1
|
Shahbaz SK, Mokhlesi A, Sadegh RK, Rahimi K, Jamialahmadi T, Butler AE, Kesharwani P, Sahebkar A. TLR/NLRP3 inflammasome signaling pathways as a main target in frailty, cachexia and sarcopenia. Tissue Cell 2025; 93:102723. [PMID: 39823704 DOI: 10.1016/j.tice.2025.102723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Mobility disability is a common condition affecting older adults, making walking and the performance of activities of daily living difficult. Frailty, cachexia and sarcopenia are related conditions that occur with advancing age and are characterized by a decline in muscle mass, strength, and functionality that negatively impacts health. Chronic low-grade inflammation is a significant factor in the onset and progression of these conditions. The toll-like receptors (TLRs) and the NLRP3 inflammasome are the pathways of signaling that regulate inflammation. These pathways can potentially be targeted therapeutically for frailty, cachexia and sarcopenia as research has shown that dysregulation of the TLR/NLRP3 inflammasome signaling pathways is linked to these conditions. Activation of TLRs with pathogen-associated molecular patterns (PAMPs or DAMPs) results in chronic inflammation and tissue damage by releasing pro-inflammatory cytokines. Additionally, NLRP3 inflammasome activation enhances the inflammatory response by promoting the production and release of interleukins (ILs), thus exacerbating the underlying inflammatory mechanisms. These pathways are activated in the advancement of disease in frail and sarcopenic individuals. Targeting these pathways may offer therapeutic options to reduce frailty, improve musculoskeletal resilience and prevent or reverse cachexia-associated muscle wasting. Modulating TLR/NLRP3 inflammasome pathways may also hold promise in slowing down the progression of sarcopenia, preserving muscle mass and enhancing overall functional ability in elderly people. The aim of this review is to investigate the signaling pathways of the TLR/NLRP3 inflammasome as a main target in frailty, cachexia and sarcopenia.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Aida Mokhlesi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; Social Determinants of Health Research Center, Research Institute for Prevention of Non-communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Sciences, Qazvin, Iran; Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Roghaye Keshavarz Sadegh
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Kimia Rahimi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Yang Y, Ren P, Sun Y, Li J, Zhou X, Zhang H, He C, Dai H, Guan L. Structure elucidation and molecular mechanism of an immunomodulatory polysaccharide from Nostoc commune. Int J Biol Macromol 2024; 283:137435. [PMID: 39537070 DOI: 10.1016/j.ijbiomac.2024.137435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Nostoc commune Vaucher, a terrestrial and benthic blue-green alga, widely used in food and medicine worldwide. N. commune Polysaccharides (NCVP) have excellent biological activities, especially immunomodulatory, hypoglycemic and anti-tumor activities. However, the mechanism and structure-activity relationship of NCVP has been less studied. In this study, based on methylation and NMR results, a novel polysaccharide NCVP2 with 135 kDa, containing→4)-α-D-Galp-(1→, → 4)-β-D-Glcp-(1→, and →4)-α-D-Xylp-(1→ residues as the backbon, was sequentially purified from N.commune by DEAE-52 and Sephadex G-100 column. NCVP2 (50 μg/mL) exhibited the strong in vitro immunomodulatory activity by promoting the generation of nitric oxide (NO) and reactive oxygen species (ROS). A total of 2048 differentially expressed genes (DEGs) were identified by RNA-seq, including 1019 down-regulated genes and 1065 up-regulated genes. These DEGs were mainly enriched in the immune-related biological processes, involving in Mitogen-activated protein kinase (MAPK) and Toll-like receptor (TLR) signaling pathways by GO and KEGG enrichment analysis. Furthermore, Western blot results proved NCVP2 could recognize TLR2 and TLR4/MD2, and regulate TLR7/IRF7, MAPK and PI3K/AKT signaling pathways. In summary, a novel polysaccharide NCVP2 from N.commune was proposed to exhibit significant immunomodulatory effects with multiple-paths and targets, and has great potential in the development of healthy foods such as immunomodulators.
Collapse
Affiliation(s)
- Yiting Yang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ping Ren
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ying Sun
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Junyi Li
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xinjun Zhou
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Haipeng Zhang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Chengguang He
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Huining Dai
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Lili Guan
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China.
| |
Collapse
|
3
|
Obrenović M, Šupić G, Miyabe S, Mladenović I, Kozomara R, Jović S, Ćurčin AP, Štefik D, Stosić S, Ðurđević BV. Impact of TLR9 and TLR7 gene polymorphisms on prognosis and survival of patients with oral squamous cell carcinoma. BIOMOLECULES & BIOMEDICINE 2024; 24:1682-1691. [PMID: 38850110 PMCID: PMC11496855 DOI: 10.17305/bb.2024.10550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
Despite significant efforts in developing new diagnostic and therapeutic modalities, oral squamous cell carcinomas (OSCCs) still exhibit a high recurrence rate, a low five-year survival rate, and an increasing prevalence. Toll-like receptors (TLRs), which initiate and perpetuate immune mechanisms upon activation, have been linked to immune surveillance and the antitumor immune response. The aim of this study was to investigate the association between the polymorphisms of the TLR7 rs3853839 and TLR9 rs187084 genes and OSCC risk, clinicopathological features, and survival. Genotyping was assessed by real-time polymerase chain reaction (PCR) in 95 HPV negative OSCC patients and 107 age- and sex-matched healthy controls. Patients with lymph node metastases had higher frequencies of the TLR9 rs187084 CC variant genotype compared to the major TT genotype (P = 0.020) and to T-allele carriers (combined TT + CT genotypes, P = 0.015). A higher prevalence of advanced stage III was observed in patients with the TLR9 rs187084 variant CC genotype compared to TT (P = 0.047) and to T-allele carriers (TT + CT, P = 0.037). Kaplan-Meier analysis revealed a lower overall survival (OS) rate in patients with the TLR9 rs187084 variant CC genotype compared to the TT genotype (P = 0.010, log-rank test) and to T-allele carriers (TT + CT genotypes, P = 0.002), though it was not an independent predictor of OS. Both TLR9 rs187084 and TLR7 rs3853839 polymorphisms were associated with high alcohol consumption (P = 0.027 and P = 0.001, respectively). The investigated genetic variations were not associated with OSCC susceptibility. The variant CC genotype of the TLR9 rs187084 polymorphism might be a marker of poor survival and tumor progression in OSCC.
Collapse
Affiliation(s)
- Miroslav Obrenović
- Faculty of Medicine, University of East Sarajevo, Foča, Bosnia and Herzegovina
- Department for ENT and Maxillofacial Surgery, University Hospital Foča, Foča, Bosnia and Herzegovina
| | - Gordana Šupić
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Satoru Miyabe
- Department of Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Irena Mladenović
- Faculty of Medicine, University of East Sarajevo, Foča, Bosnia and Herzegovina
- Department of Prosthodontics, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Ružica Kozomara
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
- Clinic for Maxillofacial Surgery, Military Medical Academy, Belgrade, Serbia
| | - Saša Jović
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
- Clinic for Maxillofacial Surgery, Military Medical Academy, Belgrade, Serbia
| | - Aleksandra Petković Ćurčin
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Debora Štefik
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Srboljub Stosić
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
- Clinic for Maxillofacial Surgery, Military Medical Academy, Belgrade, Serbia
| | - Biserka Vukomanović Ðurđević
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
- Institute for Pathology and Forensic Medicine, Military Medical Academy, Belgrade, Serbia
| |
Collapse
|
4
|
Chen Z, Wang Z, Bao H, Ma S. Gut microbiota and pancreatic cancer risk, and the mediating role of immune cells and inflammatory cytokines: a Mendelian randomization study. Front Immunol 2024; 15:1408770. [PMID: 39119339 PMCID: PMC11306078 DOI: 10.3389/fimmu.2024.1408770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Gut microbiota (GM) influences the occurrence and development of pancreatic cancer (PC), potentially through the involvement of inflammatory cytokines (IC) and immune cells (IM). We aimed to investigate the causal impact of the gut microbiota (GM) on pancreatic cancer (PC) and identify potential IC and IM mediators. Methods The summary statistics data from whole-genome association studies of gut microbiota, immune cells, inflammatory cytokines, and four types of pancreatic tumors (MNP: Malignant neoplasm of pancreas; BNP: Benign neoplasm of pancreas; ADCP: Adenocarcinoma and ductal carcinoma of pancreas; NTCP: Neuroendocrine tumor and carcinoma of pancreas). Two-sample univariable Mendelian randomization (UVMR), multivariable Mendelian randomization (MVMR), and mediation analysis were employed to assess the causal relationship between gut microbiota (GM) and pancreatic cancer (PC), as well as potential IC and IM mediators. Results The two-sample UVMR analysis showed causal relationships between 20 gut microbiota species and pancreatic cancer, with pancreatic cancer affecting the abundance of 37 gut microbiota species. Mediation analysis revealed that Interleukin-6 (IL-6), "CD4 on naive CD4+ T cell" and "SSC-A on HLA DR+ Natural Killer" mediated the causal effects of gut microbiota on pancreatic cancer. Conclusion This Mendelian randomization study demonstrates causal relationships between several specific gut microbiota and pancreatic cancer, as well as potential mediators (IC, IM).
Collapse
Affiliation(s)
- Zhiting Chen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhe Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hejing Bao
- Department of Oncology, Panyu Central Hospital, Guangzhou, China
| | - Shudong Ma
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Ajay AK, Gasser M, Hsiao LL, Böldicke T, Waaga-Gasser AM. TLR2 and TLR9 Blockade Using Specific Intrabodies Inhibits Inflammation-Mediated Pancreatic Cancer Cell Growth. Antibodies (Basel) 2024; 13:11. [PMID: 38390872 PMCID: PMC10885114 DOI: 10.3390/antib13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) remains a deadly cancer worldwide with a need for new therapeutic approaches. A dysregulation in the equilibrium between pro- and anti-inflammatory responses with a predominant immunosuppressive inflammatory reaction in advanced stage tumors seem to contribute to tumor growth and metastasis. The current therapies do not include strategies against pro-tumorigenic inflammation in cancer patients. We have shown that the upregulated cell surface expression of Toll-like Receptor (TLR) 2 and of TLR9 inside PDAC cells maintain chronic inflammatory responses, support chemotherapeutic resistance, and mediate tumor progression in human pancreatic cancer. We further demonstrated intracellular TLR2 and TLR9 targeting using specific intrabodies, which resulted in downregulated inflammatory signaling. In this study, we tested, for the first time, an intrabody-mediated TLR blockade in human TLR2- and TLR9-expressing pancreatic cancer cells for its effects on inflammatory signaling-mediated tumor growth. Newly designed anti-TLR2- and anti-TLR9-specific intrabodies inhibited PDAC growth. Co-expression analysis of the intrabodies and corresponding human TLRs showed efficient retention and accumulation of both intrabodies within the endoplasmic reticulum (ER), while co-immunoprecipitation studies indicated both intrabodies interacting with their cognate TLR antigen within the pancreatic cancer cells. Cancer cells with attenuated proliferation expressing accumulated TLR2 and TRL9 intrabodies demonstrated reduced STAT3 phosphorylation signaling, while apoptotic markers Caspases 3 and 8 were upregulated. To conclude, our results demonstrate the TLR2 and TLR9-specific intrabody-mediated signaling pathway inhibition of autoregulatory inflammation inside cancer cells and their proliferation, resulting in the suppression of pancreatic tumor cell growth. These findings underscore the potential of specific intrabody-mediated TLR inhibition in the ER relevant for tumor growth inhibition and open up a new therapeutic intervention strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Amrendra K Ajay
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Martin Gasser
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Li-Li Hsiao
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Böldicke
- Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Ana Maria Waaga-Gasser
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Yang Y, Jin C, Yeo A, Jin B. Multiple Factors Determine the Oncolytic or Carcinogenic Effects of TLRs Activation in Cancer. J Immunol Res 2024; 2024:1-28. [DOI: 10.1155/2024/1111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Toll-like receptors (TLRs) belong to a germline-encoded protein family. These are pattern recognition receptors. They sense pathogen-associated molecular patterns (PAMPs). When this occurs, activation of the NF-ĸB pathway follows. This triggers the innate immune response of the host. The consequent inflammatory cytokine response usually contributes to the elimination of the pathogen. Activation of TLRs also induces an adaptive immune response by a cross-prime mechanism. This mechanism is employed in cancer immunotherapy. Using TLR ligands as adjuvants induces upregulation of costimulatory signals which in turn activates a cytotoxic leukocyte response against cancer cells. However, TLRs are also overexpressed in human cancer cells resulting in increased cell proliferation, migration, invasion, and angiogenesis. An intracellular adaptor, myeloid differentiation factor 88 (MyD88) probably mediates this process. MyD88 is intimately involved with all TLRs except TLR3. One consequence of the interaction between a TLR and MyD88 is activation of NF-ĸB. In this context of a variety of proinflammtory cytokines being produced, chronic inflammation may result. Inflammation is an important protective mechanism. However, chronic inflammation is also involved in carcinogenesis. Activation of NF-ĸB inhibits apoptosis and under certain circumstances, tumor cell survival. In this review, the potential therapeutic value of TLRs in immunotherapy and its role in oncogenesis are explored. The emerging use of artificial intelligence is mentioned.
