1
|
Hartz J. Low LDL-C: Is It all Good News? Curr Atheroscler Rep 2024; 26:673-681. [PMID: 39254830 DOI: 10.1007/s11883-024-01238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW This review presents the risks and benefits of very low LDL cholesterol and the safety of using lipid-lowering therapy to achieve these levels. RECENT FINDINGS A growing body of literature suggests that lower LDL cholesterol levels are associated with a reduced risk of cardiovascular disease. Further, achieving these levels with pharmaceuticals is remarkably safe. Although statins may slightly increase the risk of diabetes mellitus and hemorrhagic stroke, the benefits outweigh the risks. While recommendations from professional societies are increasingly aggressive, additional risk reduction could be achieved by setting more even ambitious LDL cholesterol goals.
Collapse
Affiliation(s)
- Jacob Hartz
- Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Safarova M, Bimal T, Soffer DE, Hirsh B, Shapiro MD, Mintz G, Cha A, Gianos E. Advances in targeting LDL cholesterol: PCSK9 inhibitors and beyond. Am J Prev Cardiol 2024; 19:100701. [PMID: 39070027 PMCID: PMC11278114 DOI: 10.1016/j.ajpc.2024.100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 07/30/2024] Open
Abstract
There is a direct relationship between the duration and level of exposure to low density lipoprotein cholesterol (LDL-C) levels over one's lifespan and cardiovascular events. Early treatment to lower elevated LDL-C is crucial for better outcomes with multiple therapies currently available to reduce atherogenic lipoproteins. Statins remain the foundation of LDL-C lowering therapy as one of the most cost-effective drugs to reduce atherosclerotic events (ASCVD) and mortality. Nonetheless, LDL-driven goal attainment remains suboptimal globally, highlighting a considerable need for non-statin therapies to address residual risk related to statin intolerance, non-adherence, and inherited lipoprotein disorders. LDL-C lowering interventions beyond statins include ezetimibe, PCSK9 monoclonal antibodies, inclisiran and bempedoic acid with specific guideline recommendations as to when to consider each. For patients with homozygous familial hypercholesterolemia requiring more advanced therapy, lomitapide and evinacumab are available, providing mechanisms that are not LDL receptor dependent. Lipoprotein apheresis remains an effective option for clinical familial hypercholesterolemia as well as elevated lipoprotein (a). There are investigational therapies being explored to add to our current armamentarium including CETP inhibitors, a third-generation PCSK9 inhibitor (small recombinant fusion protein oral PCSK9 inhibitor) and gene editing which aims to directly restore or disrupt genes of interest at the DNA level. This article is a brief review of the pharmacotherapy options beyond statins for lowering LDL-C and their impact on ASCVD risk reduction. Our primary aim is to guide physicians on the role these therapies play in achieving appropriate LDL-C goals, with an algorithm of when to consider each based on efficacy, safety and outcomes.
Collapse
Affiliation(s)
- Maya Safarova
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI USA
| | - Tia Bimal
- Northwell, New Hyde Park, NY, Cardiovascular Institute, Lenox Hill Hospital, USA
| | - Daniel E. Soffer
- Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Benjamin Hirsh
- Department of Cardiology, Donald and Barbara Zucker School of Medicine at Hofstra/ Northwell, Hempstead, NY, USA
- Northwell, New Hyde Park, NY, Cardiovascular Institute, Sandra Atlas Bass Heart Hospital, USA
| | - Michael D. Shapiro
- Center for the Prevention of Cardiovascular Disease, Section on Cardiovascular Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Guy Mintz
- Department of Cardiology, Donald and Barbara Zucker School of Medicine at Hofstra/ Northwell, Hempstead, NY, USA
- Northwell, New Hyde Park, NY, Cardiovascular Institute, Sandra Atlas Bass Heart Hospital, USA
| | - Agnes Cha
- Northwell/Vivo Health Pharmacy, Ambulatory Pharmacy Services, Lake Success, NY, USA
| | - Eugenia Gianos
- Northwell, New Hyde Park, NY, Cardiovascular Institute, Lenox Hill Hospital, USA
- Department of Cardiology, Donald and Barbara Zucker School of Medicine at Hofstra/ Northwell, Hempstead, NY, USA
| |
Collapse
|
3
|
Liu X, Zhang Y, Han B, Li L, Li Y, Ma Y, Kang S, Li Q, Kong L, Huang K, Song BL, Liu Y, Wang Y. Postprandial exercise regulates tissue-specific triglyceride uptake through angiopoietin-like proteins. JCI Insight 2024; 9:e181553. [PMID: 39171527 PMCID: PMC11343597 DOI: 10.1172/jci.insight.181553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024] Open
Abstract
Fuel substrate switching between carbohydrates and fat is essential for maintaining metabolic homeostasis. During aerobic exercise, the predominant energy source gradually shifts from carbohydrates to fat. While it is well known that exercise mobilizes fat storage from adipose tissues, it remains largely obscure how circulating lipids are distributed tissue-specifically according to distinct energy requirements. Here, we demonstrate that aerobic exercise is linked to nutrient availability to regulate tissue-specific activities of lipoprotein lipase (LPL), the key enzyme catabolizing circulating triglyceride (TG) for tissue uptake, through the differential actions of angiopoietin-like (ANGPTL) proteins. Exercise reduced the tissue binding of ANGPTL3 protein, increasing LPL activity and TG uptake in the heart and skeletal muscle in the postprandial state specifically. Mechanistically, exercise suppressed insulin secretion, attenuating hepatic Angptl8 transcription through the PI3K/mTOR/CEBPα pathway, which is imperative for the tissue binding of its partner ANGPTL3. Constitutive expression of ANGPTL8 hampered lipid utilization and resulted in cardiac dysfunction in response to exercise. Conversely, exercise promoted the expression of ANGPTL4 in white adipose tissues, overriding the regulatory actions of ANGPTL8/ANGPTL3 in suppressing adipose LPL activity, thereby diverting circulating TG away from storage. Collectively, our findings show an overlooked bifurcated ANGPTL-LPL network that orchestrates fuel switching in response to aerobic exercise.
Collapse
Affiliation(s)
- Xiaomin Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yiliang Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Bingqian Han
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lin Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Ying Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yifan Ma
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Shijia Kang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Quan Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lingkai Kong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Bao-liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Tamehri Zadeh SS, Shapiro MD. Therapeutic Gene Editing in Dyslipidemias. Rev Cardiovasc Med 2024; 25:286. [PMID: 39228490 PMCID: PMC11367006 DOI: 10.31083/j.rcm2508286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 09/05/2024] Open
Abstract
Dyslipidemia, characterized by abnormal lipid levels in the blood, significantly escalates the risk of atherosclerotic cardiovascular disease and requires effective treatment strategies. While existing therapies can be effective, long-term adherence is often challenging. There has been an interest in developing enduring and more efficient solutions. In this context, gene editing, particularly clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology, emerges as a groundbreaking approach, offering potential long-term control of dyslipidemia by directly modifying gene expression. This review delves into the mechanistic insights of various gene-editing tools. We comprehensively analyze various pre-clinical and clinical studies, evaluating the safety, efficacy, and therapeutic implications of gene editing in dyslipidemia management. Key genetic targets, such as low-density lipoprotein receptor (LDLR), proprotein convertase subtilisin/kexin type 9 (PCSK9), angiopoietin-like protein 3 (ANGPTL3), apolipoprotein C3 (APOC3), and lipoprotein (a) (Lp(a)), known for their pivotal roles in lipid metabolism, are scrutinized. The paper highlights the promising outcomes of gene editing in achieving sustained lipid homeostasis, discusses the challenges and ethical considerations in genome editing, and envisions the future of gene therapy in revolutionizing dyslipidemia treatment and cardiovascular risk reduction.
Collapse
Affiliation(s)
- Seyed Saeed Tamehri Zadeh
- Prevention of Metabolic Disorders Research Center, Research Institute for
Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 19395-4763
Tehran, Iran
| | - Michael D. Shapiro
- Center for Prevention of Cardiovascular Disease, Section on Cardiovascular
Medicine, Wake Forest University School of Medicine, Winston Salem, NC 25157, USA
| |
Collapse
|
5
|
Nagai TH, Mizoguchi T, Wang Y, Deik A, Bullock K, Clish CB, Xu YX. ANGPTL3 regulates the peroxisomal translocation of SmarcAL1 in response to cell growth states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597253. [PMID: 38895318 PMCID: PMC11185727 DOI: 10.1101/2024.06.03.597253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Angiopoietin-like 3 (ANGPTL3) is a key regulator of lipoprotein metabolism, known for its potent inhibition on intravascular lipoprotein and endothelial lipase activities. Recent studies have shed light on the cellular functions of ANGPTL3. However, the precise mechanism underlying its regulation of cellular lipid metabolism remains elusive. We recently reported that ANGPTL3 interacts with the chromatin regulator SMARCAL1, which plays a pivotal role in maintaining cellular lipid homeostasis. Here, through a combination of in vitro and in vivo functional analyses, we provide evidence that ANGPTL3 indeed influences cellular lipid metabolism. Increased expression of Angptl3 prompted the formation of lipid droplets (LDs) in response to slow growth conditions. Notably, under the conditions, Angptl3 accumulated within cytoplasmic peroxisomes, where it interacts with SmarcAL1, which translocated from nucleus as observed previously. This translocation induced changes in gene expression favoring triglyceride (TG) accumulation. Indeed, ANGPTL3 gene knockout (KO) in human cells increased the expression of key lipid genes, which could be linked to elevated nuclear localization of SMARCAL1, whereas the expression of these genes decreased in SMARCAL1 KO cells. Consistent with these findings, the injection of Angptl3 protein to mice led to hepatic fat accumulation derived from circulating blood, a phenotype likely indicative of its long-term effect on blood TG, linked to SmarcAL1 activities. Thus, our results suggest that the Angptl3-SmarcAL1 pathway may confer the capacity for TG storage in cells in response to varying growth states, which may have broad implications for this pathway in regulating energy storage and trafficking.
Collapse
|
6
|
Pennisi G, Maurotti S, Ciociola E, Jamialahmadi O, Bertolazzi G, Mirarchi A, Bergh PO, Scionti F, Mancina RM, Spagnuolo R, Tripodo C, Boren J, Petta S, Romeo S. ANGPTL3 Downregulation Increases Intracellular Lipids by Reducing Energy Utilization. Arterioscler Thromb Vasc Biol 2024; 44:1086-1097. [PMID: 38385290 DOI: 10.1161/atvbaha.123.319789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND ANGPTL3 (angiopoietin-like protein 3) is a circulating protein with a key role in maintaining lipoprotein homeostasis. A monoclonal antibody against ANGPTL3 is an approved and well-tolerated treatment to reduce lipoproteins in familial hypercholesterolemia homozygotes. However, the reduction of hepatic ANGPTL3 synthesis using an antisense oligonucleotide unexpectedly resulted in a dose-dependent increase in liver lipid content and circulating transaminases, resulting in the termination of the clinical trial. Meanwhile, the use of silencing RNAs remains an area of active investigation. Our study sought to investigate whether intracellular downregulation of ANGPTL3 may lead to a primary increase in neutral lipids within the hepatocyte. METHODS We downregulated ANGPTL3 by silencing RNA in primary human hepatocytes 3-dimensional spheroids, HepG2/LX-2 3-dimensional spheroids, and in HepG2, Hep3B2, and Huh7 cultured in 2 dimensions. RESULTS ANGPTL3 downregulation increased neutral lipids in all models investigated. Interestingly, ANGPTL3 induced lower intracellular deiodinase type 1 protein levels resulting in a reduction in beta-oxidation and causing an increase in triglycerides stored in lipid droplets. CONCLUSIONS In conclusion, intracellular ANGPTL3 downregulation by silencing RNA led to an increase in triglycerides content due to a reduction in energy substrate utilization resembling a primary intracellular hepatocyte hypothyroidism.
Collapse
Affiliation(s)
- Grazia Pennisi
- Section of Gastroenterology and Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Italy (G.P., S.P.)
| | - Samantha Maurotti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy (S.M., F.S.)
| | - Ester Ciociola
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden (E.C., O.J., P.-O.B., R.M.M., J.B., S.R.)
| | - Oveis Jamialahmadi
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden (E.C., O.J., P.-O.B., R.M.M., J.B., S.R.)
| | - Giorgio Bertolazzi
- Department of Economics, Business, and Statistics, University of Palermo, Italy (G.B.)
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro," University of Palermo, Italy (G.B., C.T.)
| | - Angela Mirarchi
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy (A.M., S.R.)
| | - Per-Olof Bergh
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden (E.C., O.J., P.-O.B., R.M.M., J.B., S.R.)
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy (S.M., F.S.)
| | - Rosellina M Mancina
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden (E.C., O.J., P.-O.B., R.M.M., J.B., S.R.)
| | - Rocco Spagnuolo
- Department of Health Sciences, University "Magna Graecia," Catanzaro, Italy (R.S.)
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro," University of Palermo, Italy (G.B., C.T.)
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden (E.C., O.J., P.-O.B., R.M.M., J.B., S.R.)
- Wallenberg Laboratory (J.B.), Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Italy (G.P., S.P.)
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden (E.C., O.J., P.-O.B., R.M.M., J.B., S.R.)
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy (A.M., S.R.)
