1
|
Ma F, Longo M, Meroni M, Bhattacharya D, Paolini E, Mughal S, Hussain S, Anand SK, Gupta N, Zhu Y, Navarro-Corcuera A, Li K, Prakash S, Cogliati B, Wang S, Huang X, Wang X, Yurdagul A, Rom O, Wang L, Fried SK, Dongiovanni P, Friedman SL, Cai B. EHBP1 suppresses liver fibrosis in metabolic dysfunction-associated steatohepatitis. Cell Metab 2025:S1550-4131(25)00019-1. [PMID: 40015280 DOI: 10.1016/j.cmet.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/27/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025]
Abstract
Excess cholesterol accumulation contributes to fibrogenesis in metabolic dysfunction-associated steatohepatitis (MASH), but how hepatic cholesterol metabolism becomes dysregulated in MASH is not completely understood. We show that human fibrotic MASH livers have decreased EH-domain-binding protein 1 (EHBP1), a genome-wide association study (GWAS) locus associated with low-density lipoprotein (LDL) cholesterol, and that EHBP1 loss- and gain-of-function increase and decrease MASH fibrosis in mice, respectively. Mechanistic studies reveal that EHBP1 promotes sortilin-mediated PCSK9 secretion, leading to LDL receptor (LDLR) degradation, decreased LDL uptake, and reduced TAZ, a fibrogenic effector. At a cellular level, EHBP1 deficiency affects the intracellular localization of retromer, a protein complex required for sortilin stabilization. Our therapeutic approach to stabilizing retromer is effective in mitigating MASH fibrosis. Moreover, we show that the tumor necrosis factor alpha (TNF-α)/peroxisome proliferator-activated receptor alpha (PPARα) pathway suppresses EHBP1 in MASH. These data not only provide mechanistic insights into the role of EHBP1 in cholesterol metabolism and MASH fibrosis but also elucidate an interplay between inflammation and EHBP1-mediated cholesterol metabolism.
Collapse
Affiliation(s)
- Fanglin Ma
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miriam Longo
- Medicine and Metabolic Diseases, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Marica Meroni
- Medicine and Metabolic Diseases, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Dipankar Bhattacharya
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erika Paolini
- Medicine and Metabolic Diseases, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Shama Mughal
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Syed Hussain
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sumit Kumar Anand
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Neha Gupta
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yiwei Zhu
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amaia Navarro-Corcuera
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kenneth Li
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Satya Prakash
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bruno Cogliati
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shuang Wang
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xin Huang
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Liheng Wang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Susan K Fried
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
2
|
Choi YJ, Nam YA, Hyun JY, Yu J, Mun Y, Yun SH, Lee W, Park CJ, Han BW, Lee BH. Impaired chaperone-mediated autophagy leads to abnormal SORT1 (sortilin 1) turnover and CES1-dependent triglyceride hydrolysis. Autophagy 2024:1-13. [PMID: 39611307 DOI: 10.1080/15548627.2024.2435234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024] Open
Abstract
SORT1 (sortilin 1), a member of the the Vps10 (vacuolar protein sorting 10) family, is involved in hepatic lipid metabolism by regulating very low-density lipoprotein (VLDL) secretion and facilitating the lysosomal degradation of CES1 (carboxylesterase 1), crucial for triglyceride (TG) breakdown in the liver. This study explores whether SORT1 is targeted for degradation by chaperone-mediated autophagy (CMA), a selective protein degradation pathway that directs proteins containing KFERQ-like motifs to lysosomes via LAMP2A (lysosomal-associated membrane protein 2A). Silencing LAMP2A or HSPA8/Hsc70 with siRNA increased cytosolic SORT1 protein levels. Leupeptin treatment induced lysosomal accumulation of SORT1, unaffected by siLAMP2A co-treatment, indicating CMA-dependent degradation. Human SORT1 contains five KFERQ-like motifs (658VVTKQ662, 730VREVK734, 733VKDLK737, 734KDLKK738, and 735DLKKK739), crucial for HSPA8 recognition; mutating any single amino acid within these motifs decreased HSPA8 binding. Furthermore, compromised CMA activity resulted in elevated SORT1-mediated degradation of CES1, contributing to increased lipid accumulation in hepatocytes. Consistent with in vitro findings, LAMP2A knockdown in mice exacerbated high-fructose diet-induced fatty liver, marked by increased SORT1 and decreased CES1 levels. Conversely, LAMP2A overexpression promoted SORT1 degradation and CES1D accumulation, counteracting fasting-induced CES1D suppression through CMA activation. Our findings reveal that SORT1 is a substrate of CMA, highlighting its crucial role in directing CES1 to lysosomes. Consequently, disrupting CMA-mediated SORT1 degradation significantly affects CES1-dependent TG hydrolysis, thereby affecting hepatic lipid homeostasis.Abbreviations: APOB: apolipoprotein B; CES1: carboxylesterase 1; CMA: chaperone-mediated autophagy; HSPA8/Hsc70: heat shock protein family A (Hsp70) member 8; LAMP2A: lysosomal associated membrane protein 2A; LDL-C: low-density lipoprotein-cholesterol; PLIN: perilipin; SORT1: sortilin 1; TG: triglyceride; VLDL: very low-density lipoprotein; Vps10: vacuolar protein sorting 10.
Collapse
Affiliation(s)
- You-Jin Choi
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yoon Ah Nam
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji Ye Hyun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jihyeon Yu
- Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yewon Mun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung Ho Yun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Wonseok Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Cheon Jun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Byung Woo Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Byung-Hoon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Burks KH, Stitziel NO, Davidson NO. Molecular Regulation and Therapeutic Targeting of VLDL Production in Cardiometabolic Disease. Cell Mol Gastroenterol Hepatol 2024; 19:101409. [PMID: 39406347 PMCID: PMC11609389 DOI: 10.1016/j.jcmgh.2024.101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024]
Abstract
There exists a complex relationship between steatotic liver disease (SLD) and atherosclerotic cardiovascular disease (CVD). CVD is a leading cause of morbidity and mortality among individuals with SLD, particularly those with metabolic dysfunction-associated SLD (MASLD), a significant proportion of whom also exhibit features of insulin resistance. Recent evidence supports an expanded role of very low-density lipoprotein (VLDL) in the pathogenesis of CVD in patients, both with and without associated metabolic dysfunction. VLDL represents the major vehicle for exporting neutral lipid from hepatocytes, with each particle containing one molecule of apolipoproteinB100 (APOB100). VLDL production becomes dysregulated under conditions characteristic of MASLD including steatosis and insulin resistance. Insulin resistance not only affects VLDL production but also mediates the pathogenesis of atherosclerotic CVD. VLDL assembly and secretion therefore represents an important pathway in the setting of cardiometabolic disease and offers several candidates for therapeutic targeting, particularly in metabolically complex patients with MASLD at increased risk of atherosclerotic CVD. Here we review the clinical significance as well as the translational and therapeutic potential of key regulatory steps impacting VLDL initiation, maturation, secretion, catabolism, and clearance.
Collapse
Affiliation(s)
- Kendall H Burks
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, Saint Louis, Missouri
| | - Nathan O Stitziel
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, Saint Louis, Missouri
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri.
| |
Collapse
|
4
|
Borén J, Taskinen MR, Packard CJ. Biosynthesis and Metabolism of ApoB-Containing Lipoproteins. Annu Rev Nutr 2024; 44:179-204. [PMID: 38635875 DOI: 10.1146/annurev-nutr-062222-020716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Recent advances in human genetics, together with a substantial body of epidemiological, preclinical and clinical trial evidence, strongly support a causal relationship between triglyceride-rich lipoproteins (TRLs) and atherosclerotic cardiovascular disease. Consequently, the secretion and metabolism of TRLs have a significant impact on cardiovascular health. This knowledge underscores the importance of understanding the molecular mechanisms and regulation of very-low-density lipoprotein (VLDL) and chylomicron biogenesis. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL, leading to many ground-breaking molecular insights. Furthermore, the identification of molecular control mechanisms related to triglyceride metabolism has greatly advanced our understanding of the complex metabolism of TRLs. In this review, we explore recent advances in the assembly, secretion, and metabolism of TRLs. We also discuss available treatment strategies for hypertriglyceridemia.
Collapse
Affiliation(s)
- Jan Borén
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden;
| | - Marja-Riitta Taskinen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
5
|
Yang Q, Yang Q, Wu X, Zheng R, Lin H, Wang S, Joseph J, Sun YV, Li M, Wang T, Zhao Z, Xu M, Lu J, Chen Y, Ning G, Wang W, Bi Y, Zheng J, Xu Y. Sex-stratified genome-wide association and transcriptome-wide Mendelian randomization studies reveal drug targets of heart failure. Cell Rep Med 2024; 5:101382. [PMID: 38237596 PMCID: PMC10897518 DOI: 10.1016/j.xcrm.2023.101382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024]
Abstract
The prevalence of heart failure (HF) subtypes, which are classified by left ventricular ejection fraction (LVEF), demonstrate significant sex differences. Here, we perform sex-stratified genome-wide association studies (GWASs) on LVEF and transcriptome-wide Mendelian randomization (MR) on LVEF, all-cause HF, HF with reduced ejection fraction (HFrEF), and HF with preserved ejection fraction (HFpEF). The sex-stratified GWASs of LVEF identified three sex-specific loci that were exclusively detected in the sex-stratified GWASs. Three drug target genes show sex-differential effects on HF/HFrEF via influencing LVEF, with NPR2 as the target gene for the HF drug Cenderitide under phase 2 clinical trial. Our study highlights the importance of considering sex-differential genetic effects in sex-balanced diseases such as HF and emphasizes the value of sex-stratified GWASs and MR in identifying putative genetic variants, causal genes, and candidate drug targets for HF, which is not identifiable using a sex-combined strategy.
Collapse
Affiliation(s)
- Qianqian Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian Yang
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| | - Xueyan Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruizhi Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jacob Joseph
- Cardiology Section, VA Providence Healthcare System, 830 Chalkstone Avenue, Providence, RI 02908, USA; Department of Medicine, Warren Alpert Medical School of Brown University, 222 Richmond Street, Providence, RI 02903, USA
| | - Yan V Sun
- Emory University Rollins School of Public Health, Atlanta, GA, USA; Atlanta VA Health Care System, Decatur, GA, USA
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Chan KKS, Au KY, Suen LH, Leung B, Wong CY, Leow WQ, Lim TKH, Ng IOL, Chung CYS, Lo RCL. Sortilin-Driven Cancer Secretome Enhances Tumorigenic Properties of Hepatocellular Carcinoma via de Novo Lipogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:2156-2171. [PMID: 37673328 DOI: 10.1016/j.ajpath.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023]
Abstract
A growing body of evidence suggests de novo lipogenesis as a key metabolic pathway adopted by cancers to fuel tumorigenic processes. While increased de novo lipogenesis has also been reported in hepatocellular carcinoma (HCC), understanding on molecular mechanisms driving de novo lipogenesis remains limited. In the present study, the functional role of sortilin, a member of the vacuolar protein sorting 10 protein receptor family, in HCC was investigated. Sortilin was overexpressed in HCC and was associated with poorer survival outcome. In functional studies, sortilin-overexpressing cells conferred tumorigenic phenotypes, namely, self-renewal and metastatic potential, of HCC cells via the cancer secretome. Proteomic profiling highlighted fatty acid metabolism as a potential molecular pathway associated with sortilin-driven cancer secretome. This finding was validated by the increased lipid content and expression of fatty acid synthase (FASN) in HCC cells treated with conditioned medium collected from sortilin-overexpressing cells. The enhanced tumorigenic properties endowed by sortilin-driven cancer secretome were partly abrogated by co-administration of FASN inhibitor C75. Further mechanistic dissection suggested protein stabilization by post-translational modification with O-GlcNAcylation as a major mechanism leading to augmented FASN expression. In conclusion, the present study uncovered the role of sortilin in hepatocarcinogenesis via modulation of the cancer secretome and deregulated lipid metabolism.
