thereby suppressing colonic inflammation and alleviating abdominal pain.
Collapse
|
23
|
Lim S, Seo SE, Jo S, Kim KH, Kim L, Kwon OS. Highly Efficient Real-Time TRPV1 Screening Methodology for Effective Drug Candidates. ACS OMEGA 2022; 7:36441-36447. [PMID: 36278091 PMCID: PMC9583638 DOI: 10.1021/acsomega.2c04202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/21/2022] [Indexed: 05/26/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) agonists that bind to the vanilloid pocket are being actively studied in the pharmaceutical industry to develop novel treatments for chronic pain and cancer. To discover synthetic vanilloids without the side effect of capsaicin, a time-consuming process of drug candidate selection is essential to a myriad of chemical compounds. Herein, we propose a novel approach to field-effect transistors for the fast and facile screening of lead vanilloid compounds for the development of TRPV1-targeting medications. The graphene field-effect transistor was fabricated with human TRPV1 receptor protein as the bioprobe, and various analyses (SEM, Raman, and FT-IR) were utilized to verify successful manufacture. Simulations of TRPV1 with capsaicin, olvanil, and arvanil were conducted using AutoDock Vina/PyMOL to confirm the binding affinity. The interaction of the ligands with TRPV1 was detected via the fabricated platform, and the collected responses corresponded to the simulation analysis.
Collapse
Affiliation(s)
- Seong
Gi Lim
- Infectious
Disease Research Center, Korea Research
Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sung Eun Seo
- Infectious
Disease Research Center, Korea Research
Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department
of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seongjae Jo
- Infectious
Disease Research Center, Korea Research
Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kyung Ho Kim
- Infectious
Disease Research Center, Korea Research
Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Lina Kim
- Infectious
Disease Research Center, Korea Research
Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Oh Seok Kwon
- Infectious
Disease Research Center, Korea Research
Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department
of Biotechnology, University of Science
& Technology (UST), Daejeon 34141, Republic of Korea
- College
of Biotechnology and Bioengineering, Sungkyunkwan
University, Suwon 16419, Republic of Korea
| |
Collapse
|
24
|
Vats K, Kruglov O, Sahoo B, Soman V, Zhang J, Shurin GV, Chandran UR, Skums P, Shurin MR, Zelikovsky A, Storkus WJ, Bunimovich YL. Sensory Nerves Impede the Formation of Tertiary Lymphoid Structures and Development of Protective Antimelanoma Immune Responses. Cancer Immunol Res 2022; 10:1141-1154. [PMID: 35834791 PMCID: PMC10314799 DOI: 10.1158/2326-6066.cir-22-0110] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/02/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
Abstract
Peripheral neurons comprise a critical component of the tumor microenvironment (TME). The role of the autonomic innervation in cancer has been firmly established. However, the effect of the afferent (sensory) neurons on tumor progression remains unclear. Utilizing surgical and chemical skin sensory denervation methods, we showed that afferent neurons supported the growth of melanoma tumors in vivo and demonstrated that sensory innervation limited the activation of effective antitumor immune responses. Specifically, sensory ablation led to improved leukocyte recruitment into tumors, with decreased presence of lymphoid and myeloid immunosuppressive cells and increased activation of T-effector cells within the TME. Cutaneous sensory nerves hindered the maturation of intratumoral high endothelial venules and limited the formation of mature tertiary lymphoid-like structures containing organized clusters of CD4+ T cells and B cells. Denervation further increased T-cell clonality and expanded the B-cell repertoire in the TME. Importantly, CD8a depletion prevented denervation-dependent antitumor effects. Finally, we observed that gene signatures of inflammation and the content of neuron-associated transcripts inversely correlated in human primary cutaneous melanomas, with the latter representing a negative prognostic marker of patient overall survival. Our results suggest that tumor-associated sensory neurons negatively regulate the development of protective antitumor immune responses within the TME, thereby defining a novel target for therapeutic intervention in the melanoma setting.
Collapse
Affiliation(s)
- Kavita Vats
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Oleg Kruglov
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bikram Sahoo
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
| | - Vishal Soman
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, PA, USA
| | - Jiying Zhang
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Galina V. Shurin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Uma R. Chandran
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, PA, USA
| | - Pavel Skums
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
| | - Michael R. Shurin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213
| | - Alex Zelikovsky
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
| | - Walter J. Storkus
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213
| | - Yuri L. Bunimovich
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213
| |
Collapse
|
25
|
Ma W, Sapio MR, Manalo AP, Maric D, Dougherty MK, Goto T, Mannes AJ, Iadarola MJ. Anatomical Analysis of Transient Potential Vanilloid Receptor 1 (Trpv1+) and Mu-Opioid Receptor (Oprm1+) Co-expression in Rat Dorsal Root Ganglion Neurons. Front Mol Neurosci 2022; 15:926596. [PMID: 35875671 PMCID: PMC9302591 DOI: 10.3389/fnmol.2022.926596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Primary afferent neurons of the dorsal root ganglia (DRG) transduce peripheral nociceptive signals and transmit them to the spinal cord. These neurons also mediate analgesic control of the nociceptive inputs, particularly through the μ-opioid receptor (encoded by Oprm1). While opioid receptors are found throughout the neuraxis and in the spinal cord tissue itself, intrathecal administration of μ-opioid agonists also acts directly on nociceptive nerve terminals in the dorsal spinal cord resulting in marked analgesia. Additionally, selective chemoaxotomy of cells expressing the TRPV1 channel, a nonselective calcium-permeable ion channel that transduces thermal and inflammatory pain, yields profound pain relief in rats, canines, and humans. However, the relationship between Oprm1 and Trpv1 expressing DRG neurons has not been precisely determined. The present study examines rat DRG neurons using high resolution multiplex fluorescent in situ hybridization to visualize molecular co-expression. Neurons positive for Trpv1 exhibited varying levels of expression for Trpv1 and co-expression of other excitatory and inhibitory ion channels or receptors. A subpopulation of densely labeled Trpv1+ neurons did not co-express Oprm1. In contrast, a population of less densely labeled Trpv1+ neurons did co-express Oprm1. This finding suggests that the medium/low Trpv1 expressing neurons represent a specific set of DRG neurons subserving the opponent processes of both transducing and inhibiting nociceptive inputs. Additionally, the medium/low Trpv1 expressing neurons co-expressed other markers implicated in pathological pain states, such as Trpa1 and Trpm8, which are involved in chemical nociception and cold allodynia, respectively, as well as Scn11a, whose mutations are implicated in familial episodic pain. Conversely, none of the Trpv1+ neurons co-expressed Spp1, which codes for osteopontin, a marker for large diameter proprioceptive neurons, validating that nociception and proprioception are governed by separate neuronal populations. Our findings support the hypothesis that the population of Trpv1 and Oprm1 coexpressing neurons may explain the remarkable efficacy of opioid drugs administered at the level of the DRG-spinal synapse, and that this subpopulation of Trpv1+ neurons is responsible for registering tissue damage.
