1
|
Li X, Mi Z, Liu Z, Rong P. SARS-CoV-2: pathogenesis, therapeutics, variants, and vaccines. Front Microbiol 2024; 15:1334152. [PMID: 38939189 PMCID: PMC11208693 DOI: 10.3389/fmicb.2024.1334152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in December 2019 with staggering economic fallout and human suffering. The unique structure of SARS-CoV-2 and its underlying pathogenic mechanism were responsible for the global pandemic. In addition to the direct damage caused by the virus, SARS-CoV-2 triggers an abnormal immune response leading to a cytokine storm, culminating in acute respiratory distress syndrome and other fatal diseases that pose a significant challenge to clinicians. Therefore, potential treatments should focus not only on eliminating the virus but also on alleviating or controlling acute immune/inflammatory responses. Current management strategies for COVID-19 include preventative measures and supportive care, while the role of the host immune/inflammatory response in disease progression has largely been overlooked. Understanding the interaction between SARS-CoV-2 and its receptors, as well as the underlying pathogenesis, has proven to be helpful for disease prevention, early recognition of disease progression, vaccine development, and interventions aimed at reducing immunopathology have been shown to reduce adverse clinical outcomes and improve prognosis. Moreover, several key mutations in the SARS-CoV-2 genome sequence result in an enhanced binding affinity to the host cell receptor, or produce immune escape, leading to either increased virus transmissibility or virulence of variants that carry these mutations. This review characterizes the structural features of SARS-CoV-2, its variants, and their interaction with the immune system, emphasizing the role of dysfunctional immune responses and cytokine storm in disease progression. Additionally, potential therapeutic options are reviewed, providing critical insights into disease management, exploring effective approaches to deal with the public health crises caused by SARS-CoV-2.
Collapse
Affiliation(s)
- Xi Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ze Mi
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhenguo Liu
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Braun J, Rudwaleit M, Sieper J. [The role of HLA-B27 in the pathogenesis and diagnosis of axial spondyloarthritis : 50 years after discovery of the strong genetic association]. Z Rheumatol 2024; 83:125-133. [PMID: 38112753 DOI: 10.1007/s00393-023-01460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND The association of the human lymphocyte antigen B27 (HLA-B27) with ankylosing spondylitis (AS), also now called axial spondylarthritis (axSpA), was first described 50 years ago. OBJECTIVE This article gives an overview of the available knowledge on the topic. MATERIAL AND METHODS This is a narrative review based on the experience of the authors. RESULTS The HLA-B27 is a member of the HLA class I family of genes of the major histocompatibility complex (MHC). The prevalence of HLA-B27 in the central European population is approximately 8 %, i.e., the vast majority of carriers of HLA-B27+ remain healthy. The frequency of HLA-B27 shows a decline from north to south. The HLA-B27 explains only 30 % of the genetic burden of axSpA. The prevalence of the disease correlates with the frequency of HLA-B27 in the population, i.e., there are geographic differences. Approximately 60-90 % of patients with axSpA worldwide are HLA-B27+. Some 200 subtypes of HLA-B27 can be differentiated using the polymerase chain reaction (PCR). In Thailand and Sardinia two subtypes were found that are not associated with axSpA. The physiological function of HLA class I molecules is the defence of the organism against microbes. Microbial peptides are presented to the immune system, which can be specifically attacked by CD8+ T‑cells. Genetic polymorphisms of the enzyme endoplasmic reticulum aminopeptidase 1 (ERAP1), which breaks down peptides in the endoplasmic reticulum, are associated only with HLA-B27+ diseases. DISCUSSION The pathogenesis of axSpA is unclear but a major hypothesis is that of the arthritogenic peptides. In this it is assumed that potentially pathogenic foreign or autologous peptides can be presented by HLA-B27. If nothing else, HLA-B27 plays an important role in the diagnosis, classification and determination of the severity of axSpA.
Collapse
Affiliation(s)
- Jürgen Braun
- Rheumatologisches Versorgungszentrum Steglitz, Berlin, Deutschland.
- Ruhr Universität Bochum, Bochum, Deutschland.
- , Berlin, Deutschland.
| | - Martin Rudwaleit
- Klinikum Bielefeld, Universitätsklinikum OWL der Universität Bielefeld, Bielefeld, Deutschland
| | | |
Collapse
|
3
|
Pisharodi M. Portable and Air Conditioner-Based Bio-Protection Devices to Prevent Airborne Infections in Acute and Long-Term Healthcare Facilities, Public Gathering Places, Public Transportation, and Similar Entities. Cureus 2024; 16:e55950. [PMID: 38469370 PMCID: PMC10926937 DOI: 10.7759/cureus.55950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 03/13/2024] Open
Abstract
The nature in which the coronavirus disease 2019 (COVID-19) pandemic started and spread all over the world has surprised and shocked experts and the general population alike. This has brought out a worldwide desire and serious efforts to prevent, or at least reduce, the severity of another airborne viral infection and protect individuals gathering for various reasons. Toward this main purpose, a novel method to disinfect the air, using graded, predictable, safe, and reliable dosage of ultraviolet C (UVC), with specially designed devices, is described here. Individuals exclusively breathing this disinfected air can prevent infection, thus destroying the airborne virus or any other pathogens outside the human body to prevent acute and chronic damage to the organs and provide a sense of security to congregate, use public transport, and be protected in acute and long-term healthcare facilities. The study involved designing and testing a unit with one UVC chamber and another unit with six UVC chambers both enclosed in UVC-opaque housings that could be used to destroy airborne pathogens. Wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was used as a representative pathogen. The virus was fed into these units and in both units, the virus was destroyed to undetectable levels. Such disinfected air can be made available for individuals to breathe at an individual and a community level. The two units that were studied were able to destroy the SARS-CoV-2 virus completely in UVC-opaque housings, making them safe for human use. By employing the air to bring the virus to the UVC, the problem of the virus getting protected behind structures was avoided. The individuals get to breathe totally disinfected air through a mask or a ventilator. To protect individuals who are unable or unwilling to use these units meant for individual use, the same principle can be expanded for use with air conditioners to provide community protection. It is envisaged that this method can prevent airborne infections from turning into pandemics and is a clear example of advocating prevention, rather than treatment. These units are expandable and the UVC dosage to the pathogen can be adjusted and predictable, thereby making it a standard technique to study the dosage needed to inactivate different pathogens.
Collapse
|
4
|
Braun J, Sieper J. Fifty years after the discovery of the association of HLA B27 with ankylosing spondylitis. RMD Open 2023; 9:e003102. [PMID: 37652557 PMCID: PMC10476136 DOI: 10.1136/rmdopen-2023-003102] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
The human lymphocyte antigen B27 (HLA B27) is a member of the HLA class I family of genes in the major histocompatibility complex whose name goes back to its discovery in studies of transplanted tissue compatibility. Its prevalence in the mid-European population is about 8%. The association of HLA B27 alleles with ankylosing spondylitis (AS), a highly heritable disease, which is part of the spectrum of axial spondyloarthritis (axSpA), was discovered 50 years ago. HLA B27 explains less than 30% of the total genetic load. About 60%-90% of axSpA patients worldwide carry HLA B27. The prevalence of the disease is linked to the frequency of HLA B27 in the population which implies that there are relevant differences. Among the roughly 200 subtypes known there are two which are not disease associated. The function of HLA class I molecules is to present peptides to the immune system to defend the organism against microbes targeted by CD8+T cells. This is much supported by the role of the endoplasmic reticulum aminopeptidase 1 (ERAP 1) in AS, an enzyme that is responsible for the intracellular trimming of peptides, since polymorphisms of this gene are only associated with HLA-B27+ disease. The arthritogenic peptide hypothesis trying to explain the pathogenesis of AS is based on that very immune function assuming that also self peptides can be presented. HLA-B27 also plays an important role in classification, diagnosis and severitiy of axSpA.
Collapse
Affiliation(s)
| | - Joachim Sieper
- Department of Rheumatology, Charite Universitatsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Xiong Y, Cai M, Xu Y, Dong P, Chen H, He W, Zhang J. Joint together: The etiology and pathogenesis of ankylosing spondylitis. Front Immunol 2022; 13:996103. [PMID: 36325352 PMCID: PMC9619093 DOI: 10.3389/fimmu.2022.996103] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/28/2022] [Indexed: 08/16/2023] Open
Abstract
Spondyloarthritis (SpA) refers to a group of diseases with inflammation in joints and spines. In this family, ankylosing spondylitis (AS) is a rare but classic form that mainly involves the spine and sacroiliac joint, leading to the loss of flexibility and fusion of the spine. Compared to other diseases in SpA, AS has a very distinct hereditary disposition and pattern of involvement, and several hypotheses about its etiopathogenesis have been proposed. In spite of significant advances made in Th17 dynamics and AS treatment, the underlying mechanism remains concealed. To this end, we covered several topics, including the nature of the immune response, the microenvironment in the articulation that is behind the disease's progression, and the split between the hypotheses and the evidence on how the intestine affects arthritis. In this review, we describe the current findings of AS and SpA, with the aim of providing an integrated view of the initiation of inflammation and the development of the disease.
Collapse
Affiliation(s)
- Yuehan Xiong
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Menghua Cai
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yi Xu
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Peng Dong
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Hui Chen
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Wei He
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Jianmin Zhang
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| |
Collapse
|
6
|
Osuch S, Laskus T, Perlejewski K, Berak H, Bukowska-Ośko I, Pollak A, Zielenkiewicz M, Radkowski M, Caraballo Cortés K. CD8 + T-Cell Exhaustion Phenotype in Chronic Hepatitis C Virus Infection Is Associated With Epitope Sequence Variation. Front Immunol 2022; 13:832206. [PMID: 35386708 PMCID: PMC8977521 DOI: 10.3389/fimmu.2022.832206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
Background and Aims During chronic hepatitis C virus (HCV) infection, CD8+ T-cells become functionally exhausted, undergoing progressive phenotypic changes, i.e., overexpression of “inhibitory” molecules such as PD-1 (programmed cell death protein 1) and/or Tim-3 (T-cell immunoglobulin and mucin domain-containing molecule-3). The extreme intrahost genetic diversity of HCV is a major mechanism of immune system evasion, facilitating epitope escape. The aim of the present study was to determine whether T-cell exhaustion phenotype in chronic HCV infection is related to the sequence repertoire of NS3 viral immunodominant epitopes. Methods The study population was ninety prospective patients with chronic HCV genotype 1b infection. Populations of peripheral blood CD8+ T-cells expressing PD-1/Tim-3 were assessed by multiparametric flow cytometry, including HCV-specific T-cells after magnetic-based enrichment using MHC-pentamer. Autologous epitope sequences were inferred from next-generation sequencing. The correction of sequencing errors and genetic variants reconstruction was performed using Quasirecomb. Results There was an interplay between the analyzed epitopes sequences and exhaustion phenotype of CD8+ T-cells. A predominance of NS31406 epitope sequence, representing neither prototype KLSGLGLNAV nor cross-reactive variants (KLSSLGLNAV, KLSGLGINAV or KLSALGLNAV), was associated with higher percentage of HCV-specific CD8+PD-1+Tim-3+ T-cells, P=0.0102. Variability (at least two variants) of NS31406 epitope sequence was associated with increased frequencies of global CD8+PD-1+Tim-3+ T-cells (P=0.0197) and lower frequencies of CD8+PD-1−Tim-3− T-cells (P=0.0079). In contrast, infection with NS31073 dominant variant epitope (other than prototype CVNGVCWTV) was associated with lower frequency of global CD8+PD-1+Tim-3+ T-cells (P=0.0054). Conclusions Our results indicate that PD-1/Tim-3 receptor expression is largely determined by viral epitope sequence and is evident for both HCV-specific and global CD8+ T-cells, pointing to the importance of evaluating autologous viral epitope sequences in the investigation of CD8+ T-cell exhaustion in HCV infection.