- Cardiology Department (S.R.), Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
7
|
Su X, Xu Q, Li Z, Ren Y, Jiao Q, Wang L, Wang Y. Role of the angiopoietin-like protein family in the progression of NAFLD. Heliyon 2024; 10:e27739. [PMID: 38560164 PMCID: PMC10980950 DOI: 10.1016/j.heliyon.2024.e27739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most frequent cause of chronic liver disease, with a range of conditions including non-alcoholic fatty liver, non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Currently recognized as the liver component of the metabolic syndrome, NAFLD is intimately linked to metabolic diseases. Angiopoietin-like proteins (ANGPTLs) comprise a class of proteins that resemble angiopoietins structurally. It is closely related to obesity, insulin resistance and lipid metabolism, and may be the critical factor of metabolic syndrome. In recent years, many studies have found that there is a certain correlation between ANGPTLs and the occurrence and progression of NAFLD disease spectrum. This article reviews the possible mechanisms and roles of ANGPTL protein in the pathogenesis and progression of NAFLD.
Collapse
Affiliation(s)
- Xin Su
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Qinchen Xu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Zigan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Yidan Ren
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Qinlian Jiao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Lina Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| |
Collapse
|
8
|
Zhang X, Yu W, Li Y, Wang A, Cao H, Fu Y. Drug development advances in human genetics-based targets. MedComm (Beijing) 2024; 5:e481. [PMID: 38344397 PMCID: PMC10857782 DOI: 10.1002/mco2.481] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 10/28/2024] Open
Abstract
Drug development is a long and costly process, with a high degree of uncertainty from the identification of a drug target to its market launch. Targeted drugs supported by human genetic evidence are expected to enter phase II/III clinical trials or be approved for marketing more quickly, speeding up the drug development process. Currently, genetic data and technologies such as genome-wide association studies (GWAS), whole-exome sequencing (WES), and whole-genome sequencing (WGS) have identified and validated many potential molecular targets associated with diseases. This review describes the structure, molecular biology, and drug development of human genetics-based validated beneficial loss-of-function (LOF) mutation targets (target mutations that reduce disease incidence) over the past decade. The feasibility of eight beneficial LOF mutation targets (PCSK9, ANGPTL3, ASGR1, HSD17B13, KHK, CIDEB, GPR75, and INHBE) as targets for drug discovery is mainly emphasized, and their research prospects and challenges are discussed. In conclusion, we expect that this review will inspire more researchers to use human genetics and genomics to support the discovery of novel therapeutic drugs and the direction of clinical development, which will contribute to the development of new drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Wenjun Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| | - Yan Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
| | - Haiqiang Cao
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Yuanlei Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| |
Collapse
|
9
|
Chen J, Fang Z, Luo Q, Wang X, Warda M, Das A, Oldoni F, Luo F. Unlocking the mysteries of VLDL: exploring its production, intracellular trafficking, and metabolism as therapeutic targets. Lipids Health Dis 2024; 23:14. [PMID: 38216994 PMCID: PMC10785355 DOI: 10.1186/s12944-023-01993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/26/2023] [Indexed: 01/14/2024] Open
Abstract
Reducing circulating lipid levels is the centerpiece of strategies for preventing and treating atherosclerotic cardiovascular disease (ASCVD). Despite many available lipid-lowering medications, a substantial residual cardiovascular risk remains. Current clinical guidelines focus on plasma levels of low-density lipoprotein (LDL). Recent attention has been given to very low-density lipoprotein (VLDL), the precursor to LDL, and its role in the development of coronary atherosclerosis. Preclinical investigations have revealed that interventions targeting VLDL production or promoting VLDL metabolism, independent of the LDL receptor, can potentially decrease cholesterol levels and provide therapeutic benefits. Currently, methods, such as mipomersen, lomitapide, and ANGPTL3 inhibitors, are used to reduce plasma cholesterol and triglyceride levels by regulating the lipidation, secretion, and metabolism of VLDL. Targeting VLDL represents an avenue for new lipid-lowering strategies. Interventions aimed at reducing VLDL production or enhancing VLDL metabolism, independent of the LDL receptor, hold promise for lowering cholesterol levels and providing therapeutic benefits beyond LDL in the management of ASCVD.
Collapse
Affiliation(s)
- Jingfei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhenfei Fang
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qin Luo
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Wang
- State Key Laboratory of Membrane Biology, Peking University, Beijing, 100871, China
| | - Mohamad Warda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, 25240, Turkey
| | - Avash Das
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215-5400, USA
| | - Federico Oldoni
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fei Luo
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
10
|
Hammad MM, Channanath AM, Abu-Farha M, Rahman A, Al Khairi I, Cherian P, Alramah T, Alam-Eldin N, Al-Mulla F, Thanaraj TA, Abubaker J. Adolescent obesity and ANGPTL8: correlations with high sensitivity C-reactive protein, leptin, and chemerin. Front Endocrinol (Lausanne) 2023; 14:1314211. [PMID: 38189043 PMCID: PMC10766807 DOI: 10.3389/fendo.2023.1314211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Angiopoietin-like proteins (ANGPTLs) mediate many metabolic functions. We had recently reported increased plasma levels of ANGPTL8 in obese adults of Arab ethnicity. However, data on ANGPTL8 levels in adolescent obesity is lacking. Arab population is characterized by a rapid transition, due to sudden wealth seen in the post-oil era, in lifestyle, food habits and extent of physical activity. We adopted a cross-sectional study on Arab adolescents from Kuwait to examine the role of ANGPTL8 in adolescent obesity. The study cohort included 452 adolescents, aged 11-14 years, recruited from Middle Schools across Kuwait. BMI-for-age growth charts were used to categorize adolescents as normal-weight, overweight, and obese. ELISA and bead-based multiplexing assays were used to measure plasma levels of ANGPTL8 and other inflammation and obesity-related biomarkers. Data analysis showed significant differences in the plasma levels of ANGPTL8 among the three subgroups, with a significant increase in overweight and obese children compared to normal-weight children. This observation persisted even when the analysis was stratified by sex. Multinomial logistic regression analysis illustrated that adolescents with higher levels of ANGPTL8 were 7 times more likely to become obese and twice as likely to be overweight. ANGPTL8 levels were correlated with those of hsCRP, leptin and chemerin. ANGPTL8 level had a reasonable prognostic power for obesity with an AUC of 0.703 (95%-CI=0.648-0.759). These observations relating to increased ANGPTL8 levels corresponding to increased BMI-for-age z-scores indicate that ANGPTL8, along with hsCRP, leptin and chemerin, could play a role in the early stages of obesity development in children. ANGPTL8 is a potential early marker for adolescent obesity and is associated with well-known obesity and inflammatory markers.
Collapse
Affiliation(s)
- Maha M. Hammad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Arshad M. Channanath
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Abdur Rahman
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Irina Al Khairi
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Preethi Cherian
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Tahani Alramah
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Nada Alam-Eldin
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
11
|
Kraaijenhof JM, Tromp TR, Nurmohamed NS, Reeskamp LF, Langenkamp M, Levels JHM, Boekholdt SM, Wareham NJ, Hoekstra M, Stroes ESG, Hovingh GK, Grefhorst A. ANGPTL3 (Angiopoietin-Like 3) Preferentially Resides on High-Density Lipoprotein in the Human Circulation, Affecting Its Activity. J Am Heart Assoc 2023; 12:e030476. [PMID: 37889183 PMCID: PMC10727379 DOI: 10.1161/jaha.123.030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/24/2023] [Indexed: 10/28/2023]
Abstract
Background ANGPTL3 (angiopoietin-like protein 3) is an acknowledged crucial regulator of lipid metabolism by virtue of its inhibitory effect on lipoprotein lipase and endothelial lipase. It is currently unknown whether and to which lipoproteins ANGPTL3 is bound and whether the ability of ANGPTL3 to inhibit lipase activity is affected by binding to lipoproteins. Methods and Results Incubation of ultracentrifugation-isolated low-density lipoprotein (LDL) and high-density lipoprotein (HDL) fractions from healthy volunteers with recombinant ANGPTL3 revealed that ANGPTL3 associates with both HDL and LDL particles ex vivo. Plasma from healthy volunteers and a patient deficient in HDL was fractionated by fast protein liquid chromatography, and ANGPTL3 distribution among lipoprotein fractions was measured. In healthy volunteers, ≈75% of lipoprotein-associated ANGPTL3 resides in HDL fractions, whereas ANGPTL3 was largely bound to LDL in the patient deficient in HDL. ANGPTL3 activity was studied by measuring lipolysis and uptake of 3H-trioleate by brown adipocyte T37i cells. Unbound ANGPTL3 did not suppress lipase activity, but when given with HDL or LDL, ANGPTL3 suppressed lipase activity by 21.4±16.4% (P=0.03) and 25.4±8.2% (P=0.006), respectively. Finally, in a subset of the EPIC (European Prospective Investigation into Cancer) Norfolk study, plasma HDL cholesterol and amount of large HDL particles were both positively associated with plasma ANGPTL3 concentrations. Moreover, plasma ANGPTL3 concentrations showed a positive association with incident coronary artery disease (odds ratio, 1.25 [95% CI, 1.01-1.55], P=0.04). Conclusions Although ANGPTL3 preferentially resides on HDL, its activity was highest once bound to LDL particles.
Collapse
Affiliation(s)
- Jordan M. Kraaijenhof
- Department of Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - Tycho R. Tromp
- Department of Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - Nick S. Nurmohamed
- Department of Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
- Department of CardiologyAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - Laurens F. Reeskamp
- Department of Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - Marije Langenkamp
- Department of Experimental Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - Johannes H. M. Levels
- Department of Experimental Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - S. Matthijs Boekholdt
- Department of CardiologyAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | | | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Erik S. G. Stroes
- Department of Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - G. Kees Hovingh
- Department of Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - Aldo Grefhorst
- Department of Experimental Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| |
Collapse
|
12
|
Trajanoska K, Bhérer C, Taliun D, Zhou S, Richards JB, Mooser V. From target discovery to clinical drug development with human genetics. Nature 2023; 620:737-745. [PMID: 37612393 DOI: 10.1038/s41586-023-06388-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/29/2023] [Indexed: 08/25/2023]
Abstract
The substantial investments in human genetics and genomics made over the past three decades were anticipated to result in many innovative therapies. Here we investigate the extent to which these expectations have been met, excluding cancer treatments. In our search, we identified 40 germline genetic observations that led directly to new targets and subsequently to novel approved therapies for 36 rare and 4 common conditions. The median time between genetic target discovery and drug approval was 25 years. Most of the genetically driven therapies for rare diseases compensate for disease-causing loss-of-function mutations. The therapies approved for common conditions are all inhibitors designed to pharmacologically mimic the natural, disease-protective effects of rare loss-of-function variants. Large biobank-based genetic studies have the power to identify and validate a large number of new drug targets. Genetics can also assist in the clinical development phase of drugs-for example, by selecting individuals who are most likely to respond to investigational therapies. This approach to drug development requires investments into large, diverse cohorts of deeply phenotyped individuals with appropriate consent for genetically assisted trials. A robust framework that facilitates responsible, sustainable benefit sharing will be required to capture the full potential of human genetics and genomics and bring effective and safe innovative therapies to patients quickly.
Collapse
Affiliation(s)
- Katerina Trajanoska
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Claude Bhérer
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Daniel Taliun
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Sirui Zhou
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - J Brent Richards
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Department of Epidemiology and Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Vincent Mooser
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Zuo Y, Zhang C, Zhou Y, Li H, Xiao W, Herzog RW, Xu J, Zhang J, Chen YE, Han R. Liver-specific in vivo base editing of Angptl3 via AAV delivery efficiently lowers blood lipid levels in mice. Cell Biosci 2023; 13:109. [PMID: 37322547 PMCID: PMC10273718 DOI: 10.1186/s13578-023-01036-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/18/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Gene editing has emerged as an exciting therapeutic development platform for numerous genetic and nongenetic diseases. Targeting lipid-modulating genes such as angiopoietin-related protein 3 (ANGPTL3) with gene editing offers hope for a permanent solution to lower cardiovascular disease risks associated with hypercholesterolemia. RESULTS In this study, we developed a hepatocyte-specific base editing therapeutic approach delivered by dual adeno-associated virus (AAV) to enable hepatocyte-specific targeting of Angptl3 to lower blood lipid levels. Systemic AAV9-mediated delivery of AncBE4max, a cytosine base editor (CBE), targeting mouse Angptl3 resulted in the installation of a premature stop codon in Angptl3 with an average efficiency of 63.3 ± 2.3% in the bulk liver tissue. A near-complete knockout of the ANGPTL3 protein in the circulation were observed within 2-4 weeks following AAV administration. Furthermore, the serum levels of triglyceride (TG) and total cholesterol (TC) were decreased by approximately 58% and 61%, respectively, at 4 weeks after treatment. CONCLUSIONS These results highlight the promise of liver-targeted Angptl3 base editing for blood lipid control.