Collapse
Affiliation(s)
- Wenting Ma
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Matthew R. Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Allison P. Manalo
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, Flow and Imaging Cytometry Core Facility, Bethesda, MD, United States
| | - Mary Kate Dougherty
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Taichi Goto
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
- Symptoms Biology Unit, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Andrew J. Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Michael J. Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Michael J. Iadarola
| |
Collapse
|
26
|
Wank I, Kutsche L, Kreitz S, Reeh P, Hess A. Imaging the influence of peripheral TRPV1-signaling on cerebral nociceptive processing applying fMRI-based graph theory in a resiniferatoxin rat model. PLoS One 2022; 17:e0266669. [PMID: 35482725 PMCID: PMC9049522 DOI: 10.1371/journal.pone.0266669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/24/2022] [Indexed: 11/19/2022] Open
Abstract
Resiniferatoxin (RTX), an extract from the spurge plant Euphorbia resinifera, is a potent agonist of the transient receptor potential cation channel subfamily V member 1 (TRPV1), mainly expressed on peripheral nociceptors-a prerequisite for nociceptive heat perception. Systemic overdosing of RTX can be used to desensitize specifically TRPV1-expressing neurons, and was therefore utilized here to selectively characterize the influence of TRPV1-signaling on central nervous system (CNS) temperature processing. Resting state and CNS temperature processing of male rats were assessed via functional magnetic resonance imaging before and after RTX injection. General linear model-based and graph-theoretical network analyses disentangled the underlying distinct CNS circuitries. At baseline, rats displayed an increase of nociception-related response amplitude and activated brain volume that correlated highly with increasing stimulation temperatures. In contrast, RTX-treated rats showed a clear disruption of thermal nociception, reflected in a missing increase of CNS responses to temperatures above 48°C. Graph-theoretical analyses revealed two distinct brain subnetworks affected by RTX: one subcortical (brainstem, lateral and medial thalamus, hippocampus, basal ganglia and amygdala), and one cortical (primary sensory, motor and association cortices). Resting state analysis revealed first, that peripheral desensitization of TRPV1-expressing neurons did not disrupt the basic resting-state-network of the brain. Second, only at baseline, but not after RTX, noxious stimulation modulated the RS-network in regions associated with memory formation (e.g. hippocampus). Altogether, the combination of whole-brain functional magnetic resonance imaging and RTX-mediated desensitization of TRPV1-signaling provided further detailed insight into cerebral processing of noxious temperatures.
Collapse
Affiliation(s)
- Isabel Wank
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Kutsche
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Silke Kreitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Reeh
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
27
|
Treat A, Henri V, Liu J, Shen J, Gil-Silva M, Morales A, Rade A, Tidgewell KJ, Kolber B, Shen Y. Novel TRPV1 Modulators with Reduced Pungency Induce Analgesic Effects in Mice. ACS OMEGA 2022; 7:2929-2946. [PMID: 35097287 PMCID: PMC8793056 DOI: 10.1021/acsomega.1c05727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Capsaicin, the compound in hot chili peppers responsible for their pungency and an agonist of the transient receptor potential cation channel, subfamily V, member 1 (TRPV1), has long been known to promote the desensitization of nociceptors at high concentrations. This has led to the utilization and implementation of topical capsaicin cream as an analgesic to treat acute and chronic pain. Critically, the application of capsaicin cream is limited due to capsaicin's high pungency, which is experienced prior to analgesia. To combat this issue, novel capsaicin analogues were developed to provide analgesia with reduced pungency. Analogues reported in this paper add to and show some differences from previous structure-activity relationship (SAR) studies of capsaicin-like molecules against TRPV1, including the necessity of phenol in the aromatic "A-region", the secondary amide in the "B-region", and modifications in the hydrophobic "C-region". This provided a new framework for de novo small-molecule design using capsaicin as the starting point. In this study, we describe the synthesis of capsaicin analogues, their in vitro activity in Ca2+ assays, and initial in vivo pungency and feasibility studies of capsaicin analogues YB-11 and YB-16 as analgesics. Our results demonstrate that male and female mice treated with YB capsaicin analogues showed diminished pain-associated behavior in the spontaneous formalin assay as well as reduced thermal sensitivity in the hotplate assay.
Collapse
Affiliation(s)
- Anny Treat
- Department
of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Vianie Henri
- Department
of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, 600 Forbes
Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Junke Liu
- Young
BioPharma, LLC, 110 Canal
Street, 4th Floor, Lowell, Massachusetts 01852, United States
| | - Joyce Shen
- Young
BioPharma, LLC, 110 Canal
Street, 4th Floor, Lowell, Massachusetts 01852, United States
| | - Mauricio Gil-Silva
- Department
of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Alejandro Morales
- Department
of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Avaneesh Rade
- Department
of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Kevin Joseph Tidgewell
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, 600 Forbes
Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Benedict Kolber
- Department
of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Young Shen
- Young
BioPharma, LLC, 110 Canal
Street, 4th Floor, Lowell, Massachusetts 01852, United States
| |
Collapse
|
28
|
Enhanced Ocular Surface and Intraoral Nociception via a Transient Receptor Potential Vanilloid 1 Mechanism in a Rat Model of Obstructive Sleep Apnea. Neuroscience 2021; 483:66-81. [PMID: 34883200 DOI: 10.1016/j.neuroscience.2021.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/28/2022]
Abstract
Obstructive sleep apnea (OSA), characterized by low arterial oxygen saturation during sleep, is associated with an increased risk of orofacial pain. In this study, we simulated chronic intermittent hypoxia (CIH) during the sleep/rest phase (light phase) to determine the role of transient receptor potential vanilloid 1 (TRPV1) in mediating enhanced orofacial nocifensive behavior and trigeminal spinal subnucleus caudalis (Vc) neuronal responses to capsaicin (a TRPV1 agonist) stimulation in a rat model of OSA. Rats were subjected to CIH (nadir O2, 5%) during the light phase for 8 or 16 consecutive days. CIH yielded enhanced behavioral responses to capsaicin after application to the ocular surface and intraoral mucosa, which was reversed under normoxic conditions. The percentage of TRPV1-immunoreactive trigeminal ganglion neurons was greater in CIH rats than in normoxic rats and recovered under normoxic conditions after CIH. The ratio of large-sized TRPV1-immunoreactive trigeminal ganglion neurons increased in CIH rats. The density of TRPV1 positive primary afferent terminals in the superficial laminae of Vc was higher in CIH rats. Phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive cells intermingled with the central terminal of TRPV1-positive afferents in the Vc. The number of pERK-immunoreactive cells following low-dose capsaicin (0.33 µM) application to the tongue was significantly greater in the middle portion of the Vc of CIH rats than of normoxic rats and recovered under normoxic conditions after CIH. These data suggest that CIH during the sleep (light) phase is sufficient to transiently enhance pain on the ocular surface and intraoral mucosa via TRPV1-dependent mechanisms.
