1
|
Schneider AM, Feehan RP, Sennett ML, Wills CA, Garner C, Cong Z, Billingsley EM, Flamm AF, Shantz LM, Nelson AM. TLR3 activation mediates partial epithelial-to-mesenchymal transition in human keratinocytes. Life Sci Alliance 2024; 7:e202402777. [PMID: 39348939 PMCID: PMC11443013 DOI: 10.26508/lsa.202402777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024] Open
Abstract
TLR3 is expressed in human skin and keratinocytes, and given its varied role in skin inflammation, development, and regeneration, we sought to determine the cellular response in normal human keratinocytes to TLR3 activation. We investigated this mechanism by treating primary human keratinocytes with both UVB, an endogenous and physiologic TLR3 activator, and poly(I:C), a synthetic and selective TLR3 ligand. TLR3 activation with either UVB or poly(I:C) altered keratinocyte morphology, coinciding with the key features of epithelial-to-mesenchymal transition: increased epithelial-to-mesenchymal transition gene expression, enhanced migration, and increased invasion properties. These results confirm and extend previous studies demonstrating that in addition to its classical role in the innate immune response, TLR3 signaling also regulates stem cell-like properties and developmental programs.
Collapse
Affiliation(s)
- Andrea M Schneider
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
| | - Robert P Feehan
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
| | - Mackenzie L Sennett
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
| | - Carson A Wills
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Charlotte Garner
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
| | - Zhaoyuan Cong
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
| | | | - Alexandra F Flamm
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
| | - Lisa M Shantz
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Amanda M Nelson
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
2
|
James CD, Lewis RL, Fakunmoju AL, Witt AJ, Youssef AH, Wang X, Rais NM, Prabhakar AT, Machado JM, Otoa R, Bristol ML. Fibroblast stromal support model for predicting human papillomavirus-associated cancer drug responses. J Virol 2024; 98:e0102424. [PMID: 39269177 PMCID: PMC11494926 DOI: 10.1128/jvi.01024-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Currently, there are no specific antiviral therapeutic approaches targeting Human papillomaviruses (HPVs), which cause around 5% of all human cancers. Specific antiviral reagents are particularly needed for HPV-related oropharyngeal cancers (HPV+OPCs) whose incidence is increasing and for which there are no early diagnostic tools available. We and others have demonstrated that the estrogen receptor alpha (ERα) is overexpressed in HPV+OPCs, compared to HPV-negative cancers in this region, and that these elevated levels are associated with an improved disease outcome. Utilizing this HPV+-specific overexpression profile, we previously demonstrated that estrogen attenuates the growth and cell viability of HPV+ keratinocytes and HPV+ cancer cells in vitro. Expansion of this work in vivo failed to replicate this sensitization. The role of stromal support from the tumor microenvironment (TME) has previously been tied to both the HPV lifecycle and in vivo therapeutic responses. Our investigations revealed that in vitro co-culture with fibroblasts attenuated HPV+-specific estrogen growth responses. Continuing to monopolize on the HPV+-specific overexpression of ERα, our co-culture models then assessed the suitability of the selective estrogen receptor modulators (SERMs), raloxifene and tamoxifen, and showed growth attenuation in a variety of our models to one or both of these drugs in vitro. Utilization of these SERMs in vivo closely resembled the sensitization predicted by our co-culture models. Therefore, the in vitro fibroblast co-culture model better predicts in vivo responses. We propose that utilization of our co-culture in vitro model can accelerate cancer therapeutic drug discovery. IMPORTANCE Human papillomavirus-related cancers (HPV+ cancers) remain a significant public health concern, and specific clinical approaches are desperately needed. In translating drug response data from in vitro to in vivo, the fibroblasts of the adjacent stromal support network play a key role. Our study presents the utilization of a fibroblast 2D co-culture system to better predict translational drug assessments for HPV+ cancers. We also suggest that this co-culture system should be considered for other translational approaches. Predicting even a portion of treatment paradigms that may fail in vivo with a co-culture model will yield significant time, effort, resource, and cost efficiencies.
Collapse
Affiliation(s)
- Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Rachel L. Lewis
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Alexis L. Fakunmoju
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Austin J. Witt
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Aya H. Youssef
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Xu Wang
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Nabiha M. Rais
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Apurva T. Prabhakar
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - J. Mathew Machado
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Raymonde Otoa
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Molly L. Bristol
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
3
|
Patel TR, Welch CM. The Science of Cholesteatoma. Otolaryngol Clin North Am 2024:S0030-6665(24)00119-1. [PMID: 39353746 DOI: 10.1016/j.otc.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Cholesteatoma is a potential end-stage outcome of chronic ear infections that can result in the destruction of temporal bone structures with potential resultant hearing loss, vertigo, and intracranial infectious complications. There is currently no treatment apart from surgery for this condition, and despite years of study, the histopathogenesis of this disease remains poorly understood. This review is intended to summarize our accumulated knowledge of the mechanisms of cholesteatoma development and the underlying molecular biology. Attention will be directed particularly to recent developments, covering many potential pharmacologic targets that could be used to treat this disease in the future.
Collapse
Affiliation(s)
- Tirth R Patel
- Division of Otology/Neurotology-Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1500 Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Christopher M Welch
- Division of Otology/Neurotology-Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1500 Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
James CD, Lewis RL, Witt AJ, Carter C, Rais NM, Wang X, Bristol ML. Fibroblasts Regulate the Transformation Potential of Human Papillomavirus-positive Keratinocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613347. [PMID: 39345623 PMCID: PMC11430071 DOI: 10.1101/2024.09.16.613347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Persistent human papillomavirus (HPV) infection is necessary but insufficient for viral oncogenesis. Additional contributing co-factors, such as immune evasion and viral integration have been implicated in HPV-induced cancer progression. It is widely accepted that HPV+ keratinocytes require co-culture with fibroblasts to maintain viral episome expression, yet the exact mechanisms for this have yet to be elucidated. Here we present comprehensive RNA sequencing and proteomic analysis demonstrating that fibroblasts not only support the viral life cycle, but reduce HPV+ keratinocyte transformation. Our co-culture models offer novel insights into HPV-related transformation mechanisms.
Collapse
Affiliation(s)
- Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Rachel L. Lewis
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Austin J. Witt
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | | | - Nabiha M. Rais
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Xu Wang
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Molly L. Bristol
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
5
|
Shimonosono M, Morimoto M, Hirose W, Tomita Y, Matsuura N, Flashner S, Ebadi MS, Okayasu EH, Lee CY, Britton WR, Martin C, Wuertz BR, Parikh AS, Sachdeva UM, Ondrey FG, Atigadda VR, Elmets CA, Abrams JA, Muir AB, Klein-Szanto AJ, Weinberg KI, Momen-Heravi F, Nakagawa H. Modeling Epithelial Homeostasis and Perturbation in Three-Dimensional Human Esophageal Organoids. Biomolecules 2024; 14:1126. [PMID: 39334892 PMCID: PMC11430971 DOI: 10.3390/biom14091126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Esophageal organoids from a variety of pathologies including cancer are grown in Advanced Dulbecco's Modified Eagle Medium-Nutrient Mixture F12 (hereafter ADF). However, the currently available ADF-based formulations are suboptimal for normal human esophageal organoids, limiting the ability to compare normal esophageal organoids with those representing a given disease state. Methods: We have utilized immortalized normal human esophageal epithelial cell (keratinocyte) lines EPC1 and EPC2 and endoscopic normal esophageal biopsies to generate three-dimensional (3D) organoids. To optimize the ADF-based medium, we evaluated the requirement of exogenous epidermal growth factor (EGF) and inhibition of transforming growth factor-(TGF)-β receptor-mediated signaling, both key regulators of the proliferation of human esophageal keratinocytes. We have modeled human esophageal epithelial pathology by stimulating esophageal 3D organoids with interleukin (IL)-13, an inflammatory cytokine, or UAB30, a novel pharmacological activator of retinoic acid signaling. Results: The formation of normal human esophageal 3D organoids was limited by excessive EGF and intrinsic TGFβ-receptor-mediated signaling. Optimized HOME0 improved normal human esophageal organoid formation. In the HOME0-grown organoids, IL-13 and UAB30 induced epithelial changes reminiscent of basal cell hyperplasia, a common histopathologic feature in broad esophageal disease conditions including eosinophilic esophagitis. Conclusions: HOME0 allows modeling of the homeostatic differentiation gradient and perturbation of the human esophageal epithelium while permitting a comparison of organoids from mice and other organs grown in ADF-based media.
Collapse
Affiliation(s)
- Masataka Shimonosono
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Masaki Morimoto
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Wataru Hirose
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Yasuto Tomita
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Norihiro Matsuura
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Samuel Flashner
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Mesra S. Ebadi
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Emilea H. Okayasu
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Christian Y. Lee
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - William R. Britton
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Cecilia Martin
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
- Organoid & Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, New York, NY 10032, USA
| | - Beverly R. Wuertz
- Department of Otolaryngology, Head and Neck Surgery, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (B.R.W.); (F.G.O.)
| | - Anuraag S. Parikh
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
- Department of Otolaryngology, Head and Neck Surgery, Columbia University, New York, NY 10032, USA
| | - Uma M. Sachdeva
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Frank G. Ondrey
- Department of Otolaryngology, Head and Neck Surgery, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (B.R.W.); (F.G.O.)
| | - Venkatram R. Atigadda
- Department of Dermatology, University of Alabama, Birmingham, AL 35294, USA; (V.R.A.); (C.A.E.)
| | - Craig A. Elmets
- Department of Dermatology, University of Alabama, Birmingham, AL 35294, USA; (V.R.A.); (C.A.E.)
| | - Julian A. Abrams
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Amanda B. Muir
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| | | | - Kenneth I. Weinberg
- Department of Pediatrics, Maternal & Child Health Research Institute, Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA;
| | - Fatemeh Momen-Heravi
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
- Organoid & Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, New York, NY 10032, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
6
|
Dos Santos AF, Prado FCR, de Paula Novaes C, de Magalhães AC, Deboni MCZ, Corrêa L. Simultaneous irradiation of 660 and 808 nm on gingival epithelial cells and fibroblasts induces different patterns of oxidative/antioxidative activities: What is the role of the cell type and irradiation parameters? Photochem Photobiol 2024; 100:1446-1456. [PMID: 38013401 DOI: 10.1111/php.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/17/2023] [Accepted: 11/04/2023] [Indexed: 11/29/2023]
Abstract
The aim of this study was to investigate whether simultaneous irradiation at 660 and 808 nm generates different patterns of oxidative/antioxidative activities compared to consecutive irradiation. Primary cultures of gingival keratinocytes and fibroblasts were exposed to a diose laser (660 ± 2 nm and 808 ± 2 nm, 100 mW, 0.09 cm2 spot area) using double irradiation with the two wavelengths (consecutive or simultaneous) for 6, 10, and 20 s. The two irradiation regimens did not increase cell viability in any of the experimental conditions. Lipid peroxidation was increased after consecutive irradiation in epithelial cells, which was not detected after simultaneous irradiation. After 20s of the simultaneous mode, ROS levels increased, but antioxidative balance decreased. In the fibroblasts, the two double irradiations induced ROS reduction, increase in lipid peroxidation, and improvement of antioxidative balance, mainly after the 20 s irradiation time. In conclusion, simultaneous and consecutive irradiation induced distinct oxidative stress modulation in oral epithelial cells and fibroblasts. The imbalance in the oxidative system observed after longer exposures, allied with the absence of a significant increase in the viability of the two cell types, suggests a contraindication for longer simultaneous irradiation in clinical situations that demand cellular stimulation.
Collapse
Affiliation(s)
| | - Flávia Cristina Rosin Prado
- Pathology Department, School of Dentistry, University of São Paulo, São Paulo, Brazil
- Advanced Research Center in Medicine, School of Medicine, Union of the College of the Great Lakes (UNILAGO), São José do Rio Preto, Brazil
| | | | - Ana Carolina de Magalhães
- Insper Learning Institution, São Paulo, Brazil
- Tergos Research and Education, Bright Photomedicine S.A., São Paulo, Brazil
| | | | - Luciana Corrêa
- Pathology Department, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
James CD, Lewis RL, Fakunmoju AL, Witt A, Youssef AH, Wang X, Rais NM, Tadimari Prabhakar A, Machado JM, Otoa R, Bristol ML. Fibroblast Stromal Support Model for Predicting Human Papillomavirus-Associated Cancer Drug Responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588680. [PMID: 38644998 PMCID: PMC11030318 DOI: 10.1101/2024.04.09.588680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Currently, there are no specific antiviral therapeutic approaches targeting Human papillomaviruses (HPVs), which cause around 5% of all human cancers. Specific antiviral reagents are particularly needed for HPV-related oropharyngeal cancers (HPV+OPCs) whose incidence is increasing and for which there are no early diagnostic tools available. We and others have demonstrated that the estrogen receptor alpha (ERalpha) is overexpressed in HPV+OPCs, compared to HPV-negative cancers in this region, and that these elevated levels are associated with an improved disease outcome. Utilizing this HPV+ specific overexpression profile, we previously demonstrated that estrogen attenuates the growth and cell viability of HPV+ keratinocytes and HPV+ cancer cells in vitro. Expansion of this work in vivo failed to replicate this sensitization. The role of stromal support from the tumor microenvironment (TME) has previously been tied to both the HPV lifecycle and in vivo therapeutic responses. Our investigations revealed that in vitro co-culture with fibroblasts attenuated HPV+ specific estrogen growth responses. Continuing to monopolize on the HPV+ specific overexpression of ERalpha, our co-culture models then assessed the suitability of the selective estrogen receptor modulators (SERMs), raloxifene and tamoxifen, and showed growth attenuation in a variety of our models to one or both of these drugs in vitro. Utilization of these SERMs in vivo closely resembled the sensitization predicted by our co-culture models. Therefore, the in vitro fibroblast co-culture model better predicts in vivo responses. We propose that utilization of our co-culture in vitro model can accelerate cancer therapeutic drug discovery.