Collapse
Affiliation(s)
- Kristy Kwan-Shuen Chan
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwan-Yung Au
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Long-Hin Suen
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bernice Leung
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cheuk-Yan Wong
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wei-Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital & Duke-NUS Medical School, Singapore
| | - Tony Kiat-Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital & Duke-NUS Medical School, Singapore
| | - Irene Oi-Lin Ng
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Clive Yik-Sham Chung
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Regina Cheuk-Lam Lo
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Zhou S, Chen M, Meng M, Ma N, Xie W, Shen X, Li Z, Chang G. Subclinical ketosis leads to lipid metabolism disorder by downregulating the expression of acetyl-coenzyme A acetyltransferase 2 in dairy cows. J Dairy Sci 2023; 106:9892-9909. [PMID: 37690731 DOI: 10.3168/jds.2023-23602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
Ketosis is a metabolic disease that often occurs in dairy cows postpartum and is a result of disordered lipid metabolism. Acetyl-coenzyme A (CoA) acetyltransferase 2 (ACAT2) is important for balancing cholesterol and triglyceride (TG) metabolism; however, its role in subclinical ketotic dairy cows is unclear. This study aimed to explore the potential correlation between ACAT2 and lipid metabolism disorders in subclinical ketotic cows through in vitro and in vivo experiments. In the in vivo experiment, liver tissue and blood samples were collected from healthy cows (CON, n = 6, β-hydroxybutyric acid [BHBA] concentration <1.0 mM) and subclinical ketotic cows (subclinical ketosis [SCK], n = 6, BHBA concentration = 1.2-3.0 mM) to explore the effect of ACAT2 on lipid metabolism disorders in SCK cows. For the in vitro experiment, bovine hepatocytes (BHEC) were used as the model. The effects of BHBA on ACAT2 and lipid metabolism were investigated via BHBA concentration gradient experiments. Subsequently, the relation between ACAT2 and lipid metabolism disorder was explored by transfection with siRNA of ACAT2. Transcriptomics showed an upregulation of differentially expression genes during lipid metabolism and significantly lower ACAT2 mRNA levels in the SCK group. Compared with the CON group in vivo, the SCK group showed significantly higher expression levels of peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulator element binding protein 1c (SREBP1c) and significantly lower expression levels of peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyl-transferase 1A (CPT1A), sterol regulatory element binding transcription factor 2 (SREBP2), and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Moreover, the SCK group had a significantly higher liver TG content and significantly lower plasma total cholesterol (TC) and free cholesterol content. These results were indicative of TG and cholesterol metabolism disorders in the liver of dairy cows with SCK. Additionally, the SCK group showed an increased expression of perilipin-2 (PLIN2), decreased expression of apolipoprotein B, and decreased plasma concentration of very low-density lipoproteins (VLDL) and low-density lipoproteins cholesterol (LDL-C) by downregulating ACAT2, which indicated an accumulation of TG in liver. In vitro experiments showed that BHBA induced an increase in the TG content of BHEC, decreased content TC, increased expression of PPARγ and SREBP1c, and decreased expression of PPARα, CPT1A, SREBP2, and HMGCR. Additionally, BHBA increased the expression of PLIN2 in BHEC, decreased the expression and fluorescence intensity of ACAT2, and decreased the VLDL and LDL-C contents. Furthermore, silencing ACAT2 expression increased the TG content; decreased the TC, VLDL, and LDL-C contents; decreased the expression of HMGCR and SREBP2; and increased the expression of SREBP1c; but had no effect on the expression of PLIN2. These results suggest that ACAT2 downregulation in BHEC promotes TG accumulation and inhibits cholesterol synthesis, leading to TG and cholesterol metabolic disorders. In conclusion, ACAT2 downregulation in the SCK group inhibited cholesterol synthesis, increased TG synthesis, and reduced the contents of VLDL and LDL-C, eventually leading to disordered TG and cholesterol metabolism.
Collapse
Affiliation(s)
- Shendong Zhou
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Mengru Chen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Meijuan Meng
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Wan Xie
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Zhixin Li
- Animal Disease Prevention and Control Center of Ningxia Hui Autonomous Region, Yinchuan 750001, Ningxia, P. R. China
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China; Animal Disease Prevention and Control Center of Ningxia Hui Autonomous Region, Yinchuan 750001, Ningxia, P. R. China.
| |
Collapse
|
8
|
Febbraro F, Andersen HHB, Kitt MM, Willnow TE. Spatially and temporally distinct patterns of expression for VPS10P domain receptors in human cerebral organoids. Front Cell Dev Biol 2023; 11:1229584. [PMID: 37842085 PMCID: PMC10570844 DOI: 10.3389/fcell.2023.1229584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023] Open
Abstract
Vacuolar protein sorting 10 protein (VPS10P) domain receptors are a unique class of intracellular sorting receptors that emerge as major risk factors associated with psychiatric and neurodegenerative diseases, including bipolar disorders, autism, schizophrenia, as well as Alzheimer's disease and frontotemporal dementia. Yet, the lack of suitable experimental models to study receptor functions in the human brain has hampered elucidation of receptor actions in brain disease. Here, we have adapted protocols using human cerebral organoids to the detailed characterization of VPS10P domain receptor expression during neural development and differentiation, including single-cell RNA sequencing. Our studies uncovered spatial and temporal patterns of expression unique to individual receptor species in the human brain. While SORL1 expression is abundant in stem cells and SORCS1 peaks in neural progenitors at onset of neurogenesis, SORT1 and SORCS2 show increasing expression with maturation of neuronal and non-neuronal cell types, arguing for distinct functions in development versus the adult brain. In neurons, subcellular localization also distinguishes between types of receptor species, either mainly localized to the cell soma (SORL1 and SORT1) or also to neuronal projections (SORCS1 and SORCS2), suggesting divergent functions in protein sorting between Golgi and the endo-lysosomal system or along axonal and dendritic tracks. Taken together, our findings provide an important resource on temporal, spatial, and subcellular patterns of VPS10P domain receptor expression in cerebral organoids for further elucidation of receptor (dys) functions causative of behavioral and cognitive defects of the human brain.
Collapse
Affiliation(s)
- Fabia Febbraro
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Meagan M. Kitt
- Max Delbrueck Center for Molecular Medicine, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas E. Willnow
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Max Delbrueck Center for Molecular Medicine, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
9
|
Yu Chen H, Dina C, Small AM, Shaffer CM, Levinson RT, Helgadóttir A, Capoulade R, Munter HM, Martinsson A, Cairns BJ, Trudsø LC, Hoekstra M, Burr HA, Marsh TW, Damrauer SM, Dufresne L, Le Scouarnec S, Messika-Zeitoun D, Ranatunga DK, Whitmer RA, Bonnefond A, Sveinbjornsson G, Daníelsen R, Arnar DO, Thorgeirsson G, Thorsteinsdottir U, Gudbjartsson DF, Hólm H, Ghouse J, Olesen MS, Christensen AH, Mikkelsen S, Jacobsen RL, Dowsett J, Pedersen OBV, Erikstrup C, Ostrowski SR, O’Donnell CJ, Budoff MJ, Gudnason V, Post WS, Rotter JI, Lathrop M, Bundgaard H, Johansson B, Ljungberg J, Näslund U, Le Tourneau T, Smith JG, Wells QS, Söderberg S, Stefánsson K, Schott JJ, Rader DJ, Clarke R, Engert JC, Thanassoulis G. Dyslipidemia, inflammation, calcification, and adiposity in aortic stenosis: a genome-wide study. Eur Heart J 2023; 44:1927-1939. [PMID: 37038246 PMCID: PMC10232274 DOI: 10.1093/eurheartj/ehad142] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/20/2023] [Accepted: 02/21/2023] [Indexed: 04/12/2023] Open
Abstract
AIMS Although highly heritable, the genetic etiology of calcific aortic stenosis (AS) remains incompletely understood. The aim of this study was to discover novel genetic contributors to AS and to integrate functional, expression, and cross-phenotype data to identify mechanisms of AS. METHODS AND RESULTS A genome-wide meta-analysis of 11.6 million variants in 10 cohorts involving 653 867 European ancestry participants (13 765 cases) was performed. Seventeen loci were associated with AS at P ≤ 5 × 10-8, of which 15 replicated in an independent cohort of 90 828 participants (7111 cases), including CELSR2-SORT1, NLRP6, and SMC2. A genetic risk score comprised of the index variants was associated with AS [odds ratio (OR) per standard deviation, 1.31; 95% confidence interval (CI), 1.26-1.35; P = 2.7 × 10-51] and aortic valve calcium (OR per standard deviation, 1.22; 95% CI, 1.08-1.37; P = 1.4 × 10-3), after adjustment for known risk factors. A phenome-wide association study indicated multiple associations with coronary artery disease, apolipoprotein B, and triglycerides. Mendelian randomization supported a causal role for apolipoprotein B-containing lipoprotein particles in AS (OR per g/L of apolipoprotein B, 3.85; 95% CI, 2.90-5.12; P = 2.1 × 10-20) and replicated previous findings of causality for lipoprotein(a) (OR per natural logarithm, 1.20; 95% CI, 1.17-1.23; P = 4.8 × 10-73) and body mass index (OR per kg/m2, 1.07; 95% CI, 1.05-1.9; P = 1.9 × 10-12). Colocalization analyses using the GTEx database identified a role for differential expression of the genes LPA, SORT1, ACTR2, NOTCH4, IL6R, and FADS. CONCLUSION Dyslipidemia, inflammation, calcification, and adiposity play important roles in the etiology of AS, implicating novel treatments and prevention strategies.
Collapse
Affiliation(s)
- Hao Yu Chen
- Division of Experimental Medicine, McGill University, 1001 Decarie Blvd., Room EM1.2218, Montreal, Quebec H4A 3J1, Canada
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, 1001 Decarie Blvd., Room D05.5120, Montreal, Quebec H4A 3J1, Canada
| | - Christian Dina
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 8 Quai Moncousu, Nantes F-44000, France
| | - Aeron M Small
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Christian M Shaffer
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, USA
| | - Rebecca T Levinson
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, USA
| | | | - Romain Capoulade
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 8 Quai Moncousu, Nantes F-44000, France
| | | | - Andreas Martinsson
- Department of Cardiology, Clinical Sciences, Lund University, Sweden and Skåne University Hospital, Lund, Sweden
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and the Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Benjamin J Cairns
- MRC Population Health Research Unit, Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Linea C Trudsø
- Laboratory for Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mary Hoekstra
- Division of Experimental Medicine, McGill University, 1001 Decarie Blvd., Room EM1.2218, Montreal, Quebec H4A 3J1, Canada
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, 1001 Decarie Blvd., Room D05.5120, Montreal, Quebec H4A 3J1, Canada
| | - Hannah A Burr
- Division of Experimental Medicine, McGill University, 1001 Decarie Blvd., Room EM1.2218, Montreal, Quebec H4A 3J1, Canada
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, 1001 Decarie Blvd., Room D05.5120, Montreal, Quebec H4A 3J1, Canada
| | - Thomas W Marsh
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, 1001 Decarie Blvd., Room D05.5120, Montreal, Quebec H4A 3J1, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Line Dufresne
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, 1001 Decarie Blvd., Room D05.5120, Montreal, Quebec H4A 3J1, Canada
| | - Solena Le Scouarnec
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 8 Quai Moncousu, Nantes F-44000, France
| | - David Messika-Zeitoun
- Department of Cardiology, Assistance Publique - Hôpitaux de Paris, Bichat Hospital, Paris, France
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Dilrini K Ranatunga
- Division of Research, Kaiser Permanente of Northern California, Oakland, USA
| | - Rachel A Whitmer
- Department of Public Health Sciences, University of California Davis, Davis, USA
| | - Amélie Bonnefond
- University Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, UMR1283-8199 EGID, Lille, France
- Department of Metabolism, Imperial College London, London, UK
| | | | - Ragnar Daníelsen
- Internal Medicine and Emergency Services, Landspitali—The National University Hospital of Iceland, Reykjavik, Iceland
| | - David O Arnar
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Internal Medicine and Emergency Services, Landspitali—The National University Hospital of Iceland, Reykjavik, Iceland
- School of Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Thorgeirsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Daníel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Hilma Hólm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Jonas Ghouse
- Laboratory for Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Morten Salling Olesen
- Laboratory for Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Alex H Christensen
- Laboratory for Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen, Denmark
| | - Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Louise Jacobsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Joseph Dowsett
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Christopher J O’Donnell
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Boston, USA
| | - Matthew J Budoff
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, USA
| | | | - Wendy S Post
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, USA
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Bengt Johansson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Johan Ljungberg
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Ulf Näslund
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Thierry Le Tourneau
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 8 Quai Moncousu, Nantes F-44000, France
| | - J Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University, Sweden and Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund, Sweden
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and the Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Quinn S Wells
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, USA
| | - Stefan Söderberg
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Kári Stefánsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Jean-Jacques Schott
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 8 Quai Moncousu, Nantes F-44000, France
| | - Daniel J Rader
- Departments of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Robert Clarke
- MRC Population Health Research Unit, Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - James C Engert
- Division of Experimental Medicine, McGill University, 1001 Decarie Blvd., Room EM1.2218, Montreal, Quebec H4A 3J1, Canada
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, 1001 Decarie Blvd., Room D05.5120, Montreal, Quebec H4A 3J1, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - George Thanassoulis
- Division of Experimental Medicine, McGill University, 1001 Decarie Blvd., Room EM1.2218, Montreal, Quebec H4A 3J1, Canada
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, 1001 Decarie Blvd., Room D05.5120, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
10
|
Life B, Petkau TL, Cruz GNF, Navarro-Delgado EI, Shen N, Korthauer K, Leavitt BR. FTD-associated behavioural and transcriptomic abnormalities in 'humanized' progranulin-deficient mice: A novel model for progranulin-associated FTD. Neurobiol Dis 2023; 182:106138. [PMID: 37105261 DOI: 10.1016/j.nbd.2023.106138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Frontotemporal dementia (FTD) is an early onset dementia characterized by neuropathology and behavioural changes. A common genetic cause of FTD is haploinsufficiency of the gene progranulin (GRN). Mouse models of progranulin deficiency have provided insight into progranulin neurobiology, but the description of phenotypes with preclinical relevance has been limited in the currently available heterozygous progranulin-null mice. The identification of robust and reproducible FTD-associated behavioural, neuropathological, and biochemical phenotypes in progranulin deficient mice is a critical step in the preclinical development of therapies for FTD. In this work, we report the generation of a novel, 'humanized' mouse model of progranulin deficiency that expresses a single, targeted copy of human GRN in the absence of mouse progranulin. We also report the in-depth, longitudinal characterization of humanized progranulin-deficient mice and heterozygous progranulin-null mice over 18 months. Our analysis yielded several novel progranulin-dependent physiological and behavioural phenotypes, including increased marble burying, open field hyperactivity, and thalamic microgliosis in both models. RNAseq analysis of cortical tissue revealed an overlapping profile of transcriptomic dysfunction. Further transcriptomic analysis offers new insights into progranulin neurobiology. In sum, we have identified several consistent phenotypes in two independent mouse models of progranulin deficiency that are expected to be useful endpoints in the development of therapies for progranulin-deficient FTD. Furthermore, the presence of the human progranulin gene in the humanized progranulin-deficient mice will expedite the development of clinically translatable gene therapy strategies.