Collapse
|
29
|
Korczeniewska OA, James MH, Eliav T, Katzmann Rider G, Mehr JB, Affendi H, Aston-Jones G, Benoliel R. Chemogenetic inhibition of trigeminal ganglion neurons attenuates behavioural and neural pain responses in a model of trigeminal neuropathic pain. Eur J Pain 2021; 26:634-647. [PMID: 34767278 DOI: 10.1002/ejp.1887] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nerve injury can lead to ectopic activation of injured nociceptorsand central sensitization characterized by allodynia and hyperalgesia. Reduction in the activity of primary afferent neurons has been shown to be sufficient in alleviating peripherally generated pain. The cell bodies of such trigeminal nociceptors are located in the trigeminal ganglia (TG) with central processes that terminate in the brainstem trigeminal nucleus caudalis (TNC). The TG is therefore a strategic locus where afferent input can be manipulated. We hypothesized that chemogenetic inhibition of TG would suppress TNC neuronal activity and attenuate pain behaviour in a rat model of painful traumatic trigeminal neuropathy (PTTN). METHODS Trigeminal neuropathic pain was induced in adult male Sprague-Dawley rats (n = 24) via chronic constriction injury to the infraorbital nerve (ION-CCI). Naïve and sham rats were used as controls (n = 20/group). Rats within each group received TG-directed microinjections of AAV virus containing either the inhibitory hM4Di-DREADD construct or EGFP. RESULTS In the ION-CCI group, systemic administration of the DREADD agonist clozapine N-oxide (CNO) reversed the hypersensitivity phenotype in animals expressing hM4Di but not EGFP. CNO-mediated activation of hM4Di DREADD in ION-CCI animals was also associated with reduced Fos expression in the TNC elicited by repeated mechanical stimulation of the dermatome ipsilateral to the injury. There was no effect of CNO on pain behaviour or TNC Fos expression in eGFP animals. CONCLUSION Our results indicate that DREADDs may offer an effective therapeutic approach for treatment of trigeminal neuropathic pain. SIGNIFICANCE Trigeminal neuropathic pain is highly resistant to therapy and we are in dire need of novel approaches. This study provides further evidence for the successful application of DREADDs as an effective tool for modulating central nervous system function. CNO mediated activation of hM4Di-DREADDs in the trigeminal ganglion (TG) attenuates nerve injury induced neuropathic pain by acting on hyperactive TG cells. It also establishes the TG as an effective target to manage pain in the face and head. Accessing the TG in clinical populations is a relatively simple and safe procedure, making this approach highly significant. Moreover, the methodology described here has applications in trigeminal neuropathic pain from traumatic other etiologies and in spinal neuropathic pain. Chronic pain syndromes are characterized by a progressive failure of brain centers to adequately inhibit pain and as these are identified, we may be able to target them for therapy. Therefore, our findings might have wide application in chronic pain syndromes.
Collapse
Affiliation(s)
- Olga A Korczeniewska
- Center for Orofacial Pain and Temporomandibular Disorders, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers University, Newark, New Jersey, USA.,Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA.,Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Tali Eliav
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Giannina Katzmann Rider
- Center for Orofacial Pain and Temporomandibular Disorders, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers University, Newark, New Jersey, USA
| | - Jacqueline B Mehr
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA.,Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Hafsa Affendi
- Center for Orofacial Pain and Temporomandibular Disorders, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers University, Newark, New Jersey, USA
| | - Gary Aston-Jones
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA.,Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Rafael Benoliel
- Center for Orofacial Pain and Temporomandibular Disorders, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers University, Newark, New Jersey, USA.,Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
30
|
Ishida H, Zhang Y, Gomez R, Shannonhouse J, Son H, Banik R, Kim YS. In Vivo Calcium Imaging Visualizes Incision-Induced Primary Afferent Sensitization and Its Amelioration by Capsaicin Pretreatment. J Neurosci 2021; 41:8494-8507. [PMID: 34452938 PMCID: PMC8513701 DOI: 10.1523/jneurosci.0457-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Previous studies have shown that infiltration of capsaicin into the surgical site can prevent incision-induced spontaneous pain like behaviors and heat hyperalgesia. In the present study, we aimed to monitor primary sensory neuron Ca2+ activity in the intact dorsal root ganglia (DRG) using Pirt-GCaMP3 male and female mice pretreated with capsaicin or vehicle before the plantar incision. Intraplantar injection of capsaicin (0.05%) significantly attenuated spontaneous pain, mechanical, and heat hypersensitivity after plantar incision. The Ca2+ response in in vivo DRG and in in situ spinal cord was significantly enhanced in the ipsilateral side compared with contralateral side or naive control. Primary sensory nerve fiber length was significantly decreased in the incision skin area in capsaicin-pretreated animals detected by immunohistochemistry and placental alkaline phosphatase (PLAP) staining. Thus, capsaicin pretreatment attenuates incisional pain by suppressing Ca2+ response because of degeneration of primary sensory nerve fibers in the skin.SIGNIFICANCE STATEMENT Postoperative surgery pain is a major health and economic problem worldwide with ∼235 million major surgical procedures annually. Approximately 50% of these patients report uncontrolled or poorly controlled postoperative pain. However, mechanistic studies of postoperative surgery pain in primary sensory neurons have been limited to in vitro models or small numbers of neurons. Using an innovative, distinctive, and interdisciplinary in vivo populational dorsal root ganglia (DRG) imaging (>1800 neurons/DRG) approach, we revealed increased DRG neuronal Ca2+ activity from postoperative pain mouse model. This indicates widespread DRG primary sensory neuron plasticity. Increased neuronal Ca2+ activity occurs among various sizes of neurons but mostly in small-diameter and medium-diameter nociceptors. Capsaicin pretreatment as a therapeutic option significantly attenuates Ca2+ activity and postoperative pain.
Collapse
Affiliation(s)
- Hirotake Ishida
- Department of Oral and Maxillofacial Surgery, University of Texas Health and Science Center at San Antonio, Texas, 78229
| | - Yan Zhang
- Department of Oral and Maxillofacial Surgery, University of Texas Health and Science Center at San Antonio, Texas, 78229
| | - Ruben Gomez
- Department of Oral and Maxillofacial Surgery, University of Texas Health and Science Center at San Antonio, Texas, 78229
| | - John Shannonhouse
- Department of Oral and Maxillofacial Surgery, University of Texas Health and Science Center at San Antonio, Texas, 78229
| | - Hyeonwi Son
- Department of Oral and Maxillofacial Surgery, University of Texas Health and Science Center at San Antonio, Texas, 78229
| | - Ratan Banik
- Department of Anesthesiology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, 55455
| | - Yu Shin Kim
- Department of Oral and Maxillofacial Surgery, University of Texas Health and Science Center at San Antonio, Texas, 78229
- Programs in Integrated Biomedical Sciences, Translational Sciences, Biomedical Engineering, Radiological Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
31
|
Bhandari R, Gupta R, Vashishth A, Kuhad A. Transient Receptor Potential Vanilloid 1 (TRPV1) as a plausible novel therapeutic target for treating neurological complications in ZikaVirus. Med Hypotheses 2021; 156:110685. [PMID: 34592564 DOI: 10.1016/j.mehy.2021.110685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/31/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022]
Abstract
Zika virus was declared a national emergency by WHO (World Health Organization) in 2016 when its widespread outbreaks and life-threatening complications were reported, especially in newborns and adults. Numerous studies reported that neuroinflammation is one of the significant root-causes behind its major neurological complications like microcephaly and Guillain-Barré syndrome (GBS). In this hypothesis, we propose Transient Receptor Potential Vanilloid 1 channel (TRPV1) as a major culprit in triggering positive inflammatory loop, ultimately leading to sustained neuroinflammation, one of the key clinical findings in Zika induced microcephalic and GBS patients. Opening of TRPV1 channel also leads to calcium influx and oxidative stress that ultimately results in cellular apoptosis (like Schwann cell in GBS and developing fetal nerve cells in microcephaly), ultimately leading to these complications. Currently, no specific cure exists for these complications. Most of the antiviral candidates are under clinical trials. Though there is no direct research on TRPV1 as a cause of Zika virus's neurological complications, but similarity in mechanisms is undeniable. Thus, exploring pathobiological involvement of TRPV1 channels and various TRPV1 modulators in these complications can possibly prove to be an effective futuristic therapeutic strategy for treatment and management of these life-threatening complications.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India
| | - Reetrakshi Gupta
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India
| | - Anushka Vashishth
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India.