Collapse
Affiliation(s)
- Sylwia Osuch
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Laskus
- Department of Adult Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Karol Perlejewski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Hanna Berak
- Outpatient Clinic, Warsaw Hospital for Infectious Diseases, Warsaw, Poland
| | - Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Pollak
- Department of Human Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Kamila Caraballo Cortés
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Sugrue JA, O’Farrelly C. Uncovering Resistance to Hepatitis C Virus Infection: Scientific Contributions and Unanswered Questions in the Irish Anti-D Cohort. Pathogens 2022; 11:pathogens11030306. [PMID: 35335630 PMCID: PMC8953313 DOI: 10.3390/pathogens11030306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Infections caused inadvertently during clinical intervention provide valuable insight into the spectrum of human responses to viruses. Delivery of hepatitis C virus (HCV)-contaminated blood products in the 70s (before HCV was identified) have dramatically increased our understanding of the natural history of HCV infection and the role that host immunity plays in the outcome to viral infection. In Ireland, HCV-contaminated anti-D immunoglobulin (Ig) preparations were administered to approximately 1700 pregnant Irish rhesus-negative women in 1977–1979. Though tragic in nature, this outbreak (alongside a smaller episode in 1993) has provided unique insight into the host factors that influence outcomes after HCV exposure and the subsequent development of disease in an otherwise healthy female population. Despite exposure to highly infectious batches of anti-D, almost 600 of the HCV-exposed women have never shown any evidence of infection (remaining negative for both viral RNA and anti-HCV antibodies). Detailed analysis of these individuals may shed light on innate immune pathways that effectively block HCV infection and potentially inform us more generally about the mechanisms that contribute to viral resistance in human populations.
Collapse
Affiliation(s)
- Jamie A. Sugrue
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02R590 Dublin, Ireland
- Correspondence: (J.A.S.); (C.O.)
| | - Cliona O’Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02R590 Dublin, Ireland
- School of Medicine, Trinity College Dublin, D02R590 Dublin, Ireland
- Correspondence: (J.A.S.); (C.O.)
| |
Collapse
|
8
|
Saraceni C, Birk J. A Review of Hepatitis B Virus and Hepatitis C Virus Immunopathogenesis. J Clin Transl Hepatol 2021; 9:409-418. [PMID: 34221927 PMCID: PMC8237136 DOI: 10.14218/jcth.2020.00095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/21/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the advances in therapy, hepatitis B virus (HBV) and hepatitis C virus (HCV) still represent a significant global health burden, both as major causes of cirrhosis, hepatocellular carcinoma, and death worldwide. HBV is capable of incorporating its covalently closed circular DNA into the host cell's hepatocyte genome, making it rather difficult to eradicate its chronic stage. Successful viral clearance depends on the complex interactions between the virus and host's innate and adaptive immune response. One encouraging fact on hepatitis B is the development and effective distribution of the HBV vaccine. This has significantly reduced the spread of this virus. HCV is a RNA virus with high mutagenic capacity, thus enabling it to evade the immune system and have a high rate of chronic progression. High levels of HCV heterogeneity and its mutagenic capacity have made it difficult to create an effective vaccine. The recent advent of direct acting antivirals has ushered in a new era in hepatitis C therapy. Sustained virologic response is achieved with DAAs in 85-99% of cases. However, this still leads to a large population of treatment failures, so further advances in therapy are still needed. This article reviews the immunopathogenesis of HBV and HCV, their properties contributing to host immune system avoidance, chronic disease progression, vaccine efficacy and limitations, as well as treatment options and common pitfalls of said therapy.
Collapse
Affiliation(s)
- Corey Saraceni
- Correspondence to: Corey Saraceni, University of Connecticut School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, 263 Farmington Avenue, Farmington, CT 06030-8074, USA. Tel: +1-203-733-7408, Fax: +1-860-679-3159, E-mail:
| | | |
Collapse
|
9
|
Natural Killer Cells and T Cells in Hepatocellular Carcinoma and Viral Hepatitis: Current Status and Perspectives for Future Immunotherapeutic Approaches. Cells 2021; 10:cells10061332. [PMID: 34071188 PMCID: PMC8227136 DOI: 10.3390/cells10061332] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells account for 25–50% of the total number of hepatic lymphocytes, which implicates that NK cells play an important role in liver immunity. The frequencies of both circulating and tumor infiltrating NK cells are positively correlated with survival benefit in hepatocellular cancer (HCC) and have prognostic implications, which suggests that functional impairment in NK cells and HCC progression are strongly associated. In HCC, T cell exhaustion is accompanied by the interaction between immune checkpoint ligands and their receptors on tumor cells and antigen presenting cells (APC). Immune checkpoint inhibitors (ICIs) have been shown to interfere with this interaction and have altered the therapeutic landscape of multiple cancer types including HCC. Immunotherapy with check-point inhibitors, aimed at rescuing T-cells from exhaustion, has been applied as first-line therapy for HCC. NK cells are the first line effectors in viral hepatitis and play an important role by directly eliminating virus infected cells or by activating antigen specific T cells through IFN-γ production. Furthermore, chimeric antigen receptor (CAR)-engineered NK cells and T cells offer unique opportunities to create CAR-NK with multiple specificities learning from the experience gained with CAR-T cells with potentially less adverse effects. This review focus on the abnormalities of NK cells, T cells, and their functional impairment in patients with chronic viral hepatitis, which contributes to progression to hepatic malignancy. Furthermore, we discuss and summarize recent advances in the NK cell and T cell based immunotherapeutic approaches in HCC.
Collapse
|
10
|
Nakamura A, Boroojeni SF, Haroon N. Aberrant antigen processing and presentation: Key pathogenic factors leading to immune activation in Ankylosing spondylitis. Semin Immunopathol 2021; 43:245-253. [PMID: 33532928 DOI: 10.1007/s00281-020-00833-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
The strong association of HLA-B*27 with ankylosing spondylitis (AS) was first reported nearly 50 years ago. However, the mechanistic link between HLA-B*27 and AS has remained an enigma. While 85-90% of AS patients possess HLA-B*27, majority of HLA-B*27 healthy individuals do not develop AS. This suggests that additional genes and genetic regions interplay with HLA-B*27 to cause AS. Previous genome-wide association studies (GWAS) identified key genes that are distinctively expressed in AS, including the Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and ERAP2. As these gene-encoding molecules are primarily implicated in the process of peptide processing and presentation, potential pathological interaction of these molecules with HLA-B*27 may operate to cause AS by activating downstream immune responses. The aberrant peptide processing also gives rise to the accumulation of unstable protein complex in endoplasmic reticulum (ER), which drives endoplasmic reticulum-associated protein degradation (ERAD) and unfolded protein response (UPR) and activates autophagy. In this review, we describe the current hypotheses of AS pathogenesis, focusing on antigen processing and presentation operated by HLA-B*27 and associated molecules that may contribute to the disease initiation and progression of AS.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Spondylitis Program, University Health Network, Toronto, Ontario, Canada.,Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada.,Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Department of Medicine, University of Toronto, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada
| | - Shaghayegh Foroozan Boroojeni
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Spondylitis Program, University Health Network, Toronto, Ontario, Canada.,Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada.,Institute of Medical Science, Department of Medicine, University of Toronto, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada
| | - Nigil Haroon
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada. .,Spondylitis Program, University Health Network, Toronto, Ontario, Canada. .,Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada. .,Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada. .,Institute of Medical Science, Department of Medicine, University of Toronto, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada.
| |
Collapse
|
11
|
Smith S, Honegger JR, Walker C. T-Cell Immunity against the Hepatitis C Virus: A Persistent Research Priority in an Era of Highly Effective Therapy. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a036954. [PMID: 32205413 PMCID: PMC7778213 DOI: 10.1101/cshperspect.a036954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Approximately 70% of acute hepatitis C virus (HCV) infections become chronic, indicating that the virus is exceptionally well adapted to persist in humans with otherwise normal immune function. Robust, lifelong replication of this small RNA virus does not require a generalized failure of immunity. HCV effectively subverts innate and adaptive host defenses while leaving immunity against other viruses intact. Here, the role of CD4+ and CD8+ T-cell responses in control of HCV infection and their failure to prevent virus persistence in most individuals are reviewed. Two issues of practical importance remain priorities in an era of highly effective antiviral therapy for chronic hepatitis C. First, the characteristics of successful T-cell responses that promote resolution of HCV infection are considered, as they will underpin development of vaccines that prevent HCV persistence. Second, defects in T-cell immunity that facilitate HCV persistence and whether they are reversed after antiviral cure to provide protection from reinfection are also addressed.
Collapse
Affiliation(s)
- Stephanie Smith
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| | - Jonathan R. Honegger
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| | - Christopher Walker
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| |
Collapse
|
12
|
Conserved epitopes with high HLA-I population coverage are targets of CD8 + T cells associated with high IFN-γ responses against all dengue virus serotypes. Sci Rep 2020; 10:20497. [PMID: 33235334 PMCID: PMC7687909 DOI: 10.1038/s41598-020-77565-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Cytotoxic CD8+ T cells are key for immune protection against viral infections. The breadth and cross-reactivity of these responses are important against rapidly mutating RNA viruses, such as dengue (DENV), yet how viral diversity affect T cell responses and their cross-reactivity against multiple variants of the virus remains poorly defined. In this study, an integrated analysis was performed to map experimentally validated CD8+ T cell epitopes onto the distribution of DENV genome sequences across the 4 serotypes worldwide. Despite the higher viral diversity observed within HLA-I restricted epitopes, mapping of 609 experimentally validated epitopes sequences on 3985 full-length viral genomes revealed 19 highly conserved epitopes across the four serotypes within the immunogenic regions of NS3, NS4B and NS5. These conserved epitopes were associated with a higher magnitude of IFN-γ response when compared to non-conserved epitopes and were restricted to 13 HLA class I genotypes, hence providing high coverage among human populations. Phylogeographic analyses showed that these epitopes are largely conserved in most of the endemic regions of the world, and with only some of these epitopes presenting distinct mutated variants circulating in South America and Asia.This study provides evidence for the existence of highly immunogenic and conserved epitopes across serotypes, which may impact design of new universal T-cell-inducing vaccine candidates that minimise detrimental effects of viral diversification and at the same time induce responses to a broad human population.