Collapse
Affiliation(s)
- Benjamin Life
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 0B3, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Terri L Petkau
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 0B3, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Giuliano N F Cruz
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Erick I Navarro-Delgado
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ning Shen
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Keegan Korthauer
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 0B3, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Division of Neurology, Department of Medicine, University of British Columbia Hospital, Vancouver, BC V6T 2B5, Canada; Center for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
11
|
Liu JT, Doueiry C, Jiang YL, Blaszkiewicz J, Lamprecht MP, Heslop JA, Peterson YK, Carten JD, Traktman P, Yuan Y, Khetani SR, Twal WO, Duncan SA. A human iPSC-derived hepatocyte screen identifies compounds that inhibit production of Apolipoprotein B. Commun Biol 2023; 6:452. [PMID: 37095219 PMCID: PMC10125972 DOI: 10.1038/s42003-023-04739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/21/2023] [Indexed: 04/26/2023] Open
Abstract
Familial hypercholesterolemia (FH) patients suffer from excessively high levels of Low Density Lipoprotein Cholesterol (LDL-C), which can cause severe cardiovascular disease. Statins, bile acid sequestrants, PCSK9 inhibitors, and cholesterol absorption inhibitors are all inefficient at treating FH patients with homozygous LDLR gene mutations (hoFH). Drugs approved for hoFH treatment control lipoprotein production by regulating steady-state Apolipoprotein B (apoB) levels. Unfortunately, these drugs have side effects including accumulation of liver triglycerides, hepatic steatosis, and elevated liver enzyme levels. To identify safer compounds, we used an iPSC-derived hepatocyte platform to screen a structurally representative set of 10,000 small molecules from a proprietary library of 130,000 compounds. The screen revealed molecules that could reduce the secretion of apoB from cultured hepatocytes and from humanized livers in mice. These small molecules are highly effective, do not cause abnormal lipid accumulation, and share a chemical structure that is distinct from any known cholesterol lowering drug.
Collapse
Affiliation(s)
- Jui-Tung Liu
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Caren Doueiry
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Yu-Lin Jiang
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Josef Blaszkiewicz
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Mary Paige Lamprecht
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - James A Heslop
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Yuri K Peterson
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Juliana Debrito Carten
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Paula Traktman
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Yang Yuan
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Salman R Khetani
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | | | - Stephen A Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Grùthan Biosciences LLC, Hollywood, SC, 29449, USA.
| |
Collapse
|
12
|
Avvisato R, Jankauskas SS, Varzideh F, Kansakar U, Mone P, Santulli G. Sortilin and hypertension. Curr Opin Nephrol Hypertens 2023; 32:134-140. [PMID: 36683537 PMCID: PMC9976622 DOI: 10.1097/mnh.0000000000000866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW The current review aims to present the latest scientific updates on the role of Sortilin in the pathophysiology of hypertension. RECENT FINDINGS The main focus of this systematic overview is on the functional contribution of Sortilin to the pathogenesis of hypertension. Sortilin is a glycoprotein mostly known for its actions as a trafficking molecule directing proteins to specific secretory or endocytic compartments of the cell. Emerging evidence indicates that Sortilin is associated with pathological conditions, including inflammation, arteriosclerosis, dyslipidemia, insulin resistance, and vascular calcification. Most recently, Sortilin has been shown to finely control endothelial function and to drive hypertension by modulating sphingolipid/ceramide homeostasis and by triggering oxidative stress. SUMMARY The latest findings linking Sortilin and hypertension that are herein discussed can inspire novel areas of research which could eventually lead to the discovery of new therapeutic strategies in cardiovascular medicine.
Collapse
Affiliation(s)
- Roberta Avvisato
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research and
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Stanislovas S. Jankauskas
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research and
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Fahimeh Varzideh
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research and
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Urna Kansakar
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research and
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Pasquale Mone
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research and
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research and
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
13
|
Abstract
The global prevalences of obesity and type 2 diabetes mellitus have reached epidemic status, presenting a heavy burden on society. It is therefore essential to find novel mechanisms and targets that could be utilized in potential treatment strategies and, as such, intracellular membrane trafficking has re-emerged as a regulatory tool for controlling metabolic homeostasis. Membrane trafficking is an essential physiological process that is responsible for the sorting and distribution of signalling receptors, membrane transporters and hormones or other ligands between different intracellular compartments and the plasma membrane. Dysregulation of intracellular transport is associated with many human diseases, including cancer, neurodegeneration, immune deficiencies and metabolic diseases, such as type 2 diabetes mellitus and its associated complications. This Review focuses on the latest advances on the role of endosomal membrane trafficking in metabolic physiology and pathology in vivo, highlighting the importance of this research field in targeting metabolic diseases.
Collapse
Affiliation(s)
- Jerome Gilleron
- Université Côte d'Azur, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1065 C3M, Team Cellular and Molecular Pathophysiology of Obesity, Nice, France.
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
14
|
Salasova A, Monti G, Andersen OM, Nykjaer A. Finding memo: versatile interactions of the VPS10p-Domain receptors in Alzheimer’s disease. Mol Neurodegener 2022; 17:74. [PMID: 36397124 PMCID: PMC9673319 DOI: 10.1186/s13024-022-00576-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
The family of VPS10p-Domain (D) receptors comprises five members named SorLA, Sortilin, SorCS1, SorCS2 and SorCS3. While their physiological roles remain incompletely resolved, they have been recognized for their signaling engagements and trafficking abilities, navigating a number of molecules between endosome, Golgi compartments, and the cell surface. Strikingly, recent studies connected all the VPS10p-D receptors to Alzheimer’s disease (AD) development. In addition, they have been also associated with diseases comorbid with AD such as diabetes mellitus and major depressive disorder. This systematic review elaborates on genetic, functional, and mechanistic insights into how dysfunction in VPS10p-D receptors may contribute to AD etiology, AD onset diversity, and AD comorbidities. Starting with their functions in controlling cellular trafficking of amyloid precursor protein and the metabolism of the amyloid beta peptide, we present and exemplify how these receptors, despite being structurally similar, regulate various and distinct cellular events involved in AD. This includes a plethora of signaling crosstalks that impact on neuronal survival, neuronal wiring, neuronal polarity, and synaptic plasticity. Signaling activities of the VPS10p-D receptors are especially linked, but not limited to, the regulation of neuronal fitness and apoptosis via their physical interaction with pro- and mature neurotrophins and their receptors. By compiling the functional versatility of VPS10p-D receptors and their interactions with AD-related pathways, we aim to further propel the AD research towards VPS10p-D receptor family, knowledge that may lead to new diagnostic markers and therapeutic strategies for AD patients.
Collapse
|
15
|
AKADAM-TEKER AB, TEKER E. Effect of SORT1 rs599839 Polymorphism on Lipid Profiles: A Single City Experience. İSTANBUL GELIŞIM ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2022. [DOI: 10.38079/igusabder.987894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Amaç: VPS10p ailesinin bir reseptörü olan Sortilin-1(SORT1)’i kodlayan SORT1 geni 1p13.3’de lokalizedir. SORT1 genom çapında ilişkilendirme çalışmalarında (GWAS) hepatik lipit metabolizması ve düşük dansiteli lipoprotein-kolesterol (LDL-K) seviyeleri ile olan ilişkisinden dolayı koroner kalp hastalığı (KKH) oluşturma riski ile ilişkilendirilmiştir. SORT1 gen bölgesi üzerindeki çeşitli varyasyonlar lipit profilleri üzerinde farklı etkilere neden olmaktadır. Bizim bu çalışmadaki amacımız; Giresun ilinde SORT1 rs599839 gen varyantlarının KKH gelişimi ve lipit parametreleri üzerine bir etkisinin olup olmadığını belirlemektir.Yöntem: Bu vaka-kontrol çalışmasında 396 kişiden oluşan erkek çalışma grubunda (209 KKH /187 kontrol) SORT1 rs599839 polimorfizmi için TaqMan 5’ Allelik Ayrım Testi ile genotipleme yapıldı.Bulgular: Hasta ve kontrol grupları arasında SORT1 rs599839 genotip dağılımları açısından istatistiksel olarak fark bulunmamaktadır (p=0.81). G allel varlığı hem hasta hem de kontrol grubunda daha düşük Total-Kolesterol (TK) (sırasıyla; p=0.005,p=0.032) ve LDL-K (sırasıyla; p=0.005,p=0.040) seviyelerine sebep olurken daha yüksek yüksek dansiteli lipoprotein-kolesterol (HDL-K) (sırasıyla; p=0.001,p=0.006) seviyeleri gözlenmiştir.Sonuç: Bulgularımız SORT1 rs599839 polimorfizminin direk olarak KKH patogenezine katkısının olmadığı yönündedir. Ancak, minör G allel varlığının TK ve LDL-K seviyelerini düşürürken, HDL-K seviyelerinde yükselmeye sebep olduğu görülmüştür. Bu durum minör G allel varlığının lipit profili üzerine olumlu etki gösterdiği ve KKH’a karşı koruyucu olduğu izlenimini vermiştir.
Collapse
Affiliation(s)
| | - Erhan TEKER
- Dr. Ali Menekşe Göğüs Hastalıkları Hastanesi
| |
Collapse
|
16
|
Mitok KA, Keller MP, Attie AD. Sorting through the extensive and confusing roles of sortilin in metabolic disease. J Lipid Res 2022; 63:100243. [PMID: 35724703 PMCID: PMC9356209 DOI: 10.1016/j.jlr.2022.100243] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/06/2023] Open
Abstract
Sortilin is a post-Golgi trafficking receptor homologous to the yeast vacuolar protein sorting receptor 10 (VPS10). The VPS10 motif on sortilin is a 10-bladed β-propeller structure capable of binding more than 50 proteins, covering a wide range of biological functions including lipid and lipoprotein metabolism, neuronal growth and death, inflammation, and lysosomal degradation. Sortilin has a complex cellular trafficking itinerary, where it functions as a receptor in the trans-Golgi network, endosomes, secretory vesicles, multivesicular bodies, and at the cell surface. In addition, sortilin is associated with hypercholesterolemia, Alzheimer's disease, prion diseases, Parkinson's disease, and inflammation syndromes. The 1p13.3 locus containing SORT1, the gene encoding sortilin, carries the strongest association with LDL-C of all loci in human genome-wide association studies. However, the mechanism by which sortilin influences LDL-C is unclear. Here, we review the role sortilin plays in cardiovascular and metabolic diseases and describe in detail the large and often contradictory literature on the role of sortilin in the regulation of LDL-C levels.
Collapse
Affiliation(s)
- Kelly A Mitok
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
17
|
Wang S, Jiang Q, Loor JJ, Gao C, Yang M, Tian Y, Fan W, Zhang B, Li M, Xu C, Yang W. Role of sortilin 1 (SORT1) on fatty acid–mediated cholesterol metabolism in primary calf hepatocytes. J Dairy Sci 2022; 105:7773-7786. [DOI: 10.3168/jds.2022-22108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/20/2022] [Indexed: 11/19/2022]
|
18
|
Tudorache IF, Bivol VG, Dumitrescu M, Fenyo IM, Simionescu M, Gafencu AV. Synthetic lipoproteins based on apolipoprotein E coupled to fullerenol have anti-atherosclerotic properties. Pharmacol Rep 2022; 74:684-695. [PMID: 35790693 DOI: 10.1007/s43440-022-00379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Apolipoprotein E (apoE) is an anti-atherosclerotic protein associated with almost all plasma lipoproteins. Fullerenol (Full-OH) contains the fullerene hydrophobic cage and several hydroxyl groups that could be derivatized to covalently bind various molecules. Herein, we aimed to produce fullerenol-based nanoparticles carrying apoE3 (Full-apoE) and test their anti-atherosclerotic effects. METHODS Full-apoE nanoparticles were obtained from Full-OH activated to reactive cyanide ester fullerenol derivative that was further reacted with apoE protein. To test their effect, the nanoparticles were administered to apoE-deficient mice for 24 h or 3 weeks. ApoE part of the nanoparticles was determined by Western Blot and quantified by ELISA. Atherosclerotic plaque size was evaluated after Oil Red O staining and the gene expression was determined by Real-Time PCR. RESULTS Full-apoE nanoparticles were detected mainly in the liver, and to a lesser extent in the kidney, lung, and brain. In the plasma of the Full-apoE-treated mice, apoE was found associated with very-low-density lipoproteins and high-density lipoproteins. Treatment for 3 weeks with Full-apoE nanoparticles decreased plasma cholesterol levels, increased the expression of apolipoprotein A-I, ABCA1 transporter, scavenger receptor-B1, and sortilin, and reduced the evolution of the atheromatous plaques in the atherosclerotic mice. CONCLUSIONS In experimental atherosclerosis, the administration of Full-apoE nanoparticles limits the evolution of the atheromatous plaques by decreasing the plasma cholesterol level and increasing the expression of major proteins involved in lipid metabolism. Thus, they represent a novel promising strategy for atherosclerosis therapy.