| |
Collapse
|
32
|
Middleton SJ, Perez-Sanchez J, Dawes JM. The structure of sensory afferent compartments in health and disease. J Anat 2021; 241:1186-1210. [PMID: 34528255 PMCID: PMC9558153 DOI: 10.1111/joa.13544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022] Open
Abstract
Primary sensory neurons are a heterogeneous population of cells able to respond to both innocuous and noxious stimuli. Like most neurons they are highly compartmentalised, allowing them to detect, convey and transfer sensory information. These compartments include specialised sensory endings in the skin, the nodes of Ranvier in myelinated axons, the cell soma and their central terminals in the spinal cord. In this review, we will highlight the importance of these compartments to primary afferent function, describe how these structures are compromised following nerve damage and how this relates to neuropathic pain.
Collapse
Affiliation(s)
- Steven J Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
Iadarola MJ, Brown DC, Nahama A, Sapio MR, Mannes AJ. Pain Treatment in the Companion Canine Model to Validate Rodent Results and Incentivize the Transition to Human Clinical Trials. Front Pharmacol 2021; 12:705743. [PMID: 34421597 PMCID: PMC8375595 DOI: 10.3389/fphar.2021.705743] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
One of the biggest challenges for analgesic drug development is how to decide if a potential analgesic candidate will work in humans. What preclinical data are the most convincing, incentivizing and most predictive of success? Such a predicament is not unique to analgesics, and the pain field has certain advantages over drug development efforts in areas like neuropsychiatry where the etiological origins are either unknown or difficult to ascertain. For pain, the origin of the problem frequently is known, and the causative peripheral tissue insult might be observable. The main conundrum centers around evaluation of translational cell- and rodent-based results. While cell and rodent models are undeniably important first steps for screening, probing mechanism of action, and understanding factors of adsorption, distribution metabolism and excretion, two questions arise from such studies. First, are they reliable indicators of analgesic performance of a candidate drug in human acute and chronic pain? Second, what additional model systems might be capable of increasing translational confidence? We address this second question by assessing, primarily, the companion canine model, which can provide particularly strong predictive information for candidate analgesic agents in humans. This statement is mainly derived from our studies with resiniferatoxin (RTX) a potent TRPV1 agonist but also from protein therapeutics using a conjugate of Substance P and saporin. Our experience, to date, is that rodent models might be very well suited for acute pain translation, but companion canine models, and other large animal studies, can augment initial discovery research using rodent models for neuropathic or chronic pain. The larger animal models also provide strong translational predictive capacity for analgesic performance in humans, better predict dosing parameters for human trials and provide insight into behavior changes (bladder, bowel, mood, etc.) that are not readily assessed in laboratory animals. They are, however, not without problems that can be encountered with any experimental drug treatment or clinical trial. It also is important to recognize that pain treatment is a major veterinary concern and is an intrinsically worthwhile endeavor for animals as well as humans.
Collapse
Affiliation(s)
- Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, United States
| | | | | | - Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, United States
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, United States
| |
Collapse
|
34
|
Wang S, Chung MK. Orthodontic force induces nerve injury-like transcriptomic changes driven by TRPV1-expressing afferents in mouse trigeminal ganglia. Mol Pain 2021; 16:1744806920973141. [PMID: 33215551 PMCID: PMC7686596 DOI: 10.1177/1744806920973141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Orthodontic force produces mechanical irritation and localized inflammation in
the periodontium, which causes pain in most patients. Nocifensive behaviors
resulting from orthodontic force in mice can be substantially attenuated by
intraganglionic injection of resiniferatoxin (RTX), a neurotoxin that
specifically ablates a subset of neurons expressing transient receptor potential
vanilloid 1 (TRPV1). In the current study, we determined changes in the
transcriptomic profiles in the trigeminal ganglia (TG) following the application
of orthodontic force, and assessed the roles of TRPV1-expressing afferents in
these transcriptomic changes. RTX or vehicle was injected into the TG of mice a
week before the placement of an orthodontic spring exerting 10 g of force. After
2 days, the TG were collected for RNA sequencing. The application of orthodontic
force resulted in 1279 differentially expressed genes (DEGs) in the TG. Gene
ontology analysis showed downregulation of gliogenesis and ion channel
activities, especially of voltage-gated potassium channels. DEGs produced by
orthodontic force correlated more strongly with DEGs resulting from nerve injury
than from inflammation. Orthodontic force resulted in the differential
expression of multiple genes involved in pain regulation, including upregulation
of Atf3, Adcyap1, Bdnf, and
Csf1, and downregulation of Scn10a,
Kcna2, Kcnj10, and P2ry1.
Orthodontic force-induced DEGs correlated with DEGs specific to multiple
neuronal and non-neuronal subtypes following nerve injury. These transcriptomic
changes were abolished in the mice that received the RTX injection. These
results suggest that orthodontic force produces transcriptomic changes
resembling nerve injury in the TG and that nociceptive inputs through
TRPV1-expressing afferents leads to subsequent changes in gene expression not
only in TRPV1-positive neurons, but also in TRPV1-negative neurons and
non-neuronal cells throughout the ganglia. Orthodontic force-induced
transcriptomic changes might be an active regenerative program of trigeminal
ganglia in response to axonal injury following orthodontic force.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Neural and Pain Sciences, Center to Advance Chronic Pain Research, University of Maryland Dental School, Baltimore, MD, USA
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, Center to Advance Chronic Pain Research, University of Maryland Dental School, Baltimore, MD, USA
| |
Collapse
|
35
|
Aman MM, Mahmoud A, Deer T, Sayed D, Hagedorn JM, Brogan SE, Singh V, Gulati A, Strand N, Weisbein J, Goree JH, Xing F, Valimahomed A, Pak DJ, El Helou A, Ghosh P, Shah K, Patel V, Escobar A, Schmidt K, Shah J, Varshney V, Rosenberg W, Narang S. The American Society of Pain and Neuroscience (ASPN) Best Practices and Guidelines for the Interventional Management of Cancer-Associated Pain. J Pain Res 2021; 14:2139-2164. [PMID: 34295184 PMCID: PMC8292624 DOI: 10.2147/jpr.s315585] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
Moderate to severe pain occurs in many cancer patients during their clinical course and may stem from the primary pathology, metastasis, or as treatment side effects. Uncontrolled pain using conservative medical therapy can often lead to patient distress, loss of productivity, shorter life expectancy, longer hospital stays, and increase in healthcare utilization. Various publications shed light on strategies for conservative medical management for cancer pain and a few international publications have reviewed limited interventional data. Our multi-institutional working group was assembled to review and highlight the body of evidence that exists for opioid utilization for cancer pain, adjunct medication such as ketamine and methadone and interventional therapies. We discuss neurolysis via injections, neuromodulation including targeted drug delivery and spinal cord stimulation, vertebral tumor ablation and augmentation, radiotherapy and surgical techniques. In the United States, there is a significant variance in the interventional treatment of cancer pain based on fellowship training. As a first of its kind, this best practices and interventional guideline will offer evidenced-based recommendations for reducing pain and suffering associated with malignancy.