Collapse
Affiliation(s)
- Yingxiang Yang
- Department of Hepato-Pancreato-Biliary Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Chengyue Jin
- Beijing Arion Cancer Center, Beijing 100070, China
| | | | - Bo Jin
- Senior Department of Gastroenterology, The First Medical Center of PLA General Hospital, Beijing 100853, China
| |
Collapse
|
7
|
Zhang W, Liu W, Hu X. Robinin inhibits pancreatic cancer cell proliferation, EMT and inflammation via regulating TLR2-PI3k-AKT signaling pathway. Cancer Cell Int 2023; 23:328. [PMID: 38110966 PMCID: PMC10726507 DOI: 10.1186/s12935-023-03167-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023] Open
Abstract
PURPOSE To investigate the anti-tumor effect of Robinin (Toll-like receptor 2 inhibitor) in pancreatic cancer cells via regulating tumor microenvironment. METHODS The effects of Robinin on cell proliferation or migration in Mia-PACA2 and PANC-1 were determined, using CCK8 or wound healing assay, respectively. The typical markers of EMT (αSMA and snail) and the inflammation markers (IL-6 and TNF-α) were all detected by western blot. CU-T12-9 (TLR2 agonist) was used to rescue Robinin's effect. PI3k-p85α and Phosphorylated-AKT (p-AKT) were evaluated, compared to the β-actin and AKT, using western blot. RESULTS Robinin significantly inhibited cell proliferation and migration in Mia-PACA2 and PANC-1, compared to HPNE (**P < 0.01). Robinin also attenuated the expression of α-SMA and snail in Mia-PACA2, and PANC-1 (**P < 0.01). Besides, it was found that expression of IL-6 and TNF-α were diminished in presence of Robinin in Mia-PACA2, and PANC-1 (**P < 0.01). Western blot confirmed that Robinin could target on TLR2, and further downregulated PI3k-AKT signaling pathway to exert biological function. CONCLUSIONS Robinin exerts anti-tumor effect perhaps via downregulating inflammation and EMT in pancreatic cancer cell through inhibiting TLR2-PI3k-AKT signaling pathway. Robinin may be a novel agent in adjuvant therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Hernia Surgery, The Second People's Hospital of Changzhou Affiliated to Nanjing Medical University, Changzhou, Jiangsu, China
- Department of Burn Surgery, The Second People's Hospital of Changzhou Affiliated to Nanjing Medical University, Changzhou, Jiangsu, 213003, China
| | - Wenting Liu
- Department of Ophthalmology, Huadong Hospital, Fudan University, Shanghai, China
| | - Xingchen Hu
- Department of Hernia Surgery, The Second People's Hospital of Changzhou Affiliated to Nanjing Medical University, Changzhou, Jiangsu, China.
- Department of Burn Surgery, The Second People's Hospital of Changzhou Affiliated to Nanjing Medical University, Changzhou, Jiangsu, 213003, China.
| |
Collapse
|
8
|
Ren T, Yin N, Du L, Pan M, Ding L. Identification and validation of FPR1, FPR2, IL17RA and TLR7 as immunogenic cell death related genes in osteoarthritis. Sci Rep 2023; 13:16872. [PMID: 37803031 PMCID: PMC10558501 DOI: 10.1038/s41598-023-43440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/24/2023] [Indexed: 10/08/2023] Open
Abstract
Immunogenic cell death (ICDs) has gained increasing attention for its significant clinical efficacy in various diseases. Similarly, more and more attention has been paid in the role of immune factors in the pathological process of osteoarthritis (OA). The objective of this study is to reveal the relationship between ICD-related genes and the process of OA at the gene level through bioinformatics analysis. In this study, Limma R package was applied to identify differentially expressed genes (DEG), and OA related module genes were determined by weighted gene co-expression network analysis. The ICD-related genes were extracted from a previous study. The module genes related to DEGs and ICD were overlapped. Then, hub genes were identified by a series of analyses using the Least absolute shrinkage and selection operator and random forest algorithm, the expression level and diagnostic value of hub genes were evaluated by Logistic regression. In addition, we used Spearman rank correlation analysis to clarify the relationship between hub genes and infiltrating immune cells and immune pathways. The expression levels of FPR1, FPR2, IL17RA, and TLR7 was verified in SD rat knee joint model of OA by immunohistochemistry. The expression levels of FPR1, FPR2, IL17RA, and TLR7 mRNA were detected in the IL-1β induced rat chondrocytes in qPCR experiment in vitro. Four hub genes (FPR1, FPR2, IL17RA, and TLR7) were ultimately identified as OA biomarkers associated with ICD. And knockdown of TLR7 reversed collagen II and ADAMTS-5 degradation in IL-1β-stimulated chondrocytes. This research may provide new immune related biomarkers for the diagnosis of OA and serve as a reference for disease treatment monitoring.
Collapse
Affiliation(s)
- Tingting Ren
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Nuo Yin
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201400, China
| | - Li Du
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201400, China
| | - Mingmang Pan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201400, China
| | - Liang Ding
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201400, China.
| |
Collapse
|
9
|
Mukherjee S, Patra R, Behzadi P, Masotti A, Paolini A, Sarshar M. Toll-like receptor-guided therapeutic intervention of human cancers: molecular and immunological perspectives. Front Immunol 2023; 14:1244345. [PMID: 37822929 PMCID: PMC10562563 DOI: 10.3389/fimmu.2023.1244345] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Toll-like receptors (TLRs) serve as the body's first line of defense, recognizing both pathogen-expressed molecules and host-derived molecules released from damaged or dying cells. The wide distribution of different cell types, ranging from epithelial to immune cells, highlights the crucial roles of TLRs in linking innate and adaptive immunity. Upon stimulation, TLRs binding mediates the expression of several adapter proteins and downstream kinases, that lead to the induction of several other signaling molecules such as key pro-inflammatory mediators. Indeed, extraordinary progress in immunobiological research has suggested that TLRs could represent promising targets for the therapeutic intervention of inflammation-associated diseases, autoimmune diseases, microbial infections as well as human cancers. So far, for the prevention and possible treatment of inflammatory diseases, various TLR antagonists/inhibitors have shown to be efficacious at several stages from pre-clinical evaluation to clinical trials. Therefore, the fascinating role of TLRs in modulating the human immune responses at innate as well as adaptive levels directed the scientists to opt for these immune sensor proteins as suitable targets for developing chemotherapeutics and immunotherapeutics against cancer. Hitherto, several TLR-targeting small molecules (e.g., Pam3CSK4, Poly (I:C), Poly (A:U)), chemical compounds, phytocompounds (e.g., Curcumin), peptides, and antibodies have been found to confer protection against several types of cancers. However, administration of inappropriate doses of such TLR-modulating therapeutics or a wrong infusion administration is reported to induce detrimental outcomes. This review summarizes the current findings on the molecular and structural biology of TLRs and gives an overview of the potency and promises of TLR-directed therapeutic strategies against cancers by discussing the findings from established and pipeline discoveries.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Ritwik Patra
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Alessandro Paolini
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| |
Collapse
|
10
|
Eckhoff AM, Brown MC, Landa K, Naqvi I, Holl EK, Boczkowski D, Fletcher A, Rhodin KE, Giang MH, Sullenger B, Beasley GM, Allen PJ, Nair SK. Functional reprogramming of peripheral blood monocytes by soluble mediators in patients with pancreatic cancer and intraductal papillary mucinous neoplasms. Front Immunol 2023; 14:1116034. [PMID: 37575220 PMCID: PMC10416516 DOI: 10.3389/fimmu.2023.1116034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Background Monocytes and monocyte-derived tumor infiltrating cells have been implicated in the immunosuppression and immune evasion associated with pancreatic adenocarcinoma (PDAC). Yet, precisely how monocytes in the periphery and tumor microenvironment in patients with intraductal papillary mucinous neoplasm (IPMN), a precursor lesion to PDAC, change during disease progression has not been defined. Here we functionally profiled the peripheral immune system and characterized the tumor microenvironment of patients with both IPMN and PDAC. We also tested if sera from patients with IPMN and PDAC functionally reprogram monocytes relative to that of healthy donors. Methods Pancreatic tissue and peripheral blood were collected at the time of resection from 16 patients with IPMN and 32 patients with PDAC. Peripheral blood and pancreatic tissue/tumor were immunophenotyped using flow cytometry. Whole blood was plated and incubated with R848 (a TLR 7/8 agonist) or LPS (a TLR4 agonist) for 6 hours and TNF expression in monocytes was measured by flow cytometry to measure monocyte activation. To test if TLR sensitivity is determined by factors in patient sera, we preconditioned healthy donor monocytes in serum from PDAC (n=23), IPMN (n=15), or age-matched healthy donors (n=10) followed by in vitro stimulation with R848 or LPS and multiplex cytokine measurements in the supernatant. Results TNF expression in R848-stimulated peripheral blood monocytes was higher in patients with low grade vs high grade IPMN (65% vs 32%, p = 0.03) and stage 1 vs stage 2/3 PDAC (58% vs 42%, p = 0.03), this was not observed after LPS stimulation. TLR activation correlated with increasing grade of dysplasia from low grade IPMN to high grade IPMN. Serum from patients with IPMN and PDAC recapitulated suppression of TNF induction after R848 stimulation in naïve, healthy donor monocytes. Conclusion Peripheral blood monocyte TNF secretion inversely correlates with the degree of dysplasia in IPMN and cancer stage in PDAC, suggesting innate immune reprogramming as IPMNs progress to invasive disease. These effects are, at least in part, mediated by soluble mediators in sera.