Collapse
Affiliation(s)
| | | | - Madalina Dumitrescu
- Institute of Cellular Biology and Pathology "N. Simionescu", Bucharest, Romania
| | | | - Maya Simionescu
- Institute of Cellular Biology and Pathology "N. Simionescu", Bucharest, Romania
| | - Anca Violeta Gafencu
- Institute of Cellular Biology and Pathology "N. Simionescu", Bucharest, Romania.
| |
Collapse
|
19
|
Wong JK, Roselle AK, Shue TM, Shimshak SJE, Beaty JM, Celestin NM, Gao I, Griffin RP, Cudkowicz ME, Sadiq SA. Apolipoprotein B-100-mediated motor neuron degeneration in sporadic amyotrophic lateral sclerosis. Brain Commun 2022; 4:fcac207. [PMID: 36043141 PMCID: PMC9416068 DOI: 10.1093/braincomms/fcac207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/28/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disease characterized by motor neuron degeneration. Approximately 90% of cases occur sporadically with no known cause while 10% are familial cases arising from known inherited genetic mutations. In vivo studies have predominantly utilized transgenic models harbouring amyotrophic lateral sclerosis-associated gene mutations, which have not hitherto elucidated mechanisms underlying motor neuron death or identified therapeutic targets specific to sporadic amyotrophic lateral sclerosis. Here we provide evidence demonstrating pathogenic differences in CSF from patients with sporadic amyotrophic lateral sclerosis and familial amyotrophic lateral sclerosis patients with mutations in SOD1, C9orf72 and TARDBP. Using a novel CSF-mediated animal model, we show that intrathecal delivery of sporadic amyotrophic lateral sclerosis patient-derived CSF into the cervical subarachnoid space in adult wild-type mice induces permanent motor disability which is associated with hallmark pathological features of amyotrophic lateral sclerosis including motor neuron loss, cytoplasmic TDP-43 translocation, reactive astrogliosis and microglial activation. Motor impairments are not induced by SOD1, C9orf72 or TARDBP CSF, although a moderate degree of histopathological change occurs in C9orf72 and TARDBP CSF-injected mice. By conducting a series of CSF filtration studies and global proteomic analysis of CSF, we identified apolipoprotein B-100 in sporadic amyotrophic lateral sclerosis CSF as the putative agent responsible for inducing motor disability, motor neuron degeneration and pathological translocation of TDP-43. Apolipoprotein B-100 alone is sufficient to recapitulate clinical and pathological outcomes in vivo and induce death of human induced pluripotent stem cell-derived motor neurons in vitro. Targeted removal of apolipoprotein B-100 from sporadic amyotrophic lateral sclerosis CSF via filtration or immunodepletion successfully attenuated the neurotoxic capacity of sporadic amyotrophic lateral sclerosis CSF to induce motor disability, motor neuron death, and TDP-43 translocation. This study presents apolipoprotein B-100 as a novel therapeutic target specific for the predominant sporadic form of amyotrophic lateral sclerosis and establishes proof-of-concept to support CSF pheresis as a therapeutic strategy for mitigating neurotoxicity in sporadic amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Jamie K Wong
- Larry G. Gluck Division of ALS Research, Tisch Multiple Sclerosis Research Center of New York , New York, NY 10019 , USA
| | - Anna K Roselle
- Larry G. Gluck Division of ALS Research, Tisch Multiple Sclerosis Research Center of New York , New York, NY 10019 , USA
| | - Taylor M Shue
- Larry G. Gluck Division of ALS Research, Tisch Multiple Sclerosis Research Center of New York , New York, NY 10019 , USA
| | - Serena J E Shimshak
- Larry G. Gluck Division of ALS Research, Tisch Multiple Sclerosis Research Center of New York , New York, NY 10019 , USA
| | - Joseph M Beaty
- Larry G. Gluck Division of ALS Research, Tisch Multiple Sclerosis Research Center of New York , New York, NY 10019 , USA
| | - Nadia M Celestin
- Larry G. Gluck Division of ALS Research, Tisch Multiple Sclerosis Research Center of New York , New York, NY 10019 , USA
| | - Ivy Gao
- Larry G. Gluck Division of ALS Research, Tisch Multiple Sclerosis Research Center of New York , New York, NY 10019 , USA
| | - Rose P Griffin
- Larry G. Gluck Division of ALS Research, Tisch Multiple Sclerosis Research Center of New York , New York, NY 10019 , USA
| | - Merit E Cudkowicz
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School , Boston, MA 02114 , USA
| | - Saud A Sadiq
- Larry G. Gluck Division of ALS Research, Tisch Multiple Sclerosis Research Center of New York , New York, NY 10019 , USA
| |
Collapse
|
20
|
The Role of MicroRNAs in Hyperlipidemia: From Pathogenesis to Therapeutical Application. Mediators Inflamm 2022; 2022:3101900. [PMID: 35757107 PMCID: PMC9232323 DOI: 10.1155/2022/3101900] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperlipidemia is a common metabolic disorder with high morbidity and mortality, which brings heavy burden on social. Understanding its pathogenesis and finding its potential therapeutic targets are the focus of current research in this field. In recent years, an increasing number of studies have proved that miRNAs play vital roles in regulating lipid metabolism and were considered as promising therapeutic targets for hyperlipidemia and related diseases. It is demonstrated that miR-191, miR-222, miR-224, miR-27a, miR-378a-3p, miR-140-5p, miR-483, and miR-520d-5p were closely associated with the pathogenesis of hyperlipidemia. In this review, we provide brief overviews about advances in miRNAs in hyperlipidemia and its potential clinical application value.
Collapse
|
21
|
El-Khodary NM, Dabees H, Werida RH. Folic acid effect on homocysteine, sortilin levels and glycemic control in type 2 diabetes mellitus patients. Nutr Diabetes 2022; 12:33. [PMID: 35732620 PMCID: PMC9217798 DOI: 10.1038/s41387-022-00210-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
Aim The present study aimed to determine the folic acid supplement (FAS) effects on serum homocysteine and sortilin levels, glycemic indices, and lipid profile in type II diabetic patients. Method A double-blind randomized controlled clinical trial have been performed on 100 patients with T2DM randomly divided into two groups that received either placebo or folic acid 5 mg/d for 12 weeks. Results FAS caused a significant decrease in homocysteine and sortilin serum levels (28.2% and 33.7%, P < 0.0001, respectively). After 3 months of intervention, 8.7% decrease in fasting blood glucose (P = 0.0005), 8.2% in HbA1c (P = 0.0002), 13.7% in serum insulin (P < 0.0001) and 21.7% in insulin resistance (P < 0.0001) were found in the folic acid group, however no significant difference was observed in the placebo group. Serum hs-CRP level showed significant positive associations with sortilin (r = 0.237, P = 0.018), homocysteine (r = 0.308, P = 0.002) and fasting blood glucose (r = 0.342, P = 0.000). There were no significant changes in lipid profile in both groups after 12 weeks. Conclusion FAS might be beneficial for reducing homocysteine and sortilin levels, enhancing glycemic control, and improved insulin resistance in patients with T2DM.
Collapse
Affiliation(s)
- Noha M El-Khodary
- Clinical Pharmacy Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh City, Egypt
| | - Hossam Dabees
- Internal Medicine and Diabetes Department, Damanhour Medical National Institute, Damanhour City, Egypt
| | - Rehab H Werida
- Clinical Pharmacy & Pharmacy Practice Department, Faculty of Pharmacy, Damanhour University, Damanhour City, Egypt.
| |
Collapse
|
22
|
Deficiency of proline/serine-rich coiled-coil protein 1 (PSRC1) accelerates trimethylamine N-oxide-induced atherosclerosis in ApoE -/- mice. J Mol Cell Cardiol 2022; 170:60-74. [PMID: 35690006 DOI: 10.1016/j.yjmcc.2022.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/03/2022] [Accepted: 05/30/2022] [Indexed: 02/07/2023]
Abstract
AIMS The main therapeutic strategies for coronary artery disease (CAD) are mainly based on the correction of abnormal cholesterol levels; however, residual risks remain. The newly proven gut microbial metabolite trimethylamine N-oxide (TMAO) linked with CAD has broadened our horizons. In this study, we determined the role of proline/serine-rich coiled-coil protein 1 (PSRC1) in TMAO-driven atherosclerosis. METHODS AND RESULTS We first analyzed the levels of TMAO and PSRC1 in patients with or without atherosclerosis with a target LDL-C < 1.8 mmol/L. Plasma TMAO levels were increased and negatively associated with decreased PSRC1 in peripheral blood mononuclear cells. Animals and in vitro studies showed that TMAO inhibited macrophage PSRC1 expression due to DNA hypermethylation of CpG islands. ApoE-/- mice fed a choline-supplemented diet exhibited reduced PSRC1 expression accompanied by increased atherosclerotic lesions and plasma TMAO levels. We further deleted PSRC1 in apoE-/- mice and PSRC1 deficiency significantly accelerated choline-induced atherogenesis, characterized by increased macrophage infiltration, foam cell formation and M1 macrophage polarization. Mechanistically, we overexpressed and knocked out PSRC1 in cultured macrophages to explore the mechanisms underlying TMAO-induced cholesterol accumulation and inflammation. PSRC1 deletion impaired reverse cholesterol transport and enhanced cholesterol uptake and inflammation, while PSRC1 overexpression rescued the proatherogenic phenotype observed in TMAO-stimulated macrophages, which was partially attributed to sulfotransferase 2B1b (SULT2B1b) inhibition. CONCLUSIONS Herein, clinical data provide evidence that TMAO may participate in the development of CAD beyond well-controlled LDL-C levels. Our work also suggests that PSRC1 is a negative regulator mediating the unfavorable effects of TMAO-containing diets. Therefore, PSRC1 overexpression and reduced choline consumption may further alleviate atherosclerosis.
Collapse
|
23
|
Clark JR, Gemin M, Youssef A, Marcovina SM, Prat A, Seidah NG, Hegele RA, Boffa MB, Koschinsky ML. Sortilin enhances secretion of apolipoprotein(a) through effects on apolipoprotein B secretion and promotes uptake of lipoprotein(a). J Lipid Res 2022; 63:100216. [PMID: 35469919 PMCID: PMC9131257 DOI: 10.1016/j.jlr.2022.100216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/30/2022] Open
Abstract
Elevated plasma lipoprotein(a) (Lp(a)) is an independent, causal risk factor for atherosclerotic cardiovascular disease and calcific aortic valve stenosis. Lp(a) is formed in or on hepatocytes from successive noncovalent and covalent interactions between apo(a) and apoB, although the subcellular location of these interactions and the nature of the apoB-containing particle involved remain unclear. Sortilin, encoded by the SORT1 gene, modulates apoB secretion and LDL clearance. We used a HepG2 cell model to study the secretion kinetics of apo(a) and apoB. Overexpression of sortilin increased apo(a) secretion, while siRNA-mediated knockdown of sortilin expression correspondingly decreased apo(a) secretion. Sortilin binds LDL but not apo(a) or Lp(a), indicating that its effect on apo(a) secretion is likely indirect. Indeed, the effect was dependent on the ability of apo(a) to interact noncovalently with apoB. Overexpression of sortilin enhanced internalization of Lp(a), but not apo(a), by HepG2 cells, although neither sortilin knockdown in these cells or Sort1 deficiency in mice impacted Lp(a) uptake. We found several missense mutations in SORT1 in patients with extremely high Lp(a) levels; sortilin containing some of these mutations was more effective at promoting apo(a) secretion than WT sortilin, though no differences were found with respect to Lp(a) internalization. Our observations suggest that sortilin could play a role in determining plasma Lp(a) levels and corroborate in vivo human kinetic studies which imply that secretion of apo(a) and apoB are coupled, likely within the hepatocyte.
Collapse
Affiliation(s)
- Justin R Clark
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Matthew Gemin
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Amer Youssef
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | | | - Annik Prat
- Institut de Recherches Cliniques de Montreal, Montréal, QC, Canada
| | - Nabil G Seidah
- Institut de Recherches Cliniques de Montreal, Montréal, QC, Canada
| | - Robert A Hegele
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada; Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada; Department of Medicine, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Michael B Boffa
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada; Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Marlys L Koschinsky
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
24
|
Yang W, Wang S, Loor JJ, Jiang Q, Gao C, Yang M, Tian Y, Fan W, Zhao Y, Zhang B, Xu C. Role of sortilin 1 (SORT1) on lipid metabolism in bovine liver. J Dairy Sci 2022; 105:5420-5434. [DOI: 10.3168/jds.2021-21607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/27/2022] [Indexed: 11/19/2022]
|
25
|
Conlon DM, Schneider CV, Ko YA, Rodrigues A, Guo K, Hand NJ, Rader DJ. Sortilin restricts secretion of apolipoprotein B-100 by hepatocytes under stressed but not basal conditions. J Clin Invest 2022; 132:144334. [PMID: 35113816 PMCID: PMC8920325 DOI: 10.1172/jci144334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/02/2022] [Indexed: 12/02/2022] Open
Abstract
Genetic variants at the SORT1 locus in humans, which cause increased SORT1 expression in the liver, are significantly associated with reduced plasma levels of LDL cholesterol and apolipoprotein B (apoB). However, the role of hepatic sortilin remains controversial, as genetic deletion of sortilin in mice has resulted in variable and conflicting effects on apoB secretion. Here, we found that Sort1-KO mice on a chow diet and several Sort1-deficient hepatocyte lines displayed no difference in apoB secretion. When these models were challenged with high-fat diet or ER stress, the loss of Sort1 expression resulted in a significant increase in apoB-100 secretion. Sort1-overexpression studies yielded reciprocal results. Importantly, carriers of SORT1 variant with diabetes had larger decreases in plasma apoB, TG, and VLDL and LDL particle number as compared with people without diabetes with the same variants. We conclude that, under basal nonstressed conditions, loss of sortilin has little effect on hepatocyte apoB secretion, whereas, in the setting of lipid loading or ER stress, sortilin deficiency leads to increased apoB secretion. These results are consistent with the directionality of effect in human genetics studies and suggest that, under stress conditions, hepatic sortilin directs apoB toward lysosomal degradation rather than secretion, potentially serving as a quality control step in the apoB secretion pathway in hepatocytes.