Collapse
Affiliation(s)
- Mansoor M Aman
- Department of Anesthesiology, Division of Pain Medicine, Advocate Aurora Health, Oshkosh, WI, USA
| | - Ammar Mahmoud
- Department of Anesthesiology, Division of Pain Medicine, Northern Light Health Eastern Maine Medical Center, Bangor, ME, USA
| | - Timothy Deer
- The Spine and Nerve Center of the Virginias, Charleston, WV, USA
| | - Dawood Sayed
- Department of Anesthesiology, Pain and Perioperative Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jonathan M Hagedorn
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shane E Brogan
- Department of Anesthesiology, Division of Pain Medicine, University of Utah, Salt Lake City, UT, USA
| | - Vinita Singh
- Department of Anesthesiology, Division of Pain Medicine, Emory University, Atlanta, GA, USA
| | - Amitabh Gulati
- Department of Anesthesiology and Critical Care, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natalie Strand
- Department of Anesthesiology, Division of Pain Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Jacqueline Weisbein
- Department of Anesthesiology, Chronic Pain Division, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Johnathan H Goree
- Interventional Pain Medicine, Napa Valley Orthopedic Medical Group, Napa, CA, USA
| | - Fangfang Xing
- Swedish Pain Services, Swedish Health Services, Seattle, WA, USA
| | - Ali Valimahomed
- Gramercy Pain Center, Holmdel, NJ, & Advanced Orthopedics Sports Medicine Institute, Freehold, NJ, USA
| | - Daniel J Pak
- Department of Anesthesiology, Division of Pain Medicine, New York-Presbyterian Hospital/Weill Cornell Medical College, New York, NY, USA
| | - Antonios El Helou
- Department of Neurosciences, Division of Neurosurgery, The Moncton Hospital, Moncton, NB. Assistant Professor, Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | | | - Krishna Shah
- Assistant Professor of Anesthesiology, Baylor St. Luke’s Medical Center, Baylor College of Medicine, Houston, TX, USA
| | - Vishal Patel
- Department of Anesthesiology, Division of Pain Medicine, Advocate Aurora Health, Oshkosh, WI, USA
| | - Alexander Escobar
- Department of Anesthesiology and Pain Medicine, University of Toledo Medical Center, Toledo, OH, USA
| | - Keith Schmidt
- AMITA Neurosciences Institute, Comprehensive Pain Management Program, St. Alexius Medical Center, Hoffman Estates, IL, USA
| | - Jay Shah
- SamWell Institute for Pain Management, Colonia, NJ, USA
| | - Vishal Varshney
- Department of Anesthesia, Providence Healthcare, Vancouver, BC, Canada & Department of Anesthesiology, Pharmacology, Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - William Rosenberg
- Center for the Relief of Pain, Midwest Neurosurgery Associates, Kansas City, Missouri, USA
| | - Sanjeet Narang
- Department of Anesthesiology, Pain and Perioperative Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Li F, Jiang H, Shen X, Yang W, Guo C, Wang Z, Xiao M, Cui L, Luo W, Kim BS, Chen Z, Huang AJW, Liu Q. Sneezing reflex is mediated by a peptidergic pathway from nose to brainstem. Cell 2021; 184:3762-3773.e10. [PMID: 34133943 PMCID: PMC8396370 DOI: 10.1016/j.cell.2021.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022]
Abstract
Sneezing is a vital respiratory reflex frequently associated with allergic rhinitis and viral respiratory infections. However, its neural circuit remains largely unknown. A sneeze-evoking region was discovered in both cat and human brainstems, corresponding anatomically to the central recipient zone of nasal sensory neurons. Therefore, we hypothesized that a neuronal population postsynaptic to nasal sensory neurons mediates sneezing in this region. By screening major presynaptic neurotransmitters/neuropeptides released by nasal sensory neurons, we found that neuromedin B (NMB) peptide is essential for signaling sneezing. Ablation of NMB-sensitive postsynaptic neurons in the sneeze-evoking region or deficiency in NMB receptor abolished the sneezing reflex. Remarkably, NMB-sensitive neurons further project to the caudal ventral respiratory group (cVRG). Chemical activation of NMB-sensitive neurons elicits action potentials in cVRG neurons and leads to sneezing behavior. Our study delineates a peptidergic pathway mediating sneezing, providing molecular insights into the sneezing reflex arc.
Collapse
Affiliation(s)
- Fengxian Li
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Haowu Jiang
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaolei Shen
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Weishan Yang
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Changxiong Guo
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhiyao Wang
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maolei Xiao
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lian Cui
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian S Kim
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhoufeng Chen
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew J W Huang
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Qin Liu
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
37
|
Rinwa P, Calvo-Enrique L, Zhang MD, Nyengaard JR, Karlsson P, Ernfors P. Demise of nociceptive Schwann cells causes nerve retraction and pain hyperalgesia. Pain 2021; 162:1816-1827. [PMID: 33979318 PMCID: PMC8120683 DOI: 10.1097/j.pain.0000000000002169] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
ABSTRACT Recent findings indicate that nociceptive nerves are not "free", but similar to touch and pressure sensitive nerves, terminate in an end-organ in mice. This sensory structure consists of the nociceptive nerves and specialized nociceptive Schwann cells forming a mesh-like organ in subepidermis with pain transduction initiated at both these cellular constituents. The intimate relation of nociceptive nerves with nociceptive Schwann cells in mice raises the question whether defects in nociceptive Schwann cells can by itself contribute to pain hyperalgesia, nerve retraction, and peripheral neuropathy. We therefore examined the existence of nociceptive Schwann cells in human skin and their possible contribution to neuropathy and pain hyperalgesia in mouse models. Similar to mouse, human skin contains SOX10+/S100B+/AQP1+ Schwann cells in the subepidermal border that have extensive processes, which are intimately associated with nociceptive nerves projecting into epidermis. The ablation of nociceptive Schwann cells in mice resulted in nerve retraction and mechanical, cold, and heat hyperalgesia. Conversely, ablating the nociceptive nerves led to a retraction of epidermal Schwann cell processes, changes in nociceptive Schwann cell soma morphology, heat analgesia, and mechanical hyperalgesia. Our results provide evidence for a nociceptive sensory end-organ in the human skin and using animal models highlight the interdependence of the nerve and the nociceptive Schwann cell. Finally, we show that demise of nociceptive Schwann cells is sufficient to cause neuropathic-like pain in the mouse.