Collapse
Affiliation(s)
| | - Michael C. Brown
- Department of Neurosurgery, Duke University, Durham, NC, United States
| | - Karenia Landa
- Department of Surgery, Duke University, Durham, NC, United States
| | - Ibtehaj Naqvi
- Department of Anesthesiology, Duke University, Durham, NC, United States
| | - Eda K. Holl
- Department of Surgery, Duke University, Durham, NC, United States
| | - David Boczkowski
- Department of Surgery, Duke University, Durham, NC, United States
| | - Ashley Fletcher
- Department of Surgery, Duke University, Durham, NC, United States
| | | | - Minh Huy Giang
- Department of Neurosurgery, Duke University, Durham, NC, United States
| | - Bruce Sullenger
- Department of Surgery, Duke University, Durham, NC, United States
| | | | - Peter J. Allen
- Department of Surgery, Duke University, Durham, NC, United States
| | - Smita K. Nair
- Department of Surgery, Duke University, Durham, NC, United States
- Department of Neurosurgery, Duke University, Durham, NC, United States
- Department of Pathology, Duke University, Durham, NC, United States
| |
Collapse
|
11
|
Wang J, Zhang J, Wang J, Hu X, Ouyang L, Wang Y. Small-Molecule Modulators Targeting Toll-like Receptors for Potential Anticancer Therapeutics. J Med Chem 2023; 66:6437-6462. [PMID: 37163340 DOI: 10.1021/acs.jmedchem.2c01655] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Toll-like receptors (TLRs) are key components of the innate immune system and serve as a crucial link between innate and acquired immunity. In addition to immune function, TLRs are involved in other important pathological processes, including tumorigenesis. TLRs have dual regulatory effects on tumor immunity by activating nuclear factor κ-B signaling pathways, which induce tumor immune evasion or enhance the antitumor immune response. Therefore, TLRs have become a popular target for cancer prevention and treatment, and TLR agonists and antagonists offer considerable potential for drug development. The TLR7 agonist imiquimod (1) has been approved by the U.S. Food and Drug Administration as a treatment for malignant skin cancer. Herein, the structure, signaling pathways, and function of the TLR family are summarized, and the structure-activity relationships associated with TLR selective and multitarget modulators and their potential application in tumor therapy are systematically discussed.
Collapse
Affiliation(s)
- Jiayu Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Xinyue Hu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Liang Ouyang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
12
|
Bastos AR, Pereira-Marques J, Ferreira RM, Figueiredo C. Harnessing the Microbiome to Reduce Pancreatic Cancer Burden. Cancers (Basel) 2023; 15:cancers15092629. [PMID: 37174095 PMCID: PMC10177253 DOI: 10.3390/cancers15092629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer mortality is expected to rise in the next decades. This aggressive malignancy has a dismal prognosis due to late diagnosis and resistance to treatment. Increasing evidence indicates that host-microbiome interactions play an integral role in pancreatic cancer development, suggesting that harnessing the microbiome might offer promising opportunities for diagnostic and therapeutic interventions. Herein, we review the associations between pancreatic cancer and the intratumoral, gut and oral microbiomes. We also explore the mechanisms with which microbes influence cancer development and the response to treatment. We further discuss the potentials and limitations of using the microbiome as a target for therapeutic interventions, in order to improve pancreatic cancer patient outcomes.
Collapse
Affiliation(s)
- Ana Raquel Bastos
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Joana Pereira-Marques
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Rui Manuel Ferreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Ceu Figueiredo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| |
Collapse
|
13
|
Palma AM, Vudatha V, Peixoto ML, Madan E. Tumor heterogeneity: An oncogenic driver of PDAC progression and therapy resistance under stress conditions. Adv Cancer Res 2023; 159:203-249. [PMID: 37268397 DOI: 10.1016/bs.acr.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a clinically challenging disease usually diagnosed at advanced or metastasized stage. By this year end, there are an expected increase in 62,210 new cases and 49,830 deaths in the United States, with 90% corresponding to PDAC subtype alone. Despite advances in cancer therapy, one of the major challenges combating PDAC remains tumor heterogeneity between PDAC patients and within the primary and metastatic lesions of the same patient. This review describes the PDAC subtypes based on the genomic, transcriptional, epigenetic, and metabolic signatures observed among patients and within individual tumors. Recent studies in tumor biology suggest PDAC heterogeneity as a major driver of disease progression under conditions of stress including hypoxia and nutrient deprivation, leading to metabolic reprogramming. We therefore advance our understanding in identifying the underlying mechanisms that interfere with the crosstalk between the extracellular matrix components and tumor cells that define the mechanics of tumor growth and metastasis. The bilateral interaction between the heterogeneous tumor microenvironment and PDAC cells serves as another important contributor that characterizes the tumor-promoting or tumor-suppressing phenotypes providing an opportunity for an effective treatment regime. Furthermore, we highlight the dynamic reciprocating interplay between the stromal and immune cells that impact immune surveillance or immune evasion response and contribute towards a complex process of tumorigenesis. In summary, the review encapsulates the existing knowledge of the currently applied treatments for PDAC with emphasis on tumor heterogeneity, manifesting at multiple levels, impacting disease progression and therapy resistance under stress.
Collapse
Affiliation(s)
| | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | | | - Esha Madan
- Champalimaud Centre for the Unknown, Lisbon, Portugal; Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
14
|
Ruze R, Song J, Yin X, Chen Y, Xu R, Wang C, Zhao Y. Mechanisms of obesity- and diabetes mellitus-related pancreatic carcinogenesis: a comprehensive and systematic review. Signal Transduct Target Ther 2023; 8:139. [PMID: 36964133 PMCID: PMC10039087 DOI: 10.1038/s41392-023-01376-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/26/2023] Open
Abstract
Research on obesity- and diabetes mellitus (DM)-related carcinogenesis has expanded exponentially since these two diseases were recognized as important risk factors for cancers. The growing interest in this area is prominently actuated by the increasing obesity and DM prevalence, which is partially responsible for the slight but constant increase in pancreatic cancer (PC) occurrence. PC is a highly lethal malignancy characterized by its insidious symptoms, delayed diagnosis, and devastating prognosis. The intricate process of obesity and DM promoting pancreatic carcinogenesis involves their local impact on the pancreas and concurrent whole-body systemic changes that are suitable for cancer initiation. The main mechanisms involved in this process include the excessive accumulation of various nutrients and metabolites promoting carcinogenesis directly while also aggravating mutagenic and carcinogenic metabolic disorders by affecting multiple pathways. Detrimental alterations in gastrointestinal and sex hormone levels and microbiome dysfunction further compromise immunometabolic regulation and contribute to the establishment of an immunosuppressive tumor microenvironment (TME) for carcinogenesis, which can be exacerbated by several crucial pathophysiological processes and TME components, such as autophagy, endoplasmic reticulum stress, oxidative stress, epithelial-mesenchymal transition, and exosome secretion. This review provides a comprehensive and critical analysis of the immunometabolic mechanisms of obesity- and DM-related pancreatic carcinogenesis and dissects how metabolic disorders impair anticancer immunity and influence pathophysiological processes to favor cancer initiation.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| |
Collapse
|
15
|
Xin J. Critical signaling pathways governing colitis-associated colorectal cancer: Signaling, therapeutic implications, and challenges. Dig Liver Dis 2023; 55:169-177. [PMID: 36002360 DOI: 10.1016/j.dld.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/05/2022] [Accepted: 08/03/2022] [Indexed: 02/01/2023]
Abstract
Long-term colitis in people with inflammatory bowel disease (IBD) may lead to colon cancer called colitis-associated colorectal cancer (CAC). Since the advent of preclinical prototypes of CAC, various immunological messaging cascades have been identified as implicated in developing this disease. The toll-like receptor (TLR)s, Janus kinase (JAK)-signal transducer and activator of transcription (STAT), Nuclear factor-kappa B (NF-κB), mammalian target of rapamycin complex (mTOR), autophagy, and oxidative stress are only a few of the molecular mechanisms that have been recognized as major components to CAC progression. These pathways may also represent attractive medicinal candidates for the prevention and management of CAC. CAC signaling mechanisms at the molecular level and how their dysregulation may cause illness are summarized in this comprehensive overview.
Collapse
Affiliation(s)
- Jiang Xin
- Department of Gastrointestinal Surgery, The Third People's hospital of Qingdao, 266000, China.
| |
Collapse
|
16
|
Binda C, Gibiino G, Sbrancia M, Coluccio C, Cazzato M, Carloni L, Cucchetti A, Ercolani G, Sambri V, Fabbri C. Microbiota in the Natural History of Pancreatic Cancer: From Predisposition to Therapy. Cancers (Basel) 2022; 15:cancers15010001. [PMID: 36611999 PMCID: PMC9817971 DOI: 10.3390/cancers15010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Early microbiome insights came from gut microbes and their role among intestinal and extraintestinal disease. The latest evidence suggests that the microbiota is a true organ, capable of several interactions throughout the digestive system, attracting specific interest in the biliopancreatic district. Despite advances in diagnostics over the last few decades and improvements in the management of this disease, pancreatic cancer is still a common cause of cancer death. Microbiota can influence the development of precancerous disease predisposing to pancreatic cancer (PC). At the same time, neoplastic tissue shows specific characteristics in terms of diversity and phenotype, determining the short- and long-term prognosis. Considering the above information, a role for microbiota has also been hypothesized in the different phases of the PC approach, providing future revolutionary therapeutic insights. Microbiota-modulating therapies could open new issues in the therapeutic landscape. The aim of this narrative review is to assess the most updated evidence on microbiome in all the steps regarding pancreatic adenocarcinoma, from early development to response to antineoplastic therapy and long-term prognosis.
Collapse
Affiliation(s)
- Cecilia Binda
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Giulia Gibiino
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
- Correspondence: ; Tel.: +39-3488609557
| | - Monica Sbrancia
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Chiara Coluccio
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Maria Cazzato
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Lorenzo Carloni
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Alessandro Cucchetti
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
- General and Oncologic Surgery, Morgagni—Pierantoni Hospital, AUSL Romagna, 47121 Forlì, Italy
| | - Giorgio Ercolani
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
- General and Oncologic Surgery, Morgagni—Pierantoni Hospital, AUSL Romagna, 47121 Forlì, Italy
| | - Vittorio Sambri
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
- Microbiology Unit, Hub Laboratory, AUSL della Romagna, 47121 Cesena, Italy
| | - Carlo Fabbri
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| |
Collapse
|
17
|
Sun H, Li Y, Zhang P, Xing H, Zhao S, Song Y, Wan D, Yu J. Targeting toll-like receptor 7/8 for immunotherapy: recent advances and prospectives. Biomark Res 2022; 10:89. [PMID: 36476317 PMCID: PMC9727882 DOI: 10.1186/s40364-022-00436-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs) are a large family of proteins that are expressed in immune cells and various tumor cells. TLR7/8 are located in the intracellular endosomes, participate in tumor immune surveillance and play different roles in tumor growth. Activation of TLRs 7 and 8 triggers induction of a Th1 type innate immune response in the highly sophisticated process of innate immunity signaling with the recent research advances involving the small molecule activation of TLR 7 and 8. The wide range of expression and clinical significance of TLR7/TLR8 in different kinds of cancers have been extensively explored. TLR7/TLR8 can be used as novel diagnostic biomarkers, progression and prognostic indicators, and immunotherapeutic targets for various tumors. Although the mechanism of action of TLR7/8 in cancer immunotherapy is still incomplete, TLRs on T cells are involved in the regulation of T cell function and serve as co-stimulatory molecules and activate T cell immunity. TLR agonists can activate T cell-mediated antitumor responses with both innate and adaptive immune responses to improve tumor therapy. Recently, novel drugs of TLR7 or TLR8 agonists with different scaffolds have been developed. These agonists lead to the induction of certain cytokines and chemokines that can be applied to the treatment of some diseases and can be used as good adjutants for vaccines. Furthermore, TLR7/8 agonists as potential therapeutics for tumor-targeted immunotherapy have been developed. In this review, we summarize the recent advances in the development of immunotherapy strategies targeting TLR7/8 in patients with various cancers and chronic hepatitis B.