Collapse
Affiliation(s)
- Donna M Conlon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Carolin V Schneider
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Yi-An Ko
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Amrith Rodrigues
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Kathy Guo
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Nicholas J Hand
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
26
|
Di Pietro P, Carrizzo A, Sommella E, Oliveti M, Iacoviello L, Di Castelnuovo A, Acernese F, Damato A, De Lucia M, Merciai F, Iesu P, Venturini E, Izzo R, Trimarco V, Ciccarelli M, Giugliano G, Carnevale R, Cammisotto V, Migliarino S, Virtuoso N, Strianese A, Izzo V, Campiglia P, Ciaglia E, Levkau B, Puca AA, Vecchione C. Targeting the ASMase/S1P pathway protects from sortilin-evoked vascular damage in hypertension. J Clin Invest 2022; 132:146343. [PMID: 35104805 PMCID: PMC8803332 DOI: 10.1172/jci146343] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
Sortilin has been positively correlated with vascular disorders in humans. No study has yet evaluated the possible direct effect of sortilin on vascular function. We used pharmacological and genetic approaches coupled with study of murine and human samples to unravel the mechanisms recruited by sortilin in the vascular system. Sortilin induced endothelial dysfunction of mesenteric arteries through NADPH oxidase 2 (NOX2) isoform activation, dysfunction that was prevented by knockdown of acid sphingomyelinase (ASMase) or sphingosine kinase 1. In vivo, recombinant sortilin administration induced arterial hypertension in WT mice. In contrast, genetic deletion of sphingosine-1-phosphate receptor 3 (S1P3) and gp91phox/NOX2 resulted in preservation of endothelial function and blood pressure homeostasis after 14 days of systemic sortilin administration. Translating these research findings into the clinical setting, we detected elevated sortilin levels in hypertensive patients with endothelial dysfunction. Furthermore, in a population-based cohort of 270 subjects, we showed increased plasma ASMase activity and increased plasma levels of sortilin, S1P, and soluble NOX2-derived peptide (sNOX2-dp) in hypertensive subjects, and the increase was more pronounced in hypertensive subjects with uncontrolled blood pressure. Our studies reveal what we believe is a previously unrecognized role of sortilin in the impairment of vascular function and in blood pressure homeostasis and suggest the potential of sortilin and its mediators as biomarkers for the prediction of vascular dysfunction and high blood pressure.
Collapse
Affiliation(s)
- Paola Di Pietro
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Baronissi, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Baronissi, Italy.,Department of Vascular Physiopathology, IRCCS Neuromed, Pozzilli, Italy
| | - Eduardo Sommella
- Department of Pharmacy, School of Pharmacy, University of Salerno, Fisciano, Italy
| | - Marco Oliveti
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Baronissi, Italy
| | - Licia Iacoviello
- Department of Medicine and Surgery, Research Center in Epidemiology and Preventive Medicine (EPIMED), University of Insubria, Varese, Italy.,Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
| | | | - Fausto Acernese
- Department of Pharmacy, School of Pharmacy, University of Salerno, Fisciano, Italy
| | - Antonio Damato
- Department of Vascular Physiopathology, IRCCS Neuromed, Pozzilli, Italy
| | | | - Fabrizio Merciai
- Department of Pharmacy, School of Pharmacy, University of Salerno, Fisciano, Italy.,PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, Italy
| | - Paola Iesu
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Baronissi, Italy
| | | | - Raffaele Izzo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Valentina Trimarco
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Baronissi, Italy
| | - Giuseppe Giugliano
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Roberto Carnevale
- Mediterranea Cardiocentro, Naples, Italy.,Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Vittoria Cammisotto
- Department of General Surgery and Surgical Speciality Paride Stefanini, Sapienza University of Rome, Rome, Italy
| | - Serena Migliarino
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Nicola Virtuoso
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Baronissi, Italy
| | - Andrea Strianese
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Baronissi, Italy
| | - Viviana Izzo
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Baronissi, Italy
| | - Pietro Campiglia
- Department of Pharmacy, School of Pharmacy, University of Salerno, Fisciano, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Baronissi, Italy
| | - Bodo Levkau
- Institute for Molecular Medicine III, Heinrich-Heine-University, Medical Faculty, Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany
| | - Annibale A Puca
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Baronissi, Italy.,Ageing Unit, IRCCS MultiMedica, Milan, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Baronissi, Italy.,Department of Vascular Physiopathology, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
27
|
Crocetin exerts hypocholesterolemic effect by inducing LDLR and inhibiting PCSK9 and Sortilin in HepG2 cells. Nutr Res 2022; 98:41-49. [DOI: 10.1016/j.nutres.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022]
|
28
|
Duwaerts CC, Maiers JL. ER Disposal Pathways in Chronic Liver Disease: Protective, Pathogenic, and Potential Therapeutic Targets. Front Mol Biosci 2022; 8:804097. [PMID: 35174209 PMCID: PMC8841999 DOI: 10.3389/fmolb.2021.804097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum is a central player in liver pathophysiology. Chronic injury to the ER through increased lipid content, alcohol metabolism, or accumulation of misfolded proteins causes ER stress, dysregulated hepatocyte function, inflammation, and worsened disease pathogenesis. A key adaptation of the ER to resolve stress is the removal of excess or misfolded proteins. Degradation of intra-luminal or ER membrane proteins occurs through distinct mechanisms that include ER-associated Degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD), which includes macro-ER-phagy, micro-ER-phagy, and Atg8/LC-3-dependent vesicular delivery. All three of these processes are critical for removing misfolded or unfolded protein aggregates, and re-establishing ER homeostasis following expansion/stress, which is critical for liver function and adaptation to injury. Despite playing a key role in resolving ER stress, the contribution of these degradative processes to liver physiology and pathophysiology is understudied. Analysis of publicly available datasets from diseased livers revealed that numerous genes involved in ER-related degradative pathways are dysregulated; however, their roles and regulation in disease progression are not well defined. Here we discuss the dynamic regulation of ER-related protein disposal pathways in chronic liver disease and cell-type specific roles, as well as potentially targetable mechanisms for treatment of chronic liver disease.
Collapse
Affiliation(s)
- Caroline C. Duwaerts
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jessica L. Maiers
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
29
|
Ye D, Yang X, Ren L, Lu HS, Sun Y, Lin H, Tan L, Wang N, Nguyen G, Bader M, Mullick AE, Danser AHJ, Daugherty A, Jiang Y, Sun Y, Li F, Lu X. (Pro)renin Receptor Inhibition Reduces Plasma Cholesterol and Triglycerides but Does Not Attenuate Atherosclerosis in Atherosclerotic Mice. Front Cardiovasc Med 2022; 8:725203. [PMID: 35004870 PMCID: PMC8739895 DOI: 10.3389/fcvm.2021.725203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Elevated plasma cholesterol concentrations contributes to ischemic cardiovascular diseases. Recently, we showed that inhibiting hepatic (pro)renin receptor [(P)RR] attenuated diet-induced hypercholesterolemia and hypertriglyceridemia in low-density lipoprotein receptor (LDLR) deficient mice. The purpose of this study was to determine whether inhibiting hepatic (P)RR could attenuate atherosclerosis. Approach and Results: Eight-week-old male LDLR−/− mice were injected with either saline or N-acetylgalactosamine-modified antisense oligonucleotides (G-ASOs) primarily targeting hepatic (P)RR and were fed a western-type diet (WTD) for 16 weeks. (P)RR G-ASOs markedly reduced plasma cholesterol concentrations from 2,211 ± 146 to 1,128 ± 121 mg/dL. Fast protein liquid chromatography (FPLC) analyses revealed that cholesterol in very low-density lipoprotein (VLDL) and intermediate density lipoprotein (IDL)/LDL fraction were potently reduced by (P)RR G-ASOs. Moreover, (P)RR G-ASOs reduced plasma triglyceride concentrations by more than 80%. Strikingly, despite marked reduction in plasma lipid concentrations, atherosclerosis was not reduced but rather increased in these mice. Further testing in ApoE−/− mice confirmed that (P)RR G-ASOs reduced plasma lipid concentrations but not atherosclerosis. Transcriptomic analysis of the aortas revealed that (P)RR G-ASOs induced the expression of the genes involved in immune responses and inflammation. Further investigation revealed that (P)RR G-ASOs also inhibited (P)RR in macrophages and in enhanced inflammatory responses to exogenous stimuli. Moreover, deleting the (P)RR in macrophages resulted in accelerated atherosclerosis in WTD fed ApoE−/− mice. Conclusion: (P)RR G-ASOs reduced the plasma lipids in atherosclerotic mice due to hepatic (P)RR deficiency. However, augmented pro-inflammatory responses in macrophages due to (P)RR downregulation counteracted the beneficial effects of lowered plasma lipid concentrations on atherosclerosis. Our study demonstrated that hepatic (P)RR and macrophage (P)RR played a counteracting role in atherosclerosis.
Collapse
Affiliation(s)
- Dien Ye
- Department of Pharmacology, College of Pharmacy, Shenzhen Technology University, Shenzhen, China.,Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, KY, United States.,Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, Rotterdam, Netherlands
| | - Xiaofei Yang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China
| | - Liwei Ren
- Department of Pharmacology, College of Pharmacy, Shenzhen Technology University, Shenzhen, China.,Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, Rotterdam, Netherlands
| | - Hong S Lu
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Yuan Sun
- Department of Pharmacology, College of Pharmacy, Shenzhen Technology University, Shenzhen, China.,Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, Rotterdam, Netherlands
| | - Hui Lin
- Department of Pharmacology, College of Pharmacy, Shenzhen Technology University, Shenzhen, China.,Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, Rotterdam, Netherlands
| | - Lunbo Tan
- Department of Pharmacology, College of Pharmacy, Shenzhen Technology University, Shenzhen, China.,Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, Rotterdam, Netherlands
| | - Na Wang
- Department of Pharmacology, College of Pharmacy, Shenzhen Technology University, Shenzhen, China.,Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, Rotterdam, Netherlands
| | - Genevieve Nguyen
- Institut National de la Santé et de la Recherche Médicale (INSERM) and Collège de France Early Development and Pathologies Center for Interdisciplinary Research in Biology and Experimental Medicine Unit, Paris, France
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,Institute for Biology, University of Lübeck, Lübeck, Germany.,Charité University Medicine, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | | | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, Rotterdam, Netherlands
| | - Alan Daugherty
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Yizhou Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yidan Sun
- Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Furong Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China
| | - Xifeng Lu
- Department of Pharmacology, College of Pharmacy, Shenzhen Technology University, Shenzhen, China.,Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
30
|
PCSK9 as a Target for Development of a New Generation of Hypolipidemic Drugs. Molecules 2022; 27:molecules27020434. [PMID: 35056760 PMCID: PMC8778893 DOI: 10.3390/molecules27020434] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 02/01/2023] Open
Abstract
PCSK9 has now become an important target to create new classes of lipid-lowering drugs. The prevention of its interaction with LDL receptors allows an increase in the number of these receptors on the surface of the cell membrane of hepatocytes, which leads to an increase in the uptake of cholesterol-rich atherogenic LDL from the bloodstream. The PCSK9 antagonists described in this review belong to different classes of compounds, may have a low molecular weight or belong to macromolecular structures, and also demonstrate different mechanisms of action. The mechanisms of action include preventing the effective binding of PCSK9 to LDLR, stimulating the degradation of PCSK9, and even blocking its transcription or transport to the plasma membrane/cell surface. Although several types of antihyperlipidemic drugs have been introduced on the market and are actively used in clinical practice, they are not without disadvantages, such as well-known side effects (statins) or high costs (monoclonal antibodies). Thus, there is still a need for effective cholesterol-lowering drugs with minimal side effects, preferably orally bioavailable. Low-molecular-weight PCSK9 inhibitors could be a worthy alternative for this purpose.
Collapse
|
31
|
Myocardial ischemia and its complications. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Simsek Z, Alizade E, Güner A, Zehir R. Correlation between serum sortilin levels and severity of extracranial carotid artery stenosis. Int J Clin Pract 2021; 75:e14733. [PMID: 34387924 DOI: 10.1111/ijcp.14733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Atherosclerosis is a chronic inflammatory vascular condition characterised by intimal thickening with cholesterol accumulation and macrophage foam cell infiltration causing plaque formation at the site of the injured vessel wall. This condition is a major contributor to carotid artery stenosis (CAS). Sortilin, a member of the mammalian vacuolar protein sorting 10 protein family, promotes uptake of low-density lipoprotein particles into macrophages with consequent foam cell formation independent of the low-density lipoprotein receptor, and thereby, accelerates atherosclerotic plaque formation and progression. We investigated the correlation between serum sortilin levels and the severity of extracranial CAS. MATERIALS AND METHODS The study included 149 patients who underwent carotid angiography for suspected carotid artery disease. The North American Symptomatic Carotid Endarterectomy Trial 2011 criteria were used to determine the degree of CAS. Serum sortilin concentrations were measured using the enzyme-linked immunosorbent assay. RESULTS Serum sortilin levels were significantly higher in the severe CAS than in the non-severe CAS group (2.71 ± 0.71 ng/mL vs 1.63 ± 0.57 ng/mL, P < .001). Receiver operating characteristic curve analysis showed that serum sortilin levels >1.66 ng/mL predicted severe CAS with sensitivity of 83.49% and specificity of 56.76%. CONCLUSION Current data suggest that prediction of severe CAS may serve as an atherosclerosis biomarker and significantly contribute to research on disease progression in atherosclerosis, as well as in other arterial diseases. Sortilin may be a potential therapeutic target owing to its role in the pathogenesis of atherosclerotic carotid artery disease.