Collapse
|
13
|
Kemming J, Thimme R, Neumann-Haefelin C. Adaptive Immune Response against Hepatitis C Virus. Int J Mol Sci 2020; 21:ijms21165644. [PMID: 32781731 PMCID: PMC7460648 DOI: 10.3390/ijms21165644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
A functional adaptive immune response is the major determinant for clearance of hepatitis C virus (HCV) infection. However, in the majority of patients, this response fails and persistent infection evolves. Here, we dissect the HCV-specific key players of adaptive immunity, namely B cells and T cells, and describe factors that affect infection outcome. Once chronic infection is established, continuous exposure to HCV antigens affects functionality, phenotype, transcriptional program, metabolism, and the epigenetics of the adaptive immune cells. In addition, viral escape mutations contribute to the failure of adaptive antiviral immunity. Direct-acting antivirals (DAA) can mediate HCV clearance in almost all patients with chronic HCV infection, however, defects in adaptive immune cell populations remain, only limited functional memory is obtained and reinfection of cured individuals is possible. Thus, to avoid potential reinfection and achieve global elimination of HCV infections, a prophylactic vaccine is needed. Recent vaccine trials could induce HCV-specific immunity but failed to protect from persistent infection. Thus, lessons from natural protection from persistent infection, DAA-mediated cure, and non-protective vaccination trials might lead the way to successful vaccination strategies in the future.
Collapse
Affiliation(s)
- Janine Kemming
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg im Breisgau, Germany
| | - Robert Thimme
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Correspondence: ; Tel.: +49-761-270-32800
| |
Collapse
|
14
|
Abstract
A novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2) is causing the global coronavirus disease 2019 (COVID-19) pandemic. Understanding how SARS-CoV-2 enters human cells is a high priority for deciphering its mystery and curbing its spread. A virus surface spike protein mediates SARS-CoV-2 entry into cells. To fulfill its function, SARS-CoV-2 spike binds to its receptor human ACE2 (hACE2) through its receptor-binding domain (RBD) and is proteolytically activated by human proteases. Here we investigated receptor binding and protease activation of SARS-CoV-2 spike using biochemical and pseudovirus entry assays. Our findings have identified key cell entry mechanisms of SARS-CoV-2. First, SARS-CoV-2 RBD has higher hACE2 binding affinity than SARS-CoV RBD, supporting efficient cell entry. Second, paradoxically, the hACE2 binding affinity of the entire SARS-CoV-2 spike is comparable to or lower than that of SARS-CoV spike, suggesting that SARS-CoV-2 RBD, albeit more potent, is less exposed than SARS-CoV RBD. Third, unlike SARS-CoV, cell entry of SARS-CoV-2 is preactivated by proprotein convertase furin, reducing its dependence on target cell proteases for entry. The high hACE2 binding affinity of the RBD, furin preactivation of the spike, and hidden RBD in the spike potentially allow SARS-CoV-2 to maintain efficient cell entry while evading immune surveillance. These features may contribute to the wide spread of the virus. Successful intervention strategies must target both the potency of SARS-CoV-2 and its evasiveness.
Collapse
Affiliation(s)
- Jian Shang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108
| | - Yushun Wan
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108
| | - Chuming Luo
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108
| | - Gang Ye
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108
| | - Qibin Geng
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108
| | - Ashley Auerbach
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108
| | - Fang Li
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108
| |
Collapse
|
15
|
Abstract
A key to curbing SARS-CoV-2 is to understand how it enters cells. SARS-CoV-2 and SARS-CoV both use human ACE2 as entry receptor and human proteases as entry activators. Using biochemical and pseudovirus entry assays and SARS-CoV as a comparison, we have identified key cell entry mechanisms of SARS-CoV-2 that potentially contribute to the immune evasion, cell infectivity, and wide spread of the virus. This study also clarifies conflicting reports from recent studies on cell entry of SARS-CoV-2. Finally, by highlighting the potency and the evasiveness of SARS-CoV-2, the study provides insight into intervention strategies that target its cell entry mechanisms. A novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2) is causing the global coronavirus disease 2019 (COVID-19) pandemic. Understanding how SARS-CoV-2 enters human cells is a high priority for deciphering its mystery and curbing its spread. A virus surface spike protein mediates SARS-CoV-2 entry into cells. To fulfill its function, SARS-CoV-2 spike binds to its receptor human ACE2 (hACE2) through its receptor-binding domain (RBD) and is proteolytically activated by human proteases. Here we investigated receptor binding and protease activation of SARS-CoV-2 spike using biochemical and pseudovirus entry assays. Our findings have identified key cell entry mechanisms of SARS-CoV-2. First, SARS-CoV-2 RBD has higher hACE2 binding affinity than SARS-CoV RBD, supporting efficient cell entry. Second, paradoxically, the hACE2 binding affinity of the entire SARS-CoV-2 spike is comparable to or lower than that of SARS-CoV spike, suggesting that SARS-CoV-2 RBD, albeit more potent, is less exposed than SARS-CoV RBD. Third, unlike SARS-CoV, cell entry of SARS-CoV-2 is preactivated by proprotein convertase furin, reducing its dependence on target cell proteases for entry. The high hACE2 binding affinity of the RBD, furin preactivation of the spike, and hidden RBD in the spike potentially allow SARS-CoV-2 to maintain efficient cell entry while evading immune surveillance. These features may contribute to the wide spread of the virus. Successful intervention strategies must target both the potency of SARS-CoV-2 and its evasiveness.
Collapse
|
16
|
ERAP1 allotypes shape the epitope repertoire of virus-specific CD8 + T cell responses in acute hepatitis C virus infection. J Hepatol 2019; 70:1072-1081. [PMID: 30769005 PMCID: PMC6527866 DOI: 10.1016/j.jhep.2019.01.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Endoplasmic reticulum aminopeptidase 1 (ERAP1) polymorphisms are linked with human leukocyte antigen (HLA) class I-associated autoinflammatory disorders, including ankylosing spondylitis and Behçet's disease. Disease-associated ERAP1 allotypes exhibit distinct functional properties, but it remains unclear how differential peptide trimming in vivo affects the repertoire of epitopes presented to CD8+ T cells. The aim of this study was to determine the impact of ERAP1 allotypes on the virus-specific CD8+ T cell epitope repertoire in an HLA-B*27:05+ individual with acute hepatitis C virus (HCV) infection. METHODS We performed genetic and functional analyses of ERAP1 allotypes and characterized the HCV-specific CD8+ T cell repertoire at the level of fine epitope specificity and HLA class I restriction, in a patient who had acquired an HCV genotype 1a infection through a needle-stick injury. RESULTS Two hypoactive allotypic variants of ERAP1 were identified in an individual with acute HCV infection. The associated repertoire of virus-derived epitopes recognized by CD8+ T cells was uncommon in a couple of respects. Firstly, reactivity was directed away from classically immunodominant epitopes, preferentially targeting either novel or subdominant epitopes. Secondly, reactivity was biased towards longer epitopes (10-11-mers). Despite the patient exhibiting favorable prognostic indicators, these atypical immune responses failed to clear the virus and the patient developed persistent low-level infection with HCV. CONCLUSIONS ERAP1 allotypes modify the virus-specific CD8+ T cell epitope repertoire in vivo, leading to altered immunodominance patterns that may contribute to the failure of antiviral immunity after infection with HCV. LAY SUMMARY Endoplasmic reticulum aminopeptidase 1 (ERAP1) plays a key role in antigen presentation. Genetic variants of ERAP1 (leading to distinct allotypes) are linked with specific autoinflammatory disorders, such as ankylosing spondylitis and Behçet's disease. We found that ERAP1 allotypes modified the repertoire of virus-specific CD8+ T cell epitopes in a patient with hepatitis C virus, leading to an altered pattern of immunodominance that may have contributed to the failure of antiviral immunity in this patient.
Collapse
|
17
|
Hepatitis C Virus Genetic Variability, Human Immune Response, and Genome Polymorphisms: Which Is the Interplay? Cells 2019; 8:cells8040305. [PMID: 30987134 PMCID: PMC6523096 DOI: 10.3390/cells8040305] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/26/2019] [Accepted: 03/30/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infection is the main cause of chronic hepatitis, affecting an estimated 150 million people worldwide. Initial exposure to HCV is most often followed by chronic hepatitis, with only a minority of individuals spontaneously clearing the virus. The induction of sustained and broadly directed HCV-specific CD4+ and CD8+ T cell responses, together with neutralizing antibodies (nAb), and specific genetic polymorphism have been associated with spontaneous resolution of the infection. However, due to its high variability, HCV is able to overwhelm the host immune response through the rapid acquisition of mutations in the epitopes targeted by T cells and neutralizing antibodies. In this context, immune-mediated pressure represents the main force in driving HCV evolution. This review summarizes the data on HCV diversity and the current state of knowledge about the contributions of antibodies, T cells, and host genetic polymorphism in driving HCV evolution in vivo.
Collapse
|
18
|
Rehermann B, Thimme R. Insights From Antiviral Therapy Into Immune Responses to Hepatitis B and C Virus Infection. Gastroenterology 2019; 156:369-383. [PMID: 30267712 PMCID: PMC6340757 DOI: 10.1053/j.gastro.2018.08.061] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/05/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
Abstract
There are 257 million persons worldwide with chronic hepatitis B virus (HBV) infection, a leading causes of liver cancer. Almost all adults with acute HBV infection have a rapid immune response to the virus, resulting in life-long immunity, but there is no cure for individuals with chronic HBV infection, which they acquire during early life. The mechanisms that drive the progression of HBV through distinct clinical phases to end-stage liver disease are poorly understood. Likewise, it is not clear whether and how immune responses can be modulated to allow control and/or clearance of intrahepatic HBV DNA. We review the innate and adaptive immune responses to acute and chronic HBV infections and responses to antiviral therapy. Comparisons with hepatitis C virus infection provide insights into the reversibility of innate inflammatory responses and the potential for successful therapy to recover virus-specific memory immune responses.