Collapse
Affiliation(s)
- Hao Sun
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yingmei Li
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Peng Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Haizhou Xing
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yongping Song
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Dingming Wan
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jifeng Yu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004 Henan China
| |
Collapse
|
18
|
Huang R, Sun Z, Xian S, Song D, Chang Z, Yan P, Zhang J, Yin H, Zheng Z, Hu P, Li Z, Huang D, Liu Y, Jiang C, Li M, Li S, Meng T, Yang D, Huang Z. The role of toll-like receptors (TLRs) in pan-cancer. Ann Med 2022; 54:1918-1937. [PMID: 35801728 PMCID: PMC9272932 DOI: 10.1080/07853890.2022.2095664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) are important components of the innate and adaptive immune systems, and abnormal TLR expression has been linked to a variety of cancers. However, there was a lack of clarity on the association of TLR stimulation with the carcinogenesis of cancer. The study's goal was to analyse the clinical importance of TLRs expression at the mRNA level in pan-cancer datasets, as well as the link between TLR expression and carcinogenesis, progression, and clinical prognosis. METHODS The expression profile of TLRs derived from UCSC pan-cancer data was analysed in multiple dimensions, including clinical analysis, immunological subtype analysis, tumour microenvironment (TME) analysis, tumour stem cell correlation analysis, and drug sensitivity analysis. Additionally, we analyse protein-protein interactions, functional enrichment, and chromatin accessibility, as well as TLR expression in single-cell sequencing data. RESULTS Our multi-omics analysis results imply that TLRs may operate as a biological marker for carcinogenesis and progression, a potential target for anti-tumour therapy, and a prognostic biomarker, laying the theoretical groundwork for future translational medicine research. CONCLUSION TLRs are involved in the formation of malignancies and can be explored in further detail as potential prognostic indicators. Key MessagesToll-like receptors (TLRs) are key factors in the process of the innate and adaptive immune response, and their aberrant expression of TLRs have been widely reported in various cancer. However, the association between TLRs stimulation and tumorigenesis of cancer has not been well clarified.In this study, in the pan-cancer data, integrated TLR family gene expression analysis, clinical correlation analysis, immune subtype correlation analysis, tumour microenvironment correlation analysis, tumour stem cell correlation analysis, and drug sensitivity correlation analysis were performed.TLRs play an important role in the development of tumours and can be studied in depth as potential prognostic markers.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Zehui Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuyuan Xian
- Tongji University School of Medicine, Shanghai, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Zhang
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zixuan Zheng
- Tongji University School of Medicine, Shanghai, China
| | - Peng Hu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenyu Li
- Tongji University School of Medicine, Shanghai, China
| | - Dan Huang
- Tongji University School of Medicine, Shanghai, China
| | - Yihan Liu
- Tongji University School of Medicine, Shanghai, China
| | - Chenyang Jiang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Man Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siqi Li
- Tongji University School of Medicine, Shanghai, China
| | - Tong Meng
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Daoke Yang
- Department of Radiotherpy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Luan C, Jin S, Hu Y, Zhou X, Liu L, Li R, Ju M, Huang D, Chen K. Whole-genome identification and construction of the lncRNA-mRNA co-expression network in patients with actinic keratosis. Transl Cancer Res 2022; 11:4070-4078. [PMID: 36523309 PMCID: PMC9745357 DOI: 10.21037/tcr-22-842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/17/2022] [Indexed: 08/30/2023]
Abstract
BACKGROUND Actinic keratosis (AK) is a common premalignant lesion induced by chronic exposure to ultraviolet radiation and may develop into invasive cutaneous squamous carcinoma (cSCC). The identification of specific biomarkers in AK are still unclear. Long non-coding RNAs (lncRNAs), as transcripts of more than 200 nucleotides, significantly involving in multiple biologic processes, especially in the development of tumors. METHODS In our study, we obtained data from RNA-sequencing analysis using two AK lesion tissues and three normal cutaneous tissues to comparatively analyze the differentially expressed (DE) lncRNAs and messenger RNAs (mRNAs). Firstly, we used microarray analyses to identify DE lncRNAs and DE mRNAs. Secondly, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to analyze the primary function and find out significant pathways of these DE mRNA and lncRNAs. Finally, we used the top ten DE lncRNAs to construct a lncRNA-mRNA co-expression network. RESULTS Our results showed that there were a total of 2,097 DE lncRNAs and 2,043 DE mRNAs identified. GO and KEGG analysis and the lncRNA-mRNA co-expression network (using the top 10 DE lncRNAs comprises 130 specific co-expressed mRNAs to construct) indicated that lncRNA uc011fnr.2 may negatively regulate SCIMP and Toll-like receptor 4 (TLR4) and play an important role in Janus kinase-signal transducer and activator of transcription 3 (JAK-STAT3) signaling pathway of AK. CONCLUSIONS lncRNA uc011fnr.2 may play an important role in JAK-STAT3 signaling pathway of AK by modulating SCIMP, TLR4 and IL-6. Further research is required to validate the value of lncRNA uc011fnr.2 in the progression of AK.
Collapse
Affiliation(s)
- Chao Luan
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Shuang Jin
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Yu Hu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Xuyue Zhou
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Lingxi Liu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Rong Li
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Mei Ju
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Dan Huang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Kun Chen
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| |
Collapse
|
20
|
Pandya G, Kirtonia A, Singh A, Goel A, Mohan CD, Rangappa KS, Pandey AK, Kapoor S, Tandon S, Sethi G, Garg M. A comprehensive review of the multifaceted role of the microbiota in human pancreatic carcinoma. Semin Cancer Biol 2022; 86:682-692. [PMID: 34051351 DOI: 10.1016/j.semcancer.2021.05.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/04/2021] [Accepted: 05/23/2021] [Indexed: 01/27/2023]
Abstract
Pancreatic carcinoma is associated with one of the worst clinical outcomes throughout the globe because of its aggressive, metastatic, and drug-resistant nature. During the past decade, several studies have shown that oral, gut, and tumor microbiota play a critical role in the modulation of metabolism and immune responses. Growing pieces of evidence have proved beyond a doubt that the microbiota has a unique ability to influence the tumor microenvironment as well as the metabolism of chemotherapeutic agents or drugs. Given this, microbiota, known as the ecological community of microorganisms, stands to be an avenue of quality research. In this review, we provide detailed and critical information on the role of oral, gut, and pancreatic microbiota disruptions in the development of pancreatic carcinoma. Moreover, we comprehensively discuss the different types of microbiota, their potential role, and mechanism associated with pancreatic carcinoma. The microbiome provides the unique opportunity to enhance the effectiveness of chemotherapeutic agents and immunotherapies for pancreatic cancer by maintaining the right type of microbiota and holds a promising future to enhance the clinical outcomes of patients with pancreatic carcinoma.
Collapse
Affiliation(s)
- Gouri Pandya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Noida, 201313, India
| | - Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Noida, 201313, India
| | - Aishwarya Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Noida, 201313, India
| | - Arul Goel
- La Canada High School, La Canada Flintridge, CA 91011, USA
| | | | | | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Haryana 122413, India
| | - Sonia Kapoor
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Noida, 201313, India
| | - Simran Tandon
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Noida, 201313, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
21
|
The Role of the Microbiome in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14184479. [PMID: 36139638 PMCID: PMC9496841 DOI: 10.3390/cancers14184479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Pancreatic cancer is deadly cancer characterized by dense stroma creating an immunosuppressive tumor microenvironment. Accumulating evidences indicate that the microbiome plays an important role in pancreatic cancer development and progression via the local and systemic inflammation and immune responses. The alteration of the microbiome modulates the tumor microenvironment and immune system in pancreatic cancer, which affects the efficacy of chemotherapies including immune-targeted therapies. Understanding the role of microbiome and underlying mechanisms may lead to novel biomarkers and therapeutic strategies for pancreatic cancer. This review summarizes the current evidence on the role of the microbiome in pancreatic cancer. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with little improvement in outcomes in recent decades, although the molecular and phenotypic characterization of PDAC has contributed to advances in tailored therapies. PDAC is characterized by dense stroma surrounding tumor cells, which limits the efficacy of treatment due to the creation of a physical barrier and immunosuppressive environment. Emerging evidence regarding the microbiome in PDAC implies its potential role in the initiation and progression of PDAC. However, the underlying mechanisms of how the microbiome affects the local tumor microenvironment (TME) as well as the systemic immune system have not been elucidated in PDAC. In addition, therapeutic strategies based on the microbiome have not been established. In this review, we summarize the current evidence regarding the role of the microbiome in the development of PDAC and discuss a possible role for the microbiome in the early detection of PDAC in relation to premalignant pancreatic diseases, such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). In addition, we discuss the potential role of the microbiome in the treatment of PDAC, especially in immunotherapy, although the biomarkers used to predict the efficacy of immunotherapy in PDAC are still unknown. A comprehensive understanding of tumor-associated immune responses, including those involving the microbiome, holds promise for new treatments in PDAC.
Collapse
|
22
|
The Oncobiome in Gastroenteric and Genitourinary Cancers. Int J Mol Sci 2022; 23:ijms23179664. [PMID: 36077063 PMCID: PMC9456244 DOI: 10.3390/ijms23179664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Early evidence suggests a strong association of microorganisms with several human cancers, and great efforts have been made to understand the pathophysiology underlying microbial carcinogenesis. Bacterial dysbiosis causes epithelial barrier failure, immune dysregulation and/or genotoxicity and, consequently, creates a tumor-permissive microenvironment. The majority of the bacteria in our body reside in the gastrointestinal tract, known as gut microbiota, which represents a complex and delicate ecosystem. Gut microbes can reach the pancreas, stomach and colon via the bloodstream. Oral bacterial translocations can also occur. In the stomach, pancreas and colon, low microbial diversity is associated with cancer, in particular with a bad prognosis. The urogenital tract also harbors unique microbiota, distinct from the gut microbiota, which might have a role in the urinary and female/male reproductive cancers’ pathogenesis. In healthy women, the majority of bacteria reside in the vagina and cervix and unlike other mucosal sites, the vaginal microbiota exhibits low microbial diversity. Genital dysbiosis might have an active role in the development and/or progression of gynecological malignancies through mechanisms including modulation of oestrogen metabolism. Urinary dysbiosis may influence the pathogenesis of bladder cancer and prostate cancer in males. Modulation of the microbiome via pre, pro and postbiotics, fecal or vaginal microbiota transplantation and engineering bacteria might prove useful in improving cancer treatment response and quality of life. Elucidating the complex host-microbiome interactions will result in prevention and therapeutic efficacy interventions.
Collapse
|
23
|
Daley D. The Role of the Microbiome in Pancreatic Oncogenesis. Int Immunol 2022; 34:447-454. [PMID: 35863313 DOI: 10.1093/intimm/dxac036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022] Open
Abstract
Bacterial dysbiosis is evolving as an advocate for carcinogenesis and has been associated with pancreatic cancer progression and survival outcomes. The gut and pancreas of cancer patients harbor a unique microbiome that differs significantly from that of healthy individuals. We believe that the pancreatic cancer microbiome regulates tumorigenesis by altering host cell function and modulating immune cells, skewing them towards an immunosuppressive phenotype. Moreover, altering this pathogenic microbiome may enhance the efficacy of current therapies in pancreatic cancer and improve survival outcomes. This review highlights the findings on microbial modulation across various pre-clinical and clinical studies and provides insight into the potential of targeting the microbiome for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Donnele Daley
- Department of Surgery, University of Michigan, 1500 E Medical Center Drive, Ann Arbor, MI, USA
| |
Collapse
|
24
|
Ye J, Mills BN, Qin SS, Garrett-Larsen J, Murphy JD, Uccello TP, Han BJ, Vrooman TG, Johnston CJ, Lord EM, Belt BA, Linehan DC, Gerber SA. Toll-like receptor 7/8 agonist R848 alters the immune tumor microenvironment and enhances SBRT-induced antitumor efficacy in murine models of pancreatic cancer. J Immunother Cancer 2022; 10:e004784. [PMID: 35851308 PMCID: PMC9295644 DOI: 10.1136/jitc-2022-004784] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Stereotactic body radiotherapy (SBRT) has been increasingly used as adjuvant therapy in pancreatic ductal adenocarcinoma (PDAC), and induces immunogenic cell death, which leads to the release of tumor antigen and damage-associated molecular patterns. However, this induction often fails to generate sufficient response to overcome pre-existing tumor microenvironment (TME) immunosuppression. Toll-like receptor (TLR) 7/8 ligands, such as R848, can amplify the effect of tumor vaccines, with recent evidence showing its antitumor effect in pancreatic cancer by modulating the immunosuppressive TME. Therefore, we hypothesized that the combination of R848 and SBRT would improve local and systemic antitumor immune responses by potentiating the antitumor effects of SBRT and reversing the immunosuppressive nature of the PDAC TME. METHODS Using murine models of orthotopic PDAC, we assessed the combination of intravenous TLR7/8 agonist R848 and local SBRT on tumor growth and immune response in primary pancreatic tumors. Additionally, we employed a hepatic metastatic model to investigate if the combination of SBRT targeting only the primary pancreatic tumor and systemic R848 is effective in controlling established liver metastases. RESULTS We demonstrated that intravenous administration of the TLR7/8 agonist R848, in combination with local SBRT, leads to superior tumor control compared with either treatment alone. The combination of R848 and SBRT results in significant immune activation of the pancreatic TME, including increased tumor antigen-specific CD8+ T cells, decreased regulatory T cells, and enhanced antigen-presenting cells maturation, as well as increased interferon gamma, granzyme B, and CCL5 along with decreased levels of interleukin 4 (IL-4), IL-6, and IL-10. Importantly, the combination of SBRT and systemic R848 also resulted in similar immunostimulatory changes in liver metastases, leading to improved metastatic control. CD8+ T cell depletion studies highlighted the necessity of these effector cells at both the local and hepatic metastatic sites. T cell receptor (TCR) clonotype analysis indicated that systemic R848 not only diversified the TCR repertoire but also conditioned the metastatic foci to facilitate entry of CD8+ T cells generated by SBRT therapy. CONCLUSIONS These findings suggest that systemic administration of TLR7/8 agonists in combination with SBRT may be a promising avenue for metastatic PDAC treatment.