Collapse
Affiliation(s)
- Yuanbojiao Zuo
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, P.R. China
| | - Chen Zhang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuan Zhou
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Haiwen Li
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Weidong Xiao
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Renzhi Han
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
14
|
Hu B, Huang Y. siRNA targeting ANGPTL3 stands in the spotlight for lipid-lowering therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:369-370. [PMID: 37128279 PMCID: PMC10148020 DOI: 10.1016/j.omtn.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Bo Hu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanyu Huang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Materials and the Environment, Beijing Institute of Technology, Zhuhai 519085, China
- Rigerna Therapeutics, Suzhou, Jiangsu 215127, China
- Corresponding author: Yuanyu Huang, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
15
|
Li C, Pan Y, Zhang R, Huang Z, Li D, Han Y, Larkin C, Rao V, Sun X, Kelly TN. Genomic Innovation in Early Life Cardiovascular Disease Prevention and Treatment. Circ Res 2023; 132:1628-1647. [PMID: 37289909 PMCID: PMC10328558 DOI: 10.1161/circresaha.123.321999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality globally. Although CVD events do not typically manifest until older adulthood, CVD develops gradually across the life-course, beginning with the elevation of risk factors observed as early as childhood or adolescence and the emergence of subclinical disease that can occur in young adulthood or midlife. Genomic background, which is determined at zygote formation, is among the earliest risk factors for CVD. With major advances in molecular technology, including the emergence of gene-editing techniques, along with deep whole-genome sequencing and high-throughput array-based genotyping, scientists now have the opportunity to not only discover genomic mechanisms underlying CVD but use this knowledge for the life-course prevention and treatment of these conditions. The current review focuses on innovations in the field of genomics and their applications to monogenic and polygenic CVD prevention and treatment. With respect to monogenic CVD, we discuss how the emergence of whole-genome sequencing technology has accelerated the discovery of disease-causing variants, allowing comprehensive screening and early, aggressive CVD mitigation strategies in patients and their families. We further describe advances in gene editing technology, which might soon make possible cures for CVD conditions once thought untreatable. In relation to polygenic CVD, we focus on recent innovations that leverage findings of genome-wide association studies to identify druggable gene targets and develop predictive genomic models of disease, which are already facilitating breakthroughs in the life-course treatment and prevention of CVD. Gaps in current research and future directions of genomics studies are also discussed. In aggregate, we hope to underline the value of leveraging genomics and broader multiomics information for characterizing CVD conditions, work which promises to expand precision approaches for the life-course prevention and treatment of CVD.
Collapse
Affiliation(s)
- Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (C. Li, R.Z., Z.H., X.S.)
| | - Yang Pan
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| | - Ruiyuan Zhang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (C. Li, R.Z., Z.H., X.S.)
| | - Zhijie Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (C. Li, R.Z., Z.H., X.S.)
| | - Davey Li
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| | - Yunan Han
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| | - Claire Larkin
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| | - Varun Rao
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| | - Xiao Sun
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (C. Li, R.Z., Z.H., X.S.)
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| |
Collapse
|
16
|
Church JA, Grigorenko EL, Fletcher JM. The Role of Neural and Genetic Processes in Learning to Read and Specific Reading Disabilities: Implications for Instruction. READING RESEARCH QUARTERLY 2023; 58:203-219. [PMID: 37456924 PMCID: PMC10348696 DOI: 10.1002/rrq.439] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 06/29/2021] [Indexed: 07/18/2023]
Abstract
To learn to read, the brain must repurpose neural systems for oral language and visual processing to mediate written language. We begin with a description of computational models for how alphabetic written language is processed. Next, we explain the roles of a dorsal sublexical system in the brain that relates print and speech, a ventral lexical system that develops the visual expertise for rapid orthographic processing at the word level, and the role of cognitive control networks that regulate attentional processes as children read. We then use studies of children, adult illiterates learning to read, and studies of poor readers involved in intervention, to demonstrate the plasticity of these neural networks in development and in relation to instruction. We provide a brief overview of the rapid increase in the field's understanding and technology for assessing genetic influence on reading. Family studies of twins have shown that reading skills are heritable, and molecular genetic studies have identified numerous regions of the genome that may harbor candidate genes for the heritability of reading. In selected families, reading impairment has been associated with major genetic effects, despite individual gene contributions across the broader population that appear to be small. Neural and genetic studies do not prescribe how children should be taught to read, but these studies have underscored the critical role of early intervention and ongoing support. These studies also have highlighted how structured instruction that facilitates access to the sublexical components of words is a critical part of training the brain to read.
Collapse
Affiliation(s)
| | - Elena L Grigorenko
- University of Houston, Texas, USA; Baylor College of Medicine, Houston, Texas, USA; and St. Petersburg State University, Russia
| | | |
Collapse
|
17
|
Finney AC, Das S, Kumar D, McKinney MP, Cai B, Yurdagul A, Rom O. The interplay between nonalcoholic fatty liver disease and atherosclerotic cardiovascular disease. Front Cardiovasc Med 2023; 10:1116861. [PMID: 37200978 PMCID: PMC10185914 DOI: 10.3389/fcvm.2023.1116861] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/23/2023] [Indexed: 05/20/2023] Open
Abstract
Therapeutic approaches that lower circulating low-density lipoprotein (LDL)-cholesterol significantly reduced the burden of cardiovascular disease over the last decades. However, the persistent rise in the obesity epidemic is beginning to reverse this decline. Alongside obesity, the incidence of nonalcoholic fatty liver disease (NAFLD) has substantially increased in the last three decades. Currently, approximately one third of world population is affected by NAFLD. Notably, the presence of NAFLD and particularly its more severe form, nonalcoholic steatohepatitis (NASH), serves as an independent risk factor for atherosclerotic cardiovascular disease (ASCVD), thus, raising interest in the relationship between these two diseases. Importantly, ASCVD is the major cause of death in patients with NASH independent of traditional risk factors. Nevertheless, the pathophysiology linking NAFLD/NASH with ASCVD remains poorly understood. While dyslipidemia is a common risk factor underlying both diseases, therapies that lower circulating LDL-cholesterol are largely ineffective against NASH. While there are no approved pharmacological therapies for NASH, some of the most advanced drug candidates exacerbate atherogenic dyslipidemia, raising concerns regarding their adverse cardiovascular consequences. In this review, we address current gaps in our understanding of the mechanisms linking NAFLD/NASH and ASCVD, explore strategies to simultaneously model these diseases, evaluate emerging biomarkers that may be useful to diagnose the presence of both diseases, and discuss investigational approaches and ongoing clinical trials that potentially target both diseases.
Collapse
Affiliation(s)
- Alexandra C. Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Sandeep Das
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Dhananjay Kumar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - M. Peyton McKinney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, United States
| | - Arif Yurdagul
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Correspondence: Arif Yurdagul Oren Rom
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Correspondence: Arif Yurdagul Oren Rom
| |
Collapse
|
18
|
Wang J, Zheng W, Zheng S, Yuan Y, Wen W, Cui W, Xue L, Sun X, Shang H, Zhang H, Xiao RP, Gao S, Zhang X. Targeting ANGPTL3 by GalNAc-conjugated siRNA ANGsiR10 lowers blood lipids with long-lasting and potent efficacy in mice and monkeys. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 31:68-77. [PMID: 36618267 PMCID: PMC9804015 DOI: 10.1016/j.omtn.2022.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Angiopoietin-like protein 3 (ANGPTL3) is an important regulator of lipoproteins by inhibiting both lipoprotein and endothelial lipases. It has been intensively investigated as a drug target for the treatment of dyslipidemia. In the present study, a modified small interfering RNA (siRNA) conjugated with GalNAc ANGsiR10 was characterized by in vivo and in vitro studies for its effect on ANGPTL3 silencing, the reduction of plasma triglycerides (TGs), and cholesterol levels in disease models. The results showed that ANGsiR10 displayed a significant and long-lasting efficacy in reducing blood TG and cholesterol levels in both mice and monkeys. Remarkably, the maximal reductions of plasma TG levels in the hApoC3-Tg mice, a model with high TG levels, and the spontaneous dyslipidemia model of rhesus monkey were 96.3% and 67.7%, respectively, after a single dose of ANGsiR10, with long-lasting effects up to 15 weeks. The cholesterol levels were also reduced in response to treatment, especially the non-HDL-c level, without altering the ApoA/ApoB ratio. This study showed that ANGsiR10 is effective in treating dyslipidemia and is worth further development.
Collapse
Affiliation(s)
- Jue Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Wen Zheng
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Shuquan Zheng
- Suzhou Ribo Life Science Co., Ltd., Jiangsu 215300, China
| | - Ye Yuan
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Wei Wen
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China,PKU-Nanjing Institute of Translational Medicine, Nanjing 211800, China
| | - Weiyi Cui
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Lifang Xue
- Department of Ultrasonography, Peking University International Hospital, Beijing 102206, China
| | - Xueting Sun
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Haibao Shang
- Laboratory Animal Center, Peking University, Beijing 100871, China
| | - Hongyan Zhang
- Suzhou Ribo Life Science Co., Ltd., Jiangsu 215300, China
| | - Rui-Ping Xiao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China,PKU-Nanjing Institute of Translational Medicine, Nanjing 211800, China,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China,Corresponding author Rui-Ping Xiao, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
| | - Shan Gao
- Suzhou Ribo Life Science Co., Ltd., Jiangsu 215300, China,Corresponding author Shan Gao, Suzhou Ribo Life Science Co., Ltd., Jiangsu 215300, China.
| | - Xiuqin Zhang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China,Corresponding author Xiuqin Zhang, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China.
| |
Collapse
|
19
|
Non-alcoholic fatty liver disease and liver secretome. Arch Pharm Res 2022; 45:938-963. [PMCID: PMC9703441 DOI: 10.1007/s12272-022-01419-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
|
20
|
Kim K, Ginsberg HN, Choi SH. New, Novel Lipid-Lowering Agents for Reducing Cardiovascular Risk: Beyond Statins. Diabetes Metab J 2022; 46:517-532. [PMID: 35929170 PMCID: PMC9353557 DOI: 10.4093/dmj.2022.0198] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Statins are the cornerstone of the prevention and treatment of atherosclerotic cardiovascular disease (ASCVD). However, even under optimal statin therapy, a significant residual ASCVD risk remains. Therefore, there has been an unmet clinical need for novel lipid-lowering agents that can target low-density lipoprotein cholesterol (LDL-C) and other atherogenic particles. During the past decade, several drugs have been developed for the treatment of dyslipidemia. Inclisiran, a small interfering RNA that targets proprotein convertase subtilisin/kexin type 9 (PCSK9), shows comparable effects to that of PCSK9 monoclonal antibodies. Bempedoic acid, an ATP citrate lyase inhibitor, is a valuable treatment option for the patients with statin intolerance. Pemafibrate, the first selective peroxisome proliferator-activated receptor alpha modulator, showed a favorable benefit-risk balance in phase 2 trial, but the large clinical phase 3 trial (PROMINENT) was recently stopped for futility based on a late interim analysis. High dose icosapent ethyl, a modified eicosapentaenoic acid preparation, shows cardiovascular benefits. Evinacumab, an angiopoietin-like 3 (ANGPTL3) monoclonal antibody, reduces plasma LDL-C levels in patients with refractory hypercholesterolemia. Novel antisense oligonucleotides targeting apolipoprotein C3 (apoC3), ANGPTL3, and lipoprotein(a) have significantly attenuated the levels of their target molecules with beneficial effects on associated dyslipidemias. Apolipoprotein A1 (apoA1) is considered as a potential treatment to exploit the athero-protective effects of high-density lipoprotein cholesterol (HDL-C), but solid clinical evidence is necessary. In this review, we discuss the mode of action and clinical outcomes of these novel lipid-lowering agents beyond statins.
Collapse
Affiliation(s)
- Kyuho Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Henry N. Ginsberg
- Department of Preventive Medicine and Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY,
USA
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| |
Collapse
|
21
|
Hu X, Fan J, Ma Q, Han L, Cao Z, Xu C, Luan J, Jing G, Nan Y, Wu T, Zhang Y, Wang H, Zhang Y, Ju D. A novel nanobody-heavy chain antibody against Angiopoietin-like protein 3 reduces plasma lipids and relieves nonalcoholic fatty liver disease. J Nanobiotechnology 2022; 20:237. [PMID: 35590366 PMCID: PMC9118633 DOI: 10.1186/s12951-022-01456-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/07/2022] [Indexed: 11/29/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a metabolic disease mainly on account of hypercholesterolemia and may progress to cirrhosis and hepatocellular carcinoma. The discovery of effective therapy for NAFLD is an essential unmet need. Angiopoietin-like protein 3 (ANGPTL3), a critical lipid metabolism regulator, resulted in increased blood lipids and was elevated in NAFLD. Here, we developed a nanobody-heavy chain antibody (VHH-Fc) to inhibit ANGPTL3 for NAFLD treatment. Results In this study, we retrieved an anti-ANGPTL3 VHH and Fc fusion protein, C44-Fc, which exhibited high affinities to ANGPTL3 proteins and rescued ANGPLT3-mediated inhibition of lipoprotein lipase (LPL) activity. The C44-Fc bound a distinctive epitope within ANGPTL3 when compared with the approved evinacumab, and showed higher expression yield. Meanwhile, C44-Fc had significant reduction of the triglyceride (~ 44.2%), total cholesterol (~ 36.6%) and LDL-cholesterol (~ 54.4%) in hypercholesterolemic mice and ameliorated hepatic lipid accumulation and liver injury in NAFLD mice model. Conclusions We discovered a VHH-Fc fusion protein with high affinity to ANGPTL3, strong stability and also alleviated the progression of NAFLD, which might offer a promising therapy for NAFLD. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01456-z.