Collapse
Affiliation(s)
- Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland.
| | - Robert Thimme
- Klinik für Innere Medizin II, University Hospital Freiburg, Faculty of Medicine, Hugstetter Straße 55, 79106 Freiburg, Germany
| |
Collapse
|
19
|
Luxenburger H, Neumann-Haefelin C, Thimme R, Boettler T. HCV-Specific T Cell Responses During and After Chronic HCV Infection. Viruses 2018; 10:v10110645. [PMID: 30453612 PMCID: PMC6265781 DOI: 10.3390/v10110645] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV)-specific T cell responses are closely linked to the clinical course of infection. While T cell responses in self-limiting infection are typically broad and multi-specific, they display several distinct features of functional impairment in the chronic phase. Moreover, HCV readily adapts to immune pressure by developing escape mutations within epitopes targeted by T cells. Much of our current knowledge on HCV-specific T cell responses has been gathered under the assumption that this might eventually pave the way for a therapeutic vaccine. However, with the development of highly efficient direct acting antivirals (DAAs), there is less interest in the development of a therapeutic vaccine for HCV and the scope of T cell research has shifted. Indeed, the possibility to rapidly eradicate an antigen that has persisted over years or decades, and has led to T cell exhaustion and dysfunction, provides the unique opportunity to study potential T cell recovery after antigen cessation in a human in vivo setting. Findings from such studies not only improve our basic understanding of T cell immunity but may also advance immunotherapeutic approaches in cancer or chronic hepatitis B and D infection. Moreover, in order to edge closer to the WHO goal of HCV elimination by 2030, a prophylactic vaccine is clearly required. Thus, in this review, we will summarize our current knowledge on HCV-specific T cell responses and also provide an outlook on the open questions that require answers in this field.
Collapse
Affiliation(s)
- Hendrik Luxenburger
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| | - Robert Thimme
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| | - Tobias Boettler
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
20
|
Dustin LB. Innate and Adaptive Immune Responses in Chronic HCV Infection. Curr Drug Targets 2018; 18:826-843. [PMID: 26302811 DOI: 10.2174/1389450116666150825110532] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) remains a public health problem of global importance, even in the era of potent directly-acting antiviral drugs. In this chapter, I discuss immune responses to acute and chronic HCV infection. The outcome of HCV infection is influenced by viral strategies that limit or delay the initiation of innate antiviral responses. This delay may enable HCV to establish widespread infection long before the host mounts effective T and B cell responses. HCV's genetic agility, resulting from its high rate of replication and its error prone replication mechanism, enables it to evade immune recognition. Adaptive immune responses fail to keep up with changing viral epitopes. Neutralizing antibody epitopes may be hidden by decoy structures, glycans, and lipoproteins. T cell responses fail due to changing epitope sequences and due to exhaustion, a phenomenon that may have evolved to limit immune-mediated pathology. Despite these difficulties, innate and adaptive immune mechanisms do impact HCV replication. Immune-mediated clearance of infection is possible, occurring in 20-50% of people who contract the disease. New developments raise hopes for effective immunological interventions to prevent or treat HCV infection.
Collapse
Affiliation(s)
- Lynn B Dustin
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, United Kingdom
| |
Collapse
|
21
|
Kaufman J. Generalists and Specialists: A New View of How MHC Class I Molecules Fight Infectious Pathogens. Trends Immunol 2018; 39:367-379. [PMID: 29396014 PMCID: PMC5929564 DOI: 10.1016/j.it.2018.01.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 12/24/2022]
Abstract
In comparison with the major histocompatibility complexes (MHCs) of typical mammals, the chicken MHC is simple and compact with a single dominantly expressed class I molecule that can determine the immune response. In addition to providing useful information for the poultry industry and allowing insights into the evolution of the adaptive immune system, the simplicity of the chicken MHC has allowed the discovery of phenomena that are more difficult to discern in the more complicated mammalian systems. This review discusses the new concept that poorly expressed promiscuous class I alleles act as generalists to protect against a wide variety of infectious pathogens, while highly expressed fastidious class I alleles can act as specialists to protect against new and dangerous pathogens. A broad overview of classical MHC I expression and bound peptides reveals an inverse correlation between repertoire breadth and cell-surface expression in some chicken and human alleles. Several chicken class I alleles with wide peptide-binding repertoires (promiscuity) are associated with resistance to a variety of common diseases. Conversely, a narrow peptide-binding repertoire (fastidiousness) in some human HLA-B alleles is associated with resistance to HIV progression. Cell-surface expression of some classical class I alleles depends on the regulation of translocation to the cell surface rather than of transcription or translation. MHC translocation is influenced by peptide translocation in chickens and by tapasin interaction in humans.
Collapse
Affiliation(s)
- Jim Kaufman
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK; University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge CB2 0ES, UK.
| |
Collapse
|
22
|
Bertoletti A, Tan AT, Koh S. T-cell therapy for chronic viral hepatitis. Cytotherapy 2017; 19:1317-1324. [DOI: 10.1016/j.jcyt.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
|
23
|
Dustin LB, Bartolini B, Capobianchi MR, Pistello M. Hepatitis C virus: life cycle in cells, infection and host response, and analysis of molecular markers influencing the outcome of infection and response to therapy. Clin Microbiol Infect 2016; 22:826-832. [PMID: 27592089 PMCID: PMC5627509 DOI: 10.1016/j.cmi.2016.08.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/16/2016] [Accepted: 08/25/2016] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) is a major global health burden accounting for around 170 million chronic infections worldwide. Since its discovery, which dates back to about 30 years ago, many details of the viral genome organization and the astonishing genetic diversity have been unveiled but, owing to the difficulty of culturing HCV in vitro and obtaining fully susceptible yet immunocompetent in vivo models, we are still a long way from the full comprehension of viral life cycle, host cell pathways facilitating or counteracting infection, pathogenetic mechanisms in vivo, and host defences. Here, we illustrate the viral life cycle into cells, describe the interplay between immune and genetic host factors shaping the course of infection, and provide details of the molecular approaches currently used to genotype, monitor replication in vivo, and study the emergence of drug-resistant viral variants.
Collapse
Affiliation(s)
- L B Dustin
- Kennedy Institute for Rheumatology and Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - B Bartolini
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - M R Capobianchi
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - M Pistello
- Virology Unit, Pisa University Hospital, and Virology Section and Retrovirus Centre, Department of Translational Research, University of Pisa, Pisa, Italy.
| |
Collapse
|
24
|
Huang J, Huang K, Xu R, Wang M, Liao Q, Xiong H, Li C, Tang X, Shan Z, Zhang M, Rong X, Nelson K, Fu Y. The Associations of HLA-A*02:01 and DRB1*11:01 with Hepatitis C Virus Spontaneous Clearance Are Independent of IL28B in the Chinese Population. Sci Rep 2016; 6:31485. [PMID: 27511600 PMCID: PMC4980596 DOI: 10.1038/srep31485] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/20/2016] [Indexed: 12/26/2022] Open
Abstract
Spontaneous clearance of hepatitis C virus (HCV) occurs in 10-40% of the infections. Specific human leukocyte antigen (HLA) alleles have been identified in associating with HCV clearance. However, data on the association of HLA with the spontaneous clearance of HCV are scarce in the Chinese population. In the current study we studied the HLA class I and class II genes in 231 Chinese voluntary blood donors who had cleared HCV infection spontaneously compared to 429 subjects with chronic HCV infections. We also studied their IL28B SNP (rs8099917) genotype, since a number of investigators have found a strong association of IL28B with spontaneous or treatment induced HCV clearance. We found that HLA-A*02:01 and DQB1*05:02 distributed differently between the two groups after Bonferroni correction (odds ratio [OR] = 1.839, Pc = 0.024 and OR = 0.547, Pc = 0.016, respectively). Multivariate logistic regression analysis suggested that A*02:01 and DRB1*11:01 (OR = 1.798, P = 0.008 and OR = 1.921, P = 0.005, respectively) were associated with HCV spontaneous clearance, independent of age, gender and IL28B polymorphism. We concluded that in the Chinese population, HLA-A*02:01 and DRB1*11:01 might be associated with the host capacity to clear HCV independent of IL28B, which suggesting that the innate and adaptive immune responses both play an important role in the control of HCV.
Collapse
Affiliation(s)
- Jieting Huang
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Ke Huang
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Ru Xu
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Min Wang
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Qiao Liao
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Huaping Xiong
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xi Tang
- Department of Transfusion Medicine, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengang Shan
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, Faculty of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Xia Rong
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Kenrad Nelson
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yongshui Fu
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Abstract
UNLABELLED Hepatitis C virus (HCV) afflicts 170 million people worldwide, 2%-3% of the global population, and kills 350 000 each year. Prophylactic vaccination offers the most realistic and cost effective hope of controlling this epidemic in the developing world where expensive drug therapies are not available. Despite 20 years of research, the high mutability of the virus and lack of knowledge of what constitutes effective immune responses have impeded development of an effective vaccine. Coupling data mining of sequence databases with spin glass models from statistical physics, we have developed a computational approach to translate clinical sequence databases into empirical fitness landscapes quantifying the replicative capacity of the virus as a function of its amino acid sequence. These landscapes explicitly connect viral genotype to phenotypic fitness, and reveal vulnerable immunological targets within the viral proteome that can be exploited to rationally design vaccine immunogens. We have recovered the empirical fitness landscape for the HCV RNA-dependent RNA polymerase (protein NS5B) responsible for viral genome replication, and validated the predictions of our model by demonstrating excellent accord with experimental measurements and clinical observations. We have used our landscapes to perform exhaustive in silico screening of 16.8 million T-cell immunogen candidates to identify 86 optimal formulations. By reducing the search space of immunogen candidates by over five orders of magnitude, our approach can offer valuable savings in time, expense, and labor for experimental vaccine development and accelerate the search for a HCV vaccine. ABBREVIATIONS HCV-hepatitis C virus, HLA-human leukocyte antigen, CTL-cytotoxic T lymphocyte, NS5B-nonstructural protein 5B, MSA-multiple sequence alignment, PEG-IFN-pegylated interferon.