Collapse
Affiliation(s)
- Jian Ye
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Bradley N Mills
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Shuyang S Qin
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jesse Garrett-Larsen
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Joseph D Murphy
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Taylor P Uccello
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Booyeon J Han
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Tara G Vrooman
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Carl J Johnston
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Edith M Lord
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Brian A Belt
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
| | - David C Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Scott A Gerber
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
25
|
Man SM, Jenkins BJ. Context-dependent functions of pattern recognition receptors in cancer. Nat Rev Cancer 2022; 22:397-413. [PMID: 35355007 DOI: 10.1038/s41568-022-00462-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 02/07/2023]
Abstract
The immune system plays a critical role in shaping all facets of cancer, from the early initiation stage through to metastatic disease and resistance to therapy. Our understanding of the importance of the adaptive arm of the immune system in antitumour immunity has led to the implementation of immunotherapy with immune checkpoint inhibitors in numerous cancers, albeit with differing efficacy. By contrast, the clinical utility of innate immunity in cancer has not been exploited, despite dysregulated innate immunity being a feature of at least one-third of all cancers associated with tumour-promoting chronic inflammation. The past two decades have seen innate immune pattern recognition receptors (PRRs) emerge as critical regulators of the immune response to microbial infection and host tissue damage. More recently, it has become apparent that in many cancer types, PRRs play a central role in modulating a vast array of tumour-inhibiting and tumour-promoting cellular responses both in immune cells within the tumour microenvironment and directly in cancer cells. Herein, we provide a comprehensive overview of the fast-evolving field of PRRs in cancer, and discuss the potential to target PRRs for drug development and biomarker discovery in a wide range of oncology settings.
Collapse
Affiliation(s)
- Si Ming Man
- Division of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
26
|
Microbial-Derived Toll-like Receptor Agonism in Cancer Treatment and Progression. Cancers (Basel) 2022; 14:cancers14122923. [PMID: 35740589 PMCID: PMC9221178 DOI: 10.3390/cancers14122923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Toll like receptors (TLRs) are a group of transmembrane receptors belonging to the class of pattern recognition receptors (PRR), which are involved in recognition of pathogen associated molecular patterns (PAMPs), inducing immune response. During the past decade, a number of preclinical and clinical breakthroughs in the field of TLR agonists has immerged in cancer research and some of these agents have performed exceptionally well in clinical trials. Based on evidence from scientific studies, we draw attention to several microbial based TLR agonists and discuss their relevance in various cancer and explore various microbial based TLR agonists for developing effective immunotherapeutic strategies against cancer. Abstract Toll-like receptors (TLRs) are typical transmembrane proteins, which are essential pattern recognition receptors in mediating the effects of innate immunity. TLRs recognize structurally conserved molecules derived from microbes and damage-associated molecular pattern molecules that play an important role in inflammation. Since the first discovery of the Toll receptor by the team of J. Hoffmann in 1996, in Drosophila melanogaster, numerous TLRs have been identified across a wide range of invertebrate and vertebrate species. TLR stimulation leads to NF-κB activation and the subsequent production of pro-inflammatory cytokines and chemokines, growth factors and anti-apoptotic proteins. The expression of TLRs has also been observed in many tumors, and their stimulation results in tumor progression or regression, depending on the TLR and tumor type. The anti-tumoral effects can result from the activation of anti-tumoral immune responses and/or the direct induction of tumor cell death. The pro-tumoral effects may be due to inducing tumor cell survival and proliferation or by acting on suppressive or inflammatory immune cells in the tumor microenvironment. The aim of this review is to draw attention to the effects of TLR stimulation in cancer, the activation of various TLRs by microbes in different types of tumors, and, finally, the role of TLRs in anti-cancer immunity and tumor rejection.
Collapse
|
27
|
Martín-Medina A, Cerón-Pisa N, Martinez-Font E, Shafiek H, Obrador-Hevia A, Sauleda J, Iglesias A. TLR/WNT: A Novel Relationship in Immunomodulation of Lung Cancer. Int J Mol Sci 2022; 23:6539. [PMID: 35742983 PMCID: PMC9224119 DOI: 10.3390/ijms23126539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023] Open
Abstract
The most frequent cause of death by cancer worldwide is lung cancer, and the 5-year survival rate is still very poor for patients with advanced stage. Understanding the crosstalk between the signaling pathways that are involved in disease, especially in metastasis, is crucial to developing new targeted therapies. Toll-like receptors (TLRs) are master regulators of the immune responses, and their dysregulation in lung cancer is linked to immune escape and promotes tumor malignancy by facilitating angiogenesis and proliferation. On the other hand, over-activation of the WNT signaling pathway has been reported in lung cancer and is also associated with tumor metastasis via induction of Epithelial-to-mesenchymal-transition (EMT)-like processes. An interaction between both TLRs and the WNT pathway was discovered recently as it was found that the TLR pathway can be activated by WNT ligands in the tumor microenvironment; however, the implications of such interactions in the context of lung cancer have not been discussed yet. Here, we offer an overview of the interaction of TLR-WNT in the lung and its potential implications and role in the oncogenic process.
Collapse
Affiliation(s)
- Aina Martín-Medina
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
| | - Noemi Cerón-Pisa
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
| | - Esther Martinez-Font
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
- Medical Oncology Department, Hospital Universitario Son Espases, 07120 Palma, Spain
| | - Hanaa Shafiek
- Chest Diseases Department, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Antònia Obrador-Hevia
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
- Molecular Diagnosis Unit, Hospital Universitario Son Espases, 07120 Palma, Spain
| | - Jaume Sauleda
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
- Department of Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma, Spain
- Centro de Investigación Biomédica en Red in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Amanda Iglesias
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
- Centro de Investigación Biomédica en Red in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
28
|
Amara S, Yang LV, Tiriveedhi V, Muzaffar M. Complex Role of Microbiome in Pancreatic Tumorigenesis: Potential Therapeutic Implications. Cells 2022; 11:1900. [PMID: 35741028 PMCID: PMC9221309 DOI: 10.3390/cells11121900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is the fourth leading cause of cancer-related mortality with limited diagnostic and therapeutic options. Although immunotherapy has shown promise in the treatment of several cancers, its role in pancreatic cancer is rather limited. Several studies have focused on determining the role of the tumor microenvironment with cancer-cell-intrinsic events and tumor-infiltrating immune cellular properties. However, in the past decade, there has been emerging research aimed at delineating the role of the host microbiome, including the metabolites from microbes and host responses, on pancreatic tumorigenesis. Importantly, there is emerging evidence suggesting the beneficial role of a gut microbiome transplant to improve immunotherapeutic outcomes in cancer patients. In this review, we summarize the recent understanding of the role of the microbiome in pancreatic cancer progression, along with its clinical diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Suneetha Amara
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (L.V.Y.); (M.M.)
| | - Li V. Yang
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (L.V.Y.); (M.M.)
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37212, USA
| | - Mahvish Muzaffar
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (L.V.Y.); (M.M.)
| |
Collapse
|
29
|
Targeting toll-like receptors on T cells as a therapeutic strategy against tumors. Int Immunopharmacol 2022; 107:108708. [DOI: 10.1016/j.intimp.2022.108708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 12/11/2022]
|
30
|
Somani V, Zhang D, Dodhiawala PB, Lander VE, Liu X, Kang LI, Chen HP, Knolhoff BL, Li L, Grierson PM, Ruzinova MB, DeNardo DG, Lim KH. IRAK4 Signaling Drives Resistance to Checkpoint Immunotherapy in Pancreatic Ductal Adenocarcinoma. Gastroenterology 2022; 162:2047-2062. [PMID: 35271824 PMCID: PMC9387774 DOI: 10.1053/j.gastro.2022.02.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Checkpoint immunotherapy is largely ineffective in pancreatic ductal adenocarcinoma (PDAC). The innate immune nuclear factor (NF)-κB pathway promotes PDAC cell survival and stromal fibrosis, and is driven by Interleukin-1 Receptor Associated Kinase-4 (IRAK4), but its impact on tumor immunity has not been directly investigated. METHODS We interrogated The Cancer Genome Atlas data to identify the correlation between NF-κB and T cell signature, and a PDAC tissue microarray (TMA) to correlate IRAK4 activity with CD8+ T cell abundance. We performed RNA sequencing (RNA-seq) on IRAK4-deleted PDAC cells, and single-cell RNA-seq on autochthonous KPC (p48-Cre/TP53f/f/LSL-KRASG12D) mice treated with an IRAK4 inhibitor. We generated conditional IRAK4-deleted KPC mice and complementarily used IRAK4 inhibitors to determine the impact of IRAK4 on T cell immunity. RESULTS We found positive correlation between NF-κB activity, IRAK4 and T cell exhaustion from The Cancer Genome Atlas. We observed inverse correlation between phosphorylated IRAK4 and CD8+ T cell abundance in a PDAC tissue microarray. Loss of IRAK4 abrogates NF-κB activity, several immunosuppressive factors, checkpoint ligands, and hyaluronan synthase 2, all of which drive T cell dysfunction. Accordingly, conditional deletion or pharmacologic inhibition of IRAK4 markedly decreased tumor desmoplasia and increased the abundance and activity of infiltrative CD4+ and CD8+ T cells in KPC tumors. Single-cell RNA-seq showed myeloid and fibroblast reprogramming toward acute inflammatory responses following IRAK4 inhibition. These changes set the stage for successful combination of IRAK4 inhibitors with checkpoint immunotherapy, resulting in excellent tumor control and markedly prolonged survival of KPC mice. CONCLUSION IRAK4 drives T cell dysfunction in PDAC and is a novel, promising immunotherapeutic target.