Collapse
Affiliation(s)
- Xiaozhi Hu
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Jiajun Fan
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Qianqian Ma
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China.,National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, 201203, China
| | - Lei Han
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Zhonglian Cao
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Caili Xu
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Jingyun Luan
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China.,Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, 60615, USA
| | - Guangjun Jing
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Yanyang Nan
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Tao Wu
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Yuting Zhang
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Hanqi Wang
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Yuanzhen Zhang
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Dianwen Ju
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
22
|
Quevedo-Abeledo JC, Martín-González C, Ferrer-Moure C, de Armas-Rillo L, Hernandez-Hernandez MV, González-Gay MÁ, Ferraz-Amaro I. Key Molecules of Triglycerides Pathway Metabolism Are Disturbed in Patients With Systemic Lupus Erythematosus. Front Immunol 2022; 13:827355. [PMID: 35615358 PMCID: PMC9124762 DOI: 10.3389/fimmu.2022.827355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/13/2022] [Indexed: 11/22/2022] Open
Abstract
Background Elevated triglycerides or triglyceride-rich lipoproteins are an additional cause of cardiovascular (CV) disease. Given that patients with systemic lupus erythematosus (SLE) have a high prevalence of premature CV disease and show an altered lipid profile, our objective was to study whether three molecules that play a central role in the triglyceride metabolism: apolipoprotein C-III (ApoC3), angiopoietin-like protein 4 (ANGPLT4), and lipoprotein lipase (LPL) differ between SLE patients and controls, and how they are related to disease characteristics, including disease damage. Methods Cross-sectional study that included 347 women, 185 of them diagnosed with SLE and 162 age-matched controls. ANGPTL4, ApoC3 and LPL, and standard lipid profiles were analyzed in SLE patients and controls. A multivariable analysis was performed to assess whether ANGPTL4, ApoC3 and LPL molecules differ between patients and controls and to study their relationship with SLE disease damage. Results After fully multivariable analysis that included classic CV risk factors, and the modifications that the disease itself produces over the lipid profile, it was found that ApoC3 was significantly lower (beta coef. -1.2 [95%CI -1.6- -0.8) mg/dl, <0.001), and ANGPTL4 (beta coef. 63 [95%CI 35-90] ng/ml, <0.001) and LPL (beta coef. 79 [95%CI 30-128] ng/ml, p=0.002) significantly higher in patients with SLE compared to controls. Disease damage score was significantly and independently associated with higher serum levels of LPL (beta coef. 23 [95%CI 10-35] ng/ml, p=0.001). Mediation analysis suggested that the relationship between disease damage and LPL was direct and not mediated by ApoC3 or ANGPLT4. Conclusion The ApoC3, ANGPLT4 and LPL axis is disrupted in patients with SLE. Disease damage explains this disturbance.
Collapse
Affiliation(s)
| | - Candelaria Martín-González
- Division of Internal Medicine, Hospital Universitario de Canarias, Tenerife, Spain
- Internal Medicine Department, University of La Laguna, Tenerife, Spain
| | - Carmen Ferrer-Moure
- Division of Central Laboratory, Hospital Universitario de Canarias, Tenerife, Spain
| | | | | | - Miguel Á. González-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Hospital Universitario Marqués de Valdecilla, Instituto de investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
- Division of Rheumatology, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, Santander, Spain
- Cardiovascular Pathophysiology and Genomics Research Unit, Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- *Correspondence: Iván Ferraz-Amaro, ; Miguel Á. González-Gay,
| | - Iván Ferraz-Amaro
- Internal Medicine Department, University of La Laguna, Tenerife, Spain
- Division of Rheumatology, Hospital Universitario de Canarias, Tenerife, Spain
- *Correspondence: Iván Ferraz-Amaro, ; Miguel Á. González-Gay,
| |
Collapse
|
23
|
Blom DJ, Marais AD, Moodley R, van der Merwe N, van Tonder A, Raal FJ. RNA-based therapy in the management of lipid disorders: a review. Lipids Health Dis 2022; 21:41. [PMID: 35459248 PMCID: PMC9034497 DOI: 10.1186/s12944-022-01649-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/31/2022] [Indexed: 11/10/2022] Open
Abstract
This review focuses on antisense oligonucleotides and small interfering ribonucleic acid therapies approved or under development for the management of lipid disorders. Recent advances in RNA-based therapeutics allow tissue-specific targeting improving safety. Multiple potential target proteins have been identified and RNA-based therapeutics have the potential to significantly improve outcomes for patients with or at risk for atherosclerotic cardiovascular disease. The advantages of RNA-based lipid modifying therapies include the ability to reduce the concentration of almost any target protein highly selectively, allowing for more precise control of metabolic pathways than can often be achieved with small molecule-based drugs. RNA-based lipid modifying therapies also make it possible to reduce the expression of target proteins for which there are no small molecule inhibitors. RNA-based therapies can also reduce pill burden as their administration schedule typically varies from weekly to twice yearly injections. The safety profile of most current RNA-based lipid therapies is acceptable but adverse events associated with various therapies targeting lipid pathways have included injection site reactions, inflammatory reactions, hepatic steatosis and thrombocytopenia. While the body of evidence for these therapies is expanding, clinical experience with these therapies is currently limited in duration and the results of long-term studies are eagerly awaited.
Collapse
Affiliation(s)
- Dirk Jacobus Blom
- Department of Medicine, Division of Lipidology and Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa.
| | - Adrian David Marais
- Division of Chemical Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rajen Moodley
- Netcare Umhlanga Medical Center, Umhlanga, KwaZulu Natal, South Africa
| | | | | | - Frederick Johan Raal
- Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
24
|
Borén J, Taskinen MR, Björnson E, Packard CJ. Metabolism of triglyceride-rich lipoproteins in health and dyslipidaemia. Nat Rev Cardiol 2022; 19:577-592. [PMID: 35318466 DOI: 10.1038/s41569-022-00676-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Accumulating evidence points to the causal role of triglyceride-rich lipoproteins and their cholesterol-enriched remnants in atherogenesis. Genetic studies in particular have not only revealed a relationship between plasma triglyceride levels and the risk of atherosclerotic cardiovascular disease, but have also identified key proteins responsible for the regulation of triglyceride transport. Kinetic studies in humans using stable isotope tracers have been especially useful in delineating the function of these proteins and revealing the hitherto unappreciated complexity of triglyceride-rich lipoprotein metabolism. Given that triglyceride is an essential energy source for mammals, triglyceride transport is regulated by numerous mechanisms that balance availability with the energy demands of the body. Ongoing investigations are focused on determining the consequences of dysregulation as a result of either dietary imprudence or genetic variation that increases the risk of atherosclerosis and pancreatitis. The identification of molecular control mechanisms involved in triglyceride metabolism has laid the groundwork for a 'precision-medicine' approach to therapy. Novel pharmacological agents under development have specific molecular targets within a regulatory framework, and their deployment heralds a new era in lipid-lowering-mediated prevention of disease. In this Review, we outline what is known about the dysregulation of triglyceride transport in human hypertriglyceridaemia.
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elias Björnson
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
25
|
Ward NC, Chan DC, Watts GF. A Tale of Two New Targets for Hypertriglyceridaemia: Which Choice of Therapy? BioDrugs 2022; 36:121-135. [PMID: 35286660 PMCID: PMC8986672 DOI: 10.1007/s40259-022-00520-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 12/20/2022]
Abstract
Angiopoietin-like protein 3 (ANGPTL3) and apolipoprotein C-III (apoC-III) are novel metabolic targets for correcting hypertriglyceridaemia (HTG). As a background to their potential clinical use, we review the metabolic aetiology of HTG, particular abnormalities in triglyceride-rich lipoproteins (TRLs) and their role in atherosclerotic cardiovascular disease (ASCVD) and acute pancreatitis. Molecular and cardiometabolic aspects of ANGPTL3 and apoC-III, as well as inhibition of these targets with monoclonal antibody and nucleic acid therapies, are summarized as background information to descriptions and analyses of recent clinical trials. These studies suggest that ANGPTL3 and apoC-III inhibitors are equally potent in lowering elevated plasma triglycerides and TRLs across a wide range of concentrations, with possibly greater efficacy with inhibition of apoC-III. ANGPTL3 inhibition may, however, have the advantage of greater lowering of plasma LDL cholesterol and could specifically address elevated LDL cholesterol in familial hypercholesterolaemia refractory to standard drug therapies. Large clinical outcome trials in relevant populations are still required to confirm the long-term efficacy, safety and cost effectiveness of these potent agents for mitigating the complications of HTG. Beyond targeting severe chylomicronaemia in the prevention of acute pancreatitis, both agents could be useful in addressing residual risk of ASCVD due to TRLs in patients receiving best standard of care, including behavioural modifications, statins, ezetimibe, fibrates and proprotein convertase subtilisin/kexin type 9 inhibitors.
Collapse
Affiliation(s)
- Natalie C Ward
- Dobney Hypertension Centre, Medical School, University of Western Australia, Perth, WA, Australia.,Medical School, University of Western Australia, GPO Box X2213, Perth, WA, 6847, Australia
| | - Dick C Chan
- Medical School, University of Western Australia, GPO Box X2213, Perth, WA, 6847, Australia
| | - Gerald F Watts
- Medical School, University of Western Australia, GPO Box X2213, Perth, WA, 6847, Australia. .,Department of Cardiology, Lipid Disorders Clinic, Royal Perth Hospital, Perth, WA, Australia.
| |
Collapse
|
26
|
Yuan TH, Yue ZS, Zhang GH, Wang L, Dou GR. Beyond the Liver: Liver-Eye Communication in Clinical and Experimental Aspects. Front Mol Biosci 2022; 8:823277. [PMID: 35004861 PMCID: PMC8740136 DOI: 10.3389/fmolb.2021.823277] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/09/2021] [Indexed: 12/04/2022] Open
Abstract
The communication between organs participates in the regulation of body homeostasis under physiological conditions and the progression and adaptation of diseases under pathological conditions. The communication between the liver and the eyes has been received more and more attention. In this review, we summarized some molecular mediators that can reflect the relationship between the liver and the eye, and then extended the metabolic relationship between the liver and the eye. We also summarized some typical diseases and phenotypes that have been able to reflect the liver-eye connection in the clinic, especially non-alcoholic fatty liver disease (NAFLD) and diabetic retinopathy (DR). The close connection between the liver and the eye is reflected through multiple pathways such as metabolism, oxidative stress, and inflammation. In addition, we presented the connection between the liver and the eye in traditional Chinese medicine, and introduced the fact that artificial intelligence may use the close connection between the liver and the eye to help us solve some practical clinical problems. Paying attention to liver-eye communication will help us have a deeper and more comprehensive understanding of certain communication between liver diseases and eyes, and provide new ideas for their potential therapeutic strategy.
Collapse
Affiliation(s)
- Tian-Hao Yuan
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of The Cadet Team 6 of School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhen-Sheng Yue
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guo-Heng Zhang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guo-Rui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
27
|
Mohamed F, Mansfield BS, Raal FJ. ANGPTL3 as a Drug Target in Hyperlipidemia and Atherosclerosis. Curr Atheroscler Rep 2022; 24:959-967. [PMID: 36367663 PMCID: PMC9650658 DOI: 10.1007/s11883-022-01071-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE OF REVIEW Elevated low-density lipoprotein cholesterol (LDL-C) and triglyceride-rich lipoproteins (TRLs) or remnants are important risk factors for the development of atherosclerotic cardiovascular disease (ASCVD). The ongoing challenge of not being able to achieve recommended LDL-C targets despite maximally tolerated lipid-lowering therapy (LLT) has led to the development of novel therapeutic agents including angiopoietin-like 3 (ANGPTL3) inhibitors. RECENT FINDINGS ANGPTL3 is a glycoprotein produced by the liver that inhibits lipoprotein lipase and endothelial lipase. Data from genetic and clinical studies have shown that a lower ANGPTL3 level is associated with lower plasma LDL-C, triglyceride (TG), and other lipoproteins. Pharmacological inactivation of ANGPTL3 with the monoclonal antibody, evinacumab, results in a 50% reduction in LDL-C, even in patients with homozygous familial hypercholesterolemia (HoFH). The safe and effective targeted delivery of nucleic acid-based therapies will shape the future of the lipid arena. ANGPTL3 is a novel target in lipoprotein metabolism, targeting not only LDL-C via an LDL-receptor (LDLR) independent mechanism but also TRLs and carries a significant promise for further ASCVD risk reduction.