Collapse
|
8
|
Promsong A, Chuerduangphui J, Levy CN, Hladik F, Satthakarn S, Nittayananta W. Effects of Ellagic Acid on Vaginal Innate Immune Mediators and HPV16 Infection In Vitro. Molecules 2024; 29:3630. [PMID: 39125034 PMCID: PMC11314121 DOI: 10.3390/molecules29153630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Ellagic acid (EA) is a phenolic phytochemical found in many plants and their fruits. Vaginal epithelial cells are the first line of defense against pathogen invasion in the female reproductive tract and express antimicrobial peptides, including hBD2 and SLPI. This study investigated the in vitro effects of EA (1) on vaginal innate immunity using human vaginal epithelial cells, and (2) on HPV16 pseudovirus infection. Vaginal cells were cultured in the presence or absence of EA, and the expression of hBD2 and SLPI was determined at both transcriptional and translational levels. In addition, secretion of various cytokines and chemokines was measured. Cytotoxicity of EA was determined by CellTiter-blue and MTT assays. To investigate the ability of EA to inhibit HPV16 infection, EA was used to treat HEK-293FT cells in pre-attachment and adsorption steps. We found significant increases in both hBD2 mRNA (mean 2.9-fold at 12.5 µM EA, p < 0.001) and protein (mean 7.1-fold at 12.5 µM EA, p = 0.002) in response to EA. SLPI mRNA also increased significantly (mean 1.4-fold at 25 µM EA, p = 0.01), but SLPI protein did not. Secretion of IL-2 but not of other cytokines/chemokines was induced by EA in a dose-dependent manner. EA was not cytotoxic. At the pre-attachment step, EA at CC20 and CC50 showed a slight trend towards inhibiting HPV16 pseudovirus, but this was not significant. In summary, vaginal epithelial cells can respond to EA by producing innate immune factors, and at tested concentrations, EA is not cytotoxic. Thus, plant-derived EA could be useful as an immunomodulatory agent to improve vaginal health.
Collapse
Affiliation(s)
- Aornrutai Promsong
- Faculty of Medicine, Princess of Naradhiwas University, Narathiwat 96000, Thailand;
| | | | - Claire N. Levy
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (C.N.L.); (F.H.)
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (C.N.L.); (F.H.)
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Surada Satthakarn
- Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand;
| | | |
Collapse
|
9
|
Pipiya VV, Gilazieva ZE, Issa SS, Rizvanov AA, Solovyeva VV. Comparison of primary and passaged tumor cell cultures and their application in personalized medicine. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:581-599. [PMID: 38966179 PMCID: PMC11220317 DOI: 10.37349/etat.2024.00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 07/06/2024] Open
Abstract
Passaged cell lines represent currently an integral component in various studies of malignant neoplasms. These cell lines are utilized for drug screening both in monolayer cultures or as part of three-dimensional (3D) tumor models. They can also be used to model the tumor microenvironment in vitro and in vivo through xenotransplantation into immunocompromised animals. However, immortalized cell lines have some limitations of their own. The homogeneity of cell line populations and the extensive passaging in monolayer systems make these models distant from the original disease. Recently, there has been a growing interest among scientists in the use of primary cell lines, as these are passaged directly from human tumor tissues. In this case, cells retain the morphological and functional characteristics of the tissue from which they were derived, an advantage often not observed in passaged cultures. This review highlights the advantages and limitations of passaged and primary cell cultures, their similarities and differences, as well as existing test systems that are based on primary and passaged cell cultures for drug screening purposes.
Collapse
Affiliation(s)
- Vladislava V. Pipiya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Zarema E. Gilazieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
10
|
Masuda K, Kubota M, Nakazawa Y, Iwama C, Watanabe K, Ishikawa N, Tanabe Y, Kono S, Tanemura H, Takahashi S, Makino T, Okumura T, Horiuchi T, Nonaka K, Murakami S, Kamihira M, Omasa T. Establishment of a novel cell line, CHO-MK, derived from Chinese hamster ovary tissues for biologics manufacturing. J Biosci Bioeng 2024; 137:471-479. [PMID: 38472071 DOI: 10.1016/j.jbiosc.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
Chinese hamster ovary (CHO) cells are widely used as a host for producing recombinant therapeutic proteins due to advantages such as human-like post-translational modification, correct protein folding, higher productivity, and a proven track record in biopharmaceutical development. Much effort has been made to improve the process of recombinant protein production, in terms of its yield and productivity, using conventional CHO cell lines. However, to the best of our knowledge, no attempts have been made to acquire new CHO cell lines from Chinese hamster ovary. In this study, we established and characterized a novel CHO cell line, named CHO-MK, derived from freshly isolated Chinese hamster ovary tissues. Some immortalized cell lines were established via sub-culture derived from primary culture, one of which was selected for further development toward a unique expression system design. After adapting serum-free and suspension culture conditions, the resulting cell line exhibited a considerably shorter doubling time (approximately 10 h) than conventional CHO cell lines (approximately 20 h). Model monoclonal antibody (IgG1)-producing cells were generated, and the IgG1 concentration of fed-batch culture reached approximately 5 g/L on day 8 in a 200-L bioreactor. The cell bank of CHO-MK cells was prepared as a new host and assessed for contamination by adventitious agents, with the results indicating that it was free from any such contaminants, including infectious viruses. Taking these findings together, this study showed the potential of CHO-MK cells with a shorter doubling time/process time and enhanced productivity in biologics manufacturing.
Collapse
Affiliation(s)
- Kenji Masuda
- Biologics Division, Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan; Manufacturing Technology Association of Biologics, 2-6-16 Shinkawa, Chuo-ku, Tokyo 104-0033, Japan
| | - Michi Kubota
- Manufacturing Technology Association of Biologics, 2-6-16 Shinkawa, Chuo-ku, Tokyo 104-0033, Japan; Chitose Laboratory Corp., KSP EAST511, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Yuto Nakazawa
- Biologics Division, Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan
| | - Chigusa Iwama
- Manufacturing Technology Association of Biologics, 2-6-16 Shinkawa, Chuo-ku, Tokyo 104-0033, Japan; Chitose Laboratory Corp., KSP EAST511, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Kazuhiko Watanabe
- Biologics Division, Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan
| | - Naoto Ishikawa
- Biologics Division, Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan
| | - Yumiko Tanabe
- Biologics Division, Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan
| | - Satoru Kono
- Biologics Division, Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan
| | - Hiroki Tanemura
- Biologics Division, Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan
| | - Shinichi Takahashi
- Biologics Division, Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan
| | - Tomohiro Makino
- Biologics Division, Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan
| | - Takeshi Okumura
- Biologics Division, Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan; Manufacturing Technology Association of Biologics, 2-6-16 Shinkawa, Chuo-ku, Tokyo 104-0033, Japan
| | - Takayuki Horiuchi
- Chitose Laboratory Corp., KSP EAST511, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Koichi Nonaka
- Biologics Division, Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan; Manufacturing Technology Association of Biologics, 2-6-16 Shinkawa, Chuo-ku, Tokyo 104-0033, Japan
| | - Sei Murakami
- Manufacturing Technology Association of Biologics, 2-6-16 Shinkawa, Chuo-ku, Tokyo 104-0033, Japan
| | - Masamichi Kamihira
- Manufacturing Technology Association of Biologics, 2-6-16 Shinkawa, Chuo-ku, Tokyo 104-0033, Japan; Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeshi Omasa
- Manufacturing Technology Association of Biologics, 2-6-16 Shinkawa, Chuo-ku, Tokyo 104-0033, Japan; Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
11
|
Tse RT, Wong CY, Ding X, Cheng CK, Chow C, Chan RC, Ng JH, Tang VW, Chiu PK, Teoh JY, Wong N, To K, Ng C. The establishment of kidney cancer organoid line in drug testing. Cancer Med 2024; 13:e7432. [PMID: 38923304 PMCID: PMC11200131 DOI: 10.1002/cam4.7432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Kidney cancer is a common urological malignancy worldwide with an increasing incidence in recent years. Among all subtypes, renal cell carcinoma (RCC) represents the most predominant malignancy in kidney. Clinicians faced a major challenge to select the most effective and suitable treatment regime for patients from a wide range of modalities, despite improved understanding and diagnosis of RCC. OBJECTIVE Recently, organoid culture gained more interest as the 3D model is shown to be highly patient specific which is hypothetically beneficial to the investigation of precision medicine. Nonetheless, the development and application of organotypic culture in RCC is still immature, therefore, the primary objective of this study was to establish an organoid model for RCC. MATERIALS AND METHODS Patients diagnosed with renal tumor and underwent surgical intervention were recruited. RCC specimen was collected and derived into organoids. Derived organoids were validated by histological examminations, sequencing and xenograft. Drug response of organoids were compared with resistance cell line and patients' clinical outcomes. RESULTS Our results demonstrated that organoids could be successfully derived from renal tumor and they exhibited high concordance in terms of immunoexpressional patterns. Sequencing results also depicted concordant mutations of driver genes in both organoids and parental tumor tissues. Critical and novel growth factors were discovered during the establishment of organoid model. Besides, organoids derived from renal tumor exhibited tumorigenic properties in vivo. In addition, organoids recapitulated patient's in vivo drug resistance and served as a platform to predict responsiveness of other therapeutic agents. CONCLUSION Our RCC organoid model recaptiluated histological and genetic features observed in primary tumors. It also served as a potential platform in drug screening for RCC patients, though future studies are necessary before translating the outcomes into clinical practices.
Collapse
Affiliation(s)
- Ryan Tsz‐Hei Tse
- S.H. Ho Urology Centre, Department of SurgeryThe Chinese University of Hong KongHong KongChina
| | - Christine Yim‐Ping Wong
- S.H. Ho Urology Centre, Department of SurgeryThe Chinese University of Hong KongHong KongChina
| | - Xiaofan Ding
- Department of SurgeryThe Chinese University of Hong KongHong KongChina
| | - Carol Ka‐Lo Cheng
- S.H. Ho Urology Centre, Department of SurgeryThe Chinese University of Hong KongHong KongChina
| | - Chit Chow
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong KongChina
| | - Ronald Cheong‐Kin Chan
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong KongChina
| | - Joshua Hoi‐Yan Ng
- Department of PathologyPamela Youde Nethersole Eastern HospitalChai WanHong Kong
| | - Victor Wai‐Lun Tang
- Department of PathologyPamela Youde Nethersole Eastern HospitalChai WanHong Kong
| | - Peter Ka‐Fung Chiu
- S.H. Ho Urology Centre, Department of SurgeryThe Chinese University of Hong KongHong KongChina
| | - Jeremy Yuen‐Chun Teoh
- S.H. Ho Urology Centre, Department of SurgeryThe Chinese University of Hong KongHong KongChina
| | - Nathalie Wong
- Department of SurgeryThe Chinese University of Hong KongHong KongChina
| | - Ka‐Fai To
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong KongChina
| | - Chi‐Fai Ng
- S.H. Ho Urology Centre, Department of SurgeryThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
12
|
Shimonosono M, Morimoto M, Hirose W, Tomita Y, Matsuura N, Flashner S, Ebadi MS, Okayasu EH, Lee CY, Britton WR, Martin C, Wuertz BR, Parikh AS, Sachdeva UM, Ondrey FG, Atigadda VR, Elmets CA, Abrams JA, Muir AB, Klein-Szanto AJ, Weinberg KI, Momen-Heravi F, Nakagawa H. Modeling epithelial homeostasis and perturbation in three-dimensional human esophageal organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595023. [PMID: 38826379 PMCID: PMC11142071 DOI: 10.1101/2024.05.20.595023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background Esophageal organoids from a variety of pathologies including cancer are grown in Advanced Dulbecco's Modified Eagle Medium-Nutrient Mixture F12 (hereafter ADF). However, the currently available ADF-based formulations are suboptimal for normal human esophageal organoids, limiting the ability to compare normal esophageal organoids with those representing a given disease state. Methods We have utilized immortalized normal human esophageal epithelial cell (keratinocyte) lines EPC1 and EPC2 and endoscopic normal esophageal biopsies to generate three-dimensional (3D) organoids. To optimize ADF-based medium, we evaluated the requirement of exogenous epidermal growth factor (EGF) and inhibition of transforming growth factor-(TGF)-β receptor-mediated signaling, both key regulators of proliferation of human esophageal keratinocytes. We have modeled human esophageal epithelial pathology by stimulating esophageal 3D organoids with interleukin (IL)-13, an inflammatory cytokine, or UAB30, a novel pharmacological activator of retinoic acid signaling. Results The formation of normal human esophageal 3D organoids was limited by excessive EGF and intrinsic TGFβ receptor-mediated signaling. In optimized HOME0, normal human esophageal organoid formation was improved, whereas IL-13 and UAB30 induced epithelial changes reminiscent of basal cell hyperplasia, a common histopathologic feature in broad esophageal disease conditions including eosinophilic esophagitis. Conclusions: HOME0 allows modeling of the homeostatic differentiation gradient and perturbation of the human esophageal epithelium while permitting a comparison of organoids from mice and other organs grown in ADF-based media.
Collapse
|
13
|
Riaz MA, Kary FL, Jensen A, Zeppernick F, Meinhold-Heerlein I, Konrad L. Long-Term Maintenance of Viable Human Endometrial Epithelial Cells to Analyze Estrogen and Progestin Effects. Cells 2024; 13:811. [PMID: 38786035 PMCID: PMC11120542 DOI: 10.3390/cells13100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
There are fewer investigations conducted on human primary endometrial epithelial cells (HPEECs) compared to human primary endometrial stromal cells (HPESCs). One of the main reasons is the scarcity of protocols enabling prolonged epithelial cell culture. Even though it is possible to culture HPEECs in 3D over a longer period of time, it is technically demanding. In this study, we successfully established a highly pure, stable, and long-term viable human conditionally reprogrammed endometrial epithelial cell line, designated as eCRC560. These cells stained positive for epithelial markers, estrogen and progesterone receptors, and epithelial cell-cell contacts but negative for stromal and endothelial cell markers. Estradiol (ES) reduced the abundance of ZO-1 in a time- and dose-dependent manner, in contrast to the dose-dependent increase with the progestin dienogest (DNG) when co-cultured with HPESCs. Moreover, ES significantly increased cell viability, cell migration, and invasion of the eCRC560 cells; all these effects were inhibited by pretreatment with DNG. DNG withdrawal led to a significantly disrupted monolayer of eCRC560 cells in co-culture with HPESCs, yet it markedly increased the adhesion of eCRC560 to the human mesothelial MeT-5A cells. The long-term viable eCRC560 cells are suitable for in vitro analysis of HPEECs to study the epithelial compartment of the human endometrium and endometrial pathologies.