Collapse
Affiliation(s)
- Vikas Somani
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110,Corresponding author: Kian-Huat Lim, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8069, Saint Louis, MO 63110, Tel: 314-362-6157, Fax: 314-747-9329,
| | - Daoxiang Zhang
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110,Current address: School of Life Science, Anhui Medical University, Anhui, China,Corresponding author: Kian-Huat Lim, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8069, Saint Louis, MO 63110, Tel: 314-362-6157, Fax: 314-747-9329,
| | - Paarth B. Dodhiawala
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Varintra E. Lander
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Xiuting Liu
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Liang-I Kang
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110,Department of Pathology and Immunology, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Hung-Po Chen
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Brett L. Knolhoff
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Lin Li
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Patrick M. Grierson
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Mariana B. Ruzinova
- Department of Pathology and Immunology, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - David G. DeNardo
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
31
|
Exploration of the System-Level Mechanisms of the Herbal Drug FDY003 for Pancreatic Cancer Treatment: A Network Pharmacological Investigation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7160209. [PMID: 35591866 PMCID: PMC9113891 DOI: 10.1155/2022/7160209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022]
Abstract
Pancreatic cancer (PC) is the most lethal cancer with the lowest survival rate globally. Although the prescription of herbal drugs against PC is gaining increasing attention, their polypharmacological therapeutic mechanisms are yet to be fully understood. Based on network pharmacology, we explored the anti-PC properties and system-level mechanisms of the herbal drug FDY003. FDY003 decreased the viability of human PC cells and strengthened their chemosensitivity. Network pharmacological analysis of FDY003 indicated the presence of 16 active phytochemical components and 123 PC-related pharmacological targets. Functional enrichment analysis revealed that the PC-related targets of FDY003 participate in the regulation of cell growth and proliferation, cell cycle process, cell survival, and cell death. In addition, FDY003 was shown to target diverse key pathways associated with PC pathophysiology, namely, the PIK3-Akt, MAPK, FoxO, focal adhesion, TNF, p53, HIF-1, and Ras pathways. Our network pharmacological findings advance the mechanistic understanding of the anti-PC properties of FDY003 from a system perspective.
Collapse
|
32
|
Nurmi AM, Hagström J, Mustonen H, Seppänen H, Haglund C. The expression and prognostic value of toll-like receptors (TLRs) in pancreatic cancer patients treated with neoadjuvant therapy. PLoS One 2022; 17:e0267792. [PMID: 35536778 PMCID: PMC9089880 DOI: 10.1371/journal.pone.0267792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 04/15/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Toll-like receptors (TLRs) play a pivotal role in the immune system and carcinogenesis. There is no research on TLR expression and association with survival among preoperatively treated pancreatic cancer patients. We studied the expression intensity and prognostic value of TLRs in pancreatic cancer patients treated with neoadjuvant therapy (NAT) and compared the results to patients undergoing upfront surgery (US). METHOD Between 2000 and 2015, 71 borderline resectable patients were treated with NAT and surgery and 145 resectable patients underwent upfront surgery at Helsinki University Hospital, Finland. We immunostained TLRs 1-5, 7, and 9 on sections of tissue-microarray. We classified TLR expression as 0 (negative), 1 (mild), 2 (moderate), or 3 (strong) and divided into high (2-3) and low (0-1) expression for statistical purposes. RESULTS Among TLRs 1, 3, and 9 (TLR1 81% vs 70%, p = 0.008; TLR3 92% vs 68%, p = 0.001; TLR9 cytoplasmic 83% vs 42%, p<0.001; TLR9 membranous 53% vs 25%, p = 0.002) NAT patients exhibited a higher immunopositivity score more frequently than patients undergoing upfront surgery. Among NAT patients, a high expression of TLR1 [Hazards ratio (HR) 0.48, p<0.05] associated with a longer postoperative survival, whereas among US patients, high expression of TLR5 (HR 0.64, p<0.05), TLR7 (HR 0.59, p<0.01, and both TLR7 and TLR9 (HR 0.5, p<0.01) predicted a favorable postoperative outcome in separate analysis adjusted for background variables. CONCLUSIONS We found higher immunopositive intensities among TLRs 1, 3, and 9 in NAT patients. A high TLR1 expression associated with a longer survival among NAT patients, however, among US patients, high expression intensity of TLR5 and TLR7 predicted a favorable postoperative outcome in the adjusted analysis.
Collapse
Affiliation(s)
- Anna Maria Nurmi
- Department of Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jaana Hagström
- Department of Pathology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Oral Pathology and Radiology, University of Turku, Turku, Finland
| | - Harri Mustonen
- Department of Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Hanna Seppänen
- Department of Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Mohamed FEZ, Jalan R, Minogue S, Andreola F, Habtesion A, Hall A, Winstanley A, Damink SO, Malagó M, Davies N, Luong TV, Dhillon A, Mookerjee R, Dhar D, Al-Jehani RM. Inhibition of TLR7 and TLR9 Reduces Human Cholangiocarcinoma Cell Proliferation and Tumor Development. Dig Dis Sci 2022; 67:1806-1821. [PMID: 33939146 DOI: 10.1007/s10620-021-06973-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Toll-like receptors (TLRs) are key players in innate immunity and modulation of TLR signaling has been demonstrated to profoundly affect proliferation and growth in different types of cancer. However, the role of TLRs in human intrahepatic cholangiocarcinoma (ICC) pathogenesis remains largely unexplored. AIMS We set out to determine if TLRs play any role in ICCs which could potentially make them useful treatment targets. METHODS Tissue microarrays containing samples from 9 human ICCs and normal livers were examined immunohistochemically for TLR4, TLR7, and TLR9 expression. Proliferation of human ICC cell line HuCCT1 was measured by MTS assay following treatment with CpG-ODN (TLR9 agonist), imiquimod (TLR7 agonist), chloroquine (TLR7 and TLR9 inhibitor) and IRS-954 (TLR7 and TLR9 antagonist). The in vivo effects of CQ and IRS-954 on tumor development were also examined in a NOD-SCID mouse xenograft model of human ICC. RESULTS TLR4 was expressed in all normal human bile duct epithelium but absent in the majority (60%) of ICCs. TLR7 and TLR9 were expressed in 80% of human ICCs. However, TLR7 was absent in all cases of normal human bile duct epithelium and only one was TLR9 positive. HuCCT1 cell proliferation in vitro significantly increased following IMQ or CpG-ODN treatment (P < 0.03 and P < 0.002, respectively) but decreased with CQ (P < 0.02). In the mouse xenograft model there was significant reduction in size of tumors from CQ and IRS-954 treated mice compared to untreated controls. CONCLUSION TLR7 and TLR9 should be further explored for their potential as actionable targets in the treatment of ICC.
Collapse
Affiliation(s)
- Fatma El Zahraa Mohamed
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK.,Pathology Department, Minia University, El-Minia, Egypt
| | - Rajiv Jalan
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Shane Minogue
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Fausto Andreola
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Abeba Habtesion
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Andrew Hall
- UCL Institute for Liver and Digestive Health, Royal Free London NHS Foundation Trust, London, UK
| | - Alison Winstanley
- Department of Cellular Pathology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Steven Olde Damink
- Academic Department of Surgery and Interventional Sciences, Royal Free Hospital, London, UK
| | - Massimo Malagó
- Academic Department of Surgery and Interventional Sciences, Royal Free Hospital, London, UK
| | - Nathan Davies
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Tu Vinh Luong
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
| | - Amar Dhillon
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
| | - Rajeshwar Mookerjee
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Dipok Dhar
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Rajai Munir Al-Jehani
- UCL Institute for Liver and Digestive Health, Royal Free London NHS Foundation Trust, London, UK.
| |
Collapse
|
34
|
Rouanet M, Hanoun N, Hubert Lulka, Ferreira C, Garcin P, Sramek M, Jacquemin G, Coste A, Pagan D, Valle C, Sarot E, Pancaldi V, Lopez F, Buscail L, Cordelier P. The antitumoral activity of TLR7 ligands is corrupted by the microenvironment of pancreatic tumors. Mol Ther 2022; 30:1553-1563. [PMID: 35038581 PMCID: PMC9077317 DOI: 10.1016/j.ymthe.2022.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/20/2021] [Accepted: 01/12/2022] [Indexed: 11/18/2022] Open
Abstract
Toll-like receptors (TLRs) are key players in the innate immune system. Recent studies have suggested that they may affect the growth of pancreatic cancer, a disease with no cure. Among them, TLR7 shows promise for therapy but may also promotes tumor growth. Thus, we aimed to clarify the therapeutic potential of TLR7 ligands in experimental pancreatic cancer models, to open the door for clinical applications. In vitro, we found that TLR7 ligands strongly inhibit the proliferation of both human and murine pancreatic cancer cells, compared with TLR2 agonists. Hence, TLR7 treatment alters cancer cells' cell cycle and induces cell death by apoptosis. In vivo, TLR7 agonist therapy significantly delays the growth of murine pancreatic tumors engrafted in immunodeficient mice. Remarkably, TLR7 ligands administration instead increases tumor growth and accelerates animal death when tumors are engrafted in immunocompetent models. Further investigations revealed that TLR7 agonists modulate the intratumoral content and phenotype of macrophages and that depleting such tumor-associated macrophages strongly hampers TLR7 agonist-induced tumor growth. Collectively, our findings shine a light on the duality of action of TLR7 agonists in experimental cancer models and call into question their use for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Marie Rouanet
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France; Department of Gastroenterology and University of Toulouse III, Rangueil Hospital, Toulouse, France
| | - Naima Hanoun
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Hubert Lulka
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Cindy Ferreira
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Pierre Garcin
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Martin Sramek
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Godefroy Jacquemin
- Institut RESTORE, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Agnès Coste
- Institut RESTORE, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Delphine Pagan
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Carine Valle
- Technological cluster, Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université de Toulouse, Toulouse, France
| | - Emeline Sarot
- Technological cluster, Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université de Toulouse, Toulouse, France
| | - Vera Pancaldi
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Frédéric Lopez
- Technological cluster, Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université de Toulouse, Toulouse, France
| | - Louis Buscail
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France; Department of Gastroenterology and University of Toulouse III, Rangueil Hospital, Toulouse, France
| | - Pierre Cordelier
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France.
| |
Collapse
|
35
|
Yang Q, Zhang J, Zhu Y. Potential Roles of the Gut Microbiota in Pancreatic Carcinogenesis and Therapeutics. Front Cell Infect Microbiol 2022; 12:872019. [PMID: 35463649 PMCID: PMC9019584 DOI: 10.3389/fcimb.2022.872019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022] Open
Abstract
The intestinal microenvironment is composed of normal gut microbiota and the environment in which it lives. The largest microecosystem in the human body is the gut microbiota, which is closely related to various diseases of the human body. Pancreatic cancer (PC) is a common malignancy of the digestive system worldwide, and it has a 5-year survival rate of only 5%. Early diagnosis of pancreatic cancer is difficult, so most patients have missed their best opportunity for surgery at the time of diagnosis. However, the etiology is not entirely clear, but there are certain associations between PC and diet, lifestyle, obesity, diabetes and chronic pancreatitis. Many studies have shown that the translocation of the gut microbiota, microbiota dysbiosis, imbalance of the oral microbiota, the interference of normal metabolism function and toxic metabolite products are closely associated with the incidence of PC and influence its prognosis. Therefore, understanding the correlation between the gut microbiota and PC could aid the diagnosis and treatment of PC. Here, we review the correlation between the gut microbiota and PC and the research progresses for the gut microbiota in the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Qiaoyu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Queen Mary College, Nanchang University, Nanchang, China
| | - Jihang Zhang
- Institute of Cardiovascular Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| |
Collapse
|
36
|
Toll-like Receptor 7 and 8 Imidazoquinoline-Based Agonist/Antagonist Pairs. Bioorg Med Chem Lett 2022; 59:128548. [DOI: 10.1016/j.bmcl.2022.128548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/28/2022]
|
37
|
Liu D, Liu W, Jiang L, Dong S, Ma W, Wang S, Wan C. Silencing of TLR7 protects against lipopolysaccharide-induced chondrocyte apoptosis and injury by blocking the p21-mediated JAK2/STAT3 pathway. Am J Transl Res 2021; 13:13555-13566. [PMID: 35035696 PMCID: PMC8748165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 08/06/2021] [Indexed: 06/14/2023]
Abstract
Involvement of toll-like receptor 7 (TLR7) in the immune response has been reported in diverse inflammatory diseases. However, the role of TLR7 in the pathogenesis of osteoarthritis (OA) is poorly understood. In this study, we sought to investigate the contribution of TLR7 in regulating chondrocyte apoptosis, inflammation, and degradation of the extracellula matrix (ECM), and its underlying mechanisms. We found that TLR7 expression was increased in cartilage tissues of OA patients and in lipopolysaccharide (LPS)-induced chondrocytes. Silencing of TLR7 alleviated LPS-induced chondrocyte apoptosis, inflammation, and ECM degradation. Mechanistically, TLR7 silencing inhibited the JAK2/STAT3 signaling pathway by inducing p21 expression. Moreover, p21 knockdown and colivein (an activator of JAK2/STAT3 signaling) partially rescued the suppressive role of TLR7 silencing on chondrocyte apoptosis, the inflammatory response, and ECM underproduction. Taken together, our data revealed that knockdown of TLR7 attenuated chondrocyte apoptosis and injury by blocking the p21-mediated JAK2/STAT3 pathway, suggesting that TLR7 may be a therapeutic target in OA.