Collapse
Affiliation(s)
- Farzahna Mohamed
- Department of Internal Medicine, Faculty of Health Sciences, Division of Endocrinology and Metabolism, University of the Witwatersrand, Johannesburg, South Africa
| | - Brett S. Mansfield
- Department of Internal Medicine, Faculty of Health Sciences, Division of Endocrinology and Metabolism, University of the Witwatersrand, Johannesburg, South Africa
| | - Frederick J. Raal
- Department of Internal Medicine, Faculty of Health Sciences, Division of Endocrinology and Metabolism, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
28
|
Lipid-Associated Variants near ANGPTL3 and LPL Show Parent-of-Origin Specific Effects on Blood Lipid Levels and Obesity. Genes (Basel) 2021; 13:genes13010091. [PMID: 35052431 PMCID: PMC8774740 DOI: 10.3390/genes13010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/25/2021] [Indexed: 11/23/2022] Open
Abstract
Parent-of-origin effects (POE) and sex-specific parental effects have been reported for plasma lipid levels, and a strong relationship exists between dyslipidemia and obesity. We aim to explore whether genetic variants previously reported to have an association to lipid traits also show POE on blood lipid levels and obesity. Families from the Botnia cohort and the Hungarian Transdanubian Biobank (HTB) were genotyped for 12 SNPs, parental origin of alleles were inferred, and generalized estimating equations were modeled to assess parental-specific associations with lipid traits and obesity. POE were observed for the variants at the TMEM57, DOCK7/ANGPTL3, LPL, and APOA on lipid traits, the latter replicated in HTB. Sex-specific parental effects were also observed; variants at ANGPTL3/DOCK7 showed POE on lipid traits and obesity in daughters only, while those at LPL and TMEM57 showed POE on lipid traits in sons. Variants at LPL and DOCK7/ANGPTL3 showed POE on obesity-related traits in Botnia and HTB, and POE effects on obesity were seen to a higher degree in daughters. This highlights the need to include analysis of POEs in genetic studies of complex traits.
Collapse
|
29
|
Qiu M, Li Y, Bloomer H, Xu Q. Developing Biodegradable Lipid Nanoparticles for Intracellular mRNA Delivery and Genome Editing. Acc Chem Res 2021; 54:4001-4011. [PMID: 34668716 DOI: 10.1021/acs.accounts.1c00500] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the U.S. Food and Drug Administration (FDA) granted emergency use authorization for two mRNA vaccines against SARS-CoV-2, mRNA-based technology has attracted broad attention from the scientific community to investors. When delivered intracellularly, mRNA has the ability to produce various therapeutic proteins, enabling the treatment of a variety of illnesses, including but not limited to infectious diseases, cancers, and genetic diseases. Accordingly, mRNA holds significant therapeutic potential and provides a promising means to target historically hard-to-treat diseases. Current clinical efforts harnessing mRNA-based technology are focused on vaccination, cancer immunotherapy, protein replacement therapy, and genome editing. The clinical translation of mRNA-based technology has been made possible by leveraging nanoparticle delivery methods. However, the application of mRNA for therapeutic purposes is still challenged by the need for specific, efficient, and safe delivery systems.This Account highlights key advances in designing and developing combinatorial synthetic lipid nanoparticles (LNPs) with distinct chemical structures and properties for in vitro and in vivo intracellular mRNA delivery. LNPs represent the most advanced nonviral nanoparticle delivery systems that have been extensively investigated for nucleic acid delivery. The aforementioned COVID-19 mRNA vaccines and one LNP-based small interfering RNA (siRNA) drug (ONPATTRO) have received clinical approval from the FDA, highlighting the success of synthetic ionizable lipids for in vivo nucleic acid delivery. In this Account, we first summarize the research efforts from our group on the development of bioreducible and biodegradable LNPs by leveraging the combinatorial chemistry strategy, such as the Michael addition reaction, which allows us to easily generate a large set of lipidoids with diverse chemical structures. Next, we discuss the utilization of a library screening strategy to identify optimal LNPs for targeted mRNA delivery and showcase the applications of the optimized LNPs in cell engineering and genome editing. Finally, we outline key challenges to the clinical translation of mRNA-based therapies and propose an outlook for future directions of the chemical design and optimization of LNPs to improve the safety and specificity of mRNA drugs. We hope this Account provides insight into the rational design of LNPs for facilitating the development of mRNA therapeutics, a transformative technology that promises to revolutionize future medicine.
Collapse
Affiliation(s)
- Min Qiu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Yamin Li
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Hanan Bloomer
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
- School of Medicine & Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts 02111, United States
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
30
|
Sylvers-Davie KL, Davies BSJ. Regulation of lipoprotein metabolism by ANGPTL3, ANGPTL4, and ANGPTL8. Am J Physiol Endocrinol Metab 2021; 321:E493-E508. [PMID: 34338039 PMCID: PMC8560382 DOI: 10.1152/ajpendo.00195.2021] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 01/28/2023]
Abstract
Triglyceride-rich lipoproteins deliver fatty acids to tissues for oxidation and for storage. Release of fatty acids from circulating lipoprotein triglycerides is carried out by lipoprotein lipase (LPL), thus LPL serves as a critical gatekeeper of fatty acid uptake into tissues. LPL activity is regulated by a number of extracellular proteins including three members of the angiopoietin-like family of proteins. In this review, we discuss our current understanding of how, where, and when ANGPTL3, ANGPTL4, and ANGPTL8 regulate lipoprotein lipase activity, with a particular emphasis on how these proteins interact with each other to coordinate triglyceride metabolism and fat partitioning.
Collapse
Affiliation(s)
- Kelli L Sylvers-Davie
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa
| | - Brandon S J Davies
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa
| |
Collapse
|
31
|
Chen PY, Chao TY, Hsu HJ, Wang CY, Lin CY, Gao WY, Wu MJ, Yen JH. The Lipid-Modulating Effect of Tangeretin on the Inhibition of Angiopoietin-like 3 (ANGPTL3) Gene Expression through Regulation of LXRα Activation in Hepatic Cells. Int J Mol Sci 2021; 22:ijms22189853. [PMID: 34576019 PMCID: PMC8471037 DOI: 10.3390/ijms22189853] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
The excessive accumulation of TG-rich lipoproteins (TGRLs) in plasma is associated with dyslipidemia and atherosclerotic cardiovascular diseases (ASCVDs). Tangeretin is a bioactive pentamethoxyflavone mainly found in citrus peels, and it has been reported to protect against hyperlipidemia, diabetes, and obesity. The aim of this study was to investigate the lipid-modulating effects and the underlying mechanisms of tangeretin action in hepatic cells. Transcriptome and bioinformatics analyses with the Gene Ontology (GO) database showed that tangeretin significantly regulated a set of 13 differentially expressed genes (DEGs) associated with the regulation of lipoprotein lipase (LPL) activity. Among these DEGs, angiopoietin-like 3 (ANGPTL3), an essential inhibitor of LPL catalytic activity that regulates TGRL metabolism in plasma, was markedly downregulated by tangeretin. We demonstrated that tangeretin significantly inhibited the mRNA expression of ANGPTL3 in HepG2 and Huh-7 cells. Tangeretin treatment of hepatic cells also reduced the levels of both intracellular and secreted ANGPTL3 proteins. Moreover, we found that inhibition of ANGPTL3 production by tangeretin augmented LPL activity. We further demonstrated that the transcriptional activity of the ANGPTL3 promoter was significantly attenuated by tangeretin, and we identified a DNA element located between the −250 and −121 positions that responded to tangeretin. Furthermore, we found that tangeretin did not alter the levels of the nuclear liver X receptor α (LXRα) protein, an essential transcription factor that binds to the tangeretin-responsive element, but it can counteract LXRα-mediated ANGPTL3 transcription. On the basis of molecular docking analysis, tangeretin was predicted to bind to the ligand-binding domain of LXRα, which would result in suppression of LXRα activation. Our findings support the hypothesis that tangeretin exerts a lipid-lowering effect by modulating the LXRα-ANGPTL3-LPL pathway, and thus, it can be used as a potential phytochemical for the prevention or treatment of dyslipidemia.
Collapse
Affiliation(s)
- Pei-Yi Chen
- Center of Medical Genetics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan;
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (T.-Y.C.); (C.-Y.L.)
| | - Tzu-Ya Chao
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (T.-Y.C.); (C.-Y.L.)
| | - Hao-Jen Hsu
- Department of Life Science, Tzu Chi University, Hualien 97004, Taiwan;
| | - Chih-Yang Wang
- Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Yen Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (T.-Y.C.); (C.-Y.L.)
| | - Wan-Yun Gao
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (T.-Y.C.); (C.-Y.L.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
- Correspondence: or ; Tel.: +88-63-856-5301 (ext. 2683)
| |
Collapse
|
32
|
The Association Between rs1748195 and rs11207997 Variants of the ANGPTL3 Gene and Susceptibility to Cardiovascular Disease in the MASHAD Cohort Study. Biochem Genet 2021; 60:738-754. [PMID: 34417926 DOI: 10.1007/s10528-021-10122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
There is a strong genetic predisposition to cardiovascular disease (CVD). Loss-of-function variants of the angiopoietin-like 3 (ANGPTL3) gene have been reported to be associated with several lipid-related CVD risk factors that include serum high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG) level, and total cholesterol (TC). We aimed to determine the association of two genetic variants, rs1748195 and rs11207997, of the ANGPTL3 locus and CVD risk in the Mashhad Stroke and Heart Atherosclerotic Disorders (MASHAD) cohort study. The participants were 1002 individuals in the MASHAD cohort, with or without CVD, during the 6 years of follow-up. The subjects were categorized into two groups according to serum HDL concentration. DNA was extracted by the routine salting-out method, and genotyping of rs1748195 and rs11207997 variants of the ANGPTL3 gene was performed using the ARMS PCR method. Univariate and multivariate statistical analysis was used to assess the two gene variants' association with incident CVD and baseline lipid profile. There was a significant relationship between rs1748195 GG genotype and CVD risk in the individuals with a normal serum HDL-C. There was a significant association between the CT genotype of the rs11207997 polymorphism and CVD risk in individuals with a low serum HDL-C. Furthermore, carriers of the GG genotype of the rs1748195 and CT genotype of rs11207997 variant of ANGPTL3 had a higher risk of developing CVD disease. We have shown that the 1748195(GG) and 11207997(CT) gene variants of the ANGPTL3 locus are associated with an increased risk of CVD in an Iranian population sample.
Collapse
|
33
|
Variable Changes of Circulating ANGPTL3 and ANGPTL4 in Different Obese Phenotypes: Relationship with Vasodilator Dysfunction. Biomedicines 2021; 9:biomedicines9081037. [PMID: 34440242 PMCID: PMC8393675 DOI: 10.3390/biomedicines9081037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023] Open
Abstract
Obesity associates with premature atherosclerosis and an increased burden of cardiovascular disease, especially when accompanied by abnormalities of lipid and glucose metabolism. Angiopoietin-like (ANGPTL)3 and ANGPTL4 are metabolic regulators, whose upregulation is associated with dyslipidemia, insulin resistance and atherosclerosis. We analyzed, therefore, changes in circulating ANGPTL3 and ANGPTL4 in obese patients with different metabolic phenotypes and their relation with impaired vasodilator reactivity, an early abnormality in atherosclerosis. Compared to the lean subjects (n = 42), circulating ANGPTL3 was elevated (both p > 0.001) in the patients with metabolically unhealthy obesity (MUO; n = 87) and type 2 diabetes (T2D; n = 31), but not in those with metabolically healthy obesity (MHO; n = 48, p > 0.05). Circulating ANGPTL4, by contrast, was increased in all obese subgroups (all p < 0.001 vs. lean subjects). Vasodilator responses to both acetylcholine and sodium nitroprusside were reduced in the three obese subgroups vs. lean subjects (all p < 0.001), with greater impairment in the patients with T2D than in those with MHO and MUO (all p < 0.05). In the whole population, an inverse relationship (r = 0.27; p = 0.003) was observed between circulating ANGPTL4 and endothelium-dependent vasorelaxation. Circulating ANGPTL3 and ANGPTL4 undergo variable changes in obese patients with different metabolic phenotypes; changes in ANGPTL4 relate to endothelial dysfunction, making this protein a possible target for vascular prevention in these patients.
Collapse
|
34
|
Kristensen KK, Leth-Espensen KZ, Kumari A, Grønnemose AL, Lund-Winther AM, Young SG, Ploug M. GPIHBP1 and ANGPTL4 Utilize Protein Disorder to Orchestrate Order in Plasma Triglyceride Metabolism and Regulate Compartmentalization of LPL Activity. Front Cell Dev Biol 2021; 9:702508. [PMID: 34336854 PMCID: PMC8319833 DOI: 10.3389/fcell.2021.702508] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Intravascular processing of triglyceride-rich lipoproteins (TRLs) is crucial for delivery of dietary lipids fueling energy metabolism in heart and skeletal muscle and for storage in white adipose tissue. During the last decade, mechanisms underlying focal lipolytic processing of TRLs along the luminal surface of capillaries have been clarified by fresh insights into the functions of lipoprotein lipase (LPL); LPL's dedicated transporter protein, glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1); and its endogenous inhibitors, angiopoietin-like (ANGPTL) proteins 3, 4, and 8. Key discoveries in LPL biology include solving the crystal structure of LPL, showing LPL is catalytically active as a monomer rather than as a homodimer, and that the borderline stability of LPL's hydrolase domain is crucial for the regulation of LPL activity. Another key discovery was understanding how ANGPTL4 regulates LPL activity. The binding of ANGPTL4 to LPL sequences adjacent to the catalytic cavity triggers cooperative and sequential unfolding of LPL's hydrolase domain resulting in irreversible collapse of the catalytic cavity and loss of LPL activity. Recent studies have highlighted the importance of the ANGPTL3-ANGPTL8 complex for endocrine regulation of LPL activity in oxidative organs (e.g., heart, skeletal muscle, brown adipose tissue), but the molecular mechanisms have not been fully defined. New insights have also been gained into LPL-GPIHBP1 interactions and how GPIHBP1 moves LPL to its site of action in the capillary lumen. GPIHBP1 is an atypical member of the LU (Ly6/uPAR) domain protein superfamily, containing an intrinsically disordered and highly acidic N-terminal extension and a disulfide bond-rich three-fingered LU domain. Both the disordered acidic domain and the folded LU domain are crucial for the stability and transport of LPL, and for modulating its susceptibility to ANGPTL4-mediated unfolding. This review focuses on recent advances in the biology and biochemistry of crucial proteins for intravascular lipolysis.