Collapse
Affiliation(s)
- Muhammad Assad Riaz
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| | - Franziska Louisa Kary
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| | - Alexandra Jensen
- Institute of Radiooncology and Radiotherapy, Clinic Fulda, 36043 Fulda, Germany;
| | - Felix Zeppernick
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| | - Ivo Meinhold-Heerlein
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| | - Lutz Konrad
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| |
Collapse
|
14
|
Jahn M, Lang V, Diehl S, Back R, Kaufmann R, Fauth T, Buerger C. Different immortalized keratinocyte cell lines display distinct capabilities to differentiate and reconstitute an epidermis in vitro. Exp Dermatol 2024; 33:e14985. [PMID: 38043130 DOI: 10.1111/exd.14985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 12/05/2023]
Abstract
Dermatological research relies on the availability of suitable models that most accurately reflect the in vivo situation. Primary keratinocytes obtained from skin reduction surgeries are not only limited by availability but have a short lifespan and show donor-specific variations, which hamper the understanding of general mechanisms. The spontaneously immortalized keratinocyte cell line HaCaT displays chromosomal aberrations and is known to differentiate in an abnormal manner. To overcome these issues, we validated different engineered immortalized cell lines created from primary human keratinocytes (NHK) as model systems to study epidermal function. Cell lines either immortalized by the expression of SV40 large T antigen and hTERT (NHK-SV/TERT) or by transduction with HPV E6/E7 (NHK-E6/E7) were analysed for their growth and differentiation behaviour using 2D and 3D culture systems and compared to primary keratinocytes. Both cell lines displayed a robust proliferative behaviour but were still sensitive to contact inhibition. NHK-E6/E7 could be driven into differentiation by Ca2+ switch, while NHK-SV/TERT needed withdrawal from any proliferative signal to initiate a delayed onset of differentiation. In 3D epidermal models both cell lines were able to reconstitute a stratified epidermis and functional epidermal barrier. However, only NHK-E6/E7 showed a degree of epidermal maturation and stratification that was comparable to primary keratinocytes.
Collapse
Affiliation(s)
- Magdalena Jahn
- Department of Dermatology, Venerology and Allergology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Victoria Lang
- Department of Dermatology, Venerology and Allergology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Sandra Diehl
- Department of Dermatology, Venerology and Allergology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | | | - Roland Kaufmann
- Department of Dermatology, Venerology and Allergology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | | | - Claudia Buerger
- Department of Dermatology, Venerology and Allergology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Lin LW, Durbin-Johnson BP, Rocke DM, Salemi M, Phinney BS, Rice RH. Environmental pro-oxidants induce altered envelope protein profiles in human keratinocytes. Toxicol Sci 2023; 197:16-26. [PMID: 37788135 PMCID: PMC10734632 DOI: 10.1093/toxsci/kfad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Cornified envelopes (CEs) of human epidermis ordinarily consist of transglutaminase-mediated cross-linked proteins and are essential for skin barrier function. However, in addition to enzyme-mediated isopeptide bonding, protein cross-linking could also arise from oxidative damage. Our group recently demonstrated abnormal incorporation of cellular proteins into CEs by pro-oxidants in woodsmoke. In this study, we focused on 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), mesquite liquid smoke (MLS), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), to further understand the mechanisms through which environmental pro-oxidants induce CE formation and alter the CE proteome. CEs induced by the ionophore X537A were used for comparison. Similar to X537A, DMNQ- and MLS-induced CE formation was associated with membrane permeabilization. However, since DMNQ is non-adduct forming, its CEs were similar in protein profile to those from X537A. By contrast, MLS, rich in reactive carbonyls that can form protein adducts, caused a dramatic change in the CE proteome. TCDD-CEs were found to contain many CE precursors, such as small proline-rich proteins and late cornified envelope proteins, encoded by the epidermal differentiation complex. Since expression of these proteins is mediated by the aryl hydrocarbon receptor (AhR), and its well-known downstream protein, CYP1A1, was exclusively present in the TCDD group, we suggest that TCDD alters the CE proteome through persistent AhR activation. This study demonstrates the potential of environmental pro-oxidants to alter the epidermal CE proteome and indicates that the cellular redox state has an important role in CE formation.
Collapse
Affiliation(s)
- Lo-Wei Lin
- Department of Environmental Toxicology, University of California, Davis, California 95616, USA
| | - Blythe P Durbin-Johnson
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, California 95616, USA
| | - David M Rocke
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, California 95616, USA
| | - Michelle Salemi
- Proteomics Core Facility, University of California, Davis, California 95616, USA
| | - Brett S Phinney
- Proteomics Core Facility, University of California, Davis, California 95616, USA
| | - Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, California 95616, USA
| |
Collapse
|
16
|
Romero-Masters JC, Muehlbauer LK, Hayes M, Grace M, Shishkova E, Coon JJ, Munger K, Lambert PF. MmuPV1 E6 induces cell proliferation and other hallmarks of cancer. mBio 2023; 14:e0245823. [PMID: 37905801 PMCID: PMC10746199 DOI: 10.1128/mbio.02458-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE The Mus musculus papillomavirus 1 (MmuPV1) E6 and E7 proteins are required for MmuPV1-induced disease. Our understanding of the activities of MmuPV1 E6 has been based on affinity purification/mass spectrometry studies where cellular interacting partners of MmuPV1 E6 were identified, and these studies revealed that MmuPV1 E6 can inhibit keratinocyte differentiation through multiple mechanisms. We report that MmuPV1 E6 encodes additional activities including the induction of proliferation, resistance to density-mediated growth arrest, and decreased dependence on exogenous growth factors. Proteomic and transcriptomic analyses provided evidence that MmuPV1 E6 increases the expression and steady state levels of a number of cellular proteins that promote cellular proliferation and other hallmarks of cancer. These results indicate that MmuPV1 E6 is a major driver of MmuPV1-induced pathogenesis.
Collapse
Affiliation(s)
- James C. Romero-Masters
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Laura K. Muehlbauer
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mitchell Hayes
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Miranda Grace
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Evgenia Shishkova
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joshua J. Coon
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
17
|
Jackson R, Rajadhyaksha EV, Loeffler RS, Flores CE, Van Doorslaer K. Characterization of 3D organotypic epithelial tissues reveals tonsil-specific differences in tonic interferon signaling. PLoS One 2023; 18:e0292368. [PMID: 37792852 PMCID: PMC10550192 DOI: 10.1371/journal.pone.0292368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
Three-dimensional (3D) culturing techniques can recapitulate the stratified nature of multicellular epithelial tissues. Organotypic 3D epithelial tissue culture methods have several applications, including the study of tissue development and function, drug discovery and toxicity testing, host-pathogen interactions, and the development of tissue-engineered constructs for use in regenerative medicine. We grew 3D organotypic epithelial tissues from foreskin, cervix, and tonsil-derived primary cells and characterized the transcriptome of these in vitro tissue equivalents. Using the same 3D culturing method, all three tissues yielded stratified squamous epithelium, validated histologically using basal and superficial epithelial cell markers. The goal of this study was to use RNA-seq to compare gene expression patterns in these three types of epithelial tissues to gain a better understanding of the molecular mechanisms underlying their function and identify potential therapeutic targets for various diseases. Functional profiling by over-representation and gene set enrichment analysis revealed tissue-specific differences: i.e., cutaneous homeostasis and lipid metabolism in foreskin, extracellular matrix remodeling in cervix, and baseline innate immune differences in tonsil. Specifically, tonsillar epithelia may play an active role in shaping the immune microenvironment of the tonsil balancing inflammation and immune responses in the face of constant exposure to microbial insults. Overall, these data serve as a resource, with gene sets made available for the research community to explore, and as a foundation for understanding the epithelial heterogeneity and how it may impact their in vitro use. An online resource is available to investigate these data (https://viz.datascience.arizona.edu/3DEpiEx/).
Collapse
Affiliation(s)
- Robert Jackson
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Esha V. Rajadhyaksha
- College of Medicine and College of Science, University of Arizona, Tucson, Arizona, United States of America
| | - Reid S. Loeffler
- Biosystems Engineering, College of Agriculture and Life Sciences, College of Engineering, University of Arizona, Tucson, Arizona, United States of America
| | - Caitlyn E. Flores
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
18
|
Duong HT, Phan MAT, Madigan MC, Stapleton F, Wilcsek G, Willcox M, Golebiowski B. Culture of primary human meibomian gland cells from surgically excised eyelid tissue. Exp Eye Res 2023; 235:109636. [PMID: 37657529 DOI: 10.1016/j.exer.2023.109636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Meibomian gland dysfunction is one of the most common ocular diseases, with therapeutic treatment being primarily palliative due to our incomplete understanding of meibomian gland (MG) pathophysiology. To progress in vitro studies of human MG, this study describes a comprehensive protocol, with detailed troubleshooting, for the successful isolation, cultivation and cryopreservation of primary MG cells using biopsy-size segments of human eyelid tissue that would otherwise be discarded during surgery. MG acini were isolated and used to establish and propagate lipid-producing primary human MG cells. The primary cell viability during culture procedure was maintained through the application of Rho-associated coiled-coil containing protein kinase inhibitor (Y-27632, 10 μM) and collagen I from rat tails. Transcriptomic analysis of differentiated primary human MG cells confirmed cell origin and revealed high-level expression of many lipogenesis-related genes such as stearoyl-CoA desaturase (SCD), ELOVL Fatty Acid Elongase 1 (ELOVL1) and fatty acid synthase (FASN). Primary tarsal plate fibroblasts were also successfully isolated, cultured and cryopreserved. Established primary human MG cells and tarsal plate fibroblasts presented in this study have potential for applications in 3D models and bioengineered tissue that facilitate research in understanding of MG biology and pathophysiology.
Collapse
Affiliation(s)
- Ha T Duong
- School of Optometry and Vision Science, UNSW Medicine & Health, UNSW Sydney, NSW 2052, Australia.
| | - Minh Anh Thu Phan
- School of Optometry and Vision Science, UNSW Medicine & Health, UNSW Sydney, NSW 2052, Australia.
| | - Michele C Madigan
- School of Optometry and Vision Science, UNSW Medicine & Health, UNSW Sydney, NSW 2052, Australia; Save Sight Institute, University of Sydney, Sydney, NSW 2000, Australia.
| | - Fiona Stapleton
- School of Optometry and Vision Science, UNSW Medicine & Health, UNSW Sydney, NSW 2052, Australia.
| | - Geoffrey Wilcsek
- Ocular Plastic Unit, Prince of Wales Hospital, Randwick, NSW 2031, Australia; Macquarie University Hospital, Macquarie University, NSW 2109, Australia.
| | - Mark Willcox
- School of Optometry and Vision Science, UNSW Medicine & Health, UNSW Sydney, NSW 2052, Australia.
| | - Blanka Golebiowski
- School of Optometry and Vision Science, UNSW Medicine & Health, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
19
|
Witkowski TA, Li B, Andersen JG, Kumar B, Mroz EA, Rocco JW. Y-27632 acts beyond ROCK inhibition to maintain epidermal stem-like cells in culture. J Cell Sci 2023; 136:jcs260990. [PMID: 37698512 PMCID: PMC10508688 DOI: 10.1242/jcs.260990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/24/2023] [Indexed: 09/13/2023] Open
Abstract
Conditional reprogramming is a cell culture technique that effectively immortalizes epithelial cells with normal genotypes by renewing epidermal stem cells. Y-27632, a compound that promotes conditional reprogramming through an unknown mechanism, was developed to inhibit the two Rho-associated kinase (ROCK) isoforms. We used human foreskin keratinocytes (HFKs) to study the role of Y-27632 in conditional reprogramming and learn how ROCKs control epidermal stem cell renewal. In conditional reprogramming, Y-27632 increased HFK adherence to culture dishes, progression through S, G2 and M phases of the cell cycle, and epidermal stem cell marker levels. Although this correlated with ROCK inhibition by Y-27632, we generated CRISPR-Cas9-mediated HFK ROCK knockouts to test the direct role of ROCK inhibition. Knockout of single ROCK isoforms was insufficient to disrupt ROCK activity or promote HFK propagation without Y-27632. Although ROCK activity was reduced, HFKs with double knockout of ROCK1 and ROCK2 still required Y-27632 to propagate. Y-27632 was the most effective among the ROCK inhibitors we tested at promoting HFK proliferation and epidermal stem cell marker expression. Thus, the ability of Y-27632 to promote an epidermal stem cell state in conditional reprogramming not only depends upon ROCK inhibition but also acts via as-yet-unidentified mechanisms. Epidermal stem cell renewal might in part be regulated by ROCKs, but also involves additional pathways.
Collapse
Affiliation(s)
- Travis A. Witkowski
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Bin Li
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jason G. Andersen
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Bhavna Kumar
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Edmund A. Mroz
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - James W. Rocco
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center – James, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
20
|
Zwolinska K, Bienkowska-Haba M, Scott RS, Keiffer T, Sapp M. Experimental Support for Human Papillomavirus Genome Amplification Early after Infectious Delivery. J Virol 2023; 97:e0021423. [PMID: 37223953 PMCID: PMC10308938 DOI: 10.1128/jvi.00214-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/01/2023] [Indexed: 05/25/2023] Open
Abstract
Even though replication and transcription of human papillomavirus type 16 (HPV16) has been intensively studied, little is known about immediate-early events of the viral life cycle due to the lack of an efficient infection model allowing genetic dissection of viral factors. We employed the recently developed infection model (Bienkowska-Haba M, Luszczek W, Myers JE, Keiffer TR, et al. 2018. PLoS Pathog 14:e1006846) to investigate genome amplification and transcription immediately after infectious delivery of viral genome to nuclei of primary keratinocytes. Using 5-ethynyl-2'-deoxyuridine (EdU) pulse-labeling and highly sensitive fluorescence in situ hybridization, we observed that the HPV16 genome is replicated and amplified in an E1- and E2-dependent manner. Knockout of E1 resulted in failure of the viral genome to replicate and amplify. In contrast, knockout of the E8^E2 repressor led to increased viral genome copy number, confirming previous reports. Genome copy control by E8^E2 was confirmed for differentiation-induced genome amplification. Lack of functional E1 had no effect on transcription from the early promoter, suggesting that viral genome replication is not required for p97 promoter activity. However, infection with an HPV16 mutant virus defective for E2 transcriptional function revealed a requirement of E2 for efficient transcription from the early promoter. In the absence of the E8^E2 protein, early transcript levels are unaltered and even decreased when normalized to genome copy number. Surprisingly, a lack of functional E8^E2 repressor did not affect E8^E2 transcript levels when normalized to genome copy number. These data suggest that the main function of E8^E2 in the viral life cycle is to control genome copy number. IMPORTANCE It is being assumed that human papillomavirus (HPV) utilizes three different modes of replication during its life cycle: initial amplification during the establishment phase, genome maintenance, and differentiation-induced amplification. However, HPV16 initial amplification was never formally proven due to a lack of an infection model. Using our recently established infection model (Bienkowska-Haba M, Luszczek W, Myers JE, Keiffer TR, et al. 2018. PLoS Pathog 14:e1006846), we demonstrate herein that viral genome is indeed amplified in an E1- and E2-dependent manner. Furthermore, we find that the main function of the viral repressor E8^E2 is to control viral genome copy number. We did not find evidence that it regulates its own promoter in a negative feedback loop. Our data also suggest that the E2 transactivator function is required for stimulation of early promoter activity, which has been debated in the literature. Overall, this report confirms the usefulness of the infection model for studying early events of the HPV life cycle using mutational approaches.