Collapse
Affiliation(s)
- Puneet Rinwa
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Calvo-Enrique
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Ming-Dong Zhang
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Jens Randel Nyengaard
- Department of Clinical Medicine—Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Aarhus, Denmark
| | - Páll Karlsson
- Department of Clinical Medicine—Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
- Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - Patrik Ernfors
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Li L, Chen C, Chiang C, Xiao T, Chen Y, Zhao Y, Zheng D. The Impact of TRPV1 on Cancer Pathogenesis and Therapy: A Systematic Review. Int J Biol Sci 2021; 17:2034-2049. [PMID: 34131404 PMCID: PMC8193258 DOI: 10.7150/ijbs.59918] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/23/2021] [Indexed: 12/27/2022] Open
Abstract
The transient receptor potential cation channel subfamily V member 1 (TRPV1) is a transmembrane protein that can be activated by various physical and chemical stimuli and is associated with pain transduction. In recent years, TRPV1 was discovered to play essential roles in cancer tumorigenesis and development, as TRPV1 expression levels are altered in numerous cancer cell types. Several investigations have discovered direct associations between TRPV1 and cancer cell proliferation, cell death, and metastasis. Furthermore, about two dozen TRPV1 agonists/antagonists are under clinical trial, as TRPV1 is a potential drug target for treating various diseases. Hence, more researchers are focusing on the effects of TRPV1 agonists or antagonists on cancer tumorigenesis and development. However, both agonists and antagonists may reveal anti-cancer effects, and the effect may function via or be independent of TRPV1. In this review, we provide an overview of the impact of TRPV1 on cancer cell proliferation, cell death, and metastasis, as well as on cancer therapy and the tumor microenvironment, and consider the implications of using TRPV1 agonists and antagonists for future research and potential therapeutic approaches.
Collapse
Affiliation(s)
- Li Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Cheng Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Chengyao Chiang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Tian Xiao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy (Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research), Guangxi Medical University, Nanning, China
| | - Duo Zheng
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
39
|
Isaacson M, Hoon MA. An operant temperature sensory assay provides a means to assess thermal discrimination. Mol Pain 2021; 17:17448069211013633. [PMID: 33906493 PMCID: PMC8108075 DOI: 10.1177/17448069211013633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Mouse behavioral assays have proven useful for the study of thermosensation, helping to identify receptors and circuits responsible for the transduction of thermal stimuli and information relay to the brain. However, these methods typically rely on observation of behavioral responses to various temperature stimuli to infer sensory ability and are often unable to disambiguate innocuous thermosensation from thermal nociception or to study thermosensory circuitry which do not produce easily detectable innate behavioral responses. Here we demonstrate a new testing apparatus capable of delivering small, rapid temperature change stimuli to the mouse’s skin, permitting the use of operant conditioning to train mice to recognize and report temperature change. Using this assay, mice that were trained to detect a large temperature change were found to generalize this learning to distinguish much smaller temperature changes across the entire range of innocuous temperatures tested. Mice with ablated TRPV1 and TRPM8 neuronal populations had reduced ability to discriminate temperature differences in the warm (>35°C) and cool (<30°C) ranges, respectively. Furthermore, mice that were trained to recognize temperature changes in only the cool, TRPM8-mediated temperature range did not generalize this learning in the warm, TRPV1-mediated range (and vice versa), suggesting that thermosensory information from the TRPM8- and TRPV1-neuronal populations are perceptually distinct.
Collapse
Affiliation(s)
- Matthew Isaacson
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA.,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Mark A Hoon
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA
| |
Collapse
|
40
|
Ramirez VT, Sladek J, Godinez DR, Rude KM, Chicco P, Murray K, Brust-Mascher I, Gareau MG, Reardon C. Sensory Nociceptive Neurons Contribute to Host Protection During Enteric Infection With Citrobacter rodentium. J Infect Dis 2021; 221:1978-1988. [PMID: 31960920 DOI: 10.1093/infdis/jiaa014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/15/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Neurons are an integral component of the immune system that functions to coordinate responses to bacterial pathogens. Sensory nociceptive neurons that can detect bacterial pathogens are found throughout the body with dense innervation of the intestinal tract. METHODS In this study, we assessed the role of these nerves in the coordination of host defenses to Citrobacter rodentium. Selective ablation of nociceptive neurons significantly increased bacterial burden 10 days postinfection and delayed pathogen clearance. RESULTS Because the sensory neuropeptide CGRP (calcitonin gene-related peptide) regulates host responses during infection of the skin, lung, and small intestine, we assessed the role of CGRP receptor signaling during C rodentium infection. Although CGRP receptor blockade reduced certain proinflammatory gene expression, bacterial burden and Il-22 expression was unaffected. CONCLUSIONS Our data highlight that sensory nociceptive neurons exert a significant host protective role during C rodentium infection, independent of CGRP receptor signaling.
Collapse
Affiliation(s)
- Valerie T Ramirez
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Jessica Sladek
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Dayn Romero Godinez
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Kavi M Rude
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Pamela Chicco
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Kaitlin Murray
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Melanie G Gareau
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Colin Reardon
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| |
Collapse
|
41
|
Szeredi ID, Jancsó G, Oszlács O, Sántha P. Prior perineural or neonatal treatment with capsaicin does not alter the development of spinal microgliosis induced by peripheral nerve injury. Cell Tissue Res 2021; 383:677-692. [PMID: 32960358 PMCID: PMC7904541 DOI: 10.1007/s00441-020-03285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/14/2020] [Indexed: 11/28/2022]
Abstract
Peripheral nerve injury is associated with spinal microgliosis which plays a pivotal role in the development of neuropathic pain behavior. Several agents of primary afferent origin causing the microglial reaction have been identified, but the type(s) of primary afferents that release these mediators are still unclear. In this study, specific labeling of C-fiber spinal afferents by lectin histochemistry and selective chemodenervation by capsaicin were applied to identify the type(s) of primary afferents involved in the microglial response. Comparative quantitative morphometric evaluation of the microglial reaction in central projection territories of intact and injured peripheral nerves in the superficial (laminae I and II) and deep (laminae III and IV) spinal dorsal horn revealed a significant, about three-fold increase in microglial density after transection of the sciatic or the saphenous nerve. Prior perineural treatment of these nerves with capsaicin, resulting in a selective defunctionalization of C-fiber afferent fibers failed to affect spinal microgliosis. Similarly, peripheral nerve injury-induced increase in microglial density was unaffected in rats treated neonatally with capsaicin known to result in a near-total loss of C-fiber dorsal root fibers. Perineural treatment with capsaicin per se did not evoke a significant increase in microglial density. These observations indicate that injury-induced spinal microgliosis may be attributed to phenotypic changes in injured myelinated primary afferent neurons, whereas the contribution of C-fiber primary sensory neurons to this neuroimmune response is negligible. Spinal myelinated primary afferents may play a hitherto unrecognized role in regulation of neuroimmune and perisynaptic microenvironments of the spinal dorsal horn.