Collapse
Affiliation(s)
- Gregory R Hart
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
26
|
Rao X, Hoof I, van Baarle D, Keşmir C, Textor J. HLA Preferences for Conserved Epitopes: A Potential Mechanism for Hepatitis C Clearance. Front Immunol 2015; 6:552. [PMID: 26579127 PMCID: PMC4625101 DOI: 10.3389/fimmu.2015.00552] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/15/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infections affect more than 170 million people worldwide. Most of these individuals are chronically infected, but some clear the infection rapidly. Host factors seem to play a key role in HCV clearance, among them are the human leukocyte antigen (HLA) class I molecules. Certain HLA molecules, e.g., B*27 and B*57, are associated with viral clearance. To identify potential mechanisms for these associations, we assess epitope distribution differences between HLA molecules using experimentally verified and in silico predicted HCV epitopes. Specifically, we show that the NS5B protein harbors the largest fraction of conserved regions among all HCV proteins. Such conserved regions could be good targets for cytotoxic T-cell (CTL) responses. We find that the protective HLA-B*27 molecule preferentially presents cytotoxic T-cell (CTL) epitopes from NS5B and, in general, presents the most strongly conserved epitopes among the 23 HLA molecules analyzed. In contrast, HLA molecules known to be associated with HCV persistence do not have similar preferences and appear to target the variable P7 protein. Overall, our analysis suggests that by targeting highly constrained - and thereby conserved - regions of HCV, the protective HLA molecule HLA-B*27 reduces the ability of HCV to escape the cytotoxic T-cell response of the host. For visualizing the distribution of both experimentally verified and predicted epitopes across the HCV genome, we created the HCV epitope browser, which is available at theory.bio.uu.nl/ucqi/hcv.
Collapse
Affiliation(s)
- Xiangyu Rao
- Theoretical Biology and Bioinformatics, Utrecht University , Utrecht , Netherlands
| | - Ilka Hoof
- Theoretical Biology and Bioinformatics, Utrecht University , Utrecht , Netherlands
| | - Debbie van Baarle
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht , Utrecht , Netherlands
| | - Can Keşmir
- Theoretical Biology and Bioinformatics, Utrecht University , Utrecht , Netherlands
| | - Johannes Textor
- Theoretical Biology and Bioinformatics, Utrecht University , Utrecht , Netherlands
| |
Collapse
|
27
|
Pfafferott K, Deshpande P, McKinnon E, Merani S, Lucas A, Heckerman D, Mallal S, John M, Gaudieri S, Lucas M. Anti-hepatitis C virus T-cell immunity in the context of multiple exposures to the virus. PLoS One 2015; 10:e0130420. [PMID: 26107956 PMCID: PMC4480353 DOI: 10.1371/journal.pone.0130420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/20/2015] [Indexed: 01/08/2023] Open
Abstract
Characterisation of Hepatitis C virus (HCV)-specific CD8+ T-cell responses in the context of multiple HCV exposures is critical to identify broadly protective immune responses necessary for an effective HCV vaccine against the different HCV genotypes. However, host and viral genetic diversity complicates vaccine development. To compensate for the observed variation in circulating autologous viruses and host molecules that restrict antigen presentation (human leucocyte antigens; HLA), this study used a reverse genomics approach that identified sites of viral adaptation to HLA-restricted T-cell immune pressure to predict genotype-specific HCV CD8+ T-cell targets. Peptides representing these putative HCV CD8+ T-cell targets, and their adapted form, were used in individualised IFN-γ ELISpot assays to screen for HCV-specific T-cell responses in 133 HCV-seropositive subjects with high-risk of multiple HCV exposures. The data obtained from this study i) confirmed that genetic studies of viral evolution is an effective approach to detect novel in vivo HCV T-cell targets, ii) showed that HCV-specific T-cell epitopes can be recognised in their adapted form and would not have been detected using wild-type peptides and iii) showed that HCV-specific T-cell (but not antibody) responses against alternate genotypes in chronic HCV-infected subjects are readily found, implying clearance of previous alternate genotype infection. In summary, HCV adaptation to HLA Class I-restricted T-cell responses plays a central role in anti-HCV immunity and multiple HCV genotype exposure is highly prevalent in at-risk exposure populations, which are important considerations for future vaccine design.
Collapse
Affiliation(s)
- Katja Pfafferott
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Pooja Deshpande
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia, Australia
| | - Elizabeth McKinnon
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Shahzma Merani
- Centre for Forensic Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Andrew Lucas
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - David Heckerman
- Microsoft Research, Microsoft, Redmond, Washington, United States of America
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Mina John
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Silvana Gaudieri
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia, Australia
- * E-mail:
| | - Michaela Lucas
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- School of Medicine and Pharmacology, Harry Perkins Institute, University of Western Australia, Crawley, Western Australia, Australia
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
28
|
Fitzmaurice K, Hurst J, Dring M, Rauch A, McLaren PJ, Günthard HF, Gardiner C, Klenerman P. Additive effects of HLA alleles and innate immune genes determine viral outcome in HCV infection. Gut 2015; 64:813-9. [PMID: 24996883 PMCID: PMC4392199 DOI: 10.1136/gutjnl-2013-306287] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chronic HCV infection is a leading cause of liver-related morbidity globally. The innate and adaptive immune responses are thought to be important in determining viral outcomes. Polymorphisms associated with the IFNL3 (IL28B) gene are strongly associated with spontaneous clearance and treatment outcomes. OBJECTIVE This study investigates the importance of HLA genes in the context of genetic variation associated with the innate immune genes IFNL3 and KIR2DS3. DESIGN We assess the collective influence of HLA and innate immune genes on viral outcomes in an Irish cohort of women (n=319) who had been infected from a single source as well as a more heterogeneous cohort (Swiss Cohort, n=461). In the Irish cohort, a number of HLA alleles are associated with different outcomes, and the impact of IFNL3-linked polymorphisms is profound. RESULTS Logistic regression was performed on data from the Irish cohort, and indicates that the HLA-A*03 (OR 0.36 (0.15 to 0.89), p=0.027) -B*27 (OR 0.12 (0.03 to 0.45), p=<0.001), -DRB1*01:01 (OR 0.2 (0.07 to 0.61), p=0.005), -DRB1*04:01 (OR 0.31 (0.12 to 0.85, p=0.02) and the CC IFNL3 rs12979860 genotypes (OR 0.1 (0.04 to 0.23), p<0.001) are significantly associated with viral clearance. Furthermore, DQB1*02:01 (OR 4.2 (2.04 to 8.66), p=0.008), KIR2DS3 (OR 4.36 (1.62 to 11.74), p=0.004) and the rs12979860 IFNL3 'T' allele are associated with chronic infection. This study finds no interactive effect between IFNL3 and these Class I and II alleles in relation to viral clearance. There is a clear additive effect, however. Data from the Swiss cohort also confirms independent and additive effects of HLA Class I, II and IFNL3 genes in their prediction of viral outcome. CONCLUSIONS This data supports a critical role for the adaptive immune response in the control of HCV in concert with the innate immune response.
Collapse
Affiliation(s)
| | - Jacob Hurst
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Institute of Emerging Infection, The Oxford Martin School, University of Oxford, Oxford, UK
| | - Megan Dring
- Natural Killer Cell Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Andri Rauch
- University Clinic of Infectious Diseases, University Hospital Bern and University of Bern, Bern, Switzerland
| | - Paul J McLaren
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Clair Gardiner
- Natural Killer Cell Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
29
|
Mutational escape of CD8+ T cell epitopes: implications for prevention and therapy of persistent hepatitis virus infections. Med Microbiol Immunol 2014; 204:29-38. [PMID: 25537849 PMCID: PMC4305108 DOI: 10.1007/s00430-014-0372-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 09/01/2014] [Indexed: 12/16/2022]
Abstract
Over the past two decades, much has been learned about how human viruses evade T cell immunity to establish persistent infection. The lessons are particularly relevant to two hepatotropic viruses, HBV and HCV, that are very significant global public health problems. Although HCV and HBV are very different, the natural history of persistent infections with these viruses in humans shares some common features including failure of T cell immunity. During recent years, large sequence studies of HCV have characterized intra-host evolution as well as sequence diversity between hosts in great detail. Combined with studies of CD8+ T cell phenotype and function, it is now apparent that the T cell response shapes viral evolution. In turn, HCV sequence diversity influences the quality of the CD8+ T cell response and thus infection outcome. Here, we review published studies of CD8+ T cell selection pressure and mutational escape of the virus. Potential consequences for therapeutic strategies to restore T cell immunity against persistent human viruses, most notably HBV, are discussed.
Collapse
|
30
|
Holz L, Rehermann B. T cell responses in hepatitis C virus infection: historical overview and goals for future research. Antiviral Res 2014; 114:96-105. [PMID: 25433310 DOI: 10.1016/j.antiviral.2014.11.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/16/2014] [Accepted: 11/18/2014] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV)-specific T cells are key factors in the outcome of acute HCV infection and in protective immunity. This review recapitulates the steps that immunologists have taken in the past 25years to dissect the role of T cell responses in HCV infection. It describes technical as well as disease-specific challenges that were caused by the inapparent onset of acute HCV infection, the difficulty to identify subjects who spontaneously clear HCV infection, the low frequency of HCV-specific T cells in the blood of chronically infected patients, and the lack of small animal models with intact immune systems to study virus-host interaction. The review provides a historical perspective on techniques and key findings, and identifies areas for future research.
Collapse
Affiliation(s)
- Lauren Holz
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892, USA.
| |
Collapse
|
31
|
Tetramer enrichment reveals the presence of phenotypically diverse hepatitis C virus-specific CD8+ T cells in chronic infection. J Virol 2014; 89:25-34. [PMID: 25320295 PMCID: PMC4301109 DOI: 10.1128/jvi.02242-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Virus-specific CD8(+) T cells are rarely detectable ex vivo by conventional methods during chronic hepatitis C virus (HCV) infection. In this study, however, we were able to detect and characterize HCV-specific CD8(+) T cells in all chronically HCV genotype 1a-infected, HLA-A*02:01-positive patients analyzed by performing major histocompatibility complex (MHC) class I tetramer enrichment. Two-thirds of these enriched HCV-specific CD8(+) T-cell populations displayed an effector memory phenotype, whereas, surprisingly, one-third displayed a naive-like phenotype despite ongoing viral replication. CD8(+) T cells with an effector memory phenotype could not expand in vitro, suggesting exhaustion of these cells. Interestingly, some of the naive-like CD8(+) T cells proliferated vigorously upon in vitro priming, whereas others did not. These differences were linked to the corresponding viral sequences in the respective patients. Indeed, naive-like CD8(+) T cells from patients with the consensus sequence in the corresponding T-cell epitope did not expand in vitro. In contrast, in patients displaying sequence variations, we were able to induce HCV-specific CD8(+) T-cell proliferation, which may indicate infection with a variant virus. Collectively, these data reveal the presence of phenotypically and functionally diverse HCV-specific CD8(+) T cells at very low frequencies that are detectable in all chronically infected patients despite viral persistence. IMPORTANCE In this study, we analyzed CD8(+) T-cell responses specific for HLA-A*02:01-restricted epitopes in chronically HCV-infected patients, using MHC class I tetramer enrichment. Importantly, we could detect HCV-specific CD8(+) T-cell populations in all patients. To further characterize these HCV-specific CD8(+) T-cell populations that are not detectable using conventional techniques, we performed phenotypic, functional, and viral sequence analyses. These data revealed different mechanisms for CD8(+) T-cell failure in HCV infection, including T-cell exhaustion, viral escape, and functional impairment of naive-like HCV-specific CD8(+) T cells.