Collapse
Affiliation(s)
- Katarzyna Zwolinska
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA
| | - Malgorzata Bienkowska-Haba
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA
| | - Rona S. Scott
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA
| | - Timothy Keiffer
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA
| | - Martin Sapp
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA
| |
Collapse
|
21
|
Stricker S, Ziegahn N, Karsten M, Boeckel T, Stich-Boeckel H, Maske J, Rugo E, Balazs A, Millar Büchner P, Dang-Heine C, Schriever V, Eils R, Lehmann I, Sander LE, Ralser M, Corman VM, Mall MA, Sawitzki B, Roehmel J. RECAST: Study protocol for an observational study for the understanding of the increased REsilience of Children compared to Adults in SARS-CoV-2 infecTion. BMJ Open 2023; 13:e065221. [PMID: 37068896 PMCID: PMC10111194 DOI: 10.1136/bmjopen-2022-065221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
INTRODUCTION The SARS-CoV-2 pandemic remains a threat to public health. Soon after its outbreak, it became apparent that children are less severely affected. Indeed, opposing clinical manifestations between children and adults are observed for other infections. The SARS-CoV-2 outbreak provides the unique opportunity to study the underlying mechanisms. This protocol describes the methods of an observational study that aims to characterise age dependent differences in immune responses to primary respiratory infections using SARS-CoV-2 as a model virus and to assess age differences in clinical outcomes including lung function. METHODS AND ANALYSIS The study aims to recruit at least 120 children and 60 adults that are infected with SARS-CoV-2 and collect specimen for a multiomics analysis, including single cell RNA sequencing of nasal epithelial cells and peripheral blood mononuclear cells, mass cytometry of whole blood samples and nasal cells, mass spectrometry-based serum and plasma proteomics, nasal epithelial cultures with functional in vitro analyses, SARS-CoV-2 antibody testing, sequencing of the viral genome and lung function testing. Data obtained from this multiomics approach are correlated with medical history and clinical data. Recruitment started in October 2020 and is ongoing. ETHICS AND DISSEMINATION The study was reviewed and approved by the Ethics Committee of Charité - Universitätsmedizin Berlin (EA2/066/20). All collected specimens are stored in the central biobank of Charité - Universitätsmedizin Berlin and are made available to all participating researchers and on request. TRIAL REGISTRATION NUMBER DRKS00025715, pre-results publication.
Collapse
Affiliation(s)
- Sebastian Stricker
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Niklas Ziegahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Karsten
- Karsten, Rugo, Wagner, Paediatric Practice, Berlin, Germany
| | - Thomas Boeckel
- Boeckel, Haverkaemper, Paediatric Practice and Practice for Paediatric Cardiology, Berlin, Germany
| | | | - Jakob Maske
- Maske, Pankok, Paediatric Practice, Berlin, Germany
| | - Evelyn Rugo
- Karsten, Rugo, Wagner, Paediatric Practice, Berlin, Germany
| | - Anita Balazs
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Pamela Millar Büchner
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Chantip Dang-Heine
- Clinical Study Center (CSC), Berlin Institute of Health at Charité, Berlin, Germany
| | - Valentin Schriever
- Department of Paediatric Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health at Charité, Berlin, Germany
- Molecular Epidemiology Unit, Berlin Institute of Health at Charité, Berlin, Germany
| | - Irina Lehmann
- Center for Digital Health, Berlin Institute of Health at Charité, Berlin, Germany
- German Center for Lung Research, Giessen, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Victor M Corman
- Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Giessen, Germany
| | - Birgit Sawitzki
- Berlin Institute of Health, Berlin, Germany
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jobst Roehmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
22
|
Bedard MC, Chihanga T, Carlile A, Jackson R, Brusadelli MG, Lee D, VonHandorf A, Rochman M, Dexheimer PJ, Chalmers J, Nuovo G, Lehn M, Williams DEJ, Kulkarni A, Carey M, Jackson A, Billingsley C, Tang A, Zender C, Patil Y, Wise-Draper TM, Herzog TJ, Ferris RL, Kendler A, Aronow BJ, Kofron M, Rothenberg ME, Weirauch MT, Van Doorslaer K, Wikenheiser-Brokamp KA, Lambert PF, Adam M, Steven Potter S, Wells SI. Single cell transcriptomic analysis of HPV16-infected epithelium identifies a keratinocyte subpopulation implicated in cancer. Nat Commun 2023; 14:1975. [PMID: 37031202 PMCID: PMC10082832 DOI: 10.1038/s41467-023-37377-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/15/2023] [Indexed: 04/10/2023] Open
Abstract
Persistent HPV16 infection is a major cause of the global cancer burden. The viral life cycle is dependent on the differentiation program of stratified squamous epithelium, but the landscape of keratinocyte subpopulations which support distinct phases of the viral life cycle has yet to be elucidated. Here, single cell RNA sequencing of HPV16 infected compared to uninfected organoids identifies twelve distinct keratinocyte populations, with a subset mapped to reconstruct their respective 3D geography in stratified squamous epithelium. Instead of conventional terminally differentiated cells, an HPV-reprogrammed keratinocyte subpopulation (HIDDEN cells) forms the surface compartment and requires overexpression of the ELF3/ESE-1 transcription factor. HIDDEN cells are detected throughout stages of human carcinogenesis including primary human cervical intraepithelial neoplasias and HPV positive head and neck cancers, and a possible role in promoting viral carcinogenesis is supported by TCGA analyses. Single cell transcriptome information on HPV-infected versus uninfected epithelium will enable broader studies of the role of individual keratinocyte subpopulations in tumor virus infection and cancer evolution.
Collapse
Affiliation(s)
- Mary C Bedard
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tafadzwa Chihanga
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Adrean Carlile
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Robert Jackson
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Denis Lee
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Andrew VonHandorf
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mark Rochman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Phillip J Dexheimer
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jeffrey Chalmers
- William G. Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, 151 W. Woodruff Ave, Columbus, OH, 43210, USA
| | - Gerard Nuovo
- Department of Pathology, Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Maria Lehn
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - David E J Williams
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, 85721, USA
- Medical Scientist Training M.D.-Ph.D. Program (MSTP), College of Medicine-Tucson, University of Arizona, Tucson, AZ, USA
| | - Aditi Kulkarni
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Molly Carey
- Department of Obstetrics and Gynecology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Amanda Jackson
- Department of Obstetrics and Gynecology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Caroline Billingsley
- Department of Obstetrics and Gynecology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Alice Tang
- Department of Otolaryngology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Chad Zender
- Department of Otolaryngology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Yash Patil
- Department of Otolaryngology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Trisha M Wise-Draper
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Thomas J Herzog
- Department of Obstetrics and Gynecology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Robert L Ferris
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Ady Kendler
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Bruce J Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Divisions of Human Genetics, Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, 85721, USA
- The BIO5 Institute, University of Arizona, Tucson, AZ, 85721, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85721, USA
- UA Cancer Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Kathryn A Wikenheiser-Brokamp
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Division of Pathology & Laboratory Medicine and The Perinatal Institute Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Susanne I Wells
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
23
|
Romero-Masters JC, Grace M, Lee D, Lei J, DePamphilis M, Buehler D, Hu R, Ward-Shaw E, Blaine-Sauer S, Lavoie N, White EA, Munger K, Lambert PF. MmuPV1 E7's interaction with PTPN14 delays Epithelial differentiation and contributes to virus-induced skin disease. PLoS Pathog 2023; 19:e1011215. [PMID: 37036883 PMCID: PMC10085053 DOI: 10.1371/journal.ppat.1011215] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/17/2023] [Indexed: 04/11/2023] Open
Abstract
Human papillomaviruses (HPVs) contribute to approximately 5% of all human cancers. Species-specific barriers limit the ability to study HPV pathogenesis in animal models. Murine papillomavirus (MmuPV1) provides a powerful tool to study the roles of papillomavirus genes in pathogenesis arising from a natural infection. We previously identified Protein Tyrosine Phosphatase Non-Receptor Type 14 (PTPN14), a tumor suppressor targeted by HPV E7 proteins, as a putative cellular target of MmuPV1 E7. Here, we confirmed the MmuPV1 E7-PTPN14 interaction. Based on the published structure of the HPV18 E7/PTPN14 complex, we generated a MmuPV1 E7 mutant, E7K81S, that was defective for binding PTPN14. Wild-type (WT) and E7K81S mutant viral genomes replicated as extrachromosomal circular DNAs to comparable levels in mouse keratinocytes. E7K81S mutant virus (E7K81S MmuPV1) was generated and used to infect FoxN/Nude mice. E7K81S MmuPV1 caused neoplastic lesions at a frequency similar to that of WT MmuPV1, but the lesions arose later and were smaller than WT-induced lesions. The E7K81S MmuPV1-induced lesions also had a trend towards a less severe grade of neoplastic disease. In the lesions, E7K81S MmuPV1 supported the late (productive) stage of the viral life cycle and promoted E2F activity and cellular DNA synthesis in suprabasal epithelial cells to similar degrees as WT MmuPV1. There was a similar frequency of lateral spread of infections among mice infected with E7K81S or WT MmuPV1. Compared to WT MmuPV1-induced lesions, E7K81S MmuPV1-induced lesions had a significant expansion of cells expressing differentiation markers, Keratin 10 and Involucrin. We conclude that an intact PTPN14 binding site is necessary for MmuPV1 E7's ability to contribute to papillomavirus-induced pathogenesis and this correlates with MmuPV1 E7 causing a delay in epithelial differentiation, which is a hallmark of papillomavirus-induced neoplasia.
Collapse
Affiliation(s)
- James C. Romero-Masters
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Miranda Grace
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Denis Lee
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Joshua Lei
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Melanie DePamphilis
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Simon Blaine-Sauer
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Nathalie Lavoie
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Microbiology Program, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Elizabeth A. White
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Microbiology Program, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
24
|
Yu L, Majerciak V, Jia R, Zheng ZM. Revisiting and corrections to the annotated SRSF3 (SRp20) gene structure and RefSeq sequences from the human and mouse genomes. CELL INSIGHT 2023; 2:100089. [PMID: 37193066 PMCID: PMC10134197 DOI: 10.1016/j.cellin.2023.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 05/18/2023]
Abstract
SRSF3 (SRp20) is the smallest member of the serine/arginine (SR)-rich protein family. We found the annotated human SRSF3 and mouse Srsf3 RefSeq sequences are much larger than the detected SRSF3/Srsf3 RNA size by Northern blot. Mapping of RNA-seq reads from various human and mouse cell lines to the annotated SRSF3/Srsf3 gene illustrated only a partial coverage of its terminal exon 7. By 5' RACE and 3' RACE, we determined that SRSF3 gene spanning over 8422 bases and Srsf3 gene spanning over 9423 bases. SRSF3/Srsf3 gene has seven exons with exon 7 bearing two alternative polyadenylation signals (PAS). Through alternative PAS selection and exon 4 exclusion/inclusion by alternative RNA splicing, SRSF3/Srsf3 gene expresses four RNA isoforms. The major SRSF3 mRNA isoform with exon 4 exclusion by using a favorable distal PAS to encode a full-length protein is 1411 nt long (not annotated 4228 nt) and the same major mouse Srsf3 mRNA isoform is only 1295 nt (not annotated 2585 nt). The difference from the redefined RNA size of SRSF3/Srsf3 to the corresponding RefSeq sequence is at the 3' UTR region. Collectively, the redefined SRSF3/Srsf3 gene structure and expression will allow better understanding of SRSF3 functions and its regulations in health and diseases.
Collapse
Affiliation(s)
- Lulu Yu
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| |
Collapse
|
25
|
Bienkowska-Haba M, Zwolinska K, Keiffer T, Scott RS, Sapp M. Human Papillomavirus Genome Copy Number Is Maintained by S-Phase Amplification, Genome Loss to the Cytosol during Mitosis, and Degradation in G 1 Phase. J Virol 2023; 97:e0187922. [PMID: 36749071 PMCID: PMC9972943 DOI: 10.1128/jvi.01879-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
The current model of human papillomavirus (HPV) replication is comprised of three modes of replication. Following infectious delivery, the viral genome is amplified during the establishment phase to reach up to some hundred copies per cell. The HPV genome copy number remains constant during the maintenance stage. The differentiation of infected cells induces HPV genome amplification. Using highly sensitive in situ hybridization (DNAscope) and freshly HPV16-infected as well as established HPV16-positive cell lines, we observed that the viral genome is amplified in each S phase of undifferentiated keratinocytes cultured as monolayers. The nuclear viral genome copy number is reset to pre-S-phase levels during mitosis. The majority of the viral genome fails to tether to host chromosomes and is lost to the cytosol. Cytosolic viral genomes gradually decrease during cell cycle progression. The loss of cytosolic genomes is blocked in the presence of NH4Cl or other drugs that interfere with lysosomal acidification, suggesting the involvement of autophagy in viral genome degradation. These observations were also made with HPV31 cell lines obtained from patient samples. Cytosolic viral genomes were not detected in UMSCC47 cells carrying integrated HPV16 DNA. Analyses of organotypic raft cultures derived from keratinocytes harboring episomal HPV16 revealed the presence of cytosolic viral genomes as well. We conclude that HPV maintains viral genome copy numbers by balancing viral genome amplification during S phase with the loss of viral genomes to the cytosol during mitosis. It seems plausible that restrictions to viral genome tethering to mitotic chromosomes reset genome copy numbers in each cell cycle. IMPORTANCE HPV genome maintenance is currently thought to be achieved by regulating the expression and activity of the viral replication factors E1 and E2. In addition, the E8^E2 repressor has been shown to be important for restricting genome copy numbers by competing with E1 and E2 for binding to the viral origin of replication and by recruiting repressor complexes. Here, we demonstrate that the HPV genome is amplified in each S phase. The nuclear genome copy number is reset during mitosis by a failure of the majority of the genomes to tether to mitotic chromosomes. Rather, HPV genomes accumulate in the cytoplasm of freshly divided cells. Cytosolic viral DNA is degraded in G1 in a lysosome-dependent manner, contributing to the genome copy reset. Our data imply that the mode of replication during establishment and maintenance is the same and further suggest that restrictions to genome tethering significantly contribute to viral genome maintenance.