Collapse
Affiliation(s)
- Ivett Dorina Szeredi
- Department of Physiology, University of Szeged, Dóm tér 10, Szeged, H-6720, Hungary
| | - Gábor Jancsó
- Department of Physiology, University of Szeged, Dóm tér 10, Szeged, H-6720, Hungary
| | - Orsolya Oszlács
- Department of Physiology, University of Szeged, Dóm tér 10, Szeged, H-6720, Hungary
| | - Péter Sántha
- Department of Physiology, University of Szeged, Dóm tér 10, Szeged, H-6720, Hungary.
| |
Collapse
|
42
|
Przybyła GW, Szychowski KA, Gmiński J. Paracetamol - An old drug with new mechanisms of action. Clin Exp Pharmacol Physiol 2021; 48:3-19. [PMID: 32767405 DOI: 10.1111/1440-1681.13392] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/09/2020] [Accepted: 08/02/2020] [Indexed: 12/26/2022]
Abstract
Paracetamol (acetaminophen) is the most commonly used over-the-counter (OTC) drug in the world. Despite its popularity and use for many years, the safety of its application and its mechanism of action are still unclear. Currently, it is believed that paracetamol is a multidirectional drug and at least several metabolic pathways are involved in its analgesic and antipyretic action. The mechanism of paracetamol action consists in inhibition of cyclooxygenases (COX-1, COX-2, and COX-3) and involvement in the endocannabinoid system and serotonergic pathways. Additionally, paracetamol influences transient receptor potential (TRP) channels and voltage-gated Kv7 potassium channels and inhibits T-type Cav3.2 calcium channels. It also exerts an impact on L-arginine in the nitric oxide (NO) synthesis pathway. However, not all of these effects have been clearly confirmed. Therefore, the aim of our paper was to summarize the current state of knowledge of the mechanism of paracetamol action with special attention to its safety concerns.
Collapse
Affiliation(s)
| | - Konrad A Szychowski
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| | - Jan Gmiński
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| |
Collapse
|
43
|
Fischer MJM, Ciotu CI, Szallasi A. The Mysteries of Capsaicin-Sensitive Afferents. Front Physiol 2020; 11:554195. [PMID: 33391007 PMCID: PMC7772409 DOI: 10.3389/fphys.2020.554195] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
A fundamental subdivision of nociceptive sensory neurons is named after their unique sensitivity to capsaicin, the pungent ingredient in hot chili peppers: these are the capsaicin-sensitive afferents. The initial excitation by capsaicin of these neurons manifested as burning pain sensation is followed by a lasting refractory state, traditionally referred to as "capsaicin desensitization," during which the previously excited neurons are unresponsive not only to capsaicin but a variety of unrelated stimuli including noxious heat. The long sought-after capsaicin receptor, now known as TRPV1 (transient receptor potential cation channel, subfamily V member 1), was cloned more than two decades ago. The substantial reduction of the inflammatory phenotype of Trpv1 knockout mice has spurred extensive efforts in the pharmaceutical industry to develop small molecule TRPV1 antagonists. However, adverse effects, most importantly hyperthermia and burn injuries, have so far prevented any compounds from progressing beyond Phase 2. There is increasing evidence that these limitations can be at least partially overcome by approaches outside of the mainstream pharmaceutical development, providing novel therapeutic options through TRPV1. Although ablation of the whole TRPV1-expressing nerve population by high dose capsaicin, or more selectively by intersectional genetics, has allowed researchers to investigate the functions of capsaicin-sensitive afferents in health and disease, several "mysteries" remain unsolved to date, including the molecular underpinnings of "capsaicin desensitization," and the exact role these nerves play in thermoregulation and heat sensation. This review tries to shed some light on these capsaicin mechanisms.
Collapse
Affiliation(s)
- Michael J. M. Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Cosmin I. Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Arpad Szallasi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
44
|
Fight fire with fire: Neurobiology of capsaicin-induced analgesia for chronic pain. Pharmacol Ther 2020; 220:107743. [PMID: 33181192 DOI: 10.1016/j.pharmthera.2020.107743] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Capsaicin, the pungent ingredient in chili peppers, produces intense burning pain in humans. Capsaicin selectively activates the transient receptor potential vanilloid 1 (TRPV1), which is enriched in nociceptive primary afferents, and underpins the mechanism for capsaicin-induced burning pain. Paradoxically, capsaicin has long been used as an analgesic. The development of topical patches and injectable formulations containing capsaicin has led to application in clinical settings to treat chronic pain conditions, such as neuropathic pain and the potential to treat osteoarthritis. More detailed determination of the neurobiological mechanisms of capsaicin-induced analgesia should provide the logical rationale for capsaicin therapy and help to overcome the treatment's limitations, which include individual differences in treatment outcome and procedural discomfort. Low concentrations of capsaicin induce short-term defunctionalization of nociceptor terminals. This phenomenon is reversible within hours and, hence, likely does not account for the clinical benefit. By contrast, high concentrations of capsaicin lead to long-term defunctionalization mediated by the ablation of TRPV1-expressing afferent terminals, resulting in long-lasting analgesia persisting for several months. Recent studies have shown that capsaicin-induced Ca2+/calpain-mediated ablation of axonal terminals is necessary to produce long-lasting analgesia in a mouse model of neuropathic pain. In combination with calpain, axonal mitochondrial dysfunction and microtubule disorganization may also contribute to the longer-term effects of capsaicin. The analgesic effects subside over time in association with the regeneration of the ablated afferent terminals. Further determination of the neurobiological mechanisms of capsaicin-induced analgesia should lead to more efficacious non-opioidergic analgesic options with fewer adverse side effects.
Collapse
|
45
|
Abstract
The transient receptor potential vanilloid-1 (TRPV1) is a non-specific cation channel known for its sensitivity to pungent vanilloid compound (i.e. capsaicin) and noxious stimuli, including heat, low pH or inflammatory mediators. TRPV1 is found in the somatosensory system, particularly primary afferent neurons that respond to damaging or potentially damaging stimuli (nociceptors). Stimulation of TRPV1 evokes a burning sensation, reflecting a central role of the channel in pain. Pharmacological and genetic studies have validated TRPV1 as a therapeutic target in several preclinical models of chronic pain, including cancer, neuropathic, postoperative and musculoskeletal pain. While antagonists of TRPV1 were found to be a valuable addition to the pain therapeutic toolbox, their clinical use has been limited by detrimental side effects, such as hyperthermia. In contrast, capsaicin induces a prolonged defunctionalisation of nociceptors and thus opened the door to the development of a new class of therapeutics with long-lasting pain-relieving effects. Here we review the list of TRPV1 agonists undergoing clinical trials for chronic pain management, and discuss new indications, formulations or combination therapies being explored for capsaicin. While the analgesic pharmacopeia for chronic pain patients is ancient and poorly effective, modern TRPV1-targeted drugs could rapidly become available as the next generation of analgesics for a broad spectrum of pain conditions.