Collapse
Affiliation(s)
- Zeki Simsek
- Cardiology Department, Kartal Kosuyolu Heart Research and Training Hospital, Istanbul, Turkey
| | - Elnur Alizade
- Cardiology Department, Kartal Kosuyolu Heart Research and Training Hospital, Istanbul, Turkey
| | - Ahmet Güner
- Department of Cardiology, Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Regayip Zehir
- Cardiology Department, Kartal Kosuyolu Heart Research and Training Hospital, Istanbul, Turkey
| |
Collapse
|
33
|
Asaro A, Sinha R, Bakun M, Kalnytska O, Carlo-Spiewok AS, Rubel T, Rozeboom A, Dadlez M, Kaminska B, Aronica E, Malik AR, Willnow TE. ApoE4 disrupts interaction of sortilin with fatty acid-binding protein 7 essential to promote lipid signaling. J Cell Sci 2021; 134:272562. [PMID: 34557909 PMCID: PMC8572006 DOI: 10.1242/jcs.258894] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/16/2021] [Indexed: 11/20/2022] Open
Abstract
Sortilin is a neuronal receptor for apolipoprotein E (apoE). Sortilin-dependent uptake of lipidated apoE promotes conversion of polyunsaturated fatty acids (PUFA) into neuromodulators that induce anti-inflammatory gene expression in the brain. This neuroprotective pathway works with the apoE3 variant but is lost with the apoE4 variant, the main risk factor for Alzheimer's disease (AD). Here, we elucidated steps in cellular handling of lipids through sortilin, and why they are disrupted by apoE4. Combining unbiased proteome screens with analyses in mouse models, we uncover interaction of sortilin with fatty acid-binding protein 7 (FABP7), the intracellular carrier for PUFA in the brain. In the presence of apoE3, sortilin promotes functional expression of FABP7 and its ability to elicit lipid-dependent gene transcription. By contrast, apoE4 binding blocks sortilin-mediated sorting, causing catabolism of FABP7 and impairing lipid signaling. Reduced FABP7 levels in the brain of AD patients expressing apoE4 substantiate the relevance of these interactions for neuronal lipid homeostasis. Taken together, we document interaction of sortilin with mediators of extracellular and intracellular lipid transport that provides a mechanistic explanation for loss of a neuroprotective lipid metabolism in AD.
Collapse
Affiliation(s)
- Antonino Asaro
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Rishabhdev Sinha
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Magda Bakun
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | | | - Tymon Rubel
- Warsaw University of Technology, Institute of Radioelectronics and Multimedia Technology, 00-665 Warsaw, Poland
| | - Annemieke Rozeboom
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1105AZ Amsterdam, The Netherlands.,Center for Neuroscience, Amsterdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Michal Dadlez
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.,Biology Department, Institute of Genetics and Biotechnology02-106 Warsaw, Poland
| | - Bozena Kaminska
- Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1105AZ Amsterdam, The Netherlands
| | - Anna R Malik
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.,Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.,Department of Medical Biochemistry, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
34
|
Özalp M, Akbaş H, Kızılırmak R, Albayrak M, Yaman H, Akbaş M, Aran T, Osmanağaoğlu MA. Maternal serum sortilin levels in gestational diabetes mellitus. Gynecol Endocrinol 2021; 37:941-944. [PMID: 34470550 DOI: 10.1080/09513590.2021.1972966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE To evaluate the serum sortilin levels in pregnant women with gestational diabetes mellitus (GDM) and to compare the results with normoglycemic healthy pregnant women and observe the relationship between serum sortilin levels and biochemical parameters. METHODS This case-control study consisted of 55 pregnancies with GDM and 32 healthy singleton pregnancies matched for maternal and gestational age. The maternal serum levels of sortilin were measured with enzyme-linked immunosorbent assay and compared between groups. RESULTS Sortilin levels were significantly higher in GDM group (5.52 ± 3.19 ng/mL versus 3.30 ± 1.47 ng/mL, p < .001). Pairwise comparisons showed that both the diet group and insulin group had significantly higher serum sortilin levels than the control group (p: .022 and p: .002, respectively). Maternal serum sortilin levels were significantly positively correlated with serum insulin levels, homeostasis model assessment of insulin resistance (HOMA-IR) and glycated hemoglobin values (r: 0.277, p: .012, r: 0.306, p: .005, r: 0.267, p: .012, respectively). CONCLUSIONS Serum sortilin levels were significantly higher in women with GDM compared to the control group and were positively correlated with insulin, HOMA-IR and glycated hemoglobin levels. The present results point to the role of sortilin in glucose homeostasis and suggest that it may be a novel marker for GDM.
Collapse
Affiliation(s)
- Miraç Özalp
- Department of Perinatology, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| | - Hümeyra Akbaş
- Department of Perinatology, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| | - Rukiye Kızılırmak
- Department of Perinatology, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| | - Mehmet Albayrak
- Department of Perinatology, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| | - Hüseyin Yaman
- Department of Medical Biochemistry, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| | - Murat Akbaş
- Department of Perinatology, Manisa City Hospital, Manisa, Turkey
| | - Turhan Aran
- Department of Perinatology, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| | | |
Collapse
|
35
|
Zhang Q, Lin W, Tian L, Di B, Yu J, Niu X, Liu J. Oxidized low-density lipoprotein activates extracellular signal-regulated kinase signaling to downregulate sortilin expression in liver sinusoidal endothelial cells. J Gastroenterol Hepatol 2021; 36:2610-2618. [PMID: 33694195 PMCID: PMC8518938 DOI: 10.1111/jgh.15486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIM Both type 2 diabetes mellitus and non-alcoholic fatty liver disease are closely associated with elevated levels of low-density lipoprotein cholesterol and its oxidized form (ox-LDL). This study aimed to investigate the regulation of sortilin in liver tissue and its potential implications for lipid metabolism. METHODS Sixty male Wistar rats were randomly divided into four groups: control group (n = 15), ox-LDL group (n = 15), PD98059 group (n = 15), and ox-LDL + PD98059 group (n = 15). Liver sinusoidal endothelial cells were extracted from liver tissue of the control group and were identified using an anti-CD31 antibody. Lipid droplet accumulation was observed by Oil red O and hematoxylin-eosin staining. The protein expression levels were detected by immunohistochemical staining, real-time reverse transcription-polymerase chain reaction, and western blot. Histopathologic examinations were performed by Gomori methenamine silver staining. RESULTS The ox-LDL group exhibited increased lipid droplet accumulation. Further, ox-LDL activated the extracellular signal-regulated kinase (ERK)-mediated downregulation of sortilin expression, whereas blocking of ERK signaling by PD98059 increased sortilin protein expression. Consistently, hematoxylin-eosin staining showed that the structure of the hepatocytes was loose and disordered in arrangement, with lipid droplets present in the cytoplasm of the ox-LDL group. However, PD98059 significantly improved the integration of the scaffold structure. Gomori methenamine silver staining showed that the ox-LDL group had darker and more obvious fragmented silver nitrate deposits in the basement membrane and sinus space. CONCLUSIONS Sortilin can protect liver sinusoidal endothelial cells from injury and maintain integration of the liver scaffold structure in ox-LDL-induced lipid-injured liver.
Collapse
Affiliation(s)
- Qi Zhang
- Department of EndocrinologyGansu Provincial HospitalLanzhouChina,Clinical Research Center for Metabolic DiseasesGansu ProvincialLanzhouChina
| | - Wenyan Lin
- Gansu Provincial Hospital West CampusLanzhouChina,Clinical Research Center for Metabolic DiseasesGansu ProvincialLanzhouChina
| | - Limin Tian
- Department of EndocrinologyGansu Provincial HospitalLanzhouChina,Clinical Research Center for Metabolic DiseasesGansu ProvincialLanzhouChina
| | - Baoshan Di
- Gansu Provincial Hospital West CampusLanzhouChina
| | - Jing Yu
- Department of EndocrinologyGansu Provincial HospitalLanzhouChina,Clinical Research Center for Metabolic DiseasesGansu ProvincialLanzhouChina
| | - Xiang'e Niu
- Department of EndocrinologyGansu Provincial HospitalLanzhouChina,Clinical Research Center for Metabolic DiseasesGansu ProvincialLanzhouChina,Gansu University of Chinese MedicineLanzhouChina
| | - Jing Liu
- Department of EndocrinologyGansu Provincial HospitalLanzhouChina,Clinical Research Center for Metabolic DiseasesGansu ProvincialLanzhouChina
| |
Collapse
|
36
|
Zhang S, Duan J, Du Y, Xie J, Zhang H, Li C, Zhang W. Long Non-coding RNA Signatures Associated With Liver Aging in Senescence-Accelerated Mouse Prone 8 Model. Front Cell Dev Biol 2021; 9:698442. [PMID: 34368149 PMCID: PMC8339557 DOI: 10.3389/fcell.2021.698442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
The liver is sensitive to aging because the risk of hepatopathy, including fatty liver, hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma, increases dramatically with age. Long non-coding RNAs (lncRNAs) are >200 nucleotides long and affect many pathological and physiological processes. A potential link was recently discovered between lncRNAs and liver aging; however, comprehensive and systematic research on this topic is still limited. In this study, the mouse liver genome-wide lncRNA profiles of 8-month-old SAMP8 and SAMR1 models were explored through deep RNA sequencing. A total of 605,801,688 clean reads were generated. Among the 2,182 identified lncRNAs, 28 were differentially expressed between SAMP8 and SAMR1 mice. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) surveys showed that these substantially dysregulated lncRNAs participated in liver aging from different aspects, such as lipid catabolic (GO: 0016042) and metabolic pathways. Further assessment was conducted on lncRNAs that are most likely to be involved in liver aging and related diseases, such as LNC_000027, LNC_000204E, NSMUST00000144661.1, and ENSMUST00000181906.1 acted on Ces1g. This study provided the first comprehensive dissection of lncRNA landscape in SAMP8 mouse liver. These lncRNAs could be exploited as potential targets for the molecular-based diagnosis and therapy of age-related liver diseases.
Collapse
Affiliation(s)
- Shuai Zhang
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Juanjuan Duan
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China.,Engineering Research Center of Natural Medicine, Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yu Du
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinlu Xie
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang, School of Medicine, Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Haijing Zhang
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China.,Engineering Research Center of Natural Medicine, Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Changyu Li
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wensheng Zhang
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China.,Engineering Research Center of Natural Medicine, Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China.,National and Local United Engineering Research Center for Panax Notoginseng Resources Protection and Utilization Technology, Kunming, China
| |
Collapse
|
37
|
Liang M, Yao W, Shi B, Zhu X, Cai R, Yu Z, Guo W, Wang H, Dong Z, Lin M, Zhou X, Zheng Y. Circular RNA hsa_circ_0110389 promotes gastric cancer progression through upregulating SORT1 via sponging miR-127-5p and miR-136-5p. Cell Death Dis 2021; 12:639. [PMID: 34162830 PMCID: PMC8222372 DOI: 10.1038/s41419-021-03903-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Increasing studies have found that circular RNAs (circRNAs) are aberrantly expressed and play important roles in the occurrence and development of human cancers. However, the function of circRNAs on environmental carcinogen-induced gastric cancer (GC) progression remains poorly elucidated. In the present study, hsa_circ_0110389 was identified as a novel upregulated circRNA in malignant-transformed GC cells through RNA-seq, and subsequent quantitative real-time PCR verified that hsa_circ_0110389 was significantly increased in GC tissues and cells. High hsa_circ_0110389 expression associates with advanced stages of GC and predicts poor prognosis. Knockdown and overexpression assays demonstrated that hsa_circ_0110389 regulates proliferation, migration, and invasion of GC cells in vitro. In addition, hsa_circ_0110389 was identified to sponge both miR-127-5p and miR-136-5p and SORT1 was validated as a direct target of miR-127-5p and miR-136-5p through multiple mechanism assays; moreover, hsa_circ_0110389 sponged miR-127-5p/miR-136-5p to upregulate SORT1 expression and hsa_circ_0110389 promoted GC progression through the miR-127-5p/miR-136-5p-SORT1 pathway. Finally, hsa_circ_0110389 knockdown suppressed GC growth in vivo. Taken together, our findings firstly identify the role of hsa_circ_0110389 in GC progression, which is through miR-127-5p/miR-136-5p-SORT1 pathway, and our study provides novel insight for the identification of diagnostic/prognostic biomarkers and therapeutic targets for GC.
Collapse
Affiliation(s)
- Min Liang
- Department of Oncology, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510700, Guangzhou, China
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, 510095, Guangzhou, China
| | - Wenxia Yao
- Department of Center Laboratory, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510700, Guangzhou, China
| | - Boyun Shi
- Department of Oncology, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510700, Guangzhou, China
| | - Xiongjie Zhu
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, 510095, Guangzhou, China
| | - Rui Cai
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, 510095, Guangzhou, China
| | - Zhongjian Yu
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, 510095, Guangzhou, China
| | - Weihong Guo
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Huaiming Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zhijie Dong
- Department of Center Laboratory, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510700, Guangzhou, China
| | - Mingzhen Lin
- Department of Center Laboratory, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510700, Guangzhou, China
| | - Xinke Zhou
- Department of Oncology, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510700, Guangzhou, China.
| | - Yanfang Zheng
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, 510095, Guangzhou, China.
| |
Collapse
|
38
|
Olanzapine leads to nonalcoholic fatty liver disease through the apolipoprotein A5 pathway. Biomed Pharmacother 2021; 141:111803. [PMID: 34146854 DOI: 10.1016/j.biopha.2021.111803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
The antipsychotic drug olanzapine was reported to induce nonalcoholic fatty liver disease (NAFLD), whereas the underlying mechanism remains incompletely understood. This study investigated whether apolipoprotein A5 (apoA5) and sortilin, two interactive factors involved in NAFLD pathogenesis, are implicated in olanzapine-induced NAFLD. In our study, at week 8, olanzapine treatment successfully induced hepatic steatosis in female C57 BL/6 J mice, which was independent of body weight gain. Likewise, olanzapine effectively mediated hepatocyte steatosis in HepG2 cells characterized by substantially elevated intracellular lipid droplets. Increased plasma triglyceride concentration and decreased plasma apoA5 levels were observed in mice treated with 8-week olanzapine. Surprisingly, olanzapine markedly enhanced hepatic apoA5 protein levels in mice, without a significant effect on rodent hepatic ApoA5 mRNA. Our in vitro study showed that olanzapine reduced apoA5 protein levels in the medium and enhanced apoA5 protein levels in hepatocytes, whereas this drug exerted no effect on hepatocyte APOA5 mRNA. By transfecting APOA5 siRNA into HepG2 cells, it was demonstrated that APOA5 knockdown effectively reversed olanzapine-induced hepatocyte steatosis in vitro. In addition, olanzapine drastically increased sortilin mRNA and protein levels in vivo and in vitro. Interestingly, SORT1 knockdown reduced intracellular apoA5 protein levels and increased medium apoA5 protein levels in vitro, without affecting intracellular APOA5 mRNA levels. Furthermore, SORT1 knockdown greatly ameliorated hepatocyte steatosis in vitro. This study provides the first evidence that sortilin inhibits the hepatic apoA5 secretion that is attributable to olanzapine-induced NAFLD, which provides new insight into effective strategies against NAFLD for patients with schizophrenia administered olanzapine.