Collapse
Affiliation(s)
- Malgorzata Bienkowska-Haba
- Department of Microbiology and Immunology, Feist Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Katarzyna Zwolinska
- Department of Microbiology and Immunology, Feist Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Timothy Keiffer
- Department of Microbiology and Immunology, Feist Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Rona S. Scott
- Department of Microbiology and Immunology, Feist Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Martin Sapp
- Department of Microbiology and Immunology, Feist Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
26
|
Li D, Thomas C, Shrivastava N, Gersten A, Gadsden N, Schlecht N, Kawachi N, Schiff BA, Smith RV, Rosenblatt G, Augustine S, Gavathiotis E, Burk R, Prystowsky MB, Guha C, Mehta V, Ow TJ. Establishment of a diverse head and neck squamous cancer cell bank using conditional reprogramming culture methods. J Med Virol 2023; 95:e28388. [PMID: 36477880 PMCID: PMC10168123 DOI: 10.1002/jmv.28388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Most laboratory models of head and neck squamous cell cancer (HNSCC) rely on established immortalized cell lines, which carry inherent bias due to selection and clonality. We established a robust panel of HNSCC tumor cultures using a "conditional reprogramming" (CR) method, which utilizes a rho kinase inhibitor (Y-27632) and co-culture with irradiated fibroblast (J2 strain) feeder cells to support indefinite tumor cell survival. Sixteen CR cultures were successfully generated from 19 consecutively enrolled ethnically and racially diverse patients with HNSCC at a tertiary care center in the Bronx, NY. Of the 16 CR cultures, 9/16 were derived from the oral cavity, 4/16 were derived from the oropharynx, and 3/16 were from laryngeal carcinomas. Short tandem repeat (STR) profiling was used to validate culture against patient tumor tissue DNA. All CR cultures expressed ΔNp63 and cytokeratin 5/6, which are markers of squamous identity. Human papillomavirus (HPV) testing was assessed utilizing clinical p16 staining on primary tumors, reverse transcription polymerase chain reaction (RT-PCR) of HPV16/18-specific viral oncogenes E6 and E7 in RNA extracted from tumor samples, and HPV DNA sequencing. Three of four oropharyngeal tumors were p16 and HPV-positive and maintained HPV in culture. CR cultures were able to establish three-dimensional spheroid and murine flank and orthotopic tongue models. CR methods can be readily applied to all HNSCC tumors regardless of patient characteristics, disease site, and molecular background, providing a translational research model that properly includes patient and tumor diversity.
Collapse
Affiliation(s)
- Daniel Li
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Carlos Thomas
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nitisha Shrivastava
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Adam Gersten
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nicholas Gadsden
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Nicolas Schlecht
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Nicole Kawachi
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bradley A. Schiff
- Department of Otorhinolaryngology - Head and Neck Surgery, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Richard V. Smith
- Department of Otorhinolaryngology - Head and Neck Surgery, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Surgery, Montefiore Medical Center/ Albert Einstein College of Medicine, Bronx, NY USA
| | - Gregory Rosenblatt
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Stelby Augustine
- Department of Otorhinolaryngology - Head and Neck Surgery, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Robert Burk
- Department of Pediatrics, Montefiore Medical Center/ Albert Einstein College of Medicine, Bronx, NY USA
| | - Michael B. Prystowsky
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vikas Mehta
- Department of Otorhinolaryngology - Head and Neck Surgery, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Thomas J Ow
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Otorhinolaryngology - Head and Neck Surgery, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
27
|
Jackson R, Rajadhyaksha EV, Loeffler RS, Flores CE, Van Doorslaer K. Characterization of 3D organotypic epithelial tissues reveals tonsil-specific differences in tonic interferon signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524743. [PMID: 36711548 PMCID: PMC9882319 DOI: 10.1101/2023.01.19.524743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Three-dimensional (3D) culturing techniques can recapitulate the stratified nature of multicellular epithelial tissues. Organotypic 3D epithelial tissue culture methods have several applications, including the study of tissue development and function, drug discovery and toxicity testing, host-pathogen interactions, and the development of tissue-engineered constructs for use in regenerative medicine. We grew 3D organotypic epithelial tissues from foreskin, cervix, and tonsil-derived primary cells and characterized the transcriptome of these in vitro tissue equivalents. Using the same 3D culturing method, all three tissues yielded stratified squamous epithelium, validated histologically using basal and superficial epithelial cell markers. The goal of this study was to use RNA-seq to compare gene expression patterns in these three types of epithelial tissues to gain a better understanding of the molecular mechanisms underlying their function and identify potential therapeutic targets for various diseases. Functional profiling by over-representation and gene set enrichment analysis revealed tissue-specific differences: i.e. , cutaneous homeostasis and lipid metabolism in foreskin, extracellular matrix remodeling in cervix, and baseline innate immune differences in tonsil. Specifically, tonsillar epithelia may play an active role in shaping the immune microenvironment of the tonsil balancing inflammation and immune responses in the face of constant exposure to microbial insults. Overall, these data serve as a resource, with gene sets made available for the research community to explore, and as a foundation for understanding the epithelial heterogeneity and how it may impact their in vitro use. An online resource is available to investigate these data ( https://viz.datascience.arizona.edu/3DEpiEx/ ).
Collapse
Affiliation(s)
- Robert Jackson
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Esha V Rajadhyaksha
- College of Medicine and College of Science, University of Arizona, Tucson, AZ, USA
| | - Reid S Loeffler
- Biosystems Engineering, College of Agriculture and Life Sciences; College of Engineering, University of Arizona, Tucson, AZ, USA
| | - Caitlyn E Flores
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Immunobiology; Cancer Biology Graduate Interdisciplinary Program; Genetics Graduate Interdisciplinary Program; and University of Arizona Cancer Center, University of Arizona, Tucson, AZ USA
| |
Collapse
|
28
|
Jayarajan V, Hall GT, Xenakis T, Bulstrode N, Moulding D, Castellano S, Di WL. Short-Term Treatment with Rho-Associated Kinase Inhibitor Preserves Keratinocyte Stem Cell Characteristics In Vitro. Cells 2023; 12:cells12030346. [PMID: 36766688 PMCID: PMC9913223 DOI: 10.3390/cells12030346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Primary keratinocytes including keratinocyte stem cells (KSCs) can be cultured as epidermal sheets in vitro and are attractive for cell and gene therapies for genetic skin disorders. However, the initial slow growth of freshly isolated keratinocytes hinders clinical applications. Rho-associated kinase inhibitor (ROCKi) has been used to overcome this obstacle, but its influence on the characteristics of KSC and its safety for clinical application remains unknown. In this study, primary keratinocytes were treated with ROCKi Y-27632 for six days (short-term). Significant increases in colony formation and cell proliferation during the six-day ROCKi treatment were observed and confirmed by related protein markers and single-cell transcriptomic analysis. In addition, short-term ROCKi-treated cells maintained their differentiation ability as examined by 3D-organotypic culture. However, these changes could be reversed and became indistinguishable between treated and untreated cells once ROCKi treatment was withdrawn. Further, the short-term ROCKi treatment did not reduce the number of KSCs. In addition, AKT and ERK pathways were rapidly activated upon ROCKi treatment. In conclusion, short-term ROCKi treatment can transiently and reversibly accelerate initial primary keratinocyte expansion while preserving the holoclone-forming cell population (KSCs), providing a safe avenue for clinical applications.
Collapse
Affiliation(s)
- Vignesh Jayarajan
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - George T. Hall
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 20 Guilford Street, London WC1N 1DZ, UK
| | - Theodoros Xenakis
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 20 Guilford Street, London WC1N 1DZ, UK
| | - Neil Bulstrode
- Department of Plastic Surgery, Great Ormond Street Hospital for Children, Great Ormond Street, London WC1N 3JH, UK
| | - Dale Moulding
- Light Microscopy Core Facility, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Sergi Castellano
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 20 Guilford Street, London WC1N 1DZ, UK
- UCL Genomics, Zayed Centre for Research into Rare Disease in Children, 20 Guilford Street, London WC1N 1DZ, UK
| | - Wei-Li Di
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- Correspondence: ; Tel.: +44-(0)207905-2369; Fax: +44-(0)207905-2882
| |
Collapse
|
29
|
Kabbesh H, Riaz MA, Jensen AD, Scheiner-Bobis G, Konrad L. Transmigration of macrophages through primary adult rat Sertoli cells. Tissue Barriers 2023; 11:2064179. [PMID: 35442143 PMCID: PMC9870002 DOI: 10.1080/21688370.2022.2064179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The blood testis barrier (BTB) is often studied with isolated immature Sertoli cells (SCs), transepithelial resistance (TER) measurements and FITC dextran diffusion assays. Recently, it was found that even in the absence of SCs, only few immune cells enter the seminiferous tubules. Thus, in this study, we evaluated the testicular immunological barrier (TIB) in vitro by transmigration of macrophages through SCs with and without peritubular cells (PCs) and with or without matrigel (MG). Primary PCs were isolated from adult rat testis and kept in mono- or co-cultures with the conditionally reprogrammed primary adult Sertoli cell line (PASC1) from rat that has been recently generated by our group. Rat monocytes isolated from fresh blood were differentiated into M0 macrophages, and after polarization to M1 or M2 macrophages characterized by gene expression of CXCL11 and TNF-α for M1, or CCL17 and CCL22 for M2. Transmigration of LeukoTracker-labeled M0, M1, and M2 macrophages through mono- and co-cultures of PCs/SCs with and without MG demonstrated that SCs are the main constituent of the TIB in vitro with only a negligible contribution of PCs or MG. Moreover, M2 macrophages showed less migration activity compared to M0 or M1. Treatment of SCs with testosterone (T) showed positive effects on the barrier in contrast to negative effects by interleukin-6 (IL-6) or tumor necrosis factor-α (TNF-α). The new transmigration model is suitable to evaluate transmigration of macrophages through a barrier consisting of testicular cells and can be applied to study the integrity of testicular barriers with respect to immunological aspects.
Collapse
Affiliation(s)
- Hassan Kabbesh
- Center of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Muhammad A. Riaz
- Center of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Alexandra D. Jensen
- Center of Radiotherapy, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Georgios Scheiner-Bobis
- Institute for Veterinary Physiology and Biochemistry, School of Veterinary Medicine, Justus-Liebig-University, Giessen, Germany
| | - Lutz Konrad
- Center of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany,CONTACT Lutz Konrad Center of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, Feulgenstr. 10-12, GiessenD-35392, Germany
| |
Collapse
|
30
|
He S, Wu H, Huang J, Li Q, Huang Z, Wen H, Li Z. 3-D tissue-engineered epidermis against human primary keratinocytes apoptosis via relieving mitochondrial oxidative stress in wound healing. J Tissue Eng 2023; 14:20417314231163168. [PMID: 37025157 PMCID: PMC10071207 DOI: 10.1177/20417314231163168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/24/2023] [Indexed: 04/03/2023] Open
Abstract
The tissue-engineered epidermal (TEE), composed of biocompatible vectors and autogenous functional cells, is a novel strategy to solve the problem of shortage of donor skin sources. The human primary keratinocyte (HPK), the major skin components, are self-evident vital in wound healing and was considered as one of the preferred seed cells for TEEs. Since the process of separating HPKs from the skin triggers a stress state of the cells, achieving its rapid adhesion and proliferation on biomaterials remains challenging. The key to the clinical application is to ensure the normal function of cells while improving the proliferation ability in vitro, and to complete the complex mesenchymal epithelialization to achieve tissue remodeling after vivo implantation. Herein, in order to aid HPKs adhesion and proliferation in vitro and promoting wound healing, we developed a three dimensional collagen scaffold with Y-27632 sustainedly released from the nanoplatform, hollow mesoporous organosilica nanoparticles (HMON). The results showed that the porous structure within the TEE supports the implanted HPKs expanding in a three-dimensional mode to jointly construct the tissue-engineered epidermis in vitro and inhibited the mitochondria-mediated cell apoptosis. It was confirmed that the TEEs with suitable degradation rate could maintain drug release after implantation and could accelerate vascularization of wound base and further revealed the involvement of mesenchymal transformation of transplanted HPKs during skin regeneration in a nude mouse model with full-thickness skin resection. In conclusion, our study highlights the great potential of constructing TEE using a nanoparticle platform for the treatment of large-area skin defects.
Collapse
Affiliation(s)
- Shan He
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Han Wu
- Medical Research Center of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junqun Huang
- Department of Anaesthesia, The Seventh Affiliated Hospital, Southern Medical University, Foshan, China
| | - Qingyan Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zijie Huang
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huangding Wen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiqing Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Niklander SE, Hunter KD. A Protocol to Produce Genetically Edited Primary Oral Keratinocytes Using the CRISPR-Cas9 System. Methods Mol Biol 2023; 2588:217-229. [PMID: 36418691 DOI: 10.1007/978-1-0716-2780-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Nobel Prize awarded gene editing system, CRISPR-Cas9, is probably one of the greatest achievements of the last decades. CRISPR-Cas9 can introduce irreversible genomic changes in its target DNA by simple specifying a 20-nucleotide sequence within its RNA guide. Due to its simplicity, efficacy, and relative low cost in comparison with other genome editing systems, it has become the most common gene editing system used in research laboratories. Here we describe a step-by-step protocol to produce genetically edited primary oral keratinocytes using the CRISPR-Cas9 system.