Collapse
Affiliation(s)
- Kristian Kølby Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Zinck Leth-Espensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anni Kumari
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anne Louise Grønnemose
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Lund-Winther
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Stephen G Young
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Angiopoietin-Like Protein 3 (ANGPTL3) Modulates Lipoprotein Metabolism and Dyslipidemia. Int J Mol Sci 2021; 22:ijms22147310. [PMID: 34298929 PMCID: PMC8304944 DOI: 10.3390/ijms22147310] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Dyslipidemia is characterized by increasing plasma levels of low-density lipoprotein-cholesterol (LDL-C), triglycerides (TGs) and TG-rich lipoproteins (TGRLs) and is a major risk factor for the development of atherosclerotic cardiovascular disorders (ASCVDs). It is important to understand the metabolic mechanisms underlying dyslipidemia to develop effective strategies against ASCVDs. Angiopoietin-like 3 (ANGPTL3), a member of the angiopoietin-like protein family exclusively synthesized in the liver, has been demonstrated to be a critical regulator of lipoprotein metabolism to inhibit lipoprotein lipase (LPL) activity. Genetic, biochemical, and clinical studies in animals and humans have shown that loss of function, inactivation, or downregulated expression of ANGPTL3 is associated with an obvious reduction in plasma levels of TGs, LDL-C, and high-density lipoprotein-cholesterol (HDL-C), atherosclerotic lesions, and the risk of cardiovascular events. Therefore, ANGPTL3 is considered an alternative target for lipid-lowering therapy. Emerging studies have focused on ANGPTL3 inhibition via antisense oligonucleotides (ASOs) and monoclonal antibody-based therapies, which have been carried out in mouse or monkey models and in human clinical studies for the management of dyslipidemia and ASCVDs. This review will summarize the current literature on the important role of ANGPTL3 in controlling lipoprotein metabolism and dyslipidemia, with an emphasis on anti-ANGPTL3 therapies as a potential strategy for the treatment of dyslipidemia and ASCVDs.
Collapse
|
36
|
The Importance of Lipoprotein Lipase Regulation in Atherosclerosis. Biomedicines 2021; 9:biomedicines9070782. [PMID: 34356847 PMCID: PMC8301479 DOI: 10.3390/biomedicines9070782] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023] Open
Abstract
Lipoprotein lipase (LPL) plays a major role in the lipid homeostasis mainly by mediating the intravascular lipolysis of triglyceride rich lipoproteins. Impaired LPL activity leads to the accumulation of chylomicrons and very low-density lipoproteins (VLDL) in plasma, resulting in hypertriglyceridemia. While low-density lipoprotein cholesterol (LDL-C) is recognized as a primary risk factor for atherosclerosis, hypertriglyceridemia has been shown to be an independent risk factor for cardiovascular disease (CVD) and a residual risk factor in atherosclerosis development. In this review, we focus on the lipolysis machinery and discuss the potential role of triglycerides, remnant particles, and lipolysis mediators in the onset and progression of atherosclerotic cardiovascular disease (ASCVD). This review details a number of important factors involved in the maturation and transportation of LPL to the capillaries, where the triglycerides are hydrolyzed, generating remnant lipoproteins. Moreover, LPL and other factors involved in intravascular lipolysis are also reported to impact the clearance of remnant lipoproteins from plasma and promote lipoprotein retention in capillaries. Apolipoproteins (Apo) and angiopoietin-like proteins (ANGPTLs) play a crucial role in regulating LPL activity and recent insights into LPL regulation may elucidate new pharmacological means to address the challenge of hypertriglyceridemia in atherosclerosis development.
Collapse
|
37
|
Blackburn NB, Meikle PJ, Peralta JM, Kumar S, Leandro AC, Bellinger MA, Giles C, Huynh K, Mahaney MC, Göring HHH, VandeBerg JL, Williams-Blangero S, Glahn DC, Duggirala R, Blangero J, Michael LF, Curran JE. Identifying the Lipidomic Effects of a Rare Loss-of-Function Deletion in ANGPTL3. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003232. [PMID: 33887960 DOI: 10.1161/circgen.120.003232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The identification and understanding of therapeutic targets for atherosclerotic cardiovascular disease is of fundamental importance given its global health and economic burden. Inhibition of ANGPTL3 (angiopoietin-like 3) has demonstrated a cardioprotective effect, showing promise for atherosclerotic cardiovascular disease treatment, and is currently the focus of ongoing clinical trials. Here, we assessed the genetic basis of variation in ANGPTL3 levels in the San Antonio Family Heart Study. METHODS We assayed ANGPTL3 protein levels in ≈1000 Mexican Americans from extended pedigrees. By drawing upon existing plasma lipidome profiles and genomic data we conducted analyses to understand the genetic basis to variation in ANGPTL3 protein levels, and accordingly the correlation with the plasma lipidome. RESULTS In a variance components framework, we identified that variation in ANGPTL3 was significantly heritable (h2=0.33, P=1.31×10-16). To explore the genetic basis of this heritability, we conducted a genome-wide linkage scan and identified significant linkage (logarithm of odds =6.18) to a locus on chromosome 1 at 90 centimorgans, corresponding to the ANGPTL3 gene location. In the genomes of 23 individuals from a single pedigree, we identified a loss-of-function variant, rs398122988 (N121Kfs*2), in ANGPTL3, that was significantly associated with lower ANGPTL3 levels (β=-1.69 SD units, P=3.367×10-13), and accounted for the linkage signal at this locus. Given the known role of ANGPTL3 as an inhibitor of endothelial and lipoprotein lipase, we explored the association of ANGPTL3 protein levels and rs398122988 with the plasma lipidome and related phenotypes, identifying novel associations with phosphatidylinositols. CONCLUSIONS Variation in ANGPTL3 protein levels is heritable and under significant genetic control. Both ANGPTL3 levels and loss-of-function variants in ANGPTL3 have significant associations with the plasma lipidome. These findings further our understanding of ANGPTL3 as a therapeutic target for atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Nicholas B Blackburn
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia (N.B.B., J.M.P.)
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (P.J.M., C.G., K.H.)
| | - Juan M Peralta
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia (N.B.B., J.M.P.)
| | - Satish Kumar
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | - Ana C Leandro
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | | | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (P.J.M., C.G., K.H.)
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (P.J.M., C.G., K.H.)
| | - Michael C Mahaney
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | - Harald H H Göring
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | - John L VandeBerg
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | - Sarah Williams-Blangero
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA (D.C.G.).,Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, CT (D.C.G.)
| | - Ravindranath Duggirala
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | - John Blangero
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | | | - Joanne E Curran
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| |
Collapse
|
38
|
Regulation of plasma triglyceride partitioning by adipose-derived ANGPTL4 in mice. Sci Rep 2021; 11:7873. [PMID: 33846453 PMCID: PMC8041937 DOI: 10.1038/s41598-021-87020-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/22/2021] [Indexed: 11/29/2022] Open
Abstract
Elevated plasma triglyceride levels are associated with metabolic disease. Angiopoietin-like protein 4 (ANGPTL4) regulates plasma triglyceride levels by inhibiting lipoprotein lipase (LPL). Our aim was to investigate the role of adipocyte-specific deficiency of ANGPTL4 in mice during high fat diet feeding. Adipocyte-specific ANGPTL4 deficient mice were fed a high fat diet (60% kCal from fat) for either 12 weeks or 6 months. We performed plasma metabolic measurements, triglyceride clearance and uptake assays, LPL activity assays, and assessed glucose homeostasis. Mice lacking adipocyte ANGPTL4 recapitulated the triglyceride phenotypes of whole-body ANGPTL4 deficiency, including increased adipose LPL activity, lower plasma triglyceride levels, and increased uptake of triglycerides into adipose tissue. When fed a high fat diet (HFD), these mice continued to display enhanced adipose LPL activity and initially had improved glucose and insulin sensitivity. However, after 6 months on HFD, the improvements in glucose homeostasis were largely lost. Moreover, despite higher adipose LPL activity levels, mice lacking adipocyte ANGPTL4 no longer had increased triglyceride uptake into adipose compared to littermate controls after chronic high-fat feeding. These observations suggest that after chronic high-fat feeding LPL is no longer rate-limiting for triglyceride delivery to adipocytes. We conclude that while adipocyte-derived ANGPTL4 is an important regulator of plasma triglyceride levels and triglyceride partitioning under normal diet conditions, its role is diminished after chronic high-fat feeding.
Collapse
|
39
|
Qiu M, Glass Z, Chen J, Haas M, Jin X, Zhao X, Rui X, Ye Z, Li Y, Zhang F, Xu Q. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. Proc Natl Acad Sci U S A 2021; 118:e2020401118. [PMID: 33649229 PMCID: PMC7958351 DOI: 10.1073/pnas.2020401118] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Loss-of-function mutations in Angiopoietin-like 3 (Angptl3) are associated with lowered blood lipid levels, making Angptl3 an attractive therapeutic target for the treatment of human lipoprotein metabolism disorders. In this study, we developed a lipid nanoparticle delivery platform carrying Cas9 messenger RNA (mRNA) and guide RNA for CRISPR-Cas9-based genome editing of Angptl3 in vivo. This system mediated specific and efficient Angptl3 gene knockdown in the liver of wild-type C57BL/6 mice, resulting in profound reductions in serum ANGPTL3 protein, low density lipoprotein cholesterol, and triglyceride levels. Our delivery platform is significantly more efficient than the FDA-approved MC-3 LNP, the current gold standard. No evidence of off-target mutagenesis was detected at any of the nine top-predicted sites, and no evidence of toxicity was detected in the liver. Importantly, the therapeutic effect of genome editing was stable for at least 100 d after a single dose administration. This study highlights the potential of LNP-mediated delivery as a specific, effective, and safe platform for Cas9-based therapeutics.
Collapse
MESH Headings
- Angiopoietin-Like Protein 3
- Angiopoietin-like Proteins/genetics
- Angiopoietin-like Proteins/metabolism
- Animals
- CRISPR-Associated Protein 9/genetics
- Drug Carriers/chemistry
- Drug Carriers/pharmacokinetics
- Drug Carriers/pharmacology
- Female
- Gene Editing
- Lipids/chemistry
- Lipids/pharmacokinetics
- Lipids/pharmacology
- Liver/metabolism
- Mice
- Mice, Inbred BALB C
- Nanoparticles/chemistry
- Organ Specificity
- RNA, Guide, CRISPR-Cas Systems/chemistry
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/pharmacokinetics
- RNA, Guide, CRISPR-Cas Systems/pharmacology
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/pharmacokinetics
- RNA, Messenger/pharmacology
Collapse
Affiliation(s)
- Min Qiu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Zachary Glass
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Jinjin Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Mary Haas
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Xin Jin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Xuewei Zhao
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Xuehui Rui
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Zhongfeng Ye
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Yamin Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155;
| |
Collapse
|
40
|
ANGPLT3 in cardio-metabolic disorders. Mol Biol Rep 2021; 48:2729-2739. [PMID: 33677817 DOI: 10.1007/s11033-021-06248-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/22/2021] [Indexed: 01/15/2023]
Abstract
Dyslipidemia is associated with numerous health problems that include the combination of insulin resistance, hypertension and obesity, which is always grouped together asmetabolic syndrome. Given that metabolic syndrome leads to a high mortality and poses serious risks to human health worldwide, it is vital to explore the mechanisms whereby dyslipidemia modulates the risk and the severity of cardio-metabolic disorders. Recently, a specific secretory protein family, named angiopoietin-like protein (ANGPTL), is considered as one of the significant biomarkers which facilitate the development of angiogenesis. Among the eight proteins of ANGPTL family, ANGPTL3 has been demonstrated as an essential modulator of lipid catabolism within circulation by inhibiting the activity of lipoprotein lipase (LPL) and endothelial lipase (EL). Consistent with these notions, mice with ANGPTL3 gene-deficiency presented reduced circulating levels of low density lipoprotein cholesterol (LDL-C) and lower risk of atherosclerosis. On the other hand, participants carrying homozygous loss-of function (LOF) mutation in ANGPTL3 gene also displayed lower circulating LDL-C levels and atherosclerotic risk. In the current review, we summarized the recent understanding of ANGPTL3 in controlling the risk and the development of dyslipidemia and its related cardio-metabolic disorders. Moreover, we also provided the perspectives which potentially suggested that ANGPTL3 could be considered as a promising target in treating metabolic syndrome.