Collapse
|
39
|
Møller PL, Rohde PD, Winther S, Breining P, Nissen L, Nykjaer A, Bøttcher M, Nyegaard M, Kjolby M. Sortilin as a Biomarker for Cardiovascular Disease Revisited. Front Cardiovasc Med 2021; 8:652584. [PMID: 33937362 PMCID: PMC8085299 DOI: 10.3389/fcvm.2021.652584] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic variants in the genomic region containing SORT1 (encoding the protein sortilin) are strongly associated with cholesterol levels and the risk of coronary artery disease (CAD). Circulating sortilin has therefore been proposed as a potential biomarker for cardiovascular disease. Multiple studies have reported association between plasma sortilin levels and cardiovascular outcomes. However, the findings are not consistent across studies, and most studies have small sample sizes. The aim of this study was to evaluate sortilin as a biomarker for CAD in a well-characterized cohort with symptoms suggestive of CAD. In total, we enrolled 1,173 patients with suspected stable CAD referred to coronary computed tomography angiography. Sortilin was measured in plasma using two different technologies for quantifying circulating sortilin: a custom-made enzyme-linked immunosorbent assay (ELISA) and OLINK Cardiovascular Panel II. We found a relative poor correlation between the two methods (correlation coefficient = 0.21). In addition, genotyping and whole-genome sequencing were performed on all patients. By whole-genome regression analysis of sortilin levels measured with ELISA and OLINK, two independent cis protein quantitative trait loci (pQTL) on chromosome 1p13.3 were identified, with one of them being a well-established risk locus for CAD. Incorporating rare genetic variants from whole-genome sequence data did not identify any additional pQTLs for plasma sortilin. None of the traditional CAD risk factors, such as sex, age, smoking, and statin use, were associated with plasma sortilin levels. Furthermore, there was no association between circulating sortilin levels and coronary artery calcium score (CACS) or disease severity. Sortilin did not improve discrimination of obstructive CAD, when added to a clinical pretest probability (PTP) model for CAD. Overall, our results indicate that studies using different methodologies for measuring circulating sortilin should be compared with caution. In conclusion, the well-known SORT1 risk locus for CAD is linked to lower sortilin levels in circulation, measured with ELISA; however, the effect sizes are too small for sortilin to be a useful biomarker for CAD in a clinical setting of low- to intermediate-risk chest-pain patients.
Collapse
Affiliation(s)
| | - Palle D. Rohde
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Simon Winther
- Department of Cardiology, Gødstrup Hospital, NIDO, Herning, Denmark
| | - Peter Breining
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- PROMEMO and DANDRITE, Aarhus University, Aarhus, Denmark
| | - Louise Nissen
- Department of Cardiology, Gødstrup Hospital, NIDO, Herning, Denmark
| | - Anders Nykjaer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- PROMEMO and DANDRITE, Aarhus University, Aarhus, Denmark
| | - Morten Bøttcher
- Department of Cardiology, Gødstrup Hospital, NIDO, Herning, Denmark
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Mads Kjolby
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- PROMEMO and DANDRITE, Aarhus University, Aarhus, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
40
|
Roberts R, Chang CC, Hadley T. Genetic Risk Stratification: A Paradigm Shift in Prevention of Coronary Artery Disease. ACTA ACUST UNITED AC 2021; 6:287-304. [PMID: 33778213 PMCID: PMC7987546 DOI: 10.1016/j.jacbts.2020.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022]
Abstract
CAD is a pandemic that can be prevented. Conventional risk factors are inadequate to detect who is at risk early in the asymptomatic stage. Genetic risk for CAD can be determined at birth, and those at highest genetic risk have been shown to respond to lifestyle changes and statin therapy with a 40% to 50% reduction in cardiac events. Genetic risk stratification for CAD should be brought to the bedside in an attempt to prevent this pandemic disease.
Coronary artery disease (CAD) is a pandemic disease that is highly preventable as shown by secondary prevention. Primary prevention is preferred knowing that 50% of the population can expect a cardiac event in their lifetime. Risk stratification for primary prevention using the American Heart Association/American College of Cardiology predicted 10-year risk based on conventional risk factors for CAD is less than optimal. Conventional risk factors such as hypertension, cholesterol, and age are age-dependent and not present until the sixth or seventh decade of life. The genetic risk score (GRS), which is estimated from the recently discovered genetic variants predisposed to CAD, offers a potential solution to this dilemma. The GRS, which is derived from genotyping the population with a microarray containing these genetic risk variants, has indicated that genetic risk stratification based on the GRS is superior to that of conventional risk factors in detecting those at high risk and who would benefit most from statin therapy. Studies performed in >1 million individuals confirmed genetic risk stratification is superior and primarily independent of conventional risk factors. Prospective clinical trials based on risk stratification for CAD using the GRS have shown lifestyle changes, physical activity, and statin therapy are associated with 40% to 50% reduction in cardiac events in the high genetic risk group (20%). Genetic risk stratification has the advantage of being innate to an individual’s DNA, and because DNA does not change in a lifetime, it is independent of age. Genetic risk stratification is inexpensive and can be performed worldwide, providing risk analysis at any age and thus has the potential to revolutionize primary prevention.
Collapse
Key Words
- ACC, American College of Cardiology
- AHA, American Heart Association
- ANRIL, antisense non-coding RNA in the INK4 Locust
- CAD, coronary artery disease
- GRS, genetic risk score
- GWAS, genome-wide association study
- LDL-C, low-density lipoprotein cholesterol
- MR, Mendelian randomization
- SNP, single nucleotide polymorphism
- bp, base pair
- cardiovascular genetics
- coronary artery disease
- genetic risk score for CAD
- genome-wide association studies
- prevention of CAD
Collapse
Affiliation(s)
- Robert Roberts
- Department of Medicine, Dignity Health at St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Chih Chao Chang
- Department of Medicine, Dignity Health at St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | | |
Collapse
|
41
|
Morimoto S, Morishima N, Watanabe D, Kato Y, Shibata N, Ichihara A. Immunohistochemistry for (Pro)renin Receptor in Humans. Int J Endocrinol 2021; 2021:8828610. [PMID: 34367278 PMCID: PMC8337151 DOI: 10.1155/2021/8828610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 07/16/2021] [Indexed: 12/27/2022] Open
Abstract
The (pro)renin receptor is a multifunctional protein with roles in angiotensin-II-dependent and -independent intracellular cell signaling and roles as an intracellular accessory protein for the vacuolar H+-ATPase, including hormone secretion. While (pro)renin receptor mRNA is widely expressed in various human tissues, localization of (pro)renin receptor protein expression has not yet been systemically determined. Therefore, this study localized (pro)renin receptor protein expression in human organs. Systemic immunohistochemical examination of (pro)renin receptor expression was performed in whole body organs of autopsy cases. (Pro)renin receptor immunostaining was observed in the cytoplasm of cells in almost all human organs. It was observed in thyroid follicular epithelial cells, hepatic cells, pancreatic duct epithelial cells, zona glomerulosa and zona reticularis of the cortex and medulla of the adrenal gland, proximal and distal tubules and collecting ducts of the kidney, cardiomyocytes, and skeletal muscle cells. In the brain, (pro)renin receptor staining was detected in neurons throughout all areas, especially in the medulla oblongata, paraventricular nucleus and supraoptic nucleus of the hypothalamus, cerebrum, granular layer of the hippocampus, Purkinje cell layer of the cerebellum, and the pituitary anterior and posterior lobes. In the anterior lobe of the pituitary gland, all types of anterior pituitary hormone-positive cells showed double staining with (pro)renin receptor. These data showed that (pro)renin receptor protein was expressed in almost all organs of the human body. Its expression pattern was not uniform, and cell-specific expression pattern was observed, supporting the notion that (pro)renin receptor plays numerous physiological roles in each human organ.
Collapse
Affiliation(s)
- Satoshi Morimoto
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Noriko Morishima
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Daisuke Watanabe
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoichiro Kato
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Noriyuki Shibata
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsuhiro Ichihara
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
42
|
Miyakawa S, Sakuma H, Warude D, Asanuma S, Arimura N, Yoshihara T, Tavares D, Hata A, Ida K, Hori Y, Okuzono Y, Yamamoto S, Iida K, Shimizu H, Kondo S, Sato S. Anti-sortilin1 Antibody Up-Regulates Progranulin via Sortilin1 Down-Regulation. Front Neurosci 2020; 14:586107. [PMID: 33384578 PMCID: PMC7770147 DOI: 10.3389/fnins.2020.586107] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Progranulin (PGRN) haploinsufficiency associated with loss-of-function mutations in the granulin gene causes frontotemporal dementia (FTD). This suggests that increasing PGRN levels could have promising therapeutic implications for patients carrying GRN mutations. In this study, we explored the therapeutic potential of sortilin1 (SORT1), a clearance receptor of PGRN, by generating and characterizing monoclonal antibodies against SORT1. Anti-SORT1 monoclonal antibodies were generated by immunizing Sort1 knockout mice with SORT1 protein. The antibodies were classified into 7 epitope bins based on their competitive binding to the SORT1 protein and further defined by epitope bin-dependent characteristics, including SORT1-PGRN blocking, SORT1 down-regulation, and binding to human and mouse SORT1. We identified a positive correlation between PGRN up-regulation and SORT1 down-regulation. Furthermore, we also characterized K1-67 antibody via SORT1 down-regulation and binding to mouse SORT1 in vivo and confirmed that K1-67 significantly up-regulated PGRN levels in plasma and brain interstitial fluid of mice. These data indicate that SORT1 down-regulation is a key mechanism in increasing PGRN levels via anti-SORT1 antibodies and suggest that SORT1 is a potential target to correct PGRN reduction, such as that in patients with FTD caused by GRN mutation.
Collapse
Affiliation(s)
- Shuuichi Miyakawa
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hiroyuki Sakuma
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Dnyaneshwar Warude
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Satomi Asanuma
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Naoto Arimura
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Tomoki Yoshihara
- Global Biologics Research, Takeda Pharmaceutical Company Limited, Cambridge, MA, United States
| | - Daniel Tavares
- Global Biologics Research, Takeda Pharmaceutical Company Limited, Cambridge, MA, United States
| | - Akito Hata
- Global Biologics Research, Takeda Pharmaceutical Company Limited, Cambridge, MA, United States
| | - Koh Ida
- Global Biologics Research, Takeda Pharmaceutical Company Limited, Cambridge, MA, United States
| | - Yuri Hori
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yuumi Okuzono
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Syunsuke Yamamoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Koichi Iida
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hisao Shimizu
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Shinichi Kondo
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Shuji Sato
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
43
|
Biscetti F, Nardella E, Rando MM, Cecchini AL, Bonadia N, Bruno P, Angelini F, Di Stasi C, Contegiacomo A, Santoliquido A, Pitocco D, Landolfi R, Flex A. Sortilin levels correlate with major cardiovascular events of diabetic patients with peripheral artery disease following revascularization: a prospective study. Cardiovasc Diabetol 2020; 19:147. [PMID: 32977814 PMCID: PMC7519536 DOI: 10.1186/s12933-020-01123-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/12/2020] [Indexed: 12/24/2022] Open
Abstract
Background Peripheral artery disease (PAD) represents one of the most relevant vascular complications of type 2 diabetes mellitus (T2DM). Moreover, T2DM patients suffering from PAD have an increased risk of major adverse cardiovascular events (MACE) and major adverse limb events (MALE). Sortilin, a protein involved in apolipoproteins trafficking, is associated with lower limb PAD in T2DM patients. Objective To evaluate the relationship between baseline serum levels of sortilin, MACE and MALE occurrence after revascularization of T2DM patients with PAD and chronic limb-threatening ischemia (CLTI). Research design and methods We performed a prospective non-randomized study including 230 statin-free T2DM patients with PAD and CLTI. Sortilin levels were measured before the endovascular intervention and incident outcomes were assessed during a 12 month follow-up. Results Sortilin levels were significantly increased in individuals with more aggressive PAD (2.25 ± 0.51 ng/mL vs 1.44 ± 0.47 ng/mL, p < 0.001). During follow-up, 83 MACE and 116 MALE occurred. In patients, who then developed MACE and MALE, sortilin was higher. In particular, 2.46 ± 0.53 ng/mL vs 1.55 ± 0.42 ng/mL, p < 0.001 for MACE and 2.10 ± 0.54 ng/mL vs 1.65 ± 0.65 ng/mL, p < 0.001 for MALE. After adjusting for traditional atherosclerosis risk factors, the association between sortilin and vascular outcomes remained significant in a multivariate analysis. In our receiver operating characteristics (ROC) curve analysis using sortilin levels the prediction of MACE incidence improved (area under the curve [AUC] = 0.94) and MALE (AUC = 0.72). Conclusions This study demonstrates that sortilin correlates with incidence of MACE and MALE after endovascular revascularization in a diabetic population with PAD and CLTI.