Collapse
Affiliation(s)
- Sven E Niklander
- Unidad de Patología y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar, Chile
| | - Keith D Hunter
- Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK. .,Oral Biology and Pathology, University of Pretoria, Pretoria, South Africa. .,Liverpool Head and Neck Centre, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
32
|
Wu M, Zhang X, Kang Y, Zhu Y, Su Z, Liu J, Zhang W, Chen H, Li H. The First Human Vulvar Intraepithelial Neoplasia Cell Line with Naturally Infected Episomal HPV18 Genome. Viruses 2022; 14:v14092054. [PMID: 36146860 PMCID: PMC9502076 DOI: 10.3390/v14092054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Persistent infection with high-risk HPV leads to cervical cancers and other anogenital cancers and head and neck carcinomas in both men and women. There is no effective drug fortreating HPV infection and HPV-associated carcinomas, largely due to a lack of models of natural HPV infection and the complexity of the HPV life cycle. There are no available cell lines from vulvar, anal, or penile lesions and cancers in the field. In this study, we established the first human cell line from vulvar intraepithelial neoplasia (VIN) with naturally infected HPV18 by conditional reprogramming (CR) method. Our data demonstrated that VIN cells possessed different biological characteristics and diploid karyotypes from HPV18-positive cancer cells (HeLa). Then, we determined that VIN cells contained episomal HPV18 using approaches including the ratio of HPV E2copy/E7copy, rolling cycle amplification, and sequencing. The VIN cells expressed squamous epithelium-specific markers that are different from HeLa cells, a cervical adenocarcinoma cell line. When cultured under 3D air-liquid interface (ALI) system, we observed the expression of both early and late differentiation markers involucrin and filaggrin. Most importantly, we were able to detect the expression of viral late gene L1 in the cornified layer of ALI 3D culture derived from VIN cells, suggesting quite different HPV genomic status from cancer cells. We also observed progeny viral particles under transmission electron microscopy (TEM) in ALI 3D cultures, confirming the episomal HPV18 genome and active viral life cycle in the new cell line. To our knowledge, this is the first human VIN cell line with naturally infected HPV18 genome and provides a valuable model for HPV biology studies, HPV-associated cancer initiation and progression, and drug-screening platforms.
Collapse
Affiliation(s)
- Ming Wu
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University Taikang Medical School, Wuhan 430071, China
| | - Xiu Zhang
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University Taikang Medical School, Wuhan 430071, China
| | - Yiyi Kang
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University Taikang Medical School, Wuhan 430071, China
| | - Yaqi Zhu
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University Taikang Medical School, Wuhan 430071, China
- Clinical Laboratory, Hubei Maternal and Child Health Hospital, Wuhan 430070, China
| | - Zhaoyu Su
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University Taikang Medical School, Wuhan 430071, China
| | - Jun Liu
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University Taikang Medical School, Wuhan 430071, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hong Chen
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Correspondence: (H.C.); (H.L.)
| | - Hui Li
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University Taikang Medical School, Wuhan 430071, China
- Correspondence: (H.C.); (H.L.)
| |
Collapse
|
33
|
Chen Z, Chung HY. Pseudo-Taste Cells Derived from Rat Taste and Non-Taste Tissues: Implications for Cultured Taste Cell-Based Biosensors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10826-10835. [PMID: 35998688 DOI: 10.1021/acs.jafc.2c04934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although the technique for taste cell culture has been reported, cultured taste cells have remained poorly validated. This study systematically compared the cultured cells derived from both taste and non-taste tissues. Fourteen cell lines established from rat circumvallate papillae (RCVs* or RCVs), non-taste lingual epithelia (RVEs), and tail skins (RTLs) were analyzed by PCR, immunocytochemistry, proteomics, and calcium imaging. The cell lines were morphologically indistinguishable, and all expressed some taste-related molecules. Of the tested RCVs*, RCVs, RVEs, and RTLs (%), 84.7 ± 7.8, 63.9 ± 22.8, 46.8 ± 0.3, and 40.8 ± 15.1 of them were responsive to at least one tastant or ATP, respectively. However, the calcium signaling pathways in the responding cells differed from the canonical taste transduction pathways in the taste cells in vivo, suggesting that they were not genuine taste cells. In addition, the growth medium intended for taste cell culture did not prevent the proliferation of non-gustatory epithelial cells regardless of supplementation of Y-27632 and EGF. In conclusion, the current method for taste cell culture is susceptible to pseudo-taste cells that may lead to overinterpretation. Thus, biosensors that rely on calcium responses of cultured taste cells should be applied with extreme caution.
Collapse
Affiliation(s)
- Zixing Chen
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hau Yin Chung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
34
|
Chen H, Zhang W, Maskey N, Yang F, Zheng Z, Li C, Wang R, Wu P, Mao S, Zhang J, Yan Y, Li W, Yao X. Urological cancer organoids, patients' avatars for precision medicine: past, present and future. Cell Biosci 2022; 12:132. [PMID: 35986387 PMCID: PMC9389738 DOI: 10.1186/s13578-022-00866-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022] Open
Abstract
Urological cancers are common malignant cancers worldwide, with annually increasing morbidity and mortality rates. For decades, two-dimensional cell cultures and animal models have been widely used to study the development and underlying molecular mechanisms of urological cancers. However, they either fail to reflect cancer heterogeneity or are time-consuming and labour-intensive. The recent emergence of a three-dimensional culture model called organoid has the potential to overcome the shortcomings of traditional models. For example, organoids can recapitulate the histopathological and molecular diversity of original cancer and reflect the interaction between cancer and surrounding cells or stroma by simulating tumour microenvironments. Emerging evidence suggests that urine-derived organoids can be generated, which could be a novel non-invasive liquid biopsy method that provides new ideas for clinical precision therapy. However, the current research on organoids has encountered some bottlenecks, such as the lack of a standard culture process, the need to optimize the culture medium and the inability to completely simulate the immune system in vivo. Nonetheless, cell co-culture and organoid-on-a-chip have significant potential to solve these problems. In this review, the latest applications of organoids in drug screening, cancer origin investigation and combined single-cell sequencing are illustrated. Furthermore, the development and application of organoids in urological cancers and their challenges are summarised.
Collapse
|
35
|
Smith CJ, Parkinson EK, Yang J, Pratten J, O'Toole EA, Caley MP, Braun KM. Investigating wound healing characteristics of gingival and skin keratinocytes in organotypic cultures. J Dent 2022; 125:104251. [PMID: 35961474 DOI: 10.1016/j.jdent.2022.104251] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022] Open
Abstract
OBJECTIVES The gingiva heals at an accelerated rate with reduced scarring when compared to skin. Potential well-studied factors include immune cell number, angiogenesis disparities and fibroblast gene expression. Differential keratinocyte gene expression, however, remains relatively understudied. This study explored the contrasting healing efficiencies of gingival and skin keratinocytes, alongside their differential gene expression patterns. METHODS 3D organotypic culture models of human gingiva and skin were developed using temporarily immortalised primary keratinocytes. Models were wounded for visualisation of re-epithelialisation and analysis of keratinocyte migration to close the wound gap. Concurrently, differentially expressed genes between primary gingival and skin keratinocytes were identified, validated, and functionally assessed. RESULTS Characterisation of the 3D cultures of gingiva and skin showed differentiation markers that recapitulated organisation of the corresponding in vivo tissue. Upon wounding, gingival models displayed a significantly higher efficiency in re-epithelialisation and stratification versus skin, repopulating the wound gap within 24 hours. This difference was likely due to distinct patterns of migration, with gingival cells demonstrating a form of sheet migration, in contrast to skin, where the leading edge was typically 1-2 cells thick. A candidate approach was used to identify several genes that were differentially expressed between gingival and skin keratinocytes. Knockdown of PITX1 resulted in reduced migration capacity of gingival cells. CONCLUSION Gingival keratinocytes retain in vivo superior wound healing capabilities in in vitro 2D and 3D environments. Intrinsic gene expression differences could result in gingival cells being 'primed' for healing and play a role in faster wound resolution. CLINICAL SIGNIFICANCE STATEMENT The successful development of organotypic models, that recapitulate re-epithelialisation, will underpin further studies to analyse the oral response to wound stimuli, and potential therapeutic interventions, in an in vitro environment.
Collapse
Affiliation(s)
- Chris J Smith
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, E1 2AT UK
| | - Eric K Parkinson
- Institute of Dentistry, Blizard Institute, Queen Mary University of London, London, E1 2AT
| | | | | | - Edel A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, E1 2AT UK
| | - Matthew P Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, E1 2AT UK
| | - Kristin M Braun
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, E1 2AT UK.
| |
Collapse
|
36
|
Karen-Ng LP, Ahmad US, Gomes L, Hunter KD, Wan H, Hagi-Pavli E, Parkinson EK. Extracellular Prostaglandins E1 and E2 and Inflammatory Cytokines Are Regulated by the Senescence Program in Potentially Premalignant Oral Keratinocytes. Cancers (Basel) 2022; 14:cancers14112636. [PMID: 35681614 PMCID: PMC9179502 DOI: 10.3390/cancers14112636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The early treatment of oral cancer is a high priority, as improvements in this area could lead to greater cure rates and reduced disability due to extensive surgery. Oral cancer is very difficult to detect in over 70% of cases as it develops unseen until quite advanced, sometimes rapidly. It has become apparent that there are at least two types of epithelial cells (keratinocytes) found in oral tissue on the road to cancer (premalignant). One type secretes molecules called prostaglandins but the other does not and the former may stimulate the latter to progress to malignancy, either by stimulating their proliferation or encouraging the influx of blood vessels to feed them. Additionally, we have identified regulators of prostaglandin secretion in premalignant oral cells that could be targeted in future therapies, such as inducers of cellular senescence, drugs which kill senescent cells (senolytics), steroid metabolism, cyclo-oxygenase 2 (COX2) and p38 mitogen-activated protein kinase. Abstract Potentially pre-malignant oral lesions (PPOLs) are composed of keratinocytes that are either mortal (MPPOL) or immortal (IPPOL) in vitro. We report here that MPPOL, but not generally IPPOL, keratinocytes upregulate various extracellular tumor-promoting cytokines (interleukins 6 and 8) and prostaglandins E1 (ePGE1) and E2 (ePGE2) relative to normal oral keratinocytes (NOKs). ePGE upregulation in MPPOL was independent of PGE receptor status and was associated with some but not all markers of cellular senescence. Nevertheless, ePGE upregulation was dependent on the senescence program, cyclo-oxygenase 2 (COX2) and p38 mitogen-activated protein kinase and was partially regulated by hydrocortisone. Following senescence in the absence of p16INK4A, ePGEs accumulated in parallel with a subset of tumor promoting cytokine and metalloproteinase (MMP) transcripts, all of which were ablated by ectopic telomerase. Surprisingly, ataxia telangiectasia mutated (ATM) function was not required for ePGE upregulation and was increased in expression in IPPOL keratinocytes in line with its recently reported role in telomerase function. Only ePGE1 was dependent on p53 function, suggesting that ePGEs 1 and 2 are regulated differently in oral keratinocytes. We show here that ePGE2 stimulates IPPOL keratinocyte proliferation in vitro. Therefore, we propose that MPPOL keratinocytes promote the progression of IPPOL to oral SCC in a pre-cancerous field by supplying PGEs, interleukins and MMPs in a paracrine manner. Our results suggest that the therapeutic targeting of COX-2 might be enhanced by strategies that target keratinocyte senescence.
Collapse
Affiliation(s)
- Lee Peng Karen-Ng
- Center for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK; (L.P.K.-N.); (U.S.A.); (L.G.); (H.W.); (E.H.-P.)
- Oral Cancer Research & Coordinating Center (OCRCC), Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Usama Sharif Ahmad
- Center for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK; (L.P.K.-N.); (U.S.A.); (L.G.); (H.W.); (E.H.-P.)
| | - Luis Gomes
- Center for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK; (L.P.K.-N.); (U.S.A.); (L.G.); (H.W.); (E.H.-P.)
| | - Keith David Hunter
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
- Liverpool Head and Neck Centre, Molecular and Clinical Medicine, University of Liverpool, Liverpool L1 8JX, UK
| | - Hong Wan
- Center for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK; (L.P.K.-N.); (U.S.A.); (L.G.); (H.W.); (E.H.-P.)
| | - Eleni Hagi-Pavli
- Center for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK; (L.P.K.-N.); (U.S.A.); (L.G.); (H.W.); (E.H.-P.)
| | - Eric Kenneth Parkinson
- Center for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK; (L.P.K.-N.); (U.S.A.); (L.G.); (H.W.); (E.H.-P.)
- Correspondence: ; Tel.: +44-(0)-2078827185 or +44-(0)-7854046536
| |
Collapse
|
37
|
Xia S, Wu M, Zhou X, Zhang X, Ye L, Zhang K, Kang Y, Liu J, Zhang Y, Wu W, Dong D, Chen H, Li H. Treating intrauterine adhesion using conditionally reprogrammed physiological endometrial epithelial cells. Stem Cell Res Ther 2022; 13:178. [PMID: 35505443 PMCID: PMC9066886 DOI: 10.1186/s13287-022-02860-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/21/2022] [Indexed: 01/18/2023] Open
Abstract
Background There is unmet need for effective therapies of intrauterine adhesions (IUAs) that are common cause of menstrual disturbance and infertility, since current clinical procedures do not improve prognosis for patients with moderate to severe IUA, with a recurrence rate of 23–50%. Stem cell-based therapy has emerged as a therapeutic option with unsolved issues for IUA patients in the past few years. Primary endometrial epithelial cells for cell therapy are largely hampered with the extremely limited proliferation capacity of uterine epithelial cells. This study was to evaluate whether IUA is curable with conditionally reprogrammed (CR) endometrial epithelial cells. Methods Mouse endometrial epithelial cells (MEECs) were isolated from C57BL female mice, and long-term cultures of MEECs were established and maintained with conditional reprogramming (CR) method. DNA damage response analysis, soft agar assay, and matrigel 3D culture were carried out to determine the normal biological characteristics of CR-MEECs. The tissue-specific differentiation potential of MEECs was analyzed with air–liquid interface (ALI) 3D culture, hematoxylin and eosin (H&E) staining, Masson’s trichrome and DAB staining, immunofluorescence assay. IUA mice were constructed and transplanted with CR-MEECs. Repair and mechanisms of MEECs transplantation in IUA mice were measured with qRT-PCR, Masson’s trichrome, and DAB staining. Results We first successfully established long-term cultures of MEECs using CR approach. CR-MEECs maintained a rapid and stable proliferation in this co-culture system. Our data confirmed that CR-MEECs retained normal biological characteristics and endometrium tissue-specific differentiation potential. CR-MEECs also expressed estrogen and progesterone receptors and maintained the exquisite sensitivity to sex hormones in vitro. Most importantly, allogeneic transplantation of CR-MEECs successfully repaired the injured endometrium and significantly improved the pregnancy rate of IUA mice. Conclusions Conditionally reprogrammed physiological endometrial epithelial cells provide a novel strategy in IUA clinics in a personalized or generalized manner and also serve as a physiological model to explore biology of endometrial epithelial cells and mechanisms of IUA.