Collapse
|
32
|
John M, Gaudieri S. Influence of HIV and HCV on T cell antigen presentation and challenges in the development of vaccines. Front Microbiol 2014; 5:514. [PMID: 25352836 PMCID: PMC4195390 DOI: 10.3389/fmicb.2014.00514] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/12/2014] [Indexed: 12/11/2022] Open
Abstract
Some of the central challenges for developing effective vaccines against HIV and hepatitis C virus (HCV) are similar. Both infections are caused by small, highly mutable, rapidly replicating RNA viruses with the ability to establish long-term chronic pathogenic infection in human hosts. HIV has caused 60 million infections globally and HCV 180 million and both viruses may co-exist among certain populations by virtue of common blood-borne, sexual, or vertical transmission. Persistence of both pathogens is achieved by evasion of intrinsic, innate, and adaptive immune defenses but with some distinct mechanisms reflecting their differences in evolutionary history, replication characteristics, cell tropism, and visibility to mucosal versus systemic and hepatic immune responses. A potent and durable antibody and T cell response is a likely requirement of future HIV and HCV vaccines. Perhaps the single biggest difference between the two vaccine design challenges is that in HCV, a natural model of protective immunity can be found in those who resolve acute infection spontaneously. Such spontaneous resolvers exhibit durable and functional CD4+ and CD8+ T cell responses (Diepolder et al., 1995; Cooper et al., 1999; Thimme et al., 2001; Grakoui et al., 2003; Lauer et al., 2004; Schulze Zur Wiesch et al., 2012). However, frequent re-infection suggests partial or lack of protective immunity against heterologous HCV strains, possibly indicative of the degree of genetic diversity of circulating HCV genotypes and subtypes. There is no natural model of protective immunity in HIV, however, studies of “elite controllers,” or individuals who have durably suppressed levels of plasma HIV RNA without antiretroviral therapy, has provided the strongest evidence for CD8+ T cell responses in controlling viremia and limiting reservoir burden in established infection. Here we compare and contrast the specific mechanisms of immune evasion used by HIV and HCV, which subvert adaptive human leukocyte antigen (HLA)-restricted T cell immunity in natural infection, and the challenges these pose for designing effective preventative or therapeutic vaccines.
Collapse
Affiliation(s)
- Mina John
- Institute for Immunology and Infectious Diseases, Murdoch University Murdoch, WA, Australia ; Department of Clinical Immunology, PathWest Laboratory Medicine WA, Royal Perth Hospital Perth, WA, Australia
| | - Silvana Gaudieri
- Institute for Immunology and Infectious Diseases, Murdoch University Murdoch, WA, Australia ; School of Anatomy, Physiology and Human Biology, University of Western Australia Crawley, WA, Australia
| |
Collapse
|
33
|
Dustin LB, Cashman SB, Laidlaw SM. Immune control and failure in HCV infection--tipping the balance. J Leukoc Biol 2014; 96:535-48. [PMID: 25015956 DOI: 10.1189/jlb.4ri0214-126r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite the development of potent antiviral drugs, HCV remains a global health problem; global eradication is a long way off. In this review, we discuss the immune response to HCV infection and particularly, the interplay between viral strategies that delay the onset of antiviral responses and host strategies that limit or even eradicate infected cells but also contribute to pathogenesis. Although HCV can disable some cellular virus-sensing machinery, IFN-stimulated antiviral genes are induced in the infected liver. Whereas epitope evolution contributes to escape from T cell-mediated immunity, chronic high antigen load may also blunt the T cell response by activating exhaustion or tolerance mechanisms. The evasive maneuvers of HCV limit sterilizing humoral immunity through rapid evolution of decoy epitopes, epitope masking, stimulation of interfering antibodies, lipid shielding, and cell-to-cell spread. Whereas the majority of HCV infections progress to chronic hepatitis with persistent viremia, at least 20% of patients spontaneously clear the infection. Most of these are protected from reinfection, suggesting that protective immunity to HCV exists and that a prophylactic vaccine may be an achievable goal. It is therefore important that we understand the correlates of protective immunity and mechanisms of viral persistence.
Collapse
Affiliation(s)
- Lynn B Dustin
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Siobhán B Cashman
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Stephen M Laidlaw
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| |
Collapse
|
34
|
Abdel-Hakeem MS, Shoukry NH. Protective immunity against hepatitis C: many shades of gray. Front Immunol 2014; 5:274. [PMID: 24982656 PMCID: PMC4058636 DOI: 10.3389/fimmu.2014.00274] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022] Open
Abstract
The majority of individuals who become acutely infected with hepatitis C virus (HCV) develop chronic infection and suffer from progressive liver damage while approximately 25% are able to eliminate the virus spontaneously. Despite the recent introduction of new direct-acting antivirals, there is still no vaccine for HCV. As a result, new infections and reinfections will remain a problem in developing countries and among high risk populations like injection drug users who have limited access to treatment and who continue to be exposed to the virus. The outcome of acute HCV is determined by the interplay between the host genetics, the virus, and the virus-specific immune response. Studies in humans and chimpanzees have demonstrated the essential role of HCV-specific CD4 and CD8 T cell responses in protection against viral persistence. Recent data suggest that antibody responses play a more important role than what was previously thought. Individuals who spontaneously resolve acute HCV infection develop long-lived memory T cells and are less likely to become persistently infected upon reexposure. New studies examining high risk cohorts are identifying correlates of protection during real life exposures and reinfections. In this review, we discuss correlates of protective immunity during acute HCV and upon reexposure. We draw parallels between HCV and the current knowledge about protective memory in other models of chronic viral infections. Finally, we discuss some of the yet unresolved questions about key correlates of protection and their relevance for vaccine development against HCV.
Collapse
Affiliation(s)
- Mohamed S Abdel-Hakeem
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) , Montréal, QC , Canada ; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal , Montréal, QC , Canada ; Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University , Cairo , Egypt
| | - Naglaa H Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) , Montréal, QC , Canada ; Département de Médecine, Faculté de Médecine, Université de Montréal , Montréal, QC , Canada
| |
Collapse
|
35
|
Larrubia JR, Moreno-Cubero E, Lokhande MU, García-Garzón S, Lázaro A, Miquel J, Perna C, Sanz-de-Villalobos E. Adaptive immune response during hepatitis C virus infection. World J Gastroenterol 2014; 20:3418-3430. [PMID: 24707125 PMCID: PMC3974509 DOI: 10.3748/wjg.v20.i13.3418] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/28/2013] [Accepted: 11/29/2013] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection affects about 170 million people worldwide and it is a major cause of liver cirrhosis and hepatocellular carcinoma. HCV is a hepatotropic non-cytopathic virus able to persist in a great percentage of infected hosts due to its ability to escape from the immune control. Liver damage and disease progression during HCV infection are driven by both viral and host factors. Specifically, adaptive immune response carries out an essential task in controlling non-cytopathic viruses because of its ability to recognize infected cells and to destroy them by cytopathic mechanisms and to eliminate the virus by non-cytolytic machinery. HCV is able to impair this response by several means such as developing escape mutations in neutralizing antibodies and in T cell receptor viral epitope recognition sites and inducing HCV-specific cytotoxic T cell anergy and deletion. To impair HCV-specific T cell reactivity, HCV affects effector T cell regulation by modulating T helper and Treg response and by impairing the balance between positive and negative co-stimulatory molecules and between pro- and anti-apoptotic proteins. In this review, the role of adaptive immune response in controlling HCV infection and the HCV mechanisms to evade this response are reviewed.
Collapse
|
36
|
Park SH, Rehermann B. Immune responses to HCV and other hepatitis viruses. Immunity 2014; 40:13-24. [PMID: 24439265 DOI: 10.1016/j.immuni.2013.12.010] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/30/2013] [Indexed: 02/08/2023]
Abstract
Five human hepatitis viruses cause most of the acute and chronic liver disease worldwide. Over the past 25 years, hepatitis C virus (HCV) in particular has received much interest because of its ability to persist in most immunocompetent adults and because of the lack of a protective vaccine. Here we examine innate and adaptive immune responses to HCV infection. Although HCV activates an innate immune response, it employs an elaborate set of mechanisms to evade interferon (IFN)-based antiviral immunity. By comparing innate and adaptive immune responses to HCV with those to hepatitis A and B viruses, we suggest that prolonged innate immune activation by HCV impairs the development of successful adaptive immune responses. Comparative immunology provides insights into the maintenance of immune protection. We conclude by discussing prospects for an HCV vaccine and future research needs for the hepatitis viruses.
Collapse
Affiliation(s)
- Su-Hyung Park
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892, USA.
| |
Collapse
|
37
|
Nitschke K, Barriga A, Schmidt J, Timm J, Viazov S, Kuntzen T, Kim AY, Lauer GM, Allen TM, Gaudieri S, Rauch A, Lange CM, Sarrazin C, Eiermann T, Sidney J, Sette A, Thimme R, López D, Neumann-Haefelin C. HLA-B*27 subtype specificity determines targeting and viral evolution of a hepatitis C virus-specific CD8+ T cell epitope. J Hepatol 2014; 60:22-9. [PMID: 23978718 PMCID: PMC3867523 DOI: 10.1016/j.jhep.2013.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 07/29/2013] [Accepted: 08/02/2013] [Indexed: 01/17/2023]
Abstract
BACKGROUND & AIMS HLA-B*27 is associated with spontaneous HCV genotype 1 clearance. HLA-B*27-restricted CD8+ T cells target three NS5B epitopes. Two of these epitopes are dominantly targeted in the majority of HLA-B*27+ patients. In chronic infection, viral escape occurs consistently in these two epitopes. The third epitope (NS5B2820) was dominantly targeted in an acutely infected patient. This was in contrast, however, to the lack of recognition and viral escape in the large majority of HLA-B*27+ patients. Here, we set out to determine the host factors contributing to selective targeting of this epitope. METHODS Four-digit HLA class I typing and viral sequence analyses were performed in 78 HLA-B*27+ patients with chronic HCV genotype 1 infection. CD8+ T cell analyses were performed in a subset of patients. In addition, HLA/peptide affinity was compared for HLA-B*27:02 and 05. RESULTS The NS5B2820 epitope is only restricted by the HLA-B*27 subtype HLA-B*27:02 (that is frequent in Mediterranean populations), but not by the prototype HLA-B*27 subtype B*27:05. Indeed, the epitope is very dominant in HLA-B*27:02+ patients and is associated with viral escape mutations at the anchor position for HLA-binding in 12 out of 13 HLA-B*27:02+ chronically infected patients. CONCLUSIONS The NS5B2820 epitope is immunodominant in the context of HLA-B*27:02, but is not restricted by other HLA-B*27 subtypes. This finding suggests an important role of HLA subtypes in the restriction of HCV-specific CD8+ responses. With minor HLA subtypes covering up to 39% of specific populations, these findings may have important implications for the selection of epitopes for global vaccines.