Collapse
Affiliation(s)
- Mircea Iftinca
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Manon Defaye
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
46
|
Lacrimal gland excision in male and female mice causes ocular pain and anxiety-like behaviors. Sci Rep 2020; 10:17225. [PMID: 33057056 PMCID: PMC7560880 DOI: 10.1038/s41598-020-73945-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022] Open
Abstract
Lacrimal gland excision (LGE) induced dry eye produces more severe corneal damage in female mice, yet signs of LGE-induced ocular pain and anxiety in male and female mice have not been characterized. Excision of either the extraorbital gland (single LGE), or both the extraorbital and intraorbital glands (double LGE) was performed in male and female C57BL/6J mice to induce moderate and severe dry eye. Ongoing pain was assessed by quantifying palpebral opening and evoked nociceptive responses after corneal application of capsaicin and menthol. The open-field and plus maze were used to assess anxiety. Single LGE caused a reduction in palpebral opening and an increase in capsaicin and menthol-evoked responses only in female mice. Furthermore, single LGE produced signs of increased anxiety in female but not male mice. Overall, female mice appear more susceptible to signs of ocular pain, irritation, and anxiety in response to aqueous tear deficiency.
Collapse
|
47
|
Modulation of TRPV1 channel function by natural products in the treatment of pain. Chem Biol Interact 2020; 330:109178. [DOI: 10.1016/j.cbi.2020.109178] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/22/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023]
|
48
|
Lung innervation in the eye of a cytokine storm: neuroimmune interactions and COVID-19. Nat Rev Neurol 2020; 16:645-652. [PMID: 32843733 PMCID: PMC7446605 DOI: 10.1038/s41582-020-0402-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
COVID-19 is an infectious disease caused by the coronavirus SARS-CoV-2, which was first reported in Wuhan, China, in December 2019 and has caused a global pandemic. Acute respiratory distress syndrome (ARDS) is a common feature of severe forms of COVID-19 and can lead to respiratory failure, especially in older individuals. The increasing recognition of the neurotropic potential of SARS-CoV-2 has sparked interest in the role of the nervous system in respiratory failure in people with COVID-19. However, the neuroimmune interactions in the lung in the context of ARDS are poorly understood. In this Perspectives article, we propose the concept of the neuroimmune unit as a critical determinant of lung function in the context of COVID-19, inflammatory conditions and ageing, focusing particularly on the involvement of the vagus nerve. We discuss approaches such as neurostimulation and pharmacological neuromodulation to reduce tissue inflammation with the aim of preventing respiratory failure. Acute respiratory distress syndrome is a common occurrence in COVID-19, an infectious disease caused by the coronavirus SARS-CoV-2. In this article, the authors consider how lung innervation might crosstalk with the immune system to modulate lung function and influence outcomes in COVID-19.
Collapse
|
49
|
Bonacin YS, Marques ICS, Garcia SB, Silva SBG, Canola PA, Marques JA. The role of vanilloid receptor type 1 (TRPV1) in hyperalgesia related to bovine digital dermatitis. J Dairy Sci 2020; 103:7315-7321. [PMID: 32505399 DOI: 10.3168/jds.2019-17035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
Bovine digital dermatitis is a contagious and chronic disease affecting the digits of dairy cattle worldwide. Tissue degradation may alter ionic channels and further activate vanilloid channels, more specifically the vanilloid receptor type 1 (TRPV1) that can generate and modulate hyperalgesia in cows affected with bovine digital dermatitis. The aim of this pilot study was to identify and quantify TRPV1 channels in dairy cows presenting with different stages of bovine digital dermatitis and compare these data according to the disease evolution and degree of hyperalgesia described in previous studies. Biopsies were taken from 15 lactating Holstein cows (23 lesions), and immunochemistry was performed to identify the number of TRPV1 fibers in the 4 M-stages of digital dermatitis and the control group. This pilot study had 5 experimental groups, M1 (5 samples), M2 (5 samples), M3 (4 samples), M4 (4 samples), and the control group (5 samples), with inclusion criteria was the presence of a bovine digital dermatitis lesion in at least one digit. The pilot results demonstrate an increase in expression of TRPV1 receptors in group M4 in comparison with the other groups. Bovine digital dermatitis may cause an increase in expression of TRPV1 receptors in the chronic stages of the disease, possibly contributing to the hyperalgesia described in affected animals; nevertheless, further research is needed to define this relation.
Collapse
Affiliation(s)
- Yuri S Bonacin
- Department of Clinical and Surgery, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900.
| | - Isabela C S Marques
- Department of Pathology and Legal Medicine, Ribeirão Preto School of Medicine, São Paulo University, Ribeirão Preto, São Paulo, Brazil 14049-900
| | - Sérgio B Garcia
- Department of Pathology and Legal Medicine, Ribeirão Preto School of Medicine, São Paulo University, Ribeirão Preto, São Paulo, Brazil 14049-900
| | - Samara B G Silva
- Department of Clinical and Surgery, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900
| | - Paulo A Canola
- Department of Clinical and Surgery, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900
| | - José A Marques
- Department of Clinical and Surgery, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900
| |
Collapse
|
50
|
Ablation of TRPV1+ Afferent Terminals by Capsaicin Mediates Long-Lasting Analgesia for Trigeminal Neuropathic Pain. eNeuro 2020; 7:ENEURO.0118-20.2020. [PMID: 32404326 PMCID: PMC7266139 DOI: 10.1523/eneuro.0118-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
Trigeminal neuropathic pain (TNP) is often resistant to current pharmacotherapy, and there is a pressing need to develop more efficacious treatments. Capsaicin is a pungent ingredient of chili peppers and specifically activates transient receptor potential vanilloid subtype 1 (TRPV1), a Ca2+-permeable ion channel. Topical capsaicin invariably induces burning pain. Paradoxically, the transient pain is often followed by prolonged attenuation of the preexisting pathologic pain from the same region. However, the mechanisms underlying capsaicin-induced analgesia are not well understood. Although the reports of the involvement of TRPV1 and TRPV1+ afferents in neuropathic pain are controversial, we recently demonstrated that TRPV1 and TRPV1+ afferents are involved in mechanical hyperalgesia in mice with chronic constriction injury of the infraorbital nerve (ION-CCI). Consistently, chemogenetic inhibition of TRPV1-lineage (TRPV1-LN) afferents attenuated mechanical hyperalgesia and ongoing pain. In mice with ION-CCI, we found that a single focal injection of capsaicin into facial skin led to attenuation of mechanical hyperalgesia over two weeks. Capsaicin treatment also attenuated secondary hyperalgesia in extraterritorial mandibular skin. Furthermore, capsaicin treatment decreased ongoing pain. Longitudinal in vivo two-photon imaging of cutaneous nerve fibers showed that such capsaicin-induced analgesia is correlated with cutaneous nerve terminal density. Furthermore, preventing capsaicin-induced ablation of afferent terminals by co-administration of capsaicin with MDL28170, an inhibitor of calpain, abolished capsaicin-induced analgesia. These results suggest that a single focal injection of capsaicin induces long-lasting analgesia for neuropathic pain via selective ablation of TRPV1+ afferent terminals and that TRPV1+ afferents contribute to the maintenance of TNP.
Collapse
|