Collapse
Affiliation(s)
- Siyu Xia
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Ming Wu
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Xinhao Zhou
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Xiu Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Lina Ye
- Wuhan University Shenzhen Institute, Shenzhen, 518057, Guangdong, China
| | - Kang Zhang
- Wuhan University Shenzhen Institute, Shenzhen, 518057, Guangdong, China
| | - Yiyi Kang
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Jun Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yunci Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Wang Wu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Dirong Dong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Hong Chen
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - Hui Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China. .,Wuhan University Shenzhen Institute, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
38
|
Yu L, Majerciak V, Zheng ZM. HPV16 and HPV18 Genome Structure, Expression, and Post-Transcriptional Regulation. Int J Mol Sci 2022; 23:ijms23094943. [PMID: 35563334 PMCID: PMC9105396 DOI: 10.3390/ijms23094943] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/18/2022] Open
Abstract
Human papillomaviruses (HPV) are a group of small non-enveloped DNA viruses whose infection causes benign tumors or cancers. HPV16 and HPV18, the two most common high-risk HPVs, are responsible for ~70% of all HPV-related cervical cancers and head and neck cancers. The expression of the HPV genome is highly dependent on cell differentiation and is strictly regulated at the transcriptional and post-transcriptional levels. Both HPV early and late transcripts differentially expressed in the infected cells are intron-containing bicistronic or polycistronic RNAs bearing more than one open reading frame (ORF), because of usage of alternative viral promoters and two alternative viral RNA polyadenylation signals. Papillomaviruses proficiently engage alternative RNA splicing to express individual ORFs from the bicistronic or polycistronic RNA transcripts. In this review, we discuss the genome structures and the updated transcription maps of HPV16 and HPV18, and the latest research advances in understanding RNA cis-elements, intron branch point sequences, and RNA-binding proteins in the regulation of viral RNA processing. Moreover, we briefly discuss the epigenetic modifications, including DNA methylation and possible APOBEC-mediated genome editing in HPV infections and carcinogenesis.
Collapse
|
39
|
Koch PJ, Webb S, Gugger JA, Salois MN, Koster MI. Differentiation of Human Induced Pluripotent Stem Cells into Keratinocytes. Curr Protoc 2022; 2:e408. [PMID: 35384405 PMCID: PMC9011197 DOI: 10.1002/cpz1.408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Investigating basic biological mechanisms underlying human diseases relies on the availability of sufficient quantities of patient cells. As most primary somatic cells have a limited lifespan, obtaining sufficient material for biological studies has been a challenge. The development of induced pluripotent stem cell (iPSC) technology has been a game changer, especially in the field of rare genetic disorders. iPSC are essentially immortal, can be stored indefinitely, and can thus be used to generate defined somatic cells in unlimited quantities. Further, the availability of genome editing technologies, such as CRISPR/CAS, has provided us with the opportunity to create “designer” iPSC lines with defined genetic characteristics. A major advancement in biological research stems from the development of methods to direct iPSC differentiation into defined cell types. In this article, we provide the basic protocol for the generation of human iPSC‐derived keratinocytes (iPSC‐K). These cells have the characteristics of basal epidermal keratinocytes and represent a tool for the investigation of normal epidermal biology, as well as genetic and acquired skin disorders. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Directed differentiation of human iPSC into keratinocytes Support Protocol 1: Coating cell culture dishes or plates with Vitronectin XF™ Support Protocol 2: Freezing iPSC Support Protocol 3: Preparing AggreWell™400 6‐well plates for EB formation Support Protocol 4: Coating cell culture dishes or plates with Collagen IV Support Protocol 5: Immunofluorescence staining of cells
Collapse
Affiliation(s)
- Peter J Koch
- Department of Anatomy and Cell Biology, Brody School of Medicine (BSOM) at East Carolina University (ECU), 600 Moye Blvd, Greenville, North Carolina
| | - Saiphone Webb
- Department of Anatomy and Cell Biology, Brody School of Medicine (BSOM) at East Carolina University (ECU), 600 Moye Blvd, Greenville, North Carolina
| | - Jessica A Gugger
- Department of Anatomy and Cell Biology, Brody School of Medicine (BSOM) at East Carolina University (ECU), 600 Moye Blvd, Greenville, North Carolina
| | - Maddison N Salois
- Department of Anatomy and Cell Biology, Brody School of Medicine (BSOM) at East Carolina University (ECU), 600 Moye Blvd, Greenville, North Carolina
| | - Maranke I Koster
- Department of Anatomy and Cell Biology, Brody School of Medicine (BSOM) at East Carolina University (ECU), 600 Moye Blvd, Greenville, North Carolina
| |
Collapse
|
40
|
ROCK ‘n TOR: An Outlook on Keratinocyte Stem Cell Expansion in Regenerative Medicine via Protein Kinase Inhibition. Cells 2022; 11:cells11071130. [PMID: 35406693 PMCID: PMC8997668 DOI: 10.3390/cells11071130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
Keratinocyte stem cells play a fundamental role in homeostasis and repair of stratified epithelial tissues. Transplantation of cultured keratinocytes autografts provides a landmark example of successful cellular therapies by restoring durable integrity in stratified epithelia lost to devastating tissue conditions. Despite the overall success of such procedures, failures still occur in case of paucity of cultured stem cells in therapeutic grafts. Strategies aiming at a further amplification of stem cells during keratinocyte ex vivo expansion may thus extend the applicability of these treatments to subjects in which endogenous stem cells pools are depauperated by aging, trauma, or disease. Pharmacological targeting of stem cell signaling pathways is recently emerging as a powerful strategy for improving stem cell maintenance and/or amplification. Recent experimental data indicate that pharmacological inhibition of two prominent keratinocyte signaling pathways governed by apical mTOR and ROCK protein kinases favor stem cell maintenance and/or amplification ex vivo and may improve the effectiveness of stem cell-based therapeutic procedures. In this review, we highlight the pathophysiological roles of mTOR and ROCK in keratinocyte biology and evaluate existing pre-clinical data on the effects of their inhibition in epithelial stem cell expansion for transplantation purposes.
Collapse
|
41
|
Cao J, Chan WC, Chow MSS. Use of conditional reprogramming cell, patient derived xenograft and organoid for drug screening for individualized prostate cancer therapy: Current and future perspectives (Review). Int J Oncol 2022; 60:52. [PMID: 35322860 DOI: 10.3892/ijo.2022.5342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/14/2022] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer mortality is ranked second among all cancer mortalities in men worldwide. There is a great need for a method of efficient drug screening for precision therapy, especially for patients with existing drug‑resistant prostate cancer. Based on the concept of bacterial cell culture and drug sensitivity testing, the traditional approach of cancer drug screening is inadequate. The current and more innovative use of cancer cell culture and in vivo tumor models in drug screening for potential individualization of anti‑cancer therapy is reviewed and discussed in the present review. An ideal screening model would have the ability to identify drug activity for the targeted cells resembling what would have occurred in the in vivo environment. Based on this principle, three available cell culture/tumor screening models for prostate cancer are reviewed and considered. The culture conditions, advantages and disadvantages for each model together with ideas to best utilize these models are discussed. The first screening model uses conditional reprogramed cells derived from patient cancer cells. Although these cells are convenient to grow and use, they are likely to have different markers and characteristics from original tumor cells and thus not likely to be informative. The second model employs patient derived xenograft (PDX) which resembles an in vivo approach, but its main disadvantages are that it cannot be easily genetically modified and it is not suitable for high‑throughput drug screening. Finally, high‑throughput screening is more feasible with tumor organoids grown from patient cancer cells. The last system still needs a large number of tumor cells. It lacks in situ blood vessels, immune cells and the extracellular matrix. Based on these current models, future establishment of an organoid data bank would allow the selection of a specific organoid resembling that of an individual's prostate cancer and used for screening of suitable anticancer drugs. This can be further confirmed using the PDX model. Thus, this combined organoid‑PDX approach is expected to be able to provide the drug sensitivity testing approach for individualization of prostate cancer therapy in the near future.
Collapse
Affiliation(s)
- Jessica Cao
- College of Osteopathic Medicine of The Pacific, Western University of Health Sciences, Pomona, CA 91766‑1854, USA
| | - Wing C Chan
- City of Hope Comprehensive Cancer Center, City of Hope Medical Center, Duarte, CA 91010‑3012, USA
| | - Moses S S Chow
- College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766‑1854, USA
| |
Collapse
|
42
|
Functional antagonism between ΔNp63α and GCM1 regulates human trophoblast stemness and differentiation. Nat Commun 2022; 13:1626. [PMID: 35338152 PMCID: PMC8956607 DOI: 10.1038/s41467-022-29312-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
Abstract
The combination of EGF, CHIR99021, A83-01, SB431542, VPA, and Y27632 (EGF/CASVY) facilitates the derivation of trophoblast stem (TS) cells from human blastocysts and first-trimester, but not term, cytotrophoblasts. The mechanism underlying this chemical induction of TS cells remains elusive. Here we demonstrate that the induction efficiency of cytotrophoblast is determined by functional antagonism of the placental transcription factor GCM1 and the stemness regulator ΔNp63α. ΔNp63α reduces GCM1 transcriptional activity, whereas GCM1 inhibits ΔNp63α oligomerization and autoregulation. EGF/CASVY cocktail activates ΔNp63α, thereby partially inhibiting GCM1 activity and reverting term cytotrophoblasts into stem cells. By applying hypoxia condition, we can further reduce GCM1 activity and successfully induce term cytotrophoblasts into TS cells. Consequently, we identify mitochondrial creatine kinase 1 (CKMT1) as a key GCM1 target crucial for syncytiotrophoblast differentiation and reveal decreased CKMT1 expression in preeclampsia. Our study delineates the molecular underpinnings of trophoblast stemness and differentiation and an efficient method to establish TS cells from term placentas. Trophoblast stem cells can be derived from human blastocysts and first-trimester, but not term, cytotrophoblasts. Here the authors show that induction efficiency of cytotrophoblast is determined by antagonism between GCM1 and ΔNp63α and manipulating this antagonism facilitates derivation of TS cells from term placenta.
Collapse
|
43
|
Brimer N, Vande Pol S. Human papillomavirus type 16 E6 induces cell competition. PLoS Pathog 2022; 18:e1010431. [PMID: 35320322 PMCID: PMC8979454 DOI: 10.1371/journal.ppat.1010431] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/04/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
High-risk human papillomavirus (HPV) infections induce squamous epithelial tumors in which the virus replicates. Initially, the virus-infected cells are untransformed, but expand in both number and area at the expense of uninfected squamous epithelial cells. We have developed an in vitro assay in which colonies of post-confluent HPV16 expressing cells outcompete and displace confluent surrounding uninfected keratinocytes. The enhanced colony competition induced by the complete HPV16 genome is conferred by E6 expression alone, not by individual expression of E5 or E7, and requires E6 interaction with p53. E6-expressing keratinocytes undermine and displace adjacent normal keratinocytes from contact with the attachment substrate, thereby expanding the area of the E6-expressing colony at the expense of normal keratinocytes. These new results separate classic oncogenicity that is primarily conferred by HPV16 E7 from cell competition that we show is primarily conferred by E6 and provides a new biological role for E6 oncoproteins from high-risk human papillomaviruses. Microbial infections can change the fate and behavior of normal vertebrate cells to resemble oncogenic cells. High-risk papillomaviruses induce infected squamous epithelial cells to form tumors, some of which evolve into malignancies. The present work shows that the enhanced competitiveness of HPV16-infected cells for the basal cell surface is primarily due to the expression of the E6 oncoprotein and not the E7 or E5 oncoproteins. Compared to normal keratinocytes, E6 induces a super-competitor phenotype while E5 and E7 do not. This work shows the importance of measuring oncoprotein traits not only as cell autonomous traits, but in the context of competition with uninfected cells and shows the potential of papillomavirus oncoproteins to be novel genetic probes for the analysis of cell competition.
Collapse
Affiliation(s)
- Nicole Brimer
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Scott Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
44
|
Ziegler P, Reznik AS, Kitchloo SP, Wang E, Lee SE, Green A, Myerburg MM, Sample CE, Shair KHY. Three-dimensional Models of the Nasopharynx for the Study of Epstein-Barr Virus Infection. Bio Protoc 2022; 12:e4365. [PMID: 35434197 PMCID: PMC8986362 DOI: 10.21769/bioprotoc.4365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/16/2021] [Accepted: 03/04/2022] [Indexed: 10/12/2024] Open
Abstract
The ubiquitous and cancer-associated Epstein-Barr virus (EBV) is associated with nearly all cases of nasopharyngeal carcinoma (NPC). Nasopharyngeal tissue is comprised of both pseudostratified and stratified epithelium, which are modeled in three-dimensional (3-D) cell culture. The cellular origin of EBV-associated NPC is as yet unknown, but both latent and lytic infections are likely important for preneoplastic mechanisms and replenishing the compartmentalized viral reservoir. Conventional 2-D cultures of nasopharyngeal epithelial cells (as primary cells or immortalized cell lines) are difficult to infect with EBV and cannot mimic the tissue-specific biology of the airway epithelium, which can only be captured in 3-D models. We have shown that EBV can infect the pseudostratified epithelium in air-liquid interface (ALI) culture using primary conditionally reprogrammed cells (CRCs) derived from the nasopharynx. In this protocol, we provide a step-by-step guide for the (i) conditional reprogramming of primary nasopharyngeal cells, (ii) differentiation of CRCs into pseudostratified epithelium in ALI culture (known as pseudo-ALI), and (iii) EBV infection of pseudo-ALI cultures. Additionally, we show that nasopharyngeal CRCs can be grown as organotypic rafts and subjected to EBV infection. These nasopharyngeal-derived 3-D cell cultures can be used to study EBV latent and lytic infection in relation to cell type and donor variation, by immunostaining and single-cell RNA-sequencing methods ( Ziegler et al., 2021 ). These methods are useful for studies of EBV molecular pathogenesis, and can overcome many of the limitations associated with conventional 2-D cell cultures. Graphic abstract: Workflow of nasopharyngeal-derived conditionally reprogrammed cells grown into pseudostratified-ALI and organotypic rafts in 3-D cell culture. Created with Biorender.com.