Collapse
Affiliation(s)
- Katja Nitschke
- Department of Medicine II, University of Freiburg, Freiburg, Germany,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Julia Schmidt
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | - Jörg Timm
- Institute of Virology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Sergei Viazov
- Institute of Virology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Thomas Kuntzen
- Ragon Institute of MGH, MIT and Harvard, Charlestown, MA, USA
| | - Arthur Y. Kim
- Division of Infectious Diseases, MGH, Boston, MA, USA
| | | | - Todd M. Allen
- Ragon Institute of MGH, MIT and Harvard, Charlestown, MA, USA
| | - Silvana Gaudieri
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth Australia,Institute of Immunology and Infectious Disease, Murdoch University, Perth, Western Australia, Australia
| | - Andri Rauch
- Department of Infectious Diseases, Bern University Hospital and University of Bern, Switzerland
| | - Christian M. Lange
- Department of Medicine I, J. W. Goethe University Hospital, Frankfurt, Germany
| | - Christoph Sarrazin
- Department of Medicine I, J. W. Goethe University Hospital, Frankfurt, Germany
| | - Thomas Eiermann
- Transfusion Medicine, HLA-Laboratory, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Robert Thimme
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | - Daniel López
- Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | |
Collapse
|
38
|
Abstract
Since the discovery of hepatitis C virus (HCV) by molecular cloning almost a quarter of a century ago, unprecedented at the time because the virus had never been grown in cell culture or detected serologically, there have been impressive strides in many facets of our understanding of the natural history of the disease, the viral life cycle, the pathogenesis, and antiviral therapy. It is apparent that the virus has developed multiple strategies to evade immune surveillance and eradication. This Review covers what we currently understand of the temporal and spatial immunological changes within the human innate and adaptive host immune responses that ultimately determine the outcomes of HCV infection.
Collapse
|
39
|
Rehermann B. Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells. Nat Med 2013; 19:859-68. [PMID: 23836236 DOI: 10.1038/nm.3251] [Citation(s) in RCA: 363] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/30/2013] [Indexed: 02/08/2023]
Abstract
Chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections account for 57% of cases of liver cirrhosis and 78% of cases of primary liver cancer worldwide and cause a million deaths per year. Although HBV and HCV differ in their genome structures, replication strategies and life cycles, they have common features, including their noncytopathic nature and their capacity to induce chronic liver disease, which is thought to be immune mediated. However, the rate of disease progression from chronic hepatitis to cirrhosis varies greatly among infected individuals, and the factors that regulate it are largely unknown. This review summarizes our current understanding of the roles of antigen-specific and nonspecific immune cells in the pathogenesis of chronic hepatitis B and C and discusses recent findings that identify natural killer cells as regulators of T cell function and liver inflammation.
Collapse
Affiliation(s)
- Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA.
| |
Collapse
|
40
|
Weiland O, Ahlén G, Diepolder H, Jung MC, Levander S, Fons M, Mathiesen I, Sardesai NY, Vahlne A, Frelin L, Sällberg M. Therapeutic DNA vaccination using in vivo electroporation followed by standard of care therapy in patients with genotype 1 chronic hepatitis C. Mol Ther 2013; 21:1796-805. [PMID: 23752314 PMCID: PMC3776630 DOI: 10.1038/mt.2013.119] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/02/2013] [Indexed: 12/13/2022] Open
Abstract
Clearance of infections caused by the hepatitis C virus (HCV) correlates with HCV-specific T cell function. We therefore evaluated therapeutic vaccination in 12 patients with chronic HCV infection. Eight patients also underwent a subsequent standard-of-care (SOC) therapy with pegylated interferon (IFN) and ribavirin. The phase I/IIa clinical trial was performed in treatment naive HCV genotype 1 patients, receiving four monthly vaccinations in the deltoid muscles with 167, 500, or 1,500 μg codon-optimized HCV nonstructural (NS) 3/4A-expressing DNA vaccine delivered by in vivo electroporation (EP). Enrollment was done with 2 weeks interval between patients for safety reasons. Treatment was safe and well tolerated. The vaccinations significantly improved IFN-γ-producing responses to HCV NS3 during the first 6 weeks of therapy. Five patients experienced 2-10 weeks 0.6-2.4 log10 reduction in serum HCV RNA. Six out of eight patients starting SOC therapy within 1-30 months after the last vaccine dose were cured. This first-in-man therapeutic HCV DNA vaccine study with the vaccine delivered by in vivo EP shows transient effects in patients with chronic HCV genotype 1 infection. The interesting result noted after SOC therapy suggests that therapeutic vaccination can be explored in a combination with SOC treatment.
Collapse
Affiliation(s)
- Ola Weiland
- Division of Infectious Diseases, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Gustaf Ahlén
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Helmut Diepolder
- Department of Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Maria-Christina Jung
- Department of Medicine, Ludwig-Maximilian University, Munich, Germany
- ImmuSystems, Munich, Germany
| | - Sepideh Levander
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Michael Fons
- Inovio Pharmaceuticals, Blue Bell, Pennsylvania, USA
| | | | | | - Anders Vahlne
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
- ChronTech Pharma AB, Huddinge, Sweden
| | - Lars Frelin
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Matti Sällberg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
41
|
Kared H, Fabre T, Bédard N, Bruneau J, Shoukry NH. Galectin-9 and IL-21 mediate cross-regulation between Th17 and Treg cells during acute hepatitis C. PLoS Pathog 2013; 9:e1003422. [PMID: 23818845 PMCID: PMC3688567 DOI: 10.1371/journal.ppat.1003422] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/30/2013] [Indexed: 12/12/2022] Open
Abstract
Loss of CD4 T cell help correlates with virus persistence during acute hepatitis C virus (HCV) infection, but the underlying mechanism(s) remain unknown. We developed a combined proliferation/intracellular cytokine staining assay to monitor expansion of HCV-specific CD4 T cells and helper cytokines expression patterns during acute infections with different outcomes. We demonstrate that acute resolving HCV is characterized by strong Th1/Th17 responses with specific expansion of IL-21-producing CD4 T cells and increased IL-21 levels in plasma. In contrast, viral persistence was associated with lower frequencies of IL-21-producing CD4 T cells, reduced proliferation and increased expression of the inhibitory receptors T cell immunoglobulin and mucin-domain-containing-molecule-3 (Tim-3), programmed death 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) on HCV-specific CD8 T cells. Progression to persistent infection was accompanied by increased plasma levels of the Tim-3 ligand Galectin-9 (Gal-9) and expansion of Gal-9 expressing regulatory T cells (Tregs). In vitro supplementation of Tim-3(high) HCV-specific CD8 T cells with IL-21 enhanced their proliferation and prevented Gal-9 induced apoptosis. siRNA-mediated knockdown of Gal-9 in Treg cells rescued IL-21 production by HCV-specific CD4 T cells. We propose that failure of CD4 T cell help during acute HCV is partially due to an imbalance between Th17 and Treg cells whereby exhaustion of both CD4 and CD8 T cells through the Tim-3/Gal-9 pathway may be limited by IL-21 producing Th17 cells or enhanced by Gal-9 producing Tregs.
Collapse
Affiliation(s)
- Hassen Kared
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
| | - Thomas Fabre
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Département de microbiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Nathalie Bédard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Departement de médecine familiale, Université de Montréal, Montréal, Québec, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
42
|
Abstract
Introduction With 3 – 4 million new infections occurring annually, hepatitis C virus (HCV) is a major global health problem. There is increasing evidence to suggest that HCV will be highly amenable to a vaccine approach, and despite advances in treatment, a vaccine remains the most cost-effective and realistic means to significantly reduce the worldwide mortality and morbidity associated with persistent HCV infection. Areas covered In this review we discuss immune responses to HCV during natural infection, and describe how they may inform vaccine design. We introduce the current candidate vaccines for HCV and compare how these fare against the expected requirements of an effective prophylactic HCV vaccine in relation to the breadth, functionality, magnitude and phenotype of the vaccine-induced immune response. Expert opinion Although the correlates of immune protection against HCV are not completely defined, we now have vaccine technologies capable of inducing HCV-specific adaptive immune responses to an order of magnitude that are associated with protection during natural infection. The challenge next is to i) establish well-characterised cohorts of people at risk of HCV infection for vaccine efficacy testing and ii) to better understand the correlates of protection in natural history studies. If these can be achieved, a vaccine against HCV appears a realistic goal.
Collapse
Affiliation(s)
- Leo Swadling
- University of Oxford, NDM and Jenner Institute, Peter Medawar Building, South Parks Road, Oxford, OX1 3SY, UK
| | | | | |
Collapse
|
43
|
Schmidt J, Blum HE, Thimme R. T-cell responses in hepatitis B and C virus infection: similarities and differences. Emerg Microbes Infect 2013; 2:e15. [PMID: 26038456 PMCID: PMC3630955 DOI: 10.1038/emi.2013.14] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/13/2013] [Accepted: 02/17/2013] [Indexed: 01/05/2023]
Abstract
Chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infection are global health problems affecting 600 million people worldwide. Indeed, HBV and HCV are hepatotropic viruses that can cause acute and chronic liver disease progressing to liver cirrhosis and even hepatocellular carcinoma. Furthermore, co-infections of HBV and HCV with HIV are emerging worldwide. These co-infections are even more likely to develop persistent infection and are difficult to treat. There is growing evidence that virus-specific CD4+ and CD8+ T-cell responses play a central role in the outcome and pathogenesis of HBV and HCV infection. While virus-specific T-cell responses are able to successfully clear the virus in a subpopulation of patients, failure of these T-cell responses is associated with the development of viral persistence. In this review article, we will discuss similarities and differences in HBV- and HCV-specific T-cell responses that are central in determining viral clearance, persistence and liver disease.
Collapse
Affiliation(s)
- Julia Schmidt
- Department of Medicine II, University Hospital Freiburg , D-79106 Freiburg, Germany
| | - Hubert E Blum
- Department of Medicine II, University Hospital Freiburg , D-79106 Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg , D-79106 Freiburg, Germany
| |
Collapse
|
44
|
Hepatitis C virus adaptation to T-cell immune pressure. ScientificWorldJournal 2013; 2013:673240. [PMID: 23554569 PMCID: PMC3608127 DOI: 10.1155/2013/673240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/17/2013] [Indexed: 01/07/2023] Open
Abstract
Replication of the hepatitis C virus (HCV) is an error-prone process. This high error rate results in the emergence of viral populations (quasispecies) within hosts and contributes to interhost variability. Numerous studies have demonstrated that both viral and host factors contribute to this viral diversity, which can ultimately affect disease outcome. As the host's immune response is an important correlate of infection outcome for HCV, many of these viral variations are strongly influenced by T-cell immune pressure and accordingly constitute an efficient strategy to subvert such pressures (viral adaptations). This paper will review the data on viral diversity observed between and within hosts infected with HCV from the acute to the chronic stage of infection and will focus on viral adaptation to the host's T-cell immune response.