Collapse
Affiliation(s)
- Dan Liu
- Department of The Joint and Bone Surgery, Yantaishan HospitalYantai 264001, Shandong, China
| | - Wei Liu
- Department of Pathophysiology, Binzhou Medical UniversityBinzhou 256603, Shandong, China
| | - Limin Jiang
- Department of The Joint and Bone Surgery, Yantaishan HospitalYantai 264001, Shandong, China
| | - Shengjie Dong
- Department of The Joint and Bone Surgery, Yantaishan HospitalYantai 264001, Shandong, China
| | - Weihua Ma
- Department of The Joint and Bone Surgery, Yantaishan HospitalYantai 264001, Shandong, China
| | - Shijun Wang
- Department of The Joint and Bone Surgery, Yantaishan HospitalYantai 264001, Shandong, China
| | - Chao Wan
- Department of The Joint and Bone Surgery, Yantaishan HospitalYantai 264001, Shandong, China
| |
Collapse
|
38
|
Zhao H, Luo F, Xue J, Li S, Xu RH. Emerging immunological strategies: recent advances and future directions. Front Med 2021; 15:805-828. [PMID: 34874513 DOI: 10.1007/s11684-021-0886-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/31/2021] [Indexed: 12/12/2022]
Abstract
Immunotherapy plays a compelling role in cancer treatment and has already made remarkable progress. However, many patients receiving immune checkpoint inhibitors fail to achieve clinical benefits, and the response rates vary among tumor types. New approaches that promote anti-tumor immunity have recently been developed, such as small molecules, bispecific antibodies, chimeric antigen receptor T cell products, and cancer vaccines. Small molecule drugs include agonists and inhibitors that can reach the intracellular or extracellular targets of immune cells participating in innate or adaptive immune pathways. Bispecific antibodies, which bind two different antigens or one antigen with two different epitopes, are of great interest. Chimeric antigen receptor T cell products and cancer vaccines have also been investigated. This review explores the recent progress and challenges of different forms of immunotherapy agents and provides an insight into future immunotherapeutic strategies.
Collapse
Affiliation(s)
- Hongyun Zhao
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Fan Luo
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jinhui Xue
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Su Li
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Rui-Hua Xu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
39
|
Orlacchio A, Mazzone P. The Role of Toll-like Receptors (TLRs) Mediated Inflammation in Pancreatic Cancer Pathophysiology. Int J Mol Sci 2021; 22:12743. [PMID: 34884547 PMCID: PMC8657588 DOI: 10.3390/ijms222312743] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal forms of cancer, characterized by its aggressiveness and metastatic potential. Despite significant improvements in PC treatment and management, the complexity of the molecular pathways underlying its development has severely limited the available therapeutic opportunities. Toll-like receptors (TLRs) play a pivotal role in inflammation and immune response, as they are involved in pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). Activation of TLRs initiates a signaling cascade, which in turn, leads to the transcription of several genes involved in inflammation and anti-microbial defense. TLRs are also deregulated in several cancers and can be used as prognostic markers and potential targets for cancer-targeted therapy. In this review we discuss the current knowledge about the role of TLRs in PC progression, focusing on the available TLRs-targeting compounds and their possible use in PC therapy.
Collapse
Affiliation(s)
- Arturo Orlacchio
- NYU Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Pellegrino Mazzone
- Biogem Scarl, Istituto di Ricerche Genetiche Gaetano Salvatore, 83031 Ariano Irpino, Italy
| |
Collapse
|
40
|
Lundy J, Gearing LJ, Gao H, West AC, McLeod L, Deswaerte V, Yu L, Porazinski S, Pajic M, Hertzog PJ, Croagh D, Jenkins BJ. TLR2 activation promotes tumour growth and associates with patient survival and chemotherapy response in pancreatic ductal adenocarcinoma. Oncogene 2021; 40:6007-6022. [PMID: 34400766 DOI: 10.1038/s41388-021-01992-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis, and is plagued by a paucity of targeted treatment options and tumour resistance to chemotherapeutics. The causal link between chronic inflammation and PDAC suggests that molecular regulators of the immune system promote disease pathogenesis and/or therapeutic resistance, yet their identity is unclear. Here, we couple endoscopic ultrasound-guided fine-needle aspiration, which captures tumour biopsies from all stages, with whole transcriptome profiling of PDAC patient primary tumours to reveal enrichment of the innate immune Toll-like receptor 2 (TLR2) molecular pathway. Augmented TLR2 expression associated with a 4-gene "TLR2 activation" signature, and was prognostic for survival and predictive for gemcitabine-based chemoresistance. Furthermore, antibody-mediated anti-TLR2 therapy suppressed the growth of human PDAC tumour xenografts, independent of a functional immune system. Our results support TLR2-based therapeutic targeting for precision medicine in PDAC, with further clinical utility that TLR2 activation is prognostic and predictive for chemoresponsiveness.
Collapse
Affiliation(s)
- Joanne Lundy
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Linden J Gearing
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Hugh Gao
- Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Clayton, VIC, Australia
| | - Alison C West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Louise McLeod
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Virginie Deswaerte
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Liang Yu
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Sean Porazinski
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
| | - Marina Pajic
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Daniel Croagh
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Clayton, VIC, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
41
|
Brandi G, Turroni S, McAllister F, Frega G. The Human Microbiomes in Pancreatic Cancer: Towards Evidence-Based Manipulation Strategies? Int J Mol Sci 2021; 22:9914. [PMID: 34576078 PMCID: PMC8471697 DOI: 10.3390/ijms22189914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Recent pieces of evidence have emerged on the relevance of microorganisms in modulating responses to anticancer treatments and reshaping the tumor-immune microenvironment. On the one hand, many studies have addressed the role of the gut microbiota, providing interesting correlative findings with respect to etiopathogenesis and treatment responses. On the other hand, intra-tumoral bacteria are being recognized as intrinsic and essential components of the cancer microenvironment, able to promote a plethora of tumor-related aspects from cancer growth to resistance to chemotherapy. These elements will be probably more and more valuable in the coming years in early diagnosis and risk stratification. Furthermore, microbial-targeted intervention strategies may be used as adjuvants to current therapies to improve therapeutic responses and overall survival. This review focuses on new insights and therapeutic approaches that are dawning against pancreatic cancer: a neoplasm that arises in a central metabolic "hub" interfaced between the gut and the host.
Collapse
Affiliation(s)
- Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Florencia McAllister
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Giorgio Frega
- Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
42
|
Guo J, Liao M, Wang J. TLR4 signaling in the development of colitis-associated cancer and its possible interplay with microRNA-155. Cell Commun Signal 2021; 19:90. [PMID: 34479599 PMCID: PMC8414775 DOI: 10.1186/s12964-021-00771-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
Ulcerative colitis (UC) has closely been associated with an increased risk of colorectal cancer. However, the exact mechanisms underlying colitis-associated cancer (CAC) development remain unclear. As a classic pattern-recognition receptor, Toll like receptor (TLR)4 is a canonical receptor for lipopolysaccharide of Gram-negative bacteria (including two CAC-associated pathogens Fusobacterium nucleatum and Salmonella), and functions as a key bridge molecule linking oncogenic infection to colonic inflammatory and malignant processes. Accumulating studies verified the overexpression of TLR4 in colitis and CAC, and the over-expressed TLR4 might promote colitis-associated tumorigenesis via facilitating cell proliferation, protecting malignant cells against apoptosis, accelerating invasion and metastasis, as well as contributing to the creation of tumor-favouring cellular microenvironment. In recent years, considerable attention has been focused on the regulation of TLR4 signaling in the context of colitis-associated tumorigenesis. MicroRNA (miR)-155 and TLR4 exhibited a similar dynamic expression change during CAC development and shared similar CAC-promoting properties. The available data demonstrated an interplay between TLR4 and miR-155 in the context of different disorders or cell lines. miR-155 could augment TLR4 signaling through targeting negative regulators SOCS1 and SHIP1; and TLR4 activation would induce miR-155 expression via transcriptional and post-transcriptional mechanisms. This possible TLR4-miR-155 positive feedback loop might result in the synergistic accelerating effect of TLR4 and miR-155 on CAC development.![]() Video abstract
Collapse
Affiliation(s)
- Jie Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Mengfan Liao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China. .,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
43
|
A Combined TLR7/TLR9/GATA3 Score Can Predict Prognosis in Biliary Tract Cancer. Diagnostics (Basel) 2021; 11:diagnostics11091597. [PMID: 34573939 PMCID: PMC8469358 DOI: 10.3390/diagnostics11091597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Biliary tract cancer (BTC) refers to a heterogenous group of epithelial malignancies arising along the biliary tree. The highly aggressive nature combined with its silent presentation contribute to the dismal prognosis of this tumor. Tumor-infiltrating immune cells (TIICs) are frequently present in BTC and there is growing evidence regarding their role as therapeutic targets. In this study, we analyzed the immune cell infiltration in BTC and developed a promising immune signature score to predict prognosis in BTC. Immunohistochemistry (IHC) was carried out on tissue microarray sections from 45 patients with resectable cholangiocarcinoma for the detection of 6-sulfoLacNAc+ monocytes (slanMo), BDCA-2+ plasmacytoid dendritic cells (pDC), CD8+ or CD4+T-lymphocytes, CD103+ cells, GATA3+ cells, Toll-like receptor (TLR) 3, 7 and 9-expressing cells as well as programmed cell death protein 1 and programmed cell death ligand 1 positive cells. Data from the IHC staining were analyzed and correlated with clinicopathological and survival data. High expression of TLR7, TLR9, and GATA3 was associated with improved overall survival (OS, Log-rank p < 0.05). In addition, TLR9 was associated with better disease-free survival (Log-rank p < 0.05). In the multivariate Cox proportional-hazards model for OS, the TLR/TLR9/GATA3 score was found to be an independent prognostic factor for OS (“Score 2” vs. “Score 0”: HR 11.17 95% CI 2.27–54.95, p < 0.01).
Collapse
|
44
|
Abdul Rahman R, Lamarca A, Hubner RA, Valle JW, McNamara MG. The Microbiome as a Potential Target for Therapeutic Manipulation in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13153779. [PMID: 34359684 PMCID: PMC8345056 DOI: 10.3390/cancers13153779] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pancreatic cancer is one of the most lethal cancers. It is a difficult cancer to treat, and the complexity surrounding the pancreatic tumour is one of the contributing factors. The microbiome is the collection of microorganisms within an environment and its genetic material. They reside on body surfaces and most abundantly within the human gut in symbiotic balance with their human host. Disturbance in the balance can lead to many diseases, including cancers. Significant advances have been made in cancer treatment since the introduction of immunotherapy, and the microbiome may play a part in the outcome and survival of patients with cancer, especially those treated with immunotherapy. Immunotherapy use in pancreatic cancer remains challenging. This review will focus on the potential interaction of the microbiome with pancreas cancer and how this could be manipulated. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and is projected to be the second most common cause of cancer-related death by 2030, with an overall 5-year survival rate between 7% and 9%. Despite recent advances in surgical, chemotherapy, and radiotherapy techniques, the outcome for patients with PDAC remains poor. Poor prognosis is multifactorial, including the likelihood of sub-clinical metastatic disease at presentation, late-stage at presentation, absence of early and reliable diagnostic biomarkers, and complex biology surrounding the extensive desmoplastic PDAC tumour micro-environment. Microbiota refers to all the microorganisms found in an environment, whereas microbiome is the collection of microbiota and their genome within an environment. These organisms reside on body surfaces and within mucosal layers, but are most abundantly found within the gut. The commensal microbiome resides in symbiosis in healthy individuals and contributes to nutritive, metabolic and immune-modulation to maintain normal health. Dysbiosis is the perturbation of the microbiome that can lead to a diseased state, including inflammatory bowel conditions and aetiology of cancer, such as colorectal and PDAC. Microbes have been linked to approximately 10% to 20% of human cancers, and they can induce carcinogenesis by affecting a number of the cancer hallmarks, such as promoting inflammation, avoiding immune destruction, and microbial metabolites can deregulate host genome stability preceding cancer development. Significant advances have been made in cancer treatment since the advent of immunotherapy. The microbiome signature has been linked to response to immunotherapy and survival in many solid tumours. However, progress with immunotherapy in PDAC has been challenging. Therefore, this review will focus on the available published evidence of the microbiome association with PDAC and explore its potential as a target for therapeutic manipulation.