Collapse
|
41
|
Levy E, Beaulieu JF, Spahis S. From Congenital Disorders of Fat Malabsorption to Understanding Intra-Enterocyte Mechanisms Behind Chylomicron Assembly and Secretion. Front Physiol 2021; 12:629222. [PMID: 33584351 PMCID: PMC7873531 DOI: 10.3389/fphys.2021.629222] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
During the last two decades, a large body of information on the events responsible for intestinal fat digestion and absorption has been accumulated. In particular, many groups have extensively focused on the absorptive phase in order to highlight the critical "players" and the main mechanisms orchestrating the assembly and secretion of chylomicrons (CM) as essential vehicles of alimentary lipids. The major aim of this article is to review understanding derived from basic science and clinical conditions associated with impaired packaging and export of CM. We have particularly insisted on inborn metabolic pathways in humans as well as on genetically modified animal models (recapitulating pathological features). The ultimate goal of this approach is that "experiments of nature" and in vivo model strategy collectively allow gaining novel mechanistic insight and filling the gap between the underlying genetic defect and the apparent clinical phenotype. Thus, uncovering the cause of disease contributes not only to understanding normal physiologic pathway, but also to capturing disorder onset, progression, treatment and prognosis.
Collapse
Affiliation(s)
- Emile Levy
- Research Centre, CHU Ste-Justine, Université de Montréal, Montreal, QC, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Jean François Beaulieu
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Schohraya Spahis
- Research Centre, CHU Ste-Justine, Université de Montréal, Montreal, QC, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
42
|
Rosenthal EA, Crosslin DR, Gordon AS, Carrell DS, Stanaway IB, Larson EB, Grafton J, Wei WQ, Denny JC, Feng QP, Shah AS, Sturm AC, Ritchie MD, Pacheco JA, Hakonarson H, Rasmussen-Torvik LJ, Connolly JJ, Fan X, Safarova M, Kullo IJ, Jarvik GP. Association between triglycerides, known risk SNVs and conserved rare variation in SLC25A40 in a multi-ancestry cohort. BMC Med Genomics 2021; 14:11. [PMID: 33407432 PMCID: PMC7789246 DOI: 10.1186/s12920-020-00854-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Elevated triglycerides (TG) are associated with, and may be causal for, cardiovascular disease (CVD), and co-morbidities such as type II diabetes and metabolic syndrome. Pathogenic variants in APOA5 and APOC3 as well as risk SNVs in other genes [APOE (rs429358, rs7412), APOA1/C3/A4/A5 gene cluster (rs964184), INSR (rs7248104), CETP (rs7205804), GCKR (rs1260326)] have been shown to affect TG levels. Knowledge of genetic causes for elevated TG may lead to early intervention and targeted treatment for CVD. We previously identified linkage and association of a rare, highly conserved missense variant in SLC25A40, rs762174003, with hypertriglyceridemia (HTG) in a single large family, and replicated this association with rare, highly conserved missense variants in a European American and African American sample. METHODS Here, we analyzed a longitudinal mixed-ancestry cohort (European, African and Asian ancestry, N = 8966) from the Electronic Medical Record and Genomics (eMERGE) Network. We tested associations between median TG and the genes of interest, using linear regression, adjusting for sex, median age, median BMI, and the first two principal components of ancestry. RESULTS We replicated the association between TG and APOC3, APOA5, and risk variation at APOE, APOA1/C3/A4/A5 gene cluster, and GCKR. We failed to replicate the association between rare, highly conserved variation at SLC25A40 and TG, as well as for risk variation at INSR and CETP. CONCLUSIONS Analysis using data from electronic health records presents challenges that need to be overcome. Although large amounts of genotype data is becoming increasingly accessible, usable phenotype data can be challenging to obtain. We were able to replicate known, strong associations, but were unable to replicate moderate associations due to the limited sample size and missing drug information.
Collapse
Affiliation(s)
- Elisabeth A Rosenthal
- Division of Medical Genetics, School of Medicine, University of Washington Medical Center, 1705 NE Pacific St, Box 357720, Seattle, WA, 98195, USA.
| | - David R Crosslin
- Department of Biomedical Informatics Medical Education, School of Medicine, University of Washington, Seattle, WA, USA
| | - Adam S Gordon
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - David S Carrell
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Ian B Stanaway
- Department of Biomedical Informatics Medical Education, School of Medicine, University of Washington, Seattle, WA, USA
| | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Jane Grafton
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua C Denny
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qi-Ping Feng
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amy S Shah
- Division of Endocrinology, Department of Pediatrics, Cincinnati Children's Hospital and the University of Cincinnati, Cincinnati, OH, USA
| | - Amy C Sturm
- Genomic Medicine Institute, Geisinger, Danville, PA, 17822, USA
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer A Pacheco
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John J Connolly
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiao Fan
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Maya Safarova
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Gonda Vascular Center, Mayo Clinic, Rochester, MN, USA
| | - Gail P Jarvik
- Division of Medical Genetics, School of Medicine, University of Washington Medical Center, 1705 NE Pacific St, Box 357720, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
43
|
Poloczek J, Kazura W, Kwaśnicka E, Gumprecht J, Jochem J, Stygar D. Effects of Bariatric Surgeries on Fetuin-A, Selenoprotein P, Angiopoietin-Like Protein 6, and Fibroblast Growth Factor 21 Concentration. J Diabetes Res 2021; 2021:5527107. [PMID: 34414240 PMCID: PMC8369187 DOI: 10.1155/2021/5527107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity is a civilization disease representing a global health problem. Excessive body weight significantly reduces the quality of life. It is also associated with the leading causes of death, including type 2 diabetes mellitus, cardiovascular diseases, and numerous types of cancer. The mainstay of therapy is a dietary treatment. However, in morbidly obese patients, dietary treatment is often insufficient. In these patients, the most effective procedure is bariatric surgery, but it is still difficult to predict its outcome and metabolic changes. Hepatokines are proteins secreted by hepatocytes. Many of them, including fetuin-A, selenoprotein P, angiopoietin-like protein 6, and fibroblast growth factor 21, have been linked to metabolic dysfunctions. In this context, hepatokines may prove helpful. This review investigates the possible changes in hepatokine profiles after selected bariatric surgery protocols. In this regard, Roux-en-Y gastric bypass is the most studied type of surgery. The overall analysis of published research identified fetuin-A as a potential marker of metabolic alternations in patients after bariatric surgery.
Collapse
Affiliation(s)
- Jakub Poloczek
- Department of Rehabilitation, 3rd Specialist Hospital in Rybnik, 44-200 Rybnik, Poland
- Department of Internal Medicine, Diabetology, and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Wojciech Kazura
- Doctoral School of Medical University of Silesia, Department of Physiology, Faculty of Medical Sciences in Zabrze, 41-808 Zabrze, Poland
| | - Ewa Kwaśnicka
- Pediatric Ward, Municipal Hospital in Żory, 44-240 Żory, Poland
| | - Janusz Gumprecht
- Department of Internal Medicine, Diabetology, and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Jerzy Jochem
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Zabrze, Poland
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Zabrze, Poland
| |
Collapse
|
44
|
Sunil B, Foster C, Wilson DP, Ashraf AP. Novel therapeutic targets and agents for pediatric dyslipidemia. Ther Adv Endocrinol Metab 2021; 12:20420188211058323. [PMID: 34868544 PMCID: PMC8637781 DOI: 10.1177/20420188211058323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/19/2021] [Indexed: 02/04/2023] Open
Abstract
Landmark studies have convincingly demonstrated that atherosclerosis begins in youth. While generally asymptomatic, an increasing number of youth with disorders of lipid and lipoprotein metabolism, such as familial hypercholesterolemia, are being identified through selective and universal screening. While a heart healthy lifestyle is the foundation of treatment for all youth with dyslipidemia, lipid-lowering therapy may be required by some to prevent morbidity and premature mortality, especially when initiated at a young age. When appropriate, use of statins has become standard of care for reducing low-density lipoprotein cholesterol, while fibrates may be beneficial in helping to lower triglycerides. Many therapeutic options commonly used in adults are not yet approved for use in youth less than 18 years of age. Although currently available lipid-lowering therapy is well tolerated and safe when administered to youth, response to treatment may vary and some conditions lack an efficient therapeutic option. Thus, newer agents are needed to aid in management. Many are in development and clinical trials in youth are currently in progress but will require FDA approval before becoming commercially available. Many utilize novel approaches to favorably alter lipid and lipoprotein metabolism. In the absence of long-term outcome data of youth who were treated beginning at an early age, clinical registries may prove to be useful in monitoring safety and efficacy and help to inform clinical decision-making. In this manuscript, we review currently available and novel therapeutic agents in development for the treatment of elevated cholesterol and triglycerides.
Collapse
Affiliation(s)
- Bhuvana Sunil
- Division of Pediatric Endocrinology &
Diabetes, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christy Foster
- Division of Pediatric Endocrinology &
Diabetes, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Don P. Wilson
- Cardiovascular Health and Risk Prevention,
Pediatric Endocrinology and Diabetes, Cook Children’s Medical Center, Fort
Worth, TX, USA
| | | |
Collapse
|
45
|
Zhao Y, Goto M, Vaziri ND, Khazaeli M, Liu H, Farahanchi N, Khanifar E, Farzaneh T, Haslett PA, Moradi H, Soundarapandian MM. RNA Interference Targeting Liver Angiopoietin-Like Protein 3 Protects from Nephrotic Syndrome in a Rat Model Via Amelioration of Pathologic Hypertriglyceridemia. J Pharmacol Exp Ther 2020; 376:428-435. [PMID: 33443084 DOI: 10.1124/jpet.120.000257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/04/2020] [Indexed: 11/22/2022] Open
Abstract
Nephrotic syndrome (NS) is associated with metabolic perturbances including profound dyslipidemia characterized by hypercholesterolemia and hypertriglyceridemia. A major underlying mechanism of hypertriglyceridemia in NS is lipoprotein lipase (LPL) deficiency and dysfunction. There is emerging evidence that elevated angiopoietin-like protein 3 (ANGPTL3), an LPL inhibitor that is primarily expressed and secreted by hepatocytes, may be in part responsible for these findings. Furthermore, there is evidence pointing to the contribution of ANGPTL3 to the pathogenesis of proteinuria in NS. Therefore, we hypothesized that inhibition of hepatic ANGPTL3 by RNA interference will ameliorate dyslipidemia and other symptoms of NS and pave the way for a new therapeutic strategy. To this end, we used a subcutaneously delivered, GalNAc (N-Acetylgalactosamine)-conjugated small interfering RNA (siRNA) to selectively target and suppress liver Angptl3 in rats with puromycin-induced NS, which exhibits clinical features of NS including proteinuria, hypoalbuminemia, hyperlipidemia, and renal histologic abnormalities. The study demonstrated that siRNA-mediated knockdown of the liver Angptl3 relieved its inhibitory effect on LPL and significantly reduced hypertriglyceridemia in nephrotic rats. This was accompanied by diminished proteinuria and hypoalbuminemia, which are the hallmarks of NS, and significant attenuation of renal tissue inflammation and oxidative stress. Taken together, this study confirmed the hypothesis that suppression of Angptl3 is protective in NS and points to the possibility that the use of RNA interference to suppress hepatic Angptl3 can serve as a novel therapeutic strategy for NS. SIGNIFICANCE STATEMENT: The current standard of care for mitigating nephrotic dyslipidemia in nephrotic syndrome is statins therapy. However, the efficacy of statins and its safety in the context of impaired kidney function is not well established. Here, we present an alternate therapeutic approach by using siRNA targeting Angptl3 expressed in hepatocytes. As the liver is the major source of circulating Angptl3, siRNA treatment reduced the profound hypertriglyceridemia in a rat model of nephrotic syndrome and was also effective in improving kidney and cardiac function.
Collapse
Affiliation(s)
- Yitong Zhao
- Division of Nephrology and Hypertension, University of California, Irvine, California (Y.Z., M.G., N.D.V., M.K., H.L., N.F., H.M.); Long Beach Memorial Pathology Group, Long Beach, California (E.K.); Department of Pathology and Laboratory Medicine, University of California, Irvine, California (T.F.); Tibor Rubin VA Medical Center, Department of Medicine, Nephrology Section, Long Beach, California (H.M.); and Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts (P.A.H., M.M.S.)
| | - Masaki Goto
- Division of Nephrology and Hypertension, University of California, Irvine, California (Y.Z., M.G., N.D.V., M.K., H.L., N.F., H.M.); Long Beach Memorial Pathology Group, Long Beach, California (E.K.); Department of Pathology and Laboratory Medicine, University of California, Irvine, California (T.F.); Tibor Rubin VA Medical Center, Department of Medicine, Nephrology Section, Long Beach, California (H.M.); and Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts (P.A.H., M.M.S.)