Collapse
Affiliation(s)
- Federico Biscetti
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italia. .,Internal Medicine and Vascular Diseases Unit, Roma, Italia. .,Laboratory of Vascular Biology and Genetics, Department of Translational Medicine and Surgery, Roma, Italia.
| | | | | | | | - Nicola Bonadia
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italia.,Emergency Medicine, Roma, Italia
| | - Piergiorgio Bruno
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italia.,Cardiac Surgery Unit, Roma, Italia
| | - Flavia Angelini
- Laboratory of Vascular Biology and Genetics, Department of Translational Medicine and Surgery, Roma, Italia
| | | | | | - Angelo Santoliquido
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italia.,Università Cattolica del Sacro Cuore, Roma, Italia.,Angiology Unit, Roma, Italia
| | - Dario Pitocco
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italia.,Università Cattolica del Sacro Cuore, Roma, Italia.,Diabetology Unit, Roma, Italia
| | - Raffaele Landolfi
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italia.,Internal Medicine and Vascular Diseases Unit, Roma, Italia.,Università Cattolica del Sacro Cuore, Roma, Italia
| | - Andrea Flex
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italia.,Internal Medicine and Vascular Diseases Unit, Roma, Italia.,Laboratory of Vascular Biology and Genetics, Department of Translational Medicine and Surgery, Roma, Italia.,Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
44
|
Ryu J, Ahn Y, Kook H, Kim YK. The roles of non-coding RNAs in vascular calcification and opportunities as therapeutic targets. Pharmacol Ther 2020; 218:107675. [PMID: 32910935 DOI: 10.1016/j.pharmthera.2020.107675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
Vascular calcification (VC) is characterized by an accumulation of calcium phosphate crystals inside the vessel wall. VC is often associated with diabetes, chronic kidney disease (CKD), atherosclerosis, and cardiovascular disease (CVD). Even though the number of patients with VC remains prevalent, there are still no approved therapies for the treatment of VC. Since the pathogenesis of VC is diverse and involves multiple factors and mechanisms, it is critical to reveal the novel mechanisms involved in VC. Although protein-coding RNAs involved in VC have been extensively studied, the roles of non-coding RNAs (ncRNAs) are not yet fully understood. The field of ncRNAs has recently received attention, and accumulating evidence from studies in VC suggests that ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play an important role in the regulation of VC. NcRNAs can modulate VC by acting as promoters or inhibitors and may be useful in the clinical diagnosis and treatment of VC. In this article, we review and discuss ncRNAs that regulate VC and present the therapeutic implications of these ncRNAs.
Collapse
Affiliation(s)
- Juhee Ryu
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Youngkeun Ahn
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Cardiology, Cardiovascular Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hyun Kook
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.
| | - Young-Kook Kim
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.
| |
Collapse
|
45
|
Zhang Y, He H, Zeng YP, Yang LD, Jia D, An ZM, Jia WG. Lipoprotein A, combined with alanine aminotransferase and aspartate aminotransferase, contributes to predicting the occurrence of NASH: a cross-sectional study. Lipids Health Dis 2020; 19:134. [PMID: 32527258 PMCID: PMC7288690 DOI: 10.1186/s12944-020-01310-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023] Open
Abstract
Background Nonalcoholic steatohepatitis (NASH) progresses from simple nonalcoholic fatty liver (NAFL) and has a poor prognosis. Abnormal lipid metabolism is closely related to the occurrence and development of nonalcoholic fatty liver disease (NAFLD). This study aimed to study the relationships between serum lipid metabolites and NASH, and to improve the early diagnosis of NASH. Methods This study included 86 NAFLD patients (23 NASH and 63 NAFL), and 81 unaffected individuals as controls from West China Hospital between October 2018 and May 2019. With lipid metabolites as the focus of the study, the differences in lipid metabolites were compared between the control group, NAFL patients, and NASH patients. Logistic regression analysis was used to examine the risk factors of NASH. Finally, receiver operating characteristic curve (ROC curve) was used to analyze the efficacy of the metabolites in NASH prediction. Results The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lipoprotein A (LPA) increased with the severity of NAFLD. In NAFLD patients, LPA (OR:1.61; 95%CI: 1.03–2.52) was a potential risk factor for NASH, and ROC analysis showed that the combination of LPA, ALT, and AST had a greater predictive efficiency for NASH. Conclusions Abnormal apolipoprotein/lipoprotein is closely related to lipid metabolism disorder in patients with NAFLD. In NAFL, the combination of LPA, ALT, and AST contributes to predicting the occurrence of NASH. LPA may be a potential biomarker and therapeutic target for diagnosing and treating NASH.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - He He
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu-Ping Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Li-Dan Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dan Jia
- Outpatient department, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhen-Mei An
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China.
| | - Wei-Guo Jia
- Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610031, Sichuan, China
| |
Collapse
|
46
|
Chapman MJ, Orsoni A, Tan R, Mellett NA, Nguyen A, Robillard P, Giral P, Thérond P, Meikle PJ. LDL subclass lipidomics in atherogenic dyslipidemia: effect of statin therapy on bioactive lipids and dense LDL. J Lipid Res 2020; 61:911-932. [PMID: 32295829 PMCID: PMC7269759 DOI: 10.1194/jlr.p119000543] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/01/2020] [Indexed: 01/05/2023] Open
Abstract
Atherogenic LDL particles are physicochemically and metabolically heterogeneous. Can bioactive lipid cargo differentiate LDL subclasses, and thus potential atherogenicity? What is the effect of statin treatment? Obese hypertriglyceridemic hypercholesterolemic males [n = 12; lipoprotein (a) <10 mg/dl] received pitavastatin calcium (4 mg/day) for 180 days in a single-phase unblinded study. The lipidomic profiles (23 lipid classes) of five LDL subclasses fractionated from baseline and post-statin plasmas were determined by LC-MS. At baseline and on statin treatment, very small dense LDL (LDL5) was preferentially enriched (up to 3-fold) in specific lysophospholipids {LPC, lysophosphatidylinositol (LPI), lysoalkylphosphatidylcholine [LPC(O)]; 9, 0.2, and 0.14 mol per mole of apoB, respectively; all P < 0.001 vs. LDL1-4}, suggesting elevated inflammatory potential per particle. In contrast, lysophosphatidylethanolamine was uniformly distributed among LDL subclasses. Statin treatment markedly reduced absolute plasma concentrations of all LDL subclasses (up to 33.5%), including LPC, LPI, and LPC(O) contents (up to -52%), consistent with reduction in cardiovascular risk. Despite such reductions, lipotoxic ceramide load per particle in LDL1-5 (1.5-3 mol per mole of apoB; 3-7 mmol per mole of PC) was either conserved or elevated. Bioactive lipids may constitute biomarkers for the cardiometabolic risk associated with specific LDL subclasses in atherogenic dyslipidemia at baseline, and with residual risk on statin therapy.
Collapse
Affiliation(s)
- M John Chapman
- Endocrinology Metabolism Division, Pitié-Salpetrière University Hospital, Sorbonne University and National Institute for Health and Medical Research (INSERM), Paris, France; Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia. mailto:
| | - Alexina Orsoni
- Service de Biochimie AP-HP, HU Paris-Saclay, Bicetre University Hospital, Le Kremlin Bicêtre and EA 7357, Paris-Saclay University, Chatenay-Malabry, France
| | - Ricardo Tan
- Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Natalie A Mellett
- Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Anh Nguyen
- Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Paul Robillard
- Endocrinology Metabolism Division, Pitié-Salpetrière University Hospital, Sorbonne University and National Institute for Health and Medical Research (INSERM), Paris, France
| | - Philippe Giral
- INSERM UMR1166 and Cardiovascular Prevention Units, ICAN-Institute of CardioMetabolism and Nutrition, AP-HP, Pitié-Salpetrière University Hospital, Paris, France
| | - Patrice Thérond
- Service de Biochimie AP-HP, HU Paris-Saclay, Bicetre University Hospital, Le Kremlin Bicêtre and EA 7357, Paris-Saclay University, Chatenay-Malabry, France
| | - Peter J Meikle
- Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
47
|
Ouyang S, Jia B, Xie W, Yang J, Lv Y. Mechanism underlying the regulation of sortilin expression and its trafficking function. J Cell Physiol 2020; 235:8958-8971. [PMID: 32474917 DOI: 10.1002/jcp.29818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022]
Abstract
This review summarizes and analyzes the updated information on the regulation of sortilin expression and its trafficking function. Evidence indicates that the expression and function of sortilin are closely regulated at four levels: DNA, messenger RNA (mRNA), protein, and trafficking function. DNA methylation, several mutations, and minor single-nucleotide polymorphisms within DNA fragments affect the expression of SORT1 gene. A few transcription factors and microRNAs modulate its transcription as well as the splicing or stability of the mRNA. Moreover, several translation factors control the synthesis of sortilin protein, and posttranslational modifications affect its degradation processes. Multiple adaptor molecules modulate the sortilin trafficking function in the anterograde or retrograde pathway. Recent advances in the regulation of sortilin expression and function, and its related mechanisms will help the ongoing research related to sortilin and promote future clinical application via sortilin intervention.
Collapse
Affiliation(s)
- Shuhui Ouyang
- Department of Anatomy, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, China
| | - Bo Jia
- Department of Anatomy, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, China
| | - Wei Xie
- Department of Anatomy, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, China
| | - Jing Yang
- Department of Endocrinology of the First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Yuncheng Lv
- Department of Anatomy, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, China.,Guangxi Key Laboratory of Diabetic Systems Medicine, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| |
Collapse
|
48
|
MicroRNA-148a regulates low-density lipoprotein metabolism by repressing the (pro)renin receptor. PLoS One 2020; 15:e0225356. [PMID: 32437440 PMCID: PMC7241754 DOI: 10.1371/journal.pone.0225356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 05/06/2020] [Indexed: 01/15/2023] Open
Abstract
High plasma LDL cholesterol (LDL-c) concentration is a major risk factor for atherosclerosis. Hepatic LDL receptor (LDLR) regulates LDL metabolism, and thereby plasma LDL-c concentration. Recently, we have identified the (pro)renin receptor [(P)RR] as a novel regulator of LDL metabolism, which regulates LDLR degradation and hence its protein abundance and activity. In silico analysis suggests that the (P)RR is a target of miR-148a. In this study we determined whether miR-148a could regulate LDL metabolism by regulating (P)RR expression in HepG2 and Huh7 cells. We found that miR-148a suppressed (P)RR expression by binding to the 3’-untranslated regions (3’-UTR) of the (P)RR mRNA. Mutating the binding sites for miR-148a in the 3’-UTR of (P)RR mRNA completely abolished the inhibitory effects of miR-148a on (P)RR expression. In line with our recent findings, reduced (P)RR expression resulted in decreased cellular LDL uptake, likely as a consequence of decreased LDLR protein abundance. Overexpressing the (P)RR prevented miR-148a-induced reduction in LDLR abundance and cellular LDL uptake. Our study supports a new concept that miR-148a is a regulator of (P)RR expression. By reducing (P)RR abundance, miR-148a decreases LDLR protein abundance and consequently cellular LDL uptake.
Collapse
|
49
|
Barnes JW, Aarnio-Peterson M, Norris J, Haskins M, Flanagan-Steet H, Steet R. Upregulation of Sortilin, a Lysosomal Sorting Receptor, Corresponds with Reduced Bioavailability of Latent TGFβ in Mucolipidosis II Cells. Biomolecules 2020; 10:biom10050670. [PMID: 32357547 PMCID: PMC7277838 DOI: 10.3390/biom10050670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Mucolipidosis II (ML-II) is a lysosomal disease caused by defects in the carbohydrate-dependent sorting of soluble hydrolases to lysosomes. Altered growth factor signaling has been identified as a contributor to the phenotypes associated with ML-II and other lysosomal disorders but an understanding of how these signaling pathways are affected is still emerging. Here, we investigated transforming growth factor beta 1 (TGFβ1) signaling in the context of ML-II patient fibroblasts, observing decreased TGFβ1 signaling that was accompanied by impaired TGFβ1-dependent wound closure. We found increased intracellular latent TGFβ1 complexes, caused by reduced secretion and stable localization in detergent-resistant lysosomes. Sortilin, a sorting receptor for hydrolases and TGFβ-related cytokines, was upregulated in ML-II fibroblasts as well as GNPTAB-null HeLa cells, suggesting a mechanism for inappropriate lysosomal targeting of TGFβ. Co-expression of sortilin and TGFβ in HeLa cells resulted in reduced TGFβ1 secretion. Elevated sortilin levels correlated with normal levels of cathepsin D in ML-II cells, consistent with a compensatory role for this receptor in lysosomal hydrolase targeting. Collectively, these data support a model whereby sortilin upregulation in cells with lysosomal storage maintains hydrolase sorting but suppresses TGFβ1 secretion through increased lysosomal delivery. These findings highlight an unexpected link between impaired lysosomal sorting and altered growth factor bioavailability.
Collapse
Affiliation(s)
- Jarrod W Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Joy Norris
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Mark Haskins
- Emeritus Professor, Pathology and Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6051, USA
| | | | | |
Collapse
|
50
|
Camilli M, Iannaccone G, Del Buono MG, Crea F, Aspromonte N. Genetic background of coronary artery disease: clinical implications and perspectives. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1746640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Massimiliano Camilli
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Giulia Iannaccone
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Marco G. Del Buono
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Nadia Aspromonte
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|