Collapse
Affiliation(s)
- Rozana Abdul Rahman
- Experimental Cancer Medicine Team, The Christie NHS Foundation Trust, Manchester M20 4BX, UK;
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust/Division of Cancer Sciences, University of Manchester, Manchester M20 4BX, UK; (A.L.); (R.A.H.)
| | - Richard A. Hubner
- Department of Medical Oncology, The Christie NHS Foundation Trust/Division of Cancer Sciences, University of Manchester, Manchester M20 4BX, UK; (A.L.); (R.A.H.)
| | - Juan W. Valle
- Division of Cancer Sciences, University of Manchester/Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK;
| | - Mairéad G. McNamara
- Division of Cancer Sciences, University of Manchester/Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK;
- Correspondence:
| |
Collapse
|
45
|
Bellotti R, Speth C, Adolph TE, Lass-Flörl C, Effenberger M, Öfner D, Maglione M. Micro- and Mycobiota Dysbiosis in Pancreatic Ductal Adenocarcinoma Development. Cancers (Basel) 2021; 13:cancers13143431. [PMID: 34298645 PMCID: PMC8303110 DOI: 10.3390/cancers13143431] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Dysbiosis of the intestinal flora has emerged as an oncogenic contributor in different malignancies. Recent findings suggest a crucial tumor-promoting role of micro- and mycobiome alterations also in the development of pancreatic ductal adenocarcinoma (PDAC). METHODS To summarize the current knowledge about this topic, a systematic literature search of articles published until October 2020 was performed in MEDLINE (PubMed). RESULTS An increasing number of publications describe associations between bacterial and fungal species and PDAC development. Despite the high inter-individual variability of the commensal flora, some studies identify specific microbial signatures in PDAC patients, including oral commensals like Porphyromonas gingivalis and Fusobacterium nucleatum or Gram-negative bacteria like Proteobacteria. The role of Helicobacter spp. remains unclear. Recent isolation of Malassezia globosa from PDAC tissue suggest also the mycobiota as a crucial player of tumorigenesis. Based on described molecular mechanisms and interactions between the pancreatic tissue and the immune system this review proposes a model of how the micro- and the mycobial dysbiosis could contribute to tumorigenesis in PDAC. CONCLUSIONS The presence of micro- and mycobial dysbiosis in pancreatic tumor tissue opens a fascinating perspective on PDAC oncogenesis. Further studies will pave the way for novel tumor markers and treatment strategies.
Collapse
Affiliation(s)
- Ruben Bellotti
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (R.B.); (D.Ö.)
| | - Cornelia Speth
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.L.-F.)
| | - Timon E. Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (T.E.A.); (M.E.)
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.L.-F.)
| | - Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (T.E.A.); (M.E.)
| | - Dietmar Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (R.B.); (D.Ö.)
| | - Manuel Maglione
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (R.B.); (D.Ö.)
- Correspondence: ; Tel.: +43-504-51280 (ext. 809)
| |
Collapse
|
46
|
Gut microbiota in pancreatic diseases: possible new therapeutic strategies. Acta Pharmacol Sin 2021; 42:1027-1039. [PMID: 33093569 DOI: 10.1038/s41401-020-00532-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic diseases such as pancreatitis, type 1 diabetes and pancreatic cancer impose substantial health-care costs and contribute to marked morbidity and mortality. Recent studies have suggested a link between gut microbiota dysbiosis and pancreatic diseases; however, the potential roles and mechanisms of action of gut microbiota in pancreatic diseases remain to be fully elucidated. In this review, we summarize the evidence that supports relationship between alterations of gut microbiota and development of pancreatic diseases, and discuss the potential molecular mechanisms of gut microbiota dysbiosis in the pathogenesis of pancreatic diseases. We also propose current strategies toward gut microbiota to advance a developing research field that has clinical potential to reduce the cost of pancreatic diseases.
Collapse
|
47
|
Immunohistochemical Analysis of Toll-Like Receptors, MyD88, and TRIF in Human Papillary Thyroid Carcinoma and Anaplastic Thyroid Carcinoma. J Thyroid Res 2021; 2021:4226491. [PMID: 34306609 PMCID: PMC8270699 DOI: 10.1155/2021/4226491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/17/2021] [Indexed: 01/05/2023] Open
Abstract
Purpose We hypothesized that innate immune response pathways might be involved in thyroid carcinogenesis. To investigate this hypothesis, we aimed at analyzing the expression of several receptors and molecules in the innate immune system in papillary thyroid carcinoma (PTC) and anaplastic thyroid carcinoma (ATC) tissues. Methods Of the surgically resected specimens, 11 ATC tissues, 25 PTC tissues, and 8 nodular hyperplasia (NH) tissues were selected and examined for the expression of toll-like receptor (TLR) 2, TLR3, TLR4, TLR5, TLR7, TLR9, the myeloid differentiation primary response gene 88 (MyD88), and toll-interleukin-1 receptor domain-containing adaptor inducing INF-β (TRIF) by immunohistochemistry (IHC). Results Several TLRs were expressed in each tissue. TLR3 was strongly expressed in all tissues. In contrast, TLR4 was not detected in any tissues. While TLR5 was moderately expressed in NH but significantly reduced in PTC and ATC, TLR9 was absent in NH tissue but moderately expressed in both PTC and ATC. On MyD88 expression, no significant difference was found between PTC and ATC. TRIF was significantly upregulated in PTC and ATC compared to NH. Surprisingly, PTC and ATC tissues exhibited similar expression patterns of TLRs, MyD88, and TRIF. Conclusion These data suggest the involvement of the innate immune system in both PTC and ATC. Specifically, TLR3-mediated TRIF activation was confirmed in PTC and ATC. This provides new insight into thyroid carcinogenesis.
Collapse
|
48
|
Pfeifer E, Burchell JM, Dazzi F, Sarker D, Beatson R. Apoptosis in the Pancreatic Cancer Tumor Microenvironment-The Double-Edged Sword of Cancer-Associated Fibroblasts. Cells 2021; 10:cells10071653. [PMID: 34359823 PMCID: PMC8305815 DOI: 10.3390/cells10071653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with poor prognosis. This is attributed to the disease already being advanced at presentation and having a particularly aggressive tumor biology. The PDAC tumor microenvironment (TME) is characterized by a dense desmoplastic stroma, dominated by cancer-associated fibroblasts (CAF), extracellular matrix (ECM) and immune cells displaying immunosuppressive phenotypes. Due to the advanced stage at diagnosis, the depletion of immune effector cells and lack of actionable genomic targets, the standard treatment is still apoptosis-inducing regimens such as chemotherapy. Paradoxically, it has emerged that the direct induction of apoptosis of cancer cells may fuel oncogenic processes in the TME, including education of CAF and immune cells towards pro-tumorigenic phenotypes. The direct effect of cytotoxic therapies on CAF may also enhance tumorigenesis. With the awareness that CAF are the predominant cell type in PDAC driving tumorigenesis with various tumor supportive functions, efforts have been made to try to target them. However, efforts to target CAF have, to date, shown disappointing results in clinical trials. With the help of sophisticated single cell analyses it is now appreciated that CAF in PDAC are a heterogenous population with both tumor supportive and tumor suppressive functions. Hence, there remains a debate whether targeting CAF in PDAC is a valid therapeutic strategy. In this review we discuss how cytotoxic therapies and the induction of apoptosis in PDAC fuels oncogenesis by the education of surrounding stromal cells, with a particular focus on the potential pro-tumorigenic outcomes arising from targeting CAF. In addition, we explore therapeutic avenues to potentially avoid the oncogenic effects of apoptosis in PDAC CAF.
Collapse
|
49
|
Hangai S, Kimura Y, Taniguchi T, Yanai H. Signal-transducing innate receptors in tumor immunity. Cancer Sci 2021; 112:2578-2591. [PMID: 33570784 PMCID: PMC8253268 DOI: 10.1111/cas.14848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
The signal‐transducing innate receptors represent classes of pattern recognition receptors (PRRs) that play crucial roles in the first line of the host defense against infections by the recognition of pathogen‐derived molecules. Because of their poorly discriminative nature compared with antigen receptors of the adaptive immune system, they also recognize endogenous molecules and evoke immune responses without infection, resulting in the regulation of tumor immunity. Therefore, PRRs may be promising targets for effective cancer immunotherapy, either by activating or inhibiting them. Here, we summarize our current knowledge of signal‐transducing PRRs in the regulation of tumor immunity.
Collapse
Affiliation(s)
- Sho Hangai
- Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Kimura
- Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tadatsugu Taniguchi
- Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hideyuki Yanai
- Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
50
|
Mesquita G, Prevarskaya N, Schwab A, Lehen’kyi V. Role of the TRP Channels in Pancreatic Ductal Adenocarcinoma Development and Progression. Cells 2021; 10:cells10051021. [PMID: 33925979 PMCID: PMC8145744 DOI: 10.3390/cells10051021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022] Open
Abstract
The transient receptor potential channels (TRPs) have been related to several different physiologies that range from a role in sensory physiology (including thermo- and osmosensation) to a role in some pathologies like cancer. The great diversity of functions performed by these channels is represented by nine sub-families that constitute the TRP channel superfamily. From the mid-2000s, several reports have shown the potential role of the TRP channels in cancers of multiple origin. The pancreatic cancer is one of the deadliest cancers worldwide. Its prevalence is predicted to rise further. Disappointingly, the treatments currently used are ineffective. There is an urgency to find new ways to counter this disease and one of the answers may lie in the ion channels belonging to the superfamily of TRP channels. In this review, we analyse the existing knowledge on the role of TRP channels in the development and progression of pancreatic ductal adenocarcinoma (PDAC). The functions of these channels in other cancers are also considered. This might be of interest for an extrapolation to the pancreatic cancer in an attempt to identify potential therapeutic interventions.
Collapse
Affiliation(s)
- Gonçalo Mesquita
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France; (G.M.); (N.P.)
- PHYCELL—Laboratoire de Physiologie Cellulaire, INSERM U1003, University of Lille, 59655 Villeneuve d’Ascq, France
- Institute of Physiology II, University Münster, 48149 Münster, Germany;
| | - Natalia Prevarskaya
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France; (G.M.); (N.P.)
- PHYCELL—Laboratoire de Physiologie Cellulaire, INSERM U1003, University of Lille, 59655 Villeneuve d’Ascq, France
| | - Albrecht Schwab
- Institute of Physiology II, University Münster, 48149 Münster, Germany;
| | - V’yacheslav Lehen’kyi
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France; (G.M.); (N.P.)
- PHYCELL—Laboratoire de Physiologie Cellulaire, INSERM U1003, University of Lille, 59655 Villeneuve d’Ascq, France
- Correspondence: ; Tel.: +33-(0)-3-20-33-70-78; Fax: +33-(0)-3-20-43-40-66
| |
Collapse
|