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, University of California, Irvine, California (Y.Z., M.G., N.D.V., M.K., H.L., N.F., H.M.); Long Beach Memorial Pathology Group, Long Beach, California (E.K.); Department of Pathology and Laboratory Medicine, University of California, Irvine, California (T.F.); Tibor Rubin VA Medical Center, Department of Medicine, Nephrology Section, Long Beach, California (H.M.); and Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts (P.A.H., M.M.S.)
| | - Mahyar Khazaeli
- Division of Nephrology and Hypertension, University of California, Irvine, California (Y.Z., M.G., N.D.V., M.K., H.L., N.F., H.M.); Long Beach Memorial Pathology Group, Long Beach, California (E.K.); Department of Pathology and Laboratory Medicine, University of California, Irvine, California (T.F.); Tibor Rubin VA Medical Center, Department of Medicine, Nephrology Section, Long Beach, California (H.M.); and Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts (P.A.H., M.M.S.)
| | - Han Liu
- Division of Nephrology and Hypertension, University of California, Irvine, California (Y.Z., M.G., N.D.V., M.K., H.L., N.F., H.M.); Long Beach Memorial Pathology Group, Long Beach, California (E.K.); Department of Pathology and Laboratory Medicine, University of California, Irvine, California (T.F.); Tibor Rubin VA Medical Center, Department of Medicine, Nephrology Section, Long Beach, California (H.M.); and Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts (P.A.H., M.M.S.)
| | - Nazli Farahanchi
- Division of Nephrology and Hypertension, University of California, Irvine, California (Y.Z., M.G., N.D.V., M.K., H.L., N.F., H.M.); Long Beach Memorial Pathology Group, Long Beach, California (E.K.); Department of Pathology and Laboratory Medicine, University of California, Irvine, California (T.F.); Tibor Rubin VA Medical Center, Department of Medicine, Nephrology Section, Long Beach, California (H.M.); and Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts (P.A.H., M.M.S.)
| | - Elham Khanifar
- Division of Nephrology and Hypertension, University of California, Irvine, California (Y.Z., M.G., N.D.V., M.K., H.L., N.F., H.M.); Long Beach Memorial Pathology Group, Long Beach, California (E.K.); Department of Pathology and Laboratory Medicine, University of California, Irvine, California (T.F.); Tibor Rubin VA Medical Center, Department of Medicine, Nephrology Section, Long Beach, California (H.M.); and Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts (P.A.H., M.M.S.)
| | - Ted Farzaneh
- Division of Nephrology and Hypertension, University of California, Irvine, California (Y.Z., M.G., N.D.V., M.K., H.L., N.F., H.M.); Long Beach Memorial Pathology Group, Long Beach, California (E.K.); Department of Pathology and Laboratory Medicine, University of California, Irvine, California (T.F.); Tibor Rubin VA Medical Center, Department of Medicine, Nephrology Section, Long Beach, California (H.M.); and Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts (P.A.H., M.M.S.)
| | - Patrick A Haslett
- Division of Nephrology and Hypertension, University of California, Irvine, California (Y.Z., M.G., N.D.V., M.K., H.L., N.F., H.M.); Long Beach Memorial Pathology Group, Long Beach, California (E.K.); Department of Pathology and Laboratory Medicine, University of California, Irvine, California (T.F.); Tibor Rubin VA Medical Center, Department of Medicine, Nephrology Section, Long Beach, California (H.M.); and Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts (P.A.H., M.M.S.)
| | - Hamid Moradi
- Division of Nephrology and Hypertension, University of California, Irvine, California (Y.Z., M.G., N.D.V., M.K., H.L., N.F., H.M.); Long Beach Memorial Pathology Group, Long Beach, California (E.K.); Department of Pathology and Laboratory Medicine, University of California, Irvine, California (T.F.); Tibor Rubin VA Medical Center, Department of Medicine, Nephrology Section, Long Beach, California (H.M.); and Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts (P.A.H., M.M.S.)
| | - Mangala M Soundarapandian
- Division of Nephrology and Hypertension, University of California, Irvine, California (Y.Z., M.G., N.D.V., M.K., H.L., N.F., H.M.); Long Beach Memorial Pathology Group, Long Beach, California (E.K.); Department of Pathology and Laboratory Medicine, University of California, Irvine, California (T.F.); Tibor Rubin VA Medical Center, Department of Medicine, Nephrology Section, Long Beach, California (H.M.); and Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts (P.A.H., M.M.S.)
| |
Collapse
|
46
|
Serum angiopoietin-like 3 levels are elevated in obese non diabetic men but are unaffected during an oral glucose tolerance test. Sci Rep 2020; 10:21118. [PMID: 33273510 PMCID: PMC7713064 DOI: 10.1038/s41598-020-77961-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/29/2020] [Indexed: 02/08/2023] Open
Abstract
This study aimed to determine ANGPTL3 serum levels in healthy young lean and obese non-diabetic men during an oral glucose tolerance test (OGTT) and correlate them with anthropometric, biochemical and hormonal parameters. A case-control study was carried out and 30 young obese non-diabetic (23.90 ± 3.84 years and BMI 37.92 ± 4.85 kg/m2) and 28 age-matched healthy lean (24.56 ± 3.50 years and BMI of 22.10 ± 1.72 kg/m2) men were included in this study. The primary outcome measures were serum basal ANGPTL3 and ANGPTL3-area under the curve (AUC) levels. The percentage of body fat was measured by dual-energy X-ray absorptiometry and biochemical, hormonal and insulin resistance indices were determined. Basal ANGPTL3 and ANGPTL3-AUC levels were significantly elevated (p < 0.05) in young obese subjects compared with lean subjects and were positively and significantly associated with different anthropometric measurements. Fasting ANGPTL3 serum levels were positively correlated with fasting insulin, leptin, Leptin/Adiponectin index and triglyceride-glucose index. Moreover, ANGPTL3-AUC was negatively correlated with Matsuda index. In this regard, chronically high ANGPTL3 levels in young obese subjects might favor triglyceride-rich lipoprotein clearance to replenish triglyceride stores by white adipose tissue rather than oxidative tissues.
Collapse
|
47
|
Li X, Zhang Y, Zhang M, Wang Y. GALNT2 regulates ANGPTL3 cleavage in cells and in vivo of mice. Sci Rep 2020; 10:16168. [PMID: 32999434 PMCID: PMC7527996 DOI: 10.1038/s41598-020-73388-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/16/2020] [Indexed: 01/23/2023] Open
Abstract
Angiopoietin-like protein 3 (ANGPTL3) is an important inhibitor of lipoprotein lipase and endothelial lipase that plays critical roles in lipoprotein metabolism. It specifically expresses in the liver and undergoes proprotein convertase-mediated cleavage during secretion, which generates an N-terminal coiled-coil domain and C-terminal fibrinogen-like domain that has been considered as the activation step for its function. Previous studies have reported that the polypeptide GalNAc-transferase GALNT2 mediates the O-glycosylation of the ANGPTL3 near the cleavage site, which inhibits the proprotein convertase (PC)-mediated cleavage in vitro and in cultured cells. However, loss-of-function mutation for GALNT2 has no effect on ANGPTL3 cleavage in human. Thus whether GALNT2 regulates the cleavage of ANGPTL3 in vivo is unclear. In present study, we systematically characterized the cleavage of Angptl3 in cultured cells and in vivo of mice. We found that endogenous Angptl3 is cleaved in primary hepatocytes and in vivo of mice, and this cleavage can be blocked by Galnt2 overexpression or PC inhibition. Moreover, suppressing galnt2 expression increases the cleavage of Angptl3 in mice dramatically. Thus, our results support the conclusion that Galnt2 is a key endogenous regulator for Angptl3 cleavage both in vitro and in vivo.
Collapse
Affiliation(s)
- Xuedan Li
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yiliang Zhang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Minzhu Zhang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
48
|
Barchetta I, Chiappetta C, Ceccarelli V, Cimini FA, Bertoccini L, Gaggini M, Cristofano CD, Silecchia G, Lenzi A, Leonetti F, Baroni MG, Gastaldelli A, Cavallo MG. Angiopoietin-Like Protein 4 Overexpression in Visceral Adipose Tissue from Obese Subjects with Impaired Glucose Metabolism and Relationship with Lipoprotein Lipase. Int J Mol Sci 2020; 21:ijms21197197. [PMID: 33003532 PMCID: PMC7582588 DOI: 10.3390/ijms21197197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022] Open
Abstract
Angiopoietin-like protein 4 (ANGPTL4) regulates lipid partitioning by inhibiting circulating and tissue lipoprotein lipase (LPL); ANGPTL4 loss-of-function variants improve insulin sensitivity and reduce type 2 diabetes (T2D) risk with mechanisms partially unknown. This study was designed to explore metabolic implications of differential ANGPTL4 and LPL expression in human adipose tissue (AT). We recruited eighty-eight obese individuals, with and without abnormal glucose metabolism (AGM), undergoing bariatric surgery; visceral AT (VAT) fragments were obtained intra-operatively and analyzed by immunohistochemistry and mRNA by rt-PCR. Data on hepatic ANGPTL4 mRNA were available for 40 participants. VAT ANGPTL4 expression was higher in AGM individuals than in those with normal glucose tolerance (NGT) and associated with VAT inflammation, insulin resistance, and presence of adipocyte size heterogeneity. Increased ANGPTL4 was associated with AGM with OR = 5.1 (95% C.I.: 1.2–23; p = 0.02) and AUROC = 0.76 (95% C.I.: 1.2–23; p < 0.001). High LPL was associated with the detection of homogeneous adipocyte size, reduced microvessel density, and higher HIF-1α levels and inversely correlated to blood transaminases. In conclusion, in obese individuals, VAT ANGPTL4 levels are increased in the presence of local inflammation and AGM. Conversely, higher LPL expression describes a condition of increased lipid storage in adipocytes, which may serve as a protective mechanism against ectopic fat accumulation and related metabolic disease in obesity.
Collapse
Affiliation(s)
- Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
| | - Caterina Chiappetta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (C.C.); (C.D.C.); (G.S.); (F.L.)
| | - Valentina Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
| | - Flavia Agata Cimini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
| | - Laura Bertoccini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
| | - Melania Gaggini
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, 56100 Pisa, Italy;
| | - Claudio Di Cristofano
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (C.C.); (C.D.C.); (G.S.); (F.L.)
| | - Gianfranco Silecchia
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (C.C.); (C.D.C.); (G.S.); (F.L.)
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
| | - Frida Leonetti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (C.C.); (C.D.C.); (G.S.); (F.L.)
| | - Marco Giorgio Baroni
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA) University of L’Aquila, 67100 Coppito (AQ) Italy;
- IRCCS Neuromed, 86077 Pozzilli (Is), Italy
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, 56100 Pisa, Italy;
- Correspondence: (A.G.); (M.G.C.); Tel.: +39-(0)6-4997-4692 (M.G.C.)
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
- Correspondence: (A.G.); (M.G.C.); Tel.: +39-(0)6-4997-4692 (M.G.C.)
| |
Collapse
|
49
|
Lu X. Structure and Function of Angiopoietin-like Protein 3 (ANGPTL3) in Atherosclerosis. Curr Med Chem 2020; 27:5159-5174. [PMID: 31223079 DOI: 10.2174/0929867326666190621120523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Angiopoietin-Like Proteins (ANGPTLs) are structurally related to the angiopoietins. A total of eight ANGPTLs (from ANGPTL1 to ANGPTL8) have been identified so far. Most ANGPTLs possess multibiological functions on lipid metabolism, atherosclerosis, and cancer. Among them, ANGPTL3 has been shown to regulate the levels of Very Low-Density Lipoprotein (VLDL) made by the liver and play a crucial role in human lipoprotein metabolism. METHOD A systematic appraisal of ANGPTLs was conducted, focusing on the main features of ANGPTL3 that has a significant role in atherosclerosis. RESULTS Angiopoietins including ANGPTL3 are vascular growth factors that are highly specific for endothelial cells, perform a variety of other regulatory activities to influence inflammation, and have been shown to possess both pro-atherosclerotic and atheroprotective effects. CONCLUSION ANGPTL3 has been demonstrated as a promising target in the pharmacological management of atherosclerosis. However, many questions remain about its biological functions.
Collapse
Affiliation(s)
- Xinjie Lu
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London SW3 6LR, England, United Kingdom
| |
Collapse
|
50
|
Adam RC, Mintah IJ, Alexa-Braun CA, Shihanian LM, Lee JS, Banerjee P, Hamon SC, Kim HI, Cohen JC, Hobbs HH, Van Hout C, Gromada J, Murphy AJ, Yancopoulos GD, Sleeman MW, Gusarova V. Angiopoietin-like protein 3 governs LDL-cholesterol levels through endothelial lipase-dependent VLDL clearance. J Lipid Res 2020; 61:1271-1286. [PMID: 32646941 PMCID: PMC7469887 DOI: 10.1194/jlr.ra120000888] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
Angiopoietin-like protein (ANGPTL)3 regulates plasma lipids by inhibiting LPL and endothelial lipase (EL). ANGPTL3 inactivation lowers LDL-C independently of the classical LDLR-mediated pathway and represents a promising therapeutic approach for individuals with homozygous familial hypercholesterolemia due to LDLR mutations. Yet, how ANGPTL3 regulates LDL-C levels is unknown. Here, we demonstrate in hyperlipidemic humans and mice that ANGPTL3 controls VLDL catabolism upstream of LDL. Using kinetic, lipidomic, and biophysical studies, we show that ANGPTL3 inhibition reduces VLDL-lipid content and size, generating remnant particles that are efficiently removed from the circulation. This suggests that ANGPTL3 inhibition lowers LDL-C by limiting LDL particle production. Mechanistically, we discovered that EL is a key mediator of ANGPTL3's novel pathway. Our experiments revealed that, although dispensable in the presence of LDLR, EL-mediated processing of VLDL becomes critical for LDLR-independent particle clearance. In the absence of EL and LDLR, ANGPTL3 inhibition perturbed VLDL catabolism, promoted accumulation of atypical remnants, and failed to reduce LDL-C. Taken together, we uncover ANGPTL3 at the helm of a novel EL-dependent pathway that lowers LDL-C in the absence of LDLR.
Collapse
Affiliation(s)
- Rene C Adam
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | | | | | | | | | | | - Hye In Kim
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Jonathan C Cohen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Helen H Hobbs
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | | | |
Collapse
|