Collapse
|
45
|
Abstract
Hepatitis C virus (HCV) is a major cause of chronic hepatitis and hepatocellular carcinoma worldwide. Due to shared transmission routes, the prevalence of HCV is especially high among individuals infected with HIV. HIV uninfected individuals spontaneously clear HCV approximately 30 % of the time, while the rate of control in HIV infected individuals who subsequently acquire HCV is substantially lower. In addition, complications of HCV are more frequent in those with HIV infection, making liver disease the leading cause of non-AIDS-related death in HIV infected individuals. This review summarizes recent advances in understanding the role of the innate and adaptive immune responses to HCV in those with and without HIV. Further defining the interaction between hepatitis C and the host immune system will potentially reveal insights into HCV pathogenesis and the host's ability to prevent persistent infection, as well as direct the development of vaccines.
Collapse
Affiliation(s)
- Rebecca R Terilli
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Rangos Building, Suite 536, 855 N Wolfe St, Baltimore, MD 21205, USA
| | | |
Collapse
|
46
|
Rapid antigen processing and presentation of a protective and immunodominant HLA-B*27-restricted hepatitis C virus-specific CD8+ T-cell epitope. PLoS Pathog 2012; 8:e1003042. [PMID: 23209413 PMCID: PMC3510254 DOI: 10.1371/journal.ppat.1003042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 10/03/2012] [Indexed: 12/20/2022] Open
Abstract
HLA-B*27 exerts protective effects in hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections. While the immunological and virological features of HLA-B*27-mediated protection are not fully understood, there is growing evidence that the presentation of specific immunodominant HLA-B*27-restricted CD8+ T-cell epitopes contributes to this phenomenon in both infections. Indeed, protection can be linked to single immunodominant CD8+ T-cell epitopes and functional constraints on escape mutations within these epitopes. To better define the immunological mechanisms underlying HLA-B*27-mediated protection in HCV infection, we analyzed the functional avidity, functional profile, antiviral efficacy and naïve precursor frequency of CD8+ T cells targeting the immunodominant HLA-B*27-restricted HCV-specific epitope as well as its antigen processing and presentation. For comparison, HLA-A*02-restricted HCV-specific epitopes were analyzed. The HLA-B*27-restricted CD8+ T-cell epitope was not superior to epitopes restricted by HLA-A*02 when considering the functional avidity, functional profile, antiviral efficacy or naïve precursor frequency. However, the peptide region containing the HLA-B*27-restricted epitope was degraded extremely fast by both the constitutive proteasome and the immunoproteasome. This efficient proteasomal processing that could be blocked by proteasome inhibitors was highly dependent on the hydrophobic regions flanking the epitope and led to rapid and abundant presentation of the epitope on the cell surface of antigen presenting cells. Our data suggest that rapid antigen processing may be a key immunological feature of this protective and immunodominant HLA-B*27-restricted HCV-specific epitope.
Collapse
|
47
|
Wargo AR, Kurath G. Viral fitness: definitions, measurement, and current insights. Curr Opin Virol 2012; 2:538-45. [PMID: 22986085 PMCID: PMC7102723 DOI: 10.1016/j.coviro.2012.07.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/24/2012] [Indexed: 11/03/2022]
Abstract
Viral fitness is an active area of research, with recent work involving an expanded number of human, non-human vertebrate, invertebrate, plant, and bacterial viruses. Many publications deal with RNA viruses associated with major disease emergence events, such as HIV-1, influenza virus, and Dengue virus. Study topics include drug resistance, immune escape, viral emergence, host jumps, mutation effects, quasispecies diversity, and mathematical models of viral fitness. Important recent trends include increasing use of in vivo systems to assess vertebrate virus fitness, and a broadening of research beyond replicative fitness to also investigate transmission fitness and epidemiologic fitness. This is essential for a more integrated understanding of overall viral fitness, with implications for disease management in the future.
Collapse
Affiliation(s)
- Andrew R Wargo
- US Geological Survey, Western Fisheries Research Center, 6505 NE 65th Street, Seattle, WA 98115, USA
| | | |
Collapse
|
48
|
Constraints on viral evolution during chronic hepatitis C virus infection arising from a common-source exposure. J Virol 2012; 86:12582-90. [PMID: 22973048 DOI: 10.1128/jvi.01440-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extraordinary viral sequence diversity and rapid viral genetic evolution are hallmarks of hepatitis C virus (HCV) infection. Viral sequence evolution has previously been shown to mediate escape from cytotoxic T-lymphocyte (CTL) and neutralizing antibody responses in acute HCV infection. HCV evolution continues during chronic infection, but the pressures driving these changes are poorly defined. We analyzed plasma virus sequence evolution in 5.2-kb hemigenomes from multiple longitudinal time points isolated from individuals in the Irish anti-D cohort, who were infected with HCV from a common source in 1977 to 1978. We found phylogenetically distinct quasispecies populations at different plasma time points isolated late in chronic infection, suggesting ongoing viral evolution and quasispecies replacement over time. We saw evidence of early pressure driving net evolution away from a computationally reconstructed common ancestor, known as Bole1b, in predicted CTL epitopes and E1E2, with balanced evolution toward and away from the Bole1b amino acid sequence in the remainder of the genome. Late in chronic infection, the rate of evolution toward the Bole1b sequence increased, resulting in net neutral evolution relative to Bole1b across the entire 5.2-kb hemigenome. Surprisingly, even late in chronic infection, net amino acid evolution away from the infecting inoculum sequence still could be observed. These data suggest that, late in chronic infection, ongoing HCV evolution is not random genetic drift but rather the product of strong pressure toward a common ancestor and concurrent net ongoing evolution away from the inoculum virus sequence, likely balancing replicative fitness and ongoing immune escape.
Collapse
|
49
|
FOFANA ISABEL, FAFI–KREMER SAMIRA, CAROLLA PATRIC, FAUVELLE CATHERINE, ZAHID MUHAMMADNAUMAN, TUREK MARINE, HEYDMANN LAURA, CURY KARINE, HAYER JULIETTE, COMBET CHRISTOPHE, COSSET FRANÇOIS, PIETSCHMANN THOMAS, HIET MARIE, BARTENSCHLAGER RALF, HABERSETZER FRANÇOIS, DOFFOËL MICHEL, KECK ZHEN, FOUNG STEVENKH, ZEISEL MIRJAMB, STOLL–KELLER FRANÇOISE, BAUMERT THOMASF. Mutations that alter use of hepatitis C virus cell entry factors mediate escape from neutralizing antibodies. Gastroenterology 2012; 143:223-233.e9. [PMID: 22503792 PMCID: PMC5295797 DOI: 10.1053/j.gastro.2012.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 03/14/2012] [Accepted: 04/06/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The development of vaccines and other strategies to prevent hepatitis C virus (HCV) infection is limited by rapid viral evasion. HCV entry is the first step of infection; this process involves several viral and host factors and is targeted by host-neutralizing responses. Although the roles of host factors in HCV entry have been well characterized, their involvement in evasion of immune responses is poorly understood. We used acute infection of liver graft as a model to investigate the molecular mechanisms of viral evasion. METHODS We studied factors that contribute to evasion of host immune responses using patient-derived antibodies, HCV pseudoparticles, and cell culture-derived HCV that express viral envelopes from patients who have undergone liver transplantation. These viruses were used to infect hepatoma cell lines that express different levels of HCV entry factors. RESULTS By using reverse genetic analyses, we identified altered use of host-cell entry factors as a mechanism by which HCV evades host immune responses. Mutations that alter use of the CD81 receptor also allowed the virus to escape neutralizing antibodies. Kinetic studies showed that these mutations affect virus-antibody interactions during postbinding steps of the HCV entry process. Functional studies with a large panel of patient-derived antibodies showed that this mechanism mediates viral escape, leading to persistent infection in general. CONCLUSIONS We identified a mechanism by which HCV evades host immune responses, in which use of cell entry factors evolves with escape from neutralizing antibodies. These findings advance our understanding of the pathogenesis of HCV infection and might be used to develop antiviral strategies and vaccines.
Collapse
Affiliation(s)
- ISABEL FOFANA
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
| | - SAMIRA FAFI–KREMER
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
,Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - PATRIC CAROLLA
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
| | - CATHERINE FAUVELLE
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
| | | | - MARINE TUREK
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
| | - LAURA HEYDMANN
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
| | - KARINE CURY
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
| | - JULIETTE HAYER
- Bases Moléculaires et Structurales des Systèmes Infectieux, UMR 5086, Centre National de la Recherche Scientifique, Université de Lyon, Institut de Biologie et Chimie des Proteines, Lyon, France
| | - CHRISTOPHE COMBET
- Bases Moléculaires et Structurales des Systèmes Infectieux, UMR 5086, Centre National de la Recherche Scientifique, Université de Lyon, Institut de Biologie et Chimie des Proteines, Lyon, France
| | - FRANÇOIS–LOÏC COSSET
- Université de Lyon, Université Claude Bernard Lyon1, IFR 128, Inserm U758; Ecole Normale Supérieure de Lyon, 69364 Lyon, France
| | - THOMAS PIETSCHMANN
- Division of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - MARIE–SOPHIE HIET
- The Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - RALF BARTENSCHLAGER
- The Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - FRANÇOIS HABERSETZER
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
,Pôle Hepato-Digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - MICHEL DOFFOËL
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
,Pôle Hepato-Digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - ZHEN–YONG KECK
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - STEVEN K. H. FOUNG
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - MIRJAM B. ZEISEL
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
| | - FRANÇOISE STOLL–KELLER
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
,Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - THOMAS F. BAUMERT
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
,Pôle Hepato-Digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
50
|
Thimme R, Binder M, Bartenschlager R. Failure of innate and adaptive immune responses in controlling hepatitis C virus infection. FEMS Microbiol Rev 2012; 36:663-83. [PMID: 22142141 DOI: 10.1111/j.1574-6976.2011.00319.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/07/2011] [Accepted: 11/25/2011] [Indexed: 12/24/2022] Open
Affiliation(s)
- Robert Thimme
- Department of Medicine II, University Medical Center Freiburg, Freiburg, Germany
| | | | | |
Collapse
|