Collapse
Affiliation(s)
- Phillip Ziegler
- University of Pittsburgh Medical Center (UPMC) Cancer Virology Program, Pittsburgh, PA, United States
| | - Alex S. Reznik
- University of Pittsburgh Medical Center (UPMC) Cancer Virology Program, Pittsburgh, PA, United States
| | - Shweta P. Kitchloo
- University of Pittsburgh Medical Center (UPMC) Cancer Virology Program, Pittsburgh, PA, United States
| | - Eric Wang
- UPMC Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Stella E. Lee
- UPMC Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anthony Green
- University of Pittsburgh Research Histology Services, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael M. Myerburg
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Clare E. Sample
- The Penn State Hershey Cancer Institute, Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Kathy Ho Yen Shair
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
45
|
Karim N, Lin LW, Van Eenennaam JP, Fangue NA, Schreier AD, Phillips MA, Rice RH. Epidermal cell cultures from white and green sturgeon (Acipenser transmontanus and medirostris): Expression of TGM1-like transglutaminases and CYP4501A. PLoS One 2022; 17:e0265218. [PMID: 35294467 PMCID: PMC8926185 DOI: 10.1371/journal.pone.0265218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/25/2022] [Indexed: 11/18/2022] Open
Abstract
Using a system optimized for propagating human keratinocytes, culture of skin samples from white and green sturgeons generated epithelial cells capable of making cross-linked protein envelopes. Two distinct forms of TGM1-like mRNA were molecularly cloned from the cells of white sturgeon and detected in green sturgeon cells, accounting for their cellular envelope forming ability. The protein translated from each displayed a cluster of cysteine residues resembling the membrane anchorage region expressed in epidermal cells of teleosts and tetrapods. One of the two mRNA forms (called A) was present at considerably higher levels than the other (called B) in both species. Continuous lines of white sturgeon epidermal cells were established and characterized. Size measurements indicated that a substantial fraction of the cells became enlarged, appearing similar to squames in human epidermal keratinocyte cultures. The cultures also expressed CYP1A, a cytochrome P450 enzyme inducible by activation of aryl hydrocarbon receptor 2 in fish. The cells gradually improved in growth rate over a dozen passages while retaining envelope forming ability, TGM1 expression and CYP1A inducibility. These cell lines are thus potential models for studying evolution of fish epidermis leading to terrestrial adaptation and for testing sturgeon sensitivity to environmental stresses such as pollution.
Collapse
Affiliation(s)
- Noreen Karim
- Department of Environmental Toxicology, University of California, Davis, California, United States of America
- * E-mail:
| | - Lo-Wei Lin
- Department of Environmental Toxicology, University of California, Davis, California, United States of America
| | - Joel P. Van Eenennaam
- Department of Animal Science, University of California, Davis, California, United States of America
| | - Nann A. Fangue
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, California, United States of America
| | - Andrea D. Schreier
- Department of Animal Science, University of California, Davis, California, United States of America
| | - Marjorie A. Phillips
- Department of Environmental Toxicology, University of California, Davis, California, United States of America
| | - Robert H. Rice
- Department of Environmental Toxicology, University of California, Davis, California, United States of America
| |
Collapse
|
46
|
Mitsuboshi S, Homma J, Sekine H, Takagi R, Shimizu T, Kanzaki M. A novel alveolar epithelial cell sheet fabricated under feeder-free conditions for potential use in pulmonary regenerative therapy. Regen Ther 2022; 19:113-121. [PMID: 35582208 PMCID: PMC9073894 DOI: 10.1016/j.reth.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Methods Results Conclusions Alveolar epithelial cells were cultured and expanded under feeder-free conditions. Alveolar epithelial cell sheets were generated using temperature-responsive dishes. Alveolar epithelial cell sheets engrafted after transplantation onto rat lung. The sheets retained alveolar epithelial cell characteristics after transplantation. These cell sheets potentially could be used for pulmonary regenerative therapy.
Collapse
|
47
|
van Ee A, Kim D, Prizmic V, Rho H, Park Y, Evans B, Kim S, Lee S, Wang G, Yu J, Kane MA, Garza LA. CD14 Is Induced by Retinoic Acid and Is Required for Double Stranded Noncoding RNA-Induced Regeneration. J Invest Dermatol 2022; 142:2291-2294.e7. [PMID: 34999109 PMCID: PMC9259758 DOI: 10.1016/j.jid.2021.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Amy van Ee
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Dongwon Kim
- Department of Bio-Chemical Engineering, Dongseo University, Busan, Republic of Korea
| | - Vicky Prizmic
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Hyunyoung Rho
- Department of Bio-Chemical Engineering, Dongseo University, Busan, Republic of Korea
| | - Yukyung Park
- Department of Bio-Chemical Engineering, Dongseo University, Busan, Republic of Korea
| | - Benjamin Evans
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sooah Kim
- Department of Environment Science and Biotechnology, Jeonju University, Jeonju, Republic of Korea
| | - Sam Lee
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Gaofeng Wang
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Luis A Garza
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
48
|
Lee AJ, Fraser E, Flowers B, Kim J, Wong K, Cataisson C, Liu H, Yang H, Lee MP, Yuspa SH, Li L. RAS induced senescence of skin keratinocytes is mediated through Rho-associated protein kinase (ROCK). Mol Carcinog 2021; 60:799-812. [PMID: 34534377 PMCID: PMC8585695 DOI: 10.1002/mc.23351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 11/07/2022]
Abstract
Cellular senescence is a well-documented response to oncogene activation in many tissues. Multiple pathways are invoked to achieve senescence indicating its importance to counteract the transforming activities of oncogenic stimulation. We now report that the Rho-associated protein kinase (ROCK) signaling pathway is a critical regulator of oncogene-induced senescence in skin carcinogenesis. Transformation of mouse keratinocytes with oncogenic RAS upregulates ROCK activity and initiates a senescence response characterized by cell enlargement, growth inhibition, upregulation of senescence associated β-galactosidase (SAβgal) expression, and release of multiple pro-inflammatory factors comprising the senescence-associated secretory phenotype (SASP). The addition of the ROCK inhibitor Y-27632 and others prevents these senescence responses and maintains proliferating confluent RAS transformed keratinocyte cultures indefinitely. Mechanistically, oncogenic RAS transformation is associated with upregulation of cell cycle inhibitors p15Ink4b , p16Ink4a , and p19Arf and downregulation of p-AKT, all of which are reversed by Y-27632. RNA-seq analysis of Y-27632 treated RAS-transformed keratinocytes indicated that the inhibitor reduced growth-inhibitory gene expression profiles and maintained expression of proliferative pathways. Y-27632 also reduced the expression of NF-κB effector genes and the expression of IκBζ downstream mediators. The senescence inhibition from Y-27632 was reversible, and upon its removal, senescence reoccurred in vitro with rapid upregulation of cell cycle inhibitors, SASP expression, and cell detachment. Y-27632 treated cultured RAS-keratinocytes formed tumors in the absence of the inhibitor when placed in skin orthografts suggesting that factors in the tumor microenvironment can overcome the drive to senescence imparted by overactive ROCK activity.
Collapse
Affiliation(s)
- Alex J. Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda Maryland 20892
| | - Elise Fraser
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda Maryland 20892
| | - Brittany Flowers
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda Maryland 20892
| | - Jee Kim
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda Maryland 20892
| | - Kenneth Wong
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda Maryland 20892
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda Maryland 20892
| | - Huaitian Liu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda Maryland 20892
| | - Howard Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda Maryland 20892
| | - Maxwell P. Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda Maryland 20892
| | - Stuart H. Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda Maryland 20892
| | - Luowei Li
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda Maryland 20892
| |
Collapse
|
49
|
Takagi R, Tanuma-Takahashi A, Akiyama S, Kaneko W, Miura C, Yamato M, Shimizu T, Umezawa A. Laminin-511-derived recombinant fragment and Rho kinase inhibitor Y-27632 facilitate serial cultivation of keratinocytes differentiated from human embryonic stem cells. Regen Ther 2021; 18:242-252. [PMID: 34409136 PMCID: PMC8342860 DOI: 10.1016/j.reth.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Keratinocytes derived from pluripotent stem cells have a short proliferative lifespan under conventional culture conditions that are optimized for keratinocytes. Recently, a Rho kinase inhibitor, Y-27632, had been used as a standard supplement for culture medium in which the proliferative lifespan of postnatal keratinocytes was markedly expanded. In addition, recombinant human laminin-511 was demonstrated to be an adhesive ligand for promoting proliferation of cultured epidermal keratinocytes. Based on this knowledge, efficacies of Y-27632 and a laminin511-derived recombinant fragment, known as laminin-511 E8 fragment (LN-511-E8), were evaluated for establishing cultivation methods of keratinocyte differentiated from human embryonic stem cells (hESC). METHODS Differentiated cells from hESCs, which were established with clinical grade in previous study, were seeded onto culture dishes coated with LN-511-E8 and co-cultured with a mouse feeder layer in serum-free medium supplemented with Y-27632. Before serial cultivation, hESC-derived keratinocytes were separated from other differentiated cells by trypsinization. The isolated hESC-derived keratinocytes were used for evaluating clonogenicity, gene expression analysis for keratinocyte markers, potency of terminal differentiation by air-lifting culture, and long-term proliferation activity by serial cultivation. Moreover, efficacies of Y-27632, LN-511-E8, and mouse feeder layer were evaluated on proliferation of hESC-derived keratinocytes. RESULTS hESC-derived keratinocytes with activity of clonal growth were successfully isolated by trypsinization and exhibited potency of differentiation to form stratified epidermal equivalents with expressions of progenitor and differentiation markers of epidermal keratinocyte. Y-27632 and LN-511-E8 were required for maintaining the proliferative activity of the hESC-derived keratinocytes in serially cultivation using mouse feeder layer with stable doubling time during logarithmic growth phase. CONCLUSIONS These results indicate the utility of Y-27632 and LN-511-E8 for serial cultivation of hESC-derived keratinocytes, which have a potential for fabricating allogeneic cellular products in clinical situations for regeneration of stratified epithelial tissues.
Collapse
Affiliation(s)
- Ryo Takagi
- Center of Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Akiko Tanuma-Takahashi
- Center of Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Saeko Akiyama
- Center of Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Wakana Kaneko
- Center of Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Chika Miura
- Center of Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Akihiro Umezawa
- Center of Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| |
Collapse
|
50
|
Noel S, Servel N, Hatton A, Golec A, Rodrat M, Ng DRS, Li H, Pranke I, Hinzpeter A, Edelman A, Sheppard DN, Sermet-Gaudelus I. Correlating genotype with phenotype using CFTR-mediated whole-cell Cl - currents in human nasal epithelial cells. J Physiol 2021; 600:1515-1531. [PMID: 34761808 DOI: 10.1113/jp282143] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Dysfunction of the epithelial anion channel cystic fibrosis transmembrane conductance regulator (CFTR) causes a wide spectrum of disease, including cystic fibrosis (CF) and CFTR-related diseases (CFTR-RDs). Here, we investigate genotype-phenotype-CFTR function relationships using human nasal epithelial (hNE) cells from a small cohort of non-CF subjects and individuals with CF and CFTR-RDs and genotypes associated with either residual or minimal CFTR function using electrophysiological techniques. Collected hNE cells were either studied directly with the whole-cell patch-clamp technique or grown as primary cultures at an air-liquid interface after conditional reprogramming. The properties of cAMP-activated whole-cell Cl- currents in freshly isolated hNE cells identified them as CFTR-mediated. Their magnitude varied between hNE cells from individuals within the same genotype and decreased in the rank order: non-CF > CFTR residual function > CFTR minimal function. CFTR-mediated whole-cell Cl- currents in hNE cells isolated from fully differentiated primary cultures were identical to those in freshly isolated hNE cells in both magnitude and behaviour, demonstrating that conditional reprogramming culture is without effect on CFTR expression and function. For the cohort of subjects studied, CFTR-mediated whole-cell Cl- currents in hNE cells correlated well with CFTR-mediated transepithelial Cl- currents measured in vitro with the Ussing chamber technique, but not with those determined in vivo with the nasal potential difference assay. Nevertheless, they did correlate with the sweat Cl- concentration of study subjects. Thus, this study highlights the complexity of genotype-phenotype-CFTR function relationships, but emphasises the value of conditionally reprogrammed hNE cells in CFTR research and therapeutic testing. KEY POINTS: The genetic disease cystic fibrosis is caused by pathogenic variants in the cystic fibrosis transmembrane conductance regulator (CFTR), an ion channel, which controls anion flow across epithelia lining ducts and tubes in the body. This study investigated CFTR function in nasal epithelial cells from people with cystic fibrosis and CFTR variants with a range of disease severity. CFTR function varied widely in nasal epithelial cells depending on the identity of CFTR variants, but was unaffected by conditional reprogramming culture, a cell culture technique used to grow large numbers of patient-derived cells. Assessment of CFTR function in vitro in nasal epithelial cells and epithelia, and in vivo in the nasal epithelium and sweat gland highlights the complexity of genotype-phenotype-CFTR function relationships.
Collapse
Affiliation(s)
- Sabrina Noel
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Nathalie Servel
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Aurélie Hatton
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Anita Golec
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Mayuree Rodrat
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.,Center of Research and Development for Biomedical Instrumentation, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Demi R S Ng
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Hongyu Li
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Iwona Pranke
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Alexandre Hinzpeter
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Aleksander Edelman
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Isabelle Sermet-Gaudelus
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France.,Centre de Référence Maladies Rares, Mucoviscidose et Maladies Apparentées, Hôpital Necker-Enfants Malades, Paris, France.,European Reference Network on rare respiratory diseases, Frankfurt, Germany
| |
Collapse
|